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Simple Summary: The cytoplasm of a living cell is a crowded place, containing hundreds of types 

of protein and other macromolecules. Cells reliably and continually perform thousands of biochem-

ical reactions to maintain their health. Biomolecular condensates are fluid protein compartments 

that provide distinct local environments, within which they carry out cellular functions. How they 

prevent their contents mixing with the external environment without being encapsulated inside a 

lipid membrane is not fully understood. Many researchers approach this question by studying sim-

pler systems in a test tube that contain only a few protein types although it is hard to relate their 

results to the complex cellular milieu. Computer simulations are used to explore the predictions of 

simple models of cellular behavior, but are also limited by the ability of human experimenters to 

recreate important aspects of the cytoplasm, in particular, its crowded nature. We have used a novel 

computer framework to perform dozens of simultaneous simulations that map out the influence of 

macromolecular crowding on the formation and structure of a biomolecular condensate. We find 

that the spatial structure of the model condensate is surprisingly insensitive to the composition and 

concentration of external macromolecules, even when its formation is assisted by steric repulsion 

from its environment. 

Abstract: The crowded interior of a living cell makes performing experiments on simpler in vitro 

systems attractive. Although these reveal interesting phenomena, their biological relevance can be 

questionable. A topical example is the phase separation of intrinsically disordered proteins into bi-

omolecular condensates, which is proposed to underlie the membrane-less compartmentalization 

of many cellular functions. How a cell reliably controls biochemical reactions in compartments open 

to the compositionally-varying cytoplasm is an important question for understanding cellular ho-

meostasis. Computer simulations are often used to study the phase behavior of model biomolecular 

condensates, but the number of relevant parameters increases as the number of protein components 

increases. It is unfeasible to exhaustively simulate such models for all parameter combinations, alt-

hough interesting phenomena are almost certainly hidden in their high-dimensional parameter 

space. Here, we have studied the phase behavior of a model biomolecular condensate in the pres-

ence of a polymeric crowding agent. We used a novel compute framework to execute dozens of 

simultaneous simulations spanning the protein/crowder concentration space. We then combined 

the results into a graphical representation for human interpretation, which provided an efficient 

way to search the model’s high-dimensional parameter space. We found that steric repulsion from 

the crowder drives a near-critical system across the phase boundary, but the molecular arrangement 

within the resulting biomolecular condensate is rather insensitive to the crowder concentration and 

molecular weight. We propose that a cell may use the local cytoplasmic concentration to assist the 

formation of biomolecular condensates, while relying on the dense phase to reliably provide a sta-

ble, structured, fluid milieu for cellular biochemistry despite being open to its changing environ-

ment. 
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1. Introduction 

How the myriad biochemical reactions that support cellular life are spatially orga-

nized is a fundamental question in cell biology. It is equally crucial for a cell to regulate 

reactions despite the crowded nature of the cytoplasm. Estimates of the concentration of 

proteins in eukaryotic cytoplasm range from 100–450 mg/mL, which implies that specific 

macromolecular interactions compete with many random processes involving other mol-

ecules [1–3]. Confining reactions inside discrete compartments is one solution to these 

problems. The nucleus, endoplasmic reticulum, mitochondria, and many other organelles. 

are wrapped in a phospholipid membrane that segregates their specific biochemistry. In 

the last decade, an older idea of cellular compartmentalization has re-emerged as a para-

digm for cytoplasmic organization [4–8]. Dense protein droplets composed of distinct 

mixtures of proteins (and often RNA or DNA) have been found to carry out many cellular 

functions [9–12]. The proteins that form them lack a minimum-energy folded state, but 

instead sample a wide ensemble of similar-energy conformations in dilute solution 

[13,14]. This has led to their being labelled intrinsically disordered proteins (IDPs). Unlike 

the organelles mentioned above, these droplets, which are commonly referred to as bio-

molecular condensates (BCs), have no bounding phospholipid membrane to prevent mo-

lecular mixing with the cytoplasm. It is recognized that BCs do not completely isolate their 

interior from the cytoplasm. Recent work has shown that some kinases respond to molec-

ular crowding in the cytoplasm by condensing into a functional BC that facilitates a sig-

naling pathway to regulate the cell volume [15]. Crowding is also known to influence pro-

tein folding [16]. Aberrant phase transitions of IDPs are implicated in neurodegenerative 

diseases, cancer, prion protein diseases, and more speculatively, in ageing [17–21]. Exper-

iments on BCs have advanced to the point that they are being synthetically designed to 

modulate biochemical and cellular functions [22–28] and mined for novel drug targets 

[29–31]. A better understanding of how BCs are coupled (or not) to their crowded envi-

ronment would assist in deciphering their cellular roles and constructing synthetic BCs 

[32–38]. 

The complexity of living cells has driven research on model condensates, which typ-

ically use unphysiologically high concentrations of one, or at most a few, species of IDP 

in a buffer, although their relevance to living cells has been strongly questioned [39,40]. 

An example is provided by in vitro experiments on the protein fused in sarcoma (FUS), 

an RNA-binding protein that is implicated in the neurodegenerative disease ALS [41–44]. 

Computational modelling has also been used to study the phase behavior of FUS [43,45–

50]. However, models that are sufficiently complex to be biologically relevant suffer from 

a common limitation: their parameter space is huge because many properties of the con-

stituent molecules might a priori be important for their behavior [51]. A popular concep-

tual model for IDPs is the so-called stickers and spacers model, in which the molecules 

are regarded as semi-flexible polymers with multiple attractive domains (stickers) that are 

connected by weakly interacting linkers (spacers) [9,45,46,52,53]. When such models aim 

for one-monomer-per-residue accuracy, they require specifying ~400 interaction parame-

ters just to describe the pairwise forces between the 20 amino acid types [46]. 

Further coarse-graining the stickers and spacers model reduces the force field com-

plexity, but still requires assigning values to multiple parameters, including the IDP mo-

lecular weight, concentration, backbone stiffness, location of the multiple binding sites, 

and the interaction energies between all species (solvent, backbone bead, and binding 

sites). We have previously used Dissipative Particle Dynamics (DPD) simulations to ex-

plore the phase behavior and structure of a model biomolecular condensate formed of a 

single type of IDP modelled on the FUS low-complexity domain (FUS LC) [50,54–56]. 
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Here, we ask the simplest question related to the response of a biomolecular condensate 

to its environment: how does its phase behavior and internal structure respond to the 

crowding effect of other macromolecules?  

Naively adding additional molecule types as crowding agents multiples the param-

eters geometrically, rendering it impossible to explore the parameter space of the model 

in a systematic way. We overcome this barrier by performing multiple, parallel simula-

tions on a novel compute framework [57,58]. Our goal is to rapidly locate interesting re-

gions of the parameter space and make experimentally relevant predictions, while mini-

mizing the computational cost and experimentation time. The simulated FUS-LC mole-

cules are based on previous work [50], and a soluble polymeric crowding agent (referred 

to hereafter as the crowder) is added, which exerts a steric pressure on the IDP molecules 

(and itself), but is otherwise inert. 

Even after these simplifications, the system has a six-dimensional parameter space—

two molecular weights, two concentrations, the IDP self-attraction, and the crowder/IDP 

repulsion strength— which may affect the phase behavior in a non-trivial way. For sim-

plicity, we set the IDP and crowder molecular weights to be equal and initially fix the 

crowder/IDP repulsion to a high value (see Table 1). This leaves three parameters to be 

explored in the simulations: the crowder and IDP concentrations and the IDP self-attrac-

tion.  

Table 1. Bead–bead conservative force parameters 𝑎𝑖𝑗 (in units of 𝑘𝐵𝑇 𝑑0⁄ ) for all bead types. The 

table is symmetrical. 

𝒂𝒊𝒋 W E B F P 

W 25     

E 25 aEE    

B 23 25 25   

F 25 aEE 25 aEE  

P 25 80 80 80 80 

A final difficulty, which is intrinsic to all computational models with many parame-

ters, is our inability to simultaneously visualize multiple states of the model as the param-

eters vary. We show that by using parallel hardware to accelerate dozens of simulations 

and displaying the results in a grid of visually rich simulation snapshots, we can rapidly 

locate the fruitful regions of the parameter space. Our results predict that the spatial ar-

rangement, but not necessarily the dynamics, of the IDPs within the model condensate is 

surprisingly insensitive to the crowdedness of its environment, even when steric repul-

sion from the crowder is required for its formation. Biomolecular condensates, therefore, 

provide a stable, structured fluid environment for biochemical reactions because the mo-

lecular structure of IDPs decouples their internal state (to a certain degree) from their 

compositionally-varying surroundings. 

2. Materials and Methods 

2.1. Dissipative Particle Dynamics Simulations 

The Dissipative Particle Dynamics simulation technique (DPD) was invented to 

study complex fluids such as polymer mixtures, phospholipid membranes, diblock copol-

ymers, etc. [54,55,59–61]. The simulation source code we use is available on Github [62]. 

DPD is a coarse-grained molecular technique in which atoms are aggregated into beads 

that interact via three effective forces. All of the beads have mass 𝑚, and the three non-

bonded forces between them are soft, short-ranged (vanish beyond a fixed length-scale 

𝑑0), pairwise additive, and conserve linear momentum. A conservative force gives each 

bead an identity: 

𝑭𝑖𝑗
𝐶 = 𝑎𝑖𝑗(1 − 𝑟𝑖𝑗 𝑑0⁄ ) 𝒓̂𝒊𝒋, (1) 
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for 𝑟𝑖𝑗 < 𝑑0. In this equation, 𝑎𝑖𝑗 is the maximum value of the force; 𝒓𝒊𝒋 = 𝒓𝒊 − 𝒓𝒋 is the 

relative position vector from bead j to bead i, 𝑟𝑖𝑗 is its magnitude, and 𝒓̂𝒊𝒋 is the unit vec-

tor directed from bead 𝑗 to bead 𝑖. Two other non-bonded forces constitute a thermostat 

that ensures the equilibrium states of the simulation are Boltzmann distributed. The dis-

sipative force is: 

𝐹𝑖𝑗
𝐷 = −𝛾𝑖𝑗  (1 − 𝑟𝑖𝑗 𝑑0⁄ )

2
(𝒓̂𝒊𝒋 . 𝒗𝒊𝒋). 𝒓̂𝒊𝒋 , (2) 

where 𝛾𝑖𝑗 = 4.5 is the strength of the dissipative force, which is the same for all of the 

bead types, and 𝒗𝒊𝒋 is the relative velocity between beads 𝑖 and 𝑗. The random force is: 

𝐹𝑖𝑗
𝑅 = √2𝛾𝑖𝑗𝑘𝐵𝑇 𝑑𝑡⁄  (1 − 𝑟𝑖𝑗 𝑑0⁄ ) 𝜁𝑖𝑗 𝒓̂𝒊𝒋, (3) 

where 𝑘𝐵𝑇 is the system temperature and 𝜁𝑖𝑗  is a symmetric, uniform, unit random vari-

able that is sampled for each pair of interacting beads and satisfies 𝜁𝑖𝑗 =  𝜁𝑗𝑖, 〈𝜁𝑖𝑗(𝑡)〉  = 0, 

and 〈𝜁𝑖𝑗(𝑡)𝜁𝑘𝑙(𝑡′)〉 = (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)𝛿(𝑡 − 𝑡′). The factor 1 √𝑑𝑡⁄  in the random force en-

sures that the discretized form of the Langevin equation is well defined.  

Once the required bead types have been specified, they are connected into molecules 

by tying them together with Hookean springs, whose energy function is: 

𝑈2(𝑖, 𝑖 + 1) = (1 2⁄ )𝑘2(𝑟𝑖 𝑖+1 − 𝑙0)2, (4) 

and the spring constant,  𝑘2 , and unstretched length,  𝑙0  are fixed at the values 𝑘2 =

128 𝑘𝐵𝑇 𝑑0
2⁄  and 𝑙0 = 0.5 𝑑0 for all of the bond types. Finally, because the peptide chains 

that form the backbone of the IDPs have a bending stiffness, we add a chain bending po-

tential to the angle 𝜑, which is defined by adjacent backbone bead triples (BBB) with the 

energy function: 

𝑈3(𝑖 − 1, 𝑖, 𝑖 + 1) = 𝑘3(1 − 𝑐𝑜𝑠(𝜑 − 𝜑0)), (5) 

with the parameters 𝑘3 = 5 𝑘𝐵𝑇 and 𝜑0 = 0.  

Three types of molecule are defined in the simulations. The IDPs are semi-flexible, 

linear polymers containing a set of binding sites (sticky bead types E for the endcaps and 

F for the internal binding sites), which are separated by segments of inert backbone beads 

(B). The crowding agent is a self-avoiding, semi-flexible homopolymer composed of a sin-

gle bead type (P). The solvent molecules are represented by a single bead (W). Both the 

sticky beads and the backbone beads of the IDP and crowder beads are hydrophilic, and 

we emphasize that there is no hydrophobic repulsion of the IDPs or crowder from the 

solvent. In the notation of [50], 5B6 represents an IDP containing 5 binding sites (including 

the endcaps) that are separated by 6 backbone beads (Figure 1), and similarly, 6B10 is an 

IDP with 6 binding sites that are separated by 10 backbone beads. The crowder polymers 

diffuse freely throughout the simulation box, exerting an osmotic pressure on the IDPs. 

The crowder molecules composed of 12, 24, and 48 monomers are indicated by the nota-

tions P12, P24, and P48, respectively. All of the non-bonded conservative interaction pa-

rameters are given in Table 1. As in the previous work [50], we quantify the attraction of 

the IDP binding sites by defining a dimensionless parameter 𝜖 in terms of the conserva-

tive force parameter for the binding sites’ self-interaction and interaction with the solvent, 

namely, 𝜖 =  (𝑎𝐸𝑊 − 𝑎𝐸𝐸) 𝑎𝐸𝑊⁄ . A value of 𝜖 =  0 means there is no net attraction be-

tween the sticky sites, as they have the same interaction with each other as they do with 

the solvent beads. Higher values of 𝜖 indicate a stronger attraction. We point out here that 

bead types E and F have identical interactions in the simulations, but are labelled differ-

ently for visual clarity in exploring the phase behavior. 

Simulations take place in a cubical box with dimensions 48 × 48 × 48 (d0)3, unless 

otherwise stated, and periodic boundary conditions are applied. The phase behavior of 

the model IDP/crowder system is studied by distributing a given number of IDPs and 

crowders randomly throughout the simulation box and filling the remaining space with 

solvent particles to an average density of 𝜌𝑑0
3 = 3. All beads have mass m = 1, and the 
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reduced system temperature is 𝑘𝐵𝑇 = 1. Each simulation is performed for one million 

time steps using an integration step size of 0.02 τ, where 𝜏 =  √𝑚𝑑0
2 𝑘𝐵𝑇⁄  is the DPD time-

scale. The first half of all of the simulations is discarded and equilibrium averages are 

constructed from samples taken from the second half. Some simulations are extended to 

two million steps or longer to ensure they reach equilibrium. 

a  

b  

c  d e  

Figure 1. Molecular structure of (a) 5B6 IDP and (b) P24 crowder molecule. The notation 5B6 indi-

cates that there are five binding sites, and adjacent ones are separated by six backbone beads. The 

endcaps and internal binding sites are colored differently for clarity. The crowder polymer beads 

are yellow and strongly repulsive towards themselves and all of the IDP bead types (see Table 1). 

All of the IDP and crowder bead types are hydrophilic. (c) Snapshot of a dispersed system contain-

ing 250 IDPs of type 6B10 with no crowder and (d) 234 IDPs of the same type in the presence of 468 

P48 crowder molecules. (e) Similar IDP/crowder system with visible crowder polymers. Note, the 

simulation box is not shown, and crowder molecules are invisible in panel (d). Solvent particles are 

invisible in all figures for clarity. 

2.2. POETS  

Exploring multiple parameter models is an iterative process involving a human–

computer interaction, with the computer performing simulations on a chosen set of pa-

rameter values, followed by the human evaluating the results and choosing new sets of 

parameter values. This type of human-driven parameter space exploration presents both 

computational and experimental design problems: 

1. How do we compute multiple simulations fast enough to support semi-interac-

tive parameter space exploration? 

2. What visualization and workflow support can be created to support a human 

who wishes to perform such an exploration? 
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We solved the first problem by running multiple instances of a new high-perfor-

mance DPD simulator in a batch processing system, allowing for the rapid simulation of 

multiple parameter sets in parallel. The second problem is solved using an automated 

execution and visualization workflow wrapped around the parallel simulators, minimiz-

ing the human effort needed to manage and post-process the results during the search. 

This approach allowed us to simulate and visualize the results of a 4 × 5 grid of parameters 

(a 2D parameter space slice) in two hours, while reducing the analysis time needed by the 

human to just five minutes for the visual inspection. This two hour process should be 

compared to the 7 days that are needed if the 20 simulations are executed sequentially. 

Both the simulator and visualization framework were inspired by a collaborative re-

search project called POETS [58], which is an ongoing project exploring a new computing 

paradigm called event-triggered computing. In event-triggered computing, the applica-

tions and hardware are designed around the frequent exchange of events (small mes-

sages) between small asynchronous state machines, rather than the infrequent exchange 

of large messages between threads (as seen in MPI). 

The main idea of POETS is to execute event-triggered applications using custom-built 

hardware, allowing applications to efficiently execute on thousands of lightweight 

threads. This idea has previously been applied successfully to DPD simulation, where it 

was used to tackle simulations of a large spatial size [51]. However, while we were per-

forming that research, we uncovered an opportunity and a challenge: the opportunity was 

that the event-triggered algorithms were also a surprisingly good fit for modern multi-

core CPU architectures. The challenge was that there is currently only one large POETS 

hardware system, for which there is significant competition for access time. 

The fit between the event-triggered algorithms and contemporary multi-core CPUs 

also resulted in a very fast, multi-core, shared memory DPD simulator. The technical de-

tails are not the focus of this paper, but one of the main ideas is that it uses a very fine-

grained spatial domain decomposition, so that each thread manages a unit volume cell. 

As beads move around in the simulation they are also moved between the cells in 

memory, rather than building and maintaining edge lists. The event-triggered nature of 

the algorithm makes it particularly amenable to SIMD vectorization, reduces the cache 

traffic, and allows for efficient shared memory multi-threading. 

We do not make claims about the relative efficiency of this approach for all compu-

tational problems, but for the experiments that were performed in this work using the 

Iridis data center (https://www.southampton.ac.uk/isolutions/staff/iridis.page, accessed 

on 16 Jan 2023) our approach resulted in a 2× speed-up compared with the industry-stand-

ard code LAMMPS (https://www.lammps.org, accessed on 17 Jan 2023) in a single 64-core 

system. Two important aspects of this setup were: 

- It allowed the experiments to be completed in under two hours, which allowed them 

to be submitted to the “fast” low-latency queue in the Iridis job manager;  

- It means we do not need to use GPUs to achieve low latency, which is useful because 

GPUs are less common in many HPC clusters and they are heavily subscribed by 

chemists, physicists, and machine learning researchers. In our experience, it typically 

takes more than 2 hours for a GPU job to even start running, even though it may 

perform faster once it has started. 

So, the result of having a very fast, multi-core, shared memory is that multiple jobs 

can be issued and completed very quickly. Clearly, these exact figures are not true of all 

HPC systems, but it does address two common problems: GPUs are a very contested re-

source, and the jobs need to have short run times in order to achieve low latency. 

This multi-core oriented approach allows 20 independent 48 × 48 × 48 × 1 M simula-

tions to be completed in under 2 hours, which is almost interactive; in principle a re-

searcher could perform four simulate–observe–decide iterations during a working day. In 

practice, we found that there was substantial overhead due to preparing the simulation 

inputs, collecting the outputs, and then post-processing them into a useable form that a 
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human could analyze. Simple tasks such as ordering and organizing images take large 

amounts of time, involving the researchers opening multiple files and trying to arrange 

them in some way to support the interpretation and analysis. Creating and submitting the 

next batch of simulations is then another time consuming step. 

Through experimentation we found that the most effective approach—at least for our 

current purposes—is to explore a plane of two parameters, and then automatically ar-

range the simulation outputs into a visual 2D grid (e.g., see Figure 2). In most cases, this 

allows the human to immediately explore and interpret the results. If the current param-

eter ranges are not exposing any behaviors of interest, a new set of parameters can be 

found and re-submitted for exploration. If an interesting set of parameters has been dis-

covered, then either more detailed simulations can be performed in the same area or the 

human can take the simulation results and start to explore them using other approaches 

for the statistical and visual analysis.  

The overall workflow we developed for the results used in this paper is: 

1. Manual: define a model with multiple parameter dimensions to sweep; 

2. Manual: construct a parameterized scenario generator that can instantiate the model 

for specific parameter values; 

3. Perform human–computer collaborative search: 

a. Manual: identify two interesting parameter dimensions and ranges; 

pick X points for one parameter and Y points for the other parameter and gen-

erate the XxY concrete scenarios to be simulated; 

b. Automatic: simulate the scenarios in parallel using multiple machines in a HPC 

system; 

c. Automatic: collect the outputs and produce tiled XxY images and videos; 

d. Manual: inspect the tiled images to understand the parameter response. 

If necessary, repeat step 3.a. 

4. Manual: explore and analyze the results in more detail. 

The two manual bottleneck tasks in this iterative process are steps 3.a and 3.d: picking 

the parameter values at the start of each iteration and manually investigating the results, 

respectively. Using a set of scripts, we simplified step 3.a down to the point where the 

user submits a zip file of the simulation scenarios. Each simulation scenario in the zip is 

an Osprey DPD simulation description file, with a file name prefix indicating its position 

within an integer grid. In step 3.d, the user then receives back a zip file containing periodic 

snapshots of each simulation state, along-side automatically assembled image grids of the 

rendered images showing the spatial variations (see Figure 2). In many cases, it is suffi-

cient to simply open and view the image grid to obtain a sense of the parameter depend-

ency and immediately produce the next set of scenarios. 

The automated tools supporting steps 3.b and 3.c are implemented using a combina-

tion of the POETS DPD software simulator, python scripts to assemble image grids, and 

a set of shell scripts to manage them. The grids are executed on the Iridis-5 HPC cluster at 

the University of Southampton, with one 64-core AMD node per simulation. Each node is 

able to complete a 48 × 48 × 48 × 1 M simulation in less than 2 h, requiring about 3.3 × 1011 

bead steps. A grid of 4 × 5 simulations typically completes 6.6 × 1012 bead steps in 2 hours. 

This workflow could usefully be replicated using other simulation tools. For exam-

ple, it can be performed using Osprey DPD, though it would slow the iteration time down 

to at most one iteration per day. It could also be implemented using a GPU accelerated 

simulator such as LAMMPs, and in an HPC system with abundant GPUs this could be a 

good solution. However, the GPU nodes are still often a small subset of the total number 

of computer nodes in many HPC pools, so even if the individual simulation tasks are ex-

ecuted more quickly, the tasks may spend a long time waiting for the execution. 

To give a concrete example, in the Iridis-5 system, there are 572 multi-core CPU com-

pute nodes, but there are only 20 GPU nodes, which is not an uncommon balance for a 

large institution-wide HPC pool for batch computing. As a result, there is intense 
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competition for GPU access time due to physicists, chemists, engineers, and machine 

learning researchers all wanting to run long multi-hour tasks, so the GPU tasks may spend 

10–20 hours waiting in the submission queue. To complete a grid of 20 GPU tasks, it might 

take 2–3 days, even though it only takes 20 hours of on-node time, thereby eliminating the 

interactive aspect of parameter space exploration. By using fast multi-core software sim-

ulators we can rapidly execute all of the tasks, exploiting the large number of CPU com-

pute nodes available for short-lived tasks, and complete all 20 tasks in a semi-interactive 

two hour timescale. 

3. Results 

3.1. Crowding Assists Phase Separation of IDPs with Sub-Critical Affinity 

Phase separation of IDPs is driven by transient attractive interactions between spe-

cific amino acids, such as arginine and tyrosine, and non-specific electrostatic and hydro-

phobic interactions between residues [63]. It is assisted by the relatively small entropic 

cost when proteins move from a dilute phase into the dense phase, as demonstrated by 

FUS that retains high conformational flexibility inside its dense phase [42,43]. In previous 

work, we showed that model IDPs similar to those shown in Figure 1 spontaneously phase 

separate when the affinity of their binding sites exceeds a threshold that depends on the 

number and location of the binding sites [50]. When their affinity is reduced below the 

critical value, no spontaneous phase separation occurs. Here, we first explored how the 

presence of a crowding agent influences the phase separation of a model IDP whose af-

finity is below the critical value. 

The model IDP has six binding sites that are separated by ten backbone beads and is 

represented by the notation 6B10. Previous work showed that the critical affinity for such 

molecules lies in the range 𝜀 = 0.68 − 0.74 [50]. We set the binding site affinity to 𝜀 =

0.6, which is below the critical value, so the IDPs were unable to phase separate sponta-

neously. The crowding polymer was P48, and all of the other parameters were fixed as 

described in the Methods section. This left a two-dimensional parameter space, the IDP 

and crowder concentrations, which can conveniently be displayed as a two-dimensional 

array of results. Figure 2 shows a grid of snapshots taken from 30 simultaneous simula-

tions of 106 time steps performed using POETS-DPD (see Methods). The rows have con-

stant IDP concentration, which increases towards the bottom, and the columns have con-

stant crowder concentration, which increases to the right. The crowder molecules are in-

visible in the figure for clarity, but Supplementary Figure S1 shows the complete systems. 

The top row shows the general trend in the observed equilibrium states as the crowder 

concentration is increased. In the absence of a crowder, the IDPs are dispersed (top left 

image), while increasing the crowder concentration eventually drives the system across 

the phase boundary, resulting in a phase separated droplet surrounded by a dilute phase 

(top right image). The same trend is seen in the lower rows of the table for higher IDP 

concentrations. However, when the IDP concentration is sufficiently high, they already 

form a loose network that spans the box in the absence of the crowder, a result that has 

previously been reported in the literature [45,50,56]. Visually comparing all of the snap-

shots in the grid shows that higher concentrations of IDP phase separated at lower 

crowder concentrations. When the same IDP/crowder concentrations were simulated with 

higher affinities 𝜀 = 0.68, 0.76, the boundary between the dispersed and phase separated 

states shifted to lower crowder concentrations with increasing affinity (cp. Supplementary 

Figure S2). 

It might be expected that a sufficient concentration of the repulsive crowder could 

drive phase separation of IDPs whose affinity is low or even zero. This would represent a 

generic polymer phase separation driven by the steric repulsion between the molecules, 

as described by Flory–Huggins theory [64]. In particular, it would not depend on the af-

finity and number of IDP binding sites, and therefore, the heterogeneous spatial organi-

zation of the molecules in the dense phase observed in earlier work might be eliminated 
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[50]. To test this possibility, we ran control simulations in which the binding affinity of 

the IDPs was initially set to a value that is known to drive phase separation (𝜀 = 0.68), 

and subsequently removed after 500,000 time steps (𝜀 = 0). Supplementary Movie SM1 

shows the evolution of the system with [IDP] = 0.0006 (180 molecules) and [Crowder] = 

0.0012 (361 molecules), which corresponds to grid element 3, 4 in Figure 2. When the af-

finity was removed, the dense phase dissolved, showing that the presence of the crowder 

alone was unable to drive the phase separation for this combination of IDP/crowder mo-

lecular structure and concentrations. This does not preclude that a higher crowder con-

centration could drive phase separation. Supplementary Movie SM2 shows the result for 

grid element 3, 6 in Figure 2, showing that the higher crowder concentration of 0.002 (583 

molecules) was sufficient to keep the IDPs from dispersing in the absence of any self-at-

traction between the IDPs. However, when we analyzed this dense phase, the binding 

sites of the IDPs did not form junctions, and the IDPs are not in a connected network.  

We calculated the crowder concentrations as follows. The densest case in the grid, 

which corresponds to the rightmost column in Figure 2, has between 568 and 594 mole-

cules of the P48 crowder in the simulation box (the precise value depends on the number 

of IDP molecules). The molecular weight of the crowder was chosen to be equal to that of 

the IDP, which represents FUS-LC, and its concentration was calculated using the method 

in [50]. This gave a concentration of 7 mM, which is equivalent to 120 mg/mL, and is in 

the range of estimates for the eukaryotic cytoplasm of 100–450 mg/mL [1,2]. 

 

Figure 2. Illustrative grid of snapshots of 6B10 molecules with constant affinity 𝜀 = 0.6 in the 

[Crowder]-[IDP] plane. The rows have constant IDP concentrations (top to bottom): 0.0003, 0.0004, 

0.0006, 0.0008, 0.001, and the P48 crowder concentration increases across the columns (from left to 

right): 0.0, 0.0004, 0.0008, 0.0012, 0.0016, and 0.002. Increasing the crowder concentration (top row) 

drives the system across its phase boundary, producing a dense droplet surrounded by a dilute 

phase. Examining the lower rows of the grid reveals that the crowder concentration required to 

drive phase separation decreases with an increasing IDP concentration (bottom row). Solvent and 

crowder molecules are invisible in all snapshots for clarity. 
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3.2. Quantitative Properties of Condensate Structure Are Insensitive to Crowder Concentration 

We next explored whether the internal organization of the IDPs in the dense phase is 

modified when the phase separation is assisted by the crowding agent compared to when 

it forms spontaneously (i.e., when the IDPs have a higher affinity). We previously found 

that the dense phase has a heterogeneous structure in which the binding sites of the IDPs 

meet at spatially-discrete junctions whose separation depends on the spacing of the bind-

ing sites but is less sensitive to their affinity (cp Figure 3 in [50]). Further, the average 

number of IDPs that span two junctions increases with increasing binding site affinity and 

decreasing separation. These junctions are transient because the IDPs continually fluctu-

ate and diffuse through the dense phase. 

In Figure 3 we show the quantitative properties of the dense phase of 6B10 IDPs for 

three values of the affinity, 𝜀 = 0.6, 0.68, 0.76, that are near the critical value as a function 

of the crowder concentration. All of the systems in the top row (Figure 3a–c) are phase 

separated, even in the absence of the crowder, because of their high self-affinity (the grid 

of snapshots for this affinity, 𝜀 = 0.76, are shown in Supplementary Figure S2). Figure 3 

panels g–i along the bottom row correspond to the array of simulations in Figure 2, and 

Figure 3 panels d–f in the middle row correspond to those in Figure 4. The first column 

shows the number of IDPs that are connected together to form the Largest Equilibrium 

Network (LEN). This is defined at each sampling point of the simulations as the largest 

set of IDP molecules that are simultaneously connected by their binding sites. The contin-

ual exchange of molecules between the dilute and dense phases causes the LEN to fluctu-

ate over time, and we average many samples to obtain its equilibrium size and properties. 

We recalculated the LEN for each sample used in the quantitative analysis to minimize 

the influence of small clusters and surface effects, as described previously [50]. Whereas 

the size of the LEN for high affinities (Figure 3a) was independent of the crowder concen-

tration, systems with lower affinities (Figure 3d,g) required a higher crowder concentra-

tion before the LEN became stable. Note that values of the observables that are near zero 

means there were too few IDPs in the LEN to calculate the equilibrium averages, i.e., al-

most all of the IDP molecules are dispersed. The fraction of IDPs in the dense phase in-

creased with the crowder concentration, until it contained all of the IDPs at the highest 

concentration.  

The second column shows the mean junction separation within the condensed phase 

as a function of the crowder concentration for all of the IDP concentrations studied. The 

separation was clearly independent of the IDP concentration (and therefore, the droplet 

size) and the crowder concentration is in the range where the dense phase is stable. Com-

paring the junction separation in Figure 3b, e, and h shows that it was insensitive to the 

binding site affinity and crowder concentration over the studied range, apart from a slow 

decrease, which was less than the size of the monomers forming the IDP. Finally, the mean 

junction mass was insensitive to the IDP concentration, but showed a small systematic 

increase with increasing crowder concentration (Figure 3c,f,i). Taken together, these re-

sults show that IDPs with weaker affinities require higher crowder concentrations to 

phase separate. The mean junction separation in the dense phase was largely insensitive 

to the IDP and crowder concentrations, while the number of IDPs binding at the existing 

junctions increased slowly with increasing crowder concentration. 
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Figure 3. Structural data on the dense phase of 6B10 IDPs with affinities 𝜀 = 0.6, 0.68, 0.76 (from 

bottom to top) as a function of the P48 crowder concentration for several values of IDP concentra-

tion. Panels (a,d,g) in the first column show that the number of IDPs in the Largest Equilibrium 

Network (LEN) increases with the IDP concentration and that a lower affinity requires a higher 

crowder concentration before the dense phase appears. The middle column (b,e,h) shows that the 

separation between the junctions at which IDP binding sites meet is independent of their concen-

tration, and it decreases slowly with increasing crowder concentration. The final column (c,f,i) 

shows that the mean number of IDPs binding at the junctions is independent of the IDP concentra-

tion but increases weakly with increasing crowder concentration. Note that if the LEN does not 

exist, the data points lie on the abscissa. 

3.3. Dense Phase Structure Is Partially Decoupled from the Crowder Molecular Weight and 

Enthalpic Repulsion from the IDPs 

3.3.1. The Phase Boundary but Not the Dense Phase Structure Varies with the Crowder 

Volume Fraction 

The previous section showed that the structural organization of the IDPs in the equi-

librium dense phase was independent of the IDP concentration (once the dense phase is 

stable), and was only weakly dependent on the crowder concentration. Next, we probed 

the dependence of this structure on the molecular weight of the crowder. Because we ex-

pected the reduced volume fraction of shorter crowders to impose a smaller osmotic pres-

sure on the IDPs, we increased the IDP affinity from 𝜀 = 0.6 to 𝜀 = 0.68. The baseline re-

sults using the P48 crowders are shown in Figure 4. The first column shows that the higher 

self-affinity was still too weak to drive phase separation in the absence of a crowder, but 

the IDPs phase separated with increasing crowder concentration, as observed in Figure 2.  
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Figure 4. Illustrative grid of snapshots of 6B10 molecules with affinity 𝜀 = 0.68 in the [Crowder]-

[IDP] plane for P48 crowder polymers. As in Figure 2, the rows have constant IDP concentration 

(from top to bottom): 0.0003, 0.0004, 0.0006, 0.0008, and 0.001, and the crowder concentration in-

creases across the columns (from left to right): 0.0, 0.0004, 0.0008, 0.0012, 0.0016, and 0.002. The bind-

ing site attraction is stronger than in Figure 2, but is still too weak to drive phase separation in the 

absence of the crowder, as seen in the first column. 

We then repeated these simulations with crowding polymers whose size was re-

duced from 48 to 24 monomers, and we kept their number fractions for each grid element 

the same as before (Figure 5). This effectively reduced their volume fraction by a factor of 

two. (Supplementary Figure S3 shows the grid with the visible P24 crowder molecules.) 

Comparing Figures 4 and 5 shows that the phase boundary shifted to a higher crowder 

concentration in the presence of the P24 crowders compared to the P48 ones because more 

IDPs moved from the dense to the dilute phase, but the droplet still formed.  
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Figure 5. Qualitative effect of reducing the length of the crowder molecules on the dense phase 

stability of 6B10 molecules with constant affinity 𝜀 = 0.68. Replacing P48 crowders with P24 ones 

with the same number fraction halves the monomer volume fraction of the crowders. The IDPs 

phase separate at higher crowder concentrations, and more IDPs are in the dilute phase compared 

to Figure 4. 

We measured the quantitative structure of the dense phase in the presence of P24 

crowders, and we show the results in Figure 6. For the IDPs with the highest affinity, the 

dense phases were almost identical for the two types of crowding polymer. When the 

affinity was lowered, the most noticeable effect was that a higher crowder concentration 

was needed to drive the phase separation of the IDPs, which is intuitively expected. Once 

the dense phase appears, its quantitative structure was only weakly dependent on the 

crowding polymer length. For the lowest affinity case (Figure 6 panels g–i), the mean junc-

tion separation increased by approximately 20%, and the mean junction mass decreased 

by 10–15%. This shows that the spatial organization of the IDPs inside the dense phase 

was largely decoupled from the molecular weight of the crowders when their volume 

fraction was constant. 
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Figure 6. Structural data on the dense phase of 6B10 IDPs with affinities 𝜀 = 0.6, 0.68, 0.76 (from 

bottom to top) as a function of the P24 crowder concentration for several values of IDP concentra-

tion. Panels (a,d,g) in the first column show that the number of IDPs in the Largest Equilibrium 

Network (LEN) increases with increasing IDP concentration and that a lower affinity requires a 

higher crowder concentration before the dense phase appears. The middle column (b,e,h) shows 

that the separation between the junctions at which IDP binding sites meet is independent of the IDP 

concentration, and decreases slowly with increasing crowder concentration. The final column (c,f,i) 

shows that the mean number of IDPs binding at the junctions is also independent of the IDP con-

centration but increases weakly with increasing crowder concentration. Note that if the LEN does 

not exist, the data points lie on the abscissa. 

Next, we replaced the P24 crowders with P12 ones and qualitatively checked whether 

the dense phase remained stable. We selected the system in the third row and fourth col-

umn of Figure 4 as a typical case. The IDP and crowder number fractions were 0.0006 and 

0.0012, respectively, (corresponding to 180 IDPs and 361 crowders, respectively). The con-

servative repulsive parameter between the crowder monomers and IDP monomers was 

kept at 𝑎𝑃𝑥 = 80, where × stands for all of the bead types, except for the solvent (cp. Table 

1). We performed separate simulations using the P24 crowders, with number fractions of 

0.0012 and 0.0024, and P12 crowders, with number fractions 0.0012 and 0.0048. Figure 7. 

a and b shows that the P24 crowders at the same number fraction as that of the P48 ones 

reduced the stability of the droplet, and more IDPs migrated to the dilute phase. Keeping 

the P24 volume fraction equal to that of the P48 crowder restored the droplet’s stability. 

Supplementary Movie SM3 shows the evolution of the P24 system over 106 time steps for 

the same number fraction and same volume fraction. Figure 7c,d shows the same result 

for P12 crowders; the droplet dissolved due to the reduced crowding effect of the P12 

molecules at the same number fraction, but its stability was restored when their number 

fraction was increased by a factor of four. Supplementary Movie SM4 shows the evolution 

of the P12 system over 106 time steps for the same number fraction and volume fraction. 



Biology 2023, 12, 181 15 of 23 
 

 

  

(a) 371 crowder molecules P24 (b) 724 crowder molecules P24 

  

(c) 376 crowder molecules P12 (d) 1452 crowder molecules P12 

Figure 7. Effects of reducing the length of the crowder molecules on the dense phase stability. (a) 

Replacing P48 crowders with P24 ones at a constant number fraction halves the volume fraction. 

The droplet remains phase separated, but more IDPs move into the dilute phase. (b) The droplet 

becomes stable again when the number fraction of P24 crowders is increased by a factor of 2, thereby 

restoring their volume fraction to the original value. (c) The droplet dissolves when the P48 crowd-

ers are replaced with P12 ones at constant number fraction. (d) The droplet is stable again when the 

number fraction of P12 crowders is increased by a factor of 4, thereby restoring their volume frac-

tion. 

3.3.2. Reducing the Enthalpic Repulsion of the IDPs from the Crowder Molecules Leaves 

the Dense Phase Stable 

Next, we investigated the impact of reducing the enthalpic repulsion between the 

IDPs and crowder molecules on the phase separation. We again used the system in the 

third row and fourth column of Figure 4. The baseline repulsion of 𝑎𝑃𝑥 = 80 between the 

crowder monomers and all of the other (non-solvent) bead types x was reduced to 𝑎𝑃𝑥 =

50, 35 25 at 500,000 steps in independent simulations. Figure 8 shows snapshots of the 

systems after 2 106 time steps, which ensured that the IDPs had time to disperse. The IDPs 

do not phase separate for this combination of concentration and affinity in the absence of 

the crowder (Figure 8a) nor when the repulsion between the crowder and IDP polymers 

was the same as the IDP self-repulsion (Figure 8b). The crowding agent was able to assist 

the phase separation when its repulsion from the IDPs was greater than 𝑎𝑃𝑥 = 35, which 

is a value that is not much higher than that of the IDP’s self-repulsion (Figure 8c,d). This 

shows that the phase separation was not greatly sensitive to the enthalpic repulsion be-

tween the IDPs and the crowding agents as long as it was above a minimal threshold. 
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(Supplementary Movie SM5 shows the evolution of the systems shown in Figure 8 panels 

b and d for the second 106 time steps.) 

  

(a) No crowder (b) P48 crowder repulsion of 25 

  

(c) P48 crowder repulsion of 35 (d) P48 crowder repulsion of 50 

Figure 8. Effect of reducing the repulsive conservative force between the P48 crowder polymers and 

the IDPs. Each panel has the same number fraction of 6B10 IDPs with binding site affinity 𝜀 = 0.68. 

(a) The IDPs do not phase separate in the absence of crowder polymers. (b) The same repulsion 

between the crowders and the IDPs as their self-repulsion does not lead to phase separation. (c) A 

slightly greater repulsion enhances phase separation. (d) Stronger repulsion leads to complete phase 

separation. 

4. Discussion 

The cellular cytoplasm is a complex, crowded fluid, and understanding the effects of 

this environment on the phase separation of disordered proteins into biomolecular con-

densates is a challenging task. Most in vitro assays and computational models focus on a 

single protein, and their relevance to living cells is an open question [39]. A full statistical 

mechanical theory of the phase behavior of a self-associating polymer appears extremely 

difficult to construct, although attempts of various kinds have been made [65–67]. In the 

presence of a polymeric crowding agent, it becomes (probably) impossible. Yet experi-

ments show that a crowded environment can influence the appearance of pathological 

fibrillar states within biomolecular condensates [68–71]. It has also been found that the 

material properties of BCs are important for their cellular functions [34,37] and disordered 

protein domains can exert steric pressure on the cellular membranes [72]. Predicting the 
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response of condensed phases of IDPs to the crowdedness of their environment is an im-

portant step in understanding their functions in health and possible role in treating dis-

eases [29,30,73]. 

Experiments on full-length FUS and its N-terminal low-complexity domain (FUS-LC) 

have shown that their dense phase is highly solvated [42,43]. The flexible IDPs form tran-

sient attractive contacts along their length and retain large conformational fluctuations in 

the dense phase. Their phase separation (at least in the case of FUS-LC, which is almost 

uncharged and has fewer than 25% hydrophobic residues) is therefore unlike oil–water 

phase separation, and we do not expect mean field theories (including Flory-Huggins the-

ory) to describe their phase separation correctly [74]. Recent computational modelling 

suggested that conformational fluctuations are an important driver of the transition 

[49,50,53,75,76]. 

In the present work, we implemented a novel workflow to leverage multiple simul-

taneous simulations to explore the two-dimensional phase space of an IDP in the presence 

of a crowding agent. Interestingly, an analogous experimental microfluidic platform was 

recently used to rapidly scan multidimensional phase diagrams [77]. Massively-parallel 

tools such as these are needed to explore the increasingly complex experimental systems, 

such as ternary systems with and without an inert crowding agent [78]. 

We used our workflow to explore the effects of adding a polymeric crowding agent 

on the phase separation of a model IDP using coarse-grained simulations. This provides 

a tractable model system to explore the range of possible responses of a BC to a crowded 

environment. The phase behavior of the model proteins is controlled by their molecular 

weight, and the number, distribution, and affinity of their sticky sites. In the absence of a 

crowding agent, they phase separate into coexisting dilute and dense phases when the 

affinity of their sticky sites is sufficiently strong, form a space-filling network without 

phase separation for lower affinities, and remain dispersed when their attractive interac-

tions are weak or absent [45,50,56]. The structural properties of the dense phase in coarse-

grained models have been shown to be modulated by specific and non-specific molecular 

interactions [79–82].  

When a polymeric crowding agent was added to IDPs in solution, we observed the 

following effects: (1) if the IDP affinity was just below the value at which spontaneous 

phase separation occurred, the crowder shifted the transition so that the IDPs phase sep-

arated into a dense phase; (2) the observed dense phase had a similar spatial structure to 

that of spontaneously formed droplets of the same IDPs with higher affinity. The for-

mation of the model biomolecular condensate is therefore coupled to the crowdedness of 

its environment. This is in good agreement with recent experimental results of André et 

al. that showed that crowding lowered the dilute phase boundary and increased the dense 

phase concentration in the phase diagram of NPM1-RNA condensates [83]. Alshareedah 

et al. recently found that the mobility of the peptide in a heterogeneous dense phase of 

peptide + ssDNA scaled with the flow activation energy of the condensate [84]. This find-

ing was predicted by our simulations in previous work, which that showed that the flu-

idity of the model IDPs in their dense phase decreases with increasing binding affinity, 

and also decreases when the same number of sticky sites are spaced farther apart on the 

model IDPs [50]. This suggests that the mobility of the macromolecules in a biomolecular 

condensate is predominantly controlled by their binding/unbinding, which was con-

trolled in our simulations by the affinity parameter. Our results also predict that the in-

ternal structure of the model condensate is only weakly affected by the crowded environ-

ment over the studied concentration range. This may explain how WNK1 kinase responds 

to osmotic stress in cells by condensing into a functional biomolecular condensate [15]. It 

is important to point out here that this structural resistance does not imply that the mo-

bility of the molecules in the dense phase is independent of the crowding, only that the 

structural arrangement of the molecules is resistant to deformation. We note here that our 

simulations probed the situation in which crowding polymers exert only steric and en-

tropic forces on the IDPs in a concentration range that is similar to that of the cellular 
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cytoplasm. The densest system we simulated had a crowder concentration of 120 mM, 

which is comparable to the estimates of 100–450 mg/mL for cellular cytoplasm [1,2]. This 

is a simpler case than that of the common crowding agent PEG, which strongly modifies 

the water activity in its environment [3]. Indeed, PEG has recently been observed not only 

to assist phase separation of the protein NPM1 with rRNA, but also to be concentrated 

inside the condensate [83]. This case could be explored by extending our approach to in-

clude attractive interactions between the IDPs and the PEG polymers. Our results suggest 

that a cell may partition the cytoplasm into regions in which the phase boundary of a 

biomolecular condensate is tuned by the local concentration of external macromolecules 

(i.e., non-partitioning crowding agents), while its interior is (partially) decoupled from the 

cytoplasmic composition, thereby producing a stable internal fluid environment. 

The spatial arrangement of the IDPs in the crowding-assisted dense phase was simi-

lar to that observed previously for the same IDPs with higher affinity that spontaneously 

phase separate. The structure of the model BC was therefore not strongly dependent on 

the strength of the attractive interactions between the constituent IDPs. We also observed 

that the model condensate still formed when the repulsion between the IDPs and the 

crowder was substantially lowered and when we reduced the crowder molecular weight, 

keeping their volume fraction fixed.  

We hypothesize that the internal degrees of freedom of the IDPs, which are defined 

by their molecular sequence, are responsible for the robust structure of their dense phase. 

The punctate nature of their binding sites creates a spatial network of weak junctions con-

nected by fluctuating spring-like lengths of the backbone that resist deformation when the 

osmotic pressure due to the surrounding fluid increases. Our results are in good agree-

ment with the recent results of Alshareedah et al. who found that the viscoelastic proper-

ties of in vitro BCs were controlled by the combination of enthalpic (sequence-encoded 

interchain interactions) and entropic (fluctuations of the polymer chain-like IDPs) factors 

[84]. This may be compared to a single-component lipid bilayer vesicle, in which the mem-

brane is stabilized by the strong hydrophobic repulsion of the lipid tails from the aqueous 

solvent. Adding cholesterol modifies the internal degrees of freedom of the lipids (chain 

ordering) and gives rise to a new phase: the liquid ordered phase. We speculate that as 

for the liquid ordered phase, biomolecular condensates rely on the modification of their 

internal degrees of freedom to create robust microenvironments, even in the presence of 

changing external concentrations of crowding macromolecules.  

Computational modelling provides a relatively inexpensive tool for exploring sim-

plified representations of an experimental system, but it suffers from its own complexity 

issues, namely, that the number of parameters increases rapidly with increasing numbers 

of molecular species. Our exploration of the response of a model biomolecular condensate 

to the presence of a crowding agent illustrates the following powerful workflow for stud-

ying models with high-dimensional parameter spaces: (1) generate many examples of a 

system at different points in its parameter space simultaneously, and (2) rapidly compare 

the examples by viewing the data in a large grid of snapshots taken from different param-

eter space points, and identify the interesting regions. Further progress will likely involve 

using AI-enabled pattern recognition of the graphical arrays to identify the most interest-

ing regions and direct costly computer resources towards the most efficient pathway for 

exploration. 

5. Conclusions 

Biomolecular condensates are widely viewed as providing a localized environment 

for cells to spatiotemporally segregate their biochemistry, despite not being surrounded 

by a phospholipid membrane. The exchange of proteins between the dense and dilute 

phases and the crowding effect of other macromolecular species in the cytoplasm would 

appear to undermine their function. Our coarse-grained molecular simulations predict 

that a repulsive macromolecular crowding agent is able to drive a dilute solution of IDPs 

across their phase boundary into a dense phase, even when their attractive self-
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interactions are too weak to drive phase separation alone. However, crucially, the spatial 

arrangement of proteins within the resulting BC changes minimally from that of sponta-

neously phase separating IDPs. These results were also found when the molecular weight 

of the crowding polymer was reduced (by a factor of two), providing that their volume 

fraction was maintained, and when the crowder–IDP repulsion was reduced significantly. 

The dense phase structure was therefore predicted to be insensitive to the precise compo-

sition of its crowded environment. We propose that this arises because the pattern of at-

tractive domains connected by entropic spring-like linkers along the IDPs creates a fluid, 

three-dimensional, network structure that resists deformation by the crowding polymers. 

Our results suggest that a cell may use the local cytoplasmic concentration of macromol-

ecules to tune the formation of BCs, and that they may in turn sense, and respond to, 

changes in their environment.  

The effects of crowding on the model condensate are in good agreement with the 

experiments, and we expect that tailoring this workflow for multicomponent biomolecu-

lar condensates will help researchers to generate novel hypotheses that span the complex-

ity gap between simplified computational models and biologically relevant systems. 

When the self-attraction of the IDPs is removed, a sufficiently high concentration of 

the crowder drives a Flory–Huggins-like demixing of the IDPs and crowder polymers, 

which visually resembles the model BC. However, the dense phase has no connected net-

work structure, because the IDPs are unable to form transiently stable junctions. When 

the IDP self-attraction is turned back on, the model BC reforms with the same internal 

structure as before (see Supplementary Movies SM6 and SM7). This suggests that a func-

tional BC has a different spatial molecular arrangement to those of the same proteins com-

pressed into a small volume solely by steric crowding. 

Our prediction of two visually similar dense phases, only one of which possesses a 

robust spatially organized structure, implies that the observation of a demixing transition 

in computational studies of IDP phase separation is insufficient to conclude that their 

dense phase is a good model of a biomolecular condensate. We believe that the crucial 

question is whether the spatial structure that we observed, which has not been reported 

in the literature by other groups, can be found in experiments of biological condensates. 

Experimental tests of this prediction by positionally mutating key residues in the IDP FUS 

and exploring the consequences for its phase behavior in the presence of a crowder are 

under way. 
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https://www.mdpi.com/article/10.3390/biology12020181/s1, Figure S1: Grid in Figure 2 with visible 

crowder polymers; Figure S2: Grid of IDPs of type 6B10 with high affinity 𝜀 = 0.76; Figure S3: Grid 

in Figure 5 with visible crowder polymers; Video SM1: Evolution of the system in grid element 3,4 

in Figure 2 with affinity removed at time 500,000. Video SM2: Evolution of the system in grid ele-

ment 3,6 in Figure 2 with affinity removed at time 500,000. Video SM3: Evolution of the system in 

grid element 3, 4 in Figure 5 with P24 crowder polymers at the original number fraction (left) and 

volume fraction (right). Video SM4: Evolution of the system in grid element 3, 4 in Figure 5 with 

P12 crowder polymers at the original number fraction (left) and volume fraction (right). Video SM5: 

Evolution of the system in grid element 3, 4 in Figure 2 with IDP/crowder repulsion removed (aPX = 

25) (left) and reduced (aPX = 50) (right). Video SM6: Evolution of grid element 3, 6 in Figure 2 with 

affinity removed at time 500,000. Video SM7: Simulation restarted from the end of SM6 with the IDP 

affinity restored to 𝜀 = 0.68 at time zero. 
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