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The motion of thin curved falling particles is ubiquitous in both nature and industry but
is not yet widely examined. Here, we describe an experimental study on the dynamics
of thin cylindrical shells resembling broken bottle fragments settling through quiescent
fluid and homogeneous anisotropic turbulence. The particles have Archimedes numbers
based on the mean descent velocity 0.75 × 104 . Ar . 2.75 × 104. Turbulence reaching
a Reynolds number of Reλ ≈ 100 is generated in a water tank using random jet arrays
mounted in a co-planar configuration. After the flow becomes statistically stationary, a
particle is released and its three-dimensional motion is recorded using two orthogonally
positioned high-speed cameras. We propose a simple pendulum model that accurately
captures the velocity fluctuations of the particles in still fluid and find that differences
in the falling style might be explained by a closer alignment between the particle’s pitch
angle and its velocity vector. By comparing the trajectories under background turbulence
with the quiescent fluid cases, we measure a decrease in the mean descent velocity in
turbulence for the conditions tested. We also study the secondary motion of the particles
and identify descent events that are unique to turbulence such as ‘long gliding’ and ‘rapid
rotation’ events. Lastly, we show an increase in the radial dispersion of the particles
under background turbulence and correlate the timescale of descent events with the local
settling velocity.

1. Introduction

Solid particles settling through fluids are all around us. Some of these processes
occur in natural environments, like falling leaves; while others happen in engineering
processes or due to human activities. In fact, the latter often have detrimental effects
on nature such as water and air pollution. Differences in the inertial characteristics of
solid materials are also used in engineering applications to separate residues and reduce
the human footprint on the environment. Standard and uniflow cyclones are extensively
used to remove particulate matter (up to 10µm) from the carrier fluid; e.g. remove
sand and black powder in the natural gas industry (Bahadori 2014), to improve clinker
burning processes (Wasilewski & Singh Brar 2017) and in solid-solid separation in the
mineral processing industry (Tripathy et al. 2015). Hydrodynamic separators based on
similar physical principles are also employed in the recycling industry (Esteban et al.
2016), where they classify materials based on the materials’ inertial properties through
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interaction with turbulence. In this type of device, co-mingled waste is introduced into
a container where background turbulence prevents plastics from sinking. In contrast,
glass particles which struggle to follow vortical structures drop to the bottom of the
tank, where a strong mean flow carries them to the next stage for further treatment. In
these facilities, different turbulent regimes are found at various depths of the separator.
Plastic-glass separation predominantly occurs in the middle region of the tank, where
particle concentration is low and the turbulence is not modified by the solids. However,
to improve the separation efficiency of these devices, a thorough understanding of settling
characteristics of irregular particles in turbulence is required.

Much research has been conducted on axisymmetric solids settling in quiescent fluid
(see Ern et al. 2012 for a detailed review), and it is well accepted that particle dynamics
are determined by three dimensionless numbers. These are: 1) the Reynolds number Re =
〈Vz〉D/ν, where 〈Vz〉 stands for the particle mean descent velocity, D for its characteristic
lengthscale and ν for the fluid kinematic viscosity; 2) the dimensionless rotational inertia
I∗, defined as the ratio of the moment of inertia of the particle over that of its solid of
revolution with the same density as the fluid; and 3) the particle aspect ratio D/h, where
h denotes the object’s thickness.

The most widely studied non-spherical particles are planar disks and rectangular plates
(Stringham et al. 1969; Field et al. 1997; Ern et al. 2012; Auguste et al. 2013; Smith
1971; Heisinger et al. 2014; Mahadevan et al. 1999; Zhong et al. 2011, 2013; Lee et al.
2013; Chrust et al. 2013), whose falling styles share the same dominant features. Still,
specific dynamics occur when the particle perimeter contains sharp edges (Esteban et al.
2018, 2019b,c). The four dominant regimes in both disks and rectangular plates are
‘steady fall’, ‘zig-zag motion’, ‘chaotic motion’ and ‘tumbling motion’; and these are
shown in the Re − I∗ phase space in figure 1. When Re is sufficiently small, a particle
descends following a ‘steady fall’ independent of its dimensionless moment of inertia.
Under this mode, the solid falls vertically with oscillation amplitudes much smaller than
its characteristic lengthscale. As Re increases, the swaying motion grows and the particle
transits into a ‘zig-zag motion’ caused by vortex shedding. Various types of zig-zag
motions have been identified, ranging from ‘planar zig-zag’ to more three-dimensional
ones such as ‘spiralling’ and ‘hula-hoop’ motion (Auguste et al. 2013; Zhong et al. 2011).
From this point, as I∗ rises, the pitching motion of the particle overcomes the fluid
torque damping it and the descent enters a ‘chaotic regime’ where the particle flips
over intermittently while exhibiting a zig-zag motion. As I∗ increases further, tumbling
becomes more persistent and eventually continuous in the ‘tumbling motion’ regime.
Markers in figure 1 locate the solids investigated in this study in the Re− I∗ phase space
originally determined for disks and plates (Willmarth et al. 1964; Stringham et al. 1969;
Smith 1971; Field et al. 1997). Details on defining the dimensionless numbers of these
particles are included in §2.

Regarding three-dimensional particles with curvature, spheroids, spheres, and cylinders
are the canonical geometries that have been investigated in more detail. Oblate spheroids
have the same principal falling styles as disks. However, as they become more spherical,
zig-zag and chaotic descents vanish. Yet, when they are close to spheres, chaotic motion
returns (Zhou et al. 2017). The dynamics of spheres is also very complex, with steady
fall, oblique descent, horizontal oscillations due to vortex shedding; and helical and
chaotic motions all observed (Jenny et al. 2004; Veldhuis & Biesheuvel 2007; Horowitz
& Williamson 2010a; Zhou & Dušek 2015; Ardekani et al. 2016). Fibre-like shapes such
as prolate spheroids fall helically with no visible zig-zag motion (Ardekani et al. 2016).
Still, as the aspect ratio increases and the particles become long cylinders, they settle
rectilinearly or with oscillations along its axial direction (Horowitz & Williamson 2006,
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Figure 1: TheRe–I∗ phase space explored in the current study. The regime boundaries are
taken from Field et al. (1997) and Smith (1971). Markers denote the particles considered,
whose properties are listed in table 1.

2010b; Toupoint et al. 2019). We refer the reader to the comprehensive review by Voth
& Soldati (2017) for the orientation of fibre-like particles under different flow conditions.

Despite these studies, there has been little research on the kinematics of thin curved
particles settling in quiescent fluid or under background turbulence. Nonetheless, this
represents an interesting area of research not only for its fundamental significance but
also for its industrial relevance.

Literature concerning solids settling or rising in turbulence is far sparser due to
the relative complexity of turbulence generation in a controlled environment. Studies
generally focused on two issues: 1) the settling styles of individual particles and 2) how
turbulence modifies the mean descent velocities. Note that research on the alignment or
rotation of nearly buoyant solids with the carrier flow are not included.

Experiments generally focused on large particles so that their characteristic lengthscale
lies within the range of turbulent inertial scales where solid–turbulence interactions are
richer. Rising spheres in turbulence with a downward mean flow perform zig-zag motion or
tumbling motion with the transition triggered by changes in I∗ (Mathai et al. 2018). Disks
which undergo planar zig-zag motion in quiescent fluid settle differently in statistically
stationary homogeneous anisotropic turbulence (Esteban et al. 2020). The dominant
features of the planar zig-zag mode in quiescent fluid are still observed. However, these are
sometimes replaced by fast descents, tumbling events, long gliding sections, and hovering
motions among others. The variety of descent scenarios demonstrate the complexity of
the particle-turbulence interactions that occur during settling.

Despite the consensus that turbulence with zero mean flow changes the average settling
velocity of spherical and non-spherical particles, a full understanding of this phenomenon
has yet to be established. Four mechanisms that modify settling have been proposed to
date: the ‘preferential sweeping effect’ (Maxey & Corrsin 1986; Maxey 1987; Tom & Bragg
2019), nonlinear drag due to fluid acceleration (Ho 1964), ‘loitering effect’ (Nielsen 1993),
and vortex entrainment (Nielsen 1984, 1992). Preferential sweeping effect refers to the
situation where particles are accelerated by the descending side of vortices as they spiral
outwards from the core, whereas loitering effect simply means they stay relatively longer
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in upward flows. These four processes affect the local descend velocity Vz differently,
with the first increasing it and the others reducing it. In this framework, the settling rate
modification depends on the relative importance of the competing mechanisms.

The situation is further complicated as these effects may not be easily delineated,
and opposite results regarding the descent speed have been reported. For droplets in
isotropic turbulence, settling is enhanced when the ratio of the particle’s characteristic
gravitational velocity to the root-mean-square flow velocity fluctuations is smaller than
unity and hindered otherwise (Good et al. 2014). Nonlinear drag is proven to be vital
for attenuating the descent in that case. On the other hand, simulations of finite rigid
spheres in Fornari et al. (2016a) found slower settling velocities in turbulence for all the
tested ratios of the mean descent velocity in quiescent fluid to the root-mean-square flow
velocity fluctuations (〈Vq〉/urms). However, the reduction in the mean descent velocity
is greater when 〈Vq〉/urms < 1 (Fornari et al. 2016b). There, the authors attributed
hindered settling to unsteady wake forces in addition to severe nonlinear drag due to
horizontal oscillations. Recently, Tom & Bragg (2019) argued in the context of preferential
sweeping that the parameter demarcating enhanced and hindered settling should account
for the multiscale nature of particle–turbulence interactions. It is possible that the
apparent contradictions can be reconciled with scale-dependent quantities, which have
been employed to model pair statistics in turbulence (Bec et al. 2008).

The above results are confined to spheres in turbulence. Non-spherical solids with finite
size and particle inertia add more complexity to the problem. Nearly neutrally buoyant
cylinders of the order of the Taylor-microscale show small slip velocities in isotropic
turbulence (Byron et al. 2019), which may suggest nonlinear drag is not so important.
Similarly, particles describing falling styles that reflect strong interactions with the media,
where particle orientation plays a crucial role, also show an inconsistent behaviour with
the velocity ratio proposed for small spherical particles. More specifically, disks falling in
anisotropic turbulence where 〈Vq〉/urms > 1 settle more rapidly than in quiescent fluid
(Esteban et al. 2020). Focusing on the frequency content of the trajectories, Esteban
et al. (2020) found that as turbulence intensity increases, the dominant frequency of
the particles reduces; and this leads to enhanced settling. However, as different types of
motions may occur in a single trajectory, the relation between the dominant frequency
and the descent styles is not entirely clear.

Given these contrasting results, it is obvious that a better understanding on how
turbulence affects settling particles is needed, especially for complex geometries like non-
spherical particles with curvature.

We therefore study the kinematics of freely falling curved particles resembling bottle
fragments. This paper is organised as follows. In §2, we present the experimental details of
the quiescent fluid cases, discuss the results and propose a simple model for the motions
observed. Next, we show the effects of background turbulence on the settling kinematics
of the curved particles and discuss the results obtained in §3. Last, this paper concludes
in §4 with the main experimental findings and directions for future research.

2. Settling in quiescent fluid

2.1. Methods

To analyse the settling behaviour of thin curved objects, we drop bottle-fragment-like
particles in a tank filled with tap water at room temperature (17◦C).

Figure 2 (a) shows the geometry used to model a broken cylindrical bottle. The particle
has a parallelogramic projection and one non-zero principal curvature oriented along one
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Particle No. Symbol R (mm) θ (◦) D (mm) I∗

1 18 29 22 5.62
2 18 73 39 0.36
3 21 82 48 0.20
4 19 115 51 0.09

Table 1: Dimensions of the particles dropped. R is roughly constant at 19 mm while θ and
D are varied. The measurements were made using a Vernier calliper with a resolution of
0.1 mm.

of the diagonals of the parallelogram. Hence it is completely defined by the radius of
curvature of the original cylinder R, the subtended angle θ, the diagonal length D, and
the thickness h. The values of these parameters are selected to mimic the dimensions
of fragments processed in recycling plants Esteban et al. (2016). To delineate the effect
of the different variables, R is kept largely constant at approximately 19 mm and θ
(thus D) is varied between 30◦ and 115◦. The thickness also remains the same for all
cases at h = 1 mm, resulting in aspect ratios D/h = 22 to 51. It has been shown that
the kinematics of freely falling disks at low Re may differ even for very large aspect
ratios near the ‘steady fall–zig-zag motion’ transition (Auguste et al. 2013). However,
the Re of the particles concerned are far from this boundary and small differences in
the aspect ratio have little effect on their kinematics. Furthermore, thinner particles are
not sufficiently rigid to withstand flow perturbations without deformation. We 3D-print
all particles (Formlabs Form 2 printer) using a glass-reinforced rigid resin which results
in a material with a flexural modulus E ≈ 3.7 GPa. A print resolution of 0.05 mm is
used and the objects are wet sanded with P800 sandpaper for a smooth finish. Black
spray paint, which amounts to less than 5% of the particle mass, is applied to aid object
detection. Table 1 shows the particle dimensions determined post-production. The density
ratios are also measured and found to be nearly constant across all the cases, with
ρ∗ = ρp/ρf = 1.70 ± 0.06. For the particle dimensionless moment of inertia, I∗ = I/I0,
where I is the object’s moment of inertia and I0 is the reference moment of inertia. Their
precise definitions will be discussed below.

Choosing a suitable I∗ is challenging without employing any assumptions regarding the
particle behaviour, so past studies generally assume the particle concerned would mainly
oscillate about a predetermined axis. Disks are supposed to rotate about its diameter.
Presumably using this as an inspiration, for spheroids, Zhou et al. (2017) incorporated
the ratio between the moment of inertia about the equatorial and polar axes in I∗ so the
same axis of rotation is considered in the limit of disks. For n-sided polygons, Esteban
et al. (2018) adopted an analogous axis of rotation to disks when calculating the particle
moment of inertia, but considered the perimeter of the particle relative to a circumscribed
disk to correct for the characteristic length scale in the nondimensionalisation. To select
the appropriate I and I0, we made an educated guess of the particle motion. Due to
the presence of a dihedral, the particle should be more stable along its uncurved axis.
We therefore expect it to rotate about the ‘axis of rotation’ indicated in figure 2 (a).
Therefore in our case, I is the object’s moment of inertia about an axis passing through
its centre of gravity and parallel to the line marked ‘axis of rotation’ in figure 2 (a) and
I0 is the moment of inertia of a fluid-filled ellipsoid-like object generated by rotating the
arc in figure 2 (b) about its vertices.

We release the particles in the glass tank shown in figure 2 (e). The tank, measuring
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Figure 2: (a) Bottle-fragment-like particle considered in this study. The dash-dot line is
the axis of revolution used to obtain the dimensionless moment of inertia I∗, whereas
α and β are the pitch and roll angles respectively. (b) Front view, and (c) top view of
particle with β = 0. (d) To-scale drawings of the four tested particles whose dimensions
are listed in table 1. (e) Tank and release mechanism employed. Pumps and wire meshes
are installed on both sides for symmetry, though only those on the right are shown to
reduce clutter. The distance between the pumps is 165 cm. The tank rests on a steel
frame with a rectangular window at the bottom to allow optical access. The coordinate
system is shown on the top left.

2 m × 1 m × 0.85 m, is mounted on a steel frame with a central 1 m × 0.9 m rectangular
window at the bottom to enable optical access. In preparation for experiments in
turbulence, the tank is equipped with an 8 × 6 bilge pump array (Rule 24, 360 GPH) on
either side with a 5 mm squared wire mesh 3 cm downstream of the nozzles. The pumps
are off for experiments in quiescent fluid, and the method of turbulence generation will
be introduced later.

To hold the particle, a pressure mechanism consisting of a syringe pump connected
to a suction cup is used. First, the particle is affixed at 0 pitch angle (α, see figure 2 a)
to the suction cup by imposing a pressure deficit. Then, by slowly pushing the plunger
of the syringe, the pressure is equalised to the atmosphere and the particle is released.
Similar to the work by Lau et al. (2018), surface–particle interaction is minimised by
adjusting the position of the suction cup to at least 1.5D below the water level and
particle transient kinematics are discarded prior to the data post-processing. The object’s
surface is carefully verified to be bubble-free before release. Confinement effects are also
negligible as the side walls of the tank remained at least 4D from the object. A minimum
of 8 minutes separate releases to allow any residual flow to dampen, and each particle is
dropped 25 times to reduce random error.

During each descent, the motion is recorded by two cameras operating at 60 Hz with
an AF-S Nikkor 50 mm lens attached to each of them. While the top camera (JAI
GO-5000M-USB) captures the front view, the lower one (JAI GO-2400M-USB) records
the bottom view through a mirror inclined 45◦. The camera aperture is set so that
the contrast and the depth of field are sufficiently large for the entire descent; and
the exposure times are adjusted accordingly. To ensure the three-dimensional particle
motion reconstruction is accurate, the cameras are synchronized with a 5 V external



Settling behaviour of thin curved particles in quiescent fluid and turbulence 7

Particle No. Vdrift (mm/s) Ag/Rg γ̇ (◦/s) Iroll (g·mm2)
1 3.8± 1.4 0.08± 0.08 9.6± 1.5 8.7× 10−6

2 3.4± 1.3 0.09± 0.06 7.5± 1.0 8.4× 10−5

3 5.0± 2.1 0.04± 0.03 0.7± 0.5 2.0× 10−4

4 2.9± 1.4 0.05± 0.05 2.8± 0.7 3.9× 10−4

Table 2: The mean horizontal drift velocity Vdrift, the non-dimensionalized gliding section
amplitude Ag/Rg, the precession rate γ̇ of each particle, and the moment of inertia of
rotating it about an axis passing through its centre of gravity and parallel to its uncurved
diagonal Iroll.

signal (National Instruments USB-6212), aligned with respect to the tank by a vertical
post and calibrated using a square grid. For the bottom camera, the resolution at 5
different heights is calculated and a linear fit is used to obtain the image resolution as a
function of depth. The resolution of both cameras is ≈ 0.2 mm/pix, which corresponds
to a magnification of ≈ 40.

The three-dimensional position and orientation of the particle are extracted through
Matlab. The image processing protocol to obtain the particle’s centre of gravity is similar
to the one proposed in Esteban et al. (2020), where a background image is first subtracted
from all frames. Then, a Gaussian filter with a kernel of 3 pixels is applied and the
resulting images are binarised before calculating the centres of gravity. Doing so, the
script gives us the (x, y) and z coordinates of the object from the recordings of the
bottom and top cameras respectively.

On the other hand, the pitch and roll angles of the particle, which are sketched in
figure 2 (a), are evaluated by measuring the diagonal lengths in each frame. To calculate
them, the corners of the particle are detected first in the binary image and then refined
using the greyscale one. Finally, the position of one diagonal’s midpoint relative to the
other diagonal provides the signs of the pitch and roll angles. The high-resolution image
allows the pitch angle to be determined to within 3◦. All the data have been smoothed
by Gaussian filters to reduce high-frequency noise.

In this study, we are interested in the non-transient particle kinematics. To remove the
transient motions, we first construct the cumulative average of the instantaneous vertical
velocity 〈Vz〉c. By examining this magnitude, we observe that the particle descent velocity
is stable after descending 2/3 the tank depth (26D and 11D for the smallest and largest
fragments respectively). Then, the cumulative average 〈Vz〉c at each vertical location is
compared to the stabilised velocity, and the initial part of the trajectories where the
deviation is greater than ±10% discarded. This threshold is robust, since halving it to
±5% did not affect the results noticeably. Similarly, the last particle oscillation is ignored
to eliminate motions affected by interactions with the bottom of the tank.

2.2. Results and discussion

Figure 3 shows the three-dimensional reconstruction of all 25 trajectories recorded
for particle No. 2 in quiescent fluid after transient removal. All descents show periodic
motions with a constant mean vertical velocity. However, the solid sometimes drifts
horizontally in an apparently random direction as it settles. Similar trajectories are
obtained for all types of particles tested.

To ensure this motion can be neglected, we obtain the velocity associated with the
horizontal drift Vdrift for all trajectories, see table 2. The velocity magnitude appears
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Figure 3: Reconstructed three-dimensional trajectories of particle No. 2 (θ = 73◦, D =
39 mm) in quiescent fluid.

to be insensitive to particle geometry and the horizontal drift has no obvious preferred
direction. This suggests the drift is probably not inherent to the descent behaviour and
may have originated from minute flows in the tank which are difficult to eliminate. This
motion is unlikely to have been caused by the release mechanism since the flow induced
by capillary waves decays exponentially in space. Experiments involving heavy cylinders
in Toupoint et al. (2019) also found similar behaviour and the authors argued this was
related to large-scale fluid motions inside the tank. For the subsequent analysis, the
trajectories are dedrifted assuming Vdrift to be the average drift velocity over a square
window centred about the current location and capturing one full period.

We then plot the settling behaviour of particle No. 2 in quiescent fluid in figure 4
(see also the supplementary videos). As the object falls, it oscillates periodically in the
xy-plane with a constant amplitude (figure 4 a–c). At the beginning of each oscillation,
the particle carries no horizontal velocity Vh and shows a highly negative pitch angle α
(pointing downwards). As the particle is not in equilibrium, it accelerates both downwards
and horizontally along a direction inside its symmetry plane containing the uncurved
diagonal until it reaches its maximum velocity, which occurs roughly at the middle of
each swing. The particle then decelerates as α increases, drawing an arc-like trajectory.
This process repeats itself in the opposite direction to complete one oscillation. In contrast
to N-sided regular polygons (Esteban et al. 2019c), the particles tested here always travel
in a preferred orientation, that is: along the flat diagonal. Also, no rolling motions are
detected which agrees with our expectation in the discussion on I∗.

While it is obvious that the particles fall in a zig-zag fashion, whether the trajectories
observed are planar or three-dimensional is not evident. Here, we use an analogous
approach as the one proposed in Esteban et al. (2018) where each trajectory is split into
‘gliding’ and ‘turning’ sections by local extrema of the instantaneous descent velocity.
The amplitude of each gliding section Ag is compared to its radius of curvature Rg in
the top-down view (figure 4 b). All trajectories tested satisfy the criterion Ag/Rg < 0.2
(table 2), and therefore are considered to be within the ‘planar zig-zag’ mode.

Other features of ‘planar zig-zag’ trajectories are also observed: oscillations in the z-
direction have twice the frequency of those in the horizontal (figure 4 c) (Zhong et al.
2013), and the velocity phase plot describes a characteristic butterfly shape (figure 4 e)
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Figure 4: Descent of particle No. 2 (θ = 73◦, D = 39 mm) after removing transient
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reconstruction. (c) (From top to bottom) The radial displacement along the direction of
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are observed. (d) Velocity in the y-direction Vy plotted against that in the x-direction Vx.

(e) Instantaneous vertical velocity Vz against the horizontal velocity Vh = ±(V 2
x + V 2

y )
1
2

whose sign switches every swing. All velocities and positions are normalized with the
mean descent velocity 〈Vz〉 and diagonal length D of the particle respectively.

(Auguste et al. 2013). Despite these similarities, the motion of bottle-fragment particles
differ from disks in the sense that disks yaw almost 180◦ at every horizontal extremum
(Zhong et al. 2013), but this does not occur for the particles tested.

While certain disks exhibit three-dimensional ‘hula-hoop’ descents which precess (Au-
guste et al. 2013), and figure 4 (d) somewhat resembles such a mode, it is clear that
the particles concerned do not fall this way. This is because ‘hula-hoop’ settling has
an ellipsoidal profile of Vy against Vx. Instead, the precession observed here probably
emerges due to effects of measurement noise.
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To examine this feature, we further studied the gliding and turning sections. As
negligible rotation occurs in the gliding sections, they are approximated by straight lines
in the xy-plane. Therefore, trajectory rotations have to occur during the turning sections
and the precession rate γ̇ can be defined as the rate at which the gliding sections rotate,
see table 2. We observe that γ̇ decreases as the rotational inertia about an axis parallel
to the flat diagonal Iroll increases. Thus, we hypothesize that tiny fluid fluctuations due
to residual flows can explain the precession. These fluctuations may imperceptibly cause
the object to roll hence precess in the turning sections.

In figure 5 one can see the evolution of the mean descent velocity 〈Vz〉 with the
characteristic lengthscale of the particles D. For smaller objects, 〈Vz〉 decreases as D
increases; yet larger particles behave oppositely so a minimum at D ≈ 38 mm appears.
To examine whether it is related to a change in descent style, the Reynolds number Re
is calculated and plotted against the Archimedes number in figure 6. The Archimedes
number is defined as Ar = (gD3|1 − ρ∗|) 1

2 /ν, where g is the gravitational acceleration.
Previous research has usually observed a linear relation (Zhong et al. 2013; Fernandes
et al. 2005; Toupoint et al. 2019), and noted that a change in slope can suggest a transition
to another descent style (Auguste et al. 2013). The data in figure 6 indeed shows a linear
relation for the three smallest particles, but there is a modest increase in the slope for the
largest particle. This might reflect a physical transition in the particle dynamics, where
the upper vertices of the particle with θ > 90◦ may interact more with the wake generated
by the leading edge. Nonetheless, this feature does not match the local minimum in 〈Vz〉,
whose origin remains unclear.

Since the descent styles of particles No. 1 through No. 3 appear the same based
on the Ar–Re plot, we further evaluate the descent velocity behaviour by comparing
the radii of curvature of the trajectories Lpend in the vertical cross-sections (after
applying planar projection and removing the mean descent velocity). We use the subscript
‘pend’ in allusion to the pendulum model that will be introduced later. Similarly, the
maximum pitch angles αmax, the planar oscillation amplitudes A and the dominant radial
frequencies f are also evaluated. These are made non-dimensional (except for αmax) and
shown in figure 7, where the particles are characterised by their Archimedes number Ar.
Note that A differs subtly from Ag, which shown in table 2, since A includes the turning
sections as well. Both the dimensionless radius of curvature of the particle gliding section
Lpend/D and amplitude of the oscillations A/D increase with Ar. However, for the largest



Settling behaviour of thin curved particles in quiescent fluid and turbulence 11

R
e

32.521.510.5
1000

1500

2000

2500

3000

3500

Ar 10
4

×

Figure 6: Plot of Re against Ar. A linear relation is observed for the first three points
and a kink seen for the last, which suggests a transition in settling style. As Re(Ar) is
one-to-one in the investigated range, the two are used interchangeably. The error bars
have similar magnitudes as the symbols, thus they are not visible.

particle, these two magnitudes appear to decrease considerably from the global trend.
On the other hand, αmax decreases with increasing Ar. The Strouhal number, defined as
St = fD/〈Vz〉, remains nearly constant across the particles tested, which implies that f
is the highest for particle No. 1.

Thus, a picture where the smallest particle oscillates rapidly about the vertical axis
while descending, and where the larger ones settle more gently emerges. The smallest
particle might not be fully gliding, and descends faster with less lift produced. As further
evidence, we calculate the average vertical slip angle in the gliding sections defined as
the difference between the pitch angle and the angle of inclination of the velocity vector,
i.e.

∆α =

〈
tan−1

[
Vz

(V 2
x + V 2

y )1/2

]
− |α|

〉
. (2.1)

This is plotted in the inset of figure 7 (b). The figure shows that ∆α decreases slowly
as the particle diagonal length D increases, therefore proving its pitch attitude is more
closely aligned with the velocity vector.

Indeed, such a difference in falling behaviour can explain the initial reduction of the
mean descent velocity at small Ar. When the particle’s curved surface area increases,
more lift is generated and the gliding motion is enhanced, leading to a reduction in 〈Vz〉.
However, this argument alone cannot explain the minimum in 〈Vz〉.

To understand why the descents become faster at larger Ar, we measure the maximum
horizontal speed in each swing Vh,max. As figure 8 (a) illustrates, Vh,max/〈Vz〉 grows with
Ar. This increase in Vh,max leads to a larger 〈Vz〉 because the particle pitches down at the
beginning of each swing, so the horizontal and vertical speeds are coupled to each other.
Therefore, the minimum in the descent velocity manifests through a delicate balance
between lift enhancement and a reduction of the particle’s horizontal speed during the
glide.

Settling behaviour at large Ar (or equivalently θ) is more complex. While 〈Vz〉 increases
even for the largest object, the behaviour of particle No. 4 is different from the other
ones. Figure 7 (a, c) demonstrate that Lpend/D and A/D are reduced as compared with
the linear extrapolation from the previous three. The trend in A/D could be related to
the increase in the slope of Re(Ar). If energy is conserved, a smaller A/D implies more
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potential energy is converted to vertical velocity instead of horizontal velocity. Since Re
is based on 〈Vz〉, the Re(Ar) relation becomes steeper as argued in Auguste et al. (2013).
We hypothesise that the differences observed are due to stronger interactions between
the leading edge vortex and the upper vertices of the particle. Further work is required
to understand this behaviour.

Since αmax indirectly determines the position of the slowest descent, linking it to a
more experimentally accessible quantity might be useful. As discussed, the larger particles
oscillate with a smaller αmax and descends more smoothly. This is also reflected by the
maximum vertical acceleration az,max displayed in figure 8 (b). The inset shows αmax
is linearly related to az,max. This is somewhat expected for the gliding particles since
a larger initial pitch angle would mean a steeper descent near the extrema. However, it
is worth noting that the same slope extends to even the smallest particle which settles
without generating significant lift based on our interpretation.

2.3. Modelling the settling behaviour

As the particles oscillate periodically while settling, pendulums whose pivots descend
at constant speeds are chosen to model their motions, as also proposed for freely falling
disks (Esteban 2019). Motivated by the fact that the amplitude of the motion does
not vary in time as the particle settles (see figure 4 b), an idealized pendulum model is
constructed assuming that the system is non-dissipative. Thus, their equation of motion
ignoring the constant vertical descent velocity reads

d2φ

dt2
= −g(ρ∗ − 1)C

L
sinφ (2.2)

where ρ∗ > 1. Here, φ is the angular displacement from the vertical, L the (virtual)
pendulum length — i.e. the length from the swinging particle to the virtual origin falling
vertically with the particle — and C a constant to account for all accelerations apart
from gravity. By definition, L and the initial angular position correspond to the measured
quantities Lpend and αmax respectively. This leaves only C as a fitting parameter, whose
value is found by matching the oscillation frequencies to experiments. Although previous
studies (Tanabe & Kaneko 1994; Belmonte et al. 1998) have used pendulums to describe
the dynamics of settling particles, they focus on the quasi-two-dimensional scenario
involving flat plates as opposed to our fully three-dimensional case with curved particles.

Figure 9 shows the pendulum trajectory overlaid on the experimental data of particle
No. 2. Although not shown, similar plots are obtained for all four particles. In view of
the reasonably good agreement between the experimental data and the model proposed,
‘planar zig-zag’ descents can be viewed as simple harmonic motions superposed on
uniform descents, though higher-order quantities such as az,max are not accurately
captured by the model.

To examine whether the fitted parameter C can be determined without frequency
matching, it is plotted against Ar in figure 10. Interestingly, a nearly linear relation exists,
meaning this model allows one to predict the particle velocity fluctuations simply by
computing Ar without any a priori knowledge. In the context of undamped underwater
pendulums, C = (ρ∗ +m∗

a)−1, where m∗
a is the added-mass coefficient characterising the

energy spent accelerating the surrounding fluid. This can be obtained by comparing (2.2)
with the equation of motion of underwater pendulums as in Mathai et al. (2019).

d2φ

dt2
= − g(ρ∗ − 1)

L(ρ∗ +m∗
a)

sinφ (2.3)

The inset of figure 10 shows that m∗
a decreases with increasing Ar, suggesting that
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enhanced gliding means less effort is required to move the neighbouring liquid. The
magnitude of this parameter is much larger than in objects like cylinders since particle
volume and ρf are used to non-dimensionalize the added-mass.

To better understand the behaviour of bottle fragments in industrial facilities, the
same objects are dropped in the water tank with background turbulence. In the following
section, the flow characteristics are presented and the dynamics of the particles discussed.

3. Settling in turbulent flow

The experiments are conducted in a random jet array facility (figure 2 e), where
turbulence is generated by the continuous action of submerged water pumps as in Esteban
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Turbulence statistics Values
ux/uz 1.34
urms = (ux + 2uz)/3 15.9 mm/s
MFF 0.47
HD 0.07
Lturb 45.0 mm

(Lx, Lz) (65.3, 34.8) mm
(Lxx, Lzx) (93.9, 45.4) mm
(Lzz, Lxz) (44.3, 27.4) mm

(λf ,λg) (6.8, 6.5) mm
(λxx, λzx) (8.1, 7.8) mm
(λzz, λxz) (6.1, 5.8) mm

Reλ 98
(Reλ,x, Reλ,y) (139, 77)

Table 3: Statistics of the background turbulence such as the root-mean-square velocity
fluctuations, the mean flow factor (MFF ), homogeneity deviation (HD), integral
lengthscales and Taylor microscales. λf and λg denote the longitudinal and transverse
Taylor microscales, respectively. The reader is referred to the appendix for the full
definitions. The values in brackets correspond to the respective quantities in the left
column.

et al. (2019a). However, the addition of a pulse-width-modulation system allows us to
control turbulence intensity while the facility is in operation. The characteristics of the
turbulence generated are in table 3 and further details can be found in Appendix A.
Turbulence is produced so that all the particles’ characteristic length scales are smaller
than the horizontal integral length scale Lx. As mentioned in §2.1, these particles have
sizes comparable to the ones processed in actual recycling facilities. The experimental
procedure to release particles in this section is analogous to the one previously presented.
However, as turbulent flow quantities can only be predicted statistically, the number of
repeated experiments per particle is increased to 50. The minimum waiting time between
releases is reduced to 3 minutes since the background turbulence washes residual flows
away rapidly. Nonetheless, to ensure statistical stationarity, the pumps are switched on
for at least 10 minutes before the first drop. We position the lower camera further back
which resulted in a resolution of ≈ 35 mm/pix and a magnification of ≈ 60. We also
monitor the water temperature for accurate estimation of the dimensionless parameters.

Data analysis is very similar to the cases in quiescent fluid, with the main differences
being the identification of the transients and that the trajectories are no longer detrended
to account for horizontal drifts. The presence of background turbulence means any
transient effects are confined to an even smaller section of the trajectory. Despite this,
for each descent in turbulence, we still remove the mean length of the transients for the
corresponding quiescent experiments from the trajectory.

3.1. Results and discussion

Several particle descents in turbulence are plotted in figure 11 (see the supplementary
videos). The ‘planar zig-zag’ mode found in quiescent fluid is still present, with the dom-
inant oscillation frequency over each trajectory nearly unchanged in all particles tested.
However, their motions are diversified by flow fluctuations and therefore trajectories
are no longer repeatable. Still, four types of special events are identified across all the
particles investigated: 1) ‘slow descents’, where the quiescent settling style remains but
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Figure 11: Trajectories of particles in turbulent flow. Four special types of motions are
observed though the underlying zig-zag mode seen in quiescent fluid remains: (a) ‘slow
descent’, (b) ‘rapid rotation’, (c) ‘vertical descent’ and (d) ‘long gliding motion’. The
positions of the events within the trajectories are marked by square brackets on the side.
Square markers denote locations corresponding to local minima of Vz.

vertical velocity is attenuated (figure 11 a); 2) ‘rapid rotation’, where the direction of the
oscillations changes rapidly at the end of a swing (figure 11 b); 3) ‘vertical descents’, where
the planar motion diminishes and the particle essentially falls straight down (figure 11 c);
and 4) ‘long gliding motions’, where the gliding section in the ‘planar zig-zag’ motion is
especially long (≈ 3.5D in the illustrated case) and is sometimes preceded by a large α
(figure 11 d). Apart from vertical descents, which we do not observe for particle No. 1,
these events occur for all the particles. Multiple types of the motions listed may occur in
a single descent. Remarkably, the particles never flip over, possibly due to their dihedral
configuration.

Slow descents probably occur when the object encounters strong incident flows that
enhance lift. As the smallest particle does not generate sufficient lift to fully glide in
quiescent fluid, it indeed rarely exhibits this behaviour. Rapid rotations can emerge
when the solid enters a region of horizontal shear, causing it to rotate and sometimes roll
slightly. This kind of motion becomes more likely the smaller the Iroll or the larger the
distance between the centre-of-gravity and the centre-of-pressure (i.e. a longer moment
arm). Heuristically, assuming the centre-of-pressure coincides with the centre of the solid’s
circle of curvature when viewed at the front (figure 2 b), the smallest particle has the
longest moment arm. Either way, the smallest object should be the most sensitive to
such shear. Long gliding motions appear possibly as the local background flow has a
significant component along the particle’s direction of motion, pushing it along. Finally,
we hypothesise that vertical descents happen when the object encounters a downdraught.

Slow descents and long gliding motions have also been found for disks falling under
background turbulence in Esteban et al. (2020). However, we noticed key distinctions in
the settling characteristics between these two geometries. First, rapid rotations have not
yet been observed for disks. Second, fast descents of disks differ from vertical descents
of the particles tested here. This type of motion for disks is always preceded by an
especially large α, so the disks are aligned with the direction of motion. However, this is
not necessarily the case for the bottle-fragment-like particles.

To assess the effect of turbulence on all the descents collectively, the height-integrated
radial probability density functions (PDF) and the specific kinetic energy fluctuations
of Vz (i.e. half of the variance of fluctuations of Vz), Efluc, are shown in figure 12. To
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Figure 12: (a) Probability density functions (PDF) of rh/D along the descent. The solid
line and solid data points are for quiescent fluid while the dotted one and hollow data
points are for turbulent settling. PDF of particles No. 1 and No. 3 are displayed. The
inset shows the same quantity but for all the objects dropped. The symbols follow those
introduced in table 1. (b) Vertical fluctuation kinetic energy per unit mass Efluc of the
various particles.

accurately capture the radial displacement rh, non-transient parts of the trajectories are
centred so the origin coincides with the mean position of the first swing.

The diversification of the settling dynamics by background turbulence is also evident
here. For the horizontal motion, focusing first on figure 12 (a), the radial PDF in quiescent
and turbulent flows of particle No. 3 reveal that the most likely radial position remains
unchanged. This confirms that the quiescent zig-zag motion is still significant at the
current turbulence level. Yet, the PDF is now much broader, with particle dispersion
reaching multiple D instead of only rh/D ≈ 1. The inset in figure 12 (a) shows how the
radial dispersion of the particles in turbulence reduces as Ar increases. However, the
vertical component of the velocity fluctuations are modified differently. These are shown
in figure 12 (b), and demonstrate a strong increase in velocity fluctuations about 〈Vz〉.
Hence, the motion is destabilised to a similar extent over all Ar tested. The same is
observed for the vertical acceleration, although this is not shown here. This difference
may be attributed to gravity, which has been used by Byron et al. (2019) to explain an
identical trend for slip velocities of nearly neutrally buoyant cylinders in turbulence.

The effect of turbulence on the mean descent velocity 〈Vz〉 has long been an area
of great interest. Figure 13 (a) plots 〈Vz〉 against the particle characteristic lengthscale,
showing 〈Vz〉 reduces compared with the quiescent case, although the data lies within the
statistical deviation of the turbulent one. We note this result is congruent with the slip
velocity of nearly neutrally buoyant cylinders (Byron et al. 2019), and opposite to 〈Vz〉 of
inertial disks falling in background turbulence (Esteban et al. 2020). As mentioned in §1,
Good et al. (2014) found that settling is hindered by turbulence when the characteristic
gravitational velocity is greater than the flow velocity fluctuations urms. To compare
this with our results, we formed an analogous quantity by replacing the characteristic
gravitational velocity with the mean descent velocity in quiescent fluid 〈Vq〉. 〈Vq〉/urms
is found to lie in between 3.94 and 4.28. Hence, our results are in agreement with the
prediction by Good et al. (2014) which suggests that the mean descent velocity would
be reduced when 〈Vq〉/urms > 1. We recognise 〈Vq〉/urms does not reflect the multiscale
nature of particle–turbulence interactions, and it may be more insightful to employ a
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Figure 13: (a) Mean descent velocities 〈Vz〉 of the various particles in turbulence and
quiescent fluid. (b) Dimensionless version of the descent velocity plot, Re(Ar).

scale-dependent quantity instead. However, theoretically deriving such a quantity for our
particle geometry is highly non-trivial and is beyond the scope of this study.

To further investigate the cause of the hindered settling, the relation between Re and
Ar is shown in figure 13 (b). The general trend observed is the same as in quiescent fluid
— with an approximately linear relation for the three smallest particles and an increase
in slope for the last one — and an identical interpretation is employed. As considering
quantities averaged over entire trajectories do not seem to help explain the change in
〈Vz〉, particle motions are examined over trajectory sections. Esteban et al. (2020) studied
the correlation between 〈Vz〉 and the dominant frequency of each trajectory. Instead of
following this approach, where the existence of a single ‘weak’ event might be hidden by
the presence of more severe ones, we propose an alternative method to capture the effect
of all the events, the average descent velocities Vevent and the characteristic frequencies
fevent conditioned on each type of event. However, this leads to a practical question on
the definition of an ‘event’.

Classifying events using the instantaneous vertical velocity provides reasonable results.
The positions corresponding to local minima of Vz (squares in figure 11) also match those
of the radial extrema reasonably well, and these are used to separate events. Each event
then essentially corresponds to a half-swing, with fevent being the inverse of its duration.
Figure 14 (a) shows the mean descent velocity of each event Vevent versus fevent, both
normalised by the corresponding mean values in quiescent liquid.

In general, events with small frequencies fevent can increase the descent velocity 〈Vz〉,
while those with large fevent have the opposite effect. This is quantitatively illustrated
by figure 14 (b) where the mean event frequency 〈Vevent〉 is plotted against fevent. The
same has also been found for disks in Esteban et al. (2020), although the trend here is
less prominent due to the moderate particle inertia. Also, larger particles exhibit a wider
variety of events as reflected by the scatter in the data, in agreement with the initial
observation that certain types of motions are less frequent for smaller particles. Contrary
to the variation in the horizontal displacement (see figure 12 a), turbulence introduces
more extreme events for the larger particles.

To correlate the four types of events with the modulation in frequency, figure 15
displays the variation of Vz over their durations, the corresponding Vevent and fevent. Each
type of descent behaviour modifies 〈Vz〉 differently: ‘slow descents’ have Vevent ≈ 0.5〈Vz〉
(figure 15 a); rapid rotations have no significant effects on 〈Vz〉 (figure 15 b), meaning
the rotation is not coupled to the vertical motion; long gliding motions (figure 15 c)
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background turbulence, these quantities are normalised by the mean descent velocity
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corresponding to the special events shown in figure 11 — slow descent (SD), rapid rotation
(RR), long gliding motion (LG) and rapid descent (RD) — are annotated. (b) The average
Vevent against fevent of all the events in (a). The few events with fevent/fq > 4 are not
displayed.

could considerably enhance settling, regardless of the initial pitch angle; vertical descents
(figure 15 d) increase 〈Vz〉. The behaviour of vertical descents is as expected since the
distance travelled is shorter compared to zig-zag, and downdraughts force the particle
down. Although the limited depth of our tank means the vertical descent in figure 15 (d)
is incomplete, we are confident that the complete event still increases 〈Vz〉 for the reasons
above. In summary, as long gliding motions and vertical descents have small fevent/fq,
they correspond to points with small fevent and large Vevent in figure 14 (a).

So far, it has been shown that low-frequency events such as long gliding motions and
vertical descents could enhance settling. However, 〈Vz〉 is smaller than the quiescent value
on the whole. This result is captured when plotting the PDF of Vevent (figure 16). Before
proceeding, note that the definition of events used may over-count the slow ones. This is
mitigated by combining successive events with Vevent < 0.4〈Vq〉. Though the threshold
is somewhat arbitrary, it does not affect the following discussion. The reduction in 〈Vz〉
is manifested as a slight leftward shift and the negative skewness of the entire PDF.

Among the four types of events identified, only slow descents reduce the settling speed.
However, we recognise that the events described are the most readily detected ones and
do not constitute an exhaustive list. Particle settling in turbulence is a highly complex
and multiscale phenomenon (Tom & Bragg 2019) that exhibits a number of more subtle
unclassified events. We therefore believe the attenuation in settling may be caused by
the less discernible events. As the falling particle resembles a swept back wing in the
direction of motion and larger particles glide more in quiescent fluid, it is possible that
under most conditions, the turbulence provides slightly more lift without considerably
changing the basic zig-zag motion.

Admittedly, such a result is unexpected. Since the particle sizes are of the same order
as the integral lengthscale Lturb, we anticipated the solid to exhibit downward sweeping
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motions triggered by interactions with large vortices. However, the object’s inherent
stability likely suppresses these motions.

4. Concluding remarks

Motivated by the numerous applications of particle settling, such as differentiating plas-
tic from glass in hydrodynamic separators, 3D-printed rigid thin curved solids resembling
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bottle fragments were dropped in a water tank in quiescent fluid and in homogeneous
anisotropic turbulence.

In quiescent liquid, the particles underwent planar zig-zag descent and their trajectories
were divided into gliding and turning sections. While one might expect the average
vertical velocity 〈Vz〉 to vary monotonically with particle size, a minimum was found
at D ≈ 38 mm (Ar ≈ 1.8 × 104). Closer examination of the settling behaviour showed
that the horizontal oscillation amplitude A and radius of curvature Lpend normalised by
particle size were generally enhanced for larger particles. On the contrary, the oscillation
frequency f and the maximum pitch angle αmax, which was directly proportional to
az,max, decreased monotonically. These suggested enhanced lift generation as the particle
size grew, which was supported by a better alignment between α and the direction of
motion. This led to the initial reduction in 〈Vz〉. The subsequent settling enhancement
for the larger objects was due to more rapid horizontal motion at mid-swing locations
coupled with their initial pitch down attitude at the beginning of each swing. All
the trajectories observed could be modelled reasonably well by undamped underwater
pendulums descending at a constant velocity.

The zig-zag motion was also observed for settling in turbulence, but fluctuations in
the flow modified it so the radial dispersion increased considerably. Notably, the particles
never flipped over although their sizes were comparable to Lturb. In agreement with
Good et al. (2014), 〈Vz〉 was slightly lower than in quiescent fluid for 〈Vq〉/urms > 1.
Four special types of events comprising slow descents, vertical descents, long gliding
motions which were sometimes preceded by large pitch angles, and rapid rotations, were
identified. Also, each type of motion was related to the particle kinematics and to the
descent velocity. In general, vertical descents and long gliding sections sped up settling. By
dividing each trajectory into a collection of events, those with a low frequency were found
to be capable of enhancing the descent, while the opposite occurred for high-frequency
events. Nevertheless, the PDF of Vevent was unimodal and the reduction of 〈Vz〉 was
reflected by a leftward shift and its negative skewness. This may suggest the background
flow slightly modulated each event by enhancing lift production, so the change in 〈Vz〉
could not be simply connected to the special events. The above also underlines the
difficulty of studying descent behaviour with background turbulence.

Future research may therefore focus on wake visualisation of these particles in both
turbulence and quiescent fluid. As transitions in settling behaviour are usually correlated
to a change in wake structure (see e.g. Ern et al. (2012); Lee et al. (2013); Auguste et al.
(2013); Esteban et al. (2019c); Toupoint et al. (2019)) and αmax ∝ az,max found here
indirectly supports this argument, observing the wake may reveal other types of events
and the effects of anisotropic geometries. This may further explain the change of 〈Vz〉
in turbulence and the lift enhancement as the particle size increased in quiescent fluid.
Moreover, it may uncover why certain trends reversed for particle No. 4, where θ > 90◦.
Theoretical development may concentrate on finding a suitable scale-dependent metric for
anisotropic particles to distinguish between enhanced and hindered settling in turbulence.
Finally, additional development of the pendulum model is desirable. An emphasis should
be placed on interpreting C as it may complement the current experimental observations
and improve the predictive power of the model.
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Supplementary materials

Five supplementary videos showing the descents depicted in figure 4 (‘Movie 1.mp4’)
and figure 11 (‘Movie 2.mp4’, ‘Movie 3.mp4’, ‘Movie 4.mp4’ and ’Movie 5.mp4’ corre-
sponding to figure 11 a–d respectively) complement this paper.

Appendix A. Turbulence generation and characteristics

As explained in §3, the experiments are conducted in a random jet array facility (figure
2 e), where turbulence is generated by the continuous action of submerged water pumps.
These pumps, arranged in two 8 × 6 arrays with vertical and horizontal mesh lengths
of 10 cm on either side of the tank, fire independently according to the ‘Sunbathing
Algorithm’ to generate statistically stationary homogeneous anisotropic turbulence with
negligible mean flow (Variano & Cowen 2008; Esteban et al. 2019a). The duration of the
‘on’ and ‘off’ signals are randomly selected from two separate Gaussian distributions with
their mean values and standard deviations denoted by µon/off and σon/off respectively.
In this case, µon± σon = 3± 1 s and µoff ± σoff = 21± 7 s. When the pumps are active,
water is drawn radially at their bases and expelled horizontally out of their cylindrical
nozzles with a diameter of 18 mm. To improve isotropy and protect the particles from
collisions with the pumps, a 13 mm square mesh is placed 3 cm downstream of the jets.
Turbulence intensity is controlled through modulating the power supplied by pulse-width-
modulation. For more information on the turbulence facility, the reader is referred to
Esteban et al. (2019a). The equipment is identical apart from the addition of the mesh
and the power control system.

Prior to releasing particles, the turbulence generated is characterised with particle
image velocimetry (PIV). The flow was seeded with 56µm polyamide particles (Vestosint
2157). A laser sheet passing through the centre of the tank contained in the xz-plane
is generated (Litron BERN 200-15PIV), and 3000 image pairs are taken at 0.8 Hz (VC-
Imager Pro LX 16M). The interpulse time is set to 900µs to limit the tracer displacements
to approximately 6 pixels and reduce the out-of-plane displacements between image pairs.

To characterise the turbulence generated, we decompose the flow velocity into mean
and fluctuating components Uf (x, t) = Umean(x, t) +ufluc(x, t), where x is the position
vector. Figure 17 shows the two fields, where (Ux(x), Uz(x)) and (ux(x), uz(x)) are
the time-averaged (x, z) components of Umean and of the root-mean-square of ufluc
respectively. The fluctuations appear homogeneous although there is some horizontal
mean flow caused by the synthetic jets emitted by the pumps. These are quantitatively
expressed by the homogeneity deviation HD and the mean flow factor MFF . Assuming
symmetry about the x-axis (Carter & Coletti 2017), urms = (ux + 2uz)/3, where the
line above denotes spatial averaging. Then HD = 2σu/urms = 0.07 � 1 (Esteban
2019), where σu is the standard deviation of urms in space. Thus the turbulence is
indeed homogeneous. Denoting the mean flow speed by U , the relative magnitude of the
mean flow is assessed by MFF = U/urms = 0.47. While a small mean flow is present,
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Figure 17: PIV measurements of the flow in the turbulence box. The time-averaged (a)
root-mean-square flow velocity fluctuation field and (b) mean flow field at the middle of
the tank. The subscripts (x, z) denote the corresponding velocity components.
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Figure 18: Autocorrelation functions ρij of the j-component velocity fluctuations along
the i-direction. The solid lines give the measured data while the dashed line shows the
exponential fit. The spacing between markers is not indicative of the resolution.

velocity fluctuations still dominate so we believe it has no significant effect on the settling
characteristics of the particles tested. Nonetheless, the global isotropy ux/uz = 1.34 > 1
shows the turbulence is mildly anisotropic. This implies the integral lengthscales and
Taylor microscales depend on the direction of the velocity component and of the spatial
separation.

Taking this into account, figure 18 gives the various autocorrelation functions along
the vertical and horizontal directions, ρij . They decay as r increases and approach 0
at r → +∞. Thus, we define the upper integration limit r0 for the integral lengthscale
Lij such that ρij(r0) first reaches 0.01. This is in line with the suggestion in O’Neill
et al. (2004): taking r0 as the first zero-crossing of ρij balances accuracy with ease of
calculation. Furthermore, if the directly measured autocorrelation does not reach ρij ≈
0.01, an exponential tail is fitted for ρij 6 0.35. Table 3 includes the various Lij found.

Integral lengthscales involving velocity fluctuations along the x-direction are larger
than those along z. This was also found by Carter & Coletti (2017) in a similar facility



24

despite a different Reλ, suggesting eddies were elongated by the larger fluctuations. Fol-
lowing their suggestion, the geometric mean of integral lengthscales involving fluctuations
along one direction is taken to represent the size of the largest vortices in that orientation,
i.e. Lx = (LxxLzx)

1
2 for instance. To facilitate comparison with previous experiments, a

conventional integral lengthscale assuming axisymmetry

Lturb =
Lx + 2Lz

3
(A 1)

is evaluated too.
The Taylor microscale along the i-direction of j-component velocity fluctuations, on

the other hand, is evaluated according to its definition λij =
(
− 1

2
d2ρij
dr2

)−0.5
. To minimise

PIV error, we only consider the first two values of ρij with a positive separation whose
interrogation windows do not overlap (Adrian & Westerweel 2011). The horizontal
intercept of the fitted parabola then equals λij . The conventional longitudinal and
transverse Taylor microscales λf and λg are found assuming axisymmetry in analogy
to (A 1).

The related Reynolds number Reλ is also determined using the measured water
temperature of 17 ◦C. The direction-dependent values Reλ,i = λg,iui/ν, where λg,i is
the transverse Taylor microscale involving i-component velocity fluctuations ui. The
conventional axisymmetric Reλ and all the quantities discussed above are displayed in
table 3.

All in all, these measurements show the background turbulence is homogeneous but
mildly anisotropic.
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