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Abstract: The fatigue life of coil springs is usually predicted with a stationary Gaussian 

vibration load and deterministic structural parameters. However, the obtained fatigue life is 

inconsistent with the observed fatigue life of fractured springs which varies within a wide range. 

The work aims to propose a method to predict the fatigue life of the coil spring by considering 

the time-varying vibration load, i.e., root mean square (rms) varies with time and the 

uncertainties of geometric parameters. First, a synthetic method for time-varying vibration 

loads is proposed. The time-varying load is decomposed into multiple stationary Gaussian short 

samples represented by their power spectral density (PSD). These PSDs are synthesized 

according to the distribution characteristics of spectral values, in which data that are non-

Gaussian are processed with the Johnson system. Second, the influence of parameter 

uncertainties in the coil spring is studied by a Monte Carlo analysis of the stress frequency 

response function. Finally, the fatigue life is calculated and compared with the results predicted 

by using the measured stress. The results show that the synthetic spectrum has almost the same 

damage potential as the measured time-varying load. In comparison with results predicted from 

the measured stress, the synthetic spectrum gives much better estimates of the fatigue life of 

the coil spring than the average spectrum. Parameter uncertainties of coil springs significantly 

affect fatigue life and should be taken into account. 

Keywords: Railway vehicle; Coil spring; Time-varying vibration load; Synthetic spectrum; 

Parameter uncertainty; Fatigue life. 
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1 Introduction 

Railway vehicles are fitted with two levels of the suspension system to reduce the 

vibration transmission from the wheel/rail excitation to the car body, thereby improving 

the ride quality [1]. The primary suspension is located immediately above the axle 

boxes of the wheelsets and is often formed of steel coil springs; the secondary 

suspension connects the bogie frame with the car body and is commonly uses air-

springs. Recently, however, fatigue fractures of coil springs in the primary suspension 

have been found to occur frequently for different kinds of railway vehicles in service, 

including high-speed trains, locomotives and metro vehicles [2-4]. Also, according to 

the statistics of the fractures of coil springs within a metro train, the service life of 

fractured coil springs varies within a wide range (0.2 million km ~ 1 million km). 

Examples of fractured springs are shown in Figure 1. 

 

Figure 1.  Examples of fractured coil springs. 

Currently, coil springs are generally designed using Goodman diagrams based on 

the EN 13906 standard [5] to assess their durability. However, recent research results 

[2-4] show that the EN 13906 standard cannot consider the internal resonances within 

coil springs, which are significant for fatigue life. In these researches the vibration load 

of coil springs is regarded as a stationary Gaussian load and expressed by its power 

spectral density (PSD), from which the stress response PSD is obtained by combining 

it with the structural dynamic properties in the form of a stress frequency response 

function (FRF). This allows a more accurate estimate of the fatigue life with the 
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frequency method [6,7], compared with that obtained by using the EN 13906 standard. 

However, there are two shortcomings in these fatigue life evaluation methods. The 

first is that it is not appropriate for the vibration load to be assumed to be stationary and 

Gaussian. The vibration acceleration of the axle box excited directly by the wheel/rail 

interaction is generally regarded as the vibration load for the coil spring [3,4]. During 

the service period of railway vehicles, different track types [8], evolving wheel/rail 

contact surface conditions [9] and different operating modes result in complex and 

changing wheel/rail forces. It leads to the time-varying vibration load of coil springs, 

that its rms varies with time, which is non-stationary and non-Gaussian [10]. If this is 

not taken into account, the evaluated fatigue damage will be less than the damage 

occurring in practice [11,12]. The other shortcoming is that the fatigue life is generally 

obtained as a deterministic value, whereas the fatigue life of fractured coil springs is 

found to vary within a wide range. Narayanan [13] and Dodwell [14] show that such 

variations in the fatigue life of structures are mainly caused by uncertainties in structural 

parameters. Therefore, to obtain a reasonable fatigue life estimate of the coil springs, 

both the time-varying vibration load and the uncertainties of structural parameters 

should be considered. 

The use of time domain methods to assess the fatigue life of structures subjected 

to time-varying loads requires considerable computing resources [6]. In contrast, the 

frequency domain method can provide rapid calculations of fatigue damage, but cannot 

be directly applied to time-varying loads. A number of recent investigations have 

considered the use of frequency domain methods for fatigue life prediction of structures 

exposed to time-varying loads. Li and Ince [15] assessed the structural fatigue damage 

under time-varying loads by discretizing the evolutionary PSD [16]. Trapp and 

Wolfsteiner [11] decomposed the characterization of the varying loads into stationary 

Gaussian portions with the non-stationary matrix method, which allows the direct use 

of the frequency domain method for fatigue life prediction. Zorman et al. [17] combined 

short-time narrowband spectra with the structural dynamic characteristics to assess the 

structural damage under non-stationary loads. However, each of these methods has the 
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disadvantages of complicated calculation processes and a large amount of calculation. 

In contrast, the MIL-STD-810G standard et al. [18] proposed a synthetic method to 

quickly obtain an equivalent spectrum for multiple stationary and Gaussian vibration 

loads. While this method cannot be directly used to synthetic the time-varying vibration 

load that is non-Gaussian. For this, You et al. [19] synthesizes the time-varying loads 

of railway vehicles by using the Johnson system [20], which allows the transformation 

of non-Gaussian data to Gaussian data. However, the correlation between mean value 

and variance used to obtain the value of the synthetic spectrum is ignored in [19].  

The dynamic properties of coil springs are determined by their material and 

geometric parameters [21]. Due to tolerances in manufacturing and installation, 

however, these parameters are uncertain and lead to variability in the dynamic 

characteristics and fatigue life of the coil springs. The influence of parameter 

uncertainties on the dynamic characteristics can be obtained by the Monte Carlo (MC) 

simulation method [13-14,22]. In MC simulation, a large number of simulations are 

performed and used to determine the statistical distribution of the dynamic response. 

The input parameters are chosen from a random distribution of uncertain parameters 

described according to their probability density function (PDF). Therefore, the MC 

method has the advantages of a simple calculation process and effective calculation 

results. In the present context, it is suitable for determining the dynamic characteristics 

of coil springs, such as the stress FRF, taking account of uncertainties in input 

parameters. 

This paper aims to provide a method for fatigue life estimation of coil springs 

within the primary suspension of railway vehicles, taking into account both the time-

varying vibration load and the uncertainties of structural parameters. The paper is 

organized as follows. In Section 2, the synthetic method for approximating the time-

varying vibration load is proposed. In Section 3, the synthetic spectrum for fatigue 

analysis of coil springs is generated that takes account of the non-stationary, non-

Gaussian characteristics of time-varying loads. The statistical distribution of the stress 

FRFs of the coil spring is obtained with the MC method in Section 4. These results are 
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used to calculate the fatigue life in Section 5, and then the proposed method is verified 

with experimental data in Section 6. The conclusions are summarized in Section 7. 

2 Synthetic method for approximating time-varying vibration load 

 The coil spring is subjected to time-varying vibration loads in service [10,11]. To 

allow for this in a frequency domain method for the fatigue analysis, a PSD is generated 

that has almost equal damage potential to the actual time-varying vibration load. This 

PSD is called a synthetic spectrum. The method to generate the synthetic spectrum is 

described in this Section. 

2.1 Synthetic method 

(1) PSD estimation of vibration load 

The time-varying vibration load is first decomposed into many short samples of 

equal time length T which can be considered to be weakly stationary [10]. The PSD of 

a stationary vibration load can be estimated by: 

 22
( ) ( )k kG f X f

T
=  (1) 

where Gk(f) is the one-sided PSD at frequency f; k represents the index of the spectral 

line (k = 1, 2, …, N); f = k ∆f, where ∆f represents the frequency interval; Xk(f) is the 

kth spectral line of the Fourier transform. Xk is a complex number with real part XkR and 

imaginary part XkI; these can be considered as uncorrelated Gaussian random variables 

with equal variance and zero mean [23], XkR, XkI ~ N (0, σ2). 

Assuming that the PSD estimate of the stationary load is unbiased, the true value 

of the PSD ( )kG f  at frequency f can be expressed as follows: 

 2
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= =   (2) 

where the index m = 1, 2, …, nd is used to indicate the individual segment data for a 

stationary load; E represents the line average. To find the statistical distribution of the 

PSD estimates at frequency f, they can be written as: 
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The bracket on the right-hand side of Eq. (3) contains the squared sum of two variables 

with Gaussian distribution, which conforms to the chi-squared distribution with two 

degrees of freedom (DOFs). If the PSD estimate in Eq. (2) is based on an average of nd 

samples, 

 22 ( )
~ (2 )

( )

d k
d

k

n G f
n

G f
  (4) 

 

If the number of DOFs 2nd is greater than 30, the chi-squared distribution can be 

approximated as Gaussian,
22 (2 ) ~ ( 2 1,1)d dn N n −   [23]. Therefore, when the PSD 

estimation is based on an average of at least 15 samples, the square root of the PSD at 

each frequency approximately follows a Gaussian distribution. It indicates that the short 

sample should be decomposed into at least 15 samples greater than 1 s. Therefore, the 

time length T for short sample is 20 s in this paper. 

(2) Upper normal tolerance limit   

For a set of PSDs for many short samples, if the square roots of PSDs at the kth 

spectral line ( kG ) follow the Gaussian distribution, the upper normal tolerance limit 

(NTL) can be estimated which exceeds a proportion β of the samples with a certain 

confidence coefficient α.   

 ˆ         ( )

ˆˆ ˆ

P F F

F Z F KS



  

 =

= + = +；
 (5) 

where F and F̂  represent the true and estimated upper NTL  for kG  corresponding to 

the proportion β; Z
 represents the β quantile of the Gaussian distribution; ̂  and Ŝ  

represent the mean and variance for kG . It can be seen that the mean and variance 

should be treated as a whole to estimate the F̂ , but they are regarded as independent in 

[19]. Essentially, the NTL method involves interval estimation of the true upper limit 
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F, resulting in a one-sided confidence interval.  

The estimates F̂  can be obtained by solving for the coefficient K. Rearranging the 

inequality in brackets in Eq. (5).  

 ˆ

ˆ

Z
K

S

  − +
  (6) 

Multiplying both sides of Eq. (6) by the square root of the sample size M (the 

number of PSDs), and then dividing the numerator and denominator on the left of the 

inequality by σ, yields: 

 ˆ
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ˆ /
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S
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According to statistical theory [23], the distribution of portion of the left-hand side 

of Eq. (7) is  
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from which the distribution of the left-hand side of Eq. (7) is 

 ˆ

/ ~ ( 1, )
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S
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Therefore, the left-hand side of Eq. (7) follows the non-central t distribution with 

M–1 DOFs and non-central parameter Z M . Then, the value of the synthetic spectrum 

at the kth spectral line kG  can be expressed as follows: 

 2ˆ
kG F=  (10) 

where F̂ is given by 
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(3) Upper limit for non-Gaussian data 

Eq. (10) is only applicable for Gaussian data. However, in general for vibration 

loads of the railway vehicle, the distribution of the values kG  is non-Gaussian, which 

is tested with the quantile-quantile plot (Q-Q plot) [23]. Therefore, to calculate the 

upper limit of non-Gaussian data based on the proportion β, the data is first mapped 

onto a Gaussian data set based on the families of distribution functions of the Johnson 

system [20]. These can be written as 

 ( ); ,iz k x   = +  (12a) 
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Here z represents the standard Gaussian data; x the non-Gaussian data; γ, η, λ, and ε are 

parameters of the Johnson system (Appendix A); i depends on the quantiles (x1, x2, x3, 

x4) for x. 

 
4 3
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= −


= −
 = −

 (13) 

when mn/p>1, i = 1; when mn/p = 1, i = 2; and when mn/p < 1, i = 3. 

The true upper limit value Fz, based on the proportion β, of the standard Gaussian 

data z can be obtained with μ = 0, σ = 1: 

 
zF z z  = + =  (14) 

This value of Fz is then substituted into Eq. (12a) to allow indirect calculation of 

the upper limit ˆ
vF  of the non-Gaussian data based on the proportion β: 
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 ( )ˆ ; ,z i vF k F   = +  (15) 

From this, the square of ˆ
vF  is value of the synthetic spectrum. 

2.2 Application of the synthetic method 

The flowchart of the process for generating the synthetic spectrum of time-varying 

vibration loads is shown in Figure 2. 

 

Figure 2. Process for generating synthetic spectrum of time-varying vibration load.  

To illustrate the synthetic method, example data from measurement (mission 

profile 1 shown in Figure 5) are used to calculate the synthetic spectrum for time-

varying loads. Here, the value of the synthetic spectrum is calculated at one frequency 

(60 Hz) by way of an example. The calculation at other frequencies follows the same 

process.  

The synthetic process is as follows: 

(1) Division of time-varying load: the example data (of total length 3250 s) is 

decomposed into many short samples of equal length (20 s), and the PSD of each short 
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sample Gk(f) is calculated.  

(2) PDF estimation of kG : if the values of kG  are Gaussian, the value of the 

synthetic spectrum at frequency f can be directly obtained with Eq. (10); otherwise, the 

values of kG  will be transformed into Gaussian data with the Johnson system, Eq. 

(12). As shown in Figure 3(a), the square roots of the PSDs at 60 Hz are non-Gaussian, 

which is tested with the QQ plot.  

(3) Transformation of non-Gaussian data [20]: 

a) An empirical value Z is selected according to the sample size and the 

probabilities (P-3Z, P-Z, PZ, P3Z) are determined corresponding to the quantiles (–3Z, –

Z, Z, 3Z) according to the standard Gaussian distribution table. Supposing that Z = 0.524 

is chosen, the probabilities of the quantiles are (5.8%, 30%, 70%, 94.2%). 

b) The quantiles (x1, x2, x3, x4) of the non-Gaussian data are determined according 

to the probabilities (P-3Z, P-Z, PZ, P3Z). Specifically, the non-Gaussian data consisting of 

n samples are sorted from smallest to largest to form a new sequence X. The numbers 

in the sequence X corresponding to these probabilities are i-3Z = nP-3Z + 1/2, etc; thus, 

3 31 2 3 4( , , , ) ( , , , )
Z Z Z Zi i i ix x x x X X X X

− −
= . For the non-Gaussian example data, (x1, x2, x3, x4) 

= (0.016, 0.13, 0.54, 1.85). 

c) The values (x1, x2, x3, x4) are used to determine the value of i. In the example, 

mn/p = 0.87 and the distribution function ( )3 , ,k x    is selected. It  substituted into Eq. 

(12a) to convert the non-Gaussian data into standard Gaussian data as shown in Figure 

3(b). 

 0.023
ln = 0.77 ln

10.
2.

33 0.0
74

23

x x
z

x x


 

 

− +   
= + +    
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(a)                                                                        (b) 

Figure 3. Transformation of non-Gaussian data. (a) Quantile-quantile plot of example data versus 

standard Gaussian distribution data; (b) distribution characteristics of square roots of PSDs 

(4) Calculation of synthetic spectrum: The upper limit value of the non-Gaussian 

data can be calculated by Eq. (15), and the square of this value is the synthetic PSD. 

For the non-Gaussian example data, if these data were assumed to be Gaussian in step 

(2), the value of the synthetic spectrum would be 2.45 derived with the NTL method (β 

= 90%), whereas, derived with the Johnson system this value is 4.0. This indicates the 

potential errors of using the conventional NTL method with non-Gaussian data. 

3 Synthetic spectrum for fatigue analysis of coil springs   

3.1 Measurements for time-varying vibration load of coil springs 

Measurements have been carried out on a metro train with a maximum running 

speed of 80 km/h. The primary suspension, shown in Figure 4, consists of two 

concentric coil springs mounted directly above the axle box and a vertical damper 

which is offset to one side. The coil springs within the primary suspension are excited 

at their lower end by the vibration of the axle box, whilst the upper end can be 

considered as approximately fixed due to the connection to the bogie frame. An 

accelerometer was therefore installed on the axle box, and used to obtain the vertical 

vibration which can be used to represent the time-varying load of the coil spring. A 

strain gauge rosette was attached to the outer coil spring at a distance of 1.2 circles from 

the lower end, on the inside face. This is used to obtain the dynamic strain, which will 

be used to verify the proposed method in Section 6. The installation of the sensors is 



12 
 

shown in Figure 4.  

 

Figure 4. The installations of strain gauge rosette and accelerometer in the field test.  

The vibration load of the coil spring in service is time-varying (i.e., rms varies 

with time) due to the evolving wheel/rail contact surface conditions and different 

operating speeds. However, to simplify the analysis, it can be assumed that the 

wheel/rail surface conditions are regularly maintained, resulting in a periodic change of 

the vibration load. Therefore, it is sufficient to determine the evolution of vibration load 

in one maintenance cycle (0.15 million km for this metro system). To this end, four 

mission profiles of vibration loads within a maintenance cycle were measured over the 

whole route, as shown in Figure 5.  
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Figure 5. Four measurements of time-varying vibration loads over a maintenance cycle. 

3.2 Synthetic spectrum  

High instantaneous vibration intensities have an enormous effect on the fatigue 

failure of a structure [11,24-25]. Moreover, according to the previous studies [26], the 

structure designed based on the 90% quantile of time-varying vibration loads has high 

reliability. Thus, the synthetic spectrum for the time-varying vibration load of the coil 

spring is obtained with β = 90% and α = 95%.  

To illustrate this, Figure 6 shows the PSDs of the individual short samples for the 

four mission profiles. The average spectra are shown as the thick dotted lines and the 

synthetic spectra based on the above criteria are shown as the solid lines.  

  

 (a)                                                                        (b) 
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                                     (c)                                                                        (d) 

 
   (e) 

Figure 6. Synthetic spectrum of time-varying vibration loads for (a) mission profile 1; (b) mission 

profile 2; (c) mission profile 3; (d) mission profile 4; (e) the four mission profiles as a whole. 

In Figure 6, significant variations can be seen between the individual short samples 

and differences can also be seen between the mean spectra of the different mission 

profiles, which indicates the time-varying nature of vibration loads. The average 

spectrum and the synthetic spectrum have consistent shapes. However, the average 

spectrum amplitude is lower than that of the synthetic spectrum, which is based on β = 

90%. Thus, the synthetic spectrum contains higher vibration amplitudes. 

For comparison, the standard vibration PSD from the IEC 61373 standard [27] for 

the area around the axle box of a railway vehicle is also presented. This is intended as 

a spectrum for testing train-mounted equipment and is based on measured vibration 

acceleration data. However, compared with this standard spectrum, the synthetic 

spectrum has a different shape, emphasizing the frequency components between 60 and 

130 Hz. This spectrum is more suitable for characterizing the frequency domain 
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characteristics of the time-varying vibration load on this particular metro. The peak 

frequencies between 60 and 130 Hz can be identified as the main frequency range of 

the fatigue load for the coil spring in service. 

4 Dynamic properties of coil spring with uncertainties   

4.1 Finite element model 

As shown in Figure 7, a finite element (FE) model has been established for the 

primary suspension and bogie frame to analyse the structural dynamic properties of the 

installed coil spring. As the secondary suspension is very soft, it isolates the car body 

at frequencies above a few Hz; the car body is therefore represented simply by a single 

mass element that is connected to the bogie frame through spring/damper elements. The 

bogie frame and the primary suspension springs are discretised by solid tetrahedral 

elements, and the upper ends of the spring sets are coupled to the bogie frame. The 

rotary arm rubber bearing is modelled with spring elements and the hydraulic dampers 

within the primary suspension are modelled with damping elements. The parameters of 

railway vehicle suspension and the coil spring set are presented in Table 1 and Table 2. 

 

Figure 7. The finite element model of the primary suspension and bogie frame. 

  

Mass of car body

Hydraulic damper

Rotary arm

X

Y
Z

Spring set
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Table 1. Vehicle parameters 

Description Value Unit 

Half of car body mass 18000 kg 

Vertical stiffness of secondary suspension (per side) 0.3 × 106 N/m 

Vertical damping coefficient of hydraulic damper 

within secondary suspension (per side) 
20 × 103 N.s/m 

Radial stiffness of rotary arm rubber bearing 8 × 106 N/m 

Transverse stiffness of rotary arm rubber bearing 6 × 106 N/m 

Vertical damping coefficient of hydraulic damper 

within primary suspension  
15 × 103  N.s/m 

Table 2. Design parameters of the coil spring set 

Parameter Outer Inner Unit 

Number of active coils n 3.8 6.8  

Wire diameter d  38 24 mm 

Spring diameter D  204 120 mm 

Free height  312 312 mm 

Shear modulus 78.5 × 109 Pa 

Density 7950 kg/m3 

Poisson’s ratio 0.3  

First, a modal analysis is carried out on the outer coil springs. The lower ends of 

the coil springs in the finite element model are fully constrained. The modes are 

identical for all four coil springs so results are only presented for one. For verification, 

a modal experiment was conducted on the outer coil spring in situ. Twenty 

accelerometers were attached on the coils at equal intervals and the spring was excited 

using an impact hammer. The first three natural frequencies and mode shapes of the coil 

spring obtained from the FE model and the measurement are compared in Figure 8. The 

results from the numerical model agree well with the measurement, with differences in 

natural frequency of less than 2 Hz and similar mode shapes. These results give 

confidence in using the FE model to predict the fatigue life of the coil springs.  



17 
 

 
Figure 8. Comparison of modal results from the FE model and measurement. 

4.2 Stress FRF of coil spring 

To calculate the stress distribution in the coil spring, the modal damping ratio from 

the modal experiment is used in the FE model. Meanwhile, for the modal damping ratio 

at modal frequencies of the bogie frame, this value is set as an empirical value of 2%. 

The lower ends of the coil springs are constrained except in the vertical direction and a 

unit vertical acceleration at each frequency, is applied to this lower end. The stress due 

to this unit acceleration is calculated as an FRF; this is shown in Figure 9 for two 

locations on the coil spring. 

For the first principal stress, the maximum stress FRF is located at 0.75 circles 

from the lower end, which is at the transition between the active coils (that are free to 

move) and the support coils (that are in contact with the bearing surface). In the 

measurements described in Section 2, the strain gauges could not be installed here 

because of the contact between the spring and the support surface. Thus, a position was 

selected at 1.2 circles from the lower end on the inside face; this has an FRF with a 

smaller magnitude. The peak frequencies of the FRFs at these two positions correspond 

1st Vertical 1st Torsion 1st Bending(X)

Frequency (83.5 Hz) Frequency (94.4 Hz) Frequency (117.6 Hz)

Frequency (82.2 Hz)

Damping ration (2.47%)
Frequency (96.3 Hz)

Damping ratio (0.90%)

Frequency (116.4 Hz)

Damping ratio (1.67%)

Numerical results

Measurement
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to the first vertical mode (83.5 Hz), the first bending mode (116 Hz), and the second 

vertical mode (157 Hz). The peak value at the first vertical mode is more than five times 

larger than that at the other two modes.  

 

(a)                                                          (b) 

Figure 9. Stress FRF. (a) FRF of the first principal stress; (b) stress distribution contour at the first 

vertical mode (83.5 Hz), viewed from the bottom. 

4.3 Variation in stress FRF 

In this section, the influence of uncertainties in the geometric parameters (number 

of active coils n, spring diameter D, wire diameter d) on the stress FRF is studied by 

using the MC method, assuming that the material properties can be considered to be 

constant. According to the hypothesis presented in [28], n, d, and D can be assumed to 

conform to independent normal distributions, in which the mean values are the nominal 

design values and the standard deviation is obtained from the manufacturing tolerance 

u  according to the ‘3σ’ law. 

 

3

u



=  (17) 

The manufacturing tolerances of n, d, and D are ±0.5, ±0.5 mm, and ±2.04 mm. 

Considering the computational costs, 100 simulations are performed with the MC 

method to determine the variability of the stress FRFs of the coil spring. For each 

simulation, the stress FRF curves in the vicinity of the modal frequencies are shown in 

Figure 10 at the 0.75 and 1.2 circle positions. Individual results are highlighted for the 
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sets of geometric parameters corresponding to the minimum and maximum lifetime of 

the coil spring (as described in Section 5). 

 

(a)                                              (b)                                                (c) 

 

(d)                                               (e)                                                  (f) 

Figure 10. Variation range of the stress FRF at the 0.75 circle position: (a) the 1st vertical mode; (b) 

the 1st bending mode; (c) the 2nd vertical mode. At the 1.2 circle inside position: (d) the 1st vertical 

mode; (e) the 1st bending mode; (f) the 2nd vertical mode. The red curve corresponds to the design 

parameters, the blue curve to the minimum fatigue life and the pink curve to the maximum fatigue 

life. 

The modal frequency of the first vertical mode with the nominal design parameters 

is 83.5 Hz. From the different configurations considered, this varies by up to 3 Hz, 

between 80.5 Hz and 86 Hz. The maximum value of the stress FRF at the 0.75 circle 

position varies between 1.6 MPa/(m/s2) and 3.5 MPa/(m/s2), compared with 2.0 

MPa/(m/s2) for the nominal parameters; the highest value is 75% greater than the 

nominal peak value. At the 1.2 circle position the range of maximum amplitudes is 

smaller and the highest value is only 13% greater than the nominal maximum stress. 

5 Fatigue life analysis  

For a linear time-invariant system, the stress response PSD Sσ(f) can be obtained 

by [7]: 
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( ) ( ) ( )S f H f G f =  (18) 

where Hσ(f) is the stress FRF and ( )G f  is the acceleration load spectrum PSD. In the 

current method this is the synthetic spectrum.  

Fatigue life is generally expressed in terms of an S-N curve, where S represents 

stress amplitude and N number of cycles. To estimate the fatigue life from a stress PSD, 

an approximation to the cycle-amplitude distribution is required. For this, Dirlik’s 

method [29] is generally used: 
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where P(Sa) represents the PDF of the stress amplitude Sa and Za is the normalized 

amplitude. The other parameters are defined as: 
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Then the damage D  of the coil spring per second is evaluated by: 

 
0

( )
p m

a a a

v
D P S S dS

C

+

=   (20) 

where vp represents the crossing frequency of stress peaks, 
4 2pv m m= ; m and C are 

parameters of the S-N curve of the coil spring material. The fatigue life X of the coil 

spring in millions km can be calculated as follows: 

 
6/10

V
X

D
=  (21) 

where V represents the average running speed of the railway vehicle (8.9 m/s in the 

current study).  
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From the 100 stress FRFs calculated in Section 4.2, 100 fatigue life estimates of 

the coil springs can be obtained. Then the reliability Ps, i.e., the probability of the 

fatigue life being greater than X, is given as: 

  ( , , ) s
s

m
P P g n d D X

M
=  =  (22) 

where g is the fatigue life result predicted with the synthetic spectrum and Dirlik’s 

method; M=100 is the total number of lifetime estimates, and ms represents the number 

of estimates with a fatigue life greater than X. 

Figure 11 shows the reliability function Ps of the coil spring calculated for the 0.75 

circle position and the 1.2 circle position. A fitted curve is also shown in each graph. 

Comparing the two graphs, the expected fatigue life based on the stress at the 0.75 circle 

position is more than 10 times shorter than that based on the 1.2 circle position. Owing 

to the uncertainties of the geometric parameters, the expected fatigue life of the coil 

spring based on the stress at the 0.75 circle position can vary between 0.1 and 0.7 

million km. This can explain the fact that the service life before springs fracture can 

vary considerably.  

In addition, since the 1st vertical and bending mode frequencies of the coil spring 

are within the main frequency range of the synthetic spectrum, this caused resonance 

of the coil spring, resulting in high amplitude vibrations and stresses at these 

frequencies. It results in the shortest fatigue life of the coil spring less than the overhaul 

mileage of metro trains (0.6 million km) given by the Chinese standard GB 50157 [30]. 

This indicates that some measures should be taken to improve the fatigue life of the coil 

spring, such as ensuring smoother wheel/rail contact surface conditions by shortening 

the maintenance cycle. 
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(a)                                                                  (b) 

Figure 11. Fatigue life reliability of the coil spring. (a) 0.75 circle position; (b) 1.2 circle position. 

6 Discussion 

In order to assess the suitability of the synthetic spectrum in predicting the fatigue 

life of the coil spring, comparisons are made for each mission profile of the fatigue life 

predicted by the synthetic spectrum, the average spectrum and the measured stress 

(determined from the strain measurement). The fatigue life is predicted from the two 

spectra using the frequency domain method (Eqs (18-22)) for the 100 geometric 

variants, while the measured stress is used in the time domain method given in 

Appendix B. In addition, it should be noted that since the strain gauge rosette is attached 

at the 1.2 circle position of the coil spring, all fatigue life results in this section are 

predicted based on this position.  

The results are shown in Figure 12. In each case the fatigue life, corresponding to 

50% reliability, predicted with the synthetic spectrum is between 35% and 65% smaller 

than that predicted with the measured stress. Conversely, the fatigue life corresponding 

to 50% reliability predicted with the average spectrum is between 100% and 400% 

larger than the result from the measured stress. 
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  (a)                                                                              (b) 

  

(c)                                                                           (d) 

Figure 12. Comparison of fatigue life predicted with different vibration load spectra. (a) Mission 

profile 1; (b) mission profile 2; (c) mission profile 3; (d) mission profile 4. 

According to the Palmgren-Miner rule, fatigue damage is related to the stress 

amplitude by a power law (Appendix B). This implies that the contribution to the 

fatigue damage of high stress amplitudes, caused by high amplitudes of vibration loads, 

is decisive in determining the fatigue life [25]. In the process of predicting fatigue life 

by the frequency domain method, the average spectrum does not give sufficient weight 

to high stress amplitudes. Thus, the fatigue life predicted by the average spectrum is 

significantly longer than that predicted by the measured stress. The synthesised 

spectrum derived with β = 90% contains more of the high vibration intensities present 

in the time-varying load, and therefore predicts a fatigue life that is closer to the results 

obtained with the measured stress.  
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7 Conclusions 

A method is proposed to derive a synthetic load spectrum for use in the fatigue life 

estimation of coil springs. This method allows the frequency domain approach to be 

used for fatigue analysis while taking account of the non-stationary and the non-

Gaussian character of the vibration load.  

The synthetic spectrum contains higher vibration intensities than an average 

spectrum and has almost the same damage potential as the actual time-varying load. 

Compared with the average spectrum, the fatigue life of the coil spring estimated with 

the synthetic spectrum is closer to that determined using the measured stress. 

Owing to the uncertainties of the geometric parameters, expressed in terms of their 

manufacturing tolerances, the expected fatigue life of the coil spring can vary in a wide 

range (0.1 and 0.7 million km). This highlights that parameter uncertainties have a 

significant effect on the fatigue life and should be taken into account.  

Although the work focuses on coil springs, the proposed fatigue life assessment 

method proposed is applicable to many other mechanical structures. In addition, there 

are some limitations in this paper because some parameters were chosen empirically, 

such as Z in the Johnson system and β. It results in a gap between the fatigue life 

predicted with the synthetic spectrum and that predicted with the measured data. To 

solve this problem, a parameters optimization algorithm should be investigated, which 

is the focus of our future research. 
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Appendix 

Appendix A. Parameters for Johnson system 

The parameters of the Johnson system can be expressed as follows [20]: 

if i = 1, 
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if i = 3, 
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where the x1, x2, x3 and x3 are quantiles of the non-Gaussian data that are determined 

according to the probabilities; m, n, and p are obtained with Eq. (13). 
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Appendix B. Fatigue life assessment with the time domain method 

 

Figure B1. The measured strains from mission profile 1. 

The collected strain data, shown in Figure B1 for mission profile 1, can be 

transformed into the first principal stress σ1 as: 
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where E is the Young’s modulus of the coil spring material; ε-45, ε0, and ε45 are three 

components of the measured strain; µ is the Poisson’s ratio. 

The cycles of the first principal stress σ1 are counted with the rainflow counting 

method, as shown in Figure B2(a). Based on the S-N curve of the coil spring material 

(Figure B2(b)), the fatigue damage D̂  is calculated with Miner’s linear accumulation 

rule: 
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Figure B2. (a) Cycle-amplitude distribution of measured stress; (b) assumed S-N curve of the coil 

spring material. 
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where n represents the number of cycles occurring with amplitude S; N represents the 

number of cycles to fatigue for this stress amplitude; m represents the slope of the S-N 

curve; and S0 represents the fatigue limit.  

 Finally, the fatigue life X̂ of coils springs in million km can be predicted by: 
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where L is operation mileage in km (38 km for mission profile 1). 


