
A SELF-ADAPTIVE INERTIAL SUBGRADIENT EXTRAGRADIENT ALGORITHM FOR

SOLVING BILEVEL EQUILIBRIUM PROBLEMS

1LATEEF OLAKUNLE JOLAOSO 2KAZEEM OLALEKAN AREMU, AND 3 OLAWALE KAZEEM OYEWOLE

Abstract. In this paper, we introduce an inertial subgradient extragradient method with a self-adaptive tech-

nique for solving bilevel equilibrium problem in real Hilbert spaces. The algorithm is designed such that its
stepsize is chosen without the need for prior estimates of the Lipschitz-like constants of the upper level bifunc-

tion nor a line searching procedure. This provides computational advantages to the algorithm compared with

other similar methods in the literature. We prove a strong convergence result for the sequences generated by our
algorithm under suitable conditions. We also provide some numerical experiments to illustrate the performance

and efficiency of the proposed method.

1. Introduction

The Bilevel Optimization Problem (shortly, BOP) is defined as a mathematical program in which a problem
contains another problem as a constraint. Mathematically, the BOP is formulated as follows:

Find x† ∈M ⊂ H such that x† solves Problem P1 installed in a space H,
where M⊂ H is the solution set of the problem:

Find x∗ ∈ N ⊂ H such that x∗ solves Problem P2 installed in a space H.

The Problem P1 is called the upper level problem, while Problem P2 is called lower level problem. In the last
few years, BOP has attracted the interest of many researchers due to its wide applications in several fields of
applied sciences such as engineering, economics, management, network design, optimal chemical equilibrium,
etc.; see, e.g. [22, 33, 42]. A wide collection of algorithms for solving BOP can be seen in, for instance, for
bilevel variational inequalities [1, 42, 45, 57], for bilevel equilibrium problem [18, 23, 25, 26, 48], and for bilevel
minimization problem [21, 51, 52].

In this paper, we study the approximation of solution of Bilevel Equilibrium Problem (BEP) in real Hilbert
spaces. Let C be a nonempty, closed and convex subset of a real Hilbert space H, and f : C × C → R be a
bifunction satisfying f(x, x) = 0 for all x ∈ H. The Equilibrium Problem (EP) is defined as finding x ∈ C such
that

f(x, y) ≥ 0, ∀y ∈ C. (1.1)

We denote the solution set of the EP (1.1) by Sol(f, C). The EP (1.1) generalizes many other optimization
problems such as variational inequalities, convex minimization, fixed point, Nash equilibrium problems among
others (see, [10, 47]). The basic methods for solving the EP (1.1) includes regularization methods, proximal
method, extragradient method, projection methods, gap-function methods, Bregman distance method, etc., see
[2–6, 8, 9, 11, 12, 19, 27–32, 34–41, 49, 53, 54, 58] for details.

Definition 1.1. A bifunction f : C × C → R is said to be:

(i) strongly monotone on C if there exists a constant τ > 0 such that

f(u, v) + f(v, u) ≤ −τ‖u− v‖2, ∀u, v ∈ C;

(ii) monotone on C if f(u, v) + f(v, u) ≤ 0, ∀u, v ∈ C;

(iii) strongly pseudomonotone on C if there exists a constant γ > 0 such that

f(u, v) ≥ 0⇒ f(v, u) ≤ −γ‖u− v‖2, ∀x, y ∈ C;

(iv) pseudomonotone on C f(u, v) ≥ 0 =⇒ f(v, u) ≤ 0, ∀u, v ∈ H;
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(v) satisfying a Lipschitz-like condition if there exist two positive constants L1, L2 such that

f(u, v) + f(v, w) ≥ f(u,w)− L1‖u− v‖2 − L2‖v − w‖2, ∀u, v, w ∈ H. (1.2)

From the definitions above, it is easy to see that (i) =⇒ (ii) =⇒ (iv) and (i) =⇒ (iii) =⇒ (iv). However, the
converse implications do not hold in general, see, e.g. [34, 35].

The BEP is defined as finding a point x∗ ∈ Sol(f, C) such that

g(x∗, y) ≥ 0 ∀y ∈ Sol(f, C), (1.3)

where g : H × H → R is another bifunction satisfying g(x, x) = 0 for all x ∈ H. The motivation for studying
the BEP can be derived from (for instance) the supply-chain management problem (see [17]) and power control
problems of CDMA networks (see, [33]). The BEP was first studied by Chadli et al. [14] in 2000 for general-
ized monotone bifunctions. Also, Moudafi [46] introduced a proximal method and proved a weak convergence
result for solving monotone BEP in real Hilbert spaces. Later, Quy [56] combined the Halpern’s method and
proximal method to obtain a strong convergence result for solving the BEP in real Hilbert spaces. It should
be observed that the convergence of the proximal method requires the bifunctions to satisfy monotone and
para-pseudomonotone conditions. When this conditions are relaxed, the proximal method fails to converge to a
solution of the BEP (1.3).

Recently, Yujing et al. [59] introduced an extragradient method for solving the BEP when f is strongly monotone
and g satisfies pseudomonotone and Lipschitz-like condition as follows:

Algorithm 1.2 (Extragradient Method (EGM)).

Initialization: Choose x0 ∈ H, 0 < µ < 2β
L2 , {αn} ⊂ [0, 1], {ηn}, {λn} satisfying

limn→∞ αn = 0,
∑∞
n=0 αn =∞,

0 ≤ ηn ≤ 1− α limn→∞ ηn = η < 1, ∀n ≥ 0,

0 ≤ λ ≤ λn ≤ λ̄ < min
(

1
2L1

, 1
2L2

)
.

Set n = 0 and go to Step 1.
Step 1: Compute 

yn = argmin
y∈C

{
λng(xn, y) + 1

2‖y − xn‖
2
}
,

zn = argmin
y∈C

{
λng(yn, y) + 1

2‖y − xn‖
2
}
.

Step 2: Compute wn ∈ ∂2f(zn, zn) and

xn+1 = ηnxn + (1− ηn)zn − αnµwn. (1.4)

Set n = n+ 1 and go back to Step 1.

The authors proved that the sequence {xn} generated by Algorithm 1.2 converges strongly to a solution of the
BEP (1.3). It should be observed that in Algorithm 1.2, one needs to solve two strongly convex optimization
problems over the entire feasible set C. This can be very complicated if the set C is not simple. Moreover,
the stepsize λn of Algorithm 1.2 depends on the prior estimate of the Lipschitz-like constants L1 and L2 which
are very difficult to determine. In order to improve the efficiency of Algorithm 1.2, the authors in [59] also
introduced the following extragradient method with line search:

Algorithm 1.3 (Extragradient Method with Linesearch (EML)).

Initialization: Choose x0 ∈ C, 0 < µ < 2β
L2 , ρ ∈ (0, 2), γ ∈ (0, 1), {αn}, , {ξn}, {λn} ⊂ (0, 1) satisfying{

limn→∞ αn = 0,
∑∞
n=0 αn =∞,

∑∞
n=0 α

2
n <∞,

λn ∈ [λ, λ̄] ⊂ (0,∞), ξn ∈ [ξ, ξ̄] ⊂ (0, 2).
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Set n = 0 and go to Step 1.
Step 1: Compute

yn = argmin
y∈C

{
λng(xn, y) +

1

2
‖y − xn‖2

}
.

If yn = xn, then set un = ξn and go to Step 4. Otherwise, go to Step 2.
Step 2: (Armijo line search): Find m being the smallest positive integer number satisfying{

zn,m = (1− γm)xn + γmyn,

g(zn,m, xn)− g(zn,m, yn) ≥ ρ
2λn
‖xn − yn‖2.

Set zn = zn,m and γn = γm.

Step 3: Choose tn ∈ ∂2g(zn, xn) and compute PC(xn − ξnσntn) where σn = g(zn,xn)
‖tn‖2 .

Step 4: Compute wn ∈ ∂2f(un, un) and

xn+1 = PC(un − αnµwn).

Set n = n+ 1 and go back to Step 1.

The authors proved that the sequence {xn} generated by Algorithm 1.3 converges strongly to a solution of the
BEP (1.3). Though, Algorithm 1.3 improves Algorithm 1.2, it however incurred the following setbacks:

• The algorithm requires computing two projection onto the feasible set C per each iteration. This can
be computationally expensive if the set C is not so simple.

• The line search procedure uses an inner-iteration which posses additional computation and execution
time.

In view of the above, in this paper, we introduce a new inertial self-adaptive subgradient extragradient method for
solving the BEP in real Hilbert spaces. The inertial extrapolation term is regarded as a means of accelerating
the convergence rate of optimization algorithms and has been implemented in many recent methods; see for
instance [13, 15, 16, 24, 34, 35]. Furthermore, our algorithm solves only one strongly convex optimization
problem over the feasible set while the second optimization problem is solved over a constructible half-space
which can easily be calculated using available techniques in convex optimization. More so, the stepsize of the
algorithm is determined by a step-adaptive process and does not require the prior estimate of the Lipschitz-like
constants. We prove a strong convergence theorem for approximating the solution of the BEP in real Hilbert
spaces. We also provide some numerical experiments to illustrate the performance of the proposed method and
compare it with other related methods in the literature.

The rest of the paper is organized as follows: In Section 2, we recall some essential definitions and fundamental
results. In Section 3, we present our algorithm and its convergence analysis. In Section 4, we discuss some
numerical experiments to show the applicability and efficiency of the proposed method.

2. Preliminaries

Let C be a nonempty, closed and convex subset of a real Hilbert spaces H. We denote the strong convergence
of the sequence {xn} to p by xn → p and the weak convergence of {xn} to p by xn ⇀ p. For each x ∈ H, the
metric projection PC : H → C is defined by PC(x) = argmin{‖x−w‖ : w ∈ C}. The metric projection satisfies
the following identities (see, e.g. [50]):

(i) 〈x− y, PCx− PCy〉 ≥ ||PCx− PCy||2, for every x, y ∈ H;
(ii) for x ∈ H and z ∈ C, z = PCx if and only if

〈x− z, z − y〉 ≥ 0, ∀y ∈ C; (2.1)

(iii) for x ∈ H and y ∈ C,

||y − PC(x)||2 + ||x− PC(x)||2 ≤ ||x− y||2. (2.2)

The following identities hold in any Hilbert space:

||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉, ∀ x, y ∈ H, (2.3)



INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD 4

and

||x+ y||2 = ||x||2 + 2〈x, y〉+ ||y||2, ∀ x, y ∈ H. (2.4)

A subset D of H is called proximal if for each x ∈ H, there exists y ∈ D such that

||x− y|| = d(x,D).

In what follows, we define the Hausdorff metric on H as follows

H(A,B) := max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
for all A and B and to be subsets of H. The normal cone NC to C at a point x ∈ C is defined by NC(x) =
{w ∈ H : 〈w, x− y〉 ≥ 0,∀y ∈ C} .

Lemma 2.1. [20] Let C be a convex subset of a real Hilbert space H and ϕ : C → R be a convex and subdif-
ferentiable function on C. Then x∗ is a solution to the convex problem: minimize{ϕ(x) : x ∈ C} if and only if
0 ∈ ∂ϕ(x∗) +NC(x∗), where ∂ϕ(x∗) denotes the subdifferential of ϕ and NC(x∗) is the normal cone of C at x∗.

Lemma 2.2. [59] Let f : H ×H → R be a β-strongly monotone bifunction and satisfies k-Lipschitz continuous
condition, i.e., for each x, y ∈ H, u ∈ ∂2f(x, ·)(x) and v ∈ ∂2f(y, ·)(y). Suppose 0 < α ≤ 1, 0 ≤ δ ≤ 1 − α and

0 < µ < 2β
k2 , then

‖(1− δ)x− αµw − [(1− δ)y − αµv]‖ ≤ (1− δ − ατ)‖x− y‖,
where τ = 1−

√
1− µ(2β − µk2) ∈ (0, 1].

Lemma 2.3. [43] Let {αn} and {δn} be sequences of nonnegative real numbers such that

αn+1 ≤ (1− δn)αn + βn + γn, n ≥ 1,

where {δn} is a sequence in (0, 1) and {βn} is a real sequence. Assume that
∞∑
n=0

γn < ∞. Then, the following

results hold:

(i) If βn ≤ δnM for some M ≥ 0, then {αn} is a bounded sequence.

(ii) If
∞∑
n=0

δn =∞ and lim sup
n→∞

βn
δn
≤ 0, then lim

n→∞
αn = 0.

Lemma 2.4. [44] Let {an} be a sequence of real numbers such that there exists a nondecreasing subsequence
{ani} of {an}. Then there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞ and the following
properties are satisfied for all (sufficiently large number k ∈ N): amk ≤ amk+1 and ak ≤ amk+1, mk = max{j ≤
k : aj ≤ aj+1}.

3. Main results

In this section, we propose an inertial subgradient extragradient method with a self-adaptive stepsize for solving
the BEP (1.3). The self-adaptive technique we adopt is suitably updated at each iteration, it is independent
of the Lipschitz-like constants of the bifunction g and without any line search procedure. We begin by stating
some basic assumptions on the bifunctions f and g.

Assumption 1. We assume that the bifunction f : H ×H satisfies the following:

(A1) f is β-strongly monotone.
(A2) f(u, ·) is convex, weakly lower semicontinuous and subdifferentiable on H for every fixed u ∈ H.
(A3) f(·, v) is weakly upper semicontinuous on H for every fixed v ∈ H.
(A4) f is k-Lipschitz-continuous, i.e., for each u, v ∈ H, there exists a constant k > 0 such that

H(∂2f(u, u), ∂2f(v, v)) ≤ k‖u− v‖.

Assumption 2. Also, we assume that the bifunction g : H ×H satisfies the following:

(B1) g is pseudomonotone on C with respect to Sol(f, C), i.e.,

g(x, p) ≤ 0, ∀x ∈ C, p ∈ Sol(f, C).

(B2) g(x, ·) is convex, weakly lower semicontinuous and subdifferentiable on H for every fixed x ∈ H.
(B3) g(·, y) is weakly upper semicontinuous on H for every fixed y ∈ H.
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(B4) g satisfies Lipschitz-like condition (1.2) and the constants L1, L2 do not necessary need to be known.

Remark 3.1. Note that when the bifunction g satisfies Assumption (B1), (B2) and (B3), then the solution set
Sol(g, C) is closed and convex; see [7, Proposition 3.1, 3.2]. Also, if f satisfies Assumption 1 and g satisfies
Assumption 2, and in addition, Sol(g, C) is nonempty, then the BEP (1.3) has a unique solution; see [56].

Next, we present our algorithm as follows:

Algorithm 3.2. An Inertial Subgradient Extragradient Method with Self-adaptive technique (ISEMS)

Initialization: Choose x0, x1 ∈ H, α ≥ 3, λ0 > 0, σ, θ ∈ (0, 1), 0 < µ < 2β
k2 , {αn}, {δn}, {εn} ⊂ (0, 1) satisfying

limn→∞ αn = 0,
∑∞
n=0 αn =∞,

0 < δn ≤ 1− αn, limn→∞ δn = δ < 1, ∀n ≥ 0,

εn = ◦(αn) which means lim
n→∞

εn
αn

= 0.

(3.1)

Set n = 0 and go to Step 1.
Step 1: Given the (n− 1)-th and n-th iterates, choose θn such that 0 ≤ θn ≤ θ̄n where

θ̄n =

{
min

{
θ, εn

max{‖xn−xn−1‖2,‖xn−xn−1‖}

}
, if xn 6= xn−1,

θ, otherwise.
(3.2)

Compute

wn = xn + θn(xn − xn−1).

Step 2: Compute 
yn = argmin

y∈C

{
λng(wn, y) + 1

2‖wn − y‖
2
}
,

zn = argmin
y∈Tn

{
λng(yn, y) + 1

2‖wn − yn‖
2
}
,

where Tn = {x ∈ H : 〈xn − λnξn − yn, x− yn〉 ≤ 0} and ξn ∈ ∂2g(wn, yn) is chosen such that wn − λnξn − yn ∈
NC(yn).
Step 3: Pick ρn ∈ ∂2f(zn, ·)(zn) and compute the (n+ 1)-th iterate via

xn+1 = δnwn + (1− δn)zn − αnµρn,

and

λn+1 =


min

{
λn,

σ(‖wn−yn‖2+‖zn−yn‖2)
2(g(wn,zn)+g(wn,yn)−g(yn,zn))

}
,

if g(wn, zn) + g(wn, yn)− g(yn, zn) > 0,

λn, otherwise.

(3.3)

Set n = n+ 1 and go back to Step 1.

Remark 3.3. From (3.2), we note that

θn‖xn − xn−1‖2 ≤ θ̄n‖xn − xn−1‖2 ≤ εn, n ≥ 1

also,

θn‖xn − xn−1‖ ≤ θ̄n‖xn − xn−1‖ ≤ εn, n ≥ 1.

Therefore, it follows from lim
n→∞

εn
αn

= 0, that

lim
n→∞

θn
αn
‖xn − xn−1‖2 ≤ lim

n→∞

εn
αn

= 0

and

lim
n→∞

θn
αn
‖xn − xn−1‖ ≤ lim

n→∞

εn
αn

= 0.

Next, we show that the stepsize {λn} defined by (3.3) is well-defined.
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Lemma 3.4. The sequence {λn} generated by (3.3) is monotonically non-increasing and

lim
n→∞

λn = λ ≥ σ

2 max{L1, L2}
.

Proof. Clearly, {λn} is monotonically non-increasing. Also, since g satisfies condition (B4), we have

σ(‖wn − yn‖2 + ‖zn − yn‖2)

2(g(wn, zn)− g(wn, yn)− g(yn, zn))
≥ σ(‖wn − yn‖2 + ‖zn − yn‖2)

2(L1‖wn − yn‖2 + L2‖yn − zn‖2)

≥ σ

2 max{L1, L2}
.

Hence {λn} is bounded below by σ
2 max{L1,L2} . This implies that there exists

lim
n→∞

λn = λ ≥ σ

2 max{L1, L2}
.

�

Lemma 3.5. Suppose Sol(g, C) is nonempty. Let {xn}, {yn}, {zn} be a sequences generated by Algorithm 3.2.
Then, the following estimate holds for all n ≥ 0 and p ∈ Sol(g, C).:

‖zn − p‖2 ≤ ‖wn − y‖2 −
(

1− λn
λn+1

σ

)
‖wn − yn‖2 −

(
1− λn

λn+1
σ

)
‖yn − zn‖2.

Proof. First we show that C ⊆ Tn. Since yn ∈ C, it follows from Lemma 2.1 and Step 2 of Algorithm 3.2 that

0 ∈ ∂2

(
λng(wn, ·) +

1

2
‖wn − y‖2

)
(yn) +NC(yn), ∀y ∈ C.

Then, there exists ξ′n ∈ ∂2g(wn, ·)(yn) and ρ ∈ NC(yn) such that

λnξ
′
n + yn − wn + ρ = 0.

Since ρ ∈ NC(yn), then 〈ρ, y − yn〉 ≤ 0, for all y ∈ C. Therefore

〈wn − λnξ′n − yn, y − yn〉 ≤ 0, ∀y ∈ C.
This implies that C ⊆ Tn. Also since zn ∈ Tn, then from Lemma 2.1, we get

0 ∈ ∂2

(
λng(yn, y) +

1

2
‖wn − y‖2

)
(zn) +NTn(zn), ∀y ∈ H.

Thus, there exists ξ̄n ∈ ∂2g(yn, ·)(zn) and ρ̄ ∈ NTn(zn) such that

λnξ̄n + zn − wn + ρ̄ = 0.

Note that 〈ρ̄, y − zn〉 ≤ 0, for all y ∈ Tn. Hence

λn〈ξ̄n, y − zn〉 ≥ 〈wn − zn, y − zn〉 ∀y ∈ Tn.
Since ξ̄n ∈ ∂2g(yn, zn), then

g(yn, y)− g(yn, zn) ≥ 〈ξ̄n, y − zn〉∀y ∈ H.
Substituting y = p into the last two inequalities, we obtain

λn〈ξ̄n, p− zn〉 ≥ 〈wn − zn, p− zn〉. (3.4)

Also, since ξ̄n ∈ ∂2g(yn, ·)(zn), then

g(yn, y)− g(yn, zn) ≥ 〈ξ̄n, y − zn〉 ∀y ∈ H. (3.5)

Combining (3.4) and (3.5), we get

λn(g(yn, p)− g(yn, zn)) ≥ 〈wn − zn, p− zn〉.
Since g satisfies condition (B1), we get g(yn, p) ≤ 0, hence

− λng(yn, zn) ≥ 〈wn − zn, p− zn〉. (3.6)

Furthermore, since zn ∈ Tn, then

〈wn − λnξn − yn, zn − yn〉 ≤ 0.

Hence

〈wn − yn, zn − yn〉 ≤ λn〈ξn, zn − yn〉.
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Since ξn ∈ ∂2g(wn, ·)(yn), then

g(wn, y)− g(wn, yn) ≥ 〈ξn, y − yn〉, ∀y ∈ H.
Therefore

λn(g(wn, zn)− g(wn, yn)) ≥ λn〈ξn, zn − yn〉
≥ 〈wn − yn, zn − yn〉. (3.7)

Adding (3.6) and (3.7), we obtain

2λn(g(wn, zn)− g(wn, yn)− g(yn, zn)) ≥ 2〈wn − yn, zn − yn〉+ 2〈wn − zn, p− zn〉
= ‖wn − yn‖2 + ‖zn − yn‖2 − ‖wn − zn‖2

+‖wn − zn‖2 + ‖zn − p‖2 − ‖wn − p‖2.
Thus

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − yn‖2 − ‖zn − yn‖2

+2λn(g(wn, zn)− g(wn, yn)− g(yn, zn)).

Using the definition of λn+1 in (3.3), we have

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − yn‖2 − ‖zn − yn‖2

+2λn(g(wn, zn)− g(wn, yn)− g(yn, zn))

≤ ‖wn − p‖2 − ‖wn − yn‖2 − ‖zn − yn‖2

+
λn
λn+1

σ(‖wn − yn‖2 + ‖zn − yn‖2)

= ‖wn − p‖2 −
(

1− λn
λn+1

σ

)
‖wn − yn‖2

−
(

1− λn
λn+1

σ

)
‖yn − zn‖2.

This completes the proof. �

Lemma 3.6. Suppose Sol(g, C) is nonempty and let {xn} be the sequence generated by Algorithm 3.2. Then
{xn} is bounded and consequently, the sequences {yn}, {zn} are bounded.

Proof. Let p ∈ Sol(g, C). First, since λn = λ exists (from Lemma 3.4), then there exists n0 ∈ N such that

limn→∞

(
1− λn

λn+1
σ
)

= 1− σ for every n ≥ n0. Hence, from Lemma 3.5, we have

‖zn − p‖2 ≤ ‖wn − p‖2.
Also, from Algorithm 3.2, we have

‖wn − p‖ = ‖xn + θn(xn − xn−1)− p‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖.

Using (A1), (A4) and Lemma 2.2, we have

‖xn+1 − p‖ = ‖δnwn + (1− δn)zn − αnµρn − p‖
= ‖δnwn + (1− δn)zn − αnµρn − δn − (1− δn)p+ αnµv − αnµv‖
≤ ‖(1− δn)zn − αnµρn − [(1− δn)p− αnµp]‖+ δn‖wn − p‖+ αnµ‖v‖
≤ (1− δn − αnτ̄)‖zn − p‖+ δn‖wn − p‖+ αnµ‖v‖
≤ (1− δn − αnτ̄)‖wn − p‖+ δn‖wn − p‖+ αnµ‖v‖
≤ (1− αnτ̄)[‖xn − p‖+ θn‖xn − xn−1‖] + αnµ‖v‖
≤ (1− αnτ̄)‖xn − p‖+ θn‖xn − xn−1‖+ αnµ‖v‖

= (1− αnτ̄)‖xn − p‖+ αnτ̄

(
θn
αn
× ‖xn − xn−1‖

τ̄
+
µ‖v‖
τ̄

)
, (3.8)

where τ̄ = 1 −
√

1− µ(2β − µk2) ∈ (0, 1]. Now, putting M = max
{

supn≥0
θn
αn
‖xn − xn−1‖, µ‖v‖τ̄

}
. Then from

(3.8), we have

‖xn+1 − p‖ ≤ (1− αnτ̄)‖xn − p‖+ αnτ̄M.
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Hence, by induction and Lemma 2.3 (i), we obtain that {‖xn − p‖} is bounded. This implies that {xn} is
bounded. Consequently, we have {yn} and {zn} are bounded. �

Lemma 3.7. Suppose Sol(g, C) is nonempty and let {xn} be the sequence generated by Algorithm 3.2. Then
{xn} satisfies the following estimate:

sn+1 ≤ (1− an)sn + anbn,

where sn = ‖xn − p‖2, an = αnτ̄ , bn = 2〈v, p − xn+1〉 + θn
αn
· ‖xn−xn−1‖

τ̄ M∗ for some M∗ > 0 and ∀n ≥ 0,

p ∈ Sol(g, C).

Proof. Let p ∈ Sol(g, C), using (2.4) and the fact that θn + θ2
n ≤ 2θn, we have

‖wn − p‖2 = ‖xn + θn(xn − xn−1)− p‖2

= ‖xn − p‖2 + 2θn〈xn − p, xn − xn−1〉+ θ2
n‖xn − xn−1‖2

= ‖xn − p‖2 + θn(‖xn − p‖2 + ‖xn − xn−1‖2 − ‖xn−1 − p‖2) + θ2
n‖xn − xn−1‖2

≤ ‖xn − p‖2 + θn(‖xn − p‖2 − ‖xn−1 − p‖2) + 2θn‖xn − xn−1‖2

= ‖xn − p‖2 + θn(‖xn − p‖+ ‖xn−1 − p‖)‖xn − xn−1‖+ 2θn‖xn − xn−1‖2

= ‖xn − p‖2 + θn‖xn − xn−1‖M∗, (3.9)

where M∗ = supn≥0

(
‖xn − p‖+ ‖xn−1 − p‖+ 2‖xn − xn−1‖

)
. Hence, from (2.3) and Lemma 2.2, we get

‖xn+1 − p‖2 = ‖δnwn + (1− δn)zn − αnτ̄ ρn − p‖2

= ‖(1− δn)zn − αnτ̄ ρn − [(1− δn)p− αnτ̄ v] + δn(wn − p)− αnτ̄ v‖2

≤ ‖(1− δn)zn − αnτ̄ ρn − [(1− δn)p− αnτ̄ v] + δn(wn − p)‖2 + 2αnτ̄〈v, p− xn+1〉
≤ ‖(1− δn)zn − αnτ̄ ρn − [(1− δn)p− αnτ̄ v]‖2 + ‖δn(wn − p)‖2

+2δn‖(1− δn)zn − αnτ̄ ρn − [(1− δn)p− αnτ̄ v]‖‖wn − p‖+ 2αnτ̄〈v, p− xn+1〉
≤ (1− δn − αnτ̄)2‖zn − p‖2 + δ2

n‖wn − p‖2

+2(1− δn − αnτ̄)δn‖zn − p‖‖wn − p‖+ 2αnτ̄〈v, p− xn+1〉
≤ (1− δn − αnτ̄)2‖zn − p‖2 + δ2

n‖wn − p‖2

+(1− δn − αnτ̄)δn(‖zn − p‖2 + ‖wn − p‖2) + 2αnτ̄〈v, p− xn+1〉
= (1− δn − αnτ̄)(1− αnτ̄)‖zn − p‖2 + δn(1− αnτ̄)‖wn − p‖2 + 2αnτ̄〈v, p− xn+1〉
≤ (1− αnτ̄)2‖wn − p‖2 + 2αnτ̄〈v, p− xn+1〉
≤ (1− αnτ̄)[‖xn − p‖2 + θn‖xn − xn−1‖M∗] + 2αnτ̄〈v, p− xn+1〉
= (1− αnτ̄)‖xn − p‖2 + (1− αnτ̄)θn‖xn − xn−1‖M∗ + 2αnτ̄〈v, p− xn+1〉

≤ (1− αnτ̄)‖xn − p‖2 + αnτ̄

(
2〈v, p− xn+1〉+

θn
αn
× ‖xn − xn−1‖

τ̄
M∗
)
.

This completes the proof.

�

We now present our main convergence theorem.

Theorem 3.8. Suppose Sol(g, C) is nonempty. Then the sequence {xn} generated by Algorithm 3.2 converges
strongly to a solution of the BEP (1.3).

Proof. Let p ∈ Sol(g, C), then f(p, y) ≥ 0 for all y ∈ Sol(g, C). This implies that p is a minimum of the convex
function f(p, y) over Sol(g, C). Hence, by Lemma 2.2, we obtain

0 ∈ ∂2f(p, ·)(p) +NSol(g,C)(p).

Hence, there exists v ∈ ∂2f(p, ·)(p) such that

〈v, z − p〉 ≥ 0 ∀z ∈ Sol(g, C). (3.10)

Now, let sn = ‖xn − p‖2. We consider the following possible cases.
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Case I: Assume that there exists n0 ∈ N such that {sn} is monotonically decreasing for all n ≥ n0. Since {sn}
is bounded, then limn→∞ sn exists which implies that sn− sn+1 → 0 as n→∞. Now from Lemma 3.5, we have

‖xn+1 − p‖2 = ‖δnwn + (1− δn)zn − αnτ̄ ρn − p‖2

≤ (1− δn − αnτ̄)(1− αnτ̄)‖zn − p‖2 + δn(1− αnτ̄)‖wn − p‖2 + 2αnτ̄〈v, p− xn+1〉

≤ (1− δn − αnτ̄)(1− αnτ̄)

[
‖wn − p‖2 −

(
1− λn

λn+1
σ

)
(‖wn − yn‖2 + ‖yn − zn‖2)

]
+δn(1− αnτ̄)‖wn − p‖2 + 2αnτ̄〈v, p− xn+1〉

≤ (1− αnτ̄)‖wn − p‖2

−(1− δn − αnτ̄)(1− αnτ̄)

(
1− λn

λn+1
σ

)
(‖wn − yn‖2 + ‖yn − zn‖2)

+2αnτ̄〈v, p− xn+1〉
≤ (1− αnτ̄)‖xn − p‖2 + θn‖xn − xn−1‖M∗

−(1− δn − αnτ − Γn)

(
1− λn

λn+1
σ

)
(‖wn − yn‖2 + ‖yn − zn‖2)

+2αnτ̄〈v, p− xn+1〉,
where Γn = αnτ̄(1− δn − αnτ̄). This implies that

(1− δn − αnτ − Γn)

(
1− λn

λn+1
σ

)
(‖wn − yn‖2 + ‖yn − zn‖2)

≤ sn − sn+1 − αnτ̄ sn + αn
θn
αn
‖xn − xn−1‖M∗ + 2αnτ̄〈v, p− xn+1〉.

Note that Γn → 0 (since αn → 0) as n→∞ and limn→∞

(
1− λn

λn+1
σ
)

= 1− σ. Also, since limn→∞ δn = δ < 1

and σ ∈ (0, 1), then passing limit as n→∞ to the last inequality above, we obtain

lim
n→∞

(‖wn − yn‖2 + ‖yn − zn‖2) = 0.

This implies that

lim
n→∞

‖wn − yn‖ = lim
n→∞

‖yn − zn‖ = 0. (3.11)

Hence
lim
n→∞

‖wn − zn‖ = 0. (3.12)

Moreover

‖wn − xn‖ = ‖xn + θn(xn − xn−1)− xn‖
= θn‖xn − xn−1‖.

Thus,

lim
n→∞

‖wn − xn‖ = lim
n→∞

αn
θn
αn
‖xn − xn−1‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̂. Since ‖wn − xn‖ → 0,
then wnk ⇀ x̂, hence from (3.11), we have ynk ⇀ x̂ and znk ⇀ x̂. We now show that x̂ ∈ Sol(g, C). From the
definition of {yn} and Lemma 2.2, we have

0 ∈ ∂2

(
λng(wn, y) +

1

2
‖wn − y‖2

)
(yn) +NC(yn).

Then, there exists ρ̄ ∈ NC(yn) and ξn ∈ ∂2g(wn, ·)(yn) such that

λnξn + yn − wn + ρ̄ = 0. (3.13)

Moreover, ρ̄ ∈ NC(yn) implies that 〈ρ̄, y − yn〉 ≤ 0, for all y ∈ C. Then, it follows from (3.13) that

λn〈ρ, y − yn〉 ≥ 〈wn − yn, y − yn〉, ∀y ∈ C.
Also, since ξn ∈ ∂2g(wn, ·)(yn), then

g(wn, y)− g(wn, yn) ≥ 〈ρ̄, y − yn〉, ∀y ∈ H.
Therefore

λn

(
g(wn, y)− g(wn, yn)

)
≥ 〈wn − yn, y − yn〉, ∀y ∈ C.



INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD 10

This means that

λnk

(
g(wnk , y)− g(wnk , ynk)

)
≥ 〈wnk − ynk , y − ynk〉, ∀y ∈ C.

Passing limit to the above inequality, using condition (B2) and (B3), and since ‖wnk − ynk‖ → 0, we have

g(x̂, y) ≥ 0, ∀y ∈ C.

Hence x̂ ∈ Sol(g, C). Next, we show that lim supn→∞〈v, p−xnk+1〉 ≤ 0. Take a subsequence {xnk} of {xn} such
that

lim sup
n→∞

〈v, p− xn+1〉 = lim
k→∞

〈v, p− xnk〉.

Then, from (3.10), we have

lim sup
n→∞

〈v, p− xn+1〉 = lim
k→∞

〈v, p− xnk〉 = 〈v, p− x̂〉 ≤ 0. (3.14)

From Lemma 3.7, we have bn = 2〈v, p−xn+1〉+ θn
αn
· ‖xn−xn−1‖

τ̄ M∗. Since θn
αn
‖xn−xn−1‖ → 0 as n→∞, then we

have from (3.14) that lim supn→∞ bn ≤ 0. Using Lemma 2.3 (ii) and Lemma 3.7, we have that limn→∞ ‖xn−p‖ =
0. This implies that {xn} converges strongly to p as n→∞.

Case II: Assume that {sn} is not monotonically decreasing. That is, there exists a subsequence {xnk} of {xn}
such that snk ≤ snk+1 for all k ∈ N. By Lemma 2.4, there exists a non-decreasing sequence {τ(n)} of N such
that τ(n) → ∞, sτ(n) ≤ sτ(n)+1 and sn ≤ sτ(n) for sufficiently large n ∈ N. More so, since {sτ(n)} is bounded,
following similar argument as in Case I, we obtain

lim
n→∞

‖wτ(n) − yτ(n)‖ = lim
n→∞

‖yτ(n) − zτ(n)‖ = lim
n→∞

‖wτ(n) − xτ(n)‖ = 0.

Also

lim sup
n→∞

〈v, p− xτ(n)+1〉 ≤ 0.

Hence, from Lemma 3.7, we get

0 ≤ sτ(n)+1 − sτ(n)

≤ (1− aτ(n))sτ(n) + aτ(n)bτ(n) − sτ(n),

where aτ(n) = ατ(n)τ̄ , bτ(n) = 2〈v, p− xτ(n)+1〉+
θτ(n)

ατ(n)
· ‖xτ(n)−xτ(n)−1‖

τ̄ M∗ for some M∗ > 0 and ∀n ≥ n0. Thus,

we have

sτ(n) ≤ bτ(n).

This implies that

lim sup
n→∞

‖xτ(n) − p‖ = 0.

As a consequence, we obtain that for all n ≥ n0,

0 ≤ ‖xn − p‖2 ≤ ‖xτ(n)+1 − p‖2.

Therefore limn→∞ ‖xn − p‖ = 0. This implies that {xn} converges strongly to p. This completes the proof. �

4. Numerical experiments

In this section, we present to numerical experiments to illustrate the performance of the proposed algorithm.
We compare the convergence behaviour of Algorithm 3.2 with Algorithm 1.2 (namely, EGM) and Algorithm 1.3
(namely, EGML).

Example 4.1. This example is an equilibrium problem that comes from Nash-Cournot oligopolistic electricity
market equilibrium model which has been considered as real-world problem by many authors (see, for example,
[55, 57]).
Suppose there are nc (here we take nc = 3) generating companies, each company i (i = 1, 2, 3) (Com.) has
several Ii generating units (Gen.) (here, we take I1 = {1}, I2 = {2, 3} and I3 = {4, 5, 6}). We take ng (here,
ng = 6) to be the number of all generating units and x the vector whose entry xj (j = 1, . . . , 6) stands for the
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Table 1. The lower and upper bounds of the power generation of the generating units, com-
panies and other parameters.

Com. Gen. xgmin xgmax xcmin xcmax α0
j β0

j γ0
j α1

j β1
j γ1

j

1 1 0 80 0 80 0.0400 2.00 0 2.00 1.00 25.0000
2 2 0 80 0 130 0.0350 1.75 0 1.75 1.00 28.5714
2 3 0 50 0 130 0.1250 1.00 0 1.00 1.00 8.0000
3 4 0 55 0 125 0.0116 3.25 0 3.25 1.00 86.2069
3 5 0 30 0 125 0.0500 3.00 0 3.00 1.00 20.0000
3 6 0 40 0 125 0.0500 3.00 0 3.00 1.00 20.0000

power generation of unit j, as shown in Table 1. Using the same ideas in [55, 57], we assume that the price p is

a decreasing affine function of σ, where σ =
∑ng

j=1 xj . Hence,

p(x) = 378.4− 2

ng∑
j=1

xj = p(σ).

The cost of generating unit j is given as

cj(xj) := max{c0j (xj), c1j (xj)}, j = 1, 2, . . . , ng,

where c0j (xj) :=
α0
j

2
x2
j + β0

jxj + γ0
j and c1j (xj) := α1

jxj +
β1
j

β1
j + 1

γ

−1

β1
j

j (xj)

β1j+1

β1
j ,

αkj , β
k
j , γ

k
j (k = 0, 1; j = 1, . . . , ng) are parameters given in Table 4.1.

The profit gained by company i that owns Ii generating units is

fi(x) = p(σ)
∑
j∈Ii

xj −
∑
j∈Ii

cj(xj), (4.1)

subject to the constraints (xgmin)j ≤ xj ≤ (xgmax)j (j = 1, . . . , ng), where (xgmin)j and (xgmax)j are the lower and
upper bounds for the power generation of unit j.
Furthermore, the strategy set of the model is given by

C := {x = (x1, · · · , xng )T : (xgmin)j ≤ xj ≤ (xgmax)j , j = 1, . . . , ng}.

Now, suppose qi := (qi1, · · · , qing )T with

qij =

{
1, if j ∈ Ii
0, if j 6∈ Ii,

and q̄i := (q̄i1, · · · , q̄ing )T with q̄ij := 1− qij , (j = 1, 2, . . . , ng); then, define

A := 2

nc∑
i=1

q̄i(qi)T , B := 2

nc∑
i=1

qi(qi)T ,

a := −387.4

nc∑
i=1

qi, and c(x) :=

ng∑
j=1

cj(xj).

Thus, we have that the oligopolistic equilibrium model under consideration can be written as (see [55, Page 155]
for details)

Find x∗ ∈ C : g(x∗, y) = [(A+B)x∗ +By + a]T (y − x∗) + c(y)− c(x∗) ≥ 0, ∀y ∈ C.

Note that g satisfies (A1)-(A4) with L1 = L2 = 1
2‖A − B‖. In addition, we assume that the equilibrium point

x∗ satisfies an environmental condition 0 ≤ A(x∗) ≤ b, where aij of matrix A ∈ Rng×nc is the environmental
pollution caused by company i using j generating unit with constraint set

S = {u ∈ Rnc : ucmin ≤ ui ≤ ucmax},

where ucmin and ucmax are listed in Table 2. Consequently, the total environmental pollution caused by company
i is

∑nc
i=1 aijxi. However, since it is possible for a solution of the EP say x† not to satisfy the environment
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Table 2. The lower and upper bounds of the pollution constraint.

1 2 3
ucmin 0 0 0
ucmax 25 15 20

Table 3. Computational result for Example 4.1.

Algorithm 3.2 Algorithm 1.2 Algorithm 1.3
Case I Iter. 30 67 49

Time (s) 0.4841 1.0354 0.5851
Case II Iter. 30 66 58

Time (s) 0.5831 1.8095 0.6896
Case III Iter. 28 140 58

Time (s) 0.6399 3.1590 1.6427
Case IV Iter. 28 68 45

Time (s) 0.4654 1.9537 1.1402

constraint 0 ≤ A(x∗) ≤ b, our interest is then to find an equilibrium point x∗ satisfying the constraint which is
nearest to x†. In this case, we can defined an operator B : R6 → R6 such that B(x) = x− x† and seek

f(x∗, y) = 〈B(x∗), y − x∗〉 ≥ 0, ∀y ∈ C := {x ∈ Rng : (xgmin)j ≤ xj ≤ (xgmax)j , j = 1, . . . , ng}.
It is easy to see that f is 1-strongly monotone and 1-Lipschitz continuous (see, e.g. [55]), More so, f(x, x) = 0
for all x ∈ C and Assumptions (A2)-(A4) are satisfied. We compare the performance of Algorithm 3.2 with
Algorithm 1.2 and 1.3 choosing the following parameters: For Algorithm 3.2, we take αn = 1

n+1 , δn = n
2n+3 ,

εn = 1
(n+1)2 , α = 3, σ = 0.26, µ = 1; For Algorithm 1.2, we take 1

n+1 , ηn = n
2n+3 , λn = 1

6c1
; and for Algorithm

1.3, we take µ = 1, ρ = 1.14, γ = 0.25, αn = 1
n+1 , λ = 1

66 , ξn = 1
80 . We use different initial points which

are generated randomly in R6 for each algorithm and Dn = ‖xn+1 − xn‖ < 10−4 as stopping criterion in the
numerical computation. We perform the experiment for four different cases and compare the number of iteration
and the time taken by each algorithm in each case. Table 3 shows that our Algorithm ISEMS performs better
than Algorithm 1.2 and 1.3. Figure 1 show the graph of Dn against number of iterations for each algorithm.
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Figure 1. Example 4.1, Case I – Case IV.
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Table 4. Computational result for Example 4.2.

Algorithm 3.2 Algorithm 1.2 Algorithm 1.3
m = 5 Iter. 8 108 46

Time (s) 0.0357 3.1297 1.2685
m = 10 Iter. 8 158 46

Time (s) 0.0677 4.4182 1.2022
m = 30 Iter. 9 204 46

Time (s) 0.2691 4.4182 1.3518
m = 50 Iter. 10 231 46

Time (s) 0.3357 12.0182 1.3547

Example 4.2. Let H = Rn and C = {x ∈ Rn : −5 ≤ xi ≤ 5, ∀i = 1, 2, . . . , n}. We define the bifunction
g : Rn × Rn × Rn → R be defined by

g(x, y) = 〈Px+Qy, y − x〉∀x, y ∈ Rn,
where P and Q are randomly symmetric positive semidefinite matrices such that P −Q is positive definite. It
is easy to see that g is pseudomonotone and Lipschitz-type continuous with L1 = L2 = 1

2‖P − Q‖. More so, g
satisfies condition (B1)-(B4). Furthermore, let f : Rn × Rn → R be defined by

f(x, y) = 〈Sx+ Ty, y − x〉 ∀x, y ∈ Rn,
where S and T are positive definite matrices defined by

S = NTN + nIn and T = S +MTM + nIn,

M,N are n × n matrices and In is the identity matrix. It is clear that f satisfies condition (A1) - (A4);
see, e.g. [59]. We choose the following parameters and compare the performance of our Algorithm 3.2 with
Algorithms 1.2 and 1.3 respectively. For Algorithm 3.2, we take αn = 1√

n+1
, δn = 5n

15n+2 , εn = 1
(3n+1) , α = 3,

σ = 0.26, µ = 1; For Algorithm 1.2, we take αn = 1√
n+1

, ηn = 5n
15n+2 , λn = 1

2c1
; and for Algorithm 1.3, we

take µ = 1, ρ = 0.099, γ = 0.35, αn = 1√
n+1

, λ = 1
8 , ξn = 1

4 . The initial points are generated randomly using

x0 = rand(n,1), x1 = rand(n,1), where n = 5, 10, 30, 50. We use Dn = ‖xn+1 − xn‖ < 10−6 as stopping
criterion in the computations. The numerical results are shown in Table 4 and Figure 2.
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Figure 2. Example 4.2, m = 5, 10, 30, 50.
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Table 5. Computational result for Example 4.3.

Algorithm 3.2 Algorithm 1.2 Algorithm 1.3
Case I Iter. 8 18 14

Time (s) 1.6932 10.2086 4.0792
Case II Iter. 3 20 15

Time (s) 6.0210 19.8968 9.8621
Case III Iter. 4 20 14

Time (s) 1.0219 12.0933 5.1435
Case IV Iter. 4 22 14

Time (s) 2.0316 20.3860 5.0876

Example 4.3. Here, we consider an infinite-dimensional Hilbert space. Let H = L2([0, 1]) with norm ‖x‖ =(∫ 1

0
|x(t)|2dt

) 1
2

and inner product 〈x, y〉 =
∫ 1

0
x(t)y(t)dt for all x, y ∈ L2([0, 1]). Assume that C = {x ∈

L2([0, 1]) :
∫ 1

0
t
2x(t)dt = 1}. Then the projection onto C is given by

PCx(t) = x(t)−
∫ 1

0
t
2x(t)dt− 1∫ 1

0
t2

2 dt
, x ∈ L2([0, 1]), t ∈ [0, 1].

Consider the bifunction g : L2([0, 1])× L2([0, 1])→ R defined by

g(x, y) = 〈T (x), y − x〉, ∀x, y ∈ L2([0, 1])

and T (x) =
∫ 1

0
x(t)

2 dt for all x ∈ L2([0, 1]). It is easy to see that g is monotone (hence, pseudomonotone) and

satisfies Lipschitz-type continuous with L1 = L2 = 1
π . Also, define a mapping B : L2([0, 1]) → L2([0, 1]) → R

by f(x, y) ∈ 〈Bx, y − x〉, where B : L2([0, 1]) → L2([0, 1]) is given by Bx(t) = x(t) − x0. Then B is 1-strongly
monotone and 1-Lipschitz continuous. We chose the following parameters and compare the performance of our
Algorithm 3.2 with Algorithm 1.2 and 1.3. For Algorithm 3.2, we take αn = 1√

n+1
, δn = 3n

5n+7 , εn = 1
(n+1) ,

α = 3, σ = 0.38, µ = 1; For Algorithm 1.2, we take αn = 1√
n+1

, ηn = 3n
5n+7 , λn = 1

9c1
; and for Algorithm 1.3, we

take µ = 1, ρ = 0.99, γ = 0.45, αn = 1√
n+1

, λ = 1
99 , ξn = 1

8 . We test the algorithms using the following initial

points and Dn = ‖xn+1 − xn‖ < 10−4 as stopping criterion:

Case I: x0 = t2 − 1, x1 = 1
3 exp(3t);

Case II: x0 = t exp(−2t), x1 = t3 + 2t− 1;
Case III: x0 = 1

2 t
2, x1 = cos(2t);

Case IV: x0 = 1
7 (t3 − 1), x1 = exp(2t).

The numerical results are shown in Table 5 and Figure 3.

5. Conclusion

In this paper, we introduced a subgradient extragradient method with self-adaptive technique for solving bilevel
equilibrium problem in real Hilbert spaces. The algorithm is designed such that its convergence does not require
the prior estimate of the Lipschitz-like constant of the upper level bifunction. More so, the first strongly convex
optimization problem is solved over the feasible set while a second strongly convex optimization problem is
solved over a constructible half-space which can easily be calculated explicitly. Furthermore, we proved a strong
convergence result under some mild conditions and provided some numerical experiments to show the accuracy
and efficiency of the proposed method. This improves some existing results on solving bilevel pseudomonotone
equilibrium problems in the literature.

Availability of data and materials: Not applicable.

Competing interest: The authors declare that there is not competing interest on the paper.
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