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Abstract
The paper studies the interplay between modalities represent-
ing four different types of multistep strategies in the imperfect
information setting. It introduces a new “truth set algebra”
technique for proving undefinability, which is significantly
different from the existing techniques based on bisimulation.
The newly proposed technique is used to prove the undefin-
ability of each of the four modalities through a combination
of the three others.

Introduction
In this paper, we study multistep strategies in single-agent
transition systems with imperfect information. An example
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Figure 1: A transition system.

of such a system is depicted in Figure 1. This system has
seven states: a, b, c, d, u, v, and w. In each state, the agent
has two possible commands: “go” and “stop”. In the figure,
the result of the command “go” in each state is shown us-
ing an arrow. For example, the command “go” in state b re-
sults in a transition of the system into state c. The command
“stop” always terminates the execution of the strategy. We
assume that atomic proposition p is true only in state v.

Multistep strategies may either maintain or achieve a con-
dition. Strategies to achieve a condition, in turn, can be di-
vided into those that stop once the condition is achieved and
those that “achieve in passing” – they might continue the
execution after the condition is achieved. An example of the
latter for the transition system depicted in Figure 1 is the
strategy “execute command ‘go’ 100 times”, which can be
used to “achieve in passing” condition p from each of the
states in our system except for state a. In the rest of this pa-
per, we only consider strategies to achieve a condition, and
we require that the strategy stop once the desired condition
is achieved.

There are several classes of strategies that we consider in
this paper. The first is the class of linear strategies. Those

are strategies that can be represented by a sequence of com-
mands terminating with “stop”. For example, linear strategy
“go, go, go, go, stop” could be used in state b to achieve con-
dition p. Indeed, execution of this sequence of commands
starting from state b eventually transitions the system to state
v, where atomic proposition p is true. At the same time, no
linear strategy to achieve condition p exists in state a.

Let us now assume that the agent cannot distinguish the
states of the same colour. For readers with mono-colour
printers, we represent different-coloured states by different
shapes. Because the agent cannot distinguish states a and b,
in state b the agent has a strategy to achieve p, but does not
know this.

Note that the agent also cannot distinguish states c and u.
The agent has strategies to achieve p in both of these states,
but these strategies are different. In state c, the strategy is
“go, go, . . . , go︸ ︷︷ ︸

3k+3

, stop” for any integer k ≥ 0. At the same

time, in state u, the strategy is “go, go, . . . , go︸ ︷︷ ︸
3k+1

, stop” for any

integer k ≥ 0. Because no integer can be congruent modulo
3 to number 3 and number 1 at the same time there is no
uniform linear strategy that succeeds in states c and u.

Thus, in state c the agent has a strategy, she knows that
she has a strategy, but she does not know what the strategy
is.

Finally, note that the agent can distinguish state d from
every state except state w. In either of the states d and w,
she can use the strategy “go, go, stop” to achieve condition
p. Thus, in state d the agent knows how she can achieve p.
We write this as: d  Lp. In general, we write s  Lϕ if in
state s the agent knows a linear strategy to achieve ϕ.

A sound and complete logical system for a modality that
captures knowledge of a linear strategy to achieve a condi-
tion ϕ has been first proposed by Wang (2018). Although
the syntax and semantics of his modality are somewhat dif-
ferent from those of our modality L, the definition of linear
strategies that he considers is essentially the same as ours.

Observe that the agent needs to know the colour of the ini-
tial state in order to decide which linear strategy to use, but
she does not need to know the colour of the states the system
is passing through in order to execute a linear strategy. Lin-
ear strategies can be executed by a programmable device not
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equipped with any sensors. For this reason, we will say that
these strategies are sensorless. At the same time, the agent
executing a linear strategy must have a memory to remember
which command should be executed next.

Another important class of strategies that we consider is
reactive strategies. In essence, they are the opposite of the
linear strategies because they do not rely on the memory, but
are sensor-informed in the sense that they select an action
based on the current observations. We illustrate this class of
strategies using the transition system depicted in Figure 2.
Because a reactive strategy cannot expect the agent to have
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Figure 2: A transition system.

memory, such a strategy must choose the same action each
time the system is in a state of any given colour. In our ex-
ample, a memoryless strategy must use the same action in
red (diamond) states u and w. Note that to achieve condition
p from state a, the system must pass through indistinguish-
able states u and w and in these two states, the agent must
execute the commands “go” and “stop”, respectively. There-
fore, there is no reactive strategy to achieve condition p from
state a.

At the same time, there is a reactive strategy to achieve
condition p from state b. The strategy consists of executing
the command “go” in each non-red state and the command
“stop” in each red state. Because the agent cannot distin-
guish purple (circle) states a and b, in state b the agent has a
reactive strategy, but she does not know that she does.

Next, note that the agent has a reactive strategy to achieve
condition p from state a. The strategy again consists of ex-
ecuting the command “go” in each non-red (non-diamond)
state and the command “stop” in each red state. The agent
also has a reactive strategy to achieve condition p from
state t. The strategy consists of executing the command
“stop” in each state. Because the agent can distinguish state
c from all states except for state t, in states c and t the agent
knows that she has a reactive strategy to achieve condition
p. At the same time, because there is no uniform reactive
strategy that works in both of these states, in either of these
states, she does not know what the strategy is. Finally, note
that there is a uniform reactive strategy to achieve condi-
tion p from the yellow (triangle) states d and v. Namely,
“go” in each non-red (non-diamond) state and the command
“stop” in each red state. Thus, in state d (and state v) the
agent knows a reactive strategy to achieve p. We write this
as d  Rp. In general, we write s  Rϕ if in state s the
agent knows a reactive strategy to achieve ϕ. A modal logic
for modality R has been proposed by Fervari et al. (2017).

So far, we have discussed sensorless strategies with per-
fect recall and sensor-informed memoryless strategies. We
call such strategies linear and reactive, respectively. The

Sensorless Sensor-informed

Memoryless Knowledge (K) Reactive (R)
Perfect Recall Linear (L) Unrestricted (U)

Figure 3: Four different strategic modalities.

knowledge of a linear strategy is denoted by modality L and
the knowledge of a reactive strategy is denoted by modal-
ity R. In this paper, we also consider sensorless memoryless
strategies and sensor-informed perfect recall strategies, see
Figure 3. One of our contributions is a general framework
that formally defines all four of these classes of strategies in
a uniform way.

An example of a sensorless memoryless strategy is one
that immediately stops. In our formal framework the knowl-
edge of a sensorless memoryless strategy to achieve ϕ is
equivalent to the knowledge of ϕ being true in the current
state. We prove this result later as Lemma 2.

Finally, let us consider the class of sensor-informed per-
fect recall strategies. This is the widest class of strategies
that we consider: among others, it includes the linear, reac-
tive, and sensorless memoryless strategies. For this reason
we refer to sensor-informed perfect recall strategies as just
unrestricted strategies. We denote the knowledge of an unre-
stricted strategy to achieve condition ϕ by Uϕ, see Figure 3.
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Figure 4: A transition system.

As an example, consider the transition system depicted in
Figure 4. Clearly, there is no unrestricted strategy to achieve
condition p from state a. There is an unrestricted strategy to
achieve condition p from state b (“stop at the second red state
that you encounter”). Thus, because states a and b have the
same colours, in state b the agent has an unrestricted strat-
egy to achieve p, but she does not know this. In indistin-
guishable states c and v the agent has an unrestricted strat-
egy to achieve condition p (strategy “go,stop” in state c and
strategy “stop” in state c), but she does not have a uniform
unrestricted strategy to do it. Thus, in state c (and state v)
she knows that she has an unrestricted strategy but she does
not know what the strategy is. Finally, in indistinguishable
states d and u, the agent has the same unrestricted strategy to
achieve p (“stop at the second red state that you encounter”).
Thus, in state d she knows an unrestricted strategy to achieve
p. We denote this by d  Up.

Transition Systems
In our introductory examples, the agent had only two com-
mands: “go” and “stop”. In general, the transition systems
that we consider are endowed with an arbitrary (possibly
empty) set of “actions”A and a distinct command stop /∈ A.



Definition 1 A sextuple (W,∼, A, s, δ, π) is called a transi-
tion system if

1. W is a (possibly empty) set of states,
2. ∼ is an indistinguishability equivalence relation on W ,
3. A is a set of “actions”,
4. stop /∈ A is a “stop command”,
5. δ : W ×A→W is a “transition function”,
6. π(p) ⊆W for each propositional variable p.

Definition 2 A history is a sequence w0, a0, w1, . . . ,
an−1, wn such that δ(wi−1, ai−1) = wi for each i ≤ n.

An example of a history for the transition system de-
picted in Figure 4 is b, go, u, go, c. For any history h =
w0, a0, w1, . . . , an−1, wn, by end(h) we mean state wn.

Definition 3 A strategy is a function that maps histories into
A ∪ {stop}.

As usual, we capture knowledge as an equivalence rela-
tion E on the states. In this paper, we consider two possible
equivalence relations E: the indistinguishability relation ∼
from Definition 1 and the total relationW×W . We use these
relations to define sensor-informed and sensorless strategies,
respectively.

Definition 4 For any equivalence relation E on the set W ,
the class StE of memorylessE-informed strategies is the set
of all strategies s such that for any histories h and h′, if

h = w0, a0, w1, . . . , an−1, wn,

h′ = w′0, a
′
0, w

′
1, . . . , a

′
m−1, w

′
m,

and wnEw
′
m, then s(h) = s(h′).

Definition 5 For any equivalence relation E on the set W ,
the class St∗E of perfect recall E-informed strategies is the
set of all strategies s such that for any histories h and h′, if

h = w0, a0, w1, . . . , an−1, wn,

h′ = w′0, a0, w
′
1, . . . , an−1, w

′
n,

w1Ew
′
1, . . . ,wn−1Ew

′
n−1, andwnEw

′
n, then s(h) = s(h′).

Definition 6 For any state w0 and any strategy s, the set
Play(w0, s) includes all histories w0, a0, w1, . . . , an−1, wn

such that

1. s(w0, a0, w1, . . . , ai−1, wi) = ai for each i ≤ n− 1,
2. s(w0, a0, w1, . . . , an−1, wn) = stop.

Definition 7 LetA s→ B if for each a ∈ A there is a history
h ∈ Play(a, s) such that end(h) ∈ B.

Lemma 1 For each state a ∈ A, each strategy s, and each
history h ∈ Play(a, s), if A s→ B, then end(h) ∈ B.

Informally, A s→ B means that s is a strategy that navi-
gates from each state in set A to a state in set B.

Syntax and Semantics
The language Φ that we consider in this paper is defined by
the following grammar, where p is a propositional variable,

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Lϕ | Mϕ | Sϕ.
In the definition below, by [w] we denote the equivalence

class of a state w ∈ W with respect to relation ∼. Note that
{w} s→ B means that strategy s achieves one of the states in
set B from state w. At the same time, [w]

s→ B means that
strategy s achieves one of the states in set B from each state
indistinguishable from w. In other words, [w]

s→ B means
that in state w the agent knows that strategy s achieves one
of the states in set B from the current state.

Definition 8 For any transition system (W,∼, A, s, δ, π)
and any formula ϕ, the truth set JϕK ⊆ W is defined re-
cursively as follows:

1. JpK = π(p),
2. J¬ϕK = W \ JϕK,
3. Jϕ ∧ ψK = JϕK ∩ JψK,
4. JKϕK = {w | ∃s ∈ StW×W ([w]

s→ JϕK)},
5. JLϕK = {w | ∃s ∈ St∗W×W ([w]

s→ JϕK)},
6. JMϕK = {w | ∃s ∈ St∼([w]

s→ JϕK)},
7. JSϕK = {w | ∃s ∈ St∗∼([w]

s→ JϕK)}.
Perhaps the most unexpected result in this paper is the ob-
servation that modality K is exactly the standard in epistemic
logic knowledge modality associated with indistinguishibil-
ity relation ∼. We show this in the lemma below.

Lemma 2 JKϕK = {w ∈W | [w] ⊆ JϕK}.
PROOF. (⊆). Consider any state w ∈ JKϕK. Towards the
proof of statement [w] ⊆ JϕK, consider any world w′ ∈ W
such that w ∼ w′. It suffices to show that w′ ∈ JϕK.

By item 4 of Definition 8, the assumption w ∈ JKϕK im-
plies that there exists a memoryless strategy

s ∈ StW×W (1)

such that
[w]

s→ JϕK. (2)

Recall thatw ∼ w′. Hence, by Definition 7, there is a history

h = w′, a0, w1, . . . , an−1, wn ∈ Play(w′, s) (3)

such that end(h) ∈ JϕK.
Note that (w′, end(h)) ∈ W × W . Thus, by Defini-

tion 4, statement (1) implies that s(h′) = s(h), where h′
is a single-state history consisting of state w′. Note that
s(h) = stop by item 2 of Definition 6 and statement (3).
Hence, s(h′) = stop. Then, h′ ∈ Play(w′, s) by Defi-
nition 6 and because h′ is a single-state history consisting
of state w′. Thus, by Lemma 1, statement (2) implies that
end(h′) ∈ JϕK. Therefore, w′ ∈ JϕK again because h′ is a
single-state history consisting of state w′.
(⊇) Consider any world w such that

[w] ⊆ JϕK (4)



It suffices to show that w ∈ JKϕK. Let s be a strategy that
maps each history into command stop. Note that

s ∈ StW×W (5)

by Definition 4.

Claim 1 [w]
s→ JϕK.

Proof of Claim. Consider any state w′ ∈ [w]. Let h be the
history consisting of a single state w′. By Definition 7, it
suffices to show that h ∈ Play(w′, s) and w′ ∈ JϕK. The
former is true by Definition 6 because strategy s maps each
history into command stop. The latter is true by the assump-
tion w′ ∈ [w] and statement (4). �

By item 4 of Definition 8, Claim 1 and statement (5) imply
that w ∈ JKϕK. �

Undefinability Results
To understand any set of notions, it is important to see how
they relate to each other. One way to do this is to give a
complete axiomatisation of the properties describing the in-
terplay between the notions. The other way is to study if and
how these notions can be defined through each other. In this
section, we show that none of the modalities K, L, M, and
S can be defined through a combination of the others. In the
next section, we discuss some of the properties that connect
these modalities.

Undefinability of L via K, M and S

In this subsection, we show that modality L cannot be de-
fined through modalities K, M and S. The standard way
to prove undefinability is to use bisimulation (Fervari,
Velázquez-Quesada, and Wang 2021). In this paper, we in-
troduce a new method which is significantly simpler. We call
it the “truth set algebra” technique. We use it to prove all four
undefinability results in this paper.

For our first undefinability result, consider the transition
system depicted in Figure 5. Without loss of generality, we
assume that the set of propositional variables consists of a
single variable p. By Φ−L we denote the set of all formulae
in language Φ that do not use modality L. Our technique
consists of proving that JLpK /∈ {JϕK | ϕ ∈ Φ−L}. This
implies that formula Lp is not semantically equivalent to any
expression in the language Φ−L.
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Figure 5: A transition system.

To show JLpK /∈ {JϕK | ϕ ∈ Φ−L}, it suffices to establish
that JLpK = {c} and that {JϕK | ϕ ∈ Φ−L} ⊆ A, where

A = {∅, {a, b, c}, {a, b, c, d}, {a, b, c, e},
{a, b, c, d, e}, {d}, {d, e}, {e}}.

Lemma 3 JLpK = {c}.

PROOF. First, note that linear strategies that achieve p from
state a make 4 + 2k “go”s followed by “stop”, where k ≥ 0.
For state b, the number of “go”s is 3 + 2k. Because sets
{4 + 2k | k ≥ 0} and {3 + 2k | k ≥ 0} are disjoint, there
is no uniform strategy that achieves p from indistinguishable
states a and b. Thus, a, b /∈ JLpK. A similar argument can be
made about states d and e using the sets {1 + 2k | k ≥ 0}
and {2k | k ≥ 0}, respectively.

State c is distinguishable from all other states. A linear
strategy to achieve p from that state is “go, go, stop”. �

Lemma 4 {JϕK | ϕ ∈ Φ−L} ⊆ A.

PROOF. We prove the statement by structural induction on
formula ϕ. Note that JpK = {e} ∈ A. It is also easy to see
that set A is closed with respect to the complement and the
intersection. Hence, by Definition 8, it suffices to show that
if JϕK ∈ A, then JKϕK, JMϕK, JSϕK ∈ A. We do this by
explicitly computing the latter truth sets for each possible
value of the truth set JϕK from set A. The results of this
computation are given in Figure 6. For example, value abc
in row S and column e of that table means that if JϕK =
{e}, then JSϕK = {a, b, c}. Below, we justify three of the
entries from the table and leave the rest as an exercise for
the meticulous readers.

∅ abc abcd abce abcde d de e

K ∅ abc abc abc abcde ∅ de ∅
M ∅ abc abc abc abcde abc abcde ∅
S ∅ abc abc abc abcde abc abcde abc

Figure 6: Towards the proof of Lemma 4.

First, we show that if JϕK = {d}, then JMϕK = {a, b, c}.
Indeed, memoryless strategy “stop if the current state is red
(diamond), otherwise go” is a uniform strategy that achieves
set {d} from indistinguishable states a and b. The same strat-
egy also works from state c. Hence, a, b, c ∈ JMϕK. Next,
note that there is no uniform memoryless strategy to reach
set {d} that works from both of the indistinguishable states
e and d. Indeed, such a strategy would need to “stop” in state
d and to “go” in state e. This is impossible because memory-
less strategy must return the same action in indistinguishable
states d and e. Thus, d, e /∈ JMϕK.

Second, we show that if JϕK = {e}, then JMϕK = ∅. In-
deed, there is no memoryless strategy to reach set {e} from
any of the states a, b, c, d because any such strategy must
return action “stop” in the destination state e. Then, being
memoryless, it has to return the same action “stop” in each
red state. Hence, it must return “stop” in state d. But any
strategy that returns “stop” in state d will never reach set
{e} from any of the states a, b, c, d, see Figure 5. Hence,
a, b, c, d /∈ JMϕK. Finally, note that although there is a mem-
oryless strategy (“stop”) to reach set {e} from state e, this
strategy is not uniform because it does not reach set {e} from
indistinguishable (from e) state d. Thus, e /∈ JMϕK.

Third, we show that if JϕK = {e}, then JSϕK = {a, b, c}.
This illustrates the difference between modalities M and S,
see previous previous paragraph. Strategy “go until the sec-



ond red (diamond) state”1, can be used to reach set {e} from
from any of the states a, b, c. Hence, a, b, c ∈ JMϕK. Be-
cause states d and e are indistinguishable, there is no uniform
strategy to reach set {e} from these two states, see Figure 5.
Thus, d, e /∈ JMϕK. �

Undefinability of M via K, L, and S
In this subsection, we prove the undefinability of modality M
through modalities K, L, and S. To achieve this, we employ
the same newly proposed “truth set algebra” technique as
described in the previous subsection. This time, we use the
transition system depicted in Figure 7. By language Φ−M we
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Figure 7: A transition system.

denote the set of all formulae in language Φ that do not use
modality M. Similarly to the previous subsection, we show
JMpK /∈ {JϕK | ϕ ∈ Φ−M}, by establishing that JMpK =
{a} and that {JϕK | ϕ ∈ Φ−M} ⊆ A, where

A = {∅, {a, d}, {a, b, d}, {a, b, c, d},
{a, c, d}, {b}, {b, c}, {c}}.

The proofs of the next two lemmas are similar to the proofs
of Lemma 3 and Lemma 4 in the previous subsections. The
proof of Lemma 6 uses the table given in Figure 8.
Lemma 5 JMpK = {a}.
Lemma 6 {JϕK | ϕ ∈ Φ−M} ⊆ A.

∅ ad abd abcd acd b bc c

K ∅ ad ad abcd ad ∅ bc ∅
L ∅ ad ad abcd ad ad abcd ad
S ∅ ad ad abcd ad ad abcd ad

Figure 8: Towards the proof of Lemma 6.

Undefinability of S via K, L, and M

p

b

c

da
e

Figure 9: A transition system.

The undefinability of modality S via modalities K, L, and
M is provable using again the same technique. Using the
transition system depicted in Figure 9 and set

A = {∅, {a, b}, {a, b, c, e}, {a, b, c, d, e},
{a, b, d}, {c, d, e}, {c, e}, {d}}.

1Note that this strategy is neither memoryless nor sensorless.

Lemma 7 JSpK = {a}.
Lemma 8 {JϕK | ϕ ∈ Φ−S} ⊆ A.

The proof of Lemma 8 uses the table given in Figure 10.

∅ ab abce abcde abd cde ce d

K ∅ ∅ ce abcde abd ce ce ∅
L ∅ ∅ abcde abcde abcde abcde ce ∅
M ∅ ∅ abcde abcde abcde abcde abcde ∅

Figure 10: Towards the proof of Lemma 8.

Undefinability of K via L, M, and S

The undefinability of modality K via modalities L, M, and S
is provable using again the same technique. Using the tran-
sition system depicted in Figure 11 and set

A = {∅, {a}, {a, b}, {a, b, c, d}, {b}, {b, c, d}, {d}}.

p
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Figure 11: A transition system.

Lemma 9 JKpK = {c}.
Lemma 10 {JϕK | ϕ ∈ Φ−K} ⊆ A.

The proof of Lemma 10 uses the table given in Figure 12.

∅ a ab abcd acd b bcd cd

L ∅ ∅ b abcd abcd b abcd abcd
M ∅ ∅ b abcd abcd b abcd abcd
S ∅ ∅ b abcd abcd b abcd abcd

Figure 12: Towards the proof of Lemma 10.

Note Literature review and the conclusion will be added
in the final version of this paper.
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