
The Boosted DC Algorithm for
linearly constrained DC programming

F. J. Aragón Artacho* R. Campoy† P. T. Vuong‡

August 3, 2022

Dedicated to Professor Miguel A. Goberna on the occasion of his 70th birthday

Abstract

The Boosted Difference of Convex functions Algorithm (BDCA) has been recently
introduced to accelerate the performance of the classical Difference of Convex func-
tions Algorithm (DCA). This acceleration is achieved thanks to an extrapolation step
from the point computed by DCA via a line search procedure. In this work, we propose
an extension of BDCA that can be applied to difference of convex functions programs
with linear constraints, and prove that every cluster point of the sequence generated by
this algorithm is a Karush–Kuhn-Tucker point of the problem if the feasible set has a
Slater point. When the objective function is quadratic, we prove that any sequence gen-
erated by the algorithm is bounded and R-linearly (geometrically) convergent. Finally,
we present some numerical experiments where we compare the performance of DCA
and BDCA on some challenging problems: to test the copositivity of a given matrix,
to solve one-norm and infinity-norm trust-region subproblems, and to solve piecewise
quadratic problems with box constraints. Our numerical results demonstrate that this
new extension of BDCA outperforms DCA.

Keywords: Difference of convex functions; boosted difference of convex functions algorithm; global
convergence; constrained DC programs; copositivity problem; trust region subproblem.

1 Introduction
In this paper, we are interested in solving the following DC (difference of convex functions)
optimization problem: {

min
x∈Rn

φ(x) := g(x)−h(x)

s.t. 〈ai,x〉 ≤ bi, i = 1, . . . , p,
(P)

*Department of Mathematics, University of Alicante, Alicante, Spain.
Email: francisco.aragon@ua.es

†Department of Statistics and Operational Research, Universitat de València, Valencia, Spain.
Email: ruben.campoy@uv.es

‡Mathematical Sciences School, University of Southampton, UK
Email: t.v.phan@soton.ac.uk

1

ar
X

iv
:1

90
8.

01
13

8v
4

 [
m

at
h.

O
C

]
 2

 A
ug

 2
02

2

where g : Rn → R∪{+∞}, h : Rn → R∪{+∞} are proper, closed, and convex functions
with g being smooth, ai ∈Rn, bi ∈R for i = 1, . . . , p, and 〈·, ·〉 denotes an inner product. We
use the conventions:

(+∞)− (+∞) = +∞,

(+∞)−λ =+∞ and λ − (+∞) =−∞, ∀λ ∈]−∞,+∞[.

Observe that we can rewrite problem (P) as an unconstrained nonsmooth DC opti-
mization problem, whose objective function is g+ ιF − h, where ιF denotes the indicator
function of the feasible set

F := {x ∈ Rn | 〈ai,x〉 ≤ bi, i = 1, . . . , p} .

For solving this problem, one can apply the classical DC Algorithm (DCA) in [28, 15].
DC programming and the DCA have been developed and studied for more than 30 years [15].
The DCA has been successfully applied in different fields such as machine learning, finan-
cial optimization, supply chain management, and telecommunication, see, e.g. [17, 11, 24].
Nowadays, DCA has become a useful method to solve nonconvex problems.

To accelerate the convergence of DCA, which can be slow for some problems, a new
method called Boosted DC Algorithm (BDCA) has been recently proposed in [1, 3]. The
key idea of BDCA is to perform an extrapolation step via a line search procedure at the point
computed by DCA at each iteration. This step allows the algorithm to take longer steps than
the classical DCA, achieving in this way a larger reduction of the objective value per itera-
tion. In addition to accelerating its convergence, BDCA may have better chances to escape
from bad local optima thanks to the line search procedure, see [3, Example 3.3]. Therefore,
BDCA is not only faster than DCA but also can provide better solutions. Extensive numeri-
cal experiments in diverse applications such as biochemistry [1], machine learning [36, 22]
and data science [3] have been performed where BDCA clearly outperforms DCA. Note
that all these applications are modeled as DC problems with g smooth. However, it is im-
portant to emphasize that, for unconstrained DC programs, the BDCA proposed in [1, 3] is
not applicable when the function g in (P) is nonsmooth (see [3, Example 3.4]).

The aim of this paper is to show that BDCA can still be applied if the nonsmooth function
g is the sum of a smooth convex function and the indicator function of a polyhedral set. More
precisely, we will show that it is possible to use BDCA for solving DC programs with linear
constraints of the form (P). To compare the performance of DCA and BDCA, we provide
numerical experiments on various challenging problems: to test the copositivity of a given
matrix, to solve `1 and `∞ trust-region subproblems, and to find the minimum of a piecewise
quadratic function with box constraints. The three first problems have a quadratic objective
function and are known to be NP-hard [23] (the first was already heuristically investigated
in [8] using DCA), while the last problem has a nonsmooth objective function. Our results
confirm that BDCA significantly outperforms DCA in these applications.

The rest of this paper is organized as follows. Section 2 recalls some preliminary results.
In Section 3, we propose a new variant of BDCA for solving (P) and prove that the objective
value of the sequence generated by the algorithm is monotonically decreasing, and that any
limit point of the sequence is a KKT point of the problem. The R-linear convergence of
any sequence generated by BDCA in the special case of quadratic objective functions is
derived in Section 4. In Section 5, we provide some numerical experiments for testing

2

the copositivity of a given matrix, for solving `1 and `∞ trust-region subproblems and for
solving piecewise quadratic problems with box constraints, where we compare BDCA and
DCA. Finally, some conclusions and future research are briefly discussed in Section 6.

2 Preliminaries
In this section, we state our assumptions imposed on (P). We also recall some preliminary
and basic results which will be used in the sequel.

Let f : Rn → R∪ {+∞} be a proper extended real-valued convex function. The set
dom f := {x ∈ Rn | f (x)<+∞} denotes its (effective) domain, and

∂ f (x) := {w ∈ Rn | f (y)≥ f (x)+ 〈w,y− x〉, ∀y ∈ Rn}

denotes the subdifferential of f at x. If f is differentiable at x, then ∂ f (x) = {∇ f (x)}, where
∇ f (x) stands for the gradient of f at x. The one-side directional derivative of f at x with
respect to the direction d ∈ Rn is

f ′(x;d) := lim
t↘0

f (x+ td)− f (x)
t

.

Recall that f is said to be strongly convex with strong convexity parameter ρ > 0 if the
function f − ρ

2‖ · ‖
2 is convex. The conjugate of f is the function f ∗ : Rn → R∪ {+∞}

defined at u ∈ Rn as
f ∗(u) = sup

x∈Rn
{〈x,u〉− f (x)}.

It holds that f ∗∗ := (f ∗)∗ = f . Moreover, for all x,u ∈ Rn,

u ∈ ∂ f (x) ⇔ f (x)+ f ∗(u) = 〈x,u〉 ⇔ x ∈ ∂ f ∗(u).

Given a set C ⊆ Rn, its interior, its relative interior and the convex cone generated by C are
denoted by intC, riC and coneC, respectively. The function

ιC(x) :=
{

0, if x ∈C,
+∞, otherwise;

denotes the indicator function of C, and C is convex if and only if ιC is so. Moreover, its
subdifferential ∂ ιC is the normal cone to C, which is given by

NC(x) :=
{
{u ∈ Rn : 〈u,c− x〉 ≤ 0, ∀c ∈C}, if x ∈C,
/0, otherwise.

For proving our convergence results, we will make use of the following assumptions.

Assumption 1. Both g and h are strongly convex on their domain with the same strong
convexity parameter ρ > 0.

Assumption 2. The function h is subdifferentiable at every point in domh; i.e., ∂h(x) 6= /0
for all x ∈ domh. The function g is continuously differentiable on an open set containing
domh and

inf
x∈F

φ(x)>−∞. (1)

3

Assumption 3. The feasible set F has a Slater point, that is, there exists x̂ ∈ Rn such that
〈ai, x̂〉< bi, for all i = 1, . . . , p.

Remark 2.1. Assumption 1 is not restrictive, in the sense that any DC decomposition of φ as
φ = g−h, can be expressed as φ = (g+ ρ

2‖ ·‖
2)− (h+ ρ

2‖ ·‖
2) for any ρ > 0. Observe that

∂h(x) 6= /0 holds for all x∈ ridomh (by [34, Theorem 23.4]), so the first part of Assumption 2
is clearly satisfied if domh = Rn. A key point of our method is the smoothness of g in
Assumption 2, which cannot be in general omitted (see [3, Example 3.4]).

Associated with problem (P), we can construct its dual as

inf
u∈Rn

h∗(u)− (g+ ιF)∗(u), (D)

which is also a DC program with the same optimal value. Indeed,

inf
u∈Rn
{h∗(u)− (g+ ιF)∗(u)}= inf

u∈Rn
{h∗(u)− sup

x∈Rn
{〈u,x〉−g(x)− ιF (x)}}

= inf
x∈Rn
{g(x)+ ιF(x)− sup

u∈Rn
{〈u,x〉−h∗(u)}}

= inf
x∈Rn
{g(x)+ ιF(x)−h(x)}

= inf
x∈F
{g(x)−h(x)}= inf

x∈F
φ(x).

We say that x ∈ Rn (resp. u ∈ Rn) is a critical point of (P) (resp. (D)) if ∇g(x) ∈ ∂ (h+
ιF)(x) (resp. ∂h∗(u)∩∂ (g+ ιF)∗(u) 6= /0). Recall from [21, Theorem 5.19] that x is called
a KKT point of (P) if there exist µ1,µ2, . . . ,µp ∈ R such that

0 ∈ ∇g(x)−∂h(x)+∑
p
i=1 µiai,

0 = µi(〈ai,x〉−bi), i = 1, . . . , p,

µi ≥ 0, 〈ai,x〉 ≤ bi, i = 1, . . . , p.

(2)

The DC algorithm is a primal-dual method in the sense that it is aimed to find solutions for
both (P) and (D), simultaneously. Our goal then is to design a BDCA variant that allow us
to find KKT points of (P) and critical points of (D).

To finish this section, we need to introduce the following notions regarding the geometry
of the feasible set F . The cone of feasible directions at x ∈F is denoted by

D(x) := {d ∈ Rn | ∃ε > 0 such that x+ td ∈F , ∀t ∈ [0,ε]} .

Due to the polyhedral structure of F , its normal cone coincides with the active cone; i.e.,

NF (x) = A(x) := cone{ai, i ∈ I(x)} , for x ∈F ,

where I(x) stands for the set of active constraints at x, i.e.,

I(x) = {i ∈ {1, . . . , p} | 〈ai,x〉= bi}.

Since we deal with affine constraints, we have (see e.g. [2, Proposition 4.14])

D(x) = {d ∈ Rn | 〈ai,d〉 ≤ 0, i ∈ I(x)} . (3)

4

3 The Boosted DC Algorithm and its convergence
For solving (P), we propose the following method, Algorithm 1, which can tackle more
general problems than the Boosted DC Algorithm proposed in [3].

Algorithm 1 BDCA (Boosted DC Algorithm) for solving (P)
Input: An initial point x0 ∈F and two parameters α > 0 and β ∈]0,1[;

1: k← 0;
2: Select uk ∈ ∂h(xk) and compute the unique solution yk of{

min
x∈Rn

φk(x) := g(x)−〈uk,x〉

s.t. 〈ai,x〉 ≤ bi, i = 1, . . . , p.
(Pk)

3: dk← yk− xk;
4: if dk = 0 then
5: stop and return xk;
6: end if
7: if I(yk)⊆ I(xk) then
8: Choose any λ k ≥ 0, set λk← λ k, and reduce λk until yk +λkdk ∈F ;
9: while φ(yk +λkdk)> φ(yk)−αλ 2

k ‖dk‖2 do
10: λk← βλk;
11: end while
12: else
13: λk← 0;
14: end if
15: xk+1← yk +λkdk;
16: k← k+1 and go to Line 2;

Let us make some comments on Algorithm 1.

(i) Lines 1 to 6 of Algorithm 1 correspond to the classical DCA for solving (P). Thus,
when λ k = 0 for all k, Algorithm 1 coincides with DCA.

(ii) Lines 7 to 15 present the boosting step. It first checks if dk is a feasible direction
at yk ∈ F . If so, it then performs a line search step along the direction dk which
maintains feasibility to improve the objective value φ . Otherwise, the boosting step is
skipped and we simply use the DCA point yk.

(iii) In terms of per-iteration complexity, the boosting step requires to check the feasibility
of direction dk, which can be done by comparing the sets of active constraints at xk and
yk (see Lemma 3.1). It also requires evaluating the objective function and checking
the feasibility of the trial step yk + λkdk. The computational effort of this task will
depend on the particular structure of φ and F . In the case of box constraints, the
largest step-size that makes yk +λkdk feasible can be efficiently computed in Line 8,

5

see Remark 3.1 below. In Section 5 we show some computational results for the trust-
region subproblems with `1 norm constraints (where feasibility needs to be checked)
and `∞ norm constraints (where the largest step-size can be readily computed).

(iv) When h is differentiable, the algorithms introduced by Fukushima and Mine in [10,
20] can be applied in our setting. On the one hand, the algorithm in [10] performs
a line search which is similar to the one in Lines 9-11 of Algorithm 1, but with the
significant difference that it is performed at the point xk, instead of doing it at the DCA
point yk; that is, it searches for the smallest non-negative integer l such that

φ

(
xk +β

ldk

)
≤ φ(xk)−αβ

l‖dk‖2,

where 0 < β < 1. Thus, the largest step-size allowed by their algorithm is 1, which
corresponds with the point determined by the DCA, since xk +dk = yk. On the other
hand, the algorithm defined in [20] performs an exact line search in the direction dk,
which may be unaffordable in many practical applications.

Remark 3.1. An explicit formula to compute the largest step-size that makes yk+λkdk feasi-
ble in Line 8 is provided in [9]. More precisely, feasibility of the trial step size is guaranteed
if λ k is chosen so that

λ k ≤ λ̂k := min
{

bi−〈ai,yk〉
|〈ai,dk〉|

: i 6∈ I(xk) with 〈ai,dk〉 6= 0
}

; (4)

see [9, Lemma 5.4(ii)]. In principle, this permits to avoid the extra time consumed for
checking feasibility in Line 8. However, the computation of λ̂k in (4) may be even more
expensive and inefficient than checking feasibility of λk in some applications. This is the
case, for instance, of the `1-norm trust region subproblem, whose reformulation as a linearly
constrained DC program requires an exponential number of constraints (see Section 5.2).

The next auxiliary lemma shows the equivalence between Line 7 of Algorithm 1 and
checking the feasibility of the direction generated by DCA.

Lemma 3.1. If xk and yk are generated by Algorithm 1, then

I(yk)⊆ I(xk) ⇔ dk := yk− xk ∈ D(yk) ⇔ dk⊥ai, ∀i ∈ I(yk).

Proof. Observe that, for any i ∈ I(yk), it holds that

〈ai,dk〉= 〈ai,yk〉−〈ai,xk〉= bi−〈ai,xk〉 ≥ 0.

Hence, the result easily follows by taking into account (3).

In the following proposition, we collect some key inequalities which are useful in the
sequel for the convergence analysis of Algorithm 1.

Proposition 3.1. Under Assumptions 1 and 2, for all k ∈ N, the next statements hold:

(i) φ(yk)≤ φ(xk)−ρ‖dk‖2;

(ii) φ ′(yk;dk)≤−ρ‖dk‖2;

6

(iii) if the condition at Line 7 of Algorithm 1 holds, then there exists some δk > 0 such
that yk +λkdk ∈F and

φ (yk +λdk)≤ φ(yk)−αλ
2‖dk‖2, for all λ ∈ [0,δk].

Consequently, the backtracking step at Lines 9–11 of Algorithm 1 terminates after a
finite number of iterations.

Proof. The proof of (i) is similar to the one of [1, Proposition 3] and is therefore omitted.
To prove (ii), pick any v ∈ ∂h(yk). Note that the one-sided directional derivative φ ′(yk;dk)
is given by

φ
′(yk;dk) = lim

t↓0

φ(yk + tdk)−φ(yk)

t

= lim
t↓0

g(yk + tdk)−g(yk)

t
− lim

t↓0

h(yk + tdk)−h(yk)

t
≤ 〈∇g(yk),dk〉−〈v,dk〉 , (5)

by convexity of h. Since yk is the unique solution of the strongly convex problem (Pk), we
can write down the KKT conditions (see, e.g., [2, Theorem 4.20]) of this problem as{

∇g(yk)+∑
p
i=1 µk,iai = uk ∈ ∂h(xk),

µk,i(〈ai,yk〉−bi) = 0, µk,i ≥ 0, 〈ai,yk〉 ≤ bi, i = 1, . . . , p.
(6)

The fact that h is strongly convex with a parameter ρ implies, by [35, Exercise 12.59], that
∂h is strongly monotone with constant ρ . Therefore, since v ∈ ∂h(yk) and uk ∈ ∂h(xk), we
have

〈uk− v,xk− yk〉 ≥ ρ‖xk− yk‖2.

Hence, combining these expressions, together with the fact that xk ∈F , we can derive

〈∇g(yk)− v,dk〉=
〈

uk−
p

∑
i=1

µk,iai− v,yk− xk

〉
≤−ρ‖dk‖2−

p

∑
i=1

µk,i〈ai,yk− xk〉

=−ρ‖dk‖2 +
p

∑
i=1

µk,i (〈ai,xk〉−bi)+
p

∑
i=1

µk,i (bi−〈ai,yk〉)

≤−ρ‖dk‖2,

and the result follows by combining the last inequality with (5).
Having in mind the condition at Line 7 of Algorithm 1 and Lemma 3.1, we observe that

the proof of (iii) is similar to the one of [3, Proposition 3.1], so we omit it for brevity.

Remark 3.2 (General convex constraints). Consider a generalized version of (P) where the
feasible set is formed by arbitrary convex constraints, i.e.,{

min
x∈Rn

φ(x) := g(x)−h(x)

s.t. ci(x)≤ 0, i = 1, . . . , p,
(P ′)

7

where g and h satisfy Assumptions 1 and 2 and ci : Rn → R are smooth, proper, closed
and convex functions, for i = 1, . . . , p. Note that problem (P) is a particular instance of
(P ′) with ci(x) := 〈ai,x〉−bi, for i = 1, . . . , p. The assertion in Proposition 3.1(ii) still holds
true for the more general problem (P ′); that is, the direction generated by DCA remains a
descent direction provided that xk is feasible for (P ′). To confirm this, one can easily check
that the proof can be rewritten by replacing the linearity of the gradients by the inequality

ci(xk)≥ ci(yk)−〈∇ci(yk),yk− xk〉. (7)

However, Line 7 of Algorithm 1 is no longer useful to verify if dk is a feasible direction, as
the equality in (3) only holds for affine constraints. For general convex constraints, we have
the inclusion

{d ∈ Rn | 〈∇ci(x),d〉< 0, i ∈ I(x)} ⊂ D(x).

Therefore, one possibility would be to run the boosting step whenever 〈∇ci(yk),dk〉< 0 for
all i∈ I(yk). Nevertheless, this will never be the case because xk is feasible for (P ′). Indeed,
from (7), we obtain that

〈∇ci(yk),dk〉 ≥ −ci(xk)≥ 0, for all i ∈ I(yk).

In fact, it can be proved that if yk +λdk ∈F for some particular λ > 0, then the points in
the segment [xk,yk +λdk] must be active for all i ∈ I(yk).

We are now in the position to establish the main convergence result of Algorithm 1.

Theorem 3.1. Under Assumptions 1, 2 and 3, for any x0 ∈F , either BDCA returns a KKT
point of (P) or it generates an infinite sequence such that the following statements hold.

(i) φ(xk) is monotonically decreasing and hence convergent to some φ̄ .

(ii) Suppose that {xk} and {uk} are bounded. Then any limit point of {xk} is a KKT point
of (P) and any limit point of {uk} is a critical point of (D).

(iii) We have ∑
+∞

k=0 ‖dk‖2 < +∞. Moreover, if there is some λ such that λk ≤ λ for all k,
then ∑

+∞

k=0 ‖xk+1− xk‖2 <+∞.

Proof. If Algorithm 1 is terminated at Line 5 and returns xk, then xk = yk. From (2) and (6),
it is clear that xk is a KKT point of (P). Otherwise, by Proposition 3.1 and Line 15 of
Algorithm 1, we have

φ(xk+1)≤ φ(yk)−αλ
2
k ‖dk‖2 ≤ φ(xk)−

(
αλ

2
k +ρ

)
‖dk‖2, (8)

where λk ≥ 0. Therefore, the sequence {φ(xk)} converges to some φ̄ , since it is monotoni-
cally decreasing and bounded from below, by (1). As a consequence, we obtain

φ(xk+1)−φ(xk)→ 0, as k→ ∞,

which implies ‖dk‖2 = ‖yk− xk‖2→ 0, by (8).
Now, if x is a limit point of {xk}, then there exists a subsequence

{
xk j

}
converging to x.

Then, as ‖yk j − xk j‖→ 0, we have yk j → x. From (6), we obtain{
∇g(yk j)+∑

p
i=1 µk j,iai = uk j ∈ ∂h(xk j),

µk j,i(〈ai,yk j〉−bi) = 0, µk j,i ≥ 0, 〈ai,yk j〉 ≤ bi, i = 1, . . . , p.
(9)

8

Since the sequence {uk} is bounded by assumption, without lost of generality we may as-
sume that uk j → u. It also holds that ∇g(yk j)→ ∇g(x) by continuity of ∇g. The sequence
of Lagrange multipliers {µk j} ∈ Rp must also be bounded. Indeed, suppose to the contrary

that ‖µk j‖→∞ and assume without loss of generality that lim j→∞

µk j
‖µk j‖

= µ∗, with µ∗ ∈Rp
+

(the non-negative orthant) satisfying ‖µ∗‖ = 1. Then, dividing the first equality in (9) by
‖µk j‖ and letting j→ ∞, we obtain

p

∑
i=1

µ
∗
i ai = 0n.

Performing the same procedure in the second equality in (9) gives

µ
∗
i (〈ai,x〉−bi) = 0,

so we deduce that µ∗i = 0 for all i 6∈ I(x). Thus,

∑
i∈I(x)

µ
∗
i ai = 0n.

Thanks to the Slater Assumption 3, we know that there exists x̂ ∈ Rn such that 〈ai, x̂〉 < bi
for all i ∈ I(x). Hence,

0 = ∑
i∈I(x)

µ
∗
i 〈ai, x̂− x〉= ∑

i∈I(x)
µ
∗
i (〈ai, x̂〉−〈ai,x〉) = ∑

i∈I(x)
µ
∗
i (〈ai, x̂〉−bi) ,

which implies µ∗i = 0 for all i ∈ I(x), since µ∗ ∈ Rp
+. This implies that µ∗ = 0p, a contra-

diction with the fact that ‖µ∗‖= 1.
Therefore, by extracting subsequences if necessary, we can assume that

lim
j→∞

µk j,i = µi ≥ 0, for all i = 1,2, . . . , p. (10)

Taking the limit as j → ∞ in (9), thanks to the closedness of the graph of ∂h (see [34,
Theorem 24.4]), we obtain{

∇g(x)+∑
p
i=1 µiai = u ∈ ∂h(x),

µi(〈ai,x〉−bi) = 0, µi ≥ 0, 〈ai,x〉 ≤ bi, i = 1, . . . , p,
(11)

which means that x is a KKT point of (P). From (11) we derive that x ∈ ∂h∗(u) and also
that

u = ∇g(x)+ ∑
i∈I(x)

µiai ∈ ∇g(x)+A(x) = ∂ (g+ ιF)(x),

which is equivalent to x ∈ ∂ (g+ ιF)∗(u) and, hence, u is a critical point of (D). The proof
of (iii) is similar to that of [1, Proposition 5(iii)] and is thus omitted.

Remark 3.3. The assertion in Theorem 3.1(ii) remains valid for any limit point of {xk} in
the interior of domh without requiring the dual sequence {uk} to be bounded. Indeed, let
x ∈ intdom(h) be a cluster point of {xk} and let {xk j} be a subsequence converging to x. We

9

can apply [34, Corollary 24.5.1] to obtain that for any ε > 0, there exists a positive integer
j0 ≥ 1 such that

uk j ∈ ∂h(xk j)⊂ ∂h(x)+ εB, ∀ j ≥ j0;

where B denotes the Euclidean unit ball of Rn. Hence, since ∂h(x) is a bounded set, the
dual subsequence {uk j} is also bounded and the proof of Theorem 3.1(ii) stands.

Remark 3.4. Similar to [1, Theorem 1] and [3, Theorem 4.3 and Theorem 4.9], if we further
assume that the function φ satisfies the Kurdyka–Łojasiewicz property, then it can be proved
that the sequence {xk} converges to a KKT point of (P). Moreover, convergence rates can
also be deduced depending on the Łojasiewicz exponent. Especially, when the objective
function φ is quadratic (e.g., in some of our numerical experiments), it was proved [18,
Theorem 4.2] that the function φ + ιF satisfies the Kurdyka–Łojasiewicz property with
exponent 1

2 . Combining this with the technique in [1, Theorem 1], it is a routine task to
derive the linear convergence of the sequence {xk} when the sequence has a cluster point.
The purpose of the next section is to prove, using a similar technique to [32, Theorem 2.1],
that the latter condition is not needed: for quadratic functions, BDCA always generates a
sequence which is linearly convergent to a KKT point of the problem without requiring the
existence of a cluster point.

4 Linear convergence for quadratic objective functions
In this section we prove the R-linear convergence of BDCA when the objective function φ

of (P) is quadratic, that is, for problems of the form min
x∈Rn

φ(x) := 1
2〈Qx,x〉+ 〈q,x〉

s.t. 〈ai,x〉 ≤ bi, i = 1, . . . , p,
(PQ)

where Q ∈ Rn×n is a symmetric matrix, q ∈ Rn, and ai ∈ Rn and bi ∈ R, for i = 1, . . . , p. In
this setting, x is a KKT point of (PQ) if there exist multipliers µ1,µ2, . . . ,µp ∈ R such that

0 = Qx+q+∑
p
i=1 µiai,

0 = µi(〈ai,x〉−bi), i = 1, . . . , p,

µi ≥ 0, 〈ai,x〉 ≤ bi, i = 1, . . . , p.

We denote by F the set of all KKT points of (P).
As Q is not required to be positive semidefinite, (PQ) is a nonconvex problem. However,

the matrix Q can be easily decomposed as Q = Q1−Q2, with Q1 and Q2 positive definite.
Indeed, one can take

Q1 := σ I and Q2 := σ I−Q,

for σ > max{0,λmax(Q)}, where λmax(Q) is the largest eigenvalue of Q and I denotes the
identity matrix. Thus, (PQ) can be equivalently written in the form of (P) as{

min
x∈Rn

g(x)−h(x) = φ(x)

s.t. 〈ai,x〉 ≤ bi, i = 1, . . . , p,
(12)

10

with
g(x) :=

σ

2
‖x‖2 + 〈q,x〉 and h(x) :=

1
2
〈(σ I−Q)x,x〉. (13)

Observe that both functions g and h are strongly convex with parameters σ and σ−λmax(Q),
respectively. Thus, Assumption 1 holds for

ρ := min{σ ,σ −λmax(Q)}, (14)

while Assumption 2 trivially holds.
By using the indicator function ιF of the feasible set F , we can rewrite problem (PQ)

as an unconstrained nonsmooth DC optimization problem, which can be tackled by the
DCA. In this case, the DCA becomes the projected gradient method from convex program-
ming [30]

xk+1 = PF

(
xk−

1
σ
(Qxk +q)

)
, (15)

where PF denotes the projection mapping onto the feasible set F .
To derive the R-linear convergence of the iterative sequence generated by the BDCA,

we will use the following lemmas. The first one is a classical result regarding the connected
components of the KKT set F and can be found in [19, Lemma 3.1].

Lemma 4.1. Let F1,F2, . . . ,Fr be the connected components of the KKT set F . Then we
have

F =
r⋃

i=1

Fi,

and the following properties hold:

(i) each Fi is the union of finitely many polyhedral convex sets;

(ii) the sets Fi, i = 1,2, . . . ,r, are properly separated from each others, that is

inf
{

d(x,Fi),x ∈F j
}
> 0, for all i 6= j;

(iii) φ is constant on each Fi.

The second one is a local error bound result originally stated in [19, Theorem 2.3] and
later extended in [32, Lemma 2.1].

Lemma 4.2. There exist scalars ε > 0 and τ > 0 such that

d(x,F)≤ τ

∥∥∥∥x−PF

(
x− 1

σ
(Qx+q)

)∥∥∥∥ , (16)

for all x ∈F with ∥∥∥∥x−PF

(
x− 1

σ
(Qx+q)

)∥∥∥∥≤ ε. (17)

We are now in a position to establish the R-linear (aka geometric) convergence of the
iterative sequence {xk} generated by BDCA. Geometric convergence is a special type of R-
linear convergence, which is implied by Q-linear convergence (see, e.g. [2, Section 5.2.1]).
The next result extends [32, Theorem 2.1] to the BDCA. Its proof employs similar tech-
niques, which are originally based on [19].

11

Theorem 4.1. If (PQ) has a solution and Assumption 3 holds, then the sequence {xk}
generated by BDCA converges geometrically to a KKT point x of (PQ), that is, there exist
some constants C > 0 and η ∈]0,1[such that

‖xk− x‖ ≤Cη
k, for all large k. (18)

Proof. First, observe that by (8) we have

(ρ +αλ
2
k)‖dk‖2 ≤ φ(xk)−φ(xk+1).

By Theorem 3.1(i), we know that the right-hand side of this inequality converges to zero as
k→ ∞. Thus,

lim
k→∞
‖yk− xk‖= lim

k→∞
‖dk‖= 0 = lim

k→∞
λk‖dk‖,

which implies
lim
k→∞
‖xk+1− xk‖= lim

k→∞
(1+λk)‖dk‖= 0. (19)

Let ε > 0 and τ > 0 be such that (16) and (17) hold. Since yk = PF

(
xk− 1

σ
(Qxk +q)

)
, there

exists some k0 ∈ N such that∥∥∥∥xk−PF

(
xk−

1
σ
(Qxk +q)

)∥∥∥∥= ‖yk− xk‖ ≤ ε, ∀k ≥ k0.

Hence, we obtain

d(xk,F)≤ τ

∥∥∥∥xk−PF

(
xk−

1
σ
(Qxk +q)

)∥∥∥∥= τ‖xk− yk‖= τ‖dk‖, ∀k ≥ k0.

Due to the fact that F is nonempty and closed, there exists zk ∈F , for each k ∈ N, such
that d(xk,F) = ‖xk− zk‖. Thus

‖xk− zk‖ ≤ τ‖dk‖, ∀k ≥ k0, (20)

which implies
lim
k→∞
‖xk− zk‖= 0. (21)

Since
‖zk+1− zk‖ ≤ ‖zk+1− xk+1‖+‖xk+1− xk‖+‖xk− zk‖,

it follows from (19) and (21) that

lim
k→∞
‖zk+1− zk‖= 0. (22)

Now, let F1,F2, . . . ,Fr be the connected components of F . By Lemma 4.1(ii) and (22)
there exists F0 ∈ {F1,F2, . . . ,Fr} and k1 ≥ k0 such that zk ∈F0 for all k ≥ k1. The last
assertion of Lemma 4.1 implies that

φ(zk) = c, ∀k ≥ k1. (23)

12

Note that, since zk is a KKT point of (PQ), we have 〈Qzk +q,xk− zk〉 ≥ 0. Then,

φ(zk)−φ(xk) =
1
2
〈Qzk,zk〉−

1
2
〈Qxk,xk〉+ 〈q,zk− xk〉

≤ 1
2
〈Qzk,zk〉−

1
2
〈Qxk,xk〉+ 〈Qzk,xk− zk〉

=
1
2
〈Q(xk− zk),zk− xk〉

≤ 1
2
‖Q‖‖xk− zk‖2.

From Theorem 3.1(i) we know that limk→∞ φ(xk) = φ̄ . Hence, for all k ≥ k1,

c = φ(zk)≤ φ(xk)+
1
2
‖Q‖‖zk− xk‖2→ φ̄ , as k→ ∞. (24)

We prove now that φ̄ ≤ c. Indeed, on the one hand, from (8) and (23), we have for all
k ≥ k1 that

φ(xk+1)− c≤ φ(yk)− c = φ(yk)−φ(zk)

=
1
2
〈Qyk,yk〉+ 〈q,yk〉−

1
2
〈Qzk,zk〉−〈q,zk〉

= 〈Qzk +q,yk− zk〉+
1
2
〈Q(yk− zk),yk− zk〉

≤ 〈Qzk +q,yk− zk〉+
1
2
‖Q‖‖yk− zk‖2. (25)

On the other hand, since yk = PF

(
xk− 1

σ
(Qxk +q)

)
and zk ∈F , we deduce (see, e.g., [4,

Theorem 3.16]) that 〈
xk−

1
σ
(Qxk +q)− yk,yk− zk

〉
≥ 0.

Therefore,

〈Qzk +q,yk− zk〉= 〈Qxk +q,yk− zk〉+ 〈Q(zk− xk),yk− zk〉
≤ σ〈xk− yk,yk− zk〉+‖Q‖‖xk− zk‖‖yk− zk‖
≤ (σ‖xk− yk‖+‖Q‖‖xk− zk‖)‖yk− zk‖. (26)

Combining (25) and (26), we obtain for all k ≥ k1 that

φ(xk+1)− c≤
(

σ‖xk− yk‖+‖Q‖‖zk− xk‖+
1
2
‖Q‖‖yk− zk‖

)
‖yk− zk‖. (27)

From (20), we have

‖yk− zk‖ ≤ ‖yk− xk‖+‖xk− zk‖ ≤ (1+ τ)‖dk‖, ∀k ≥ k1.

Hence, we deduce from (27) that

φ(xk+1)− c≤ β‖dk‖2, ∀k ≥ k1, (28)

13

where β := (1+ τ)
(
σ +‖Q‖τ + 1+τ

2 ‖Q‖
)
. Passing (28) to the limit as k→ ∞, we get

φ̄ = lim
k→∞

φ(xk+1)≤ c.

The latter together with (24) imply that φ̄ = c. Therefore, it follows from (28) and (8) that

φ(xk+1)− φ̄ ≤ β‖dk‖2 ≤ β

ρ
(φ(xk)−φ(xk+1)) , ∀k ≥ k1,

or, equivalently, (
1+

β

ρ

)(
φ(xk+1)− φ̄

)
≤ β

ρ

(
φ(xk)− φ̄

)
, ∀k ≥ k1.

Since {φ(xk)} is monotonically decreasing to φ̄ , we deduce from the last inequality that

φ(xk)−φ(xk+1) = (φ(xk)− φ̄)+(φ̄ −φ(xk+1))

≤ φ(xk)− φ̄ ≤
(
φ(xk1)− φ̄

)(β

ρ +β

)k−k1

= M0η
2k, ∀k ≥ k1, (29)

where M0 :=
(
φ(xk1)− φ̄

)
(ρ +β)k1β−k1 and η :=

√
β

ρ+β
∈]0,1[. Consider now

M1 := max
λ≥0

(1+λ)2

αλ 2 +ρ
=

α +ρ

αρ
.

Hence, from (8) and (29), we obtain

‖xk+1− xk‖2 = (1+λk)
2‖dk‖2

≤ (1+λk)
2

αλ 2
k +ρ

(φ(xk)−φ(xk+1))

≤M1M0η
2k, ∀k ≥ k1,

which implies
‖xk+1− xk‖ ≤Mη

k, ∀k ≥ k1,

with M :=
√

M1M0. Then, for all k ≥ k1 and m≥ 1, we have

‖xk+m− xk‖ ≤ ‖xk+m− xk+m−1‖+ · · ·+‖xk+1− xk‖

≤ (ηm−1 + · · ·+η +1)Mη
k ≤ M

1−η
η

k. (30)

This implies that {xk} is a Cauchy sequence and hence converges to a point x ∈F . Accord-
ing to Theorem 3.1(ii) and Remark 3.3, combined with the fact that domh = Rn is an open
set, we must have that x is a KKT point of (PQ). Moreover, passing the inequality (30) to
the limit as m→ ∞, we obtain

‖x− xk‖ ≤
M

1−η
η

k, ∀k ≥ k1,

which concludes the proof.

14

5 Numerical experiments
The purpose of this section is to compare the performance of BDCA (Algorithm 1) against
the classical DCA. We refrain from comparing the algorithms against other methods, as our
only aim here is to show that it is more advantageous to apply BDCA than DCA when-
ever this is possible, not to show that these methods are the most efficient for the problems
that we consider. Consequently, we tested both algorithms in the three different settings
that can occur, depending on whether the feasible set is unbounded, bounded with general
constraints, and bounded with box constraints (so the feasibility in the line search step can
be ensured). We applied both algorithms for testing copositivity [8] (unbounded) and for
solving the `1 and `∞ trust-region subproblem [7, 12] (bounded, with box constraints in the
case of `∞). In our last experiment we test the performance on piecewise quadratic prob-
lems with box constraints, whose objective function is thus nonsmooth. All these problems
clearly satisfy Assumptions 1-3 and admit a DC decomposition with g being a quadratic
function. Thus, subproblem (Pk) can be solved by computing a projection onto the feasible
set F , analogous to that stated in equation (15). The projector onto the feasible set in our
applications can be directly computed.

All the codes were written in Python 3.7 and the tests were run on an Intel Core i7-4770
CPU 3.40GHz with 32GB RAM, under Windows 10 (64-bit).

5.1 Testing copositivity
Recall that a given n×n matrix A is said to be copositive if

〈Ax,x〉 ≥ 0, for all x ∈ Rn
+,

where Rn
+ stands for the non-negative orthant. Copositivity has recently attracted consider-

able attention in mathematical optimization, see e.g. [5, 6, 8, 25]. The problem of determin-
ing whether a given matrix is not copositive is known to be NP-complete [23] and it can be
recast as the following non-convex optimization problem

min
x∈Rn

+

φ(x) := 〈Ax,x〉. (31)

The copositivity of A is now equivalent to minx∈Rn
+

φ(x) = 0. In [8], the authors reformu-
lated (31) as a DC problem according to the decomposition in (12)-(13), and applied DCA
as a heuristic for testing whether a matrix is not copositive. To be more specific, given
σ > max{λmax(A),0}, the reformulation of problem (31) as a DC problem becomes{

min
x∈Rn

g(x)−h(x) = φ(x)

s.t. xi ≥ 0, i = 1, . . . ,n,

with
g(x) :=

σ

2
‖x‖2 and h(x) :=

1
2
〈(σ I−A)x,x〉.

Under this decomposition, DCA is applied as a heuristic to determine the copositivity of
a given matrix as follows: if at some iterate φ(xk) < 0, then the matrix is non-copositive;
otherwise, if a critical point is reached, the instance is undecidable.

15

Copositive matrices play an important role in graph theory. The size of the largest com-
plete subgraph contained in a given graph G, denoted by γ(G), is known as the clique num-
ber of G. If A and E are the adjacency matrix of G and the matrix of all ones, respectively,
it can be shown (see [14, Corollary 2.4]) that

γ(G) = min{µ : µ(E−A)−E is copositive} .

Therefore, the matrix µ(E−A)−E will be copositive if µ ≥ γ(G) and non-copositive oth-
erwise. Furthermore, in the latter case, the matrix will be closer to the copositive cone as µ

approaches γ(G) from the left.
In our tests we considered matrices constructed as follows. Let G be the cycle graph of

n nodes whose adjacency matrix, Acycle = (ai j) ∈ Rn×n, is given component-wise by

ai j :=
{

1, if |i− j| ∈ {1,n−1},
0, otherwise.

Its clique number is clearly γ(G) = 2. Hence, the matrix

Qµ
n := µ(E−Acycle)−E ∈ Rn×n (32)

is copositive for all µ ≥ 2 and non-copositive for µ < 2. In fact, when µ = 2 it coincides
with the so-called Horn matrix Hn (see, e.g., [13, Section 4]). For instance, the Horn matrix
H5 takes the form

H5 := Q2
5 =

1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 .

Experiments In our numerical tests we used the parameter setting as

α := 0.01 and β := 0.1.

The trial step-size λ k in the boosting step of BDCA (Line 8 of Algorithm 1) was chosen to
be self-adaptive as in [3]. This technique proceeds as follows. At the first iteration, choose
any λ 0 > 0. Then, for k ≥ 1, if the line search has never been used, we take λ k = λ 0.
Otherwise, if the two previous trial step-sizes have been directly accepted (without being
reduced by the backtracking step), then the last accepted positive λ is scaled by a factor of
γ > 1 and used as the current trial step-size. If that is not the case, the trial step-size is set as
the last positive value of λ accepted in previous iterations. In our tests we used

λ 0 := 1 and γ := 2.

In our first numerical experiment, we considered Horn matrices of different sizes, Hn,
for n ∈ {1000,1250, . . . ,5000}. For each size, DCA and BDCA were run from the same
100 starting points randomly generated in the intersection of the non-negative orthant with
the unit ball. We stopped the algorithms when ‖dk‖ ≤ 10−9 for the first time. The results
are shown in Figure 1, where we can observe that, on average, BDCA was more than 15
times faster than DCA for all sizes. As expected, since Horn matrices are copositive, both

16

algorithms converged to critical points with a positive objective value very close to 0. It
is worth to mention that the objective function at the points found by BDCA was usually
smaller than at the ones found by DCA. We also show in Figure 2 the percentage of iterations
at which the boosting step was activated, that is, when condition in line 7 of Algorithm 1
was fulfilled. We observed that, for all sizes, the linesearch was performed in around the
45% of the iterations. In Figure 3 we show the behavior of both algorithms in a particular
instance for testing the copositivity of H1000.

1000 1500 2000 2500 3000 3500 4000 4500 5000
n

5

10

15

20

25

30

Ti
m

e
DC

A
/ T

im
e

BD
CA

Figure 1: Comparison between DCA and BDCA for checking the copositivity of Horn
matrices of order n ∈ {1000,1250, . . . ,5000}. For each size, we represent the ratios of the
running time between DCA and BDCA for 100 random starting points (blue crosses) and
the median ratio among all of them (white circle).

1000 2000 3000 4000 5000
n

0.0

0.2

0.4

0.6

0.8

1.0

Ite
ra

tio
ns

 li
ne

se
ar

ch
 /

To
ta

tl
ite

ra
tio

ns

Figure 2: Ratio of the number of iterations at which the boosting step of BDCA was activated
with respect the number of iterations performed for testing the copositivity of Horn matrices
of order n ∈ {1000,1250, . . . ,5000}. For each size, we represent this ratio for 100 random
starting points (green crosses) and the median ratio among all of them (white circle).

17

0 25 50 75 100 125 150 175 200
k

10 12

10 9

10 6

10 3

100

103

(x
k)

DCA
BDCA

0

100

200

300

400

500

k

Figure 3: Value of the objective function of DCA and BDCA (using logarithmic scale in the
left axis) as well as the step-size used in BDCA (right axis, dotted blue line), with respect
to the iteration, for checking the copositivity of the Horn matrix of order n = 1000 from the
same random starting point.

In our second experiment we considered matrices of the form Qµ
n as defined in (32). In

order to generate hard instances (those which are close to be copositive) we took µ := 1.9.
For each size n ∈ {1000,1250, . . . ,5000}, DCA and BDCA were run from the same 100
random starting points generated as in our previous experiment. In this case, we let the
algorithms run until they find a negative objective value (which exists because of the non-
copositivity of the matrices). We used two stopping criteria, whose results are depicted
in Figure 4: on the left, the algorithms were stopped when any negative objective value
was found; on the right, the objective value was required to be smaller than −10−4. We do
not show any results on the second criterion for n greater than 2000 because DCA becomes
extremely slow (for n= 2000, the instances solved by DCA required more than 5 minutes on
average). This time the advantage of BDCA with respect to DCA increased with the size n,
and was significantly greater than in the previous experiment when the second criterion was
used.

Remark 5.1. Clearly, BDCA iterations will be more time consuming than those of DCA due
to the need of checking condition in Line 7 and the linesearch procedure. Note that the line-
search requires of function evaluations of f , which may be expensive at some applications.
For this reason, in our experiments we compare the total CPU running time of the algorithm,
as it includes the possibly wasted extra time of the boosting step.

5.2 Solving the `1 and `∞ trust-region subproblem
The trust-region subproblem (TRSP) arises in trust-region methods, which are optimization
algorithms that consist in replacing the original objective function by a model which is a
good approximation of the original function at the current iterate. The models are usually
defined to be a quadratic function, in which case the task consists in solving nonconvex

18

1000 1500 2000 2500 3000 3500 4000 4500 5000
n

5

10

15

20

25

Ti
m

e
DC

A
/ T

im
e

BD
CA

(a) Stopping criterion: φ(x)< 0

1000 1250 1500 1750 2000
n

100

150

200

250

300

350

400

Ti
m

e
DC

A
/ T

im
e

BD
CA

(b) Stopping criterion: φ(x)<−10−4

Figure 4: Comparison between DCA and BDCA for detecting the non-copositivity of ma-
trices of various orders n. For each size, we represent the ratios of the running time between
DCA and BDCA for 100 random starting points (blue crosses) and the median ratio among
all of them (white circle).

quadratic optimization problems of the type

min
|||x|||≤r

1
2
〈Ax,x〉+ 〈b,x〉,

where A is an n× n real symmetric matrix, b ∈ Rn, r is a positive number and |||·||| is any
given norm. Of course, the choice of the norm has a serious impact on the difficulty for
solving the subproblems.

The application of the DCA for solving the Euclidean trust-region subproblem (the most
common choice for the norm) was first proposed in [29] and its convergence was further
studied in [16, 31, 33]. Thanks to the structure of the trust-region subproblem, the imple-
mentation of the DCA is very simple and efficient, as the iterations are given by (15) and
only require matrix-vector products. On the other hand, as observed in [7, Section 7.8]
and [12], the choice of the Euclidean norm for the definition of the trust-region has several
drawbacks, especially when the problem at hand is box-constrained, in which case the in-
tersection of the Euclidean ball of the trust region with the feasible set has a complicated
structure. The choice of the `∞ norm ‖ · ‖∞ for the trust-region when the problem involves
bounds of the type l ≤ x≤ u permits to ensure feasibility by simply requiring similar bounds
on the trust-region subproblem. Unfortunately, the `1 and `∞ trust-region subproblem are
NP-hard [23], a class of problems for which it is commonly believed that there are no poly-
nomial time algorithms.

In this subsection we compare the performance of DCA and BDCA on the challeng-
ing `1 and `∞ trust-region subproblems. To this aim, we consider the DC decomposi-
tion (12)-(13) of the (possibly) nonconvex part of the objective function. Thus, given
σ > max{λmax(A),0}, the subproblems for the `1 norm take the form{

min
x∈Rn

g(x)−h(x) = φ(x)

s.t. ∑
n
i=1|xi| ≤ r,

(P1)

with
g(x) :=

σ

2
‖x‖2 + 〈b,x〉 and h(x) :=

1
2
〈(σ I−A)x,x〉,

19

while for the `∞ norm these problems are{
min
x∈Rn

g(x)−h(x) = φ(x)

s.t. −r ≤ xi ≤ r, i = 1, . . . ,n.
(P∞)

Observe that the feasible set of (P1) can be equivalently written in terms of 2n linear con-
straints of the type±x1±x2±·· ·±xn ≤ r, so the problem is a particular instance of (P). In
principle, as mentioned in Remark 3.1, the largest step-size derived in [9] ensuring feasibil-
ity could be computed. However, as the feasible set has 2n linear constraints, computing (4)
would be very time-consuming. Nonetheless, given a point yk and a feasible direction dk, an
upper bound of the maximum value of the step-size λ k for (P1) is given by the Euclidean
norm, since

‖yk +λdk‖1 ≥ ‖yk +λdk‖> r, for all λ > λ̂k,

where

λ̂k :=
〈yk,dk〉+

√
〈yk,dk〉2−‖dk‖2(‖yk‖2− r2)

‖yk‖2 ,

so one must always choose λ k ≤ λ̂k to avoid extra time in checking feasibility. On the
other hand, for the `∞ norm, the situation is more favorable, as feasibility can be guaranteed
whenever

0≤ λ ≤ min
i6∈I(xk)

{
r
|dk,i|

−
yk,i

dk,i

∣∣∣∣ dk,i 6= 0
}
,

which coincides with (4), so no time will be wasted in Step 8 of Algorithm 1 if one takes λ k
satisfying the latter inequalities.

Experiments We used the same parameter setting as in the previous section for Algo-
rithm 1, except for the value of γ , which was increased to 20. The matrix A and the vector
b were generated with coordinates randomly and uniformly chosen in]−1,1[, while the
value of r was randomly and uniformly chosen in the range]0,

√
n/4[for (P1) and]0,1/4[

for (P∞). For each size n ∈ {1000,1500, . . . ,5000}, DCA and BDCA were run from the
same 100 starting points randomly picked inside the trust-region. We stopped the algorithms
when ‖dk‖/‖xk‖ ≤ 10−8 for the first time. The time comparison for both norms are sum-
marized in Figure 5. BDCA was consistently faster than DCA. On average, it was 3.8 times
faster for solving (P1) and 3.65 times faster for (P∞).

We also show in Figure 6 the percentage of iterations at which the boosting step was
activated. We observe that, for all sizes, the linesearch was performed on average in around
80% of the iterations for the case of the `1 norm, and 40% for the `∞ norm.

When applied to (P1), both algorithms obtained the same value in 875 instances, BDCA
reached a smaller objective value in 18 instances, while DCA did so in 7. When applied
to (P∞), BDCA obtained a smaller objective value in 461 instances, while DCA did so
in 417 (the value was the same in 22 instances). In Figure 7 we show the behavior of both
algorithms for a particular instance with n= 1000, which was chosen so that both algorithms
attained the same objective value.

We conclude this section with some comments about the rate of convergence of DCA
and BDCA. According to Theorem 4.1, both methods are R-linearly convergent, so by (18),

lim
k→∞
‖xk− x‖

1
k ≤ η ,

20

1000 1500 2000 2500 3000 3500 4000 4500 5000
n

0
2
4
6
8

10
12
14
16
18
20
22
24
26

Ti
m

e
DC

A
/ T

im
e

BD
CA

1000 1500 2000 2500 3000 3500 4000 4500 5000
n

0
2
4
6
8

10
12
14
16
18
20
22
24

Ti
m

e
DC

A
/ T

im
e

BD
CA

Figure 5: Comparison between DCA and BDCA for solving randomly generated `1 (left)
and `∞ (right) trust-region subproblems in Rn, with n ∈ {1000,1250, . . . ,5000}. For each
size, we represent the ratios of the running time between DCA and BDCA for 100 random
starting points (blue crosses) and the median ratio among all of them (white circle).

1000 2000 3000 4000 5000
n

0.0

0.2

0.4

0.6

0.8

1.0

Ite
ra

tio
ns

 li
ne

se
ar

ch
 /

To
ta

tl
ite

ra
tio

ns

1000 2000 3000 4000 5000
n

0.0

0.2

0.4

0.6

0.8

1.0

Ite
ra

tio
ns

 li
ne

se
ar

ch
 /

To
ta

tl
ite

ra
tio

ns

Figure 6: Ratio of the number of iterations at which the boosting step of BDCA was activated
with respect the number of iterations performed for solving randomly generated `1 (left) and
`∞ (right) trust-region subproblems in Rn, with n ∈ {1000,1250, . . . ,5000}. For each size,
we represent this ratio for 100 random starting points (green crosses) and the median ratio
among all of them (white circle).

for some η ∈]0,1[. In Figure 8, for a particular random instance, we have represented the
sequence {‖xk− x‖1/k}, which was computed for both algorithms after obtaining the limit
point x with a higher precision. We observe that the value of η is very close to 1 for DCA,
while line-searches clearly helped improving this slow rate. A possible explanation about
the bad R-linear convergence rate of DCA can be deduced from the proof of Theorem 4.1.
The upper bound obtained there is β

ρ+β
, with β > σ . When λmax(Q) > 0, Assumption 1

holds for ρ as in (14), which would then be equal to σ −λmax(Q). Therefore,

β

ρ +β
=

β

σ −λmax(Q)+β
>

σ

2σ −λmax(Q)
,

where the last inequality holds since the left term is an increasing function with respect to
β . In our numerical tests we took σ−λmax(Q) = 0.01 (we numerically observed how larger

21

0 200 400 600 800 1000 1200 1400
k

10 10

10 7

10 4

10 1

102

(x
k)

DCA
BDCA

0

20

40

60

80

k

0 100 200 300 400 500 600 700 800
k

10 12

10 9

10 6

10 3

100

(x
k)

DCA
BDCA

0

50

100

150

200

k

Figure 7: Value of the objective function of DCA and BDCA (using logarithmic scale in
the left axis) as well as the step-size used in BDCA (right axis, dotted blue line), with
respect to the iteration, for solving a randomly generated `1 (top) and `∞ (bottom) trust-
region subproblem in R1000 from the same random starting point. Both algorithms attained
the same objective value φ̄ .

values slowed down both DCA and BDCA). In the random instances shown in Figure 8
λmax(Q) was equal to 25.77 for the `1 norm and 25.89 for the `∞ norm, which would give
upper bounds on the R-linear convergence rate of 0.9996 for both problems. According to
the figures, these bounds seem to be tight, particularly for the `∞ norm.

5.3 Piecewise quadratic problems with box constraints
Finally, we test BDCA on optimization problems with nonsmooth objective function. To
this aim, we consider piecewise quadratic problems with linear constraints of the form min

x∈Rn
φ(x) := min j∈{1,...,m}

{1
2‖x− c j‖2}

s.t. li ≤ xi ≤ ui, i = 1, . . . ,n;
(33)

for given l = (l1, . . . , ln),u = (u1, . . . ,un) ∈ Rn and c1, . . . ,cm ∈ Rn.

22

0 200 400 600 800 1000 1200 1400
k

0.95

1.00

1.05

1.10

1.15

||x
k

x |
|1/

k

DCA
BDCA

0 250 500 750 1000 1250 1500 1750 2000
k

0.95

1.00

1.05

1.10

1.15

1.20

||x
k

x |
|1/

k

DCA
BDCA

Figure 8: Comparison on the rate of R-linear convergence of DCA and BDCA for solving
the same randomly generated `1 (top) and `∞ (bottom) trust-region subproblems in R1000

from Figure 7.

As discussed in [26, § 6.3], the objective function of this problem admits the DC decom-
position φ(x) = g(x)−h(x) with

g(x) :=
1
2

m

∑
j=1
‖x− c j‖2 and h(x) := max

l∈{1,...,m}

1
2

m

∑
j=1
j 6=l

‖x− c j‖2

 .

Experiments For our numerical tests, we generated problems of the form (33) as follows.
First, the vector l ∈ Rn was generated with coordinates randomly chosen in]−5,5[. Then,
we randomly generated a vector e ∈ Rn with coordinates in]0,5[and we set u := l + e.
Finally, the points c1, . . . ,cm ∈ Rn were generated so that they became unfeasible for all
constraints as follows: each component i ∈ {1, . . . ,n} of each of these vectors was ran-
domly picked in one of the intervals]li−10, li[or]ui,ui +10[. In our experiment, for each
n ∈ {100,150, . . . ,1000} and each m ∈ {100,150, . . . ,1000}, DCA and BDCA were run
from the same 100 starting points randomly picked inside the feasible set. We used the
same parameter setting and stopping criterion for the algorithms as in the previous TRSP
experiments. The time comparison is shown in Figure 9, where we represent the median
ration between DCA and BDCA among the 100 instances. Detailed results for all 100 runs

23

are shown in Figure 10(a) for fixed n = 500 and Figure 10(b) for fixed m = 500. From the
results of this comparison we infer that the superiority of BDCA increases as m does, while
it stabilizes as n increases. As in previous experiments, we show in Figure 11 the percentage
of iterations at which the boosting step was activated. The objective value attained by DCA
and BDCA were the same in all instances.

n

200 400 600 800 1000 m200 400 600 8001000

Ti
m

e
DC

A
/ T

im
e

BD
CA

1.49
5.00

10.00

15.00

20.00

Figure 9: Comparison between DCA and BDCA for solving randomly generated piece-
wise quadratic problems with m pieces in Rn, for n ∈ {100,200, . . . ,1000} and m ∈
{100,200, . . . ,1000}. For each pair (n,m), we represent the median of the ratios of the
running time between DCA and BDCA for 100 random starting points.

6 Concluding remarks
We have extended the Boosted DC Algorithm for solving linearly constrained DC program-
ming. The algorithm is proved to provide KKT points of the constrained problem. In ad-
dition, we have shown why this approach cannot be extended to more general convex con-
straints. The theoretical results were confirmed by some numerical experiments for testing
the copositivity of matrices and for solving `1 and `∞ trust-region subproblems. For coposi-
tive matrices, BDCA was on average fifteen times faster than DCA; for non-copositive ones,
this advantage was much more superior; and for trust-region subproblems, BDCA was more
than three times faster than DCA. We also considered piecewise quadratic problems with
box constraints, which thus have nonsmooth objective functions. We observed again that
BDCA was faster than DCA and, further, that the advantage was more noticeable as the
number of pieces of the objective function increased. Future research includes investiga-
tion of alternative approaches to derive a Boosted DCA that permits to address any type of
constrained DC programs. It would also be interesting to combine BDCA with the inertial
technique employed in [27].

24

200 400 600 800 1000
n

0
2
4
6
8

10
12
14
16
18

Ti
m

e
DC

A
/ T

im
e

BD
CA

(a) n ∈ {100,200, . . . ,1000} and m = 500

200 400 600 800 1000
m

0
2
4
6
8

10
12
14
16

Ti
m

e
DC

A
/ T

im
e

BD
CA

(b) n = 500 and m ∈ {100,200, . . . ,1000}

Figure 10: Comparison between DCA and BDCA for solving randomly generated piecewise
quadratic problems with m pieces in Rn, for n ∈ {100,200, . . . ,1000} and m = 500 (left),
and for n = 500 and m ∈ {100,200, . . . ,1000} (right). For each problem, we represent the
ratios of the running time between DCA and BDCA for 100 random starting points (blue
crosses) and the median ratio among all of them (white circle).

200 400 600 800 1000
n

0.0

0.2

0.4

0.6

0.8

1.0

Ite
ra

tio
ns

 li
ne

se
ar

ch
 /

To
ta

tl
ite

ra
tio

ns

(a) n ∈ {100,200, . . . ,1000} and m = 500

200 400 600 800 1000
m

0.0

0.2

0.4

0.6

0.8

1.0

Ite
ra

tio
ns

 li
ne

se
ar

ch
 /

To
ta

tl
ite

ra
tio

ns

(b) n = 500 and m ∈ {100,200, . . . ,1000}

Figure 11: Ratio of the number of iterations at which the boosting step of BDCA was
activated with respect the number of iterations performed for solving randomly generated
piecewise quadratic problems with m pieces in Rn, for n∈{100,200, . . . ,1000} and m= 500
(left), and for n = 500 and m ∈ {100,200, . . . ,1000} (right). For each size, we represent this
ratio for 100 random starting points (green crosses) and the median ratio among all of them
(white circle).

Acknowledgments FJAA and RC were partially supported by the Ministry of Science,
Innovation and Universities of Spain and the European Regional Development Fund (ERDF)
of the European Commission (PGC2018-097960-B-C22), and by the Generalitat Valenciana
(AICO/2021/165). PTV was supported by Vietnam Ministry of Education and Training
Project hosting by the University of Technology and Education, Ho Chi Minh City Vietnam
(2023-2024).

25

References
[1] Aragón Artacho, F.J., Fleming, R., Vuong, P.T.: Accelerating the DC algorithm for

smooth functions. Math. Program. 169(1), 95–118 (2018)

[2] Aragón, F.J., Goberna, M.A., López, M.A., Rodríguez, M.M.L.: Nonlinear Optimiza-
tion. Springer Undergraduate Texts in Mathematics and Technology (2019)

[3] Aragón Artacho, F.J., Vuong, P.T.: The boosted difference of convex functions algo-
rithm for nonsmooth functions. SIAM J. Optim. 30(1), 980–1006 (2020)

[4] Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in
Hilbert spaces, 2nd ed. Springer, Berlin (2017)

[5] Bomze, I.M.: Copositive optimization-recent developments and applications. European
J. Oper. Res. 216(3), 509–520 (2012)

[6] Burer, S.: On the copositive representation of binary and continuous nonconvex
quadratic programs. Math. Program. 120(2), 479–495 (2009)

[7] Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. MPS/SIAM Series on
Optimization (2000)

[8] Dür, M., Hiriart-Urruty, J.-B.: Testing copositivity with the help of difference-of-convex
optimization. Math. Program. 140(1), 31–43 (2013)

[9] Ferreira, O.P., Santos, E.M., Souza, J.C.O.: Boosted scaled subgradient method for DC
programming. ArXiv: https://arxiv.org/abs/2103.10757 (2021)

[10] Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-
convex minimization problems. Int. J. Syst. Sci. 12(8), 989–1000 (1981)

[11] Geremew, W., Nam, N.M., Semenov, A., Boginski, V., Pasiliao, E.: A DC program-
ming approach for solving multicast network design problems via the Nesterov smooth-
ing technique. J. Glob. Optim. 72(4), 705–729 (2018)

[12] Geremew, S., Mouffe, M., Toint, P.L., Weber-Mendonça, M.: A recursive `∞-trust-
region method for bound-constrained nonlinear optimization. IMA J. Numer. Anal. 28(4),
827–861 (2008)

[13] Johnson, C.R., Reams, R.: Constructing copositive matrices from interior matrices.
Electron. J. Linear Al., 17, 9–20 (2008)

[14] de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via
copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)

[15] Le Thi, H.A., Pham Dinh, T.: DC Programming and DCA: Thirty Years of Develop-
ments. Math. Program. 169(1), 5–68 (2018)

[16] Le Thi, H.A., Pham Dinh, T., Yen, N.D.: Behavior of DCA sequences for solving the
trust-region subproblem. J. Global Optim. 53(2), 317–329 (2012)

26

2103.10757

[17] Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming
and DCA revisited with DC models of real world nonconvex optimization problems. Ann.
Oper. Res. 133(1-4), 23–46 (2005)

[18] Le Thi, H.A., Huynh V.N., Pham Dinh, T.: Convergence analysis of Difference-of-
Convex Algorithm with subanalytic data. J. Optim. Theory Appl. 179(1), 103–126 (2018)

[19] Luo, Z.Q., Tseng, P: Error bound and convergence analysis of matrix splitting algo-
rithms for the affine variational inequality problem. SIAM J. Optim. 2(1), 43–54 (1992)

[20] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function
and a continuously differentiable function. J. Optim. Theory Appl. 33(1), 9–23 (1981)

[21] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. II.
Springer-Verlag Berlin Heidelberg (2006)

[22] Moosaei, H., Bazikar, F., Ketabchi, S., Hladík, M.: Universum parametric-margin
v-support vector machine for classification using the difference of convex functions algo-
rithm. Appl. Intell. 52(3), 2634–2654 (2022)

[23] Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear
programming. Math. Program. 39(2), 117–129 (1987)

[24] Nam, N.M., Geremew, W., Reynolds, R., Tran, T.: Nesterov’s smoothing technique
and minimizing differences of convex functions for hierarchical clustering. Optim. Lett.
12(3), 455–473 (2018)

[25] Nie, J., Yang, Z., Zhang, X.: A complete semidefinite algorithm for detecting coposi-
tive matrices and tensors. SIAM J. Optim. 28(4), 2902-2921 (2018)

[26] de Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Global
Optim. 75(2), 523–563 (2019)

[27] de Oliveira, W., Tcheou, M.P.: An inertial algorithm for DC programming. Set-Valued
Var. Anal. 27(4), 895–919 (2019)

[28] Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to DC programming: theory,
algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)

[29] Pham Dinh, T., Le Thi, H.A.: A D.C. optimization algorithm for solving the trust-
region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)

[30] Pham Dinh, T., Le Thi, H.A., Akoa, F. : Combining DCA (DC Algorithms) and interior
point techniques for large-scale nonconvex quadratic programming. Optim. Methods
Softw. 23(4), 609–629 (2008)

[31] Tuan H.N.: Convergence rate of the Pham Dinh-Le Thi algorithm for the trust-region
subproblem. J. Optim. Theory Appl. 154(3), 904–915 (2012)

[32] Tuan H.N.: Linear convergence of a type of iterative sequences in nonconvex quadratic
programming. J. Math. Anal. Appl. 423(2), 1311–1319 (2015)

27

[33] Tuan H.N., Yen, N.D.: Convergence of the Pham Dinh-Le Thi’s algorithm for the
trust-region subproblem. J. Glob. Optim. 55(2), 337-347 (2013)

[34] Rockafellar, R.T.: Convex Analysis. Princeton University Press (1972)

[35] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Grundlehren Math. Wiss. 317,
Springer, New York (1998)

[36] Xu, H.M., Xue, H., Chen, X.H., Wang, Y.Y.: Solving indefinite kernel support vector
machine with difference of convex functions programming. Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence (2017)

28

	1 Introduction
	2 Preliminaries
	3 The Boosted DC Algorithm and its convergence
	4 Linear convergence for quadratic objective functions
	5 Numerical experiments
	5.1 Testing copositivity
	5.2 Solving the 1 and trust-region subproblem
	5.3 Piecewise quadratic problems with box constraints

	6 Concluding remarks

