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Abstract. Research in classical ruin theory has largely focused on the first passage time
analysis of a surplus process below level 0. Recently, inspired by numerous applications in
finance, physics, and optimization, there has been an accrued interest in the analysis of the
last passage time (below level 0). In this paper, we aim to bridge the first and the last
passage times and unify their analyses. For this purpose, we consider negative excursions
of an underlying process in two manners, cumulative and noncumulative, and introduce two
random times, denoted by sr and lr, where r can be interpreted as a measure of a decision
maker’s tolerance to negative excursions. Our analysis focuses on spectrally negative Lévy
processes, for which we derive the Laplace transform and some distributional quantities
of these random times in terms of standard scale functions. An application to credit risk
management is considered at the end.

1. Introduction

In applied probability, an extensive literature exists on the analysis of first passage times
for a variety of stochastic processes. The study of first passage times has also found numerous
applications in many fields. In quantitative risk management, decision makers are concerned
with institution’s solvency when an adverse event occurs, and thus most attention has been
paid to study the distribution of the first time an underlying process X drops below level 0,
i.e.,

τ−0 = inf{t ≥ 0 : Xt < 0}.
On the other hand, the last passage time (below level 0), defined as

g = sup {t ≥ 0 : Xt ≤ 0} , (1)

with the convention sup ∅ = 0, is also of great importance in both theoretical and applied
probability. Early theoretical works on last passage times include Getoor and Sharpe [12],
Maisonneuve [29], Syski [36], Monrad [30], Janson [17], Salminen [33], Doney [8], and Lachal
[19], among others. More recently, for Lévy processes, Sato and Watanabe [34] considered the
study of the moments of last exit times. Chiu and Yin [7] derive the joint Laplace transform
of first and last passage times for spectrally negative Lévy processes. Baurdoux [2] further
consider the last passage time over an independent exponential time horizon defined as

gq = sup {0 ≤ t ≤ eq : Xt ≤ 0} ,
where eq is an exponential random variable with rate q > 0, independent of X. Li et al. [24]
generalize the results in [2] by studying the joint Laplace transform of the last exit time, the
value of the process at the last exit time, and the occupation time until the last exit time.
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Cai and Li [6] derive the Laplace transform of occupation times of intervals until last passage
times for spectrally negative Lévy processes.

It is worth noting that last passage times have found many applications in finance, physics,
and optimization. For instance, last passage times are applied in modelling default risks (see
the seminal paper by Elliott et al. [11]) and insider trading (e.g., Imkeller [16]). Madan et al.
[28] discover the link between European option pricing and distributions of some last passage
times. Egami and Kevkhishvili [10] study last passage times of diffusions with applications to
credit risk management. Another interesting topic in optimization is to find optimal stopping
times to approximate last passage times. For example, Baurdoux and Pedraza [3,4] obtained
a stopping time that is close in L1 and Lp sense to the last passage time g for a spectrally
negative Lévy process. Other applications of last passage times can be found in physics (e.g.,
[13] and [1]) and reliability theory (e.g., [31]).

In risk management, the first passage time (τ−0 ) is typically used to model the event of
insolvency and the last passage time (g) is to characterize the last time that a company is in
an insolvent position. Note that negative surplus may be inevitable for a start-up company
or for a given subsidiary of a very large company because of high initial expenses, and it can
take a few years for a startup to be eventually profitable. Moreover, the risk tolerance level
to negative surplus of different businesses can be very different too. It is certainly debatable
whether a company should rely on risk measures involving only the first or the last passage time
to formulate a comprehensive approach on decisions related to business expansion, investment,
capital injections, dividend payments, etc.

In this paper, we propose a possible remedy by introducing two types of random times to
bridge the first and last passage times and unify their analyses. We consider the length of
negative excursions of an underlying process in two manners, cumulative and noncumulative,
and use them to model a company’s financial distress.

More specifically, the first random time is called occupation-type first-last passage time
defined as

sr = sup
{
t ≥ τ−0 : Ot > r and Xt ≤ 0

}
, r > 0, (2)

where Ot =
∫ t
0 1(−∞,0) (Xs) ds is the occupation time1 which represents the cumulative length

of negative excursions of the surplus process X below level 0 up to time t. If the set in (2)
is empty, we follow the convention that the supremum is reached at the smallest point, i.e.,
sup ∅ = τ−0 . For a given sample path ω, it is seen from (2) that

sr(ω) = τ−0 (ω),

if the total amount of time X(ω) stays below level 0 does not exceed r (i.e., Og ≤ r), and

sr(ω) = g(ω),

if the total amount of time X(ω) stays below level 0 exceeds r (i.e., Og > r). As such, sr
behaves like a “binary distribution” taking values in τ−0 or g. Heuristically, we have sr → τ−0
when r → ∞, and sr → g if r → 0. This result will be formally proved in Propositions 17
and 18. The parameter r > 0 can be interpreted as a decision maker’s risk tolerance level to
negative surplus. A smaller r implies a lower risk tolerance level to negative surplus and thus
more weight is put on the last passage time g. Recall that the last passage time g represents
the ultimate time a company turns to be profitable. A company with low tolerance level of

1There is an extensive literature on occupation times in applied probability and more specifically, in insur-
ance mathematics. See, e.g., [27] and [20].
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negative surplus will wait until very close to that time to consider more aggressive strategic
decisions such as hiring new employees, expanding the business, and paying dividends to
shareholders. On the other hand, it is common for start-up companies to experience negative
surplus at the onset and their associated tolerance level should likely to be high.

The second random time is the so-called Parisian-type first-last passage time defined as

lr = sup
{
t ≥ τ−0 : Ut > r

}
, r > 0, (3)

where Ut := t − gt with gt := sup {0 ≤ s ≤ t : Xs ≥ 0}. Note that Ut corresponds to the
length of the current excursion of the process X below 0 at time t, a quantity which is
known to play an important role in the definition of Parisian ruin times in [25] and [23].
Intuitively, lr corresponds to the ending time of negative excursions longer than r. After
lr, the surplus process X may still experience periods of negative surplus but none of these
negative excursions will individually last longer than r time units. It is seen from (3) that
τ−0 ≤ lr < g, a.s. and lr may have a mass point at τ−0 if all the negative excursions are shorter
than r. The distinguishing feature of sr is that, for a given sample path ω, lr(ω) may be
such that τ−0 (ω) ≤ lr(ω) < g(ω). Hence, lr provides a smoother bridge (than sr) between the
first and last passage times. Similarly, the parameter r in (3) can be interpreted as a decision
maker’s risk tolerance to negative surplus. Furthermore, it will be shown that lr → τ−0 if
r → ∞ and lr → g if r → 0 (see Propositions 17 and 18 for more details).

From the definitions of lr and sr, one can see that

τ−0 ≤ lr ≤ sr ≤ g, a.s. (4)

for all r ≥ 0. Figure 1 plots three possible cases with different choices of r for a sample path
of X. Panel (A) represents the case that r is shorter than the longest individual negative
excursion, which implies τ−0 < lr < sr = g. Panel (B) represents the case that r is longer
than the longest individual negative excursion but shorter than the aggregate total negative
excursion (Og), which implies τ−0 = lr < sr = g. Panel (C) represents the case r is longer
than the aggregate total negative excursion, which implies τ−0 = lr = sr < g.

The main contributions of the paper are summarized as follows. First, we derive the
analytical distribution for the two random times, namely sr and lr, through their Laplace
transforms. Secondly, via the analysis of sr and lr, some new results on the joint distributions
of (Oeq , Xeq) and (Ueq , Xeq) for spectrally negative Lévy processes are derived, which are of
interest on their own in fluctuation theory. Recall that Ot =

∫ t
0 1(−∞,0) (Xs) ds and Ut = t−gt,

where gt = sup{0 ≤ s ≤ t : Xs ≥ 0}. For the joint distribution of (Ot, Xt), explicit expressions
for a Brownian risk process with drift and a Cramér-Lundberg process with exponential jumps
will also be derived. Third, we show the convergence of sr and lr to the first passage time τ−0
and the last passage time g when r → ∞ and r → 0, respectively. As such, our analysis of two
random times enables us to bridge the first and the last passage times in terms of the level r.
By varying different levels of r, a decision maker can form a more comprehensive view on the
periods with financial distress (i.e., negative surplus). Fourth, we consider an application of
our results on the two random times to a credit risk management model introduced in Egami
and Kevkhishvili [10].

The rest of the paper is organized as follows. Section 2 presents the necessary background
material on spectrally negative Lévy processes and scale functions. The main results of this
paper as they pertain to sr and lr are derived in Sections 3 and 4, respectively. Section 5
proves the convergence of the random times sr and lr to the first and last passage times when
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Figure 1. A sample path of X with different choices of r.

r → 0 or ∞. In Section 6, we consider an application to credit risk management using the
two random times.

2. Preliminaries on spectrally negative Lévy processes

First, we present the necessary background material on spectrally negative Lévy processes.
A Lévy insurance risk process X is a process with stationary and independent increments and
no positive jumps. To avoid trivialities, we exclude the case where X has monotone paths.
As the Lévy process X has no positive jumps, its Laplace transform exists: for all λ, t ≥ 0,

E
[
eλXt

]
= etψ(λ),

where

ψ(λ) = γλ+
1

2
σ2λ2 +

∫ 0

−∞

(
eλz − 1− λz1{z>−1}

)
Π(dz),

for γ ∈ R and σ ≥ 0, and where Π is a σ-finite measure on (−∞, 0) called the Lévy measure
of X which is assumed to satisfy ∫ 0

−∞
(1 ∧ z2)Π(dz) <∞.

Throughout, we will use the standard Markovian notation: the law of X when starting from
X0 = x is denoted by Px and the corresponding expectation by Ex. We write P and E when
x = 0.
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We now present the definition of the scale functions Wq and Zq of X. First, recall that
there exists a function Φ: [0,∞) → [0,∞) defined by Φq = sup{λ ≥ 0 | ψ(λ) = q} (the
right-inverse of ψ) such that

ψ(Φq) = q, q ≥ 0.

When E[X1] > 0, we have
lim
q→0

q

Φq
= ψ′(0+) = E[X1]. (5)

We have that Φ(q) = 0 if and only if q = 0 and ψ′(0+) ≥ 0.
For q ≥ 0, the q-scale function of the process X is defined as the continuous function on

[0,∞) with Laplace transform∫ ∞

0
e−λyWq(y)dy =

1

ψq(λ)
, for λ > Φq, (6)

where ψq(λ) = ψ(λ) − q. This function is unique, positive and strictly increasing for x ≥ 0
and is further continuous for q ≥ 0. We extend Wq to the whole real line by setting Wq(x) = 0
for x < 0. We write W =W0 when q = 0.

We also define another scale function Zq(x, θ) by

Zq(x, θ) = eθx
(
1− ψq(θ)

∫ x

0
e−θyWq(y)dy

)
, x ≥ 0, (7)

and Zq(x, θ) = eθx for x < 0. We denote the derivative of Zq(x, θ) with respect to x by

Z ′
q (x, θ) = θZq (x, θ)− ψq (θ)Wq (x) . (8)

A second generation scale function was introduced by Loeffen et al. [27], that is, for
p, p+ q ≥ 0 and x ∈ R,

W(p,q)
a (x) =Wp (x) + q

∫ x

a
Wp+q (x− y)Wp (y) dy

=Wp+q (x)− q

∫ a

0
Wp+q (x− y)Wp (y) dy, (9)

Note that the two expressions on the right-hand side of (9) can be shown to be equivalent
using the following identity from [27]: for p, q ≥ 0 and x ∈ R,

(p− q)

∫ x

0
Wq(x− y)Wp(y)dy =Wp(x)−Wq(x). (10)

The derivative of W(p,q)
a with respect to x is given by

W(p,q)′
a (x) =W ′

p+q (x)− q

∫ a

0
W ′
p+q (x− y)Wp (y) dy. (11)

We also recall the following function introduced by Loeffen et al. [26] defined as

Λ(q) (x, z) =

∫ ∞

0
Wq (x+ u)

u

z
P (Xz ∈ du) ,

and we write Λ = Λ(0) when q = 0. We also denote the partial derivative of Λ(q) with respect
to x by

Λ(q)′(x, z) =
∂Λ(q)

∂x
(x, z) =

∫ ∞

0
W ′
q (x+ u)

u

z
P (Xz ∈ du) . (12)
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We also recall the definition of the first-passage time of X above a level b ∈ R defined as

τ+b = inf{t > 0: Xt > b},

with the convention inf ∅ = ∞. It is well known that

E
[
e−qτ

+
b 1{τ+b <∞}

]
= e−Φqb, b > 0. (13)

Finally, we recall the following identities for the exit times τ−0 and g. From Theorem 8.1
of [18],

Ex
[
e−qτ

−
0 1{τ−0 <∞}

]
= Zq(x)−

q

Φq
Wq(x), q ≥ 0, x ∈ R, (14)

where Zq(x) = Zq(x, 0). From Lemma 2.2 of [27].

Ex
[
e−qτ

−
0 W

(
Xτ−0

+ z
)
1{τ−0 <∞}

]
= W(q,−q)

x (x+ z)−Wq(x)Z(z,Φq). (15)

Also, by Theorem 3.1 of [7], it is known that

Ex
[
e−qg1{g>0}

]
= E [X1]

(
Φ′
qe

Φqx −Wq(x)
)
, q ≥ 0, x ∈ R, (16)

if E [X1] > 0. We refer the reader to [18] for more details on spectrally negative Lévy processes
and fluctuation identities.

3. Occupation-type first-last passage time

3.1. Distribution of sr. We begin our analysis with the occupation-type first-last passage
time sr defined in (2). We recall that sr is a binary distribution taking values in τ−0 and g.
More specifically,

sr =

{
τ−0 , if O∞ ≤ r,

g, if O∞ > r,

where, from Corollary 5 of [20],

Px (O∞ ≤ r) = E[X1]

(
W (x) +

∫ r

0
Λ′ (x, s) ds

)
. (17)

We note that an expression for the Laplace transform and distribution function of sr are
respectively given in Theorem 2 and Corollary 4. We first provide a preliminary result related
to the joint distribution of

(
Oeq , Xeq

)
, which will be used in the proof of Theorem 2.

Lemma 1. For q > 0, x ∈ R and y, z ≥ 0,

Px
(
Oeq ∈ dz,Xeq ∈ dy

)
=q
(
e−ΦqyWq (x)−Wq (x− y)

)
δ0 (dz) dy

+qe−Φqye−qz
(
Λ(q)′ (x, z)− ΦqΛ

(q) (x, z)
)
dzdy, (18)

where δ0(.) is the Dirac mass at 0.

Proof. From [14], we have the following potential measure discounted by its joint occupation
time over the half line (−∞, 0), that is : for λ ≥ 0, q > 0 and x, y ∈ R,

Ex
[
e−λOeq , Xeq ∈ dy

]
= q

(
Φq+λ − Φq

λ
Zq (x,Φλ+q)Zλ+q (−y,Φq)−W(q,λ)

x (x− y)

)
dy.

(19)
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For y ≥ 0, W(q,λ)
x (x− y) =Wq(x− y) and Zλ+q (−y,Φq) = e−Φqy, and Eq. (19) reduces to

Ex
[
e−λOeq , Xeq ∈ dy

]
=qe−Φqy

(
Φq+λZq (x,Φλ+q)

λ
− Φq

Zq (x,Φλ+q)

λ

)
− qWq (x− y) . (20)

Finally, substituting the following identities (see, e.g., [20]):
Zq (x,Φλ+q)

λ
=

∫ ∞

0
e−λz

(
e−qzΛ(q) (x, z)

)
dz, (21)

and
Φλ+qZq (x,Φλ+q)− λWq (x)

λ
=

∫ ∞

0
e−λz

(
e−qzΛ(q)′ (x, z)

)
dz, (22)

into (20), one easily obtains Eq. (18) by Laplace transform inversion. ■

From Lemma 1, it is clear that

Px
(
Oeq = 0, Xeq ∈ dy

)
= q

(
e−ΦqyWq(x)−Wq(x− y)

)
dy, (23)

for x, y ≥ 0. Also, it is worth noting that (23) corresponds to Px
(
Xeq ∈ dy, τ−0 > eq

)
, the

q-potential measure of X killed on exiting [0,∞).
We now derive an expression for the Laplace transform of sr.

Theorem 2. For q, r > 0, x ∈ R and E [X1] > 0,

Ex
[
e−qsr

]
=E [X1]

∫ ∞

r
e−qz

(
Λ(q)′ (x, z)− ΦqΛ

(q) (x, z)
)
dz

+E [X1]

∫ r

0

∫ ∞

0

(
W(q,−q)′
x (x+ z)−Wq(x)Z

′(z,Φq)
) z
s
P (Xs ∈ dz) ds. (24)

Proof. Using the fact that
{
sr = τ−0

}
= {O∞ ≤ r} and

{
τ−0 < sr < eq

}
= {Oeq > r,Xs >

0 for all s ≥ eq}, it follows that

Ex
[
e−qsr

]
=Ex

[
e−qsr1{sr>τ−0 }

]
+ Ex

[
e−qτ

−
0 1{sr=τ−0 }

]
=Ex

[
PXeq

(
τ−0 = ∞

)
1{Oeq>r}

]
+ Ex

[
e−qτ

−
0 1{O∞≤r}

]
=E [X1]

∫ ∞

0

∫ ∞

r
W (y)Px

(
Oeq ∈ dz,Xeq ∈ dy

)
+ Ex

[
e−qτ

−
0 1{O∞≤r}

]
, (25)

where the second equality follows from the Markov property (applied at time eq) and the third
equality follows from the fact that Px

(
τ−0 = ∞

)
= E [X1]W (x).

From (17) and Tonelli’s theorem, we get

Ex
[
e−qτ

−
0 1{O∞≤r}

]
=Ex

[
e−qτ

−
0 PX

τ−0
(O∞ ≤ r)

]
=E [X1]

∫ r

0
Ex
[
e−qτ

−
0 Λ′

(
Xτ−0

, s
)]

ds

=E [X1]

∫ r

0

∫ ∞

0
Ex
[
e−qτ

−
0 W ′

(
Xτ−0

+ z
)
1{τ−0 <∞}

] z
s
P (Xs ∈ dz) ds

=E [X1]

∫ r

0

∫ ∞

0

(
W(q,−q)′
x (x+ z)−Wq(x)Z

′(z,Φq)
) z
s
P (Xs ∈ dz) ds,

(26)
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where (12) is applied in the third equality and the derivative of (15) is applied in the last
equality. Substituting (18) and (26) into (25) completes the proof of Theorem 2. ■

In the following remark, we prove that sr converges in distribution to τ−0 (as r → ∞) and
g (as r → 0) by showing that the Laplace transform of sr reduces to (14) and (16) in their
respective limiting cases.

Remark 3. First, as r → ∞,

lim
r→∞

Ex
[
e−qsr

]
=E [X1]

∫ ∞

0

∫ ∞

0

(
W(q,−q)′
x (x+ z)−Wq(x)Z

′(z,Φq)
) z
s
P (Xs ∈ dz) ds

=E[X1] lim
θ→0

∫ ∞

0
e−θs

∫ ∞

0

(
W(q,−q)′
x (x+ z)−Wq(x)Z

′(z,Φq)
) z
s
P (Xs ∈ dz) ds.

(27)

Applying Kendall’s identity, and Eqs. (8) and (39) of [21], we obtain∫ ∞

0
e−θs

∫ ∞

0

(
W(q,−q)′
x (x+ z)−Wq(x)Z

′(z,Φq)
) z
s
P (Xs ∈ dz) ds

=

∫ ∞

0
e−ΦθzW(−q,q)′

x (x+ z) dz −Wq(x)

∫ ∞

0
e−ΦθzZ ′(z,Φq)dz

=Φθ

∫ ∞

0
e−ΦθzW(q,−q)

x (x+ z) dz −Wq(x)−Wq (x)

(
Φq (θ − q)

θ (Φθ − Φq)
− q

θ

)
=Φθ

Zq(x,Φθ)

θ
−Wq (x)

Φθ (θ − q)

θ (Φθ − Φq)
. (28)

Substituting (28) into (27) and applying (5), one deduces that the Laplace transform of sr
reduces to (14) as r → ∞.

Now, we move on to the limiting case where r → 0. With the help of (21) and (22), it
follows that

lim
r→0

Ex
[
e−qsr

]
=E [X1]

∫ ∞

0
e−qz

(
Λ(q)′ (x, z)− ΦqΛ

(q) (x, z)
)
dz

=E [X1] · lim
λ→0

(
(Φλ+q − Φq)Zq (x,Φλ+q)− λWq (x)

λ

)
=E [X1]

(
Φ′
qe

Φqx −Wq(x)
)
, (29)

where Zq(x,Φq) = eΦqx and limλ→0
Φλ+q−Φq

λ = Φ′
q are applied in the last equation. Eq. (29)

corresponds to the Laplace transform of g given in (16).

In fact, it can be shown that sr converges to τ−0 and g (as r → ∞ and r → 0, respectively)
Px almost surely. We refer the reader to Section 5 for the proof of this result.

The next result on the distribution of sr is an immediate consequence of Eq. (25).

Corollary 4. For t, r > 0, x ∈ R and E [X1] > 0,

Px (sr ≤ t) = E [X1]

∫ ∞

0

∫ ∞

r
W (y)Px (Ot ∈ ds,Xt ∈ dy) + Px

(
O∞ ≤ r, τ−0 ≤ t

)
, (30)

where

Px
(
O∞ ≤ r, τ−0 ≤ t

)
= E [X1]

∫ r

0

∫ ∞

0
Ex
[
W ′
(
Xτ−0

+ z
)
1{τ−0 ≤t}

] z
s
P (Xs ∈ dz) ds.
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For completeness, we also consider the random time sθ defined as

sθ = sup
{
t ≥ τ−0 : Ot > eθ and Xt ≤ 0

}
, (31)

where the parameter r in sr is replaced by an independent (of X) exponential rv eθ. The
following theorem gives an explicit expression (in terms of scale functions) of the Laplace
transform of sθ.

Theorem 5. For q, θ > 0, x ∈ R and E [X1] > 0,

Ex
[
e−qs

θ
]
=E[X1]

(
Φ′
qe

Φqx −
Φq+θ − Φq

θ
Zq(x,Φq+θ) +

Φθ
θ
Zq(x,Φθ)−

Φθ
θ

θ − q

Φθ − Φq
Wq(x)

)
.

(32)

Proof. Similar to the proof of Theorem 2, from the strong Markov property of X, it follows
that

Ex
[
e−qs

θ
]
=Ex

[
PXeq

(
τ−0 = ∞

)
1{Oeq>eθ}

]
+ Ex

[
e−qτ

−
0 1{O∞≤eθ}

]
=E[X1]Ex

[
W (Xeq)1{Oeq>eθ}

]
+ Ex

[
e−qτ

−
0 EX

τ−0

[
e−θO∞

]]
. (33)

Using the potential measure of X (see Corollary 8.9 of [18]) and (20), it is straightforward to
show that

Ex
[
W (Xeq)1{Oeq>eθ}

]
=Ex

[
W (Xeq)

]
− Ex

[
e−θOeqW (Xeq)

]
=Φ′

qe
Φqx −

Φq+θ − Φq
θ

Zq(x,Φq+θ). (34)

Moreover, from Theorem 1 of [23], we have

Ex
[
e−qτ

−
0 EX

τ−0

[
e−θO∞

]]
=Ex

[
e−qτ

−
0 EX

τ−0

[
e−θτ

+
0 E
[
e−θO∞

]]]
=ψ′(0+)

Φθ
θ
Ex
[
e
−qτ−0 +ΦθXτ−0

]
=ψ′(0+)

Φθ
θ

(
Zq(x,Φθ)−

θ − q

Φθ − Φq
Wq(x)

)
. (35)

Substituting (34) and (35) into (33) completes the proof of Theorem 5. ■

Once again, it can be shown that sθ converges in distribution to τ−0 (and g) as θ → 0(∞).

Remark 6. By noting that Zq(x,Φq) = eΦqx and using (5), one observes from (32) that the
Laplace transform of sθ converges to the Laplace transform of τ−0 as θ → 0. On the other
hand, applying the initial value theorem,

lim
θ→∞

Φq+θ − Φq
θ

Zq(x,Φq+θ) =Wq(x)

and

lim
θ→∞

Φθ
θ
Zq(x,Φθ) =Wq(x).

Then, one concludes that (32) reduces to (16) as θ → ∞.
9



As shown in Corollary 4, evaluating Px (sr ≤ t) boils down to deriving explicit expres-
sions for Px (Ot ∈ ds,Xt ∈ dy) and Px

(
Xτ−0

∈ dy, τ−0 ≤ t
)
. In what follows, we provide their

characterizations for two special cases of SNLPS, namely a Brownian motion with drift or a
Cramér-Lundberg process with exponential claims.

3.2. Examples.

3.2.1. Brownian risk model. Let Xt = µt + Bt, where µ > 0 and {Bt}t≥0 is a standard
Brownian motion. Using Formula 2.0.2 of [5], we obtain

Px
(
Xτ−0

∈ dy, τ−0 ≤ t
)
=x

∫ t

0

1√
2πz3/2

exp

(
−(x+ µz)2

2z

)
dzδ0(dy)

for x ≥ 0. We recall that, for this risk process, the scale function Wq(q ≥ 0) is given by

Wq(x) =
1

Φq + µ

(
eΦqx − e−(Φq+2µ)x

)
, x ≥ 0, (36)

where
Φq =

(√
µ2 + 2qσ2 − µ

)
σ−2.

Using Lemma 1, an expression for the joint distribution of (Oeq , Xeq) is provided in the
next corollary. This corresponds to Formulas 1.5.6 on page 258 of [5].

Corollary 7. For q > 0 and y, z ≥ 0,

Px
(
Oeq ∈ dz,Xeq ∈ dy

)
=qeµ(y−z)A(Φq+µ)2/2 (x, y, z) dzdy

+

{
q

Φq + µ

(
e−(Φq+2µ)(x−y)1{x>y} − e−(Φq+2µ)x−Φqy + eΦq(x−y)1{x≤y}

)}
δ0 (dz) , (37)

where

Aλ (x, y, z) =


√
2e−y

√
2λ−λz−x2/(2z)
√
πz

−
√
2λe−(y+x)

√
2λErfc

(√
2zλ−x√
2λ

)
, for x ≤ 0,

e−(y+x)
√
2λ
(√

2e−λz
√
πz

−
√
2λErfc

(√
λz
))

, for x > 0.

Proof. First, we note that the first term on the right-hand side of Eq. (18) can be evaluated
using (36). Now, we want to evaluate Λ(q)′ (x, s)−ΦqΛ

(q) (x, s) for x ∈ R. Given that Xs has
a normal distribution with mean µs and variance s, we obtain

Λ(q) (x, s) =

∫ ∞

(−x)∨0
Wq (x+ z)

z

s
√
2πs

e
−(z−µs)2

2s dz, x ∈ R.

For x > 0,

Λ(q) (x, s) =
Wq (x)

2

2e−
µ2s
2

√
2πs

+ eqs
(
Φq − 2 (Φq + µ)N

(
−s (Φq + µ)√

s

))
+

eqs

2 (Φq + µ)

(
(Φq + 2µ) eΦqx +Φqe

−(Φq+2µ)x
)
,
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and its derivative is given by

Λ(q)′ (x, s) =
W ′
q (x)

2

2e−
µ2s
2

√
2πs

+ eqs
(
Φq − 2 (Φq + µ)N

(
−s (Φq + µ)√

s

))
+
(Φq + 2µ) Φqe

qs

2 (Φq + µ)

(
eΦqx − e−(Φq+2µ)x

)
,

where N (·) is the cumulative distribution function of the standard normal distribution. For
x ≤ 0, we obtain

Λ(q) (x, s) = eqs
(
eΦqxN

(
x+ s (Φq + µ)√

s

)
+ e−(Φq+2µ)xN

(
x− s (Φq + µ)√

s

))
,

and Λ(q)′ (x, s) is given by

Λ(q)′ (x, s) = eqs
(
Φqe

ΦqxN
(
x+ s (Φq + µ)√

s

)
− (Φq + 2µ) e−(Φq+2µ)xN

(
x− s (Φq + µ)√

s

))
+eqs

(
eΦqxe−(x+s(Φq+µ))

2/(2s)

√
2π

+
e−(Φq+2µ)xe−(x−s(Φq+µ))

2/(2s)

√
2π

)
.

Then, for x ≤ 0,

Λ(q)′ (x, s)− ΦqΛ
(q) (x, s) =eqs

(
eΦqxe−(x+s(Φq+µ))

2/(2s)

√
2π

+
e−(Φq+2µ)xe−(x−s(Φq+µ))

2/(2s)

√
2π

)

− 2 (Φq + µ) eqse−(Φq+2µ)xN
(
x− s (Φq + µ)√

s

)
, (38)

and for x ≥ 0,

Λ(q)′ (x, s)− ΦqΛ
(q) (x, s)

=e−(Φq+2µ)x

Φqe
qs +

2e−
µ2s
2

√
2πs

+ eqs
(
Φq − 2 (Φq + µ)N

(
−s (Φq + µ)√

s

)) . (39)

Rearranging and rewriting (38) and (39) using the complementary error function Erfc(x) =
2√
π

∫∞
x e−t

2
dt = 2N (−x

√
2), we recover the result. ■

Now, if we take the inverse wrt to q of the joint distribution (37), we obtain the following
result which coincides with Formulas 1.5.8 on page 258 of [5].

Theorem 8. For a fixed time t > 0 and y ≥ 0,

Px (Ot ∈ dz,Xt ∈ dy) = Px
(
Xt ∈ dy, τ−0 > t

)
δ0 (dz) + eµ(y−x)−µ

2t/2B (t, x, y, z) dzdy,

where,

Px
(
Xt ∈ dy, τ−0 > t

)
=

1√
2πt

(
e−(y−x−µt)2 − eµ(y−x)−µ

2t/2−(x+y)2/(2t)
)
dy,

and

B (t, x, y, z) =

(
y
√
t− z

πt2
√
z

− x
√
z

πt2
√
t− z

)
e
− y2

2(t−z)
−x2

2z

11



+

(
1√

2πt3/2
− (x+ y)2√

2πt5/2

)
e−

(x+y)2

2t Erfc

(
y
√
z√

2t (t− z)
− x

√
t− z√
2tz

)
,

for x ≤ 0, and

B (t, x, y, z) =
(x+ y)

√
t− z

πt2
√
z

e
− (x+y)2

2(t−z)

+

(
1√

2πt3/2
− (x+ y)2√

2πt5/2

)
e−

(x+y)2

2t Erfc

(
(x+ y)

√
z√

2t (t− z)

)
,

for x ≥ 0.

3.2.2. Cramér-Lundberg risk model with exponential claims. LetX = {Xt, t ≥ 0} be a Cramér-
Lundberg risk model with exponential claims, i.e.

Xt = X0 + ct−
Nt∑
i=1

Ci,

where N = {Nt, t ≥ 0} is a Poisson process with rate η > 0 and {Ci}i∈N+ is a sequence of iid
exponential rv’s with mean 1/α, independent of N . In this case, the law of X is given by

P (Xt ∈ dz) = e−ηt

(
δ0(dz − ct) + e−α(ct−z)

√
ηαt

ct− z
I1(2

√
ηαt(ct− z))dz

)
, z ≤ ct, (40)

where Iν represents the modified Bessel function of the first kind of order ν and it can be
computed using (see, e.g., Supplement 4 in [32] for more details)

Iv(z) =

(
1

2
z

)v ∞∑
k=0

(
1
4z

2
)k

k!Γ(v + k + 1)
.

Also, from Eq. (20) of [22], it is already known that

Px
(
−Xτ−0

∈ dy, τ−0 ≤ t
)

=

∫ t

0

{∫ ∞

0
ηαe−α(z+y)

(
Px (Xw ∈ dz)−

∫ w

0

z

w − s
P (Xw−s ∈ dz) f(x+ cs, s)ds

)}
dwdy,

for x ≥ 0, where

f(x+ cs, s) = e−αx−(η+αc)s

√
ηαs

x+ cs
I1(2

√
ηαs(x+ cs)).

For the process X, its scale function Wq(q ≥ 0) is given by

Wq(x) =
1√
∆q

(
(α+Φq)e

Φqx − (α+ θq)e
θqx
)
, x ≥ 0, (41)

where

Φq =
1

2c

(
q + η − cα+

√
∆q

)
, (42)

θq =
1

2c

(
q + η − cα−

√
∆q

)
, (43)

∆q = (q + η − cα)2 + 4cαq = (q + η + cα)2 − 4cαη. (44)
12



From Lemma 1, we now derive an expression for the joint distribution of
(
Oeq , Xeq

)
.

Corollary 9. For q > 0, x ≥ −cs and y ≥ 0,

Px
(
Oeq ∈ ds,Xeq ∈ dy

)
=Px

(
Xeq ∈ dy, τ−0 > eq

)
δ0(ds) + qeθqx−Φqy+(cθq−η−q)s(α+ θq)dsdy

+ q

∞∑
m=0

(αηs)m+1eθqx−Φqy+(cθq−η−q)s

(α+ θq)mm!(m+ 1)!

(
fm+1(s)−

fm+2(s)

(α+ θq)cs

)
dsdy, (45)

where fm(s) := γ(m, (α + θq)(cs + 0 ∧ x)) and γ(m,x) =
∫ x
0 e−zzm−1dz is the incomplete

gamma function. In addition,

Px
(
Xeq ∈ dy, τ−0 > eq

)
=

q√
∆q

{
(α+ θq)e

θqx
(
1{y≤x}e

−θqy − e−Φqy
)
+ 1{y>x}(α+Φq)e

Φq(x−y)
}
dy.

Proof. Using Eq. (41), it is straightforward to show that(
e−ΦqyWq (x)−Wq (x− y)

)
δ0 (ds) dy

=
1√
∆q

{
(α+ θq)e

θqx
(
1{y≤x}e

−θqy − e−Φqy
)
+ 1{y>x}(α+Φq)e

Φq(x−y)
}
δ0(ds)dy. (46)

As for the second term of (18), using the relationship that Φq − θq =
√
∆q/c, we obtain

Λ(q)′ (x, s)− ΦqΛ
(q) (x, s)

=

∫ ∞

0∨−x

(
W ′
q(x+ z)− ΦqWq(x+ z)

) z
s
P (Xs ∈ dz)

=
(α+ θq)e

θqx√
∆q

∫ ∞

0∨−x
eθqz (Φq − θq)

z

s
P (Xs ∈ dz)

=
(α+ θq)e

θqx

cs

∫ ∞

0∨−x
eθqzzP (Xs ∈ dz) . (47)

Applying Eq. (40), the integral on the right-hand side of (47) becomes∫ ∞

0∨−x
eθqzzP (Xs ∈ dz)

=e−ηs
∫ cs

0∨−x
eθqzz

(
δ0(dz − cs) + e−α(cs−z)

√
ηαs

cs− z
I1(2

√
ηαs(cs− z))dz

)
=e(cθq−η)s

{
cs+

∞∑
m=0

(αηs)m+1

(α+ θq)m+1m!(m+ 1)!

(
cs · fm+1(s)−

fm+2(s)

α+ θq

)}
. (48)

Substituting (46), (47) and (48) into (18) completes the proof of Corollary 9. ■

For a fixed t > 0, we can invert Eq. (18) wrt q to obtain the joint distribution of (Ot, Xt)
as follows.

Theorem 10. For y, s ≥ 0, t > 0 and x ≥ −cs,

Px (Ot ∈ ds,Xt ∈ dy)
13



=

{
Px (Xt ∈ dy)− ye−αx

∫ t

0

e−(αc+η)u

t− u
P (Xt−u ∈ dy)

√
αηu

x+ cu
I1(2

√
αηu(x+ cu))du

}
δ0(ds)

+1{t≥s+ y
c
}αη · exp (−η(t− s)− cαv − αx)

×
∫ ∞

0∨−x

ze−αz

cs

{
I0 (w)−

v · I2 (w)
x+z
c + t− s

}
P (Xs ∈ dz) dsdy, (49)

where w = a

√
v2 + v(x+y+z)

c , v = t− s− y
c and a = 2

√
cαη.

Proof. From Lemma 1, one observes that

Px (Ot ∈ ds,Xt ∈ dy)

=Px
(
Xt ∈ dy, t < τ−0

)
δ0(ds) + L−1

q

{
e−Φqye−qs

(
Λ(q)′ (x, s)− ΦqΛ

(q) (x, s)
)}

(t)dsdy, (50)

where L−1
q denotes the inverse Laplace transform wrt q.

In the Cramér-Lundberg risk process, it is known from Landriault et al. [22] that

Px
(
Xt ∈ dy, t < τ−0

)
=Px (Xt ∈ dy)− ye−αx

∫ t

0

e−(αc+η)u

t− u
P (Xt−u ∈ dy)

√
αηu

x+ cu
I1(2

√
αηu(x+ cu))du, (51)

for t > 0, y ≥ 0. Hence, we are left with the evaluation of the second term on the right-hand
side of Eq. (50).

First, using Eqs. (42) – (44), we have

(α+ θq)e
θq(x+z)−Φqy−qs

=
2αη · exp ((η + cα)s− α(x− y + z))

a2

(
p−

√
p2 − a2

)
exp

(
(b− s− y

c
)p− b

(√
p2 − a2

))
,

where p := q + η + cα and b := x+y+z
2c . From Eq. (D.17) in Drekic [9], we know that the

inverse Laplace transform of
(
p−

√
p2 − a2

)
· exp

(
bp− b

(√
p2 − a2

))
wrt p is

L−1
p

{(
p−

√
p2 − a2

)
exp

(
bp− b

(√
p2 − a2

))}
(t)

=
a2

2

{
I0

(
a
√
t2 + 2bt

)
− t

2b+ t
I2

(
a
√
t2 + 2bt

)}
. (52)

Then, it is immediate that

L−1
q

{
(α+ θq)e

θq(x+z)−Φqy−qs
}
(t)

=1{t≥s+ y
c
}αη · exp ((η + cα)(s− t)− α(x− y + z))

×

{
I0

(
a

√(
t− s− y

c

)2
+ 2b

(
t− s− y

c

))
−

t− s− y
c

2b+ t− s− y
c

I2

(
a

√(
t− s− y

c

)2
+ 2b

(
t− s− y

c

))}
.

(53)

Therefore, letting v = t− s− y
c and using (47) and (53), we obtain

L−1
q

{
e−Φqye−qs

(
Λ(q)′ (x, s)− ΦqΛ

(q) (x, s)
)}

(t)

14



=L−1
q

{∫ ∞

0∨−x
(α+ θq)e

θq(x+z)−Φqy−qs z

cs
P (Xs ∈ dz)

}
(t)

=1{t≥s+ y
c
}αη · exp (−η(t− s)− cαv − αx)

×
∫ ∞

0∨−x

ze−αz

cs

{
I0 (w)−

v · I2 (w)
x+z
c + t− s

}
P (Xs ∈ dz) . (54)

Substituting (51) and (54) into Eq. (50) completes the proof. ■

4. Parisian-type first-last passage times

In this section, we focus on the Parisian type first-last passage time lr defined in (3) and
it corresponds to the right endpoint of the last negative excursion which lasts a longer than a
fixed implementation delay r. In a special case, if the maximum duration of negative excursions
is less than r, lr will be equal to the classical ruin time τ−0 ; see Figure 1 for illustrations. Also,
we note that the random time lr has ties with the Parisian ruin time with delay r > 0 defined
as

κr = inf {t > 0: Ut > r} ,
where Ut = t− gt with gt = sup {0 ≤ s ≤ t : Xs ≥ 0}. We recall that, for a spectrally negative
Lévy insurance risk process X, Loeffen et al. [25] obtained an elegant expression for the
probability of Parisian ruin, that is for E [X1] > 0 and x ∈ R,

Px (κr <∞) = 1− rE[X1]
Λ(x, r)∫∞

0 zP(Xr ∈ dz)
. (55)

In the rest of this section, we denote by

Pu,x(·) := P(·|U0 = u,X0 = x),

for all (u, x) ∈ S := {(0,∞)× (−∞, 0) ∪ {0} × [0,∞)} and by Eu,x its corresponding expec-
tation operator.

Theorem 11. For r, q > 0, (u, x) ∈ S and E[X1] > 0,

Eu,x
[
e−qlr

]
= rE [X1]

Eu,x
[
Λ
(
Xeq , r − Ueq

)
1{Ueq<r,τ

−
0 <eq}

]
∫∞
0 zP (Xr ∈ dz)

. (56)

Proof. We first note that

Eu,x
[
e−qlr

]
= Pu,x (lr < eq) ,

where eq is an independent exponential rv with rate q > 0. From the definition of lr, we point
out the following equivalence between the following two events:

{lr < eq} =
{
τ−0 < eq, Ut ≤ r for all t ≥ eq

}
.

Hence,

Eu,x
[
e−qlr

]
=

∫ r

0

∫ ∞

−∞
Pu,x

(
τ−0 < eq, Ut ≤ r for all t ≥ eq, Xeq ∈ dy, Ueq ∈ ds

)
=

∫ r

0

∫ ∞

−∞
Ps,y (κr = ∞)Pu,x

(
τ−0 < eq, Xeq ∈ dy, Ueq ∈ ds

)
, (57)
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where the strong Markov property of X at eq is applied in (57). Given that that Ueq = 0 when
Xeq ≥ 0, (57) can be written as

Eu,x
[
e−qlr

]
=

∫ ∞

0
Py (κr = ∞)Px

(
τ−0 < eq, Xeq ∈ dy

)
+

∫ r

0

∫ 0

−∞
Ps,y (κr = ∞)Pu,x

(
Xeq ∈ dy, Ueq ∈ ds

)
. (58)

Using (55) (note that Λ(0, r) = 1) and the fact that Py
(
τ+0 ≤ r

)
= Λ(y, r) for y < 0 (see [25]

for more details), we obtain

Ps,y (κr = ∞) =

Py (κr = ∞) = rE[X1]
Λ(y,r)∫∞

0 zP(Xr∈dz)
, if y ≥ 0,

Py
(
τ+0 ≤ r − s

)
P (κr = ∞) = rE[X1]

Λ(y,r−s)∫∞
0 zP(Xr∈dz)

, if y < 0.
(59)

Finally, substituting (59) into (58) yields the desired result. ■

From (56), we observe that the joint distribution of (Xeq , Ueq) plays a pivotal role in the
characterization of the Laplace transform of lr. Given that Ueq = 0 when Xeq ≥ 0, we have

Pu,x
(
Xeq ∈ dy, Ueq = 0

)
= Px

(
Xeq ∈ dy

)
, (60)

for any (u, x) ∈ S and y ≥ 0. Hence, we are left with the identification of the joint distribution
of (Xeq , Ueq) only for Ueq > 0 and Xeq < 0.

Lemma 12. For q, s > 0, y < 0, and (u, x) ∈ S,

Pu,x
(
Xeq ∈ dy, Ueq > s

)
=e−qs

∫ 0

−∞
Px
(
Xeq ∈ dz, τ+0 < eq

)
Pz
(
Xs ∈ dy, s < τ+0

)
+1{s≥u}

∫ ∞

s−u
qe−qtPx

(
Xt ∈ dy, t < τ+0

)
dt+ 1{s<u}Px

(
Xeq ∈ dy, eq < τ+0

)
, (61)

where

P−z
(
Xs ∈ dy, s < τ+0

)
dz = P−z (Xs ∈ dy) dz −

∫ s

0

z

t
P (Xt ∈ dz)P (Xs−t ∈ dy) dt, z ≥ 0,

(62)

and

Px
(
τ+0 < eq,−Xeq ∈ dz

)
=

{
q
(
Φ′
qe

Φq(x+z) −Wq(x+ z)
)
dz, x > 0,

qeΦqx
(
Φ′
qe

Φqz −Wq(z)
)
dz, x < 0.

(63)

Proof. To derive the joint distribution of (Xeq , Ueq), we consider separately the cases where{
τ+0 > eq

}
(where τ+0 is assumed to be 0 a.s. when x ≥ 0) and

{
τ+0 < eq

}
.

First, for the first case
{
τ+0 > eq

}
, it follows that

Pu,x
(
Xeq ∈ dy, τ+0 > eq, Ueq > s

)
=Px

(
Xeq ∈ dy, τ+0 > eq, eq + u > s

)
=1{s≥u}

∫ ∞

s−u
qe−qtPx

(
Xt ∈ dy, t < τ+0

)
dt+ 1{s<u}Px

(
Xeq ∈ dy, τ+0 > eq

)
, (64)
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for s > 0 and y < 0. We note that Pu,x
(
Xeq ∈ dy, τ+0 > eq, Ueq > s

)
is understood to be 0

when x ≥ 0.
Now, for the second case

{
τ+0 < eq

}
, from the definition of Ut,

Pu,x
(
Xeq ∈ dy, τ+0 ≤ eq, Ueq > s

)
= Pu,x

(
Xeq ∈ dy, τ+0 ≤ eq − s, Ueq > s

)
= e−qsPu,x

(
Xeq ∈ dy, τ+0 ≤ eq − s, Ueq > s |eq > s

)
. (65)

Given that eq − s |eq > s is also exponential with rate q, Eq. (65) can be rewritten as

Pu,x
(
Xeq ∈ dy, τ+0 ≤ eq, Ueq > s

)
= e−qsPu,x

(
Xeq+s ∈ dy, τ+0 ≤ eq, Ueq+s > s

)
= e−qs

∫ 0

−∞
Pu,x

(
Xeq+s ∈ dy, τ+0 ≤ eq, Xeq ∈ dz, Ueq+s > s

)
Using the strong Markov property of X at eq, it follows that

Pu,x
(
Xeq ∈ dy, τ+0 ≤ eq, Ueq > s

)
= e−qs

∫ 0

−∞
Px
(
τ+0 ≤ eq, Xeq ∈ dz

)
Pz
(
Xs ∈ dy, s < τ+0

)
.

(66)

Combining (66) and (64) leads to (61).
It remains to prove Eq. (62) and (63). For Eq. (62), we have that

P−z
(
Xs ∈ dy, s < τ+0

)
=P−z (Xs ∈ dy)− P−z

(
Xs ∈ dy, τ+0 < s

)
, (67)

where by conditioning on τ+0 and then using Kendall’s identity, the second term on the right-
hand side of (67) becomes

P−z
(
Xs ∈ dy, τ+0 < s

)
=

∫ s

0
P (Xs−t ∈ dy)P−z

(
τ+0 ∈ dt

)
=

∫ s

0

z

t

P (Xt ∈ dz)

dz
P (Xs−t ∈ dy) dt.

Moreover, Eq. (63) is an immediate consequence of Theorem 8.7 and Corollary 8.9 of
[18]. ■

Remark 13. Considering the Brownian risk model in subsection 3.2.1, one can identify the
potential measures in Lemma 12. Indeed, from [5] (see equation 1.1.6 on p. 251) we have that
for any x < 0, y ≤ 0 and s ≥ 0,

P−z(Xs ∈ dy, s < τ+0 ) = P−z(Xs ∈ dy)− P−z(Xs ∈ dy,Xs ≥ 0)

=
1

σ
√
s
ϕ

(
y − µs+ z

σ
√
s

)
dy − 1

σ
√
s
e2(µ/σ

2)zϕ

(
y − µs− z

σ
√
s

)
dy.

where ϕ is the density distribution function of the standard Normal distribution, and

Px
(
τ+0 < eq,−Xeq ∈ dz

)
=


q

(
eΦq(x+z)√
µ2+2σ2q

− 1
Φq+µ

(
eΦq(x+z) − e−(Φq+2µ)(x+z)

))
dz, x > 0,

qeΦqx

(
eΦqz√
µ2+2σ2q

− 1
Φq+µ

(
eΦqz − e−(Φq+2µ)z

))
dz, x < 0.

Next, an expression for the joint Laplace transform of Ueq and Xeq is stated. This result
immediately follows from Lemma 12 and Eq. (60). We therefore omit the proof here.
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Corollary 14. For ν ≥ 0, q > 0 ∨ ψ(ν), p > ψ(ν)− q, and (u, x) ∈ S,

Eu,x
[
e−pUeq+νXeq

]
= Eu,x

[
e−pUeq+νXeq1{Xeq≥0}

]
+ Eu,x

[
e−pUeq+νXeq1{Xeq<0}

]
, (68)

where

Eu,x
[
e−pUeq+νXeq1{Xeq≥0}

]
=Ex

[
eνXeq1{Xeq≥0}

]
=
qΦ′

qe
Φqx

Φq − ν
+
qeνx − qZq(x, ν)

q − ψ(ν)
(69)

and

Eu,x
[
e−pUeq+νXeq1{Xeq<0}

]
=

pq

p+ q − ψ(ν)

Φ′
qe

Φqx(Φp+q − ν)

(Φq − ν) (Φp+q − Φq)

− qe−pu (Zq(x,Φp+q)− Zq(x, ν))

p+ q − ψ(ν)
−
qΦ′

qe
Φqx

Φq − ν
. (70)

Note that it is easy to verify that Eq. (70) holds more generally for any q > 0.

Remark 15. We recall the quantity gq = sup {0 ≤ t ≤ eq : Xt ≤ 0} studied in [2]. By letting
ν = 0 and noting that

Ex
[
e−pUeq

]
=Ex

[
e−p(eq−g

q)
]
=

q

p+ q
Ex
[
epg

p+q
]
,

Eq. (68) reduces to Theorem 2 in [2].

In the rest of this section, we consider a variation of the random time lr where the constant
parameter r is replaced by independent copies of a generic exponential rv eθ with rate θ > 0.
Specifically, we define lθ as

lθ = sup
{
t ≥ τ−0 : Ut > egtθ

}
, (71)

where egtθ denotes an independent copy of eθ generated for the negative excursion that began
at time gt.

To study the distribution of lθ, we first recall the Parisian ruin with exponential delays
defined as

κθ = inf
{
t > 0 : Ut > egtθ

}
. (72)

An expression for the probability of Parisian ruin with exponential delays was first given in
[23], that is, for E[X1] > 0 and x ∈ R,

Px
(
κθ <∞

)
= 1− E [X1]

Φθ
θ
Z (x,Φθ) . (73)

Applying Corollary 14, we have the following Laplace transform for lθ.

Theorem 16. Assume E[X1] > 0, for q, θ > 0 and (u, x) ∈ S,

Eu,x
[
e−ql

θ
]
=
E [X1] Φθ

θ

(
(θ − q)Wq(x)

Φq − Φθ
+

θΦ′
qe

Φqx

Φq+θ − Φq
− e−θu (Zq(x,Φq+θ)− Zq(x,Φθ))

)
.

(74)
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Proof. First, one can observe from the definition of lθ that the following two events are equiv-
alent: {

lθ < eq

}
=
{
τ−0 < eq, Ut ≤ egtθ for all t ≥ eq

}
.

Using a similar series of arguments as in the derivation of Eq. (58), we obtain

Eu,x
[
e−ql

θ
]
=

∫ ∞

0
Py
(
κθ = ∞

)
Px
(
τ−0 < eq, Xeq ∈ dy

)
+

∫ ∞

0

∫ 0

−∞
Ps,y

(
κθ = ∞

)
Pu,x

(
Xeq ∈ dy, Ueq ∈ ds, s < eθ

)
. (75)

From Eqs. (73) and (13), one deduces that

Ps,y
(
κθ = ∞

)
=

{
Py
(
κθ = ∞

)
= E[X1]Φθ

θ Z (y,Φθ) , if y ≥ 0,

Py
(
τ+0 ≤ eθ − s

)
P
(
κθ = ∞

)
= E[X1]Φθ

θ e−θseΦθy, if y < 0,
(76)

which allows to rewrite (75) as

Eu,x
[
e−ql

θ
]
=
E [X1] Φθ

θ

(
Ex
[
Z
(
Xeq ,Φθ

)
1{Xeq>0,τ−0 <eq}

]
+ Eu,x

[
e−θUeq+ΦθXeq1{Xeq≤0}

])
.

(77)

Using results on potential measures for the SNLP X (see Chapter 8.4 of [18] for more
details), one can show that

Ex
[
Z
(
Xeq ,Φθ

)
1{Xeq>0,τ−0 <eq}

]
=

(q − θ)
(
Φ′
qe

Φqx −Wq(x)
)

Φq − Φθ
. (78)

Also, from (70), it follows that

Eu,x
[
e−θUeq+ΦθXeq1{Xeq≤0}

]
=

Φ′
qe

Φqx

Φq − Φθ

(
θ(Φq+θ − Φθ)

Φq+θ − Φq
− q

)
− e−θu (Zq(x,Φq+θ)− Zq(x,Φθ)) .

(79)

Substituting (78) and (79) into (77) completes the proof of Theorem 16. ■

Using the same arguments as in Remark 6, it is straightforward to show that lθ converges
in distribution to τ−0 (and g) as θ → 0(∞). We omit the details here.

5. Additional results on convergence of the first-last passage times

In this section, we study some limiting cases of sr, sθ, lr and lθ and show their consistency
with known results in the literature. We note that the convergence (in distribution) results for
sθ and lθ have already been discussed in Sections 3 and 4 through their Laplace transforms. In
this section, we show that the convergence (in probability) results for sθ and lθ can be proved
in a more direct way.

We begin by examining the limiting case of sr, sθ, lr and lθ when r → 0 or θ → ∞.

Proposition 17. For any spectrally negative Lévy process X with the condition that E [X1] > 0
and x ∈ R,

(i) sr converges Px almost surely to g as r → 0 when τ−0 <∞.
(ii) sθ converges in probability to g as θ → ∞ when τ−0 <∞.
(iii) lr converges Px almost surely to g as r → 0 when τ−0 <∞.
(iv) lθ converges in probability to g as θ → ∞ when τ−0 <∞.
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Proof.
(i) First, we show that sr converges in probability to g. For any ϵ > 0 and all x ∈ R, we have

Px
(
|sr − g| > ϵ, τ−0 <∞

)
=Px

(
|sr − g| > ϵ, sr = τ−0 , τ

−
0 <∞

)
+ Px

(
|sr − g| > ϵ, sr > τ−0 , τ

−
0 <∞

)
,

where the second term is zero as sr coincides with g if sr > τ−0 . For all x ∈ R, we have

lim
r→0

Px
(
|sr − g| > ϵ, sr = τ−0 <∞

)
= lim

r→0
Px
(
g − τ−0 > ϵ, sr = τ−0 <∞

)
≤ lim

r→0
Px
(
σr = ∞, τ−0 <∞

)
= Px

(
τ−0 = ∞, τ−0 <∞

)
= 0. (80)

where in the last equality we used the fact that σr := inf {t > 0: Ot > r} converges Px almost
surely (a.s.) to the classical ruin time τ−0 when r → 0 (see Proposition 3.3 in [15]). Therefore,
for all x ∈ R, we deduce that sr converges to g in probability as r → 0 when τ−0 < ∞. Also,
note that sr is a non-decreasing function as r → 0, we conclude that sr converges to g when
τ−0 <∞ Px a.s. as r → 0.
(ii) Similar to (i), for any ϵ > 0 and all x ∈ R,

lim
θ→∞

Px
(
|sθ − g| > ϵ, τ−0 <∞

)
= lim
θ→∞

Px
(
g − τ−0 > ϵ, sθ = τ−0 , τ

−
0 <∞

)
≤ lim
θ→∞

Px
(
σeθ = ∞, τ−0 <∞

)
= 0.

(iii) For any ϵ > 0 and all x ∈ R,

lim
r→0

Px
(
|lr − g| > ϵ, τ−0 <∞

)
= lim
r→0

Px
(
g − lr > ϵ, κr <∞, τ−0 <∞

)
+ lim
r→0

Px
(
g − lr > ϵ, κr = ∞, τ−0 <∞

)
≤ lim
r→0

Px
(
PXlr

(
κr = ∞, τ−0 <∞

))
+ lim
r→0

Px
(
κr = ∞, τ−0 <∞

)
= lim
r→0

Px
(
P
(
κr = ∞, τ−0 <∞

))
+ lim
r→0

Px
(
κr = ∞, τ−0 <∞

)
,

where the last step is by conditioning on Xlr = 0. Since κr has the same law as τ−0 as r → 0
(see Corollary 2.4 of [35]) and lr is a non-decreasing function as r → 0, we conclude that the
above limits all approach zero and thus lr converges to g a.s. when τ−0 <∞ as r → 0.
(iv) Similar to (iii), for any ϵ > 0 and all x ∈ R,

lim
θ→∞

Px
(
|lθ − g| > ϵ, τ−0 <∞

)
= lim
θ→∞

Px
(
g − lθ > ϵ, κθ <∞, τ−0 <∞

)
+ lim
θ→∞

Px
(
g − lθ > ϵ, κθ = ∞, τ−0 <∞

)
≤ lim
r→0

Px
(
PX

lθ

(
κθ = ∞, τ−0 <∞

))
+ lim
θ→∞

Px
(
κθ = ∞, τ−0 <∞

)
= lim
θ→∞

Px
(
P
(
κθ = ∞, τ−0 <∞

))
+ lim
θ→∞

Px
(
κθ = ∞, τ−0 <∞

)
= 0.

■

The following proposition is the counterpart to Proposition 17 when r → ∞ or θ → 0.
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Proposition 18. For any spectrally negative Lévy process X with the condition that E [X1] > 0
and x ∈ R,

(i) sr converges Px almost surely to τ−0 as r → ∞.
(ii) sθ converge Px in probability to τ−0 as θ → 0.
(iii) lr converge Px almost surely to τ−0 as r → ∞.
(iv) lθ converge Px in probability to τ−0 as θ → 0.

Proof. As shown in the proof of Proposition 17, it is sufficient to prove the convergence in
probability in cases (i) and (iii).
(i) For any ϵ > 0 and all x ∈ R,

lim
r→∞

Px
(
|sr − τ−0 | > ϵ, τ−0 <∞

)
≤ lim
r→∞

Px
(
sr > τ−0 , τ

−
0 <∞

)
= lim
r→∞

Px
(
σr <∞, τ−0 <∞

)
= lim
r→∞

Px (σr <∞)

=1− lim
r→∞

Px
(∫ ∞

0
1(−∞,0)(Xs)ds ≤ r

)
= 0,

the last equation holds because X drifts to +∞ when E[X1] > 0.
(ii) Similar to (i), for any ϵ > 0 and all x ∈ R,

lim
θ→0

Px
(
|sθ − τ−0 | > ϵ, τ−0 <∞

)
≤ lim
θ→0

Px (σeθ <∞)

=1− lim
θ→0

Px
(∫ ∞

0
1(−∞,0)(Xs)ds ≤ eθ

)
= 0.

(iii) For any ϵ > 0 and all x ∈ R,

lim
r→∞

Px
(
|lr − τ−0 | > ϵ, τ−0 <∞

)
= lim
r→∞

Px
(
lr − τ−0 > ϵ, κr <∞

)
≤ lim
r→∞

Px (κr <∞) ≤ lim
r→∞

Px (σr <∞) = 0.

(iv) For any ϵ > 0 and all x ∈ R,

lim
θ→0

Px
(
|lθ − τ−0 | > ϵ, τ−0 <∞

)
≤ lim
θ→0

Px
(
lθ > τ−0 , τ

−
0 <∞

)
= lim
θ→0

Px
(
κθ <∞, τ−0 <∞

)
= lim
θ→0

Px
(
κθ <∞

)
=1− lim

θ→0
Px
(∫ ∞

0
1(−∞,0)(Xs)ds ≤ eθ

)
= 0.

■

We complement the above analysis with a numerical study of distribution functions of the
random times of interest. More specifically, we consider the Brownian risk model {Xt}t≥0

with

Xt = x+ µt+Bt, t ≥ 0,

where we choose the parameters to be x = µ = 0.5. Using the known result of Px(τ−0 ≤ t)
for Brownian risk model and numerically inverting the Laplace transforms of g, sr, and lr,
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Figure 2. Distribution functions of the random times

respectively, we plot their distribution functions on the same graph for comparison. More
specifically, in Figures 2(A) and 2(B), we consider the distribution functions of sθ and lθ with
different values of θ. We note that the distribution functions of sθ and lθ converge to that
of the first passage time τ−0 as θ → 0, and they converge to the distribution function of g as
θ → ∞, which are consistent with the results discussed in Propositions 17 and 18. This is
expected because the randomized risk tolerance level increases on average as θ decreases, and
it is more likely that the individual (or the total) negative excursion length is less than the
level for a given sample path. To compare the proposed two random times, sθ and lθ, we plot
the distribution functions of sθ and lθ for θ = 1 in Figure 2(C). It can be seen from the graph
that

Px(g ≤ t) ≤ Px(sθ ≤ t) ≤ Px(lθ ≤ t) ≤ Px(τ−0 ≤ t) for all t ≥ 0.
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6. An Application to credit risk management

In this section, we consider an application of our main results to credit risk management.
More specifically, we consider the following model introduced in Egami and Kevkhishvili [10].

Assume that a firm’s total assets process {At}t≥0 follows a geometric Brownian motion
with parameters ν ∈ R and σ > 0, and its debt process {Dt}t≥0 grows at a constant risk-free
rate rf , i.e.,

At = A0e
νt+σBA

t and Dt = D0e
rf t, t ≥ 0,

where the initial values are A0 and D0 (such that A0 > D0) respectively, and {BA
t }t≥0 is a

standard Brownian motion. The leverage process {Rt}t≥0 is defined as Rt := At
Dt

with R0 > 1.
The insolvency time of the firm is set as the first time the leverage process drops below level
1. As a precautionary measure, a threshold level R∗ > 1 is set for the firm to take necessary
actions to avoid possible subsequent insolvency. That is to say the firm should monitor the
event the leverage process drops below R∗, i.e.,

inf {t ≥ 0 : Rt < R∗} .

The study of {Rt}t≥0 can be reduced to the study of the following process:

Xt := µt+BA
t , t ≥ 0, (81)

where µ :=
ν−rf
σ . Then the event Rt < R∗ is equivalent to that X drops below level α :=

1
σ ln

R∗D0
A0

, i.e.,
inf {t ≥ 0 : Xt < α} .

In [10], the authors derive the probability density of the last hitting time

λα := sup{t ≥ 0 : Xt = α},

for a general diffusion process and further consider an interesting example to illustrate how
the last hitting time λα can provide useful information for risk management.

In what follows, we use the same empirical data for American Apparel Inc., which filed for
bankruptcy protection in October 2015, to conduct a numerical study. For completeness, we
recall Table 1 taken from [10]. Note that we set R∗ = 1

0.8 = 1.25 representing 80% debt/asset
ratio.

It is seen from Table 1 that the drift µ declines drastically and turns negative in September
2013. This period with “negative returns” lasts until June 2014. This is in line with the fact
that American Apparel Inc. had problems with a new distribution center in 2013. After a
short recovery (June to December 2014), the financial situation of American Apparel Inc.
continues to sink and eventually files bankruptcy in October 2015.

Figure 3 plots three conditional probabilities of P−α
(
g > 1|τ−0 <∞

)
, P−α

(
lθ > 1|τ−0 <∞

)
,

and P−α
(
sθ > 1|τ−0 <∞

)
. Intuitively, they measure how likely the (scaled) leverage process

X takes longer than a year to be “ultimately” recovered given ruin occurs. As such, they can
be interpreted as default probabilities in general sense. The larger these conditional probabil-
ities, the worse the firm’s financial situation is. First, we see large fluctuations and an overall
increasing trend for all three measures. This shows that the firm’s financial situation is rather
unstable and tends to worsen. Second, the conditional probabilities become one in two periods
(Sep 2013 - Mar 2014, Mar 2015 - June 2015), which is in line with that the return parameter
µ are negative at that time. Third, the conditional probabilities of sθ and lθ are lower than
that of g, which are consistent with their definitions (see Eq. 4).
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ν rf σ µ A0 D0 R0 α
Jun-12 0.5249 0.0021 0.3940 1.3268 214149555 125950000 1.7003 -0.7808
Sep-12 1.0347 0.0017 0.3127 3.3030 290116712 126700000 2.2898 -1.9358
Dec-12 0.1144 0.0016 0.3720 0.3033 223568448 117050000 1.9100 -1.1397
Mar-13 0.6710 0.0014 0.5376 1.2456 362153886 129900000 2.7879 -1.4921
Jun-13 1.3344 0.0015 0.5069 2.6296 349193110 144100000 2.4233 -1.3059
Sep-13 −0.6840 0.0010 0.3325 -2.0604 284917506 141900000 2.0079 -1.4254
Dec-13 −0.5080 0.0013 0.2974 -1.7128 292977497 157550000 1.8596 -1.3356
Mar-14 −0.8271 0.0013 0.7350 -1.1270 203302448 139750000 1.4548 -0.2064
Jun-14 0.1555 0.0011 1.0470 0.1475 265400126 140600000 1.8876 -0.3937
Sep-14 0.7723 0.0013 0.6772 1.1384 272059468 140350000 1.9384 -0.6479
Dec-14 0.3089 0.0025 0.6440 0.4757 321884369 149700000 2.1502 -0.8423
Mar-15 −0.0881 0.0026 0.5476 -0.1657 269423743 154700000 1.7416 -0.6057
Jun-15 −0.8783 0.0028 0.3197 -2.7562 243535792 157850000 1.5428 -0.6583

Table 1. American Apparel Inc. parameters. A0, D0, R0 are the values at the end of each
indicated month. rf is the 1-year treasury yield curve rate observed at the end of each. α is
calculated by setting R∗ = 1.25.

Figure 3. The graph displays P−α

(
g > 1|τ−

0 < ∞
)

(blue dotted line),
P−α

(
lθ > 1|τ−

0 < ∞
)
(grey solid line) and P−α

(
sθ > 1|τ−

0 < ∞
)

(orange dashed line)
for process X defined in Eq. (81) with θ = 1.

We further consider the conditional probabilities with varying threshold levels of R∗ and
they are presented in Table 2. We choose the end of December 2014 as the starting point, at
which the initial level of the leverage process is R0 = 2.1502 and the drift is µ = 0.4757. From
the results presented in Table 2, we observe that the conditional probabilities are relatively
large overall. Although the current leverage ratio is high (at the level of 2.1502), there are more
than 64% probability that the leverage process will take longer than a year to “ultimately”
recover to the level of 2.2 (or higher levels). One may conclude from the increase in µ from
2013 to 2014 (see Table 1) that the firm had improved its credit quality, while the measures
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R∗ α P−α
(
g > 1|τ−0 <∞

)
P−α

(
s1 > 1|τ−0 <∞

)
P−α

(
l1 > 1|τ−0 <∞

)
2.8 0.41003 0.7513 0.6126 0.5357
2.7 0.35356 0.7362 0.5939 0.5185
2.6 0.29496 0.7202 0.5740 0.5008
2.5 0.2341 0.7030 0.5528 0.4825
2.4 0.1707 0.6849 0.5303 0.4636
2.3 0.1046 0.6655 0.5063 0.4442
2.2 0.0356 0.6450 0.4806 0.4243
2.1 −0.0367 0.6453 0.4771 0.4257
2 −0.1124 0.6678 0.4978 0.4499
1.9 −0.1921 0.6910 0.5203 0.4759
1.8 −0.2760 0.7149 0.5446 0.5039
1.7 −0.3648 0.7393 0.5709 0.5339
1.6 −0.4589 0.7641 0.5991 0.5659
1.5 −0.5592 0.7892 0.6294 0.6000

Table 2. American Apparel Inc. random times probabilities (up to 4 decimal points) for
varying R∗ by using the end of December 2014 as the starting point. Note that R0 = 2.1502
in December 2014.

in Table 2 indicate that the firm’s financial situation may not be as good as it seems, which
provides another perspective to comprehensively assess risks.
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