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Abstract—The concept of Index Modulation (IM) has been
actively researched as a benefit of its flexible trade-off between
performance, achievable rate, energy efficiency, hardware cost
and complexity. In order to fully exploit its the degrees of
freedom, the concept of Multi-dimensional IM (MIM) has been
developed in literature, where Compressed Sensing (CS) is
often utilized to exploit the sparsity of the multi-dimensional
transmitted signals. However, this flexibility and performance
gains are attained at the cost of a substantially increased detection
complexity. In this paper, we propose Deep Learning (DL)
based detection for CS-aided MIM (CS-MIM), where both Hard-
Decision (HD) as well as Soft-Decision (SD) detection combined
with iterative decoding are conceived. More explicitly, firstly, we
propose learning aided hard and soft detection for CS-MIM.
Secondly, two novel neural network aided methods are proposed
for Iterative Soft Detection (ISD), where iterations are carried out
between the CS-MIM detector and a channel decoder. In contrast
to the conventional detection of CS-MIM system, which critically
relies on the knowledge of Channel State Information (CSI) at
the receiver, the proposed learning-aided methods are capable of
eliminating the overhead and complexity of Channel Estimation
(CE), which results in an improved transmission rate. Explicitly,
we develop an advanced DL architecture for blind-detection-
aided MIM for the first time in the open literature, where
the HD and SD CS algorithms are implemented by learning
without the need for CE. Our simulation results demonstrate
that the proposed learning techniques conceived for SD CS-MIM
combined with iterative detection are capable of achieving near-
capacity performance at a reduced complexity compared to the
conventional model-based SD relying on CSI acquisition.

Index Terms—Index Modulation, Compressed Sensing-Aided
Multi-Dimensional Index Modulation (CS-MIM), Soft Detection,
Machine learning, Neural Network, Iterative Detection, Blind
Detection

I. INTRODUCTION

DURING the past two decades, there has been a
tremendous increase in the number of connected users

and devices, which results in escalating data rate require-
ments. Against this background, Multiple-In-Multiple-Output
(MIMO) systems have been proposed to provide beneficial
throughput gains [1]. As a further advance, the concept of
massive MIMO systems has been conceived, which also leads
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to the new challenge of acquiring Channel State Information
(CSI) for an excessive number of antennas [2]. As the next
evolutionary stage, the concept of Spatial Modulation (SM)
was proposed as a low-complexity MIMO design alternative
that can provide an improved trade-off between performance
and complexity by relying on a single RF chain [3]–[5]. In
recent years, the SM philosophy has been extended to the
frequency and time dimensions as well as to multiple domains
under the umbrella of Index Modulation (IM) [6], [7]. Indeed,
IM schemes are considered as energy-efficient candidates for
next-generation wireless systems as a benefit of their flexible
resource activation [5].

As a member of the IM family, Space-Time Shift Keying
(STSK) was proposed as a multi-functional MIMO technique,
which is capable of striking a flexible diversity versus mul-
tiplexing gain trade-off without encountering MIMO’s inter-
antenna interference [8]. Briefly, in STSK, Q Dispersion
Matrices (DM) are invoked, which spread the signal over T
Time Slots (TSs) and M Transmit Antenna (TA) elements
in the spatial and time domains. The IM design activates
one of the Q DMs for transmission, where the activation
pattern conveys extra IM bits. By appropriately adjusting these
parameters, improved Bit Error Ratio (BER), throughput and
complexity trade-offs can be optimized [9].

On the other hand, Subcarrier-IM combined with Orthog-
onal Frequency Division Multiplexing (SIM-OFDM) exploits
the IM concept in the Frequency Domain (FD). In this scheme,
a subset of subcarriers is activated for modulated signal trans-
mission, where the IM-enabled subcarrier activation pattern
conveys extra information bits [17]. As a benefit, the effective
signal power of the activated subcarriers in the FD is increased,
so that the same time domain signal power is retained after
IFFT. This results in a higher SNR for the modulated symbols
without requiring extra radiated power. Although Tsonev et
al. [18] proposed enhanced SIM-OFDM and a novel IM-
aided OFDM (OFDM-IM) scheme [19] for increasing the
spectral efficiency, SIM-OFDM has been shown to suffer
from significant throughput reduction compared to the classic
OFDM. Hence, Zhang et al. [10] proposed the improved SIM-
OFDM concept relying on Compressed Sensing (CS) [20],
which beneficially exploits the sparsity of symbols in the FD
to improve the throughput [21].

In order to improve the degree of freedom in IM, an
advanced Multi-dimensional IM (MIM) scheme was proposed
by Shamasundar et al. [22], which is capable of simultaneously
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exploiting the benefits of the IM concept in several domains
without imposing any extra hardware costs, such as extra RF
chains or transmission power. Furthermore, Lu et al. [23]
proposed to combine CS techniques with STSK and OFDM-
IM. This MIM system inherits the benefits of both STSK and
OFDM-IM. As a further advance, SM was also integrated into
this MIM scheme for TA selection [12]. In [24], the concept
of multi-functional layered SM was proposed by Hemadeh et
al., which offers flexible trade-offs in terms of performance,
hardware cost and power dissipation. However, the increased
number of IM dimensions leads to substantially increased
signal detection complexity at the receiver side.

The classic Maximum Likelihood (ML) detection has been
widely employed for IM systems, which however suffers
from an escalating complexity upon increasing the degrees
of freedom or dimensions [25]. Moreover, coherent detection
requires the knowledge of CSI at the receiver side, which has
to be estimated by using pilot symbols, leading to a loss in
effective throughput [26]. Moreover, both the pilot overhead
as well as the associated Channel Estimation (CE) complexity
increases with the number of antennas [27] [28]. As a result,
the excessive complexity of CE-aided ML detection of MIM
schemes becomes unrealistic in practice. Furthermore, the
Shannonian capacity can only be approached, when Soft-
Decision (SD) detection is used together with the powerful
tool of channel coding using Iterative Soft Detection (ISD)

[29]. With the guidelines of ISD design in [30], Xu et al.
discuss the trade-off between complexity and performance in
the context of the model-based MIM solutions of [31] and [12].
In [23], CS-aided space-time-frequency IM was presented,
where multiple detection stages were required for recovering
the data from the constituent CS, STSK, OFDM-IM and SM
schemes. As a result, when ISD is invoked, the complexity of
MIM escalates both with the number of IM dimensions and
with that of the ISD iterations.

Hence we set out to tackle the challenge (I) of optimizing the
multi-dimensional performance, (II) eliminating both the pilot
overhead and the CE complexity, and (III) reducing the ISD
complexity, which cannot be solved by conventional model-
based techniques.

Given its success in pattern recognition, in finance, mar-
keting and health, the benefits of machine learning have
also been considered in wireless scenarios as a powerful
tool [32], namely in channel decoding [33], networking [34],
[35], and millimeter wave communications (mmWave) [36].
Deep Learning (DL) has also been shown to be efficient
in signal detection [37], especially in MIMO detection [38].
For instance, a Deep Neural Network (DNN) was used for
detecting MIMO signals in [39], while Samuel and Diskin [40]
proposed a DNN model for MIMO detection in a time-
varying channel. Parallel DNNs were designed for separating
the problem into several parallel tasks by Jin and Kim [41].

TABLE I: Boldly and explicitly contrasting our contributions to the literature

Contribution proposed* [10] [11] [12] [13] [14] [15] [16]
Index modulation ✓ ✓ ✓ ✓ ✓ ✓
Multi-dimensional index modulation ✓ ✓ ✓ ✓ ✓
CS at the transmitter ✓ ✓ ✓
Imperfect CSI at the receiver ✓ ✓ ✓
Learning aided hard detector ✓ ✓ ✓ ✓
Soft detector ✓ ✓ ✓ ✓ ✓
Learning aided reduced complexity soft detector ✓ ✓ ✓
Learning-aided low-complexity iterative soft detector ✓

TABLE II: NOMENCLATURE

Index Modulation IM Multi-dimensional IM MIM
Compressed Sensing CS Deep Learning DL
Compressed Sensing-aided MIM CS-MIM Hard-Decision HD
Soft-Decision SD Iterative Soft Detection ISD
Channel State Information CSI Multiple-In-Multiple-Output MIMO
Spatial Modulation SM Space-Time Shift Keying STSK
Dispersion Matrices DM Time Slot TS
Channel Estimation CE Bit Error Ratio BER
Subcarrier-IM combined with Orthogonal Frequency Division Multiplexing SIM-OFDM
IM-aided OFDM OFDM-IM Maximum Likelihood ML
Deep Neural Network DNN Convolutional Neural Networks CNN
Transmit Antennas TA Receive Antennas RA
Virtual Domain VD Frequency Domain FD
Subcarrier Index SI Space-Time ST
Cyclic Prefix CP Inverse Fast Fourier Transform IFFT
Radio Frequency RF Fast Fourier Transform FFT
Additive white Gaussian Noise AWGN Log Likelihood Ratios LLR
Simultaneous Matching Pursuit S-MP Least Squared CE LSCE
Mean Square Error MSE Minimum MSE MMSE
Reduced-Complexity RC Long Short-Term Memory LSTM
Maximum A Posteriori MAP Approximate Log-MAP Approx-Log-MAP
Maximum Log-MAP Max-Log-MAP Long Short-Term Memory LSTM
Discrete-Input Continuous-Output Memoryless Channels DCMC
Root MSE RMSE MMSE aided CE MMSE-CE
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TABLE III: Table for symbols used in this paper

Symbol meaning Symbol meaning
Nr number of RAs Nt number of TAs
G number of group Nc number of subcarrier for each frame
Nv number of subcarrier in VD Nf number of subcarrier in FD
K number of activated index X[i] STSK codewords

Xm
t [k] STSK slice S ST matrix
sa ST vector in one TS for single TS A measurement matrix

sFD
m compressed FD ST vector of single TS Y [α] Received signal of each subcarrier

H[α] CSI of each subcarrier SFD [α] compressed FD symbol
IAC sub matrix of antenna index selection pattern
ISI sub matrix of suncarrier index selection pattern

ĪAC(γ) possible realizations of the active TA indices
ĪSI(β) possible realizations of the active subcarrier indices
Xq,l(φ) possible realizations of STSK codes blocks
Y p Received signal of transmitted pilot symbol of each group
Sp compressed FD pilot symbol of each group RH channel correlation matrix
Φ possible joint identifications of activated TAs and subcarriers

Y FD Equivalent received signal without the identification of activated antenna index
š
[t](FD)
a,τ the updated FD symbol in AMP detection
z[t]a,τ residual of current iteration Ck cell state in LSTM unit
zk output of LSTM xk input of LSTM
ϕk parameter of LSTM Wn weight of each neuron
θn bias of each neuron Le(ui) LLR information if bits

Xγ,β,φ realization of STSK codewords λγ,β,φ intrinsic metrix of STSK realization

In [42], a DNN model was also harnessed for estimating
an OFDM channel. Learning has also been used for channel
decoding by Al-Baidhani and Fan [43]. Additionally, Xu et al
[44] integrated the DNN model into a powerful channel coded
OFDM system.

Learning-based detection has been conceived for reducing
the complexity of signal recovery, while dispensing with the
requirement of explicit CSI estimation. In [45], a DNN based
model is proposed for detecting the OFDM-IM signal by
Luong et al. The authors of [46] and [47] investigated Convo-
lutional Neural Networks (CNN) harnessed for IM, when the
CSI is available at the input of the detector. By contrast, blind
learning based detection was designed for mmWave IM by
Katla et al. in [15] and for multi-set STSK in [16]. However,
the authors of [16] only investigated the combination of basic
SD and DL. Against this backdrop, we propose the first blind-
detection-aided ISD assisted CS-MIM schemes facilitated by
learning-aided blind detection, which is capable of achieving
a near-capacity performance without CSI.

Table I boldly contrasts the novelty of this paper to the
literature. Explicitly, the contributions of this paper are boldly
and explicitly contrasted to the state-of-the-art as follows:

1) We propose the first learning-based blind Hard-Decision
(HD) CS-MIM systems by harnessing NNs. We demon-
strate that the proposed DL architecture is capable of
attaining near-ML performance at a significantly reduced
number of cost-function evaluations.

2) Furthermore, we propose the first learning-based blind
SD CS-MIM system, which is capable of achieving near-
capacity performance with the aid of ISD.

3) Our capacity analysis and simulation results demonstrate
that the proposed learning-based blind detector is capa-
ble of outperforming the conventional coherent detection
techniques in the presence of realistic CSI estimation
errors. This is achieved at a low learning-based detection

complexity, which is several orders of magnitude lower
than that of its ML counterpart.

The rest of the paper is organized as follows. In Section II,
the system model of CS-MIM is presented. In Section III, we
characterize the conventional HD and SD detectors relying on
the proposed learning-aided detector. Finally, our simulation
results are provided in Section IV, while our conclusions are
offered in Section V . Additionally, Table II shows all the
abbreviation used in this treatise and Table III defines the
symbols used for describing the system.

II. SYSTEM MODEL
Fig. 1 shows the block diagram of the CS-MIM transceiver

employing Nt TAs and Nr Receive Antennas (RAs). As shown
in Fig. 1, the input bit sequence is split into three parts: STSK
in the Virtual Domain (VD)1, SIM in the FD2 and SM in the
spatial domain. We consider an OFDM symbol having Nc

subcarriers, which are equally partitioned into G subcarriers
groups, each containing Nf = Nc/G subcarrier in the FD. In
the transmitter of Fig. 1, the STSK symbol is allocated to the
active subcarriers out of Nv subcarriers in the VD. Then, the
FD signal is attained by compressing the VD signal using CS.
For each group, Nf is designed to be lower than Nv to increase
the throughput. Following this, the OFDM-modulated data will
be transmitted from the activated antennas, which is decided
by the antenna selector of Fig. 1. At the receiver, the signal
is transformed back to the subcarrier symbols and each IM
group is detected separately. In the following subsections, we
present the details of the processing stages both the transmitter
and the receiver.

1VD is the actual domain for user data mapping/demapping, where sub-
carrier IM is applied before the CS process as shown in Fig. 1. This concept
is firstly introduced in [10] to illustrate the CS techniques in IM system to
improve the spectral efficiency.

2FD is the OFDM symbol domain after CS process that is transmitted in
Fig.1.
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Fig. 1: CS-MIM system block diagram.

A. Transmitter

As shown in Fig. 1, the input bit sequence of b bits is split
into G groups, where each group of bits bg , g ∈ [1, G], is input
to the CS-MIM block generator. Then, each group of bits bg is
also split into three parts, bg,1, bg,2 and bg,3, where bg,1 is used
for the antenna selector of Fig. 1. By contrast, bg,2 is used for
choosing the indices of the active subcarriers in each subcarrier
group, which is called Subcarrier Index (SI) Selector. Finally,
bg,3 is used for choosing the indices of the selected DMs,
which represents the STSK Encoder. The combination of the
second and third parts bg,2 and bg,3 is identical to the CS-
OFDM-STSK system of [12]. In the following we will detail
the different blocks in the CS-MIM transmitter of Fig. 1.

1) Subcarrier Index Selection: Nc subcarriers of the OFDM
symbol are divided into G groups, that corresponds to Nf

subcarriers in the FD. The bit sequence bg,2 is applied to select
the active subcarrier in each group, as shown in Fig. 1. In each
group, only K subcarriers are activated out of the Nv available
subcarriers and the other subcarriers remain unused. In the
following we consider an example to illustrate the subcarrier
selection procedure. Explicitly, we consider the example of
activating K = 1 subcarrier out of the Nv = 4 subcarriers in
each group. Table IV shows an example of subcarrier selection,
where K1 represents the active subcarriers and 0 represents an
inactive subcarrier. Explicitly, when the input bits sequence is
bg,2 = [00], the first subcarrier will be activated, while when
bg,2 = [10] for example, the third subcarrier in the group is
activated, as shown in Table IV.

2) STSK Encoder: The bit sequence bg,3 of size
Klog2(QL) bits is fed into the STSK encoder of Fig. 1
to output K STSK codewords, which are mapped to the

TABLE IV: Example of subcarrier selection in our CS-MIM
system for K = 1, Nv = 4

bg,2 Indices Allocation
[0 0] (1) [K1 0 0 0]
[0 1] (2) [0 K1 0 0]
[1 0] (3) [0 0 K1 0]
[1 1] (4) [0 0 0 K1]

active subcarriers to {X[1], . . . ,X[i], . . . ,X[K]}, where the
dispersion matrix spreads the information both over M TAs
and over T TSs in each subcarrier. Each Space-Time (ST)
codeword X[i] ∈ CM×T of Fig. 1 is generated by spreading
a conventional L-ary constellation symbol using a specific
dispersion matrix selected from Q available DMs. Then, the
K STSK symbols generated are mapped to the K active
subcarriers selected by the SI selector, while the inactive
subcarriers are set to zero, which results in the ST Matrix
S of Fig. 1.

3) ST Transmitter Model: After the CS-MIM block gener-
ator based processing of G groups, we obtain G ST matrices
S, which are then assembled by the block creator of Fig. 1 to
form a long ST frame. Then the long ST frame is processed
and output by the ST mapper for transmission from M TAs
during T TSs. Fig. 2 shows an example ST matrix of a
group, where we have bg,2 = [01] and M1, M2 represent
TA 1, 2 and T1, T2 represent TSs 1 and 2, respectively.
Furthermore, Nv represents the subcarriers in the VD. Then,
the ST matrix allocation becomes S = {[0 X[1] 0 0} upon
using M = 2, T = 2,K = 1, Nv = 4, Nf = 2, Nt =
4, STSK(2, 2, 2, 2, 2). According to the example of Fig. 2, we
can separate the ST matrix S into vector s1 and s2 over the
antennas and TSs for first TS. Then we can obtain an STSK
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Fig. 2: The process of single subcarrier group STSK symbol S with ST mapper and CS techniques employing M = 2, T =
2,K = 1, Nv = 4, Nf = 2, Nt = 4.

slice Xm
t [k] for each ST vector, where t(t = 1, 2, · · · , T )

and m(m = 1, 2, · · · ,M) represent the index of a TS and
that of a TA, while k(k = 1, 2, · · · ,K) is the index of
the STSK codewords. As shown in Fig. 2, we can have
s1 = {0 X2

1[1] 0 0} and s2 = {0 X1
1[1] 0 0} in a single

TS.
The above processing is carried out in the VD, which is

then compressed to the FD using CS, as shown in Fig. 2. The
measurement matrix A compresses the symbols of dimension
Nv = 4 in the VD into the symbols of dimension Nf = 2.The
measurement matrix A of size (Nf × Nv) is applied to ST-
mapped vectors for compressing the Nv-dimensional vectors
sm(m = 1, 2, . . . ,M) from the VD into the Nf -dimensional
vectors sFD

m (m = 1, 2, . . . ,M) in the FD, where M OFDM
symbols are constructed from G groups of Nf -dimensional
vectors, as shown in Fig. 2.

The FD symbol sFD
m at the output of the CS block is

evaluated as: sFD
m = Asm. Afterwards, as in conventional

OFDM, the FD symbol is transformed into the time domain
symbols to be transmitted by the corresponding antennas and
then a Cyclic Prefix (CP) is added.

Fig. 3: The process of selecting active TAs for M = 2 and
Nt = 4.

4) Antenna Selection: After Inverse Fast Fourier Transform
(IFFT) and CP, the time domain ST symbol is transmitted
using M TAs during T TS using a limited number of Radio

Frequency (RF) chains. Similar to the concept of SM, not all
antennas are activated, where the index of the active antennas
is selected based on the antenna index bit sequence bg,1, as
shown in Fig. 1. Let us consider the FD signal, where the
vectors sFD

m (m = 1, 2, . . . ,M) per group at the M TAs
are transmitted over the specific activated TA combinations
out of NAC available combinations obtained by the antenna
selection. Then, the symbol vectors sFD

m (m = 1, 2, 3, ...,M)
in each subcarrier group are transmitted during a single TS
over the data-specific activated TAs out of the Nt antennas
available.

Let us consider a system using M = 2, Nt = 4 and NAC =
2. As shown in Table V, the antenna selection codebook will
assign the RF chain to the activated TAs, while the others
remain deactivated. When the input bit is bg,1 = [0], both the
first and second TAs are activated to transmit the modulated
symbols in a specific subcarrier block, while the other two TAs
remain inactive, as shown in Fig. 3. Similarly, if the incoming
bit is bg,1 = [1], then the third and fourth antennas are selected
to transmit the symbols.

TABLE V: A look-up table example for antenna selection in
a CS-MIM system for M = 2, Nt = 4

bg,1 Indices Allocation
[0] (1,2) [TA1TA2 0 0]
[1] (3,4) [0 0 TA3TA4]

B. Received Signal Model

The signal is assumed to be transmitted over an Lc-tap
frequency selective channel, which is assumed to be known
by the conventional model-based detection methods via CE
[48]. Consider a (Nr × Nt)-MIMO system, where Nr is the
number of RAs. The signal received over the Nr RAs for the
G groups over T TSs is then transformed to the FD using the
Fast Fourier Transform (FFT).

We use the channel model hα ∈ CNr×Nt , which repre-
sents the FD channel between Nt TAs and Nr RAs. After
the FFT, the FD channel matrix is Hα ∈ CNr×Nt for
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α = 1, . . . , Nf . The ST demapper of Fig. 1 collects G
groups of FD symbols from Nr RAs over T TSs, where the
ST demapped symbols are split into G groups by the block
splitter of Fig. 1. The group index g is omitted in the rest
of the section for the sake of simplicity. Then, the symbols
received by each subcarrier group are represented as Y =
{Y [1]T , . . . ,Y [α]T , . . . ,Y [Nf ]

T }T , where Y ∈ CNrNf×T

and Y [α] ∈ CNr×T denote the received ST signal per group
and the ST symbol received at the α-th subcarrier of each
subcarrier group, respectively.

Hence, the signal Y [α] ∈ CNr×T (α = 1, . . . , Nf ) received
during T TSs of each subcarrier group can be expressed as
[12]

Y [α] = HαIACS
FD[α] +W [α], (1)

where SFD[α] ∈ CM×T denotes the ST symbols at α subcar-
riers transmitted from M TAs over T TSs and W [α] ∈ CNr×T

represents the Additive white Gaussian Noise (AWGN) obey-
ing the distribution of CN (0, σ2

n), and σ2
n is the noise variance.

Finally, IAC ∈ CNt×M denotes the (Nt ×M)-element sub-
matrix, which describes the selection pattern of the active
TAs for each subcarrier group at the transmitter. In practical
model-based solutions, the channel information is attained by
employing CE techniques relying on known pilots, which is
discussed in the next section.

III. DETECTION

As shown in Fig. 1, after the block splitter, the receiver re-
covers the information conveyed both by the STSK codeword,
and the index of the subcarriers as well as the active TA index.

The received signal Y contains Nf ST symbols at Nf

subcarriers in the FD of each subcarrier group. Given the
received signal model Y [α] ∈ CNr×T (α = 1, . . . , Nf ), we
can rewrite Y of (1) in the following compact form [12]:

Y = HĪACĀISIX +W . (2)

where Ā ∈ CMNf×MNv is the equivalent measurement matrix
A shown in (1) used for compressing the M VD vectors.
Similarly, ĪAC ∈ CNrNf×NtNf denotes the TA selection
of Nf subcarriers in each subcarrier group. Observe from
1 and 2, thatSFD can be expanded as SFD = ĀISIX ,
where X ∈ CMK×T represents K STSK codewords and
ISI ∈ CMNv×MK is the SI selection pattern.

The receiver may employ exhaustive search based ML
detection, which may however lead to excessive complexity
[6]. Furthermore, in case of SD, the received signal is con-
verted into probability values, which are referred to as Log
Likelihood Ratios (LLR) [49], that can be forwarded to the
channel decoder for attaining a near-capacity performance.

In the following section we present the conventional HD de-
tector, where both the ML and a reduced-complexity detector
will be discussed. Then, we present our proposed NN aided
HD detector, where the NN replaces the exhaustive search by
a learning-based classification model in order to significantly
reduce the complexity. Finally, upon considering SD reception,
we discuss both non-iterative SD and ISD in Section III-B,
where we first present the conventional SD detectors followed
by our proposed non-iterative NN-aided SD and ISD receiver.

A. Hard-Decision Detection

In this section, we continue by presenting the conventional
ML detector followed by reduced complexity Simultaneous
Matching Pursuit (S-MP) based detector and Approximate
Message Passing (AMP)-aided detector. Then our learning-
based blind detectors will be proposed, followed by the
complexity study of these detectors.

1) Maximum Likelihood Detection: The ML detector makes
a joint decision concerning both the TA index, STSK code-
words and the subcarrier activation. According to the receiver
model of (2), ĪAC represents a specific realization of the
active TA indices, ISI is a specific realization of the active
subcarrier indices in the VD of each subcarriers group and
X represents K STSK codewords. To estimate the specific
realization, we use ĪAC(γ)(γ = 1, 2, ..., NAC) to denote all
the possible realizations of active TA indices. Furthermore,
ĪSI(β)(β = 1, 2, ..., NSI) denotes all the possible realiza-
tions of the active TA indices and realizations of the active
subcarrier indices. As there are Nq,l = (QL)K realizations
of X , we can use Xq,l(φ)(φ = 1, 2, ..., Nq,l) to represent all
realizations of the STSK blocks. Then, the ML detector can
be modeled as [12]

⟨γ̂, β̂, φ̂⟩ = arg min
γ,β,φ

∥Y −H ĪAC(γ)ĀĪSI(β)Xq,l(φ)∥2,
(3)

where γ̂, β̂ and φ̂ represent the estimates of the activated TA
indices, the activated SI and the index of K STSK codewords
in each subcarrier group, respectively [12]. Furthermore, H
is the CSI, which is assumed to be perfectly known at the
receiver. At the receiver, the ML detector carriers out a full
search over all possible candidates, which has the complexity
order of O[NACNSI(QL)K ] per subcarrier group.

2) Channel Estimation: Conventional pilot based CE,
which inserts pilots in each symbol can be ineffective due
randomly activating both the subcarriers and TAs [50]. We
circumvent this problem by constructing a pilot frame to
estimate the CSI by the channel estimator for our CS-MIM
receiver as shown in Fig. 4, in order to mitigate the randomness
caused by the index of the antenna selection. The pilot frame
has the same size as the information frame, while only one
TA is activated for each subcarrier group. Here we assume
that the number of subcarrier groups G and of the TAs Nt

always meet the condition of G > Nt. Furthermore, each of
the Nt TAs can be activated more than once in each frame.
Then the CSI of every single TA and subcarrier group can be
estimated by the channel estimator. Then, we can obtain the
estimated CSI matrix Ĥ of the equivalent subcarrier group by
linear interpolation techniques [26].

Let us model the received ST pilot symbol based on (1) as

Y p = HĪACSp +W , (4)

where the FD ST pilot symbol is Sp =
diag{Sp,1,Sp,2, · · · ,Sp,M}, which has a fixed TA index
known by the receiver of each group.

Under the assumption that the fading envelope remains
unchanged over a block of signal transmission, the Least
Squared CE (LSCE) and the Minimum Mean Square Error
(MMSE) based CE can be applied [51].
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Fig. 4: CS-MIM system receiver block diagram

3) Reduced-Complexity Detection: To reduce the search-
space of the ML detector, a Reduced-Complexity (RC) detec-
tor was proposed in [12] based on the S-MP scheme. Here we
rewrite (2) as:

Y = HĪACĀISIX +W = HS̄ +W

= H̄SV D +W

= ΦX +W ,

(5)

where S̄ ∈ CNtNf×T = ĪACS
FD denotes the equivalent

data matrix that has NACNSI(QL)K possible realizations.
Furthermore, H̄ ∈ CNrNf×MNv = HĪACĀ is used for
representing the equivalent channel matrix that has NAC pos-
sible realizations and Φ ∈ CNrNf×MK denotes the equivalent
matrix, which represents NACNSI possible candidates for
IAC and ISI , including the active TAs and active subcarriers.

The S-MP algorithm can simultaneously detect the different
components of Y for improving the performance. It uses the
MMSE criterion to detect the TAs indices. Following this, the
remaining joint signal is detected using the iterative S-MP
algorithm, which has a similar structure to the conventional
matching pursuit algorithm. Based on the S-MP associated
with n = NAC , the complexity order per subcarrier group
becomes O(NACNSI +QLK) [12].

4) Approximate Message Passing Algorithm Aided Detec-
tion: It has been shown in [52] that the AMP algorithm
benefits from low complexity and rapid convergence. Inspired
by the application of AMP in OFDM-IM [53] and GSM [54],
we apply the AMP detector for the CS-MIM system. We
rewrite (2) as

Y = HĪACĀISIX +W

= HĪACS
FD +W .

(6)

To simplify the detection, we detect ĪAC and SFD separately.
The index of antenna selection can be readily recovered by
maximum signal energy estimation. Then the signal received
based on the known spatial index can be formulated as

Y FD = HFDSFD +W FD, (7)

where Y FD ∈ CMNf×T denotes the signal received by the
activated antenna. Furthermore, HFD and W FD denote the
activated paths’ CSI and the Gaussian noise, respectively.

Firstly, let us proceed by setting the initial estimate of the
FD symbol to s

[0](FD)
a,τ = 0 and the residual signal to z[0] =

yFD
a,τ . Again, since the detection procedure is the same for each

subcarrier group, we also drop the group index g for the sake

of simplicity. Then, the AMP employs iterative processing as
follows

š[t](FD)
a,τ = s[t](FD)

a,τ + H̄
H(FD)
a,τ z[t]

a,τ , (8)

s[t+1](FD)
a,τ = η(š[t](FD)

a,τ ;σa,τ,t), (9)

z[t+1]
a,τ = yFD

a,τ − H̄
FD
a,τ s

[t+1](FD)
a,τ

+
z
[t]
a,τ

2Nf
∇ηMMSE(š

[t](FD)
a,τ ;σa,τ,t),

(10)

where š
[t](FD)
a,τ represents the updated FD ST signal of antenna

a and τ TS of the current iteration. Furthermore, η(sFD;σ)
represents the simplified MMSE denoiser discussed in [53],
where σ characterizes the Root MSE (RMSE) of the FD
symbol s[t](FD) at iteration t. Upon using separate two-
part detection, the complexity order of the AMP detection is
O[NAC +NSI(QL)K ].

5) Proposed Learning-Aided Hard-Decision Detection:
Although S-MP and AMP algorithm are capable of reducing
the detection complexity, there exist a significant performance
loss compared to the ML detector. Hence, to further reduce the
detection complexity, learning based detection is considered in
this section. As an additional benefit, in contrast to the con-
ventional techniques described above, which require channel
knowledge at the receiver, the proposed learning aided detector
does not require any CE, hence it belongs to the family of blind
algorithms.

Fig. 5: Fully-connected DNN model for CS-MIM detection
system

First of all, HD detection may in fact be considered
as a classification problem, where a single group of pre-
processed symbols is input to a NN. Then the corresponding
classification based candidates constitute the output. Here, to
simplify the training phase, slowly varying fading channels are
considered. Then, we can assume the CSI of each symbol to
experience a block-fading channel.

The proposed NN model of HD detection is shown in
Fig. 5. A single group of received symbols Y is considered
as the input of this DNN model and the target output is
the detected symbol û. To construct the associated model,
we apply an Long Short-Term Memory (LSTM) layer as
the first layer to capture the non-linear relationship between
the transmitted signal and its observations. This technique is
eminently suitable for processing sequential data in DL and
can be characterized by

{Ck, zk} = LSTM(Ck−1, zk−1, xk;ϕk−1), (11)
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where Ck is also often termed as the cell state [55] and
represents the information flow versus time. Furthermore, xk

and zk are the input and output at symbol instant k, while
zk−1 is the input at k and ϕk−1 is the parameter of LSTM,
which is stored in the cell for the next state and shared with
the next iteration.

Following this, the classicsoftmax activation is used for
generating dependent probabilities at the output layer of our
classification problem. Considering the weight Wn and the
bias θn, the resultant function can be expressed as

û =fsoftmax(Wn...fRelu{W2(fRelu1
[W1fLSTM (y) + θ1])

+ θ2}+ ...+ θn).
(12)

In order to increase the training accuracy, further input data
pre-processing is required in the DNN which includes appro-
priately modifying the structure of Y before feeding it into
the training model for locating the target activated subcarrier
indices and STSK codewords.

The raw input data in complex-valued matrix form obtained
from the received signal Y has to be vectorized first. We
rearrange the complex values by separately extracting the
real and imaginary parts and merging them into a real-valued
vector. Then, we consider a slow time-varying channel so that
the model can be trained with training samples and subse-
quently used for signal detection. In the training phase, we
use randomly generated data, which are transmitted over the
wireless channel using MIM, and then processed as the input
data of the DNN. The number of training samples required
is selected based on experimentation by gradually increasing
the training size until acceptable MSE values are achieved. In
each iteration, the classic back-propagation updates the weight
values to compute the gradient of the loss function in the
process of gradient descent. In this case, the MSE loss function
used for the training is

L(u, û;Wn,θn) =
1

B
∥u− û∥2, (13)

where u represents the target labels, û denotes the detected
bits and B is the sample size of the current iteration. A
stopping criterion can be defined either by the number of
iterations or by an MSE threshold. Then, the parameter sets
{Wn,θn} can be updated in each training iteration based
on the learning algorithm using gradient descent, which is
formulated as

{Wn,θn} ← {Wn,θn} − α∇L({Wn,θn}),

where α > 0 is the learning rate and ∇L({Wn,θn})
represents the gradient of L({Wn,θn}). In our proposed NN
aided detection, we use α = 0.001.

After the training phase, the DNN model learns the mapping
from the received signal and stores both the weight as well
as the bias information, which will be used for producing the
desired outputs based on the real-life input data in the testing
phase. The statistical properties of the input/output data have
to remain the same as those used in training.

The detection complexity of the learning algorithm is domi-
nated by the calculation of the layer weights and biases, which

may be considered to be O(ninh) +O(n2
h) +O(nhno) [16],

with n representing the number of neurons in each layer. Their
complexity order is significantly lower than that of the ML or
the S-MP detection schemes.

B. Soft-Decision Detection
SD detection is employed for achieving near-capacity

performance when combined with channel coding, with or
without ISD between the MIMO demapper and the chan-
nel decoder. Turbo coding was proposed in [56] and has
been extensively used in wireless systems [29]. However, the
complexity of the optimal maximum a posteriori probability
MIMO detector rapidly becomes prohibitive upon increasing
the modulation order and the number of antennas [57]. This
motivates the design of sub-optimal soft detectors. In light
of this motivation, we propose learning aided SD detection,
which is capable of providing near-optimal performance at a
reduced complexity.

1) Conventional SD Detection: A CS-MIM ISD scheme
is shown in Fig. 6. At the transmitter side of Fig. 6, the
information bit sequence b is encoded by a Recursive System-
atic Convolutional (RSC) encoder. The coded bit sequence c
is interleaved to generate the interleaved stream u, which is
entered into the CS-MIM modulator of Fig. 1.

The LLR is defined as the probability ratio of the bit being
’1’ and ’0’, which can be written as L(b) = log p(b=1)

p(b=0) . The
conditional probability p(Y |Xγ,β,φ) of receiving the group
signal Y is given by [58]

p(Y |Xγ,β,φ)

=
1

(πN0)NT
exp(−||Y −HĪAC(γ)ĀISI(β)Xq,l(φ)||2

N0
),

(14)
where Xγ,β,φ represents the STSK codewords at the β-th
realization of active subcarriers, which are transmitted through
the γ-th realization of the active TA. Furthermore, N0 is the
noise power, where we have σ2

n = N0/2. The equivalent
received signal Y per subcarrier group carries B channel-
coded bits u = [u1, u2, ..., uB ] and the extrinsic LLR of
bits ul(l = 1, 2, · · · , B) is expressed by (15) [12]. In (15),
X l

1 and X l
0 represent a subset of the legitimate equivalent

signal X corresponding to bit ul when ul = 1 and ul = 0,
respectively, yielding X l

1 ≡ {Xγ,β,φ ∈ X : ul = 1} and X l
0 ≡

{Xγ,β,φ ∈ X : ul = 0}. Therefore, the extrinsic LLR of bit
ul(i = 1, 2..., B) can be expressed by (15). The variable La()
in (15) represents the a priori LLR fed back from the RSC
decoder to the demodulator.

The expression in (15) can be further simplified by the
Approximate Log Maximum A Posteriori (Approx-Log-MAP)
algorithm based on the Jacobian Maximum operation [59] [60]
as

Le(ul) = jacXγ,β,φ∈X l
1
(λγ,β,φ)− jacXγ,β,φ∈X l

0
(λγ,β,φ), (16)

where jac(.) denotes the Jacobian maximum operation and the
intrinsic metric of λγ,β,φ is

λγ,β,φ = (−||Y −HĪAC(γ)ĀISI(β)Xq,l(φ)||2)/N0

+
∑
j ̸=l

ujLa(uj). (17)
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Le(ul) = ln

∑
X

γ,β,φ∈X l
1

p(Y |Xγ,β,φ)exp[
∑

j ̸=l ujLa(uj)]∑
X

γ,β,φ∈X l
0

p(Y |Xγ,β,φ)exp[
∑

j ̸=l bjLa(bj)]

= ln

∑
X

γ,β,φ∈X l
1

exp[−||Y −HĪAC(γ)ĀISI(β)Xq,l(φ)∥2/N0 +
∑

j ̸=l ujLa(uj)]∑
X

γ,β,φ∈X l
1

exp[−∥Y −HĪAC(γ)ĀISI(β)Xq,l(φ)||2/N0 +
∑

j ̸=l ujLa(uj)]
.

(15)

Fig. 6: The transceiver architecture of SD aided CS-MIM
employing iterative extrinsic information exchange between
the CS-MIM detector and the RSC decoder.

At the receiver, the soft demodulator evaluates the probability
of each bit being logical ’1’ as well as ’0’, and applies
the Approx-Log-MAP algorithm for obtaining the extrinsic
LLR of the coded bits. This has a complexity order of
O[2(cg)(NACNSI(QL)K)], where cg represents the coded bits
after the RSC encoder and interleaver. This complexity will
be reduced by our proposed DNN based SD.

2) Single-Stage DNN-Aided SD Detector: Given the high
computation complexity of the CS-MIM SD detection, in this
section we propose a reduced-complexity SD detector using
NNs. In the conventional iterative soft-detector described in
Section III-B1), the extrinsic LLRs Li,e(u) are updated in
every iteration by utilizing the a priori LLRs Li,a(u). By
modifying (16) and (17), the extrinsic LLR of every iteration
can be expressed as [12]

Ln
e (ul) = jacXγ,β,φ∈X l

1
(λn

γ,β,φ)− jacXγ,β,φ∈X l
0
(λn

γ,β,φ),
(18)

where nit = 0, 1, 2, ..., It is the iteration index and It is the
maximum affordable number of iterations. The intrinsic metric
of each iteration is

λn
γ,β,φ = (−||Y −HĪAC(γ)ĀISI(β)Xq,l(φ)||2)/N0

+
∑
j ̸=l

ujL
n
a(uj). (19)

Firstly, we consider non-iterative DNN-aided SD detection,
where there is no information exchange between the RSC
decoder and the CS-MIM demodulator. As shown in Fig. 7(a),
the DNN architecture is employed for replacing the CS-MIM
demodulator. The output of the NN model should be Le(u) =
L0

e(u), which denotes the first LLRs after the soft demodulator
without any a priori feedback information. Following this,
the SD is characterized as follows. The received signal Y
undergoing the same pre-processing as in Section III-A3)
forms the input of the NN and the aim here is to accurately
estimate the value of the extrinsic LLR Li,e(u). Hence, we
harness the classic regression model of [61] formulated as:

L̂e(u) =Wn...fRelu(W2(fRelu(W1fRelu(y) + θ1)

+ θ2) + ...+ θn),
(20)

where W n and θn, (n = 1, 2, ..., N) represent the weights
and bias, respectively, of the n-th layer of the DNNs and
L̂e(u) represents the estimated extrinsic LLR information at
the output of the demodulator.

As discussed in Section III-A3), the NN updates the weights
Wn and θn of each layer by back propagation in each iteration
of the training process, to minimize the error between the given
LLR and the predicted LLR. Here, we use the following loss
function:

L(Li, L̂i;W i,θi) =
1

B

S∑
i=1

∥Li − L̂i∥+
∑
i=1

ρn∥W n∥22,

(21)
where B is the number of training samples, Li and L̂i

represent the target and the predicted LLR, respectively of
the i-th training sets and the regularization factors ρn are
introduced for avoiding a over-fitting [58].

The assumption of slow fading channel which is applied in
the HD DNN training phase is also considered here, so that the
learning based detector could learn the mapping of the input
data and predict the LLR value directly from the received
signal Y without any channel information in the training
phase. Hence, the NN-aided detector is a blind detector, as
in the HD case.

When using iterative extrinsic information exchange be-
tween the RSC decoder and our MIMO detector, the LLRs
Ln
e (ul)(n = 1, 2, 3, · · · ) can be typically improved over

iterations. We consider to use the updated extrinsic LLR Ln
i,e

after several iterations as our training target, with the received
signal Y employing the same pre-processing as used for the
non-iterative method for its input. The test model predicts the
LLRs gleaned from the received signal Y in the conventional
iterative soft-detector after several iterations.

Fig. 7(a) also shows the architecture of this model, which
has a similar structure to that of the non-iterative SD model,
but the output HDs are replaced by extrinsic LLRs.

3) Iterative DNN-Aided MAP SD Detection: In this section,
we activate and optimize the DNN for each iteration in the ISD
assisted channel coded system.

First of all, the Approx-Log-MAP of (16) can be simplified
by the Maximum Log-MAP (Max-Log-MAP) algorithm [56]

Le(ul) = maxX
γ,β,φ∈X l

1

(λγ,β,φ)−maxX
γ,β,φ∈X l

0

(λγ,β,φ).

(22)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) single-stage DNN-aided SD detection

(b) iterative DNN-aided MAP SD detection

Fig. 7: Structure of the learning-aided SD detector of CS-MIM. (a)one stage DNN-aided SD; (b)iterative DNN aided MAP
SD.

In order to incorporate both (16) and (22), the extrinsic LLRs
can be expressed as:

Le(ul) = fmapXγ,β,φ∈X l
1

(λγ,β,φ)− fmapXγ,β,φ∈X l
0

(λγ,β,φ),

(23)
where fmap(.) represents the Max-Log-MAP algorithm or
the Approx-Log-MAP relying on the simplified Jacobian
Maximum operation. Our proposed learning method aims
for replacing the fmap(.) function, where we use a pair of
DNN models for replacing the functions of fmapXγ,β,φ∈X l

1

and
fmapXγ,β,φ∈X l

0

.
As shown in Fig. 7(b), the received signal Y and a priori

LLR Li,a(u) feedback from the RSC decoder after interleaving
will become the input data of the DNN models. In this case,
the input data have three labels which include the real part
of the received signal Real(Y ), the imaginary part Imag(Y )
and the a priori information Li, a. In the training phase, both
NN models, which are designed to replace the Approx-Log-
MAP process of evaluated extrinsic LLR Li,e, are fed with a
priori LLR Li,a of different iterations and the received signal.

IV. PERFORMANCE ANALYSIS

In this section, we characterize the performance of our
learning-aided CS-MIM system relying on both HD and SD.
For all learning-aided models, we assume that the system’s
signalling rate is 100MBaud and the maximum Doppler
frequency is 100Hz, which corresponds to a normalised
Doppler frequency fm of 10−6. The performance results of the
conventional model-based solutions relying on practical CE
will be portrayed in this section as benchmarks to the proposed

schemes. The simulation parameters shared by CE-aided and
blind-detection-aided CS-MIM schemes are summarized in
Table VI, while the simulation parameters of the learning-
based blind detection scheme are specified in Table VI. In
summary, the following six schemes are compared in this
section:

1) Scheme 1: ML HD aided CS-MIM system based on
a) idealistic perfect CSI;
b) practical MMSE-based CE (MMSE-CE).

2) Scheme 2: HD aided CS-MIM system relying on perfect
CSI using

a) S-MP based RC detector.
b) AMP aided detector.

3) Scheme 3: HD DNN-aided blind detector employed
for the CS-MIM system. No CSI is required for the
detection.

4) Scheme 4: Conventional SD detector employed for
the CS-MIM system relying on RSC channel coding.
Similarly, we also consider different CSI conditions at
the receiver as follows:

a) non-iterative (0 iteration) SD detector of CS-MIM
under perfect CSI at the receiver.

b) non-iterative (0 iteration) SD detector of CS-MIM
under imperfect CSI at the receiver.

c) ISD detector of CS-MIM using 1-5 iterations under
perfect CSI at the receiver.

d) ISD detector of CS-MIM using 1 iteration under
imperfect CSI at the receiver.

5) Scheme 5: Single-stage SD-DNN-aided detector em-
ployed for the CS-MIM system. In this case, the in-
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formation gleaned from the channel decoder will be fed
back to the soft demodulator as a priori LLRs.

a) Single-stage SD-DNN-aided detector of CS-MIM
using non-iterative (0-iteration) soft demodulated
LLRs as training target.

b) Single-stage SD-DNN-aided detector of CS-MIM
without ISD iterations but using the soft demod-
ulated LLRs obtained from 1-5 ISD iterations as
training target.

6) Scheme 6: DNN-aided MAP SD detector of CS-MIM
with 1-3 ISD iterations.

TABLE VI: CS-MIM system simulation parameters.

Parameters Values
Multi-carrier System OFDM
Number of subcarriers, Nc 128
Cyclic prefix 16
Number of subcarrier groups, G 16
Number of subcarrier/group, Mg 8
Number of available indices/group, Na 16
Number of active indices/group, K 2
STSK, (M,N, T,Q,L) (2,2,2,2,2)
Transmit antennas, Nt 8
Receiver antennas, Nr 8
RSC code, (n, k,K) (2,1,3)

TABLE VII: Configuration of the system presented in Section
III

No. Scheme Detection condition iterations
HD throughput,Rt 1.333

1 ML Perfect CSI at receiver
Imperfect CSI at receiver

2 S-MP based RC detector Perfect CSI at receiver
AMP aided detector Perfect CSI at receiver

3 DNN-aided Blind
SD throughput,Rt 0.6667

4 ML Perfect CSI at receiver 0
Imperfect CSI at receiver 0
Perfect CSI at receiver 1-5
Imperfect CSI at receiver 1

5 Single-stage DNN-aided Blind 0
Blind 1-5

6 DNN-aided MAP detector Blind 1-3

TABLE VIII: Training configuration for learning-aided method

Setting Hard-decision Soft-decision
layers lstm+fc+fc+softmax lstm+fc+fc+fc
Activation function Relu
output layer softmax fc
number neurons 50 50
input size 4x(128x2)
output size 1 12
Maximum training epoch 400 1000
Initial learning rate 0.001
Target SNR for training 0dB-20dB -5dB to 5dB
Mini batch size 1000 200 to 500
Optimizer Adam
Training data size 50000
Validation data ratio 0.1

Given the system parameters of Table VI, the achievable
rate is bgG

Nc+LCP
= 1.333 bits/sec/Hz. Fig. 8 characterizes

the theoretical maximum rate of CS-MIM in Discrete-Input

Continuous-Output Memoryless Channels (DCMC) for both
the proposed HD NN detector and conventional ML detector.
Then the maximum rate of this system will be achieved at
1.42dB of SNR. To acquire more accurate results, the pilot
symbols may impose 1% to 10% throughput loss. By contrast,
when considering our proposed DNN aided HD detector of
Scheme 3, no CSI is needed, hence no pilot overhead is
imposed. Fig. 9 also shows the BER of the conventional HD
detector of Scheme 1 as well as Scheme 2 and the proposed
HD NN based detector which is Scheme 3, as shown in
Table VII.

As mentioned in Section II-B, the classic MMSE-CE is
applied for estimating the CSI at the receiver. As shown
in Fig. 9, a high overhead provides the detector with more
accurate CSI, but the achievable throughput is reduced owing
to the increased pilot overhead. As shown in Fig. 9, the
proposed DNN aided HD detector achieves a BER of 10−5 at
7.9 dB SNR, while the ML detector relying on the idealized
simplifying assumption of having perfect CSI knowledge
requires an SNR of about 3.6 dB at the same BER. There
is a 4.5 dB SNR difference between the conventional ML
method and DNN aided method. The performance is slightly
reduced, when considering practical CE methods such as
MMSE-CE. More explicitly, as shown in Fig. 9, although
the MMSE-CE aided ML detector could achieve a BER
of 10−5 at a low SNR loss of 0.7 dB, 10% overhead is
required to estimate the channel. Furthermore, the benchmarks
of S-MP and AMP are capable of mitigating the excessive
complexity of the full-search-based ML method at the costs
of substantially eroded performance, as evidenced by Fig.9.
The DNN method is capable of achieving better performance
without overhead compared to both RC methods, as shown in
Fig. 9. Furthermore, we quantify the computational complexity
order of each method, as shown in Table IX, observe that the
DNN-aided method exhibits lower complexity than both S-MP
and AMP.

We also compare the HD learning based method with ML
detection under slow fading channels. The normalized maxi-
mum Doppler frequency fm is used to adjust the speed of fad-
ing variation. In Fig 10, we consider fm = 10−6 as a very slow
fading channel, fm = 10−5 corresponding to a slow fading
channel and fm = 10−4 as a fast fading channel. Fig. 10 (a)-
(c) demonstrate that the performance of the coherent scheme
relying on the same pilot percentage degrades as fm increases.
By contrast, the learning-assisted HD detector that dispenses
with CE is capable of achieving a robust performance against
fm and always achieves better performance than both the
S-MP and AMP methods, as confirmed by Fig. 10 (a)-(c).
Nonetheless, Fig. 10 (c) demonstrates that when the fading
channel varies rapidly, both the coherent and blind-detection-
aided schemes suffer from a severe performance loss. Hence
SD detection in combination with channel coding is needed
to mitigate the channel impairments.

As discussed in Section III-A, the ML detector ap-
plies an exhaustive search having a complexity order of
O[NACNSI(QL)K ], while the reduced complexity method
[12] has a complexity order of O[NACNSI + QLK]. By
contrast, the complexity of the NN is determined by that of
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Fig. 8: The Discrete-input Continuous-output Memoryless
Channel (DCMC) capacity of the proposed design, and of the
conventional design at 1%, 5% and 10% pilot overheads. Our
simulation parameter are shown in Table VI and Table VIII.

Fig. 9: BER performance comparison of CS-MIM using HD
detection which Scheme 1(c), 2, 3 is considered. Our simula-
tion parameter are shown in Table VI and Table VIII.

TABLE IX: Comparison between the computational complex-
ities of different HD detection methods of CS-MIM

Detector Complexity order Computations
ML O[NACNSI(QL)K ] 8.51× 106

SM-P O(NACNSI +QLK) 1.64× 105

AMP O[NAC +NSI(QL)K ] 1.2× 105

DNN O(ninh) +O(n2
h) +O(nhno) 9.2× 103

the forward and backward propagation, where we have the NN
complexity order of O[ninh1nh2nh3no]

3. The computational
complexity associated with the parameters of Table VI and
Table VIII is shown in Table IX, which confirms that the pro-
posed DNN method achieves the lowest detection complexity.

Let us now consider the performance of SD detection, where
we employ a half-rate RSC encoder, as shown in Table VI.
The corresponding maximum achievable rate is Rt = 0.66667

3Complexity order of NN only used to compare the ML detection, while
there is no search complexity associated with the NN-aided detection. ni

and no denote the neuron size of input and output layer, nhi
(i = 1, 2, · · · )

denote the neuron size of hidden layer between input and output.

(a) Comparison of Scheme 1, 2, 3 under fading channel with normalized
Doppler frequency of 10−6.

(b) Comparison of Scheme 1, 2, 3 under fading channel with normal-
ized Doppler frequency of 10−5.

(c) Comparison of Scheme 1, 2, 3 under fading channel with normalized
Doppler frequency of 10−4.

Fig. 10: BER performance comparison of CS-MIM using HD
detection which Scheme 1, 2, 3 is considered. Our simulation
parameter are shown in Table VI and Table VIII.

bits/sec/Hz. In [12], it was shown that a half-rate RSC coded
CS-MIM system with the same parameters as in Table VI
achieves the theoretical maximum rate of 0.667 bits/sec/Hz
at −7.25 dB in terms of its DCMC, which is also indicated
in Fig. 8. We first examine the performance of Scheme 4(a)
and 4(b) for the non-iterative SD detector. As shown in
Fig. 11, Scheme 4(a) achieves a BER of 10−5 at −1.7 dB.
Naturally, Scheme 4(b) that employs imperfect CSI degrades
the performance. By contrast, our proposed blind detection
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DNN model is capable of achieving similar performance to
the conventional SD detection, when the CE variance σ2

h is
0.16 and even better, when the CE variance is σ2

h = 0.25.
Furthermore, note that our proposed learning aided method of
Scheme 5 and Scheme 6 are blind and hence have no pilot
overhead.

Fig. 11: BER performance comparison of the conventional SD
detector with to proposed SD-DNN detector in non-iterative
condition which are the comparison of Scheme 4(a), 4(b) and
5(a) as shown in Table VII. The simulation parameter are
shown in Table VI and VIII.

The performance of SD can be further improved upon
iteratively exchanging extrinsic information between the de-
coder and the demodulator. Fig. 12(a) shows the iteration
gain of the conventional iterative detection Scheme 4. How-
ever, realistic CE results in 3dB performance loss compared
to the perfect CSI case at BER of 10−5. Fig. 12 charac-
terizes two different learning aided ISD detection methods
applied to our CS-MIM system. The first method, which
is Scheme 5, namely the single-stage DNN-SD detector is
about 5.2 dB worse than the conventional ISD relying on
perfect CSI with 1 iteration. For higher number of itera-
tions, the NN model will have an improved performance,
where the BER difference is reduced to 3.4 dB after 5
iterations. However, the proposed learning method has a com-
plexity order of O[O(ninh) + O(n2

h) + O(nhno)] compared
to O[nit2

cg ((NrNtMN2
f ) + (NrNtMN3

f + NrM
2N2

fNv +

NrNfM
2NvK+NrNfMKT )NACNSI(QL)K ] for the con-

ventional scheme, where nit denotes the number of iterations.
Fig. 12(b) characterizes the second method, which is

Scheme 6 of the learning-aided MAP method. In our simu-
lations, we used the LLRs of simplified Jacobian operation to
train the learning model. When the number of ISD iterations
is nit = 1− 3, the proposed detector achieves a BER of 10−5

at 3.05 dB for nit = 1, while the conventional ISD associated
with perfect and imperfect CSI requires −3.3 dB and −0.3
dB for the single-iteration scheme. This BER performance gap
is expected, because the model-based conventional detectors
exhibit higher complexity and have a pilot overhead, leading
to reduced throughput that cannot be compensated upon in-
creasing the SNR, as previously evidenced by Fig. 8.

(a) Comparison of Scheme 4 and 5.

(b) Comparison of Scheme 4 and 6.

Fig. 12: BER performance comparison of the ISD detector
with NN detector of Scheme 4, 5 and 6 as shown in Ta-
ble VII. The simulation parameter are shown in Table VI and
Table VIII.

TABLE X: Comparison between the complexities of different
SD detection methods of CS-MIM

Detector Complexity order
Conventional O[nit2

cg (NACNSI(QL)K)]
Single-Stage DNN-Aided O(ninh) +O(n2

h) +O(nhno)
Iterative DNN-Aided MAP 2nit(O(ninh) +O(n2

h) +O(nhno))

TABLE XI: Runtime comparison between proposed methods
and conventional SD of CS-MIM

scheme iteration Runtime iteration Runtime
(in seconds) (in seconds)

Conventional 0 0.735 1 3.43
2 4.65 3 6.25

Single-Stage DNN 1 0.0064 3 0.0062
5 0.0074

Iterative DNN MAP 1 0.1044 2 0.2533
3 0.4754
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The complexity order of the conventional SD detector and
of the proposed learning methods are shown in Table X and
the run time comparisons between conventional SD detection
and the proposed methods are shown in Table XI. Here, the
run time is measured for detection of a data sample at the
receiver. For fair comparison, we measure the runtime of all
schemes in MATLAB run on the same computer.

As shown in Fig. 12(a), Fig. 12(b) and Table X, it can be
observed that the proposed one-stage DNN-aided and iterative
DNN-aided MAP detectors have a somewhat eroded perfor-
mance, but impose an extremely low complexity compared to
the conventional SD detection.

V. CONCLUSIONS

Blind learning-aided detection of CS-MIM communicating
over fading channels using both HD and SD was proposed. For
HD, we demonstrated the proposed learning aided schemes are
capable of outperforming their ML, S-MP and AMP counter-
parts relying on pilot overheads in terms of their DCMC capac-
ity. Meanwhile, the proposed DNN methods exhibit the lowest
complexity. Then for SD without iterations, the proposed DNN
methods are capable of approaching the performance of their
coherent CS-MIM counterparts, even though their computa-
tional complexity is substantially reduced. Furthermore, ISD
is devised for the proposed DNN methods in order to benefit
from iteration gains. In summary, our methods are the first
blind detection solutions in the literature that can (I) eliminate
pilot overhead and CE complexity; (II) substantially reduce
the ISD complexity.
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