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Abstract: Off-road navigation in forest environments is a challenging problem in field robotics.
Rovers are required to infer their traversability over a priori unknown and dynamically changing
forest terrain using noisy onboard navigation sensors. The problem is compounded for small-sized
rovers, such as that of a swarm. Their size-proportional low-viewpoint affords them a restricted view
for navigation, which may be partially occluded by forest vegetation. Hand-crafted features, typically
employed for terrain traversability analysis, are often brittle and may fail to discriminate obstacles
in varying lighting and weather conditions. We design a low-cost navigation system tailored for
small-sized forest rovers using self-learned features. The MobileNet-V1 and MobileNet-V2 models,
trained following an end-to-end learning approach, are deployed to steer a mobile platform, with a
human-in-the-loop, towards traversable paths while avoiding obstacles. Receiving a 128 × 96 pixel
RGB image from a monocular camera as input, the algorithm running on a Raspberry Pi 4, exhibited
robustness to motion blur, low lighting, shadows and high-contrast lighting conditions. It was able
to successfully navigate a total of over 3 km of real-world forest terrain comprising shrubs, dense
bushes, tall grass, fallen branches, fallen tree trunks, and standing trees, in over five different weather
conditions and four different times of day.

Keywords: off-road visual navigation; end-to-end learning; multiclass classification; low-viewpoint
forest navigation; low-cost sensors; small-sized rovers; sparse swarms

1. Introduction

An estimated 3 trillion trees, mostly in forests that cover 30% of the Earth’s landmass,
are important for maintaining our ecosystems and counteracting climate change [1,2]. The
management, maintenance and conservation of forests are enormous operations. Forests
need to be adapted to stay resilient in the face of new rainfall patterns, increased wind, more
generations of insect pests per year, and the arrival of new pathogens [3]. At present, forests
are monitored on a large scale from space [4], and more locally with aerial surveys [5].
However, many aspects of tree growth and health can best be determined from below
the canopy, or require access to the ground. Conceivably, a sparse swarm of rovers could
assist in monitoring forests [6]. The swarm could gather spatio-temporal information,
such as census data on healthy tree saplings, or visually inspect bark and leaves for
symptoms of devastating invasive diseases [7]. A swarm could collaboratively estimate the
locations of forest areas that are prone to wildfires, enabling precise preventive measures [8].
Importantly, the individual rovers of the swarm have to be small-sized (portable) to reduce
their environmental impact, such as from soil compaction [9]. The rovers also have to be
inexpensive to allow their large-scale deployment as a swarm.

Off-trail navigation in forest environments is an open problem in field robotics [10].
Forest environments comprise a variety of different vegetation such as leaves, twigs, fallen
branches, grass, shrubs, standing and fallen trees, and overhanging bushes. Rovers are
required to predict the terrain traversability over a priori unknown forest terrain relying
solely on onboard sensors, and do so under varying lighting and weather conditions [11,12].
Furthermore, the prediction of the rover–terrain interactions is not only impacted by ter-
rain and the weather conditions (such as wet versus dry foliage), but also susceptible
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to changes experienced by the rover in prolonged operation (e.g., mud sticking to the
rover’s wheels) [13]. For small rovers with a low camera viewpoint, which is easily oc-
cluded by compliant vegetation such as grass or overhanging leaves, forest navigation is
especially challenging.

Off-road terrain traversability for ground robots has been investigated in numerous
studies (c.f. [14,15]), often motivated by the DARPA programs [16,17]. Machine learning
algorithms for off-road navigation typically utilize hand-crafted features [18] engineered
by experts based on the application scenario and the rover’s operating environment. In
structured environments, these rely mainly on geometry (e.g., slope, step and roughness
features of city walkways [19]) and appearance (color and texture of obstacles [20]). Unstruc-
tured environments typically require engineered features of proprioceptive information
such as drive electrical currents, acceleration forces and chassis orientation on uneven
terrain [18,21], in addition to geometry and appearance-based features. For example, fea-
tures engineered from proprioceptive sensors, particularly the mean slope of terrain profiles
from chassis orientation, were used in [22] for mobility prediction models.

Hand-crafted features have limitations for terrain traversability analysis in off-road en-
vironments. Features engineered from geometric data, such as terrain roughness and slope,
are often unreliable in unstructured environments due to limited depth information [23,24].
Estimated digital elevation maps can be incomplete due to occlusions [23]. Compliant
vegetation, such as high grass, is difficult to be captured with engineered geometry-based
features [24]. Hand-crafted visual features (e.g., color and textural descriptors) suffer from
environmental factors such as high-contrast lighting [25,26]. In summary, hand-crafted
features are impaired by engineering bias and often lead to poor discriminative power [27].
Hand-crafted features that are robust to compliant objects, deep shadows, and motion blur
are complicated to engineer, computationally expensive to run, and often brittle in varying
environmental conditions.

In contrast to hand-crafting, many recent studies have turned to self-learned fea-
tures trained using end-to-end learning to directly output steering actions for a rover
(see Figure 1 and Table A1). Steering prediction algorithms following end-to-end learning
have been successfully applied in structured environments, such as in mazes [28,29], follow-
ing colored tracks [30–33] and corridors [25,34–36]. In outdoor environments, algorithms
using end-to-end learning have demonstrated some promising results in autonomous
driving on well-paved roads in structured urban environments under varying lighting
and weather conditions [37–40]. Moreover, recently, a few studies have investigated end-
to-end learning algorithms for off-road navigation [41–43]. For example, using control
policy predictions of steering and throttle commands trained using an end-to-end imitation
learning approach, a 1/5-scaled RC vehicle was able to successfully navigate a dirt track—
without obstacles—at high speed [41]. However, the application of end-to-end learning
for small-sized rovers navigating forest environments comprising a variety of compliant
(grass, shrubs) and rigid obstacles (fallen branches, tree stems) from a viewpoint tens of
centimeters off the ground remains to be investigated.

We propose a low-viewpoint navigation system for small-sized forest rovers, trained
using end-to-end learning. This approach targets the uncharted bottom-right region in
Figure 1. A mobile platform is designed to easily capture and automatically label train-
ing data of forest scenes, RGB images at a low-viewpoint. Four different state-of-the-art
lightweight convolution neural networks—DenseNet-121, MobileNet-V1, MobileNet-V2
and NASNetMobile—have been investigated for multiclass classification of steering ac-
tions. The models are trained using real-world forest data captured from the Southampton
Common woodlands (Hampshire, UK). From the four models, the MobileNet-V1 and
MobileNet-V2 are selected for field experiments due to their high accuracy and runtime
performance. To sidestep the additional challenges of designing a high-endurance locomo-
tion system for a small-sized low-cost rover, in this study, we focus solely on the navigation
system. Therefore, the mobile platform is pushed manually by an operator, guided by the
steering actions of the classification model running on a Raspberry Pi onboard the platform.
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The developed low-viewpoint navigation algorithm uses a 128 × 96 resolution RGB image.
Navigation using the developed classification model has been extensively tested in field
trials, successfully navigating a total of over 3 km of real-world forest terrain under five dif-
ferent weather conditions and four different times of day, including high-contrast sunlight
and low-lighting at dusk.

1 2 3 4 5

10
0

10
1

10
2

10
3

[41]
[42,43]

[44] [40]

[39][45]
[25]

[46]
[47]

[48]

[49]
[34,50]

[35]

[51]

[52]

[30,32]

W
ei

gh
to

fr
ov

er
s

(k
g)

1 2 3 4 5

10
1

10
2

10
3

10
4

[43]

[42][41]

[40]
[38]

[37]
[44]

[53]

[46][45]

[25][47]

[39,48]

[36]
[50]

[35]
[52][34]

[49]

[51]

[32]

[31]
[33]

[30]

Terrain difficulty

C
os

to
fn

av
ig

at
io

n
se

ns
or

s
(G

BP
)

Figure 1. The relationship between the navigation sensor cost, rover weight and terrain difficulty
in studies using end-to-end learning. Terrains are categorized in ascending order of difficulty as
follows: 1. colored track indoors; 2. corridor and rooms indoors; 3. sidewalks and walkways in
urban environment; 4. off-road on cemented paths, short grass, pebbles, dirt and dry leaves; and
5. highways and traffic roads, forest environment—dense bushes, tall grass, fallen branches, fallen
tree trunks, standing trees, small mounds and ditches. Importantly, to the best of our knowledge,
none of the studies have investigated end-to-end learning for navigation in forest environments. For
details on environments in the referenced studies, see Table A1 in Appendix A [30–53].



Forests 2023, 14, 268 4 of 21

2. Materials and Methods

Our algorithm for forest navigation employs deep neural networks to train a multiclass
classification model following end-to-end learning. Training data for the classification
comprise RGB images and corresponding steering actions, obtained by an operator pushing
the mobile platform through the forest. The trained models infer steering actions from
RGB images in real-time, on an onboard embedded computer, with sufficient accuracy to
facilitate navigation of the forest environment.

Training data for forest navigation: Data was collected at the Southampton Common
(Hampshire, UK), a large area of over 1.48 km2 featuring woodlands, rough grassland,
ponds, wetlands and lakes. Several paths of the woodlands, both on-trail and off-trail
and totaling over 600 m, were selected for recording data. The selected paths comprised
a number of different obstacles such as grass, bushes, fallen tree branches, leaf litter, and
fallen and standing trees.

The customized mobile platform was manually pushed by an operator along the
paths to be recorded (for platform details, see [11]). On the platform, two incremental
photoelectric rotary encoders were attached to a CamdenBoss X8 series enclosure box
(L × W × H: 18.5 × 13.5 × 10 cm). Two black polyurethane scooter wheels were mounted
on either side of the enclosure, one for each encoder. The wheels were 10 cm in diameter
and 2.4 cm in width to enable traversal over rough terrain. The encoders were connected
to a Micropython enabled Adafruit ItsyBitsy M4 Express ARM board, which made the
time stamped rotary encoder readings available over a USB connection. The enclosure was
mounted at the end of a 1.21 m telescopic extension pole, allowing the operator to roll the
enclosure on its wheels along the ground by pushing it forward while walking. Inside
the enclosure, an Intel RealSense D435i camera was mounted 15 cm above the ground
with a free field of view in the direction of motion. The rotary encoder data were time
synchronized with the recorded RGB images from the camera at 30 frames per second, and
recorded at the same rate. A laptop computer connected to the camera, and to the USB
connection from the rotary encoders, was used to store the data.

The operator pushed the mobile platform along forest paths while performing go
straight (GS), turn left (TL), turn right (TR) and go back (GB) actions. All the actions were
performed as discrete movements to ensure the wheels of the mobile platform rotated
smoothly on challenging forest terrain, to provide reliable encoder data. With the GS action,
the platform was pushed straight approximately 50 cm forward. Rotatory actions of TL and
TR pivoted the platform by approximately 15◦ along the yaw axis. Finally, the GB action
rotated the platform by approximately 180◦. The actions allowed the operator to navigate
the mobile platform through the forest, avoiding collisions by steering around the obstacles,
and turning around when there were no traversable paths to circumvent the obstacles.

In total, 29,005 RGB images were recorded by the mobile platform. To automatically
label the recorded RGB images for training the multiclass classification models, the left and
right wheel encoder data were used to label the corresponding timestamped RGB images.
The images were labeled as one of GS, TL, TR and GB according to the steering angle of
the platform. A few of the GB labeled RGB images had to be manually re-labeled as TL or
TR (around 1% of the recorded data), if there was a traversable path on the far left or far
right of the image, respectively. Following the labeling, we had 19,573, 3037, 3527, and 2868
images for the GS, TL, TR and GB actions, respectively. Subsets of the recorded data were
used for training (70%), validation (15%) and testing (15%) the multiclass classifier models
(see Table A2 in Appendix A for details).

Classification models: The multiclass classification models are required to infer
steering directions (GS, TL, TR and GB) from input RGB images in real time. As the
models are to be deployed on low-cost embedded computers, for our study, we com-
pare four state-of-the-art light-weight neural networks—DenseNet-121 [54], MobileNet-
V1 [55], MobileNet-V2 [56] and NasNetMobile [57]. The implementations of these net-
works are available at Keras (Keras is a deep learning API written in Python, see https:
//keras.io/api/applications, accessed 23 November 2020)

https://keras.io/api/applications
https://keras.io/api/applications
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The initial weights of the DenseNet-121, MobileNet-V1, MobileNet-V2 and NasNet-
Mobile models had been pre-trained on the ImageNet dataset [58] to speed up the model
convergence. Subsequently, we unfroze all the layers in the investigated models and re-
trained them on our forest data. For steering direction prediction, a flattened convolutional
layer followed by three fully connected (FC) layers were added to the models (see the
architecture in Figure 2). The first two FC layers had a rectified linear unit activation, and
the last FC layer employed a softmax activation for steering direction selection. Batch
normalization and dropout operations (probability of 0.2) were employed after each FC
layer to prevent overfitting of the data [59]. For a fair comparison across the models, all
the RGB images in the training data were downsampled to 224 × 224. Each of the models
were trained for 20 epochs with a batch size of 16, using the Adam optimizer with a cate-
gorical cross-entropy loss (log-loss) function [60]. All of the models were implemented in
TensorFlow [61] and Keras [62], and trained on a NVIDIA GTX 1080ti (11G) GPU. Training
took approximately 16h (DenseNet-121), 7h (MobileNet-V1), 8h (MobileNet-V2) and 10h
(NASNetMobile) on a NVIDIA GTX 1080ti (11G) GPU for 224 × 224 resolution RGB images.
The trained Tensorflow models were compiled into TensorFlow-Lite models [63], resulting
in over a ten-fold improvement in runtime performance.

Figure 2. Architecture of multiclass classification models for end-to-end learning. The input RGB
image is first fed into lightweight convolutional neural networks—one of DenseNet-121, MobileNet,
MobileNet-V2 and NASNetMobile—that are pre-trained on ImageNet. Outputs of the convolutional
neural networks are flattened and input into three fully connected (FC) layers. The first two layers
utilize a rectified linear unit activation (ReLU). A softmax activation is utilized by the final layer
for steering direction selection—one of go straight (GS), turn left (TL), turn right (TR), and go back
(GB). Batch normalization (BN) and dropout operations were employed after each FC layer to avoid
overfitting the training data.

The trained DenseNet-121, MobileNet-V1, MobileNet-V2 and NASNetMobile models
all achieved a high classification performance on the tested RGB images (see the accuracy
and log-loss in Table 1). In particular, all four models were largely able to accurately classify
the GS, TL, TR and TB steering actions, with the DenseNet-121 model attaining a high
overall accuracy across all four classes (see confusion matrix in Figure 3). The high accuracy
in steering action classification was further supported by a 5-fold cross-validation (see the
details in Table A4 in Appendix A). However, the DenseNet-121 model was impaired by
a high runtime, requiring over twice the time as the other models to classify the images
on a Raspberry Pi 4 (see the runtime in Table 1). Therefore, in considering the tradeoff
between accuracy and runtime, the MobileNet-V1 and MobileNet-V2 were selected for
field experiments.
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For the field experiments, the runtimes of the selected MobileNet-V1 and MobileNet-
V2 models were improved by downsampling the resolution of the 224 × 224 RGB images
input into the model. Therefore, these two models were retrained following the same
experimental setup (20 epochs with a batch size of 16) after downsampling the RGB
images of the training data to 128 × 128, 128 × 96, 64 × 64, and 32 × 32, in separate and
independent experiments. The results from our parameter tuning experiments indicated
a steep drop in accuracy at resolutions below 128 × 96 (see Table A3 in Appendix A for
MobileNet-V1; similar trends in accuracy were observed for MobileNet-V2). Consequently,
the MobileNet-V1 and MobileNet-V2 models trained with 128 × 96 resolution images (see
the performance details in Table 2, the 5-fold cross-validation in Table A5 in Appendix A,
and the confusion matrix in Figure 4) were deployed for the field experiments.

Figure 3. Confusion matrix of DenseNet-121, MobileNet-V1, MobileNet-V2 and NASNetMobile
multiclass classification models for the go straight (GS), turn left (TL), turn right (TR) and go back
(GB) steering actions, with input RGB images of resolutions 224 × 224.

Figure 4. Confusion matrix of MobileNet-V1 and MobileNet-V2 models for the go straight (GS), turn
left (TL), turn right (TR) and go back (GB) steering actions for input image resolutions of 128 × 96.
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Table 1. Mean accuracy, log-loss, and mean ± SD runtime of the DenseNet-121, MobileNet-V1,
MobileNet-V2 and NASNetMobile classification models for 224 × 224 input RGB images, and the
Tensorflow-Lite model size. Accuracy and log-loss were aggregated across 4353 images (testing set).
Runtimes were aggregated across 100 randomly selected images, executed on a Raspberry Pi 4.

Models Accuracy Log-Loss Runtime Model Size

DenseNet-121 0.98 0.08 2.01 ± 0.02 s 131 MB
MobileNet-V1 0.98 0.12 0.78 ± 0.02 s 116 MB
MobileNet-V2 0.96 0.22 0.63 ± 0.01 s 138 MB
NASNetMobile 0.96 0.18 1.01 ± 0.01 s 124 MB

Table 2. Performance of the MobileNet-V1 and MobileNet-V2 models, trained on images of resolution
128 × 96, and selected for field experiments.

Models Accuracy Runtime Model Size

MobileNet-V1 0.96 0.43 ± 0.01s 39 MB
MobileNet-V2 0.91 0.27 ± 0.01s 41 MB

Mobile platform for field experiments: The mobile platform deployed to assess our
multiclass classification models in field experiments was similar to the platform used to
gather training data, but with a low-cost RGB webcam for capturing input images, and the
addition of display hardware for the output steering commands to be visible to the operator
(see the platform and operator in Figure 5). A Logitech C270 HD webcam (diagonal 55◦ field
of view) was mounted inside the enclosure (replacing the Intel RealSense D435i camera) at
18 cm above the ground and was connected to a Raspberry Pi 4. Additionally, a stripboard
(9.5 × 12.7 cm) was fixed to two rectangular wooden blocks on the top of the enclosure,
alongside two concentric NeoPixel rings of addressable RGB LEDs (Adafruit Industries,
New York, NY, USA). The two NeoPixel rings were connected to the Raspberry Pi 4 (4 GB
RAM) via a twisted pair (data) and a USB cable (power), while a Schmitt-trigger buffer
(74LVC1G17 from Diodes Incorporated, Plano, Texas, USA) in the serial data line was used
to overcome the capacitance of the long twisted pair wire. A HERO 9 (GoPro, San Mateo,
CA, USA) action camera was also mounted on the telescopic pole 50 cm from the top of the
enclosure for a third-person view high-resolution video recording of the field experiments.

The RGB images captured by the Logitech camera every four seconds—one control-
cycle—were input into the multiclass classification model deployed on the Raspberry Pi.
Subsequently, the classification model output a steering direction—one of GS, TL, TR and
GB—which was displayed on the NeoPixel rings (see Figure 5 for details on the direction
indications). A fifth action, labeled waypoint, was introduced for the field experiments. The
waypoint action superseded the direction outputs of the classification model. It prompted
the operator to rotate the platform towards the direction of the goal waypoint. The action
occurred every 10 control-cycles and in general could be based on GPS information.
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Figure 5. The two-wheeled mobile platform with an operator. The platform is equipped with a
Logitech C270 camera, two NeoPixel rings, a Raspberry Pi 4, a Raspberry Pi HDMI display, a GoPro
camera, and a portable power bank. RGB images captured by the Logitech camera are transmitted
to the Raspberry Pi 4, to predict steering directions. The resulting steering actions are displayed on
the NeoPixel LED rings. Note that the platform is also used for data collection, where the Logitech
camera is replaced with an Intel Realsense D435i camera, and the data including RGB images and
rotary encoder counts are synchronously stored on a laptop via a USB connection.

3. Experiments

The field experiments to investigate the performance of the developed MobileNet-V1
and MobileNet-V2 multiclass classification models for forest navigation were performed in
the Southampton Common woodlands. The experiments were performed for the following
two scenarios: (i) following a long forest trail; and (ii) steering through a smaller but more
challenging off-trail forest environment.

The performance of the classification models in navigating the forest was assessed
with the following metrics: (i) the total distance traversed by the mobile platform to reach
its target waypoint; and (ii) turning rate—the proportion of times the mobile platform
steered left and right, which is zero for a straight-line trajectory to the target and in general
is unbounded (arbitrary long detours and many arbitrary turns without forward progress).

Following a long forest trail: The mobile platform was navigated over a dried mud
trail of around 120 m, comprising various compliant and rigid obstacles. Obstacles on and
around the trail included dense bushes, tall grass, leaf litter, fallen branches, fallen tree
trunks, and standing trees (see examples in Figure 6A).

For the forest-trail experiments, the start and goal waypoints were positioned at
(5056.1989 N, 124.0732 W) and (5056.1859 N, 124.1515 W), respectively (see Figure 7).
The actions GS, TL, TR, GB and waypoint (defined in Section 2) were used to navigate
the mobile platform towards the goal waypoint. As the goal was 210◦ SW of the start
location, this bearing was used to rotate the mobile platform to face the goal, using a
compass, when the waypoint action was triggered. The GB action was employed by the
mobile platform to turn around and attempt to find an alternative path to circumvent large
obstacles such as fallen tree trunks. If this action was triggered three times consecutively
for the same obstacle, we assumed that there were no traversable paths around the obstacle;
consequently, the operator would lift the platform over the obstacle, log the incident, and
continue the experiment. The experiment was terminated when the platform reached the
goal waypoint.
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A

1. Tall grass 2. Dense bushes 3. Fallen tree trunks

4. Leaf litter 5. Standing trees 6. Fallen branches

B

7. Fallen tree trunks 8. Tree stump 9. Slender tree

Figure 6. Examples of obstacles encountered by the mobile platform both on the forest trail (A) and
off-trail (B) in the Southampton Common woodlands.

Figure 7. Trajectory of around 120 m from GPS metadata of the forest trail overlaid on an aerial view
of the Southampton Common woodlands. The white scale bar in the lower right corner corresponds
to a distance of 10 m. The straight-line distance between the start and goal waypoint is 90 m.
Permitted use: Imagery©2022 Getmapping plc, Infoterra Ltd & Bluesky, Maxar Technologies, The
GeoInformation Group, Map data©2022 Google.
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Forest-trail experiments were performed ten times for each of the MobileNet-V1 and
MobileNet-V2 multiclass classification models under several different weather conditions
and times of day (see details on the environmental conditions in Table A6 of Appendix A).
Across all the experiments, the platform steered by the MobileNet-V1 and MobileNet-
V2 models was able to reach the goal waypoint without sustaining any collisions. In
navigating with the MobileNet-V1 model, the platform traversed a mean distance of
120 ± 15 m with a turning rate of 0.24 ± 0.02 (mean ± SD across ten replicates, see Table 3).
While the MobileNet-V2 model was also able to successfully navigate the platform, it
was less efficient, steering left and right significantly more often (mean turning rate of
0.52 ± 0.07; Kruskal–Wallis test, p < 0.001), and accumulating a slightly higher traversed
mean distance of 131 ± 10 m to reach the goal. Notably, in all the experiments, irrespective
of the classification model employed for navigation, the platform had to be lifted over a
large fallen tree that blocked the forest trail, as there were no traversable paths to circumvent
the obstacle; the incident occurred once in each replicate.

Samples of the navigation performance of the MobileNet-V1 model in different forest
scenes are shown in Figure 8 (see more examples in the demonstration video of the Supple-
mentary Material). The platform is accurately directed to perform GS actions when there are
no obstacles blocking its path, despite motion blur in the input RGB image (see an example
of a clear trail in dense vegetation in Figure 8A). Additionally, the classification model was
able to steer the platform towards open spaces to avoid potential collisions (see Figure 8B
and C—turning towards the trail in diffuse and high contrast lighting). In scenarios where
the robot was facing a close-range obstacle, or large untraversable areas in the distance,
the GB action was successfully triggered to avoid potential collisions (see Figure 8D—a
fallen tree trunk covered in weeds and moss). Relatedly, the GB action was unnecessarily
triggered only once, across all the experiments, when the platform encountered a fallen
tree trunk and turned back rather than passing through the small hole between the trunk
and the trail (see Figure 8E).

Table 3. The distance and turning rate in following a forest trail from start-to-goal in the Southamp-
ton Common woodlands for different weather conditions and times of day. Data were generated
by employing the MobileNet-V1 and MobileNet-V2 models with input RGB images of 128 × 96
resolution. Details on lighting and weather conditions are listed in Table A6 of Appendix A.

MobileNet-V1 MobileNet-V2

Trial Distance (m) Turning Rate Distance (m) Turning Rate

Run 1 146 0.24 154 0.38
Run 2 116 0.22 134 0.46
Run 3 134 0.28 130 0.59
Run 4 114 0.23 119 0.60
Run 5 101 0.22 136 0.50
Run 6 137 0.24 123 0.54
Run 7 125 0.25 124 0.45
Run 8 112 0.20 122 0.59
Run 9 102 0.21 129 0.55
Run 10 115 0.26 135 0.58

Off-trail forest navigation: Experiments were performed in two unfrequented areas
of the Southampton Common woodlands, labeled site A and site B, spanning around
400 m2 and 200 m2 of forest, respectively. The two sites included obstacles such as forest
litter, standing trees and fallen tree branches. The sites differed in the nature of their
environment (see examples in Figure 6B). Site A had a high density of slender trees; it,
however, had a very narrow corridor between waypoints for the mobile platform to slide
through gaps between trees, requiring only a few turns to reach the destination. By contrast,
site B comprised larger trees, tree stumps and fallen tree trunks on an uphill terrain.
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Due to the small area of the off-trail environment, a round trip between waypoints
was performed for each experiment. The platform was first steered by the navigation
algorithm from the start to an intermediate waypoint. On reaching the intermediate
waypoint, the platform was oriented back towards the start waypoint to navigate back to
it. The experiment was terminated when the platformed reached the start waypoint. In
our experiments, the start waypoints were located at (5056.1448 N, 124.0316 W) for site A
and (5056.1568 N, 124.0155 W) for site B. Intermediate waypoints for the round trip were
at (5056.1533 N, 124.0418 W) for site A and (5056.1666 N, 124.0240 W) for site B. Steering
actions GS, TL, TR, GB and waypoint were used to navigate the platform. For the waypoint
action, as the goal was always visible to the operator, the waypoint direction was updated
through visual observation.

The off-trail experiments were performed ten times for each of the MobileNet-V1 and
MobileNet-V2 classification models in several different weather conditions and times of
day (see details on environmental conditions in Table A7 of Appendix A). Across all the
replicates, for both the classification models, the mobile platform was able to successfully
complete the round-trip path without sustaining any collisions, irrespective of the off-trail
site, time of day and weather conditions. The platform steered by the MobileNet-V1 model
traversed an average distance of 28 ± 5 m (mean ± SD across 20 replicates from both sites
A and B) in the round-trip, with a turning rate of 0.13± 0.08 (see Table 4). As with the forest
trail experiments, the MobileNet-V2 model was less efficient in navigation, accumulating
a higher average distance of 33 ± 7 m to complete the round trip, and requiring a higher
turning rate of 0.24 ± 0.08 to avoid obstacles; the turning rate was significantly higher in
site B, which comprised a high density of forest vegetation (Kruskal–Wallis test, p < 0.001).

Table 4. The distance and turning rate when navigating a round trip between two waypoints off-trail
in the Southampton Common woodlands. Experiments in site A and site B had start waypoints at
(5056.1448 N, 124.0316 W) and (5056.1568 N, 124.0155 W), and destination way-points at (5056.1533 N,
124.0418 W) and (5056.1666 N, 124.0240 W). Data was generated by employing the MobileNet-V1 and
MobileNet-V2 models with input RGB images of resolution 128 × 96. The details on lighting and
weather conditions are listed in Table A7 of Appendix A.

MobileNet-V1 MobileNet-V2

Trial Distance (m) Turning Rate Distance (m) Turning Rate

Site A
Run 1 23 0.04 40 0.21
Run 2 22 0.00 28 0.15
Run 3 22 0.06 26 0.28
Run 4 24 0.04 25 0.12
Run 5 23 0.10 26 0.16
Run 6 25 0.09 26 0.06
Run 7 32 0.03 25 0.33
Run 8 30 0.06 25 0.14
Run 9 29 0.03 26 0.19
Run 10 28 0.09 28 0.27

Site B
Run 1 37 0.21 38 0.36
Run 2 24 0.20 45 0.33
Run 3 25 0.17 36 0.38
Run 4 24 0.17 41 0.22
Run 5 23 0.18 39 0.26
Run 6 40 0.14 41 0.30
Run 7 31 0.22 37 0.22
Run 8 32 0.20 38 0.23
Run 9 31 0.20 37 0.22
Run 10 30 0.31 37 0.30
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A

B

C

D

E

Third-person view RGB input image Steering direction

Figure 8. Steering directions output by the MobileNet-V1 model on encountering different obstacles
on the forest trail at the Southampton Common woodlands, with the input RGB images at resolution
128 × 96. The corresponding 1920 × 1080 high resolution RGB images (from the GoPro camera)
display a third-person view of the forest scene and the steering commands on the LED rings of the
mobile platform. (A) blurred but clear trail across dense vegetation; (B) clear trail on the left of the
platform, tall grass and bushes on the right and ahead of the platform; (C) clear trail on the right,
dense bushes occupying the left area and part of the central area in front of the platform; (D) fallen
tree trunk covered with vegetation with no clear trail in the navigation camera’s field of view; and
(E) a clear trail in front of the platform with a hanging fallen tree trunk far away from the platform
that appears in the lower middle region of camera’s field of view. The RGB input images displayed
here have been upsampled by a factor of 10 for visual clarity.

The performance of the MobileNet-V1 model in navigating the off-trail areas of the
forest is illustrated with some examples in Figure 9 (see more examples in the demonstration
video of the Supplementary Material). Despite low lighting conditions, the mobile platform
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was successfully steered between the narrow space among slender trees (see Figure 9A). It
was able to avoid obstacles with a sequence of turning actions (see examples in Figure 9B,C
of the platform avoiding a standing tree and tree stump). Moreover, to avoid potential
collisions, the GB action was accurately triggered (see Figure 9D of a long fallen tree trunk).
Finally, as with the forest-trail experiments, the GB action was unnecessarily triggered only
once when the platform failed to identify a narrow gap between two slender trees that it
could be pushed through (see Figure 9E).

A

B

C

D

E

Third-person view RGB input image Steering direction

Figure 9. Steering directions predicted by MobileNet-V1 model navigated by the mobile platform
on encountering different obstacles off-trail in the Southampton Common woodlands. The steering
directions are annotated in the third column. (A) slender trees in front of the platform; (B) large
standing trees on the right side; (C) tree stump and standing tree in front of the platform, tree branches
and bent trees on the left side; (D) large fallen tree trunk in front of the platform. (E) slender trees in
front of the platform. The RGB input images displayed here have been upsampled by a factor of 10
for visual clarity.
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4. Discussion

In this study, we have implemented a low-viewpoint navigation algorithm for inex-
pensive small-sized mobile platforms navigating forest environments. For navigation, an
end-to-end learning model was trained to predict steering directions from RGB images
of a monocular camera mounted on the mobile platform to direct the platform towards
open traversable areas of the forest, while avoiding obstacles. A multi-sensor mobile
platform was used to collect training data in a forest environment, totaling almost 30,000
low-viewpoint RGB images and the corresponding rotary encoder data. We trained four
state-of-the-art lightweight convolution neural networks—DenseNet-121, MobileNet-V1,
MobileNet-V2 and NASNetMobile—for multiclass classification of steering actions for RGB
images. From the four models, the MobileNet-V1 and MobileNet-V2 were selected for
field experiments due to their high accuracy and runtime performance. Our navigation
algorithms were extensively tested in real-world forests under several different weather
conditions and times of day. In field experiments, using 128 × 96 resolution monocular
RGB images, the mobile platform was able to successfully traverse a total of over 3 km of
forest terrain comprising small shrubs, dense bushes, tall grass, fallen branches, fallen tree
trunks, ditches, small mounds and standing trees.

The developed multiclass classification model solely relies on appearance-based in-
formation for navigation. The addition of geometry-based information may potentially
provide for a better discrimination of obstacles (e.g., small close-range obstacles vs. large
obstacles in the distance) with similar visual features, and consequently enable more accu-
rate steering actions. Geometry and appearance-based information have been successfully
combined in few previous studies on end-to-end learning. For example, LiDAR sensor data
have been integrated with RGB images from a camera as combined inputs for navigation in
indoor environments [32,36]. Our classification models may be easily extended with the ad-
dition of geometry-based information. Moreover, for low-cost platforms, depth prediction
models may be employed instead of expensive depth sensors such as LiDAR (e.g., see our
previous study on low-viewpoint depth prediction models for forest environments [64]).

Rovers operating in a forest are required to make safe and accurate steering decisions
on a priori unknown and dynamically changing forest terrain. Therefore, a representation
of the confidence of the predicted steering actions is essential for the navigation system [65].
In our classification model, the distribution of the activation of the steering output neurons
may be used to approximate the uncertainty in the selected action. More principled
approaches such as Gaussian process models and Bayesian deep neural networks appear
promising, but computationally expensive, to infer the uncertainty in steering directions,
and consequently plan safe paths for the rover (e.g., [66,67]). Finally, hardware or behavior-
based solutions (e.g., see [68,69]), to nudge and probe obstacles such as grass and dense
bushes, may be integrated onto the rover platform to actively reduce the uncertainty
in scene understanding.

The training data for our multiclass steering classification models are captured using
a mobile platform steered by an operator walking through the forest. Consequently, the
operator’s decisions on what obstacles may be overcome (e.g., pushing through grass, or
rolling over a small fallen branch) will be distilled into the navigation algorithm of the
rover. However, the training data for the steering classification models may be generalized
to rovers with more advanced locomotion capabilities. Obstacles that could be overcome by
a rover with better climbing ability than assumed by the operator will only occupy the area
at the lower edge of the image frame. Such frames may be identified with image processing
to automatically remove them from the training or relabel them with texture discrimination
filters as compliant obstacles that may be successfully pushed through.

The aim of our study was to investigate the feasibility of using end-to-end learning for
steering a small-sized platform at a low viewpoint through the forest. For our field experi-
ments, coarse steering actions of turn-left and turn-right were employed for navigation.
However, our approach could easily be extended to directly output wheel speeds to a rover,
using techniques such as deep reinforcement learning [47,70]. Moreover, for the training of
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such a rover controller, the captured RGB images could be automatically labeled with a
finer resolution of velocity vectors using the rotary encoder data from our mobile platform.

5. Conclusions

In this study, a mobile platform running our navigation algorithm is pushed by an op-
erator, guided by the displayed steering directions onboard the platform. Such an approach
enabled us to focus solely on the challenges of forest navigation without the additional
constraints of field experiments with physical rovers, not to mention the enormous chal-
lenges in designing a portable high-endurance and low-cost off-road rover. However, our
approach to navigation may be employed on real rovers. For navigation, the monocular
camera on our mobile platform is mounted 18 cm over the ground, consistent with the low
viewpoint of off-road small-sized rovers (e.g., see rovers deployed in [21,71,72]). Moreover,
our navigation algorithm is robust to blurred images from the platform’s movement as well
as shadows, high-contrast lighting and low-lighting conditions. Arguably, our approach to
forest navigation for small-sized rovers is promising for physical validation on real rovers.

Supplementary Materials: A demonstration video of our field experiments, performed on a sunny
day in the morning, is available at https://www.youtube.com/watch?v=UbY4i1xodx8, accessed 25
November 2022.
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Appendix A

Table A1. A comparison of studies on steering prediction following end-to-end learning, with the
weight of the rover and the approximate cost of the sensors required for navigation. Terrains are
categorized in ascending order of difficulty. Sensor costs were obtained from vendor sites, where
available. Dashed lines indicate the corresponding data was unavailable.

Reference Environments
Approximate Sensors
Cost (GBP)

Weight of Rovers
(kg)

5: Highways and traffic road
[44] Racing track on traffic road 210 1231

[40] Highways (sunlight facing the camera, high contrast sunlight,
shadows, covered in snow) 14,000 1579

[37] Traffic road 380 -
[38] Traffic road and walkways in parks 8400 -

4: Off-road on cemented paths, short grass, pebbles, dirt and dry leaves
[41] Off-road racing track 300 22
[42] Mowed and short grass off-trail 380 35

[43] Cemented and off-road trails with pebbles, dirt, sand, grass and
fallen leaves, with few obstacles 5500 35

https://www.youtube.com/watch?v=UbY4i1xodx8
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Table A1. Cont.

Reference Environments
Approximate Sensors
Cost (GBP)

Weight of Rovers
(kg)

3: Sidewalks and walkways in urban environment

[47] Static environments: walkways in office areas, laboratory space and
corridors; dynamic environments: sidewalks among crowds. 355 12

[45] Paved road cemented on grass 800 50
[46] Mowed lawn, short grass, and trees in urban environment 1000 17
[53] Sidewalks outside malls and office buildings 5500 -
[48] Walkways in neighborhoods and parks 60 5
[39] Parking lots, city roads and sidewalks 60 62
[25] Corridor indoors and stone trail outdoors 400 30

2: Factory floor and cluttered room indoors
[49] Factory floor 230 13
[34] Corridor indoors with few obstacles 340 7
[35] Corridor, kitchen and laboratory space 600 2
[36] Cluttered corridor indoors 7000 -
[50] Cluttered maze-like indoor environment 4000 7
[51] Room with few obstacles 100 4
[52] Corridor indoors 400 55

1: Colored track indoors
[32] Colored track indoors with few obstacles 320 2
[33] Colored track indoors 30 -
[31] Colored tracks indoors and outdoors, and room with few obstacles 50 -
[30] Colored track indoors 6 2

Table A2. Dataset of RGB images for the multiclass classifier. The RGB images of the dataset were
labeled go straight (GS), turn left (TL), turn right (TR) and go back (GB) using the wheel encoder data
of the mobile platform. Subsequently, subsets of the dataset were used for training (70%), validation
(15%) and testing (15%) the multiclass classifier models.

Data GB GS TL TR Total

Training set 2005 13,697 2122 2466 20,290
Validation set 432 2939 458 533 4362
Testing set 431 2937 457 528 4353

Table A3. Performance of the MobileNet-V1 models trained on different input image resolutions.
Accuracy and log-loss were aggregated across 4353 images (testing set).

Input Image Resolutions Accuracy Log-Loss Model Size

32 × 32 0.33 1.38 16 MB
64 × 64 0.78 1.00 22 MB
128 × 96 0.96 0.19 39 MB
128 × 128 0.96 0.22 47 MB



Forests 2023, 14, 268 17 of 21

Table A4. The 5-fold cross validation for 224 × 224 resolution images among the DenseNet-121,
MobileNet-V1, MobileNet-V2 and NASNetMobile models.

Densenet-121 MobileNet-V1 MobileNet-V2 NASNetMobile

Accuracy 0.978 0.980 0.970 0.958

Log-loss 0.116 0.118 0.154 0.178

Precision (macro avg) 0.974 0.974 0.964 0.942

Precision (weighted avg) 0.978 0.980 0.970 0.958

Recall (macro avg) 0.964 0.962 0.952 0.944

Recall (weighted avg) 0.978 0.980 0.970 0.958

f1-score (macro avg) 0.968 0.970 0.958 0.942

f1-score (weighted avg) 0.978 0.980 0.970 0.958

Table A5. The 5-fold cross validation for 128 × 96 resolution image between the MobileNet-V1 and
MobileNet-V2 models.

MobileNet-V1 MobileNet-V2

Accuracy 0.950 0.896

Log-loss 0.228 0.448

Precision (macro avg) 0.938 0.862

Precision (weighted avg) 0.952 0.912

Recall (macro avg) 0.930 0.880

Recall (weighted avg) 0.950 0.896

f1-score (macro avg) 0.934 0.860

f1-score (weighted avg) 0.950 0.900

Table A6. The times of day and weather conditions for all of ten experiments employing the
MobileNet-V1 and MobileNet-V2 models in the forest trail environment in the Southampton Common
woodlands.

MobileNet-V1 MobileNet-V2

Trial Times of Day Weather Conditions Times of Day Weather Conditions

Run 1 Afternoon Cloudy Forenoon Scattered clouds
Run 2 Afternoon Scattered clouds Midday Partly sunny
Run 3 Late afternoon Part cloudy Afternoon Mostly clear
Run 4 Late afternoon Clear Afternoon Partly sunny
Run 5 Late afternoon Mostly clear Forenoon Partly sunny
Run 6 Forenoon Partly sunny Midday Sunny
Run 7 Forenoon Clear Afternoon Sunny
Run 8 Forenoon Scattered clouds Afternoon Clear
Run 9 Midday Mostly clear Morning, Partly sunny
Run 10 Midday Part cloudy Afternoon Scattered clouds
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Table A7. The times of day and weather conditions for all of ten experiments employing MobileNet-
V1 and MobileNet-V2 models in site A and site B of off-trail environments in the Southampton
Common woodlands.

MobileNet-V1 MobileNet-V2

Trial Times of Day Weather Conditions Times of Day Weather Conditions

Site A
Run 1 Forenoon Sunny Morning Clear
Run 2 Forenoon Sunny, mostly shadow Morning Partly sunny
Run 3 Midday Partly sunny Morning Mostly clear
Run 4 Midday Partly sunny, mostly shadow Afternoon Mostly clear
Run 5 Afternoon Mostly clear Afternoon Scattered clouds
Run 6 Afternoon Clear Near sunset Part cloudy
Run 7 Afternoon Scattered clouds Near sunset Clear
Run 8 Midday Partly cloudy Near sunset Scattered clouds
Run 9 Afternoon Cloudy Evening Cloudy
Run 10 Forenoon Sunny, mostly shadow Evening Cloudy

Site B
Run 1 Midday Sunny Morning Clear
Run 2 Midday Sunny, Sun diffuse Forenoon Partly sunny
Run 3 Midday Sunny Forenoon Sunny
Run 4 Afternoon Partly sunny, Sun diffuse Midday Sunny
Run 5 Afternoon Mostly clear, Sun diffuse Noon Bright
Run 6 Forenoon Cloudy Noon Sunny
Run 7 Forenoon Scattered clouds Afternoon Sunny
Run 8 Afternoon Clear Afternoon Sunny
Run 9 Midday Mostly clear Sunset Clear
Run 10 Midday Clear, Partly sunny Sunset Mostly clear
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