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Abstract
The second generation of the open-source MATLAB-based software tool IonMonger, for solving drift–diffusion models of 
charge transport in planar perovskite solar cells, is presented here. This version is based upon a generalisation of the original 
drift–diffusion model of charge carrier and ion motion in the perosvkite cell, as described in Courtier (J Comput Electron 
18:1435–1449, 2019). The generalised model has the flexibility to capture (1) non-Boltzmann statistics of charge carriers in 
the transport layers, (2) steric effects for the ions in the perovskite layer, (3) generation of charge carriers from light made 
up of a spectrum of different wavelengths and, (4) Auger recombination. The updated software is significantly more stable 
than the original version and also adds the ability to simulate impedance spectroscopy measurements as well as transient 
voltage and/or illumination protocols. In addition, it is fully backwards compatible with the original version and displays 
improved performance through refinement of the underlying numerical methods. Furthermore, the software has been made 
accessible to a wider user base by the addition of IonMonger Lite, a version that leverages MATLAB’s live scripts and 
eliminates the need for a detailed knowledge of MATLAB’s syntax.

Keywords Perovskite solar cell · Drift–diffusion · Device simulation · Ion migration · Impedance spectroscopy · 
IonMonger · MATLAB

1 Introduction

Over the past decade, charge transport modelling of per-
ovskite solar cells (PSCs) has improved to a point where it 
can not only qualitatively reproduce most of the observed 
responses of these devices to a wide variety of experimental 
protocols but is also close to being predictive. Nevertheless 
there remain challenges, not only with the formulation of 
the charge transport model, but also with its accurate solu-
tion in parameter regimes of interest. The first published 
numerical scheme capable of solving such a model in rel-
evant parameter regimes was presented in [20], while open 

source1 software was made available only relatively recently 
by Courtier et al. [19] and Calado et al. [13]. The aim of this 
work is to publicise and describe an updated, and improved, 
version of the first of these two software packages.

The original version of the perovskite solar cell (PSC) 
simulation tool IonMonger [19] has been successfully 
used by numerous groups to simulate charge transport and 
cell performance in these devices. The main goal of the 
continuum models that IonMonger solves is to improve 
the understanding of PSCs and to predict device behav-
iour from its underlying physical properties. For example, 
IonMonger enables investigation of the effects of alter-
ing properties such as charge carrier diffusion lengths and 
recombination rates on current–voltage (or power) output. 
IonMonger includes a fully-coupled conservation equa-
tion for mobile ion migration in the perovskite layer of a 
three-layer PSC (see Fig. 1), which has been shown to play 
a dominant role in device behaviour [67], including steady-
state performance [17, 18].
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Simulation results obtained using IonMonger have ena-
bled researchers to tackle a variety of questions relating to 
the performance and design of PSCs. Examples of such work 
include: (1) Cave et al. [15] demonstrated how to determine 
activation energies for ion vacancy migration in different 
perovskite compositions using the information contained in 
current–voltage (JV) measurements; (2) Courtier [17] used 
IonMonger to verify a novel theory, termed the ectypal 
diode theory, for the steady-state performance of a PSC, 
which is notable for its inclusion of mobile ions; (3) Bennett 
et al. [8] extended this theory to describe the electrochemi-
cal impedance response of a PSC and identify a measur-
able value, analogous to the ideality factor for conventional 
solar cells, that may be used to diagnose the limiting form of 
recombination; (4) Riquelme, Castro-Chong, Anta and co-
workers [14, 54, 55] validated this approach by investigating 
trends in impedance spectra using a combination of IonMon-
ger simulations and investigation of experimental measure-
ments; (5) Diekmann, Le Corre, Stolterfoht and colleagues 
used IonMonger to study the maximum efficiencies attain-
able from PSCs incorporating mobile ions in the perovs-
kite layer [23, 42], concluding that the presence of mobile 
ions is detrimental to power conversion efficiency (PCE); 
(6) Cordoba et al. [21] and Lin [45] evaluated another met-
ric, namely the open-circuit voltage. Lin also simulated the 
impact of mobile ions on the short-circuit current [46]. (7) Li 
et al. [43] showed how ion migration can explain the light-
soaking phenomenon observed in experiment [65]; and (8) 
García-Rodríguez et al. demonstrated that inverted hysteresis 
can be explained by the drift–diffusion model, comparing 
IonMonger simulations to experiment [27].

Despite the undoubted success of IonMonger v1.0, and 
its growing user base, significant issues with its performance 
and capabilities have been brought to our attention by its 
early users; these have motivated the improvements to the 
numerical solver described in this work. Chief amongst the 
issues identified, and addressed here, are problems with 
the stability of the code. In addition to performance issues 

the validity of the Boltzmann model for charge carrier 
dynamics in the transport layers (particularly where these 
are composed of organic materials) has been called into 
question. This has motivated an extension to IonMonger 
which allows for non-Boltzmann models of the transport 
layer charge carrier dynamics. From a practical perspec-
tive, many experiments are performed with white light and 
therefore IonMonger v2.0 incorporates a model of charge 
carrier generation based on multiple wavelength illumina-
tion. Furthermore, adapting IonMonger v1.0 to simulate 
impedance experiments is cumbersome and so version 2.0 
includes a module that allows impedance plots to be gener-
ated automatically and efficiently.

A development cycle similar to IonMonger’s is being 
carried out to great effect in the field of lithium-ion battery 
modelling, by the PyBaMM community [34, 59]. This builds 
upon collaborations both within academia and between aca-
demia and industry in order to accelerate R &D and serves 
as a model for the future path of IonMonger. In order to 
progress towards the ultimate goal of developing stable and 
commercially viable PSCs, further advances in our under-
standing of the interplay between ionic and electronic mech-
anisms, including their effects on degradation, are required. 
It is envisaged that this goal can be furthered by providing 
sophisticated and easy-to-use open-source modelling tools 
[61]. As such, IonMonger 2.0 includes a host of advanced 
features along with a new user-friendly interface.

Favourable comparisons have been made between Ion-
Monger 1.0 and alternative simulation software such as 
Driftfusion [13], SCAPS (without mobile ions) [23] and a 
Python implementation of the IonMonger model [6]. As 
a consensus has not yet been reached on the correct model 
of charge transport in PSCs, it is vital that simulation soft-
ware is open source to allow users to investigate the many 
proposed extensions to the model. The code presented in 
this paper, therefore is, to our knowledge, the most advanced 
open-source software for the simulation of charge transport 
and ion migration in standard three-layer planar PSCs avail-
able to-date.

In the next section, Sect. 2, we introduce the imped-
ance spectroscopy module, outlining its features and giving 
a cursory introduction to its use in practice (a full set of 
instructions are given in the users’ guide). Subsequently, 
in Sect. 3, we describe how the charge transport model has 
been extended to incorporate non-Boltzmann statistical 
models in the description of the transport layers. In Sect. 4, 
we discuss how steric effects have been accounted for in 
the equations defining the ion vacancy flux. The purpose of 
Sect. 5 is to introduce the remaining extensions to the charge 
transport model, namely; generation from light comprising 
a spectrum of wavelengths, Auger recombination, immobile 
ion distributions, parasitic series and shunt resistances (by 
embedding the charge transport model within an equivalent 

Fig. 1  Schematic of the basic drift–diffusion model of a planar PSC 
upon which IonMonger v1.0 was based. The continuum variables 
modelled in each layer are shown. Carrier generation is assumed to 
occur only in the perovskite and recombination in the perovskite and 
at the interfaces between the perovskite and the transport layers
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circuit), and metal contact band offsets. In Sect. 6, an intro-
duction to IonMonger Lite is given. The penultimate 
section, Sect. 7, includes details of the improved numerical 
methods which give rise to better code performance, and 
how backwards compatibility with IonMonger 1.0 has 
been ensured. In Sect. 8 we draw our conclusions.

A complete statement of the charge transport model (sys-
tem of PDEs) being solved in IonMonger 2.0 is given in 
“Appendix”. A schematic diagram showing the new addi-
tions to the model is shown in Fig. 2 and these additions are 
listed in Table 1.

2  Impedance spectroscopy module

Electrochemical impedance spectroscopy (IS) is a meas-
urement technique that is widely used in the study of elec-
trochemical systems [51]; including in batteries [44, 63] 
and fuel cells [32], where it is used to study corrosion and 
plating [38] and solar cells [8, 53, 54, 56] where it can be 
used to identify efficiency and monitor degradation. It is 
a particularly useful technique as it is non-destructive and 
relatively easy to perform both in the lab and in the field. 

Table 1  A list of the model 
extensions offered as part 
of IonMonger 2.0 and 
the additional functions or 
parameters that must be 
specified to use each extension

Six choices for the statistical functions are provided, see Sect. 3/Table 2. If such parameters are not speci-
fied in the parameters.m file, then the default value is used and this is equivalent to simulating the 
model without the extension

Model extension Extra function/parameter Symbol Name Default value Unit

Non-Boltzmann ETL statistical integral SE SE exp –
statistical models S

−1
E

SEinv ln –
HTL statistical integral SH SH exp –

S
−1
H

SHinv ln –
Steric effects Form of ion vacancy flux FP NonlinearFP N/A –

Maximum vacancy density Plim Plim N/A m−3

Immobile ions Ionic diffusion coefficient DI DI N/A m2 s−1

Absorption spectra Generation rate G(x, t) G Eq. (31) m−3 s−1

Auger recombination Electron-dominated rate An Augn 0 m6 s−1

Hole-dominated rate Ap Augp 0 m6 s−1

TL/metal band offsets Cathode workfunction Ect Ect EE
f

eV
Anode workfunction Ean Ean EH

f
eV

Parasitic resistances Series resistance Rs Rs 0 Ohm
Shunt/parallel resistance Rp Rp Inf Ohm
Cell area A Acell 1 cm2

Perovskite HTLETL

(b)

Rp

RS

J

V

(a)

Fig. 2  a A schematic of a planar perovskite solar cell (PSC) with 
new additions to the IonMonger charge transport model labelled 
by green arrows. b A circuit representation for a PSC with series and 
shunt resistance. Here, the circle labelled “PSC” is used as a sym-

bol for the current–voltage ( J–V  ) relation determined from a charge 
transport model for the motion of electrons, holes and halide ion 
vacancies in a PSC (Color figure online)
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In the context of PSCs, the interpretation of results is still 
relatively poorly understood, because of the novel compli-
cating feature of ion motion, in addition to charge carrier 
motion. This motivates the need for accurate impedance 
simulations from a well-founded drift–diffusion model of 
the cell.

IS is performed by perturbing a device from steady state 
by applying a low-amplitude voltage oscillation (over a 
range of frequencies) and measuring the current response. 
This elicits valuable information due to the different physi-
cal processes stimulated at different frequencies, allowing 
their effects to be disentangled. The applied voltage typi-
cally consists of a constant (or ‘DC’) component and a 
sinusoidal (or ‘AC’) component,

where VDC is the steady-state voltage, and Vp and � are the 
amplitude and the angular frequency of the voltage pertur-
bation, respectively. Keeping the amplitude of the voltage 
perturbation small (here, typically, < 20 mV) ensures that 
the current response is an approximately linear function of 
the applied voltage, taking the general form

where JDC is the steady-state current, Jp is the amplitude of 
the sinusoidal component and � is the phase relative to the 
voltage. The complex impedance, Z(�) , is the ratio between 
the complex representation of the voltage perturbation and 
that of the current, i.e.

(1)V(t) = VDC + Vp sin(�t),

(2)J(t) = JDC + Jp(�) sin(�t − �(�)),

(3)Z(�) =
Vp

Jp(�)
ei�(�).

A so-called impedance spectrum (i.e. the impedance as 
a function of frequency, f) is shown in Fig. 3. It is com-
mon to decompose the impedance into its real and imagi-
nary components; i.e. the resistance R and the reactance X, 
respectively, such that Z(�) = R(�) + iX(�) . The projection 
of a complex impedance curve onto the R-X plane forms 
a Nyquist plot, as shown in Fig. 4a. Nyquist plots restrict 
the frequency information that is displayed. Therefore, it is 
useful to display impedance spectra as their projection into 
the R-f and X-f planes, referred to here as frequency plots 
(Fig. 4b). Other representations of impedance such as Bode 
or capacitance plots can also be used to explicitly show the 
frequency dependence.

Generally, the impedance spectra of PSCs exhibit two 
semicircles on a Nyquist plot, one low- and one high-fre-
quency feature. The two features indicate that there are 
(at least) two species of mobile charge (electronic charges 
and ionic charges) in a typical PSC [8, 53, 54]. The high-
frequency feature excludes the transient effects of the 
slow-moving ionic charge and enables information to be 
obtained about the sources of electron and hole recombina-
tion (via the electronic ideality factor as defined in Bennett 
et al. [8]). The low-frequency feature captures how ions 
impact the cell response and provides information on the 
potential barrier to recombination (via the ectypal factor as 
defined in [17]) as well as the density and mobility of the 
ionic species [8, 54]. In addition to the low- and high-fre-
quency features, other features have been observed in the 
Nyquist plots of impedance spectra for PSCs. For example, 
these include a third semicircle [5, 28] or a loop between 
the low- and high-frequency features [24, 31]. These less 

Fig. 3  Decomposition of complex impedance into real and imaginary 
components with projections onto each of the three planes

Fig. 4  a Nyquist and b frequency plots calculated using the template 
parameter set
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common features observed in experiment are reproduced 
by IonMonger for particular parameter regimes.

2.1  Simulating impedance spectra

IonMonger allows users to perform virtual IS measure-
ments analogous to those performed by experiment. The 
voltage protocol is created via the applied_voltage 
input specified in the parameters file. An impedance sim-
ulation consists of the following steps. First, the cell is 
allowed to equilibrate at the DC voltage, thereby locating 
steady-state. IonMonger autonomously detects when the 
steady-state solution has been reached. This solution is 
then used as initial conditions for the transient stimulation 
at each different frequency. IonMonger then iterates over 
all sample frequencies, simulating the response to each 
voltage perturbation. Thus, an impedance protocol can 
be specified by six parameters: the minimum and maxi-
mum frequencies, the DC applied voltage, the AC volt-
age amplitude, the number of frequencies to be sampled 
and the number of complete periods to simulate. Detailed 
information on how to construct an impedance protocol 
from these six parameters can be found in the user guide 
(GUIDE.md).

The resulting structure array of solutions (one for each 
frequency) is passed to impedance_analysis.m to 
compute the impedance as a function of frequency. This is 
achieved by extracting the final two periodic cycles of the 
current density (at each frequency) and fitting a sinusoid to 
the data using FourierFit.m.

IS simulations are computed using the same numeri-
cal solver as transient simulations, meaning they not only 
achieve the same speed and accuracy, but are also fully 
compatible with additions to the charge transport model 
(detailed in Sects. 3, 4, 5). If MATLAB’s Parallel Comput-
ing toolbox is installed, the iterations will be executed on 
multiple parallel workers, decreasing the compute time. The 
impedance spectra shown in Fig. 4, are each made up of 
100 sample frequencies and took an average time of 48.7s 
to compute on a desktop computer with a six-core Ryzen 
5 5600X CPU. Functions for plotting IS simulations are 
detailed in Sect. 7.3.

3  Carrier statistics in the transport layers

In previous versions of IonMonger, electronic carriers in 
all three layers were assumed to follow Boltzmann statis-
tics, as is common in semiconductor modelling. However, 
this assumption, in the context of PSCs, has been called 
into question by recent works [2, 61]. It is known that this 
assumption is not justified in the case of highly doped 
and/or organic materials, such as the transport layers [4, 
33, 60]. To rectify this, IonMonger now allows carriers 
to be governed by more general band models, with the 
option of either a Fermi–Dirac or Boltzmann distribution. 
In this section we discuss the physical origin of statistical 
models and the specific options available in IonMonger 
2.0 (see Table 2).

3.1  General statistical models

The density of free conduction electrons in a semiconduc-
tor is the product of the statistical distribution, f(E), and the 
conduction band density of states (DoS), ĝc(E) , integrated 
across all energies, i.e.

Similarly, the density of valence band holes is

These integrals (referred to as statistical integrals) define a 
relationship between carrier densities and quasi-Fermi lev-
els. As Fermions, electrons adhere to a Fermi–Dirac statisti-
cal distribution [48], defined as

where Ef is the Fermi level. In semiconductor modelling, it 
is common to approximate f(E) by a Boltzmann distribution 
[25, 30, 35, 37, 40, 61], and assume that the DoS is para-
bolic, resulting in the familiar densities

(4)n = ∫
∞

−∞

f (E)ĝc(E)dE.

(5)p = ∫
∞

−∞

(1 − f (E))ĝv(E)dE.

(6)f (E) =
1

exp
(

E−Ef

kBT

)
+ 1

,

Table 2  Available statistical 
models determined by choices 
of statistical distribution f(E) 
and band shape ĝ

c,v
(E)

The Fermi–Dirac integral ( F  ), the Gauss–Fermi integral ( G
s
 ) and the Blakemore function ( B ) are defined 

in (24), (26), and (28), respectively

Statistical integral Boltzmann approximation

Band shape, ĝc,v(E)
 Parabolic Fermi–Dirac, S(�) = F(�) S(�) = exp(�)

 Gaussian Gauss–Fermi, S(�) = Gs(�) S(�) = exp
(
� +

s

2

)

 Gaussian with s = 0 Blakemore, S(�) = B(�) S(�) = exp(�)
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where gc,v are the effective densities of states for the conduc-
tion and valence bands, respectively, Efn,p

 are the electron and 
hole quasi-Fermi levels (QFLs), and Ec,v are band edges. 
This is known as the Boltzmann approximation. Employing 
a statistical integral that is analytical, differentiable and 
invertible results in drift–diffusion equations that are signifi-
cantly easier to solve, leading to widespread adoption of the 
Boltzmann approximation in semiconductor modelling, 
including the charge transport model upon which previous 
versions of IonMonger were based.

However, the Boltzmann distribution fails as an approxi-
mation to the Fermi–Dirac distribution in the case of mate-
rials with high doping levels and/or non-parabolic band 
shapes, motivating a more general approach. Carrier densi-
ties in a general statistical model are given by [29] 

 where S is the statistical integral. The energies Ec and 
Ev will henceforth be referred to as reference energies to 
account for DoS functions that do not possess the same 
defined edge as parabolic bands.

Electron and hole currents in a semiconductor are driven 
by gradients in their quasi-Fermi levels, meaning the current 
densities are defined as

where �n and �p are the electron and hole mobilities, respec-
tively. By rearranging (9), the quasi-Fermi levels can be 
written as functions of carrier density, 

 where S−1 is the inverse of S such that S
(
S
−1(⋅)

) ≡ ⋅ . 
The reference energies, Ec,v , are dependent on the local 
electric potential, leading to the phenomenon known as 

(7)n = gc exp

(
Efn

− Ec

kBT

)
,

(8)p = gv exp

(
−
Efp

− Ev

kBT

)
,

(9a)n = gc S

(
Efn

− Ec

kBT

)
,

(9b)p = gv S

(
−
Efp

− Ev

kBT

)
,

(10)jn = �nn
�

�x
Efn

, jp = �pp
�

�x
Efp

,

(11a)Efn
= Ec + kBTS

−1

(
n

gc

)
,

(11b)Efp
= Ev − kBTS

−1

(
p

gv

)
,

band-bending. Specifically, we assume that the reference 
energies take the form Ec,v = const. − q� . Combined with 
(11), this allows one to express the electronic current densi-
ties as functions of carrier density and electric potential,

Note that if carriers are assumed to be Boltzmann distrib-
uted in parabolic bands, the statistical integral is simply 
S(⋅) = exp(⋅) and the familiar expressions for current density,

are recovered.

3.2  Statistical models in the PSC model

Carrier densities in the transport layers (TLs) of PSCs are 
typically several orders of magnitude larger than in the per-
ovskite layer due to high effective doping levels and the band 
offsets between the layers. For this reason, the Boltzmann 
approximation cannot be guaranteed to be accurate in these 
layers and we adapt the charge transport model to allow for 
some general (possibly non-Boltzmann) statistical model. 
We assume that conduction electrons in the electron trans-
port layer (ETL) are described by some statistical integral 
SE and valence holes in the hole transport layer (HTL) by 
SH . Thus the equations for current densities in the transport 
layers must be updated to reflect the choice of statistical 
model. We now have

in the ETL and

in the HTL.
The generalised statistical models necessitate that conti-

nuity conditions at the edges of the transport layers must be 
reconsidered. As in previous versions of the model [19], we 
enforce that the majority carriers’ QFLs are continuous 
across the interfaces between transport layers and the per-
ovskite, Efn

|x=0− = Efn
|x=0+ and Efp

|x=b− = Efp
|x=b+ . Using 

(12)jn = �nkBTn
�

�x

[
S
−1

(
n

gc

)
−

q�

kBT

]

(13)jp = −�pkBTp
�

�x

[
S
−1

(
p

gv

)
+

q�

kBT

]
.

(14)jn = �nkBT

[
�n

�x
−

qn

kBT

��

�x

]
,

(15)jp = −�pkBT

[
�p

�x
+

qp

kBT

��

�x

]
,

(16)jn = �EkBTn
�

�x

[
S
−1
E

(
n

gE
c

)
−

q�

kBT

]

(17)jp = −�HkBTp
�

�x

[
S
−1
H

(
p

gH
v

)
+

q�

kBT

]
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expressions for the QFLs in Boltzmann models (7), (8) in 
the perovskite and general statistical models (11) in the 
transport layers, we obtain the continuity conditions

where a superscript ‘ + ’ denotes a quantity on the right hand 
side of an interface and ‘−’ the left hand side. The ratios of 
carrier densities either side of the interfaces when the cell 
is in equilibrium with no potential difference across it are 
therefore 

 and we recast the continuity conditions in terms of these 
ratios as

This concludes the changes required to incorporate the 
option of simulating non-Boltzmann statistics in IonMon-
ger. In the next section we describe the common statistical 
models that are built-in to IonMonger 2.0.

3.3  Available statistical models

In IonMonger 2.0, the user can choose statistical models 
from three possible band shapes, with either Fermi–Dirac 
or Boltzmann distributions, to apply to majority carriers in 
the transport layers. Note that statistical models, determined 
by the combination of a statistical distribution and a band 
shape, are commonly given names, summarised in Table 2. 
The two transport layers can be assigned different statisti-
cal models. Model parameters are used to create reference 
functions which enable quick and accurate evaluation of the 
statistical function and its inverse.

Note that users who do not wish to make use of alternative 
statistical models can simply remove the ‘stats’ structure 
from the parameter file. In its absence, IonMonger will 

(18)n|x=0+ = gc exp

[
EE
c
− Ec

kBT
+ S

−1
E

(
n|x=0−
gc

)]
,

(19)p|x=b− = gv exp

[
Ev − EH

v

kBT
+ S

−1
H

(
p|x=b+
gH
v

)]
,

(20a)kE =
gc

dE
exp

[
EE
c
− Ec

kBT
+ S

−1
E

(
dE

gE
c

)]
,

(20b)kH =
gv

dH
exp

[
Ev − EH

v

kBT
+ S

−1
H

(
dH

gH
v

)]
,

(21)n|x=0+ = dEkE exp

[
S
−1
E

(
n|x=0−
gE
c

)
− S

−1
E

(
dE

gE
c

)]
,

(22)p|x=b− = dHkH exp

[
S
−1
H

(
p|x=b+
gH
v

)
− S

−1
H

(
dH

gH
v

)]
.

automatically employ Boltzmann distributions in parabolic 
bands, as was the case in previous versions of the software. 
For more information about specifying statistical models in 
simulations, see the user guide (GUIDE.md).

Users also have the option of creating their own statisti-
cal models by editing the create_stats_funcs.m file 
which serves as a template.

3.3.1  The parabolic model

The parabolic band model (shown in Fig. 5a) originates from a 
Taylor expansion of the dispersion relation near a turning point 
(see [48] §3.3.5). This Taylor expansion describes the DoS 
near the edges of the bands (where most carriers exist). This 
model is usually considered accurate in the case of ordered 
crystalline semiconductors (typically inorganic).

The parabolic band structure is defined by the DoS 
functions 

(23a)ĝc(E) =

⎧⎪⎨⎪⎩

0 E < Ec

2gc√
𝜋

1

kBT

�
E − Ec

kBT
E ≥ Ec

Fig. 5  The parabolic statistical integral. a The parabolic DoS func-
tions for the two bands where the reference energies are the band 
edges, located at E

c
= −3.9  eV and E

v
= −5.1  eV, and the effective 

DoS are g
c
= g

v
= 10

25 m−3 . b The statistical integral versus dimen-
sionless quasi-Fermi level. The solid blue line corresponds to Fermi–
Dirac statistics and the dashed red line corresponds to the Boltzmann 
approximation. The pink shaded area is the region in which the Boltz-
mann approximation is commonly considered accurate ( 𝜉 < −3 ) 
(Color figure online)
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 The conduction and valence bands have defined edges, 
denoted by Ec and Ev , respectively. These are the reference 
energies. Under a Fermi–Dirac distribution, the statistical 
integral, often (somewhat confusingly) referred to as the 
Fermi–Dirac integral, is defined to be

where � and � are the dimensionless quasi-Fermi level and 
state energy, respectively, where both are relative to the 
band’s reference energy and measured in units of the thermal 
voltage. This function is plotted in Fig. 5b. To clarify the 
nomenclature, the Fermi–Dirac distribution is the statistical 
distribution obeyed by all Fermions and the Fermi–Dirac 
integral is the statistical integral to which only Fermions in 
parabolic bands adhere.

As discussed in the previous section, if carrier densities 
are approximated by a Boltzmann distribution, the statistical 
integral becomes S(�) = exp(�) . Both the Fermi–Dirac inte-
gral and its Boltzmann approximation are shown in Fig. 5b. 
It is generally accepted that the Boltzmann approximation to 
the Fermi–Dirac integral is accurate for quasi-Fermi levels 
more than three thermal voltages from the band edge (or 
densities n <

gc

20
 ) [3].

3.3.2  The Gaussian model

Weak molecular bonds in organic materials create a disor-
dered structure in which electron transport takes the form of 
hopping between discrete molecular sites; this is in contrast 
to the band transport in ordered crystalline materials. For a 
system with a large number of molecules, this hopping trans-
port resembles band transport in a Gaussian band [11, 22, 
50, 60] where the width of the Gaussian corresponds to the 
level of disorder in the intermolecular structure. The Gauss-
ian band structure is shown in Fig. 6a. The bands no longer 
have defined edges, hence the reference energies are now the 
centres of each Gaussian, denoted by Ec and Ev , respectively. 
In organic materials, these are commonly referred to as the 
lowest unoccupied molecular orbital (LUMO) and the high-
est occupied molecular orbital (HOMO), and denoted by EL 
and EH , respectively. This model requires a further param-
eter, s, to describe the width of the Gaussian (corresponding 
to the structural disorder). Note that s is dimensionless but is 
often given in its dimensional form, � = skBT . The Gaussian 
DoS functions are 

(23b)ĝv(E) =

⎧
⎪⎨⎪⎩

0 E > Ev

2gv√
𝜋

1

kBT

�
Ev − E

kBT
E ≤ Ev.

(24)F(�) = ∫
∞

0

2√
�

√
�

1 + exp(� − �)
d�,

 Under a Fermi–Dirac distribution, the statistical integral, 
referred to as the Gauss–Fermi integral [52], is defined as

If carriers are approximated by a Boltzmann distribution, 
the statistical integral becomes S(�) = exp(� +

s

2
) . Both the 

Gauss–Fermi statistical integral and its Boltzmann approxi-
mation are shown in Fig. 6b for different values of s. Note 
that the Boltzmann approximation to Gauss–Fermi statistics 
is far less accurate than the parabolic equivalent, and this 
is exacerbated for larger values of s. As shown in Fig. 6b, 
the Boltzmann approximation to G8(�) is still highly inac-
curate when the quasi-Fermi level is 50kBT  from the refer-
ence energy, occurring at a dimensionless carrier density of 
approximately 10−9 . Measurements of the Gaussian disorder 

(25a)ĝc(E) =
gc√
2𝜋𝜎c

exp

�
−1

2

�
E − Ec

𝜎c

�2
�

(25b)ĝv(E) =
gv√
2𝜋𝜎v

exp

�
−1

2

�
E − Ev

𝜎v

�2
�
.

(26)Gs(�) =
1

s
√
2�

∫
∞

−∞

exp
�
−1

2

�
�

s

�2�

1 + exp(� − �)
d�.

Fig. 6  The Gauss–Fermi statistical integral. a The Gaussian DoS 
functions for the two bands where the reference energies are located 
at E

c
= −3.9  eV and E

v
= −5.1  eV, and the effective densities of 

states are g
c
= g

v
= 10

25eV−1  m−3 . Three values of the Gaussian 
width are shown. b the Gauss–Fermi statistical integral vs. dimen-
sionless quasi-Fermi level for three different Gaussian widths. Solid 
lines correspond to the Gauss–Fermi integral and the dashed black 
lines correspond to the Boltzmann approximation. Note the vast dif-
ference in scales compared to Fig. 5b due to the wide spread of state 
energy levels into the band gap (particularly for large values of s)
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parameter in the bands of spiro-MeOTAD (a common HTL 
material for PSCs) have yielded s = 3.38 − 4.08 [39, 57, 66].

3.3.3  The Blakemore model

In the limit of vanishing Gaussian width ( s = 0 ), the Gauss-
ian DoS becomes a Dirac-� function,

representing a density of gc,v states, all with identical energy 
Ec,v . This is equivalent to hopping transport in materials with 
no structural disorder. Under a Fermi–Dirac distribution, this 
DoS yields a statistical integral, referred to as the Blakemore 
function, and shown in Fig. 7 [9],

If carriers are approximated by a Boltzmann distribution, the 
statistical integral becomes S(�) = exp(�) .

3.4  Quasi‑Fermi level input

Under Boltzmann distributions, the conversion between a 
carrier density and a quasi-Fermi level is simple; meaning 
that users can easily convert experimental measurements of 
equilibrium quasi-Fermi levels into effective doping densi-
ties to use in the parameter set for simulations. To avoid 

(27)ĝc,v(E) = gc,v𝛿(E − Ec,v),

(28)B(�) =
1

exp(−�) + 1
.

requiring users to perform this conversion for non-Boltz-
mann statistical models, IonMonger 2.0 can accept either 
carrier densities or quasi-Fermi levels when setting the TL 
doping levels. When the user sets the QFLs for the TLs, 
the relevant doping densities are calculated according to the 
statistical model in that layer. The two layers are independ-
ent, meaning one could set the doping density for one and 
the QFL for the other.

Impact of statistical models on device performance. 
Finally, we note that the full charge transport model is suf-
ficiently complex that it is impossible to predict how changes 
to the statistical model in one of the TLs might affect the 
model’s response to any general experimental protocol. 
While outside the scope of this work, the impact of trans-
port layer statistical models on device-level modelling will 
be investigated in a forthcoming publication [16].

4  Steric effects

The standard Poisson–Nernst–Planck (PNP) system, used to 
govern ionic motion in the previous version of IonMon-
ger  has an embedded assumption; namely that there is 
no shortage of lattice sites for ion vacancies to occupy, i.e. 
P ≪ Plim where Plim is the density of anion sites (and so 
is equivalent to the maximum vacancy density).2 However, 
in relatively extreme scenarios, e.g. at very large applied 
voltage and/or in the narrow Debye layers near the edges 
of the perovskite, it is possible that ion vacancy densities 
become sufficiently large that steric effects (i.e. ion vacancy 
crowding, also known as volume exclusion effects) cannot 
be duly neglected. In such scenarios, the standard PNP sys-
tem must be amended and replaced with a nonlinear-PNP 
(nPNP) system with a modified ion flux [1]. Two forms of 
modified ion flux have been used in the literature, derived 
using different assumptions. One approach yields a nonlinear 
(in the vacancy density) drift term in the ion flux whilst the 
other gives a nonlinear diffusion term. Rather than stipulat-
ing one form (or the other) of the ion flux, we allow users 
to easily switch between the two. We shall now present the 
two formulations in turn.

4.1  Modified drift

Bazant [7] presents a general theory for chemical kinetics 
which describes how an ion flux is driven by the product 
of the ion density, mobility and gradient of its electro-
chemical potential � = kBT ln

(
�

P

Plim

)
+ � , where �  is 

termed the activity coefficient. For diffusion on a lattice, 

Fig. 7  The Blakemore statistical integral. The solid line corresponds 
to Blakemore function and the dashed black line corresponds to the 
Boltzmann approximation

2 In MAPI (CH
3
NH

3
PbI

3
 ), P

lim
≈ 2 × 10

27m−3 [62].
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the activity coefficient is given by � = (1 −
P

Plim

)−1 and the 
mobility M = �

DI

kBT
 , where DI is a constant diffusion coef-

ficient. This theory leads to the following formulation for 
the ion flux, with a nonlinear density-dependent drift term,

Another appealing justification for this formulation follows 
from work by Burger et al. [12]. This work considers a hop-
ping model for the diffusion process that retains a non-zero 
probability that sites adjacent to the ion (or ion vacancy) in 
question are already occupied. In the derivation of the usual 
PNP system, this probability is set to zero. When incorporat-
ing steric effects, the probability of transition to an occupied 
site is zero, thereby enforcing that at most one ion can reside 
on any given lattice site. This constraint results in a density-
dependent mobility and hence a modified drift term.

4.2  Nonlinear diffusion

Alternatively, steric effects can be modelled via a nonlin-
earity in the diffusion term, as proposed by Kralj-Iglic and 
Iglic [41] and Borukhov et al. [10] according to thermody-
namic considerations (assuming a constant mobility). In 
this case, the ion flux is given by

Note that diffusion is “enhanced” as P approaches Plim . 
This formulation has previously been used in the context 
of PSC modelling [2, 13]. Abdel et al. [2] show that the 
form of diffusion enhancement depends on the choice of 
statistical function and that the formulation in (30) results 
from employing a Blakemore model (or, equivalently, a 
Fermi–Dirac integral of order − 1) to describe the move-
ment of ions.

Both expressions for the ion f lux collapse to the 
form found in the usual PNP system on taking the limit 
Plim → ∞ . Furthermore, it is important to note that even 
though the two formulations predict the same steady state 
((29) is identical to (30) on setting Fp ≡ 0 ), there are 
marked differences in their dynamics. Figure 8 shows how 
the dynamics are affected by variations in Plim for the two 
models, whilst Fig. 9 verifies that IonMonger produces 
identical steady states for the two different nPNP models 
as expected.

Steric effects can be activated in IonMonger by set-
ting ‘Plim’ to a numeric value and ‘NonlinearFP’ to 
a string value of either ‘Drift’ or ‘Diffusion’.

(29)FP = −DI

[
�P

�x
+

qP

kBT

��

�x

(
1 −

P

Plim

)]
.

(30)FP = −DI

[
�P

�x

(
1 −

P

Plim

)−1

+
qP

kBT

��

�x

]
.

5  Other extensions to the model

In this section we briefly introduce a number of other exten-
sions that have been added during the IonMonger update. 
See the User Guide for more information.

5.1  Absorption spectra

By default, the generation rate G(x,  t) follows the Beer-
Lambert law of light absorption for a single wavelength and 
absorption coefficient [48], i.e.

(31)G(x, t) = Is(t)Fph� exp
(
−�

[
b

2
+ l

(
x −

b

2

)])
,

Plim = 2.5× 1025m−3

Plim = 4.0× 1025m−3

no steric effects

Fig. 8  Distribution of anion vacancies in the Debye layer near the 
ETL interface at steady state at an applied voltage of 1 V under dif-
ferent values of the limiting vacancy density

Ion flux given by (29)
Ion flux given by (30)

Plim = 4.0× 1025m−3
no steric effects

Plim = 2.5× 1025m−3

Fig. 9  Timescales for the current density reaching steady state at an 
applied voltage of 1 V after a preconditioning step at 0.9 V with dif-
ferent vacancy limitation parameters. Modified drift (29) and diffu-
sion terms (30) show different dynamics but reach the same steady 
state
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where Fph is the flux of photons incident on the light-facing 
perovskite surface (after accounting for reflection) under the 
equivalent of 1 Sun illumination; � is the light absorption 
coefficient of the perovskite; Is(t) is the intensity of the illu-
mination in Sun equivalents; and, the parameter l determines 
whether light enters through the ETL ( l = 1 ) or through the 
HTL ( l = −1 ) for a so-called inverted architecture.

In IonMonger 2.0 the user now has the option, via the 
generation_profile function, to replace (31) with a 
Beer-Lambert generation profile for light that includes a 
range of wavelengths, by integrating an absorption coef-
ficient spectrum versus photon energy as follows:

In this expression, the incident photon flux and the absorp-
tion coefficients are now functions of photon energy. The 
function can be created from measurement data.

5.2  Auger recombination

The total bulk recombination rate R(n, p) can now include 
contributions from Auger recombination as well as bimo-
lecular and/or SRH recombination. The Auger recombina-
tion rate takes the form

where An and Ap are the Auger coefficients (with units m 6
s−1 ). This choice ensures that RAuger = 0 at thermal equilib-
rium, i.e. when np = n2

i
 . The total bulk recombination rate is

The full expressions for each of these rates are given in the 
“Appendix”.

5.3  Immobile ions

IonMonger 2.0 allows for the possibility of immobi-
lising ion vacancies (previously all anion vacancies were 
assumed to be mobile). The user may set the ion vacancy 
diffusion coefficient DI equal to zero in order to fix them in 
their initial distribution. In previous versions, this would 
cause the characteristic timescale (by which time is re-
scaled) to become infinite, preventing simulations from 
running. To correct for this, the numerical scheme now 
uses a characteristic timescale defined as follows.

(32)
G(x, t) =Is(t)∫

Emax

Emin

Fph(E)�(E) exp

(
−�(E)

[
b

2
+ l

(
x −

b

2

)])
dE.

(33)RAuger = (Ann + App)(np − n2
i
) ,

(34)R(n, p) = Rbim. + RSRH + RAuger .

The first option is a timescale for electron transport; the sec-
ond is the ionic timescale used in IonMonger 1.0 [19].

5.4  Band offsets at metal contacts

Differences in the band energy levels between the transport 
layers and the metal contacts are modelled by updating the 
boundary condition on the majority carrier in each TL as 
follows. 

 If the cathode and anode workfunctions are not set, Ion-
Monger 2.0 assumes flat-band conditions, as before, which 
are equivalent to setting 

5.5  Parasitic resistances

In order to model parasitic resistances, we follow the work of 
Neukom et al. [49] and embed the PSC drift–diffusion model 
in an external circuit containing two resistors, as shown in 
Fig. 2b. Even though this modelling approach (of append-
ing resistors to the PSC element) is essentially ad-hoc, it 
does allow the model to capture parasitic series and shunt(/
parallel) resistances which may be important in practice. An 
alternative approach to capturing these resistances would be 
to upgrade the model to include more spatial dimensions, 
more of the PSC architecture and a more complex (non-
planar) geometry. However, such complexity would render 
the model significantly more costly to both solve and param-
eterise, nullifying some of the benefits of IonMonger.

The effect of the external circuit is taken account of 
through two modifications to the drift–diffusion model. 

(35)𝜏ion =

⎧
⎪⎪⎨⎪⎪⎩

n0
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=
bgc exp ((E

E
f
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)
.
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Within the PSC, the total current density is independent of 
x and can be computed at any point in the cell from

where Vp = Vbi − �|x=−bE + �|x=b+bH . The first term on the 
right-hand side accounts for current losses due to shunt 
resistance in the external circuit. Vp denotes the potential 
difference across the parallel resistor and, equivalently, the 
PSC element as shown in Fig. 2b. To minimise numerical 
error, IonMonger automatically calculates the current den-
sity at the midpoint of the perovskite layer, where the grid 
spacing is larger and the solution varies more smoothly. The 
terms involving time-derivatives give the displacement cur-
rent density, which can become dominant during very high 
frequency (IS) measurements.

Secondly, we have to take account of the change in Vp due 
to the resistor in series. We choose to incorporate this change 
at the HTL/metal contact, leading to the boundary condition

where Rs (Ohm) is the series resistance, Rp (Ohm) is the par-
allel resistance and A (cm−2 ) is the cross-sectional area of the 
cell perpendicular to the current. We implicitly assume that 
the displacement current is negligible at the boundary. With 
these two modifications, the impact of parasitic resistances 
on cell performance and time-dependent behaviour can be 
easily investigated alongside the full set of cell parameters.

6  Easy access via IonMonger Lite

Previously, some knowledge of MATLAB syntax was 
required to edit the parameters file and run simulations. In 
contrast, IonMonger Lite (provided as part of Ion-
Monger 2.0) is aimed at users with no expertise in the 
MATLAB language.
IonMonger Lite is a MATLAB live script, i.e. an 

interactive document that displays formatted text, equa-
tions and images [47]. The underlying code can be hidden, 
thereby providing a more accessible user-experience. The 
IonMonger Lite interface enables users to run two 
types of simulation: a single current–voltage ( J–V  ) sweep, 

(38)J(t) = −
Vp

ARp

+

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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𝜕

𝜕t

�
𝜀A

𝜕𝜙

𝜕x

�
+ qFP

for 0 < x < b,

jn −
𝜕

𝜕t

�
𝜀E

𝜕𝜙

𝜕x

�

for − bE < x < 0,

jp −
𝜕

𝜕t

�
𝜀H

𝜕𝜙

𝜕x

�

for b < x < b + bH,

(39)�|x=b+bH = −
Vbi − V(t)

2
−

Rs[ARpj
p,H − V(t)]

Rp + Rs

,

preceded by a preconditioning step, or impedance spec-
troscopy (IS). The cell parameters and simulation protocol 
can be edited in text boxes and drop-down menus.

Figure 10 depicts the available protocols, including the 
adjustable parameters. For the J–V  sweep, the six param-
eters are the steady-state initial voltage, Vinit ; the voltage 
at which the sweep begins, Vpre ; the target sweep volt-
age, Vtar ; the length of the preconditioning phase, tpre ; the 
length of the sweep, tsweep ; and the constant light intensity, 
L. For impedance spectroscopy, the adjustable parameters 
are the DC voltage, VDC ; the AC voltage amplitude, Vp ; 
the minimum and maximum frequencies, fmin and fmax ; 
the number of sample frequencies, nf ; and the constant 
light intensity, L.

Users are presented with a series of checkboxes to 
determine which plots will be produced at the end of the 
simulation. Possible plots for J–V  sweeps include the 
applied voltage and light intensity as functions of time; 
the current density as a function of either time or applied 
voltage; and distributions of the anion vacancy density, 
electron density, hole density or electric potential. For IS 
simulations, Nyquist and frequency plots such as those 
in Fig. 4 can be produced. For J–V  sweeps, there is also 
the option to automatically generate an animation of the 
solution using animate_sections.m (see Sect. 7.3).

While offering a simplified user experience, live scripts 
lack the flexibility of standard MATLAB code. For this 
reason, proficient users should continue to run simulations 
by editing a parameters file and running ‘master.m’ to 
make use of IonMonger’s full functionality. Useful fea-
tures of the full version that are not possible in IonMon-
ger Lite include:

Fig. 10  The two types of experimental protocol available in Ion-
Monger Lite. a Current–voltage sweep protocol with 6 adjustable 
parameters. b Impedance spectroscopy protocol with two variable 
voltage parameters, three frequency parameters and one light inten-
sity parameter
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• advanced simulation protocols involving more sections, 
asymmetric sweeps, multiple consecutive sweeps, or 
time-dependent illumination intensity

• open-circuit voltage tracking
• non-Boltzmann statistical models in the transport layers
• running batches of simulations where one or more vari-

ables are iterated through a list of values
• changing the resolution and error tolerances of the solver
• band offsets at the metal contacts
• parasitic resistances
• resuming saved simulations

IonMonger Lite uses the same numerical solver as the 
full version, meaning it achieves the same performance and 
accuracy. After the simulation, the solution file is saved in 
the same format as the full version; thus all of the same post-
processing and analysis/plotting can be performed.

6.1  Importing data into Python

Once a simulation is complete, all the data, including the 
inputs, are saved in a single file. These data can then be 
imported into any software of the user’s choice for further 
analysis. The transfer of this data from MATLAB to Python 
is nontrivial because Python has no direct equivalent data 
type to the structures used by MATLAB. To aid this transfer, 
we include a Python file named IonMonger_import.py 
that can import a solution and unpack the data for analysis. 
This file contains functions to extract all major variables 
from a saved .mat file as well as example code to generate 
plots of the data and further instructions. Combined with 
IonMonger Lite, this function allows users with experi-
ence in Python but no expertise in MATLAB to design, run, 
and analyse simulations with IonMonger, an important 
step in making IonMonger accessible to a wider scientific 
community.

7  Performance, compatibility 
and accessibility

In this section, we give details of the features of IonMon-
ger 2.0 that enable the improved performance, backwards 
compatibility and greater accessibility via new functionali-
ties for both running the code and visualising the results.

7.1  Performance

In the original version of IonMonger, the Jacobian ( J  ) 
of the DAE system was approximated numerically by 
ode15s. In IonMonger 2.0, performance is improved 
by analytic calculation of J  in the function AnJac.m. Fig-
ure 11 demonstrates the resulting increase in performance 

for simulations of current–voltage sweeps using the default 
parameter set. The simulation time for an impedance spec-
trum with 60 sample frequencies is decreased from 61 to 
31 s.

Similarly, IonMonger 2.0 benefits from improved sta-
bility in response to different parameter sets, due to many 
small changes that aid the solver, ode15s, in converging 
on a solution.

7.1.1  Fast and accurate evaluation of statistical integrals 
and their inverses

The challenge of implementing alternative statistical mod-
els is the large number of comparatively costly evaluations 
of the inverse statistical integral, S−1 (47b,49b). In gen-
eral, not only is the statistical integral non-invertible, but 
S also cannot be evaluated exactly. This is the case in both 
the Fermi–Dirac (24) and Gauss–Fermi (26) integrals. The 
simplest approach would be to evaluate the integrals numeri-
cally and invert the function with a root-finding algorithm. 
However, even with efficient functions to perform the inte-
gration and root-finding, this is computationally expensive 
and would result in J–V  simulations taking minutes to hours 
instead of seconds to minutes motivating the need for more 
efficient schemes.

Significant efforts have been made to find approxima-
tions to the Fermi–Dirac [9, 26, 64] and Gauss–Fermi 
integrals [52, 58]. However, most approximations are 
either computationally expensive or lack accuracy. Fur-
thermore, attempts to approximate the inverses of these 

Fig. 11  Comparison of performance between IonMonger versions 
1.0 and 2.0. An identical parameter file is used for both versions. 
For each value of N, a preconditioning stage and 100 mV s−1 reverse 
and forward scans were simulated. Red lines correspond to 1.0 and 
blue lines to 2.0. Squares represent measurements on a laptop with a 
Ryzen 5 Microsoft Surface Edition CPU and crosses represent a desk-
top with a Ryzen 5 5600X CPU. Simulations were attempted for 40 
values of N equally spaced between 20 and 800. Any missing data 
points are due to a solution not being obtained from the given param-
eter set (Color figure online)
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integrals are rare. In order to maximise both efficiency 
and accuracy, IonMonger 2.0 utilises interpolation of 
lookup tables of dimensionless quasi-Fermi levels and 
their corresponding dimensionless carrier densities, 
evaluated once at the start of a simulation by numerical 
integration using the trapezium rule on a high-resolution 
grid. This approach eliminates the need for a root-finding 
algorithm as the interpolation can be performed in either 
direction.

The inverted statistical integrals are evaluated inside 
an approximated derivative within the DAE system; 
therefore it is essential that the approximations have con-
tinuous first derivatives. For this reason, interpolation 
is performed using piecewise cubic Hermite interpolat-
ing polynomials (PCHIPs), rather than linear interpola-
tion, via MATLAB’s interp1 function. This approach 
results in approximations for F(�) and Gs(�) with a rela-
tive error of less than 0.1% in the domains {𝜉 < 6} and 
{𝜉 < 2s , s ≥ 1} , respectively.

Figure 12 shows the simulation times for a single cur-
rent–voltage sweep with and without Boltzmann sta-
tistics in the transport layers for a range of spatial grid 
spacings. The time taken to create the lookup tables at 
the beginning of each simulation averaged 39  ms for 
the Fermi–Dirac, and 30 ms for the Gauss–Fermi inte-
gral. The average extra time taken for simulations of a 
100 mV s−1 J–V  sweep of the template parameter set was 
just 0.54 s. Therefore the effects of alternative statistical 
models may be investigated using IonMonger without 
significant negative impact on computation time.

7.2  Compatibility

IonMonger 2.0 is fully compatible and consistent with 
previous versions. Any parameter file from a previous ver-
sion can be run using version 2.0. If any parameters required 
for additions to the model are not specified in the parameter 
file, they will automatically be replaced by their default val-
ues, listed in Table 1. An example of the verification that 
IonMonger 2.0 is indeed consistent with the initial release 
is shown in Fig. 13, where electric potential distributions 
calculated on high resolution grids from both versions are 
shown to overlap exactly. Though not shown, this verifi-
cation has been performed on all output variables across 
multiple parameter sets.

Two tests for developers have been written using MAT-
LAB’s testing framework. The aim of these tests is to verify 
that future versions of the code are consistent with the initial 
and subsequent releases. The first is a regression test that 
compares the output of an example simulation with saved 
data produced by the original code. The second is an integra-
tion test that checks that the current code runs successfully 
for two different experimental protocols that make use of 
different subroutines.

7.3  New analysis tools

Five new analysis tools are provided as part of IonMonger 
2.0 and can be found in the Code\Plotting folder.

7.3.1  Plotting functions

Four of these new tools are plotting functions. For more 
details, see the README file.

Fig. 12  Time taken to compute a 100 mV s−1 J–V  sweep of the tem-
plate parameter set with different statistical models across a range of 
grid resolutions. Red lines correspond to simulations using Fermi–
Dirac statistics in the ETL and Gauss–Fermi in the HTL as the 
parameter set is based on an inorganic ETL and an organic HTL and 
blue lines correspond to simulations in which the Boltzmann approxi-
mation was employed in both transport layers. Circles were meas-
ured on a desktop with a Ryzen 5 5600X CPU and triangles were 
measured on a laptop with a Ryzen 5 Windows Surface Edition CPU 
(Color figure online)

Fig. 13  Verification of IonMonger 2.0 (dotted lines) against ver-
sion 1.0 (solid lines) for solutions of electric potential during a volt-
age sweep on a high resolution grid. Note that the electric potential 
has been shifted such that � = 0 on the HTL contact for clarity and 
the spatial grid has been stretched such that grid points are linearly 
spaced in order to examine the behaviour in the Debye layers
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• plot_recombination.m generates two figures 
showing the recombination rates as functions of time 
and space.

• plot_dstrbns.m plots spatial distributions of the 
four model variables ( P,�, n, p).

• plot_IS.m generates Nyquist and frequency plots as 
in Fig. 4, as well as a 3D plot of the impedance spectrum 
as shown in Fig. 3.

• plot_bands.m generates a band diagram including 
the position of references energies and QFLs.

7.3.2  Animating solutions

The function animate_sections.m can be used to ani-
mate a solution and save the video as an MP4 file. Details 
of how to use the function and specify the parameters of the 
video (length, resolution, frame rate, etc) can be found in the 
user guide (GUIDE.md). Example videos can be found on 
the IonMonger Modelling YouTube channel [36] and one is 
included in the SI.

8  Conclusions

We have presented the second incarnation of the PSC simu-
lation tool IonMonger, expanding on the success of the 
original software by: (1) augmenting the charge transport 
model to account for a diverse list of physical processes, 
including non-Boltzmann statistics, steric effects for mobile 
ions, absorption spectra, Auger recombination, and parasitic 
resistances; (2) adding additional functionality, particularly 
in regards to simulating impedance responses; (3) improv-
ing accessibility and lowering the barrier-to-entry via the 
introduction of IonMonger Lite (allowing users to lev-
erage many features of the tool with little to no coding or 
MATLAB experience), and; (4) increased numerical per-
formance and stability. In addition, the performance of the 
tool has been increased across the board, meaning decreased 
computation times. This is primarily due to the addition of 
an analytic Jacobian in the numerical scheme and enables 
the computation of full, well-resolved, impedance spectra on 
timescales of seconds to minutes and current–voltage sweeps 
on timescales of seconds on standard desktop computers.

The open-source nature of IonMonger is supported 
by a dedicated, free-to-join Slack community of users and 
developers3 who will further develop both the charge trans-
port model and the code in the future. Thus, the software 
provides an accessible in-silico laboratory for investigating 
the physics of PSCs, and it is the authors’ hope that it can 
contribute towards accelerating PSC development.

Appendix: The full charge transport model

In this section we state the full charge transport model 
solved by IonMonger 2.0. The notation is consistent 
between versions 1.0 and 2.0; a complete list of symbols 
and their definitions is provided in the SI. For an overview 
of the changes between the versions of IonMonger, refer 
to Fig. 2 and Table 1. In order to make use of model exten-
sions, the parameters listed in Table 1 need to be speci-
fied, via the parameters file, otherwise they are set to their 
default values for backwards compatibility. With or without 
the model extensions, IonMonger 2.0 outperforms 1.0 
due to improvements in the numerical implementation, as 
described in Sect. 7.1. Equations that have been altered by 
the model extensions are highlighted in bold.

Perovskite absorber layer ( 0 < x < b ) Following [19], our 
model comprises statements of conservation of conduction 
electrons, valence holes, and halide ion vacancies,

as well as drift–diffusion equations for the fluxes of these 
species,

Charge carrier photo-generation and recombination within 
the perovskite are included via the functions G(x, t) and 
R(n, p), respectively. These are coupled with Poisson’s equa-
tion for the electric potential,

We assume a constant, uniform background density ( N̂0 ) of 
immobile cation vacancies.
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3 https:// perov skite scmod elling. slack. com.

https://perovskitescmodelling.slack.com
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Electron transport layer ( −bE < x < 0 ) We model only the 
majority carriers (the free electrons) through the ETL using a 
conservation equation, supplemented with a definition of the 
flux, coupled to Poisson’s equation. 

 Here SE denotes the statistical integral for the ETL and we 
use a superscript −1 to denote the inverse function.

On the external boundary with the metal contact, we 
impose Ohmic boundary conditions which read 

 where Ect is the workfunction of the cathode, V(t) is the 
applied voltage and the built-in voltage Vbi is defined as the 
difference between the workfunctions of the two metal con-
tacts, i.e. Vbi = Ect − Ean.

Hole transport layer (b < x < b + bH ) Similar to the model 
statement in the ETL, we model the HTL using 

 Here SH is statistical integral for the HTL.
On the HTL/metal contact, we impose Ohmic boundary 

conditions which take into account the impact of parasitic 
resistances, 
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Continuity conditions on the interfaces ( x = 0 and x = b ) 
At both internal interfaces (where the perovskite abuts the 
TLs), we place the following continuity conditions. At the 
ETL/perovskite interface,

whereas those at the perovskite/HTL interface are

Generation and recombination rates If a wavelength-
dependent generation profile (32) is not used, the genera-
tion rate is

The bulk recombination rate is
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and the interfacial recombination rates4 are
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