
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal
non-commercial research or study, without prior permission or charge. This thesis and the accom-
panying data cannot be reproduced or quoted extensively from without first obtaining permission
in writing from the copyright holder/s. The content of the thesis and accompanying research data
(where applicable) must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holder/s.
When referring to this thesis and any accompanying data, full bibliographic details must be given,
e.g.
Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the Uni-
versity Faculty or School or Department, PhD Thesis, pagination.
Data: Author (Year) Title. URI [dataset]





UNIVERSITY OF SOUTHAMPTON

Faculty of Social Sciences
School of Mathematical Sciences

Design of experiments
for models involving profile factors

by

Damianos Michaelides

A thesis for the degree of
Doctor of Philosophy

March 2023

http://www.southampton.ac.uk




University of Southampton

Abstract

Faculty of Social Sciences
School of Mathematical Sciences

Doctor of Philosophy

Design of experiments
for models involving profile factors
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In the traditional design of experiments, it is assumed that each run of the experiment
involves the application of a treatment, consisting of static settings of the controllable
factors. The objective of this work is to extend the usual optimal experimental design
paradigm to modern experiments where the settings of factors are functions. Such
factors are known as profile factors, or as dynamic factors. For these new experiments,
the design problem is to identify optimal experimental conditions to vary the profile
factors in each run of the experiment.

In general, functions are infinite dimensional objects. The latter produces challenges
in estimation and design. To face the challenges, a new methodology using basis func-
tions is developed. Primary focus is given on the B-spline basis system, due to its
computational efficiency and useful properties. The methodology is applied to a func-
tional linear model, and expanded to a functional generalised linear model, reducing
the problem to an optimisation of basis coefficients. Special cases, including combina-
tions of profile and scalar factors, interactions, and polynomial effects, are taken into
consideration.

The methodology is demonstrated through multiple examples, aiming to find A- and
D- optimal experimental designs. The sensitivity of optimal experimental conditions
to changes in the settings of the profile factors and the functional parameters is ex-
tensively investigated. Bayesian optimal designs are identified through the addition
of roughness penalties to penalise the complicated functions. The latter contributes in
identifying the connection between the frequentist and the Bayesian approaches.
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Chapter 1

Introduction

The aim of this thesis is to discuss, review, and enrich the Statistics literature on design
of experiments, for models that involve factors whose settings can vary as a function
of an indexing variable. Even though statistical modelling with this type of factors is
well established, the design of experiments for such models has received much less
attention. The motivation is to investigate such models, and develop a new approach
for identifying optimal designs.

1.1 Design of Experiments

Experimentation is the process of gathering data under controlled conditions to an-
swer scientific questions of interest. Different experiments are used in many areas of
applied science, including medicine, biology, chemistry, and engineering. Common
examples include: experiments by pharmaceutical companies to develop new drugs;
experiments by agricultural companies to optimise yield from their production pro-
cesses; and clinical trials to compare drug treatments with current standard treatments.
For all applications of experiments, it is essential to collect accurate and relevant data so
as to generate valid, objective, and defensible statistical and non-statistical conclusions.

The branch in Statistics that is concerned with the choice of the experimental conditions
to maximise the effectiveness in a given experiment, is called design of experiments; see
Atkinson et al. (2007), Antony (2014), Dean et al. (2017), and Montgomery (2017). De-
sign of experiments is a well-established research topic in the Statistics literature for
more than 100 years. Its purpose is to use all the known features of a particular appli-
cation to design an experiment, and answer questions of interest. Aims of experiments,
for which design of experiments is a useful tool, include:
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• Treatment comparison: A treatment is defined as a combination of particular val-
ues of the controllable factors. An experimental aim is to compare treatments and
choose the most effective.

• Factor screening: A model may include a large number of controllable factors.
An experimental aim is to compare the factors and decide which factors have a
substantive impact.

• Response surface exploration: Description of the relationship between the re-
sponse and the important factors.

• Optimisation: The experimental aim, can be represented by a function, called
objective function. For example, the objective function may represent cost or gain.
An experimental aim is to identify the settings of the controllable factors that
minimise or maximise an objective function.

The focus in the thesis is to consider design of experiments to estimate the parameters
in a statistical model, and identify efficient designs by optimising the combinations of
the settings of factors to be run in the experiment. The settings of factors are repre-
sented in a design matrix that belongs to the design space X . Specifically, the objective
is to estimate the parameters with respect to the choice of objective criteria, for instance,
minimise the average variance of the parameter estimator. A detailed description on
optimal experimental designs, objective functions, and optimality criteria is given in
Chapter 2.

Prior to the design of an experiment it is vital to know the aim of the experiment, as well
as the controllable factors and their capabilities of variation. In the traditional design of
experiments, for a single run of the experiment the set up involves the application of a
treatment consisting of fixed or static settings of the controllable factors. In every run a
simultaneous variation of the different factors takes place with the aim of maximising
the effectiveness of the given experiment.

Suppose an experiment of n runs, J controllable factors, and responses yi are collected,
for i = 1, 2, . . . , n with i representing the ith run of the experiment. One way of mod-
elling the relationship between the scalar responses and the J controllable factors is a
linear model of the form:

yi = f T(xi)β + εi, i = 1, 2, . . . , n. (1.1)

The vector of xi represents the values of the controllable factors for the ith run of the
experiment, and it is defined as:

xT
i =

(
xi1 xi2 · · · xi J

)
, i = 1, 2, . . . , n, (1.2)
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with each xij, i = 1, 2, . . . , n, j = 1, 2, . . . , J, the value of the jth controllable factor at the
ith run of the experiment. The values of the controllable factors are usually in an interval
[u, v], i.e., xij ∈ [u, v], with u and v scalar values. The function f (xi) is a Q× 1 vector,
that contains the effects of the explanatory variables at the ith run of the experiment
such that,

f T(xi) =
(

f1(xi) f2(xi) · · · fQ(xi)
)

, i = 1, 2, . . . , n. (1.3)

This means that the number of terms in the model depends on the specification of
the function f T(xi). The intercept is incorporated into the model through the function
f (xi). Meaning that if the intercept is included in the model, then the first entry of f (xi)

is always equal to one, i.e., f1(xi) = 1. For example, if the model includes the intercept
and the main effects of the J controllable factors, then f T(xi) = (1 xT

i ) and Q = J + 1.
The vector β is the vector of the Q unknown scalar parameters, and finally εi the inde-
pendent and identically distributed errors with mean zero and variance σ2.

In matrix form, the linear model in (1.1) is given by,

y = Fβ + ε, (1.4)

where y is the n× 1 vector of responses, that is yT = (y1, y2, . . . , yn), and β is a vector
for the unknown parameters as before. The matrix F is the model matrix of dimension
n× Q, with the ith row of F being f T(xi). Finally, ε is a vector of length n of the error
terms. It is assumed that the responses are observed independently of each other. Thus,
the errors are independent with,

Var(ε) = Inσ2,

with In the n× n identity matrix.

The design problem is to find the settings of the factors xi1, xi2, . . . , xi J for each of the
n runs, that minimise or maximise an objective function. To identify the connection
between the design problem and model matrix, the model matrix can be alternatively
defined as,

F = f T(X),

where X is the design matrix, carrying the settings of the controllable factors such that,

X =


xT

1

xT
2
...

xT
n

 =
(

x•1 x•2 · · · x•J
)
=


x11 x12 · · · x1J

x21 x22 · · · x2J
...

...
...

...
xn1 xn2 · · · xnJ

 ,
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with the vector x•j, j = 1, 2, . . . , J representing the jth controllable factor in every run
of the experiment. Hence, optimisation is required to find optimal conditions for the
controllable factors, i.e., an optimal design matrix X.

1.2 Motivation of the thesis

The vast majority of experiments conducted by practitioners and researchers, depend
on static or fixed factors. In contrast to this traditional design of experiments, an in-
creasing number of modern experiments involve factors whose settings can vary as a
function of an indexing variable, such as space or, commonly, time, within a single run
of the experiment. This is due to the increased use of dynamic systems in many dis-
ciplines including biology, medicine, and engineering, for which time is an inevitable
component; see Titterington (1980). In the Statistics literature, such factors are often
referred to as profile, and sometimes as functional or dynamic, factors; see Georgakis
(2013) and Klebanov and Georgakis (2016).

Ferraty and Vieu (2006) refer to profile factors as factors that appear in the form of
curves rather than scalar objects. A common example of a profile factor is temperature,
being varied monotonically or as a step function through every run of an experiment.
Moreover, examples of experiments that involve profile factors include: varying the
temperature and the humidity during a chemical reaction (Putranto et al., 2011), and
controlling factors that mimic dynamic wind speed and direction in engineering to de-
velop wind turbines (Boukhezzar and Siguerdidjane, 2005).

For experiments depending on profile factors, the design problem is to choose the right
function to vary each of the profile factors in every run of the experiment. A challenge
faced when experimentation involves profile factors is that the function space is very
general. Thus, it is required to restrict the function space; see Section 3.1. For ease of
exposition, throughout this thesis it is assumed that time, t ∈ [0, T ], is the continuous
single input to the profile factors. The methods extend naturally to situations where
there are profile factors with multiple inputs, e.g., spatio-temporal studies.

Statistical modelling with functional data is well established in the Statistics literature;
see the work by Ramsay and Silverman (2005) for an introduction. Despite the in-
creased use of profile factors in modern experiments, minor consideration was given
on experimental design strategies for experiments with profile factors. Two main ap-
proaches have been proposed: response surface methods using dimension-reduction
techniques, and optimal design for dynamic models, typically derived from differen-
tial equations; see Section 3.3. In fact, there is no work addressing functional empirical
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models depending on multiple profile factors, where the parameters requiring estima-
tion are themselves functions of time.

This thesis extends the optimal design paradigm to experiments with profile factors
and time-varying parameters, so that the design consists of combinations of functions
for each run of the experiment. As contribution to the Statistics literature, this work
involves researching suitable modelling methods, both empirical and mechanistic, and
optimal design strategies along with associated computational efficient techniques.

1.3 Examples of experiments with profile factors

1.3.1 Biopharmaceutical experiment to study cell growth

A common experiment in the biopharmaceutical industry, aims to study the cell cul-
ture, to monitor and optimise the cell growth. The cell growth is studied using an au-
tomated bioreactor system for process development, called Ambr250. As indicated by
Tai et al. (2015), the importance of the use of design of experiments with the Ambr250
bioreactor system is to allow a more efficient exploration of the design space. The ex-
periment is performed with 12 or 24 cell lines and each cell line corresponds to a run
of the experiment. The response in the ith run of the experiment, denoted as yi, for
i = 1, 2, . . . , n, include the final measurement of cell growth in the ith cell line. The con-
trollable factors are the initial cell concentration xi1, the carbon dioxide level xi2, and
the temperature xi3, at the ith run of the experiment. This experiment can be considered
as a standard design of experiments problem represented by a linear model such that,

yi = β1 + β2xi1 + β3xi2 + β4xi3 + εi, i = 1, 2, . . . , n,

where levels of each factor are chosen.

Several scientists in the literature mentioned that considering factors that vary with
respect to time could be beneficial; see Yoon et al. (2003), Trummer et al. (2006), and
Rameez et al. (2014). In context, Yoon et al. (2003) indicated the importance of chang-
ing temperature, and discussed that lowering the values of temperature dynamically
promoted high cell concentration. Trummer et al. (2006) found that a maximisation of
cell growth can be obtained by varying temperature using a biphasic process strategy.
In a more recent work, Rameez et al. (2014) concluded that a downward shift in tem-
perature caused an increase in the concentration of the cell.
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Based on the latter findings, the biopharmaceutical experiment can be seen as a design
of experiments problem with two scalar factors which are the initial cell concentration
and the CO2 level, and a single profile factor which is the temperature. For example,
a single run of the experiment could be the choice of levels for CO2 and initial cell
concentration, and a function of time for temperature, meaning changing the values of
temperature dynamically. Under this scenario, the experiment can be modelled as a
functional linear model and take the form,

yi = β1 + β2xi1 + β3xi2 +
∫ T

0
β4(t)xi3(t) dt + εi, i = 1, 2, . . . , n, t ∈ [0, T ], (1.5)

with β4(t) and xi3(t) the functional parameter and profile factor respectively, integrated
with respect to time.

A similar experiment in the biopharmaceutical industry, vary the feed volume, which
can be considered as a profile factor that is varied dynamically. Models of the nature
of the model for the biopharmaceutical experiment in (1.5) are of main interest in this
thesis. A detailed methodology is developed in Chapter 5, with multiple examples in
Chapter 6.

In chemistry, the actively growing cells in a sample can be identified by viable cell
count. Hence, the data from the biopharmaceutical experiment, to measure the final
cell growth can be modelled using a Poisson log-linear model, which is a generalised
linear model used to model counts. If temperature is assumed static, the experiment
can be modelled as a standard log-linear Poisson model such that,

yi ∼ Poisson(µi),

ηi = β1 + β2xi1 + β3xi2 + β4xi3 i = 1, 2, . . . , n,

with a link function g(µi) = log(µi) and µi representing the mean of the ith response.
However, if the temperature is allowed to vary over time, then the experiment is mod-
elled as a functional Poisson model and takes the form,

yi ∼ Poisson(µi),

ηi = β1 + β2xi1 + β3xi2 +
∫ T

0
β4(t)xi3(t) dt i = 1, 2, . . . , n, t ∈ [0, T ]. (1.6)

For experiments modelled by generalised linear models depending on profile factors as
in (1.6), a design of experiments methodology is developed and discussed in Chapter
7.
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1.3.2 Batch reactor experiment to study single compound conversion

A common problem in chemical kinetics focus on the optimisation of a batch reactor.
A batch reactor is a process used to study the behaviour and the relationship between
a reactant and a product or material. Design of experiments contributes to the latter
problem through the provision of a methodology to study the relationship between an
output and input factors or processes. However, in batch processes a dynamic move-
ment of factors, such as temperature, have a substantial effect on the output; see Rippin
(1983), Georgakis (2013) and Klebanov and Georgakis (2016). For this reason, the use
of profile factors could be beneficial.

An example tackled by Georgakis (2013) considers a batch reactor with a reversible re-
action of a reactant and a single product. The aim of the study is to study the effect of
temperature on the conversion of the compound. For instance, the response is the con-
version and the input factor is the temperature xi1. Georgakis (2013) and Klebanov and
Georgakis (2016) assumed a fixed batch time at 2 and 1 hours respectively. A possible
experiment could assume scalar levels of temperature for every run of the experiment.
However, due to the advantage of allowing the temperature to change with respect to
time, this problem can be seen as a design of experiments problem depending on a pro-
file factor xi1(t).

Under this scenario, the experiment is modelled as a functional linear model and takes
the form,

yi = β1 +
∫ T

0
β2(t)xi1(t) dt + εi, i = 1, 2, . . . , n, t ∈ [0, T ], (1.7)

with yi the conversion response at the end of the batch, β1 the constant parameter, and
β2(t) and xi1(t) the functional parameter and profile factor respectively, integrated with
respect to time. In context, Georgakis (2013) indicated that a linear change in temper-
ature in every run of the experiment promoted the conversion of the compound. A
quadratic change in temperature has also been investigated, but did not provide any
benefit.

In addition to the model in (1.7), different batch times can be considered. Batch reactor
examples with different batch times are mentioned in the work by Bajpai and Reuss
(1980) and Riascos and Pinto (2004). The duration of the batch can be added to the
model as a scalar factor xi2 of different levels; see Georgakis (2013). Subsequently, the
experiment is modelled as a functional linear model that depends on a profile factor
and a scalar factor.
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1.4 Outline of the thesis

The next chapter, Chapter 2, discusses optimal experimental designs under the frequen-
tist and the Bayesian approach; along with a brief introduction to Bayesian inference
and exchange algorithms. Chapter 3 introduces experimentation with profile factors.
The simpler form of the functional linear model is stated at first, followed by variations
of the form of the functional linear model, discussed by several scientists to consider
polynomials and interactions. The challenges confronted are defined, and the use of ba-
sis functions to restrict the function space of functions and encounter the challenges is
discussed. A review of the previous work on experimentation for models that involve
profile factors is also provided. Next, Chapter 4 introduces the reader to polynomial
splines and a number of basis systems are described. Primary focus is given on the
B-spline basis.

A new methodology for design of experiments for functional linear and functional gen-
eralised linear models, using basis function expansions, is developed in Chapter 5 and
Chapter 7, respectively. In these chapters, interactions and polynomials are modelled
through univariate parameter functions, integrated on single integrals. The method-
ology is applied to find optimal designs for functions of profile factors in Chapter 6
and Chapter 7. Sensitivity studies are conducted and the settings of experimentation
including the number of runs and the settings of profile factors and functional parame-
ters are varied. Also, the sensitivity of the optimal designs to variations of the settings
of experimentation is investigated. The software code developed to find optimal de-
signs throughout the thesis has been used to build an R package called fdesigns. The
fdesigns package is able to find optimal experimental designs for functional models.
The R functions included in the package are described and demonstrated in Chapter
8. Related future goals and potential research directions are suggested in Chapter 9,
including a preliminary investigation to expand the methodology to functional models
for which interactions and polynomials are modelled through multivariate time index
parameter functions, integrated on multiple integrals.

To improve the ease of understanding, a glossary of notation is available in the list of
symbols and abbreviations are listed in the list of abbreviations. Figures and tables are
also listed in the list of figures and the list of tables. Finally, any supplementary work
is available as appendices at the end of the thesis.
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Chapter 2

Optimal experimental designs

An experimental design represents the settings under which an experiment takes place,
to obtain the responses and estimate the unknown parameters of interest. Designs that
provide the maximum possible information are defined as optimal experimental de-
signs; see Wu and Hamada (2011), Montgomery (2017) and Dean et al. (2017). To arrive
in optimal experimental designs, it is important to know the purpose of the experi-
ment because the purpose of the experiment needs to be reflected in the experimental
designs. This is usually achieved through the use of design criteria, many of which,
but not limited to, are known as "alphabetic" optimality criteria. Famous "alphabetic"
optimality criteria include the A-, D-, E-, G- and T- optimality, and they are usually
convex functions of the Fisher information matrix. The "alphabetic" optimality criteria
are defined and reviewed by Atkinson et al. (2007, Chapter 10). In this thesis, focus is
given on the A- and D- optimality.

The frequentist approach for optimal experimental designs is discussed in Section 2.1,
and the A- and D- optimality are defined in Section 2.2. Prior to the Bayesian approach,
Bayesian inference is discussed in Section 2.3, to assist the understanding of finding
Bayesian optimal experimental designs. The Bayesian approach for optimal experi-
mental designs, and utility functions that represent the experimental aim, are discussed
in Section 2.4. The coordinate exchange algorithm, that is used for finding optimal ex-
perimental designs throughout the thesis, is described in Section 2.6.

2.1 Frequentist optimal experimental designs

In the traditional design of experiments, a model representing the relationship between
the responses and the controllable scalar factors is the linear model, as in (1.1), and in
matrix form, as in (1.4). The parameter estimates are derived using the ordinary least
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squares (OLS) method, which minimises the residual sum of squares,

RSS = (y− Fβ)T(y− Fβ). (2.1)

The least squares estimator of β is,

β̂ = (FT F)−1FTy, (2.2)

with variance-covariance matrix,

Var(β̂) = Var
[
(FT F)−1FTy

]
= σ2(FT F)−1.

(2.3)

The matrix (1/σ2)FT F is called the Fisher information matrix. The Fisher informa-
tion is a measure for the amount of information about parameters provided by exper-
imental data. It is a well-established characteristic of an experimental design used to
assess and optimize the design for maximizing the expected accuracy of parameter es-
timates. Optimality functions including the A- and D- optimality are functions of (2.3)
and equivalently of the Fisher information matrix. Thus, an analytic derivation of the
variance-covariance matrix of the parameter estimates is useful. Under the assumption
that the errors follow a normal distribution, that it is assumed later in Section 2.3.1, the
above results can be identified from the likelihood perspective.

Independent of the choice of optimality criteria, an optimal design is defined as the
solution of an optimisation problem; see Fedorov (2010). The optimisation problem is
either a minimisation or a maximisation problem, depending on the objective of the
experiment. An optimal design for a minimisation optimisation problem, is a design
X∗ ∈ X for which,

Ψ(X∗) = min
X∈X

Ψ(X), (2.4)

where X is the design space, i.e., the set of all applicable designs. Similarly, an optimal
design for a maximisation optimisation problem, is a design X∗ ∈ X for which,

Ψ(X∗) = max
X∈X

Ψ(X). (2.5)

For most problems there is not a unique optimal design to be found. For this reason,
scientists usually refer to an optimal design instead of the optimal design. Moreover,
optimal designs are usually called locally optimal designs. This is to highlight that for
certain models, i.e., non-linear models, the Fisher information matrix and so, the de-
sign, may depend on the unknown parameters; see Dragalin et al. (2008). To impose
some prior specification on the parameters (and drop the dependency on the unknown
parameters if it exists), a Bayesian approach is usually followed; see Chaloner and
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Verdinelli (1995). Experimental designs for non-linear models are discussed in more
details in Section 2.5.

2.2 A- and D- optimality

The A-optimality objective criterion is a function of the Fisher information matrix and it
has a straightforward statistical interpretation. The objective function for A-optimality
is defined as the trace of the inverse of the information matrix,

ΨA(X) = tr
[
(FT F)−1], (2.6)

and a design X∗ ∈ X that minimises the A-optimality objective function,

ΨA(X∗) = min
X∈X

tr
[
(FT F)−1], (2.7)

is called an A-optimal design. Thus, A-optimal designs minimise the total variance of
the parameter estimates or equivalently the average variance of the parameter estima-
tors.

The D-optimality objective criterion is also a function of the Fisher information matrix.
According to Atkinson et al. (2007, Chapter 10), D-optimality is the most important
objective criterion in experimental design applications. The objective function for D-
optimality is defined as the determinant of the information matrix raised to the power
1/Q,

ΨD(X) = det(FT F)1/Q = |FT F|1/Q, (2.8)

and a design X∗ ∈ X that maximises the D-optimality objective function,

ΨD(X∗) = max
X∈X
|FT F|1/Q, (2.9)

is called a D-optimal design. D-optimal designs equivalently minimise the determi-
nant of the variance-covariance matrix of the parameter estimators, or the volume of a
confidence ellipsoid for the parameter estimators, i.e., provides the best accuracy of the
parameter estimators. Moreover, D-optimality considers the covariance between the
estimators, unlike A-optimality which does not.

There exists many more criteria, with many, but not all of them, depending on the as-
sumed model through the information matrix. In addition, for simple models, a design
may be optimal under multiple objective criteria, even though this is not usually the
case; see Jones et al. (2021). Also, a design that is optimal with respect to one model is
usually not optimal with respect to another model. Several other objective criteria, as
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well as further details on A- and D- optimality are available in the book by Atkinson
et al. (2007, Chapters 6, 9, and 10).

2.3 Bayesian inference

Bayesian statistics, named after Thomas Bayes, provide a different approach to statis-
tical inference. The basic theory underlying Bayesian inference is that the only mea-
sure of uncertainty is probability; see Gelman et al. (2013, Chapter 1). In other words,
Bayesian inference is a statistical approach that uses subjective probability statements
in order to quantify uncertainties. A general notation in Bayesian inference is that π(·|·)
represents a conditional probability distribution, π(·) represents a marginal distribu-
tion, and π(·, ·) represents a joint probability distribution. A joint probability distribu-
tion is expanded as the product of two distributions, for example,

π(β, y) = π(β)π(y|β). (2.10)

Data are assumed to come from a family of distribution and they are presented as a
likelihood function π(y|β), exactly as in the classical approach. The likelihood func-
tion is a function of the parameters for observed data, and is a measure of support for
the parameters given the observed data. In simple words, it represents how likely the
observed data are, given the unknown parameters β. Unlike the classical approach,
where the unknown parameters β are considered as constant, in Bayesian statistics the
unknown parameters are considered as random. Prior to obtaining any observed data
it is assumed that there exists some information about the unknown parameters repre-
sented in the form of a prior distribution π(β). The likelihood function and the prior
distribution are used to develop the posterior distribution π(β|y), which represents the
modified or updated belief for the true value of the parameters in light of the observed
data. Derivation of the posterior distribution which is a probability statement about β

given y requires the use of the Bayes’ rule and the property of conditional probability;
see Gelman et al. (2013, Chapter 1) and Bolstad and Curran (2016, Chapter 4),

π(β|y) = π(β, y)
π(y)

=
π(β)π(y|β)

π(y)

=
π(β)π(y|β)∫ ∞

−∞ π(β)π(y|β) dβ

∝ π(β)π(y|β).

(2.11)
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The last line in (2.11) corresponds to the unnormalised posterior distribution, and it
omits the denominator π(y) because it does not depend on the parameters β. Equiv-
alently, this means that for some models the posterior distribution is known up to a
normalising constant.

Finally, suppose that inference is not of immediate interest on every parameter. The pa-
rameters that are not of interest are called nuisance parameters; see Gelman et al. (2013,
Chapter 3). For example, suppose that βT = (β1 β2), and that the parameter of interest
is β1, then β2 is a nuisance parameter. A distribution of the parameter of interest given
the data, is called a marginal posterior distribution and it is derived by integrating the
posterior distribution with respect to the nuisance parameters. For instance, a marginal
posterior distribution for β1 is,

π(β1|y) =
∫

π(β|y) dβ2. (2.12)

Further elaboration on Bayesian inference is given in the books by Gelman et al. (2013)
and Box and Tiao (1992).

2.3.1 Likelihood, Joint Prior and Joint Posterior for the linear model

For the standard linear model in (1.4), assuming ε ∼ N(0, σ2 In), the likelihood function
is y ∼ N(Fβ, σ2 In), expanded as,

π(y|β, σ2) = (2π)−n/2|σ2 In|−1/2 exp
(
− 1

2σ2 (y− Fβ)T(y− Fβ)
)

∝ (σ2)−n/2 exp
(
− 1

2σ2 (y− Fβ)T(y− Fβ)
)

.
(2.13)

For certain prior choices, called conjugate prior choices, the posterior end up follow
the same distribution family. This is useful because it is easy to interpret the change in
parameters from the prior to the posterior. A conjugate prior choice for the unknown
parameters β and σ2 is a normal inverse gamma distribution,

π(β, σ2) = π(β|σ2)π(σ2),

with π(β|σ2) ∼ N(µ, σ2V) and π(σ2) ∼ IG(a/2, b/2). The Q× 1 vector µ is the prior
mean of β, the Q× Q matrix V is a known and symmetric matrix, and a, b are known
hyperparameters. Explicitly, the prior distributions are given by,

π(β|σ2) = (2π)−Q/2|σ2V−1|−1/2 exp
(
− 1

2σ2 (β− µ)TV−1(β− µ)
)

∝ (σ2)−Q/2 exp
(
− 1

2σ2 (β− µ)TV−1(β− µ)
)

,
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and

π(σ2) =
(b/2)

a
2

Γ( a
2 )

1
(σ2)

a
2+1 exp

(
− b

2σ2

)
∝ (σ2)−(

a
2+1) exp

(
− b

2σ2

)
.

A joint prior distribution of β and σ2 is,

π(β, σ2) = π(β|σ2)π(σ2)

∝ (σ2)−(
a+Q

2 +1) exp

(
− 1

2σ2

(
(β− µ)TV−1(β− µ) + b

))
,

(2.14)

which is a normal inverse gamma distribution such that,

π(β, σ2) ∼ NIG(µ, V , a/2, b/2). (2.15)

Using Bayes theorem that was discussed in Section 2.3, the joint prior in (2.14) and the
likelihood in (2.13) are combined to derive the joint posterior distribution,

π(β, σ2|y) ∝ π(y|β, σ2)π(β, σ2)

∝ (σ2)−(
a∗+Q

2 +1) exp

(
− 1

2σ2

(
(β− βN)

TV−1
N (β− βN) + b∗

))
,

which is also a normal inverse gamma distribution such that,

π(β, σ2|y) ∼ NIG(βN , VN , a∗/2, b∗/2), (2.16)

where,

VN = (FT F + V−1)−1,

βN = VN(V−1µ + FTy),

a∗ = a + n,

b∗ = b + (µTV−1µ + yTy− βT
NV−1

N βN). (2.17)
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2.3.2 Marginal posterior distributions for the linear model

The marginal posterior distribution for β is obtained by integrating the posterior with
respect to σ2 which takes the form of a nuisance parameter,

π(β|y) =
∫

π(β, σ2|y) dσ2

∝
∫
(σ2)−(

a∗+Q
2 +1) exp

(
− 1

2σ2

[
(β− βN)

TV−1
N (β− βN) + b∗

])
dσ2

∝

[
1 +

(β− βN)
TV−1

N (β− βN)

b∗

]− a∗+Q
2

.

(2.18)

Hence, the marginal posterior distribution for β is a multivariate t-distribution,

π(β|y) ∼ ta∗
(

βN ,
b∗

a∗
VN

)
(2.19)

with a∗ degrees of freedom, mean βN , and scale b∗
a∗VN , for a∗, b∗, βN , and VN as in (2.17).

The marginal posterior distribution for σ2 is obtained by integrating the posterior with
respect to β, which takes the form of a nuisance parameter,

π(σ2|y) =
∫

π(β, σ2|y) dβ

∝
∫
(σ2)−(

a∗+Q
2 +1) exp

(
− 1

2σ2

[
(β− βN)

TV−1
N (β− βN) + b∗

])
dβ

= (σ2)−(
a∗
2 +1) exp

(−b∗

2σ2

)
×
∫
(σ2)−

Q
2 exp

(
− 1

2σ2

[
(β− βN)

TV−1
N (β− βN)

])
dβ

∝ (σ2)−(
a∗
2 +1) exp

(−b∗

2σ2

)
.

(2.20)

The integrand in the third equality of (2.20) is proportional to the density of a N
(

βN , σ2VN
)

distribution, which integrates to one. Hence, the marginal posterior distribution for σ2

is an inverse gamma distribution,

π(σ2|y) ∼ IG(a∗/2, b∗/2), (2.21)

for a∗ and b∗ as in (2.17).

The marginal distributions of y, y conditional on β, and y conditional on σ2, used later
in the chapter, are derived in Appendix B in Sections B.3, B.1 and B.2 respectively.
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2.4 Bayesian optimal experimental designs

Design of experiments is a process taking place prior to the experiment, thus, prior
to the data collection. Thus, experimental designs fit naturally in the Bayesian frame-
work. The experimental aim in the Bayesian framework is represented through a utility
function u(β, y, X). A utility function defines the gain of the experimenter from using
the design X, to obtain responses y, assuming values for the parameters β. Thus, a
Bayesian optimal design is a design X∗ ∈ X , that is maximising the expected utility
with respect to the joint distribution of the unknown responses and unknown parame-
ters; see Chaloner and Verdinelli (1995),

Ψ(X) = Eβ,y[u(β, y, X)]

=
∫

β

∫
y

u(β, y, X)π(β, y|X) dy dβ

=
∫

β

∫
y

u(β, y, X)π(β|y, X)π(y|X) dy dβ

=
∫

β

∫
y

u(β, y, X)π(y|β, X)π(β) dy dβ.

(2.22)

The unknown parameters are assigned prior distributions according to the available
information and beliefs. For instance, π(β|X) corresponds to the available information
of the parameters prior to the experiment, i.e., a prior distribution of the unknown
parameters. A combination of the joint prior and the likelihood using Bayes theorem
allows the posterior and marginal densities to be found; see Section 2.3. Common
utility functions used in the Bayesian framework for optimal experimental designs are
the Negative Squared Error Loss (NSEL) and the Shannon Information Gain (SIG). Both
utility functions are discussed in the next subsections, and optimality criteria for the
linear model are derived.

2.4.1 Negative Squared Error Loss

NSEL is a common utility function in the Bayesian framework. It is a utility function in
quadratic form such that,

u(β, y, X) = −
[
β−E(β|y, X)

]T[
β−E(β|y, X)

]
,

and optimal designs are the designs that maximise the expected NSEL. The expected
utility is derived by taking the expectation over the responses and the parameters. For
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the linear model, the expected utility is,

Ψnsel(X) = Ey,β,σ2

(
−
[
β−E(β|y, X)

]T[
β−E(β|y, X)

])
= Ey,σ2

(
Eβ|y,σ2

[
−

Q

∑
q=1

[
βq −E(βq|y, X)

]2
])

= Ey,σ2

[
−

Q

∑
q=1

varβ|y,σ2(βq)
]

= Ey,σ2

[
− tr

(
σ2VN

)]
= − b

a− 2
tr
[(

FT F + V−1)−1].

(2.23)

The objective function in (2.23), for the linear model, is also known as Bayesian A-
optimality, and a design that maximises the expected utility is defined as a Bayesian
A-optimal design. This criterion is proportional to the trace of the posterior variance-
covariance matrix,

Ψnsel(X) ∝ −tr
[(

FT F + V−1)−1]. (2.24)

and a design X∗ is optimal if it minimises the trace of the posterior variance-covariance
matrix,

Ψnsel(X∗) = min
X∈X

tr
[(

FT F + V−1)−1]. (2.25)

Under a non-informative prior where V−1 would be zero, this criterion would minimise
the trace of the inverse of the information matrix as in (2.7).

2.4.2 Shannon Information Gain

Another important and well known utility function is the Shannon Information Gain
(SIG). In this section, the SIG on the marginal distribution of β is considered. However,
the procedure followed and the results shown are identical for the SIG on the joint
distribution of β and σ2. The SIG utility function is defined as,

u(β, y, X) = log π(β|y)− log π(β)

= log
π(y|β)π(β)

π(y)
− log π(β)

= log π(y|β) + log π(β)− log π(y)− log π(β)

= log π(y|β)− log π(y),

(2.26)
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with any rearrangements resulting from an application of Bayes’ theorem from (2.11).
Compared to the first, the last equation of (2.26) is sometimes more useful for compu-
tations. To begin with, the marginal distributions involved are,

y ∼ ta

(
Fµ,

b
a
(I + FV FT)

)
,

y|β ∼ ta

(
Fβ,

b
a

I
)

,

from (B.7) and (B.2), available in Appendix B in Sections B.3 and B.1, respectively. An
optimal design is a design that maximises the expected utility of SIG. The expected
utility is derived by taking the expectation over the responses and the parameter β. For
the linear model, the expected utility is,

Ψsig(X) = Ey,β
(

log π(y|β)− log π(y)
)

=
1
2

log |I + FV FT| −
( a + n

2
)
Ey,β

[
log
[
1 +

1
a
(y− Fβ)T

(b
a

)−1
(y− Fβ)

]]
︸ ︷︷ ︸

(1)

+
( a + n

2
)
Ey

[
log
[
1 +

1
a
(y− Fµ)T

[b
a
(I + FV FT)

]−1
(y− Fµ)

]]
︸ ︷︷ ︸

(2)

.

Working out (1) and (2),

(1) :
( a + n

2
)
Ey,β

[
log
[
1 +

1
a
(y− Fβ)T

(b
a

)−1
(y− Fβ)

]]

=
( a + n

2
)
Eβ

[
Ey|β

[
log
[
1 +

n
a

(y− Fβ)T
(

b
a

)−1
(y− Fβ)

n

]]]

=
( a + n

2
)
E

[
log
[
1 +

n
a
F
]]

,

where F ∼ F (n, a) distribution with n and a degrees of freedom.

(2) :
( a + n

2
)
Ey,σ2,β

[
log
[
1 +

1
a
(y− Fµ)T

[b
a
(I + FV FT)

]−1
(y− Fµ)

]]

=
( a + n

2
)
E

[
log
[
1 +

n
a
F
]]

,

where F ∼ F (n, a) distribution with n and a degrees of freedom as before. The result
in the calculations of (1) and (2) follow from the theorem in Kotz and Nadarajah (2004,
p. 19), that if:

y ∼ ta

(
Fµ,

b
a
(I + FV FT)

)
,
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then,

(y− Fµ)T
[

b
a (I + FV FT)

]−1
(y− Fµ)

n
∼ F

(
n, a
)
,

which does not depend on the design. Since (1) and (2) do not depend on the design,
this criterion is equivalent to the determinant of the inverse of the posterior variance-
covariance matrix,

Ψsig(X) = |FT F + V−1|, (2.27)

and a design X∗ is optimal if it maximises the determinant of the inverse of the posterior
variance-covariance matrix,

Ψsig(X∗) = max
X∈X
|FT F + V−1|. (2.28)

The objective function in (2.28), for the linear model, is known as Bayesian D-optimality
and a design that achieves to maximise the expected utility is defined as a Bayesian D-
optimal design. Under a non-informative prior where V−1 would be zero, this criterion
maximises the determinant of the information matrix FT F.

2.5 Optimal designs for non-linear models

An important feature of designs for non-linear models, including generalised linear
models (GLMs) that are discussed in Chapter 7, is that they depend on the parameters.
This is because the Fisher information matrix is a function of the unknown parameters
β. As a consequence, the design also depends on the unknown parameters, thus, iden-
tifying optimal designs for non-linear models is not straightforward. For this reason, in
order to identify optimal experimental designs for non-linear models including GLMs,
or generally for models for which the information matrix depends on the unknown pa-
rameters, prior information of the model parameters is required.

This problem can be approached in different ways, including locally optimal designs,
sequential designs, maximin designs, and pseudo-Bayesian optimal designs; see Atkin-
son and Woods (2015). In this thesis, the approach that is followed to incorporate the
prior information into the model and define the optimality objective functions in Chap-
ter 7 is the pseudo-Bayesian approach; see Chaloner and Verdinelli (1995), Overstall
and Woods (2017), and Woods et al. (2017).

In the pseudo-Bayesian approach, it is assumed that the unknown parameters β follow
a prior distribution π(β). After that, optimal designs are the designs that achieve to
minimise the expectation of the objective functions with respect to the prior distribution
of the parameters. Assuming a general objective function ψ(β, X) that is a function of
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the parameters, a pseudo-Bayesian optimal design minimises the expectation of the
objective function with respect to the prior of the parameters,

Ψ(X) = Eβ

{
ψ(β, X)

}
=
∫

Θ
ψ(β, X) π(β) dβ, (2.29)

with X the design matrix from the basis expansion of the profile factors, and Θ the pa-
rameter space. Specifically, the pseudo-Bayesian A- and D- optimality objective func-
tions are defined as,

ΨA(X) = Eβ

{
tr
[
I(β, X)−1]}

=
∫

Θ
tr
[
I(β, X)−1]π(β) dβ

(2.30)

ΨD(X) = Eθ

{
det
[
(I(θ, X)

]−1/Q
}

=
∫

Θ
det
[
(I(β, X)

]−1/Q
π(β) dβ

(2.31)

with Q the total number of parameters, and I(θ, X) the information matrix that de-
pends on the parameters. The designs that minimise the pseudo-Bayesian A- and D-
optimality objective functions are known as pseudo-Bayesian A- and D- optimal de-
signs, respectively; see Chaloner and Verdinelli (1995), Woods et al. (2006), and Van
De Ven and Woods (2014).

2.6 Exchange algorithms

Optimisation refers to the ability to formulate a problem in mathematical terms, and
find the best allocation of limited resources, aiming to maximise or minimise an objec-
tive function. It is considered a development in Mathematics with origins back in 1947;
see Dantzig (2002). Since then, it received great attention. Several approaches and al-
gorithms exist in the Statistics literature for finding optimal designs, however, most
statistical software packages shifted to the computational efficient use of exchange al-
gorithms; see Meyer and Nachtsheim (1995), Gotwalt et al. (2009), and Cuervo et al.
(2016). The optimal designs presented in examples in later chapters are optimised us-
ing the coordinate exchange algorithm followed by the point exchange algorithm; see
Atkinson et al. (2007, Chapter 12). Both algorithms are discussed in the following sec-
tions.

2.6.1 Coordinate exchange algorithm

The coordinate exchange algorithm builds an optimal design using the following steps:
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1. The coordinate exchange algorithm begins with a randomly generated design,
called the initial design. The initial design must satisfy the lower and upper
bounds,

xij ∈ [u, v], i = 1, 2, . . . , n j = 1, 2, . . . , J,

for xij the ijth entry of the design matrix X, and u, v the scalar values for the
interval of the entries of X as before.

2. The objective value Ψ(X) of the design is calculated. The objective function to
use depends on the choice of the objective criterion.

3. The algorithm tackles each coordinate separately and optimise it according to the
objective function. This involves the optimisation of every xij, i.e., xij the ijth entry
of the design matrix X, with i representing the row/run and j the column of the
design matrix. For instance, if minimising,

arg min
xij

Ψ(X), subject to xij ∈ [u, v], i = 1, 2, . . . , n j = 1, 2, . . . , J,

and if maximising,

arg max
xij

Ψ(X), subject to xij ∈ [u, v], i = 1, 2, . . . , n j = 1, 2, . . . , J.

For example, if the objective function is D-optimality, then the optimisation of
each point depends on the determinant of the information matrix.

4. The difference in the objective values of the designs before and after the optimi-
sation, i.e., ∆Ψ(X), is compared to a pre-specified tolerance value, denoted as
δ.

5. While ∆Ψ(X) > δ, the algorithm repeats the same procedure from step 3, i.e., the
latest design becomes the initial design, otherwise the algorithm stops.

The initial design usually affects the resulting optimal design. For this reason, repeating
the algorithm for multiple starting designs increases the likelihood of finding optimal
designs. Following the recommendation of Goos and Jones (2011), the results presented
in the thesis are based on optimised designs using the coordinate exchange algorithm
and 1000 randomly generated initial designs.

2.6.2 Point exchange algorithm

Point exchange algorithm is an exchange algorithm, that uses the standard operations
of exchange algorithms, from points of a candidate list, to identify optimal designs; as
in Atkinson et al. (2007, Chapter 12). The candidate list of points can be any possible
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combination of points.

In this thesis, the point exchange algorithm is used along the coordinate exchange,
aiming to take an already optimised coefficient design matrix X as input, and try to
improve it. In optimal experimental designs, replication of design points and identical
runs is common; see Wu and Hamada (2011, Chapter 1). For this reason, the choice of
the candidate list in this thesis contains the exact points of the optimal design found
from the coordinate exchange algorithm. Thus, the candidate list of points is the same
dimension as the design matrix. The combination of the coordinate exchange and the
point exchange algorithms is discussed in Overstall and Woods (2017), as phase 1 and
phase 2 of the design optimisation.

The procedure followed by the point exchange algorithm is described in the following
steps:

1. The candidate list, which is the design points identified in the coordinate ex-
change, is formed.

2. Each of the n runs of the candidate list, is added to the design found from the
coordinate exchange, creating n + 1 runs designs. The objective value for those
new designs is obtained, and the new design that performs better is found.

3. The new design is evaluated n + 1 times, each time with a run deleted, to identify
which run deletion performs better.

4. The new n run design is the design that performs better posterior to the swap of
the design runs.

5. The process is replicated to find an optimal design, until no swaps affect the per-
formance of the design.

2.7 Summary

This chapter has reviewed optimal experimental designs. At first, the frequentist ap-
proach has been considered. Optimality functions including the A- and D- optimality
have been introduced and optimality criteria for A- and D- optimal designs have been
derived. After briefly expanding on Bayesian inference, the Bayesian approach for op-
timal experimental designs has been described. For the linear model of normally dis-
tributed responses and normal inverse gamma prior specifications for the parameters,
the posterior along with marginal distributions have been derived. Moreover, utility
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functions to represent the experimental aim have been discussed and Bayesian opti-
mality criteria for Bayesian A- and D- optimal designs have been defined. At the end
of the chapter, exchange algorithms used for the optimisation of the designs in later
examples have been introduced.
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Chapter 3

Experimentation with profile factors

In this chapter, the aim is to introduce to the reader a functional model that describes
the relationship between scalar responses, and one or more profile factors or, functions
of profile factors. In literature, scientists refer to such models as functional linear mod-
els or, sometimes as scalar-on-function linear models. A linear model involving profile
factors in this thesis, is henceforth referred as a functional linear model (FLM). A model
that represents this relationship is the FLM model with profile factors and functional
parameters, integrated over time. However, the additive FLM carries two main prob-
lems for estimation and design. At first, a problem is to estimate infinite dimensional
objects from finite response data. After that, a problem is to choose the functions of the
profile factors from an unrestricted, and hence, very general function space.

The simpler form of the FLM is introduced in Section 3.1, followed by a review on
extensions and variations of the FLM. Primarily in the thesis, attention is given to the
form of the FLM that depends on functions of the profile factors, i.e., main effects, inter-
actions, and polynomials, and single time index parameter functions, integrated over
a single integral of time. This form of the model is described in Section 3.2. To over-
come the problems in estimation and design, basis function expansions are applied on
the functional parameters and the profile factors. After that, related literature to exper-
imentation for models involving profile factors is reviewed and discussed in Section
3.3.

3.1 Introduction to the functional linear model

An experiment is assumed to take place from time 0 to time T , i.e., 0 ≤ t ≤ T . The
experiment is assumed to consist of n runs. The ith run of the experiment involves
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specifying the controllable functions of the profile factors xi(t) to measure the scalar re-
sponses yi at time T . A way of modelling the relationship between the scalar response
and J profile factors, is an additive FLM. The FLM was first introduced by Ramsay and
Dalzell (1991), a model that considered the main effects of the profile factors. Later, the
FLM was discussed in Hastie and Mallows (1993), and written in its most commonly
used, and simpler, form,

yi =
∫ T

0
xT

i (t) β(t) dt + εi, i = 1, 2, . . . , n, t ∈ [0, T ], (3.1)

for i representing the ith run of the experiment, and εi representing the independent
and identically distributed errors with mean zero and variance σ2. The J × 1 vector
xi(t), represents the functions of the profile factors at the ith run of the experiment, and
it is defined as,

xT
i (t) =

(
xi1(t) xi2(t) · · · xi J(t)

)
, i = 1, 2, . . . , n, (3.2)

with each xij(t), i = 1, 2, . . . , n, j = 1, 2, . . . , J, the function of the jth profile factor at the
ith run of the experiment. The functions of the profile factors are usually in an interval
[u, v], i.e., xij(t) ∈ [u, v], with u and v scalar values. A special case of a function of a
profile factor is xij(t) = xij, for all t ∈ [0, T ], representing a scalar factor. The vector
β(t) in (3.1), is a J × 1 vector of the unknown functional parameters. Each functional
parameter β j(t) : [0, T ]→ R, j = 1, 2, . . . , J, is an unknown function of time 0 ≤ t ≤ T .

Yao and Müller (2010) proposed an updated form of the FLM, to allow polynomial
effects, if the model with only main effects is not adequate. At first, they consider a
functional quadratic model for a single profile factor. The adjusted quadratic FLM for
multiple factors is given by,

yi =
∫ T

0
xT

i (t) β(t) dt +
J

∑
j=1

∫ T
0

∫ T
0

xij(t1) xij(t2) β j(t1, t2) dt1dt2 + εi,

i = 1, 2, . . . , n, t, t1, t2 ∈ [0, T ],

(3.3)

with the additional term, compared to (3.1), the quadratic part that involves the quadratic
polynomial of the functions of the profile factors, and square integrable bivariate pa-
rameter functions β(t1, t2). After that, they expand (3.3) to a full kth order FLM for a
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single profile factor. The adjusted full kth order FLM for multiple factors is given by,

yi =
∫ T

0
xT

i (t) β(t) dt +
J

∑
j=1

∫ T
0

∫ T
0

xij(t1) xij(t2) β j(t1, t2) dt1dt2

+
J

∑
j=1

∫ T
0

∫ T
0

∫ T
0

xij(t1) xij(t2) xij(t3) β j(t1, t2, t3) dt1dt2dt3

+ · · ·+
J

∑
j=1

∫ T
0

∫ T
0
· · ·

∫ T
0

xij(t1) xij(t2) · · · xij(tk) β j(t1, t2, . . . , tk)

dt1dt2 · · · dtk + εi, i = 1, 2, . . . , n, t, t1, t2, t3 . . . , tk ∈ [0, T ],

(3.4)

with the additional terms being the cubic part that involves the cubic polynomial of the
functions of the profile factors, with 3-variate parameter functions β(t1, t2, t3), up to the
kth order polynomial of the functions of the profile factors, with β(t1, t2, . . . , tk) the kth

order parameter function. Following the same idea, a model that depends on a k-way
interaction between the j1, j2, . . . , jk profile factors, is modelled as,

yi =
∫ T

0
xT

i (t) β(t) dt +
∫ T

0

∫ T
0
· · ·

∫ T
0

xij1(t1) xij2(t2) · · · xijk(tk)

β(t1, t2, . . . , tk) dt1dt2 · · · dtk + εi, i = 1, 2, . . . , n, t, t1, t2, . . . , tk ∈ [0, T ].
(3.5)

An example of a FLM with two profile factors and their interaction, using the bivariate
parameter function is discussed in Usset et al. (2016), in which they approximate the
integrals numerically.

Additionally, Yao and Müller (2010) discussed a variation of the functional quadratic
model (3.3), that is first proposed in the earlier work of Li and Marx (2008) for signal
regression models. The variation omits some of the interaction terms by restricting the
quadratic parameter function to its diagonal form. The restriction in the parameter
function can be achieved through properties of the Dirac delta. The Dirac delta is de-
fined as a function on the real line that is always zero, except when at the origin; see
Balakrishnan (2003). A property of the Dirac delta is that for a general function g(t),

∫ T
0

g(t) δ(t) dt = g(0),

with δ(·) the Dirac delta function; see Balakrishnan (2003). Expanding the property
through shifting the Dirac delta function along the axis gives,

∫ T
0

g(t1, t2) δ(t2 − t1) dt2 = g(t1, t1).
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Using the property of the Dirac delta discussed above, the double integral depending
on the quadratic parameter function is restricted to,

∫ T
0

∫ T
0

x1(t1) x2(t2) β(t1, t2) δ(t2 − t1) dt1dt2 =
∫ T

0
x1(t1)x2(t1)β(t1, t1) dt1

=
∫ T

0
x1(t1)x2(t1)β(t1) dt1,

for β(t1) = β(t1, t1), as the second argument becomes redundant. Thus, the variation
of the functional quadratic model is modelled through integrating the quadratic term
on a single time indexing,

yi =
∫ T

0
xT

i (t) β(t) dt +
J

∑
j=1

∫ T
0

xij(t) xij(t) β j(t) dt + εi,

i = 1, 2, . . . , n, t ∈ [0, T ].

(3.6)

The functional quadratic model in (3.3), and the variation in (3.6), are reviewed in Mor-
ris (2015), in which they mention that the variation allows the diagonal cross product in
the quadratic term. In this thesis, the form of the primary model considered is similar
to the single index quadratic model in (3.6); expanded in the next section to allow any
polynomial or interaction through a functional of the functions of the profile factors.
The decision to focus on the single integral case first, is for simplicity. However, 2nd

(and higher) order FLMs are preliminary investigated later in the thesis, in Section 9.1.

3.2 FLM development

In this section, the aim is to introduce and describe the FLM of interest. The form of
the FLM tackled, is an extension to the model in (3.6), in which the structure of the
model, including polynomials and interactions, is specified through a functional of the
functions of the profile factors,

yi =
∫ T

0
f T(xi(t)) β(t) dt + εi, i = 1, 2, . . . , n. (3.7)

The functional form of the functions of the profile factors f T(xi(t)) is a function that
has to be specified. The specification of f T(xi(t)) forms the FLM equation with the
functions of interest; including the main effects, as well as interactions and polynomials
of the functions of the profile factors. The vector of functions of the profile factors
f T(xi(t)) is a Q× 1 vector, with Q being the total number of terms in the model, and it
is defined as,

f T(xi(t)) =
(

f1(xi(t)) f2(xi(t)) · · · fQ(xi(t))
)

, i = 1, 2, . . . , n. (3.8)
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For example, assuming that the model of interest is a FLM with the main effects of J = 2
profile factors, then,

f T(xi(t)) =
(

xi1(t) xi2(t)
)

, i = 1, 2, . . . , n. (3.9)

For the rare case with only main effects, the number of terms in the model is equal to
the number of profile factors J, i.e., Q = J = 2. However, if an intercept is included,
which it is usually included, or if interactions and polynomial effects are considered,
then the number of terms in the model is not equal to the total number of profile fac-
tors, i.e., Q 6= J.

An intercept is incorporated in the FLM through the function f T(xi(t)). If the intercept
is included in the model, the first component of the vector of the function f T(xi(t)) is
1, i.e., f1(xi(t)) = 1. For example, when considering the FLM with the main effects of
J = 2 profile factors from (3.9), but now including the intercept, the function f T(xi(t))
is defined as,

f T(xi(t)) =
(

1 xi1(t) xi2(t)
)

, i = 1, 2, . . . , n.

Assuming that additional to the main effects the interaction between the two profile
factors is also of interest, the functional of the functions of the profile factors is defined
as,

f T(xi(t)) =
(

1 xi1(t) xi2(t) xi1(t)xi2(t)
)

, i = 1, 2, . . . , n,

and the number of terms is Q = 4 compared to the J = 2 profile factors. If the model
gets more complicated and the quadratic polynomial of the first profile factor xi1(t) is
also of interest, then another term is added to f T(xi(t)) and it becomes,

f T(xi(t)) =
(

1 xi1(t) xi2(t) xi1(t)xi2(t) x2
i1(t)

)
, i = 1, 2, . . . , n,

meaning, Q = 5 while J = 2.

The functional parameters are a Q× 1 vector β(t), representing the unknown param-
eter of every term in the model. Additionally, the parameter corresponding to the in-
tercept is a scalar parameter. For instance, in the scenarios considered beforehand, the
vector of functional parameters is defined as,

βT(t) =
(

β1(t) β2(t)
)

βT(t) =
(

β1 β2(t) β3(t) β4(t)
)

βT(t) =
(

β1 β2(t) β3(t) β4(t) β5(t)
)

,

respectively. Thus, the number of functional parameters increases as the functional
form of the functions of the profile factors gets more complicated. For the FLM with
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the main effects of the profile factors, the number of functional parameters is equal to
the number of profile factors. A special case is βq(t) = βq when the parameter corre-
sponds to a scalar factor.

The first problem arising under this set up is estimation of the functional parameters.
The FLM in (3.7) can be viewed as essentially having to estimate an infinite num-
ber of unknown parameters. This is because functions in general, and subsequently
the functional parameters, are infinite dimensional objects. However, the experiment
only returns a finite number of observed responses. As a result, the system is under-
determined; it consists of fewer equations than unknown parameters. Thus, there ex-
ists an infinite number of solutions for the unknown parameters that fit perfectly to the
observed responses. To overcome this problem, the function space of the functional
parameters is restricted via basis function expansions.

The use of basis function expansions is a common dimension reduction technique, un-
der which, functions can be represented as linear combinations of basis functions. A
basis expansion of a function, say x(t), is given by Ramsay and Silverman (2005, p. 44),

x(t) =
N

∑
κ=1

wκφκ(t) = wTφ(t), (3.10)

with w a vector of coefficients, φ(t) a system of independent and known basis func-
tions, and N the total number of basis functions. The total number of basis functions
is discussed in Chapter 4. Several basis systems exist, including Fourier basis, polyno-
mial splines and wavelets; see Ramsay and Silverman (2005, Chapter 3). One choice
can be a collection of power series, 1, t, t2, . . . , i.e., linear basis, quadratic basis and so
on. For instance, a quadratic function can be represented by N = 3 basis functions as,

x(t) =
3

∑
κ=1

wκtκ−1 = w1 + w2t + w3t2.

To this extent, the basis function expansions of the functional parameters in the FLM,
are defined as,

βq(t) =
nβ,q

∑
l=1

θqlbql(t) = bT
q (t)θq, q = 1, 2, . . . , Q. (3.11)

The functions bT
q (t) = [bq1(t), bq2(t), . . . , bqnβ,q(t)] are known basis functions and θT

q =

(θq1, θq2, . . . , θqnβ,q) is a vector of unknown coefficients. The special case of a scalar pa-
rameter βq, or the scalar parameter of the intercept, is represented through a single
basis function nβ,q = 1 which is constantly equal to one, i.e., bq1(t) = 1. As a result, the
problem of estimating the unknown functions of the parameters has been reduced to
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the problem of estimating ∑Q
q=1 nβ,q coefficients.

The second problem arising is the design of experiments problem to appropriately
choose the functions xi(t), i = 1, 2, . . . , n. Choosing the best functions is essential to
achieve optimal conditions for the experiment. The function space for each profile
factor, may be very general, or may be restricted to particular classes of functions, in-
cluding polynomials to a certain degree or step functions with particular break points,
based on the operation of the experiments. Inference from a given experiment requires
some restrictions on the function space of the profile factors, also achieved via basis
function expansions,

xij(t) =
nx,j

∑
l=1

γijlcjl(t), i = 1, 2, . . . , n, j = 1, 2, . . . , J. (3.12)

The basis expansion for each profile factor can be written in vector form as, x•j(t) =

Γjcj(t), with x•j the function of the jth profile factor in every run of the experiment,
known basis functions cT

j (t) = [cj1(t), . . . , cjnx,j(t)], and Γj a n× nx,j coefficient matrix
with γijl the ilth entry, i = 1, 2, . . . , n, j = 1, 2, . . . , J, l = 1, 2, . . . , nx,j. In addition, the
basis expansion can handle the special case of scalar factors. A scalar factor xij is rep-
resented through a single basis function nx,j = 1 which is constantly equal to one, i.e.,
cj1(t) = 1. After that, xij = γij1 is a single value that needs to be specified in every run
of the experiment. The methodology developed later in the thesis is based on the use
of polynomial splines and specifically B-spline basis functions. Polynomial splines and
some basis systems, including the B-spline basis, are described in Chapter 4.

In the next section, the related literature on experimentation with models that depend
on profile factors is discussed. A new methodology that takes into consideration the
challenges involved with the FLM and allows to identify optimal experimental designs
is described in Chapter 5. Closed form expressions for integrals of the form in (3.7) and
specific basis expansions, are derived later in the thesis.

3.3 Previous work on experimentation with profile factors

Design of experiments and functional data analysis are well established topics in the
Statistics literature. However, design of experiments for models involving profile fac-
tors and functional parameters has received much less attention, with two main ap-
proaches being proposed. The two approaches are: response surface methodology us-
ing dimension reduction techniques; and optimal design for dynamic models, typically
derived from differential equations. This section serves to introduce to the reader any
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previous work on experimentation involving profile factors. The approach to be de-
veloped in later chapters is related to the response surface approach to find optimal
functions for profile factors.

3.3.1 Response Surface Methodology

The first approach is an adaptation of the Response Surface Methodology (RSM) us-
ing dimension-reduction techniques; see Georgakis (2013), Roche (2015), and Roche
(2018). RSM is a strategy of experimentation and optimisation, introduced by Box and
Wilson (1951). Depending on the objective, the aim is usually to find the settings of
factors where the expected minimum or maximum response occurs. RSM has broadly
three phases: phase 1 requires experimentation to examine whether the current operat-
ing conditions are near optimal, achieved by fitting a first-order linear model; phase 2
identifies the direction towards an optimum region, by fitting the first-order model and
estimating the gradient of the fitted surface; and Phase 3 requires fitting a second-order
model to take into account the curvature of the surface. A detailed description of RSM
is given by Wu and Hamada (2011, Chapter 10).

Georgakis (2013) was the first to notice the limited research for optimal experimental
designs that depend on profile factors. Their motivation is to provide a data-driven ap-
proach, that optimise batch processes for models that involve profile factors, referred
to as time-varying decision variables, or dynamic factors, in the article. The author
discusses the excess use of knowledge-based models in chemical and petroleum pro-
cesses, over the past decades. They go on to emphasize that in other processes, for
instance batch processes, where large volume of information is not available, the de-
velopment of knowledge-based models is not justified. In contrast, they indicate that
for these processes, the use of data-driven models is preferred. In context, Georgakis
(2013) developed a data-driven approach, which is an extension of the response sur-
face methodology, with typically a second-order model, to allow experimentation with
a combination of profile and static factors. Their model of interest is very similar to the
FLM introduced in the previous section of the thesis. Functions of space or time, are as-
sumed to belong to the Hilbert space of squared integrable functions; see Young (1988)
for an introduction to Hilbert spaces. To address the problem of infinite dimensional
objects, they introduce the use of basis functions. In fact, they use polynomial basis and
they assume the same basis expansion for the profile factors and the functional parame-
ters. Additionally, they indicate that their choice of basis is orthogonal and normalised,
so that calculations are simpler. However, they mention that a basis that is not orthog-
onal still works, but it can be a more complex process. To achieve specific bounds for
the functions of the profile factors, they introduce constraints on the coefficients of the
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basis expansion. With a view to evaluate the performance of their approach, they con-
duct examples, for which very accurate knowledge-based models are available. They
design the experiment using central composite designs. It is worth noting that the iden-
tified results of the two approaches were very close. In a more recent work, Klebanov
and Georgakis (2016) expanded the data-driven approach to models with dynamic re-
sponses.

Roche (2015) and Roche (2018) discussed applications for which an optimisation of a
function is required. They continue to say that typically, the space of functions be-
longs to a family of functions, i.e., to a subset of the general space of functions. In such
situations, they mention that functions can be approximated locally by a polynomial
regression model of order 1 or 2, in the context of RSM. On another note, they indicate
that often, the function space may be very general, specifically when functions are de-
pendent on space, or time, i.e., infinite dimensional objects. The model they used to
specify the relationship between a scalar response and profile factors, is the FLM. In
context, they proposed an adaptation of RSM using dimension reduction techniques,
assuming that the functions belong to a general Hilbert space of squared integrable
functions. The choice of basis for the profile factors in their experiments is the Fourier
basis, and they indicate that the basis is orthonormal. After that, they discuss a data-
driven direction of optimisation, under the assumption that some data are available
prior to the experiment. They use principal component analysis (PCA), which targets
patterns and locates features in the data; see Hall (2011), and partial leasts squares (PLS)
regression, that is similar to PCA, but involves information from both the explanatory
and the response factors.

3.3.2 Dynamic models

A related design problem to functional models, described in the previous sections, is
optimal designs for dynamic models, typically derived from differential equations. A
dynamic model mainly deals with time dependent profiles and is formulated as a gen-
eral dynamic optimisation problem with the aim of minimising or maximising an ob-
jective function. Dynamic models are often used to study reaction rates; and are exten-
sively used in the field of chemical kinetics and food engineering.

At first, the work by Titterington (1980) focused on a single input, single output, dy-
namic system, with a view to expand static optimal design strategies to systems for
which time is an inevitable component. However, the system can be seen as time
invariant, since the parameters do not vary with time. Experiments with single pro-
file factors, like temperature and pressure in chemical reactions have been tackled by
Uciński and Bogacka (2005) and Uciński and Bogacka (2007), to find the levels of the
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factor to take observations and the proportions at each level, to estimate static param-
eters. The single profile factor is expanded as in the equation of basis expansions in
(3.10). After that, the design becomes the choice of coefficients from the basis expan-
sion and the initial conditions of the response factors. For instance, the design is given
by,

X = (w, y0), (3.13)

for y0 being a vector of the initial conditions and w the vector of coefficients from the
basis expansion of the profile factor. The coefficients are chosen in a way that certain
constraints on the bounds of the profile factor hold. The known function from the ex-
pansion form a basis for the profile factor. The main interest of this work was not to
find optimal functions for the profile factors, but to discriminate between competing
models.

The work by Asprey and Macchietto (2002) considers dynamic experiments involving
profile factors for obtaining robust optimal designs that improve the parameter pre-
cision. The profile factors are assumed to be piecewise constant, piecewise linear or
piecewise quadratic functions of time, defined over a number of time intervals. For
example, if the function of the profile factor is piecewise constant, the profile factor is
controlled through the coefficient of each time interval. Consequently, the design be-
comes the initial conditions y0 and the coefficients on every time interval defined by
the choice of knots; as in (3.13).

A mathematical formulation for optimal experimental designs for dynamic models was
also considered by Balsa-Canto and Banga (2007). The optimal designs tackled are
for single-variable dynamic models with static parameters, from ordinary differential
and partial differential equation systems. The design problem is to find the time pro-
cessing profile factor, the initial conditions, the sampling times and the experiment
durations; to estimate kinetic parameters. The high-dimensionality problem arising
from the time-varying profile factor was tackled using control vector parametrisation
and non-linear optimisation solver; see Balsa-Canto and Banga (2007) and references
therein. The control vector parametrisation approach was used to transform the infi-
nite dimension problem into a non linear programming problem. The duration of the
experiment was divided in multiple intervals and the profile factors involved were ex-
pressed as low order polynomials. After that, non linear solvers were used to identify
optimal conditions for the coefficients from the expansion of the profile factors, the ini-
tial conditions, and the sampling times. After that, the design problem gets similar to
the aforementioned cases.
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3.4 Conclusion

In this chapter, the FLM has been introduced, to model the relationship between scalar
responses and functions of profile factors and functional parameters. After bringing
out the challenges faced under functional linear models, the functions of the profile
factors and the functional parameters have been represented as linear combinations of
basis functions, to restrict the function space. After that, this chapter has reviewed arti-
cles that discuss experimentation for models with profile factors. There is not extensive
literature on experimental designs for models that involve profile factors. Specifically,
there are some articles discussing an extension of the RSM using basis expansions; and
experimental designs for dynamic models. The methodology that is developed later in
the thesis is similar to the RSM approach. Dynamic models are a slightly different, yet
related design problem, to the design problem discussed in this thesis. Dynamic mod-
els are typically derived from a system of differential equations. To construct the system
of equations, information and knowledge is needed. For experiments that knowledge
to construct a system of equations is not available, the approach developed in this thesis
is preferred.





37

Chapter 4

Polynomial splines

Profile factors are factors whose settings vary as functions of time. Functions in gen-
eral are infinite dimensional objects. Basis expansions are always able to represent
functions as linear combinations of basis functions within a given function space; see
Ramsay and Silverman (2005, Chapter 3). The choice of basis functions ideally should
match features of the functions of the profile factors. This is to achieve better approxi-
mations and computational efficiency.

In general, functions are divided into the periodic and the non-periodic functions. A
common basis system for periodic functions is a Fourier basis system; see Ramsay and
Silverman (2005, p. 45). For the purpose of this work, the main focus is non-periodic
functions that does not recur at regular intervals, to account for low order derivatives.
Non-periodic functions can be modelled by polynomial splines, which are functions
defined piecewise by polynomials. Splines are reviewed in Section 4.1. Basis systems
including the step function basis, the truncated power series basis, and the B-spline
basis are described in Sections 4.2, 4.3 and 4.4, respectively. The preference on the use
of B-splines is also discussed.

4.1 Introduction to splines

Consider a closed interval [a, b] and real numbers lying in this interval such that,

a = λ0 < λ1 < λ2 < · · · < λK < λK+1 = b. (4.1)

A function x(t) on the closed interval [a, b] is said to be a spline of degree d if two
conditions hold; see Wood (2017a, p. 196). The two conditions are listed below:
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(i) The function x(t) has to be a polynomial of degree d on each and every interval
[λk, λk+1], for k = 0, 1, . . . , K.

(ii) Continuity, i.e., the function x(t) has to be at least continuous at the inner points
λ1, λ2, . . . , λK with up to (d− 1) derivatives being continuous at each of the inner
points.

The whole interval is divided into subintervals using the breakpoints λ1, λ2, . . . , λK,
called knots. Each subinterval is allowed a different polynomial. For example, sup-
pose a choice of K = 3, then there exist three knots λ1, λ2, λ3, and the whole interval
is divided into four subintervals with each of the four subintervals allowed a different
polynomial.

The smoothness of each knot, denoted as sh, for h = 1, 2, . . . , K, is such that 0 ≤ sh ≤
d− 1, with d being the degree of the polynomial spline basis. If sh = 0, then the func-
tion is unconstrained, meaning that the function is continuous at the knot but none of
its derivatives are continuous. If sh ≥ 1, then all the function derivatives at that knot
are continuous up to and including the sth

h derivative. A special case where the spline
is said to be maximally smooth, is the case of sh = d− 1. The special case of maximally
smooth splines is commonly used, and the examples in this thesis assume maximally
smooth spline basis functions as well.

The total number of basis functions N, which are the elements of a basis system, depend
on: the degree of the spline, the choice of knots, and the degree of continuity of the
knots,

N = (K + 1)d + 1−
K

∑
h=1

sh, (4.2)

given in Ramsay and Silverman (2005, Chapter 3). From the last term in equation (4.2),
it is important to notice that as the smoothness of the knots increases, the total num-
ber of basis functions drops by an equivalent amount. This happens because, as the
smoothness increases, the continuity of the derivatives is satisfied up to a higher de-
gree. Thus, extra constraints are added to the problem causing the number of functions
to drop; see Woods et al. (2003). For a maximally smooth basis the total number of basis
functions is given by,

N = K + d + 1, (4.3)

derived using a combination of (4.2) and the definition of a maximally smooth basis;
see Grove et al. (2004) and Perperoglou et al. (2019).

Finally, a spline function of degree d is expressed as a linear combination of basis func-
tions φκ,d(t), κ = 1, 2, . . . , N, along with constants w = (w1, w2, . . . , wN) called control
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points such that,

x(t) =
N

∑
κ=1

wκ φκ,d(t), (4.4)

for d representing the required degree.

To assist the understanding of polynomial splines, consider an example for the sine
function. The aim is to use spline functions of piecewise linear and cubic degree to fit
the sine function sin(t) over the time interval t ∈ [0, 2π]. Three equally spaced interior
knots are used, thus, the time interval is divided in four equally spaced subintervals,
and each subinterval is allowed a different polynomial. As the complexity of the spline
increases, i.e., from linear spline to cubic spline, the smoothness increases, i.e., more
continuous derivatives at the knots, ensuring a smooth estimate of the function. Thus,
the cubic spline approximates the sine function better, compared to the linear spline;
see Figure 4.1.

0 1 2 3 4 5 6

Linear spline

time

sin
(t)

−1

0

1

0 1 2 3 4 5 6

Cubic spline

time

sin
(t)

−1

0

1

FIGURE 4.1: The dashed black lines represents the sine function in the time interval
t ∈ [0, 2π] and the red dashed lines represent the piecewise linear and cubic splines
used to fit the sine function. The linear spline is on the top panel and the cubic spline

is on the bottom panel of the figure.
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4.2 Step function basis

The simplest spline is a spline of degree zero, i.e., d = 0. The degree zero spline is
also known as a step function, and it is an appropriate basis to use if it is assumed
that control of the functions is represented via step functions. A step function can
be expressed as a linear combination of interval functions. Formally, a function x(t)
defined on the real line, is a step function if it is expressed in the form,

x(t) =
N

∑
κ=1

wκ1κ(t), t ∈ [a, b], (4.5)

where wκ are constants and 1κ is an indicator function of the knot intervals. A step
function basis is a spline of degree d = 0, thus, the total number of basis functions is
N = K + 1, using (4.3). To derive the basis functions, an extended knot vector which is
a combination of the boundary and interior knots is required,

λ̂ = (a, λ1, . . . , λK, b)T. (4.6)

and then, the indicator function is defined as,

1k(t) =

1 if λ̂κ ≤ t < λ̂κ+1

0 otherwise.
(4.7)

For example, if the function x(t) is represented by a step function of three basis func-
tions, there are two interior knots and three intervals; see Figure 4.2.

0.0 0.2 0.4 0.6 0.8 1.0

time

x(
t)

−1

0

1

FIGURE 4.2: Basis functions example for x(t) with 3 basis functions with constants
w = (0, 1,−1) and two interior knots λ = (0.33, 0.66).
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4.3 Truncated power series basis

Truncated power series (TPS) basis is a simple and easily interpretable basis system. A
complete set of N basis functions for degree d and knots λ1, λ2, . . . , λK is given by,

Υd(t) = {tj}d
j=0, {(t− λ1)

j
+}d

j=s1+1, {(t− λ2)
j
+}d

j=s2+1, . . . , {(t− λK)
j
+}d

j=sK+1,

t ∈ [a, b],
(4.8a)

(t− λh)
j
+ =

(t− λh)
j if t ≥ λh

0 if t < λh,
h = 1, 2, . . . , K. (4.8b)

For the special case of a maximally smooth spline, where sh = (d− 1), h = 1, 2, . . . , K,
a set of N truncated power series basis functions is given by,

Υd(t) = {1, t, t2, . . . , td, (t− λ1)
d
+, (t− λ2)

d
+, . . . , (t− λK)

d
+}. (4.9)

Hence, a TPS basis consists of two subsets of functions, which are: the monomials up
to degree d, and the truncated power functions (TPF). The TPF part depends on the
number of knots and forms K basis functions; see (4.8b).

For example, for choice of degree d = 1 and a single knot λ1 = 0.5, a linear truncated
power series basis of N = 3 basis functions takes the form,

{1, t, (t− 0.5)+}. (4.10)

From (4.10), the monomials part is (1, t) and the TPF part is (t− 0.5)+. The basis from
(4.10) is demonstrated in Figure 4.3(a). Similarly, for choice of degree d = 3 and a knot
vector λ = (0.33, 0.66), a cubic truncated power series basis of N = 6 basis functions
takes the form,

{1, t, t2, t3, (t− 0.33)3
+, (t− 0.66)3

+}. (4.11)

From (4.11), the monomials part is (1, t, t2, t3) and the TPF part is (t − 0.33)3
+, (t −

0.66)3
+. The basis from (4.11) is demonstrated in Figure 4.3(b).
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FIGURE 4.3: (a) Linear with knot at 0.5 and (b) Cubic with knots at 0.33 and 0.66 TPS
basis functions.

A set of basis functions from a TPS basis is an attractive basis system, since it allows
a straightforward interpretation of each basis function. Moreover, an addition of extra
knots does not change the existing basis functions. However, if knots are very close to
each other or very close to the boundaries, the basis functions may be close to linearly
dependent. Linear dependencies increase the possibility of ill-conditioning, causing
problems finding designs due to difficulties inverting the information matrix.

4.4 B-splines basis

B-spline (BS) basis is another univariate basis which is less interpretable than TPS ba-
sis, but more computationally stable. It gives a numerically stable scheme to evaluate
a spline function by the sum of a set of BS basis functions and vector valued constants,
as in equation (4.4). A set of BS basis functions, denoted as Bκ,d, κ = 1, 2, . . . , N, forms
a spline basis of degree d with K knots on an interval [a, b].

The BS basis functions are computed by the use of a straightforward recursion relation
formula, known as the Cox-de Boor recursion formula; see (De Boor, 1978, p. 90). The
idea of the recursion formula is an expansion of the formal definition of a normalised
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BS which depends on divided differences of TPFs; see De Boor (1978, p. 87) and Eil-
ers and Marx (2010). Thus, the BS and TPS basis systems belong to the same family
of basis, and for every TPS basis there exists an equivalent BS basis in the same space
of functions; see Friedman et al. (2001, Chapter 6) and Appendix A for more details.
In general, the use of the Cox-de Boor formula provides a more practical method for
generating the basis functions. For that reason, it is usually preferred over the formal
definition using divided differences.

The BS recursion formula requires the use of an extended knot vector. This is because
every knot subinterval needs to have at least d knots before and after the span. This
is achieved by repeating the boundary knots (d + 1) times and the interior knots by
(d− sh), h = 1, 2, . . . , K times. The extended knot vector denoted as λ∗ and it is given
by,

λ∗ =
(
λ∗1 , λ∗2 , . . . , λ∗2(d+1)+Kd−∑K

h=1 sh

)
,

and its expansion is such that,(
λ0, . . . , λ0︸ ︷︷ ︸

d+1

, λ1, . . . , λ1︸ ︷︷ ︸
d−s1

, λ2, . . . , λ2︸ ︷︷ ︸
d−s2

, . . . , λK, . . . , λK︸ ︷︷ ︸
d−sK

, λK+1, . . . , λK+1︸ ︷︷ ︸
d+1

)
.

Under the assumption of a maximally smooth B-spline, the extended vector is given
by,

λ∗ =
(
λ∗1 , λ∗2 , . . . , λ∗2(d+1)+K

)
and its expansion is such that,(

λ0, . . . , λ0︸ ︷︷ ︸
d+1

, λ1, λ2, . . . , λK, λK+1, ..., λK+1︸ ︷︷ ︸
d+1

)
.

By definition in (De Boor, 1978, p. 89), the degree d = 0 B-spline is defined as,

Bκ,0(t) =

1 if λ∗κ ≤ t < λ∗κ+1

0 otherwise.
(4.12)

Higher degree B-splines are computed with the aid of the recursion formula given by,

Bκ,p(t) =
t− λ∗κ

λ∗κ+p − λ∗κ
Bκ,p−1(t) +

λ∗κ+p+1 − t

λ∗κ+p+1 − λ∗κ+1
Bκ+1,p−1(t),

t ∈ [a, b], κ = 1, 2, . . . , N, p = 1, 2, . . . , d,

(4.13)

where λ∗ is the extended knot vector.
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A special case of B-splines is that a BS basis of degree d = 0 is equivalent to a step
function basis; see equations (4.7) and (4.12). For a BS basis of degree d = 0, the ex-
tended knot vector is the interior knots plus the boundary knots, exactly as for the
step function basis. Also, the number of basis functions for the degree zero BS basis is
K + d + 1 = K + 1, again exactly as for the step function basis. This is also true for the
TPS of degree 0.

For example, consider a BS basis of degree d = 0 and 2 equally spaced interior knots
for t ∈ [0, 1]. Suppose also, that the coefficients are w = (0, 1,−1). The extended
knot vector consists of the boundary knots repeated d + 1 = 1 times, and the interior
knots, i.e., λ∗ = (0, λ1, λ2, 1) = (0, 0.33, 0.66, 1). The total number of basis functions
is 3, derived from the knot spans [0, 0.33), [0.33, 0.66), and [0.66, 1). Thus, the basis
functions are: B1,0(t) = 1 on [0, 0.33) and 0 elsewhere, B2,0(t) = 1 on [0.33, 0.66) and 0
elsewhere, and B3,0(t) = 1 on [0.66, 1) and 0 elsewhere. This is equivalent to expanding
the indicator function in (4.7). The function is calculated using (3.10), and it is such that:

x(t) =
(

0 1 −1
)1 0 0

0 1 0
0 0 1

 =
(

0 1 −1
)

,

which is an identical function to the step function in Figure 4.2. Hence, in the examples
presented later in the thesis, if the control of a function is represented via a BS basis of
degree zero, it is equivalently represented via a step function basis.

In the framework of spline basis systems, B-splines are less interpretable to truncated
power basis, but more computationally efficient. Several other properties of B-splines
are advantageous to their user when building statistical models; see Grove et al. (2004)
and Pan and Saleh (2019). A useful property for the scope of this work is that the sum
of the basis functions at every value of time add up to 1 such that,

N

∑
κ=1

Bκ,d(t) = 1, for t ∈ [a, b]. (4.14)

This property is an efficient tool for constrained bounds for the functions of the profile
factors. The reason is that any bound constraints on the design are equivalent con-
straints on the functions of the profile factors.

Following the advice from De Boor (1978, Chapter 9), BS basis in this thesis are com-
puted using the recursion formula instead of the differences formula. Finding BS basis
using the recursion formula is less complicated and avoids any numerical instabilities.
As discussed in Sections 4.3 and 4.4, the TPS basis system is more interpretable, but the
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BS basis system is more computationally efficient. For the computationally efficiency
of the BS basis system and some of its properties allowing constrained optimisation of
the functions of the profile factors, the BS basis system is preferred in the thesis.

Finally, remember that a condition for a function to be a spline of degree d is to be up
to (d− 1) derivatives continuous at each of the interior knots. The derivative of a BS
basis function of degree d is also a BS basis function of degree (d− 1) with exactly the
same knots in the interval [a, b]. Let B̃κ,d−1(t) be a B-spline of one degree lower than
Bκ,d(t), κ = 1, 2, . . . , N, but with the same extended knot vector. The first derivative of
Bκ,d(t) is defined as,

D(1)[Bκ,d(t)
]
= d

[
B̃κ,d−1(t)

λ∗κ+d − λ∗κ
− B̃κ+1,d−1(t)

λ∗κ+d+1 − λ∗κ+1

]
. (4.15)

A recurring application of (4.15) provides the computation of higher derivatives of a B-
spline basis. For instance, the mth derivative of a BS basis is given in Butterfield (1976),

D(m)
[
Bκ,d(t)

]
= d

[
D(m−1)[B̃κ,d−1(t)]

λ∗κ+d − λ∗κ
− D(m−1)[B̃κ+1,d−1(t)]

λ∗κ+d+1 − λ∗κ+1

]
, (4.16)

with D(m) the mth derivative.

4.5 Conclusion

This chapter has reviewed definitions and described polynomial splines and basis sys-
tems as a method of restricting the function space and achieve dimension reduction.
Detailed descriptions have been given for the truncated power series basis and the B-
spline basis. Advantages, disadvantages and the connection between the two systems
has been explored. The step function basis, which is a special case of the truncated
power and B-spline basis, is also defined. Finally, reasons for the preference on the use
of the B-spline basis in this thesis, are stated. The B-spline basis is more suitable for the
design of experiments methodology developed in this thesis for certain properties and
computational efficiency, which get more coherent in the next chapters.
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Chapter 5

Design of Experiments for
functional linear models

In this chapter, the focus is to develop a new methodology for identifying optimal ex-
perimental designs for FLMs. The main challenges of the FLM, in estimation and de-
sign, have been discussed in Chapter 3. To overcome the challenges, basis expansions
were introduced on the functional parameters and the profile factors. The new method-
ology is based on the use of the basis functions, that simplifies the FLM into the form of
the traditional linear model in Section 5.1. This allows the use of common experimental
design strategies to identify optimal designs. The special case of functional linear mod-
els with the main effects of the profile factors is discussed in Section 5.2. Functional
linear models that involve interactions and polynomials of the profile factors which are
rather more challenging, are discussed in Section 5.3.

A frequentist approach to fit the FLM is discussed in Section 5.4. The design problem
for finding optimal functions of the profile functions is reduced to optimisation of scalar
values through the methodology developed. The reduced design problem is described
in Section 5.4, also. A Bayesian approach to fit the FLM through roughness penalties
that penalise the complex functions, is discussed in Sections 5.5 and 5.6. Moreover, to
tailor the design problem to the FLM; a Bayesian design criterion for profile factors is
described in Section 5.7.

Objective functions are often functions of the Fisher information matrix, and sometimes
of its inverse. To limit the likelihood of non-invertibility of the information matrix, con-
straints on the experimental settings are introduced in Section 5.8. The methodology
developed involves integrals of products of B-spline basis functions with respect to
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time. An analytic evaluation of integrals involving the product of an unlimited num-
ber of B-spline basis functions is discussed in Section 5.9. Finally, a method for valuing
the complexity of functions of profile factors is described in Section 5.10.

5.1 FLM methodology as an extension to the linear model

In this section, the basis expansions of the functions of the profile factors and of the
functional parameters are substituted into the FLM. The aim is to present the FLM as
an extension to the traditional linear model. The latter will allow common statistical
methods to be applied on the FLM and support the development of an efficient ap-
proach for functional experimental designs.

Recall from Section 3.1 that the relationship between a scalar response and multiple
profile factors is modelled by a FLM. At the ith run of the experiment, the FLM is de-
fined as in (3.7), for i = 1, 2, . . . , n. In matrix form, the FLM is given by,

y =
∫ T

0
f T(X(t)) β(t) dt + ε, (5.1)

for yT = (y1, y2, . . . , yn) the n× 1 vector of responses, β(t) the vector of the functional
parameters as before, and εT = (ε1, ε2, . . . , εn) the n × 1 vector of independent error
terms with mean zero and variance-covariance σ2 In.

The matrix X(t) is a matrix of dimensions n× J with the ijth entry containing the func-
tion of the jth profile factor at the ith run of the experiment, i = 1, 2, . . . , n, j = 1, 2, . . . , J.
Thus, every row of X(t) is the vector xT

i (t). Equivalently, the jth column of X(t) is the
vector x•j(t), j = 1, 2, . . . , J, that represents the function of the jth profile factor in every
run of the experiment such that,

X(t) =


xT

1 (t)
xT

2 (t)
...

xT
n (t)

 =
(

x•1(t) x•2(t) · · · x•J(t)
)
=


x11(t) x12(t) · · · x1J(t)
x21(t) x22(t) · · · x2J(t)

...
...

...
...

xn1(t) xn2(t) · · · xnJ(t)

 .

(5.2)
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After applying the profile factor basis expansions from (3.12), the n× J matrix X(t) is
defined as,

X(t) =


∑

nx,1
l=1 γ11lc1l(t) ∑

nx,2
l=1 γ12lc2l(t) · · · ∑

nx,J
l=1 γ1JlcJl(t)

∑
nx,1
l=1 γ21lc1l(t) ∑

nx,2
l=1 γ22lc2l(t) · · · ∑

nx,J
l=1 γ2JlcJl(t)

...
...

...
...

∑
nx,1
l=1 γn1lc1l(t) ∑

nx,2
l=1 γn2lc2l(t) · · · ∑

nx,J
l=1 γnJlcJl(t)


=
(

Γ1c1(t) Γ2c2(t) · · · ΓJcJ(t)
)

,

(5.3)

with Γj and cj(t) for j = 1, 2, . . . , J, as in Section 3.2.

The function f T(X(t)) is a functional of the functions of the profile factors that needs
to be specified to define the structure of the FLM as before. However, the function f in
(5.1) is acting row-wise on X(t). The function f T(X(t)) is an n×Q matrix, with the qth

column representing the qth term in the model, q = 1, 2, . . . , Q. In other words, the iqth

entry of f T(X(t)) is a function of the profile factors, specified by fq, in the ith run of the
experiment,

f T(X(t)) =
(

f1(X(t)) f2(X(t)) · · · fQ(X(t))
)

=


f1(xT

1 (t)) f2(xT
1 (t)) · · · fQ(xT

1 (t))
f1(xT

2 (t)) f2(xT
2 (t)) · · · fQ(xT

2 (t))
...

...
...

...
f1(xT

n (t)) f2(xT
n (t)) · · · fQ(xT

n (t))

 .
(5.4)

Equivalently, the qth column of f T(X(t)) is a function of the profile factors in every run
of the experiment such that,

fq(X(t)) = fq

(
x•1(t) x•2(t) · · · x•J(t)

)
, q = 1, 2, . . . , Q.

If the qth function represents the intercept, then fq(X(t)) = 1n, with 1n being the n× 1
vector of 1’s.

After applying the profile factor basis expansions from (3.12), the iqth entry of (5.4) is a
function of the basis expansions of the J profile factors in the ith run of the experiment
such that,

fq(xT
i (t)) = fq

(
xi1 xi2 · · · xi J

)
= fq

(
∑

nx,1
l=1 γi1lc1l(t) ∑

nx,2
l=1 γi2lc2l(t) · · · ∑

nx,J
l=1 γi JlcJl(t)

)
i = 1, 2, . . . , n, q = 1, 2, . . . , Q,

(5.5)
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and equivalently, the qth column of (5.4) becomes the function,

fq(X(t)) = fq

(
Γ1c1(t) Γ2c2(t) · · · ΓJcJ(t)

)
, q = 1, 2, . . . , Q, (5.6)

with Γj and cj(t) for j = 1, 2, . . . , J, as in Section 3.2.

In addition, using the basis expansion of the functional parameters from (3.11), the
vector of functional parameters β(t) is expanded as,

β(t) =


β1

β2
...

βQ

 =


∑

nβ,1

l=1 θ1lb1l(t)

∑
nβ,2

l=1 θ2lb2l(t)
...

∑
nβ,Q
l=1 θQlbQl(t)

 = bT(t)θ. (5.7)

The matrix b(t) is a ∑Q
q=1 nβ,q × Q block matrix containing the known basis functions

from the expansion of the functional parameters and blocks of zeros,

b(t) =


b1(t) 0 · · · 0

0 b2(t) · · · 0
...

...
. . .

...
0 0 · · · bQ(t)

 , (5.8)

with bq(t) as in (3.11). The vector θ is the ∑Q
q=1 nβ,q × 1 vector of coefficients from the

expansion of the functional parameters,

θT =
(

θT
1 θT

2 · · · θT
Q

)
, (5.9)

with θq as in (3.11).

The substitution of the basis expansions from (3.11) and (3.12) result in a FLM which
takes the form an extended linear model. The extended linear model depending func-
tions of profile factors is given by,

y =
∫ T

0
f T(X(t)) β(t) dt + ε

=
∫ T

0
f T(X(t)) bT(t) dt θ+ ε

= Zθ+ ε,

(5.10)

with Z the n×∑Q
q=1 nβ,q model matrix, and θ the ∑Q

q=1 nβ,q × 1 vector of unknown pa-
rameters from (5.9). The function f T(X(t)) is the function of the profile factors as de-
fined in (5.4), (5.5), and (5.6), and b(t) the basis functions from the expansion of the
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functional parameters as defined in (5.8).

The model matrix Z is the solution to an integral with respect to time, of the product of
the function f T(X(t)) and the vector of basis functions bT(t),

∫ T
0

f T(X(t)) bT(t) dt. (5.11)

Moreover, Z is partitioned in Q column blocks, with the qth column block a n × nβ,q

matrix Z•q, which is the solution to an integral of the form,

Z•q =
∫ T

0
fq(X(t)) bT

q (t) dt

=
∫ T

0
fq

(
x•1(t) x•2(t) · · · x•J(t)

)
bT

q (t) dt

=
∫ T

0
fq

(
Γ1c1(t) Γ2c2(t) · · · ΓJcJ(t)

)
bT

q (t) dt,

q = 1, 2, . . . , Q.

(5.12)

The form of the integrals in (5.12) depends on the specification of the function of the
profile factors f , i.e., main effects, higher order polynomials and interactions. Finally,
bq(t) is the vector of basis functions from the basis expansion of the qth functional pa-
rameter, as before.

The methodology is further expanded in two scenarios. The first scenario is that the
FLM depends only on main effects of the profile factors; see Section 5.2. The second
scenario is that in addition to the main effects, the FLM depends on higher order poly-
nomials and interactions of the profile factors; see Section 5.3. For both scenarios ex-
amples are developed to assist the description of the methodology.

5.2 FLM with main effects of the profile factors

The simplest form of the FLM is the model considering only the main effects for the
profile factors. For this case, f T(X(t)) = X(t) and the number of profile factors is
equal to the number of functional parameters, i.e., J = Q. The FLM with the main
effects of the J profile factors is given by,

y =
∫ T

0
X(t) β(t) dt + ε

=
∫ T

0
X(t) bT(t) dt θ+ ε

= Zθ+ ε,

(5.13)
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with X(t) and b(t) as defined in (5.3) and (5.8), respectively. The model matrix Z is
given by the integral, ∫ T

0
X(t) bT(t) dt,

that is the integration of the product of the functions of the profile factors X(t) and the
basis functions of the parameters bT(t), with respect to time. As described in Section
5.1, Z is partitioned in Q column blocks, with the qth block an n × nβ,q matrix Z•q,
q = 1, 2, . . . , Q. For the FLM with only main effects of the profile factors, Z is partitioned
in J = Q column blocks, with the jth block an n× nβ,j matrix Z•j which is the solution
to the integral of the form,

Z•j =
∫ T

0
x•j(t) bT

j (t) dt

=
∫ T

0
Γj cj(t) bT

j (t) dt

= Γj

∫ T
0

cj(t) bT
j (t) dt, j = 1, 2, . . . , J.

(5.14)

To assist the understanding of the model development of a FLM with main effects, a
few examples are illustrated. Suppose a model with J = 2 profile factors with interest
only on their main effects. Under this set up, the model is represented as the model in
(5.13). The matrix X(t) containing the profile factors is an n× 2 matrix such that,

X(t) =
(

x•1(t) x•2(t)
)

,

with x•1(t) and x•2(t) being n× 1 vectors representing the functions of the profile fac-
tors. The vector β(t) containing the functional parameters is a 2× 1 vector such that,

β(t) =
(

β1(t) β2(t)
)T

,

with β1(t) and β2(t) the functional parameters. The FLM representing the main effects
of two profile factors is given by,

y =
∫ T

0
X(t) β(t) dt + ε

=
∫ T

0

(
x•1(t) x•2(t)

)(β1(t)
β2(t)

)
dt + ε

=
∫ T

0
x•1(t) β1(t) dt +

∫ T
0

x•2(t) β2(t) dt + ε.

(5.15)

To restrict the function space, the basis expansions for the two profile factors are,

x•1(t) = Γ1c1(t) (5.16)

x•2(t) = Γ2c2(t), (5.17)
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and the basis expansions for the functional parameters are,

β1(t) = bT
1 (t)θ1 (5.18)

β2(t) = bT
2 (t)θ2. (5.19)

After that, the model matrix Z is a n × (nβ,1 + nβ,2) matrix, that is partitioned in two
column blocks. The column blocks have dimensions n× nβ,1 and n× nβ,2, and they are
the solutions to the integrals,

Z•1 = Γ1

∫ T
0

c1(t) bT
1 (t) dt (5.20)

Z•2 = Γ2

∫ T
0

c2(t) bT
2 (t) dt. (5.21)

This kind of integrals involve the basis functions for the profile factors, which are as-
sumed to be represented by B-spline basis functions, and the basis functions for the
functional parameters, which are assumed to be represented by power series or B-
spline basis functions. Analytic computations of integrals that involve products of
B-spline basis functions or B-spline and power series basis functions are described in
Section 5.9.

Finally, the (nβ,1 + nβ,2) vector of parameters θ, consists of the coefficient vectors from
the basis expansion of the functional parameters such that,

θT =
(

θT
1 θT

2

)
.

In general, the methodology described is straightforward, especially for the FLM with
only main effects of the profile factors. However, when the FLM depends on functions
of the profile factors to allow interactions and polynomials of the profile factors, the
methodology is more complicated. This is because the number of profile factors is not
identical with the number of terms in the model. Further description of the method-
ology to account for interactions and higher order polynomials is given in the next
section.

5.3 FLM with polynomials and interactions

In this section, focus is given on expanding the methodology to functional linear mod-
els that include interactions and polynomial effects of the profile factors. Both the in-
teractions and the polynomials are handled identically, as a polynomial can be seen as
an interaction of a profile factor with it self. Henceforth, when referring to interaction
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from this point onwards, the same stands for polynomial effects, and the opposite.

Recall from (5.10) that in matrix form the FLM is formulated as an extended linear
model such that,

y =
∫ T

0
f T(X(t)) β(t) dt + ε

=
∫ T

0
f T(X(t)) bT(t) dt θ+ ε

= Zθ+ ε,

with y, X(t), f T(X(t)), β(t), θ and ε as defined before. Interactions and polynomials
are embodied in the FLM through the function f . In contrast to models with only main
effects, models that include the intercept, or interactions and polynomials, imply that
f (X(t)) 6= X(t).

Moreover, as a result of adding interactions and polynomials, the number of profile
factors is not equal to the number of functional parameters. The reason for the latter
is that the number of functional parameters is identical to the number of terms in the
model. Thus, the difference between the number of profile factors and the number of
functional parameters is the additional terms in the model, i.e., the interactions and
polynomials and the intercept if included.

Each functional parameter is allowed a different basis. This means that the basis of the
parameter of an interaction term can be different from the basis of the parameters of the
main effect terms involved in the interaction. On the other hand, the basis expansion
for the profile factors is identical to the model with only main effects. Every profile
factor is expanded as in (3.12). For example, the basis of two profile factors involved in
an interaction is the same as the basis assumed for the main effects of the two profile
factors.

The model matrix Z is a n × ∑Q
q=1 nβ,q matrix, partitioned in Q column blocks, with

the qth block an n × nβ,q matrix Z•q. The J column blocks of the model matrix that
correspond to the main effect terms of the profile factors, are defined in the exact same
way as the J column blocks of Z in (5.14). The remaining Q − J column blocks Z•q,
for q = J + 1, J + 2, . . . , Q correspond to the interaction and the polynomial terms.
Following the latter, a column block Z•q of a K-way interaction or a K-order polynomial
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of the profile factors x•j1(t), x•j2(t), . . . , x•jK(t), is the solution to an integral of the form,

Z•q =
∫ T

0
fq(X(t)) bT

q (t) dt

=
∫ T

0
fq

(
x•j1(t) x•j2(t) · · · x•jK(t)

)
bT

q (t) dt

=
∫ T

0

(
x•j1(t) ◦ x•j2(t) ◦ · · · ◦ x•jK(t)

)
bT

q (t) dt

=
∫ T

0

(
Γj1 cj1(t) ◦ Γj2 cj2(t) ◦ · · · ◦ ΓjK cjK(t)

)
bT

q (t) dt, q = J + 1, J + 2, . . . , Q,

(5.22)

with ◦ the Hadamard product, fq(X(t)) the qth column of f T(X(t)), and bq(t) the
basis functions from the expansion of the qth functional parameter. The Hadamard
product of the functions of the profile factors, x•j1(t) ◦ x•j2(t) ◦ · · · ◦ x•jK(t), represents a
K-way interaction of the functions of the profile factors x•j1(t), x•j2(t), . . . , x•jK(t) when
j1 6= j2 6= · · · 6= jK, or a K-order polynomial when j1 = j2 = · · · = jK.

The equation (5.22) can also be expressed as,

Z•q = Γj1 j2···jK

∫ T
0

(
cj1(t)⊗ cj2(t)⊗ · · · ⊗ cjK(t)

)
bT

q (t) dt

= Γj1 j2···jK

∫ T
0

cj1 j2···jK(t) bT
q (t) dt, q = J + 1, J + 2, . . . , Q,

(5.23)

with ⊗ the Kronecker product, and Γj1 j2···jK and cj1 j2···jK(t) as described below. For an
example see Appendix C.

First, the matrix Γj1 j2···jK is a n×∏K
k=1 nx,jk coefficient matrix for which each column is

the Hadamard product of the form:

coll1(Γj1) ◦ coll2(Γj2) ◦ · · · ◦ collk(ΓjK),

with coll(Γ) the lth column of the matrix Γ, and l1, l2, . . . , lK arbitrary choices of column
index for matrices Γj1 , Γj2 , . . . , ΓjK , respectively. The complete set of columns Γj1 , Γj2 , . . . , ΓjK

is formed by considering all possible choices of l1, l2, . . . , lK, arranged in lexicographical
order.

Second, the vector cj1 j2···jk(t) is a ∏K
k=1 nx,jk × 1 vector, that is defined as:

cj1 j2···jk(t) = cj1(t)⊗ cj2(t)⊗ · · · ⊗ cjK(t),
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with ⊗ the Kronecker product, for which for m× h matrix A and p× s matrix bmB is
defined as:

A⊗ B =


a11B a12B · · · a1hB
a21B a22B · · · a2hB

...
... · · ·

...
am1B am2B · · · amhB

 .

Each entry of cj1 j2···jk(t) is a ∏
jk
j=j1

nx,j × 1 is a product of jK basis functions, one for each
different profile factor, and all possible combinations of choices are considered in a way
similar to the construction of the columns of Γj1 j2···jK . Since the basis chosen for the pro-
file factors are B-spline basis functions, then each entry is the product of jk B-spline
basis functions. An analytic derivation of integrals involving products of B-spline basis
functions is described in Section 5.9.

The example with two profile factors from Section 5.2 is continued, to assist the under-
standing of functional linear models with interactions and polynomials of the profile
factors. To avoid overcomplicating the methodology, and to keep the computations
simple, a two-way interaction and the quadratic effect of a profile factor are consid-
ered. The two-way interaction is the interaction of the first and second profile factor
which is x•1(t) ◦ x•2(t), and the quadratic polynomial is the quadratic effect of the first
profile factor which is x•1(t) ◦ x•1(t). Moreover, it is assumed that the FLM includes the
intercept as well. Thus, the matrix f T(X(t)) that contains the functions of the profile
factors, is a n× 5 matrix defined as,

f (X(t)) =
(

f1(X(t)) f2(X(t)) f3(X(t)) f4(X(t)) f5(X(t))
)

=
(

1n x•1(t) x•2(t) x•1(t) ◦ x•1(t) x•1(t) ◦ x•2(t)
)

,

with 1n being the n× 1 vector of 1’s, x•1(t) and x•2(t) being n× 1 vectors representing
the functions of the profile factors, and x•1(t) ◦ x•2(t) and x•1(t) ◦ x•1(t) being n × 1
vectors representing the interaction and the quadratic effect. Finally, the vector β(t) is
a 5× 1 vector containing the functional parameters such that,

βT(t) =
(

β1 β2(t) β3(t) β4(t) β5(t)
)

,

with β1 the constant parameter, β2(t) and β3(t) the functional parameters for the two
profile factors and β4(t) and β5(t) the functional parameters of the quadratic effect and
interaction, respectively. Hence, the FLM representing the main effects of two profile
factors, the quadratic effect of the first profile factor and the interaction between the
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two profile factors is formulated as,

y = 1nβ1 +
∫ T

0
x•1(t) β2(t) dt +

∫ T
0

x•2(t) β3(t) dt

+
∫ T

0

(
x•1(t) ◦ x•1(t)

)
β4(t) dt +

∫ T
0

(
x•1(t) ◦ x•2(t)

)
β5(t) dt + ε.

(5.24)

To restrict the function space, the basis expansions for the two profile factors are iden-
tical to the basis expansions defined in (5.16) and (5.17). The basis expansions for the
functional parameters are not identical to the example for the main effects. This is be-
cause, extra parameters are involved, due to the addition of the intercept, the quadratic
effect and interaction terms. The parameter corresponding to the intercept is the con-
stant parameter. The basis expansions of the functional parameters are:

β1 = θ1,

β2(t) = bT
2 (t)θ2,

β3(t) = bT
3 (t)θ3,

β4(t) = bT
4 (t)θ4,

β5(t) = bT
5 (t)θ5.

The number of columns of the model matrix Z depends on the choice of the number of
basis functions from the expansion of the functional parameters. The first column block
of the model matrix is a column vector of 1’s for the intercept. The rest of the columns
arise in four column blocks from the solutions of four integrals. The two column blocks
for the main effects are identical to the columns blocks from the example with the main
effects, and they are the solutions to the integrals defined in (5.20) and (5.21). The
remaining two column blocks of the model matrix, that involve the quadratic effect
and the interaction, can be found using the methodology in (5.23). For instance, the
column block for the interaction term is defined as,

Z•5 =
∫ T

0

(
x•1(t) ◦ x•2(t)

)
bT

5 (t) dt

=
∫ T

0

(
Γ1c1(t) ◦ Γ2c2(t)

)
bT

5 (t) dt

= Γ12

∫ T
0

(
c1(t)⊗ c2(t)

)
bT

5 (t) dt

= Γ12

∫ T
0

c12(t) bT
5 (t) dt.

(5.25)

The vector c12(t) is a (nx,1 × nx,2)× 1 vector. This means that, the length of the vector
c12(t) is the product of the number of basis functions of the two profile factors which
are involved in the interaction. Moreover, each entry in the vector c12(t) corresponds to
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the product of two B-spline basis functions. Thus, together with the basis of the func-
tional parameter, the integral from (5.25) is an integral of the product of three B-spline
basis functions, or two B-spline and a power series basis functions. In both cases, such
integrals are analytically tractable using the method described in Section 5.9.

A challenging part of (5.25) is the construction of the coefficient matrix Γ12. The coef-
ficient matrix Γ12 is a n× (nx,1 × nx,2) matrix, with each column being the Hadamard
product of basis coefficients from the expansion of x•1(t) and a basis function from the
expansion of x•2(t). Meaning that, the columns of Γ12 contain all possible product com-
binations of the basis coefficients of the two profile factors involved in the interaction.

For instance, from the basis expansion of the profile factors, the coefficient matrices Γ1

and Γ2 are of size n× nx,1 and n× nx,2 respectively,

Γ1 =


Γ111 Γ112 · · · Γ11nx,1

Γ121 Γ122 · · · Γ12nx,1
...

...
...

...
Γ1n1 Γ1n2 · · · Γ1nnx,1

 , Γ2 =


Γ211 Γ212 · · · Γ21nx,2

Γ221 Γ222 · · · Γ22nx,2
...

...
...

...
Γ2n1 Γ2n2 · · · Γ2nnx,2

 ,

with Γ1il and Γ2il the ilth entries of the matrices Γ1 and Γ2, respectively. Then, the
columns of the coefficient matrix Γ12 are the Hadamard products of all the possible
combinations of the columns of Γ1 and Γ2 such that,

Γ12 =


Γ111 × Γ211 Γ111 × Γ212 · · · Γ111 × Γ2nnx,2

· · · Γ11nx,1
× Γ211 Γ11nx,1

× Γ212 · · · Γ11nx,1
× Γ2nnx,2

Γ121 × Γ221 Γ121 × Γ222 · · · Γ121 × Γ2nnx,2
· · · Γ12nx,1

× Γ221 Γ12nx,1
× Γ222 · · · Γ12nx,1

× Γ2nnx,2

...
...

...
...

...
...

...
...

...
Γ1n1 × Γ2n1 Γ1n1 × Γ2n2 · · · Γ1n1 × Γ2nnx,2

· · · Γ1nnx,1
× Γ2n1 Γ1nnx,1

× Γ2n2 · · · Γ1nnx,1
× Γ2nnx,2

 .

The procedure for the quadratic effect is the same, but x2(t) has to be replaced by x1(t).

Finally, the vector of parameters θ is a ∑5
q=1 nβ,q × 1 vector, that contains the coefficient

vectors from the basis expansion of the functional parameters such that,

θT =
(

θ1 θT
2 θT

3 θT
4 θT

5

)
.

For further examples and sensitivity studies for functional models containing interac-
tions and quadratic effects of profile factors; see Sections 6.4 and 7.8.
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5.4 Frequentist approach to the design problem

The model in equation (5.10) takes the form of the traditional linear model, with Z be-
ing the model matrix and θ the unknown coefficients, with dimensions of Z and θT

being n× ∑Q
q=1 nβ,q and 1× ∑Q

q=1 nβ,q, respectively. As the FLM with basis expansions
is an extension to the traditional linear model, the same methods and techniques can
be used.

An estimator of θ, denoted as θ̂, can be found by the ordinary least squares method
which minimises the residual sum of squares,

RSS = (y− Zθ)T(y− Zθ). (5.26)

After that, the parameter estimator is defined as,

θ̂ = (ZTZ)−1ZTy. (5.27)

Another important equation to derive is the variance of the estimated parameters. This
is because some objective functions including the A- and D- optimality are functions of
the variance-covariance matrix. The variance of θ̂ is given by,

Var(θ̂) = Var
[
(ZTZ)−1ZTy

]
= σ2(ZTZ)−1.

(5.28)

For the rest of the thesis, the objective criteria considered are the A- and D- optimality.
Other objective criteria including G-optimality, E-optimality and more, can be consid-
ered in a similar way; see Atkinson et al. (2007, Chapters 6,9, and 10). The A- and D-
optimality objective functions for the FLM, denoted as ΨA(Γ) and ΨD(Γ), are the trace
and determinant of the variance-covariance matrix of the parameter estimates and us-
ing (2.6) and (2.8) respectively, they are defined as,

ΨA(Γ) = tr
[
(ZTZ)−1] (5.29)

ΨD(Γ) = det
[
(ZTZ)

]−1/p
= exp

{
− 1

p
log
[
det
(
(ZTZ)

)]}
, (5.30)

for a design Γ, which is the coefficient matrix Γ from the basis expansion of the profile
factors assigned to each run of the experiment, and p = ∑Q

q=1 nβ,q the total number of
basis functions of the functional parameters, i.e., the total number of columns of Z. A
design Γ∗ ∈ X where X is the design space, is A- and D- optimal if it minimises ΨA(Γ)

and ΨD(Γ), respectively. Note that, the objective criterion in equations (5.29) require the
information matrix to be invertible. The D-optimality objective function used is scaled
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based on the total number of basis functions of the parameters. The second equality in
(5.30) is on the log scale, to increase the computational stability.

The objective functions in equations (5.29) and (5.30) depend on the model matrix Z
which is partitioned in Q column blocks resulting from the solutions of integrals of the
form of (5.11). The solution of the integrals, and hence of Z, depend on the basis of the
profile factors, the basis of the functional parameters and the coefficient matrices from
the basis expansions of the profile factors which are the design matrices. Since the basis
as well as the number of basis functions of the profile factors and the functional param-
eters are subject of choice, the missing components in Z are the coefficients. Hence, the
design of experiments problem is reduced to the optimisation of the coefficient matrices
from the expansion of the profile factors.

The profile factors in this thesis are assumed to be constrained by u ≤ xij(t) ≤ v. The
BS basis for the functions of the profile factors are useful and contribute to achieve the
required bounds imposed by the constraint. This is because the property of the BS
basis in (4.14) implies that any bounds imposed on the coefficients from the expansion
in (3.12) are equivalent bounds on the functions of the profile factors.

5.5 Roughness penalty approach

The use of basis expansions allowed the FLM to be expanded in a way that allows
common statistical techniques to be used to fit the model. The choice of basis functions
as well as the choice of degree and choice of knots is usually difficult. A bad choice
of basis or a bad choice of the basis coefficients can result in rough, complicated and
wiggly functions for the parameters. In this section, an alternative roughness penalty
approach; of which the aim is to penalise the complexity of functions is discussed.

Penalisation of the complexity of functions is achieved via a smoothing penalty added
on the residual sum of squares. As a result, the residual sum of squares defined in (5.26)
is updated to the penalised residual sum of squares; see Ramsay and Silverman (2005).
The penalised residual sum of squares is defined as,

PRSS = (y− Zθ)T(y− Zθ) + ΛθTR0θ,

where Λ > 0 is a scalar smoothing parameter and R0 is a ∑Q
q=1 nβ,q × ∑Q

q=1 nβ,q block
diagonal matrix, representing the roughness penalties. Under the roughness penalty
approach, the parameter estimator is updated to become,

θ̂ = (ZTZ + ΛR0)
−1ZTy. (5.31)
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The qth block entry of the roughness penalties is a matrix of dimensions nβ,q × nβ,q

representing the penalisation of the qth term in the FLM and it is given by,

R0β,q =
∫ T

0

[
D(2)[bq(t)]

][
D(2)[bq(t)T]

]
dt, q = 1, 2, . . . , Q, (5.32)

where bq(t)T = [bq1(t), ...., bq,nβ,q(t)] are known basis functions for the functional pa-
rameters and D(2)(·) is the second derivative.

Scalar parameters, including the constant parameter for the intercept, are not penalised.
i.e., their roughness penalties are zero. If the qth parameter represents the parameter of
a scalar factor, then nβ,q = 1, and the qth block entry is a scalar. Thus, if the qth pa-
rameter represents the parameter of a scalar factor, D(2)bq(t) = 0, hence the roughness
penalty is zero as required.

The nature of the parameters in a FLM fall under three special cases. Assume a FLM
with Q terms, meaning Q parameters. The three special cases are: all Q parameters
are functional parameters representing functions of profile factors; one parameter rep-
resents the constant scalar parameter and the rest Q− 1 parameters are functional pa-
rameters; or one parameter represents the constant scalar parameter, Q1 parameters are
scalar parameters and Q2 parameters are functional parameters, for 1 + Q1 + Q2 = Q.

In the first space case, all parameters are penalised, exactly using the definition in (5.32).
In the second special case, the roughness matrix is defined as,

R0 =

(
0 0T

Q

0Q Rp

)
,

where 0T
Q is the ∑Q

q=2 nβ,q × 1 vector of zeros, and Rp is a ∑Q
q=2 nβ,q × ∑Q

q=2 nβ,q block
diagonal matrix representing the roughness penalties of the functional parameters. Fi-
nally, in the third special case, the roughness matrix is defined as,

R0 =

 0 0T
Q1

0T
Q2

0Q1 0Q1Q1 0Q1Q2

0Q2 0T
Q1Q2

Rp

 ,

where 0T
Q1

is the Q1× 1 vector of zeros, 0T
Q2

is the ∑Q
q=Q1+2 nβ,q× 1 vector of zeros, 0Q1Q2

is the Q1×∑Q
q=Q1+2 nβ,q matrix of zeros, 0Q1Q1 is the Q1×Q1 matrix of zeros, and lastly,

Rp is a ∑Q
q=Q1+2 nβ,q × ∑Q

q=Q1+2 nβ,q block diagonal matrix representing the roughness
penalties of the functional parameters.
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5.6 Bayesian approach to the design problem

In this section, the design problem is fitted using the Bayesian approach that have
been discussed in Section 2.4. The expected utility functions derived previously are
expanded to build Bayesian objective functions for the FLM. After that, a connection
between the roughness penalty approach and the Bayesian experimental designs for
the FLM is developed.

The FLM have been proven that it is an extension to the linear model; see (5.10). Thus,
results for Bayesian experimental designs for the linear model from Section 2.4 still hold
for the FLM. In comparison to the traditional linear model discussed earlier, the model
matrix and vector of parameters for the FLM is Z and θ instead of F and β. Moreover,
the design for the FLM is the coefficient matrices Γj from the basis expansion of each
profile factor from j = 1, 2, . . . , J instead of X that is the design for the linear model.

The prior specification of the FLM is assumed to be identical to the linear model in
Section 2.3.1. The latter allows the derivation of the likelihood and the joint prior dis-
tribution which are Normal and Normal Inverse Gamma distributions; see (2.13), (2.14)
and (2.15),

π(y|θ, σ2) ∼ N(Zθ, σ2 In)

π(θ, σ2) ∼ NIG(µ, V , a/2, b/2), (5.33)

respectively, where µ is the ∑Q
q=1 nβ,q prior mean vector of θ, V is a known and symmet-

ric ∑Q
q=1 nβ,q × ∑Q

q=1 nβ,q matrix, and a, b are hyperparameters. Using the result from
(2.16) and (2.17), the joint posterior distribution of the FLM is also a normal inverse
gamma distribution such that,

π(θ, σ2|y) ∼ NIG(θN , VN , a∗/2, b∗/2) (5.34)

where,

VN = (ZTZ + V−1)−1

θN = VN(V−1µ + ZTy)

a∗ = a + n

b∗ = b + (µTV−1µ + yTy− θT
NV−1

N θN). (5.35)



5.6. Bayesian approach to the design problem 63

In addition, the marginal posterior distributions for θ is a multivariate t-distribution
such that,

π(θ|y) ∼ ta∗

(
θN ,

b∗

a∗
VN

)
, (5.36)

with a∗ the degrees of freedom, mean θN and scale b∗
a∗VN , for a∗, b∗, θN and VN as in

(5.35). The marginal posterior distribution for σ2 is an inverse gamma distribution,

π(σ2|y) ∼ IG(a∗/2, b∗/2), (5.37)

for a∗ and b∗ as in (5.35).

In the Bayesian framework, the experimental aim is represented through a utility func-
tion; see Section 2.4. Two common utility function discussed earlier are the Negative
Squared Error Loss and the Shannon Information Gain. In terms of the FLM, the NSEL
utility function is defined as,

u(θ, y, Γ) = −
[
θ−E(θ|y, Γ)

]T[
θ−E(θ|y, Γ)

]
, (5.38)

and optimal designs are the designs that maximise the expected utility of NSEL. The
expected utility is derived by taking the expectation over the responses and the param-
eter space. Using the derivation from (2.23), the expected utility of the NSEL for the
FLM is,

Ψnsel(Γ) = −
b

a− 2
tr
[(

ZTZ + V−1)−1]. (5.39)

The objective function in (5.39) is known as Bayesian A-optimality, and a design that
maximise the expected utility is defined as a Bayesian A-optimal design. The expected
utility is proportional to the trace of the posterior variance-covariance matrix,

Ψnsel(Γ) ∝ −tr
[(

ZTZ + V−1)−1]. (5.40)

and a design Γ∗ is optimal if it minimises the trace of the inverse of the posterior
variance-covariance matrix,

Ψnsel(Γ
∗) = min

Γ∈X
tr
[(

ZTZ + V−1)−1]. (5.41)

Under a non-informative prior where V−1 would be zero, this criterion would min-
imise the trace of the inverse of the information matrix as in (5.29).

The SIG utility function in terms of the FLM is defined as,

u(θ, y, Γ) = log π(θ|y)− log π(θ)

= log π(y|θ)− log π(y),
(5.42)
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with the second equality sometimes more useful for computations; see (2.26) for the
middle steps and the description thereafter. The expected utility of the SIG for the
FLM is equivalent to the determinant of the inverse of the posterior variance-covariance
matrix,

Ψsig(Γ) = |ZTZ + V−1|. (5.43)

and a design Γ∗ is optimal if it maximises the determinant of the inverse of the posterior
variance-covariance matrix,

Ψsig(Γ
∗) = max

Γ∈X
|ZTZ + V−1|. (5.44)

The objective function in (5.44) is known as Bayesian D-optimality and a design that
achieves to maximise the expected utility is defined as a Bayesian D-optimal design.
Under a non-informative prior where V would be zero, this criterion maximises the
logarithm of the determinant of the information matrix ZTZ.

Finally, using the roughness penalty approach there is a clear connection to be made
between the frequentist and the Bayesian approaches. The connection comes from the
equations of the parameter estimator under the roughness penalty approach in (5.31)
and the posterior mean in (5.35). It is clear to notice that the prior precision matrix
is defined to be V−1 = ΛR0 when the prior mean is centered around zero. The fre-
quentist approach is identical to choosing Λ = 0 and thus, matrix Rp corresponds to
the roughness matrix and the smoothing value Λ controls the wiggliness of a function.
Meaning that, a value of Λ being zero, corresponds to uncertain prior choice and no
smoothness, but a value of Λ tending towards infinity corresponds to a strong prior
choice and heavily penalised functions.

5.7 Bayesian design criterion tailored for profile factors

In this section, the aim is to develop a Bayesian design criterion for profile factors,
to tailor the design to the FLM and tackle to minimise the average posterior variance
of the functional parameters β(t) directly, averaged with respect to time. A Bayesian
approach is followed to derive the new objective function which takes into account di-
rectly the variance of the function β(t).

The NSEL utility function from (5.38) is applied, but with the function of the model pa-
rameters being represented by γ(t) = CT(t)θ, instead of β(t). The use of γ(t) instead
of β(t) is to allow picking up the right parameters and functions of interest and not all
of the functional parameters. This is possible through the ∑Q

q=1 nβ,q × Q matrix C(t),
with each of the entries defining the functions of interest from a FLM. For example,
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γ(t) = β(t) is a special case for which the matrix C(t) includes all the basis functions
from the expansion of the functional parameters.

The tailored utility function for profile factors with γ(t) = CT(t)θ representing the
function of the model parameters and γ̂(t) = CT(t)E(θ|y) representing the function of
the model estimated parameters, is defined as,

u(γ̂(t), y, Γ) = −
∫ T

0

[
γ(t)− γ̂(t)

]T[
γ(t)− γ̂(t)

]
dt

= −
∫ T

0

[
CT(t)θ− CT(t)E(θ|y, Γ)

]T[CT(t)θ− CT(t)E(θ|y, Γ)
]

dt

= −
∫ T

0

[
CT(t){θ−E(θ|y, Γ)}

]T[CT(t){θ−E(θ|y, Γ)}
]

dt

= −
∫ T

0
{θ−E(θ|y, Γ)}TC(t)CT(t){θ−E(θ|y, Γ)} dt.

(5.45)

To obtain the expected utility under the Bayesian design criterion for profile factors, the
quadratic form property by Mathai and Provost (1992, p. 424) is used. The quadratic
form property is that, for a vector e of p random variables and Ξ a symmetric matrix of
dimensions p× p then,

E(eTΞe) = tr(ΞΣ) + µTΞµ

where µ and Σ are the mean and variance-covariance matrix of e. Hence, the expected
utility of the Bayesian design criterion tailored on profile factors is given by,

Ψ(Γ) = Ey,θ,σ2

(
−
∫ T

0

[
θ−E(θ|y, Γ)

]TC(t)CT(t)
[
θ−E(θ|y, Γ)

]
dt
)

= Ey,σ2

(
Eθ|y,σ2

[
−
∫ T

0

[
θ−E(θ|y, Γ)

]TC(t)CT(t)
[
θ−E(θ|y, Γ)

]
dt

)

= Ey,σ2

(
−
∫ T

0
tr
{

σ2 C(t)CT(t)
(
ZTZ + V−1)−1

}
dt

)

= Ey,σ2

(
− σ2 tr

{ ∫ T
0

C(t)CT(t)
(
ZTZ + V−1)−1 dt

})

= −Eσ2

(
σ2 tr

{ ∫ T
0

C(t)CT(t)
(
ZTZ + V−1)−1 dt

})

∝ −tr
{(

ZTZ + V−1)−1
∫ T

0
C(t)CT(t) dt

}
= −tr

{(
ZTZ + V−1)−1 A

}
, (5.46)

with A =
∫ T

0 C(t)CT(t) dt. A design Γ∗ is optimal if it maximises the expected utility of
the Bayesian design criterion tailored on profile factors. The criterion in (5.46) is equiv-
alent to the L-optimality design criterion; see Atkinson et al. (2007). The A-optimality
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is a special case of L-optimality if A is the identity matrix.

5.8 Constraints on the number of basis functions and runs

The aim in this section is to use properties of the rank of a matrix to derive constraints
in the settings of the experimental designs for the FLM. Often, the objective function
of optimality criteria requires the information matrix to be invertible, i.e., non-singular.
For instance, this is the case for the objective function for A-optimality; see the objective
function in (5.29).

In linear algebra, a matrix is said to be invertible if it is of full rank. Full rank is achieved
when the number of linearly independent columns of the matrix is at the maximum,
meaning equal to the number of columns. A matrix that does not achieve full rank is
called rank-deficient. For the definition of rank and full rank; see Seber (2008, Chapter
3).

To avoid singularity of the information matrix, the column vectors of ZTZ need to be
linearly independent. A set of vectors is linearly dependent if any linear combination
of these vectors returns the zero vector. Suppose having a set of vectors v̄1, ..., v̄n̄. The
set of vectors is linearly dependent if for some coefficients c̄1, ..., c̄n̄ with at least one of
them being non-zero, the following holds,

n̄

∑̄
i=1

c̄īv̄ī = 0.

Three important properties of rank are discussed in Magnus and Neudecker (2019,
page 9). For matrices Ar and Br of sizes ar1 × ar2 and br1 × br2 respectively, the proper-
ties are given by:

rank(Ar) ≤ min(ar1, ar2), (5.47a)

rank(Ar) = rank(AT
r Ar), (5.47b)

rank(ArBr) ≤ min(rank(Ar), rank(Br)). (5.47c)

By the property in (5.47b), it is clear that rank deficiency in Z is rank deficiency in ZTZ.
Hence, no linear dependencies in Z means that there are no linear dependencies in
ZTZ. The model matrix Z has dimensions n×∑Q

q=1 nβ,q. By the property in (5.47a),

rank(Z) ≤ min
(

n,
Q

∑
q=1

nβ,q

)
,
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meaning that the number of rows should be greater or at least equal to the number of
columns. Thus, the first constraint on the settings of the functional model is,

n ≥
Q

∑
q=1

nβ,q,

with n the number of runs and ∑Q
q=1 nβ,q the total number of basis functions from all of

the basis expansions of the functional parameters. However, increasing the number of
runs n by replicating design functions already in the design, will not increase the rank
of Z.

Additionally, the model matrix Z is partitioned in Q column blocks, i.e., one column
block for each term in the FLM; see (5.12). If the qth column block represents a main
effect of a profile factor, say the jth profile factor, then the qth partition of Z is defined
as in (5.14), j = 1, 2, . . . , J, q = 1, 2, . . . , Q. In this case, the column block partition is
the product of the n× nxj coefficient matrix Γj of the jth profile factor and the nxj × nβ j

matrix resulting from the product of the basis functions of the profile factor and the
functional parameter of the profile factor. Using the latter information and the property
in (5.47c) and (5.47a), the rank of the qth column block is,

rank(Z•q) ≤ min(min(n, nxj), min(nxj , nβ,q)), j = 1, 2, . . . , J, q = 1, 2, . . . , Q.

Moreover, if the qth column block represents a K-way interaction of profile factors or a
K-order polynomial of a profile factor, then the qth partition of Z is defined as in (5.23).
In this case, the column block partition is the product of the n×∏K

k=1 nx,jk coefficient
matrix Γj1 j2···jK from (5.23) and the ∏K

k=1 nx,jk × nβ,q matrix resulting from the product
of the basis functions of the profile factors involved cj1 j2···jK(t) from (5.23) and the basis
functions of the functional parameter. Under this scenario, the rank of the qth column
block is,

rank(Z•q) ≤ min
(

min
(

n,
K

∏
k=1

nx,jk

)
, min

( K

∏
k=1

nx,jk , nβ,q

))
,

j = 1, 2, . . . , J, q = 1, 2, . . . , Q,

with j1, j2, . . . , jK, the K profile factors involved in the interaction or the K-order polyno-
mial if j1 = j2 = · · · = jK. Thus, the second constraint on the settings of the functional
model is,

K

∏
k=1

nx,jk ≥ nβ,q, q = 1, 2, . . . , Q.
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In summary, if the objective function requires the information matrix to be invertible,
the settings of the functional model must satisfy the following two constraints:

n ≥
Q

∑
q=1

nβ,q,

K

∏
k=1

nx,jk ≥ nβ,q,

q = 1, 2, . . . , Q. (5.48)

The main effects constraint is a special case of the interactions constraint, with K = 1.

Finally, the information matrix can still be singular even if the constraints are satisfied.
However, failure to satisfy the constraints implies certain singularity of the information
matrix.

5.9 Integrate the product of B-spline basis functions

In this thesis, the functions of the profile factors are assumed to be represented by B-
spline basis expansions. Similarly, the functional parameters are assumed to be rep-
resented by power series basis or B-spline basis expansions. The FLM methodology
developed earlier in this chapter involves integrals with respect to time that include
products of basis functions. Specifically, for main effect terms the integral involves
the product of the basis functions of a single profile factor and the basis functions of
a functional parameter. For interaction and polynomial terms, the integral involves
the product of basis functions of every profile factor involved in the interaction and
the basis functions of the functional parameter. In this section, the aim is to describe a
procedure for solving the integrals involved in the FLM methodology using basis ex-
pansions.

The latter description means that the integrals required to calculate under the FLM
set up are: integrals involving products of BS basis functions or integrals involving
products of BS basis functions and power series of time up to a certain degree. As the
order of interactions or polynomials increases, then the number of BS basis functions
increases as well. However, the number of BS basis functions involved in the integrals
does not affect the procedure to analytically compute the integrals. This is because a
product of B-splines can be expressed as a linear combination of B-splines; see Ver-
meulen et al. (1992). Also, later in this section proof is given that integrals involving
both BS basis functions and power series basis functions are a special case of integrals
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with BS basis functions.

Without loss of generality, in this section a double BS integral is considered to illustrate
the procedure and avoid over complication. Repetition of the technique to be presented
leads to the derivation of integrals that involve the products of more BS basis functions.
The integral to solve takes the form of the integral in (5.14) and it depends on partitions
that take the form of integrals of the products of basis functions such that:

∫ T
0

c(t) bT(t) dt =
∫ T

0
Bαc,dc(t) Bαb,db(t) dt

=
∫ T

0
t0 Bαc,dc(t) Bαb,db(t) dt

= I(0, dc, αc, db, αb),

(5.49)

with Bdc
αc(t) and Bdb

αb(t) be BS basis of degree dc and db and basis function number αc and
αb, respectively. The function I is a function representing the settings of degrees, basis
function position numbering and power on t. The importance of the second and third
equality in (5.49) will make more sense after the expansion of the two basis inside the
integral using the recursion formula from (4.13).

Without any loss of generality, suppose that the degree of BS for the functional parame-
ter is lower than the degree of BS for the profile factor, i.e., db < dc. Start expanding the
BS with the lowest degree, in this case the BS for the functional parameter, using the
recursion formula, yields functions of the same form with different settings for degree,
positioning and power of t,

I(0, dc, αc, db, αb) =
∫ T

0
t0 Bαc,dc(t) Bαb,db(t) dt

=
1

λ∗αb+db
− λ∗αb

∫ T
0

t1 Bαc,dc(t) Bαb,db−1(t) dt

−
λ∗αb

λ∗αb+db
− λ∗αb

∫ T
0

t0 Bαc,dc(t) Bαb,db−1(t) dt

+
λ∗αb+db+1

λ∗αb+db+1 − λ∗αb+1

∫ T
0

t0 Bαc,dc(t) Bαb+1,db−1(t) dt

− 1
λ∗αb+db+1 − λ∗αb+1

∫ T
0

t1 Bαc,dc(t) Bαb+1,db−1(t) dt

= I(1, dc, αc, db − 1, αb)− I(0, dc, αc, db − 1, αb)

+ I(0, dc, αc, db − 1, αb + 1)− I(1, dc, αc, db − 1, αb + 1),
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where λ∗ is the extended knot vector; see Section 4.4. From the above expansion, it is
clear to notice that interest is to solve integrals of the form,

∫ T
0

tr Bαc,dc(t) Bαb,db(t) dt = I(r, dc, αc, db, αb)

which yield integrals of the same form with different input settings.

Following the same procedure expanding the BS basis with the lowest degree, will
eventually get the BS basis down to degree zero for which there exists a formal defi-
nition; defined in (4.12). This means that, every BS basis is expanded until its degree
reaches zero. After that, the integral involves one less BS basis than before, but the
integral bounds are revised such that,

I(r, dc, αc, 0, αb) =
∫ 1

0
tr Bαc,dc(t) Bαb,0(t) dt

=
∫ λ∗αb+1

λ∗αb

tr Bαc,dc(t) dt.
(5.50)

After that, the same procedure is followed for the remaining BS basis that are involved
in the integral. The procedure is repeated until all BS basis are down to degree zero.
For the example with two BS basis, the result is given by,

I(r, 0, αc, 0, αb) =
∫ λ∗αb+1

λ∗αb

tr Bαc,0(t) dt

=
∫ tu

tl

tr dt

=


tr+1
u −tr+1

l
r+1 if tl < tu

0 if tl ≥ tu,

(5.51)

where,

tu = min
(
λ∗αb+1, λ∗αc+1

)
tl = max

(
λ∗αb

, λ∗αc

)
.

The analytic derivation of integrals involving the product of BS basis covers also the
special case of BS basis and power series basis. The integral to solve takes the form of
(5.50), but integrating on the whole time line,

∫ T
0

tr Bαc,dc(t) dt.
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5.10 A method to compare sets of functions

The optimal design is undoubtedly affected by the settings passed to the model. To be
precise, the basis choice for the profile factors and the functional parameters as well as
the number of basis function affects the final functions. The number of basis functions
depends on the choice of the degree and the choice of the knots; so degree and knots
also affect the final functions of the profile factors. The more complicated the basis is
in terms of degree and choice of knots, the more complicated the design and hence the
optimal functions are expected to be.

A comparison between different sets of functions of a profile factor with significant dif-
ferences in the assumed settings, are usually recognised visually. Especially for step
functions, the number of changes in the step functions are easily interpretable and con-
clude to the complexity of functions. However, a complexity comparison between dif-
ferent sets of functions with almost identical assumed settings is not always straightfor-
ward. Especially for smooth continuous functions, a comparison is more difficult and
the difficulty increases as the degree of the polynomials increases. Having said that,
a mathematically proper and valid valuation of the complexity of the functions is es-
sential. For example, when comparing the optimal functions of profile factors resulting
from models with and without interactions, values of the complexity of the functions
can lead to better understanding.

The complexity of the functions in the design is measured using the P-spline penalty;
see Eilers and Marx (1996). P-splines apply a difference penalty directly to the coeffi-
cients from the expansion of the basis. A spline function of degree d is expressed as a
linear combination of basis functions along with vector valued constants called control
points, see (4.4). The B-spline basis expansion for the jth profile factor in the ith run of
the experiment is given by,

xij(t) =
nx,j

∑
l=1

γijl Bl,d(t), (5.52)

for d representing the required degree of the B-spline. Thus, P-splines apply a differ-
ence penalty directly to the coefficients γijl from (5.52), penalising the wiggly functions.
The penalty for the ith run and the jth profile factor is defined as the squared difference
between adjacent coefficients,

Pij = ΓT
ji DTD Γji

where Γji is the ith row of the coefficient matrix from the B-spline basis expansion of the
jth profile factor. The nx,j − 2× nx,j matrix D is a matrix controlling the correct choice
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of coefficient differences; see Wood (2017a, Chapter 5),

D =


1 −2 1 0 . . .
0 1 −2 1 0 . .
0 0 1 −2 1 0 .
. . . . . . .
. . . . . . .

 .

In this set up, the penalty is derived and applied to the coefficients which are the design
matrix and does not measure the wiggliness of the basis functions themselves.

Penalised optimal designs are out of the scope of this thesis. However, the P-spline
penalty value is a practically efficient method to value the complexity and wiggliness
of functions of profile factors. For example, a high penalty value will indicate a more
complicated function, and a low penalty value a less complicated function. Hence, the
penalty value of the functions can be used to compare the complexity of different sets
of functions, which is exactly how the material in this section is used in the thesis.

Finally, derivative-based penalties are also used in the Statistics literature to penalise
wiggliness. However, derivative-based penalties require the degree of the derivative
to be less or equal the degree of the B-spline basis, otherwise the penalty will make
no sense; see Wood (2017b). This is clear from the definition of B-spline derivatives
in (4.15). If the degree of derivative is higher than the degree of the B-spline then the
result is always zero.

5.11 Conclusion

In this chapter, linear models depending on profile factors have been tackled. Attention
has been given on the design of experiments for functional linear models depending on
profile factors and/or functions of profile factors. A new approach using basis function
expansions on the profile factors and the functional parameters has been developed. In
fact, a different basis choice for the profile factors and the functional parameters is
allowed. For the profile factors, the basis that is used ensures that the bounds of the co-
efficients from the basis expansion are equivalent bounds to the functions of the profile
factors. No additional constraints are required. The methodology is applied to models
with combinations of profile and static factors. Further, this chapter showed that such
models are extensions of the traditional linear models, thus, common statistical tech-
niques can be used. The model matrix of the FLM consists of column block partitions,
for every term in the model. To derive the column blocks, the linear predictor of each
term is integrated with respect to time. The more complicated the term, interaction for
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instance, the more complicated is to derive the column block.

A frequentist approach and a Bayesian approach for design of experiments of FLM
have been described, and the connection between them has been discussed. Moreover,
a new criterion tailored to functional linear models has been introduced, that allows
the choice of the functions of interest.

The methodology developed involves integrating products of BS basis with respect to
time. The product of BS basis is also a BS basis, thus, the integral of the product of BS ba-
sis is analytically tractable. The procedure to derive analytic solutions of such integrals
have been described in detail. Common objective functions, the A-optimality for in-
stance, depend on the inverse of the information matrix. To avoid linear dependencies
in the information matrix, certain constraints have been introduced using properties of
the rank. The constraints depend on the settings of the experiment, of the profile factors
and of the functional parameters. The information matrix can still be non-invertible,
even if the constraints are met. However, failure to satisfy the constraints, causes linear
dependencies, and the information matrix is certainly non-invertible.

Finally, to allow proper comparisons on the complexity of competing set of functions of
profile factors, a method for valuing the complexity of functions using squared differ-
ences is described. A comparison between optimal set of functions could be straightfor-
ward if the settings of the factors and the parameters are significantly different. How-
ever, a comparison of the complexity between similar set of functions can be hard, and
that is when valuing the complexity is useful.
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Chapter 6

Optimal designs for functional
linear models

The focus of this chapter is to find optimal experimental designs for functional linear
models using the methodology developed in Chapter 5. Several models are studied,
including: models involving one or more profile factors, models with combinations
of profile and scalar factors, and models with interactions of the profile factors. Opti-
mal experimental designs are identified using the frequentist approach, the Bayesian
approach and the Bayesian approach tailored to profile factors. The optimal designs
derived by the latter approaches are compared amongst them to identify connections
between the approaches.

The settings of the models are varied, to alter the complexity of the models and evaluate
the sensitivity of the designs to changes. Attention is given on the performance of the
A- and D- optimal designs after changing the basis of the functional parameters and/or
after increasing the complexity of the basis of the profile factors in terms of the choice
of the degree and the knots.

6.1 FLM involving one profile factor and step function basis

In this section, a simple FLM involving the main effect of a single profile factor and the
intercept is considered. Thus, the functional of the profile factors f is,

f T(xi(t)) =
(

1 xi1(t)
)

, (6.1)
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with xi1(t) the single profile factor at the ith run of the experiment. For a single profile
factor, the FLM model from equation (5.10) is simplified to a FLM of the form,

yi = β1 +
∫ T

0
β2(t)xi1(t) dt + εi, i = 1, 2, . . . , n, t ∈ [0, 1], −1 ≤ xi1(t) ≤ 1. (6.2)

The aim is to identify A- and D- optimal designs and to perform a sensitivity study to
investigate how the optimal designs are affected in changes to the settings of the exper-
iment.

It is assumed that control of the profile factor is represented via a step function, thus,
the function of the profile factor is expanded as a BS basis of degree d = 0; see Section
4.4. The design problem is reduced to optimise a single coefficients matrix Γ1 with di-
mensions n× nx,1. The degree of the BS basis is fixed to d = 0, so the complexity of the
functions depend on the choice of knots, and on the choice of basis for the functional
parameter. Knots are assumed to be equally spaced over the time interval [0, 1]. The
total number of basis functions is given by d + k + 1 with d and k being the degree and
total number of knots; see (4.3). Since the degree of the BS basis is zero, then the num-
ber of basis functions is the number of knots plus one.

For the functional parameters, the power series system for linear and quadratic basis is
used. The linear and quadratic basis expansions of β2(t) are given by,

β2(t) = θ21 + θ22t,

β2(t) = θ21 + θ22t + θ23t2, (6.3)

respectively. For the linear basis, there are 2 basis functions for the functional parame-
ter, i.e., nβ,2 = 2, the basis function vector is b2(t) = (1, t), and the vector of unknown
coefficients is θ2 = (θ21, θ22)T. For the quadratic basis, there are 3 basis functions for
the functional parameter, i.e., nβ,2 = 3, the basis function vector is b2(t) = (1, t, t2), and
the vector of unknown coefficients is θ2 = (θ21, θ22, θ23)T. The linear and the quadratic
basis functions for the functional parameter is shown in Figure 6.1.
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FIGURE 6.1: (a) Linear and (b) Quadratic basis functions for β2(t).

The A-optimality objective functions require the information matrix to be invertible;
see (5.29). This implies a constraint in the number of basis functions for the function of
the profile factor such that: if the basis for the parameters is linear, then it is required
that nx,1 ≥ 2, and if the basis is quadratic, then it is required that nx,1 ≥ 3; see Section
5.8. For instance, if the basis for the parameters is linear and nx,1 = 1, there are no inte-
rior knots, i.e., only boundary knots. This causes linear dependency in the ZTZ, thus,
non-invertibility. Similarly, the same holds for the quadratic basis and nx,1 = 1, 2.

The number of runs considered is n ∈ {4, 8, 12}. Moreover, the number of basis func-
tions considered is nx,1 ∈ {2, 3, 4, 8, 16, 100}; with the choice of nx,1 = 2 excluded for the
quadratic basis. Knots are equally spaced. Having equally spaced knots, means that
the knot vector of a certain choice of nx,1 contains all knot vectors with the numbers
of knots a factor of nx,1. For instance, if nx,1 = 16, the knot vector includes every knot
vector of size nx,1 = 2, 4, 8, since they are factors of 16. For each of the aforementioned
number of runs and number of basis functions, the coordinate exchange algorithm is
used to find A- and D- optimal designs for 1000 random starts.

Firstly, the linear basis for the functional parameter is considered, with the results avail-
able on Table 6.1 and Table 6.2. Based on the sensitivity study, as the number of runs
increases from 4 to 8 and from 8 to 12, the objective values drop. In general, increasing
the number of runs gives identical or similar patterns, in more repetitions. Interestingly,
one could notice that regardless the number of runs, the objective value for nx,1 = 3 is
higher than for nx,1 = 2, 4. This has to do with the choice of nested models, i.e., the knot
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vector for a model with nx,1 = 2, is nested in the knot vector of a model with nx,1 = 4.
The design identified for nx,1 = 3 is sub-optimal, and it is the only model that does
not include t = 0.5 in the knot vector. The optimal designs found for a single profile
factor achieve at most two changes in the step function. However, most of the designs
achieve a single change from -1 to 1 and vice-versa, or no change, i.e., constant function
in -1 or 1. For A-optimal designs with at most two changes; see Figure 6.2 and Figure
6.3, and for D-optimal designs with at most one change; see Figure 6.4 and Figure 6.5.

Furthermore, as the number of basis function increases the designs perform better with
respect to A-optimality. However, the drop in the objective values of the optimal de-
signs as nx,1 increases becomes insignificant; see Table 6.1. This is an indication that a
large number of basis functions for the profile factor is not needed. For D-optimality
this is even more clear, as the objective values does not change regardless the increase
in the number of basis functions, with only exception the choice of nx,1 = 3; see Ta-
ble 6.2. This is because, for linear parameters, the information matrix does not depend
on nx,1, and the runs of the design matrix are either constant or change once at t = 0.5;
see Appendix D. The minimum objective value is achieved by the nx,1 = 100 designs
for every choice of n. However, as the number of basis functions increases, the func-
tions of the profile factor become more complicated. The A- and D- efficiency values
indicate how well each optimal design with lower nx,1 performs compared to the best
found. For instance, the A- and D- efficiencies of a design Γ with respect to an optimal
design Γ∗ are defined as,

A-eff =
ΨA(Γ)

ΨA(Γ∗)
,

and,

D-eff =
ΨD(Γ)

ΨD(Γ∗)
.

The objective values found by minimising the A- and D-optimality, with linear param-
eter basis, for n ∈ {4, 8, 12} runs and nx,1 ∈ {2, 3, 4, 8, 16, 100} basis functions as well as
the A- and D-efficiencies can be found in Table 6.1 and Table 6.2 respectively.

n = 4 n = 8 n = 12

nx,1 A-opt A-eff A-opt A-eff A-opt A-eff
2 8.750 0.961 3.958 0.981 2.583 0.972
3 8.828 0.952 4.287 0.906 2.778 0.904
4 8.750 0.961 3.903 0.995 2.570 0.977
8 8.493 0.990 3.902 0.995 2.539 0.989
16 8.427 0.997 3.887 0.999 2.520 0.997

100 8.404 1.000 3.882 1.000 2.512 1.000

TABLE 6.1: A-optimality values and A-efficiency values with n ∈ {4, 8, 12} for the
linear basis for β2(t) for the FLM.
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n = 4 n = 8 n = 12

nx,1 D-opt D-eff D-opt D-eff D-opt D-eff
2 1.000 1.000 0.500 1.000 0.333 1.000
3 1.062 0.942 0.522 0.958 0.348 0.957
4 1.000 1.000 0.500 1.000 0.333 1.000
8 1.000 1.000 0.500 1.000 0.333 1.000
16 1.000 1.000 0.500 1.000 0.333 1.000
100 1.000 1.000 0.500 1.000 0.333 1.000

TABLE 6.2: D-optimality values and D-efficiency values with n ∈ {4, 8, 12} for the
linear basis for β2(t) for the FLM.
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FIGURE 6.2: Four run A-optimal design for nx,1 = 4, linear basis for β2(t) and step
function basis for x•1(t) for the FLM.
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FIGURE 6.3: Four run A-optimal design for nx,1 = 8, linear basis for β2(t) and step
function basis for x•1(t) for the FLM.
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FIGURE 6.4: Four run D-optimal design for nx,1 = 4, linear basis for β2(t) and step
function basis for x•1(t) for the FLM.
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FIGURE 6.5: Four run D-optimal design for nx,1 = 8, linear basis for β2(t) and step
function basis for x•1(t) for the FLM.

Secondly, the quadratic basis for the functional parameter is considered, with the re-
sults available on Table 6.3 and Table 6.4. Increasing the number of runs results in lower
objective values and the designs have similar patterns. The step functions achieve at
most three changes, but most of the functions achieve two changes or even a single
change. Meaning that, most of the functions found move from -1 to 1 and then back
to -1 or the other way round. Three changes in the step function occur mostly for
large values of nx,1, with one of the three changes being very small. To visualise the
latter findings; see Figure 6.6 and Figure 6.7 for A-optimal designs with at most three
changes, and Figure 6.8 and Figure 6.9 for D-optimal designs with at most two changes.

The quadratic basis for the parameters is more sensitive to changes in the number of
basis functions, compared to the linear case. For instance, increasing the number of
basis functions causes a more significant change in the performance of the designs; see
Table 6.3 and Table 6.4. For the linear case, the efficiency values found are greater than
0.900 even for a small number of basis functions. Meaning that, the designs are at least
90% efficient. However, to achieve 90% efficiency for the quadratic case, a higher num-
ber of basis functions is needed. Thus, it makes sense to use a larger number of basis
functions for the quadratic basis. On the other hand, a huge number of basis functions
is still not needed. For the quadratic basis it is not possible to compare whether the
objective value for nx,1 = 3 is higher than nx,1 = 2, 4, because a choice of two basis
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functions violates the constraint for invertibility of the information matrix. However, it
is clear to notice that between three and four basis functions there is a significant drop
in the objective value; especially for A-optimality. Finally, the drop in the objective val-
ues of the A-optimal designs are more significant, compared to the D-optimal designs;
see A- and D- efficiencies in Table 6.3 and Table 6.4, respectively.

n = 4 n = 8 n = 12

nx,1 A-opt A-eff A-opt A-eff A-opt A-eff
3 386.408 0.535 189.766 0.510 126.409 0.499
4 246.869 0.838 103.553 0.934 67.735 0.931
8 218.479 0.947 99.109 0.976 65.217 0.966
16 208.843 0.991 97.408 0.993 63.610 0.991
100 206.884 1.000 96.709 1.000 63.028 1.000

TABLE 6.3: A-optimality values and A-efficiency values with n ∈ {4, 8, 12} for the
quadratic basis for β2(t) for the FLM.

n = 4 n = 8 n = 12

nx,1 D-opt D-eff D-opt D-eff D-opt D-eff
3 4.733 0.951 2.386 0.948 1.591 0.943
4 4.619 0.983 2.292 0.987 1.523 0.985
8 4.583 0.991 2.277 0.993 1.515 0.990
16 4.542 0.999 2.264 0.999 1.504 0.997
100 4.540 1.000 2.262 1.000 1.500 1.000

TABLE 6.4: D-optimality values and D-efficiency values with n ∈ {4, 8, 12} for the
quadratic basis for β2(t) for the FLM.
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FIGURE 6.6: Four run A-optimal design for nx,1 = 4, quadratic basis for β2(t) and step
function basis for x•1(t) for the FLM.
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FIGURE 6.7: Four run A-optimal design for nx,1 = 8, quadratic basis for β2(t) and step
function basis for x•1(t) for the FLM.
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FIGURE 6.8: Four run D-optimal design for nx,1 = 4, quadratic basis for β2(t) and step
function basis for x•1(t) for the FLM.
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FIGURE 6.9: Four run D-optimal design for nx,1 = 8, quadratic basis for β2(t) and step
function basis for x•1(t) for the FLM.
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6.2 FLM involving one profile and three scalar factors

In this section, the aim is to identify A-optimal designs for a FLM that involves the
intercept, a single profile factor, and three additional scalar factors. Scalar factors are
a special case of profile factors, for which a single constant basis function is used; see
Section 3.1. The case of main effects as well as the case for main and quadratic effects
of the scalar factors is considered. For only main effects, the functional of the profile
factors f is,

f T(xi(t)) =
(

1 xi1(t) xi2 xi3 xi4

)
, (6.4)

with xi1(t) the single profile factor at the ith run of the experiment, and xi2, xi3 and xi4

the scalar factors at the ith run of the experiment. For the addition of the quadratic
effects, the functional of the profile factors f is,

f T(xi(t)) =
(

1 xi1(t) xi2 xi3 xi4 x2
i2 x2

i3 x2
i4

)
, (6.5)

with x2
i2, x2

i3 and x2
i4 the quadratic effects of the scalar factors at the ith run of the experi-

ment. Under this set up, the FLM takes the form,

yi = β1 +
∫ T

0
β2(t)xi1(t) dt + gT(xi)ν + εi, i = 1, 2, . . . , n, t ∈ [0, 1], −1 ≤ xi(t) ≤ 1,

(6.6)

gT(xi)ν =

β3xi2 + β4xi3 + β5xi4 Case 1

β3xi2 + β4xi3 + β5xi4 + β6x2
i2 + β7x2

i3 + β8x2
i4 Case 2.

Control of the single profile factor is assumed to be represented by a step function
basis, i.e, BS basis of degree d = 0. The functional parameter β2(t) is assumed to be
represented by the linear basis. The number of basis functions for the profile factor
is nx,1 = 4. The number of runs is n = 12. There are four unique functions of the
profile factor; see Figure 6.10. The rest are repeated functions, with functions (a) and
(b) repeated five times, and functions (c) and (d) once; see Table 6.5.
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FIGURE 6.10: Four unique functions of the profile factor for the A-optimal design,
with nx,1 = 4, linear basis for β2(t), and step function basis for x•1(t) for the FLM with

one profile factor and three scalar factors with main effects.

What is interesting to investigate is how the scalar factors behave from main to main
and quadratic effects. For the Case 1 model, i.e., the model with main effects, the op-
timal choices of the scalar factors are those at the boundaries. This is similar to the
profile factor behaviour with linear basis for the parameters, where the function of the
profile factor changes at most once. For the Case 2 model, i.e., the model with both
main and quadratic effects, the optimal design for the scalar factors include boundary
points and centre points in order to be able to estimate the curvature. This is similar to
the profile factor behaviour with quadratic basis for the parameters, where the function
of the profile factor changes at most twice. For the Case 1 model, the columns for the
scalar factors are orthogonal, but the columns for the profile factor are not orthogonal.
The A-optimal designs are given in Table 6.5.
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Case 1

i xi1(t) xi2 xi3 xi4

1 (a) -1.000 1.000 -1.000
2 (b) -1.000 1.000 1.000
3 (a) 1.000 1.000 -1.000
4 (a) -1.000 -1.000 1.000
5 (a) -1.000 -1.000 -1.000
6 (b) -1.000 1.000 1.000
7 (c) 1.000 -1.000 1.000
8 (b) 1.000 -1.000 -1.000
9 (a) 1.000 1.000 1.000

10 (d) 1.000 -1.000 1.000
11 (b) 1.000 1.000 -1.000
12 (b) -1.000 -1.000 -1.000

Case 2

i xi1(t) xi2 xi3 xi4

1 (b) -1.000 -1.000 -1.000
2 (a) -1.000 1.000 1.000
3 (a) 0.000 0.000 1.000
4 (b) 0.000 -1.000 1.000
5 (a) 0.000 0.000 -1.000
6 (a) 0.000 -1.000 0.000
7 (c) -1.000 0.000 0.000
8 (a) 1.000 -1.000 0.000
9 (b) 0.000 0.000 0.000

10 (b) 1.000 0.000 1.000
11 (d) -1.000 0.000 0.000
12 (b) 0.000 1.000 0.000

TABLE 6.5: A-optimal designs for the single profile factor and main effects (Case 1)
and main & quadratic effects (Case 2) of the three scalar factors for the FLM. The
profile factor represented by a step function basis with nx,1 = 4 basis functions and
the functional parameter by a linear basis. The column of the profile is labelled (a)-(d)

for the optimal functions demonstrated on Figure 6.10.

6.3 FLM involving one profile factor and linear B-spline basis

In this section, the FLM considered is identical to model with one profile factor in (6.2).
The only modification in the settings of the profile factor is the choice a BS basis of de-
gree d = 1, instead of d = 0. For the functional parameters, only the linear basis is con-
sidered. For consistency purposes, the number of runs considered is n ∈ {4, 8, 12} and
the number of basis functions considered is nx,1 ∈ {3, 4, 8, 16, 100}. Knots are equally
spaced and the number of basis functions depends on the length of the knot vector and
the degree of the spline, see (4.3). The objective is to identify A-optimal designs and
study their performance to changes in the settings of the model.

Results are given in Table 6.6, and A-optimal functions are demonstrated in Figures 6.11
and 6.12. Similar to the example in 6.1, the A-optimal designs perform better as the
number of basis functions increases. However, the A-optimal designs for nx,1 = 4 are
at least 90.2% efficient, compared to the the A-optimal design for nx,1 = 100. For in-
stance, the A-optimal design with nx,1 = 16 is 99.7% A-efficient. Meaning that, there is
no potential gain by increasing the number of basis functions even further.
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On the other hand, the functions for the design are less complicated simpler for larger
values of nx,1. For instance, for nx,1 = 8, the chosen functions commonly have four
changes in slope; see Figure 6.11, whereas the functions for nx,1 = 16 have only two
changes; see Figure 6.12. This difference demonstrates the importance of the location
of the breakpoints. For higher values of nx,1, there is more flexibility in the location of
the changes in the functions. For instance, for high nx,1, each chosen function consists of
two constant parts, at the boundaries, joined by a linear component with finite slope. A
comparison with the A-optimality values of the designs found assuming step functions
on Table 6.1, shows that the added complexity of the linear spline basis did not result
in better designs.

n = 4 n = 8 n = 12

nx,1 A-opt A-eff A-opt A-eff A-opt A-eff

3 9.450 0.889 6.224 0.624 4.123 0.609
4 9.314 0.902 4.168 0.931 2.759 0.910
8 8.594 0.978 3.940 0.985 2.571 0.977
16 8.433 0.997 3.895 0.997 2.528 0.994

100 8.405 1.000 3.882 1.000 2.512 1.000

TABLE 6.6: A-optimality values and A-efficiency values with n = 4, 8, 12 for the linear
basis for β2(t) and BS basis of degree d = 1 for x•1(t) for the FLM.
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FIGURE 6.11: Four run A-optimal design for nx,1 = 8, linear basis for β2(t) and BS
basis of degree d = 1 for x•1(t) for the FLM .
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FIGURE 6.12: Four run A-optimal design for nx,1 = 16, linear basis for β2(t) and BS
basis of degree d = 1 for x•1(t) for the FLM.

6.4 FLM involving two profile factors with and without their
interaction

In this section, a FLM that involves two profile factors is considered. The aim is to iden-
tify D-optimal designs for two different scenarios and compare their performance. At
first, the model that contains the intercept and the main effects of the profile factors is
considered. Following that, the procedure is repeated with the addition of the interac-
tion of the profile factors. For only main effects of the two profile factors, the functional
of the profile factors f is,

f T(xi(t)) =
(

1 xi1(t) xi2(t)
)

, (6.7)

with xi1(t) and xi2(t) the profile factors at the ith run of the experiment. For the addition
of the interaction of the profile factors, the functional of the profile factors f is,

f T(xi(t)) =
(

1 xi1(t) xi2(t) xi1(t)xi2(t)
)

, (6.8)

with xi1(t)xi2(t) the interaction at the ith run of the experiment.
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The FLM involving the two profile factors and no interactions takes the form of the
model discussed in Section 5.2 and it is given by,

yi = β1 +
∫ T

0
xi1(t)β2(t) dt +

∫ T
0

xi2(t)β3(t) dt + εi,

i = 1, 2, . . . , n, t ∈ [0, 1], −1 ≤ xij(t) ≤ 1, j = 1, 2.
(6.9)

The FLM involving the interaction of the two profile factors contains the extra interac-
tion term and takes the form of the model in Section 5.3 and it is given by,

yi = β1 +
∫ T

0
xi1(t)β2(t) dt +

∫ T
0

xi2(t)β3(t) dt +
∫ T

0
xi1(t)xi2(t)β4(t) dt + εi,

i = 1, 2, . . . , n, t ∈ [0, 1], −1 ≤ xij(t) ≤ 1, j = 1, 2,
(6.10)

It is assumed that the control of the profile factors is represented by a BS basis of degree
d = 3, i.e., cubic splines. The knot vector consists of four equally spaced interior knots,
i.e., λ = (0.20.0.40, 0.60, 0.80). This means that the number of basis functions for the
profile factors is nx,1 = nx,2 = 3 + 4 + 1 = 8. For the functional parameters, a BS basis
of degree d = 0 and a single knot at t = 0.5 is considered, i.e., nβ,2 = nβ,3 = nβ,4 = 2.
The number of runs is n = 12.

For the model with just the main effects of the two profile factors, the objective value
of a D-optimal design is 0.291. The objective value of a D-optimal design with the ad-
dition of the interaction term, is 0.335. The design found for no interaction, evaluated
under the model with added interaction gives a D-optimality value of 0.361, which is
92.8% D-efficient. An evaluation of the design for the model which includes the inter-
action under the model without interaction, gives a D-optimality value of 0.305, which
is 95.4% D-efficient. This is an indication that the D-optimal design of the FLM with the
interaction is more robust to the choice of model, as it is efficient even under settings
for no interaction.

The functions of the profile factors for the main effects model are either smooth func-
tions or constant functions at the boundaries. For both profile factors, six out of the 12
runs runs are constant functions at the boundaries, and six runs are smooth upward or
downward functions. The optimal functions of xi1(t) and xi2(t), i = 1, 2, . . . 12, for the
model in (6.9) are shown in Figure 6.13 and Figure 6.14.

The addition of the interaction term in the model caused the functions to become
slightly less complicated. Specifically, four out of the 12 runs are smooth upward or
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downward functions, and eight runs are constant functions at the boundaries. The op-
timal functions of xi1(t) and xi2(t), i = 1, 2, . . . 12, for the model in (6.10) are shown in
Figure 6.15 and Figure 6.16.
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FIGURE 6.13: 12 run D-optimal design for x•1(t) of a FLM with two profile factors of
cubic BS basis and four equally spaced knots so that nx,1 = 8, degree d = 0 BS basis

for the functional parameters and no interaction effect considered.
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FIGURE 6.14: 12 run D-optimal design for x•2(t) of a FLM with two profile factors of
cubic BS basis and four equally spaced knots so that nx,1 = 8, degree d = 0 BS basis

for the functional parameters and no interaction effect considered.
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FIGURE 6.15: 12 run D-optimal design for x•1(t) of a FLM with two profile factors of
cubic BS basis and four equally spaced knots so that nx,1 = 8, degree d = 0 BS basis

for the functional parameters and interaction effect considered.
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FIGURE 6.16: 12 run D-optimal design for x•2(t) of a FLM with two profile factors of
cubic BS basis and four equally spaced knots so that nx,1 = 8, degree d = 0 BS basis

for the functional parameters and interaction effect considered.

To investigate further the effect of the interaction term, the settings of the basis of the
functional parameters are modified. For instance, the parameters of the first profile fac-
tor and the interaction term are assumed to be represented by a BS basis of degree d = 3
with a single knot at t = 0.5, i.e., nβ,2 = nβ,4 = 5. The parameter of the second profile
factor is still represented by a BS basis of degree d = 0 with a single knot at t = 0.5, i.e.,
nβ,3 = 2. The number of runs remains unchanged at n = 12 and the objective is still to
identify D-optimal designs.

For the model with just the main effects of the two profile factors, the objective value
of a D-optimal design is 3.183. Thus, the use of a cubic spline for the parameter basis of
the first profile factor caused an increase in the objective value of the D-optimal design.
Moreover, the optimal functions of the profile factor are more complicated; see Figure
6.18. The functions of the second profile factor have not changed.

For the model that involves the interaction of the profile factors, the objective value of a
D-optimal design is 125.833. In the first example in this section, the D-optimality values
of the models with and without the interaction were close. However, the use of cubic
spline for the parameters increase the objective value of the model with the interaction.
In addition, the functions of the profile factor xi1(t), i = 1, 2, . . . 12, are more wiggly; see
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Figure 6.17. On top of that, the functions of xi1(t), i = 1, 2, . . . 12, for the model without
interaction are more complicated compared to the functions for the model with the in-
teraction. This is noticeable from the values in red in Figure 6.18 and Figure 6.17 which
represent the penalised complexity value of each function, using the squared differ-
ences penalty method from Section 5.10. For design functions for the model with no
interaction the P-spline penalty is 14.667 on average, while for the model with an in-
teraction the penalty is 8.548 on average. The higher the penalty, the more complicated
the functions; see Section 5.10.

The design found for no interaction, evaluated under the model with added interaction
gives a D-optimality value of 184.282, which is 68.3% D-efficient. An evaluation of the
design for the model which includes the interaction under the model without interac-
tion gives a D-optimality value of 4.049, which is 78.6% D-efficient. As in the first part
of the section, the design with the interaction is more robust to the choice of model.
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FIGURE 6.17: 12 run D-optimal design for x•1(t) of a FLM with two profile factors of
cubic BS basis and four equally spaced knots so that nx = 8, degree d = 3 and d = 0
BS basis for the functional parameters and no interaction effect considered. The values

in red correspond to the complexity value of each function.
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FIGURE 6.18: 12 run D-optimal design for x•1(t) of a FLM with two profile factors of
cubic BS basis and four equally spaced knots so that nx = 8, degree d = 3 and d = 0
BS basis for the functional parameters and interaction effect considered. The values in

red correspond to the complexity value of each function.

6.5 Bayesian approach to a FLM involving one profile factor

In this section, the FLM considered is identical to model with one profile factor from
(6.2). The control of the profile factor is represented via step functions, through BS ba-
sis of degree d = 0. The uniqueness of the example in this section is that the Bayesian
approach via a roughness penalty is followed. Thus, the aim is to identify Bayesian
A- and D- optimal designs, maximising (5.41) and (5.44), respectively. After that, it is
desired to investigate the effect of Λ on the performance of the optimal designs. The
prior choice for variance is an inverse gamma distribution such that, σ2 ∼ IG(2, 1). The
latter prior distribution achieves small precision matrix V−1 = ΛR0.

The Bayesian approach for fitting FLMs is connected to the use of roughness penal-
ties to penalise the complexity of functions; see Section 5.6. In addition, the roughness
penalties are defined as integrals over time of the second derivative of the functional
parameters. This means that, if a linear basis for the functional parameters is consid-
ered, then the roughness matrix has all values being zero. This is because the second
derivatives of linear terms are zero, thus, the problem is equivalent to the frequentist
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approach.

For the latter reason, the functional parameter is represented by a quadratic basis for
which D2b2(t) = (0, 0, 2) and matrix Rp has a non zero entry, i.e., r33 = 4. The choice of
smoothing values considered are Λ ∈ {0.01, 1, 10} and the number of basis functions
for the profile factor are nx,1 ∈ {3, 4, 8}. The choice of runs for the experiment are
n ∈ {4, 12}. The objective values for the Bayesian A- and D- optimal designs are shown
in Table 6.7 and Table 6.8, respectively.

Λ = 0.01 Λ = 1 Λ = 10

nx,1 n = 4 n = 12 n = 4 n = 12 n = 4 n = 12
3 58.183 39.846 9.343 3.298 8.880 2.830
4 57.772 36.233 9.257 3.083 8.801 2.622
8 55.827 34.933 9.002 3.054 8.544 2.591

TABLE 6.7: A-optimality values under the Bayesian approach for n ∈ {4, 12} and
Λ ∈ {0.01, 1, 10}, for the quadratic basis of β2(t) for the FLM.

Λ = 0.01 Λ = 1 Λ = 10

nx,1 n = 4 n = 12 n = 4 n = 12 n = 4 n = 12
3 2.329 0.995 0.740 0.320 0.416 0.180
4 2.236 0.981 0.707 0.310 0.398 0.174
8 2.236 0.981 0.707 0.310 0.398 0.174

TABLE 6.8: D-optimality values under the Bayesian approach for n ∈ {4, 12} and
Λ ∈ {0.01, 1, 10}, for the quadratic basis of β2(t) for the FLM.

At first, as Λ increases, the designs found are less complicated, i.e., less changes in the
step functions. For Bayesian A-optimal designs and small values of Λ, there are at most
two changes in the step functions. Moreover, for small values of Λ, the A-optimal de-
signs are similar to the A-optimal designs in the frequentist approach; see Figure 6.19.
However, when Λ increases, there is at most one change in the step functions, and the
A-optimal designs are similar to the A-optimal designs for the linear basis in the fre-
quentist approach; see Figure 6.20. This is because, big values of Λ penalise wiggly
functions and the only term to be penalised is the quadratic term.

For Bayesian D-optimal designs, even small value of penalty penalise the complexity
of functions enough. For instance, the functions of the profile factor have at most one
change, for every choice of Λ ∈ {0.01, 1, 10} and n ∈ {4, 12}. For an example of D-
optimal functions for small penalty Λ = 0.01; see Figure 6.21.
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To add a point, findings are in line with the frequentist approach conclusions in Section
6.1. The change in the A-optimality objective values from four to eight basis functions
is not significant and there is no change in the D-optimality objective values.
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FIGURE 6.19: Four run Bayesian A-optimal design for nx,1 = 4, Λ = 0.01 and
quadratic basis for β2(t) for the FLM.
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FIGURE 6.20: Four run Bayesian A-optimal design for nx,1 = 4, Λ = 10 and quadratic
basis for β2(t) for the FLM.
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FIGURE 6.21: Four run Bayesian D-optimal design for nx,1 = 4, Λ = 0.01 and
quadratic basis for β2(t) for the FLM.
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6.6 Bayesian design criterion tailored for profile factors to a
FLM with one profile and two scalar factors

In this section, a FLM with one profile and two scalar factors is considered. The aim of
the example is to identify Bayesian A-optimal designs under the criterion in (5.41) and
the Bayesian criterion tailored to profile factors in (5.46). The functional of the profile
factors f is,

f T(xi(t)) =
(

1 xi1(t) xi2 xi3

)
, (6.11)

with xi1(t) the single profile factor at the ith run of the experiment, and xi2 and xi3 the
scalar factors at the ith run of the experiment. Thus, the FLM takes the form,

yi = β1 +
∫ T

0
β2(t)xi1(t) dt+ β3xi2 + β4xi3 + εi, i = 1, ..., n, t ∈ [0, 1], −1 ≤ xi(t) ≤ 1.

(6.12)
For the profile factor, it is assumed that control is represented by a BS of degree d = 1
with a single knot at t = 0.5. For the functional parameter a linear basis is considered,
and the number of runs of the experiment is n = 12.

The choice of Λ does not affect the designs, i.e., the designs are invariant to the value
of Λ. This is because in the roughness matrix that includes the second derivatives, all
the values are zero. The Bayesian design criterion that is tailored for profile factors
requires the calculation of the matrix A which depends on the matrix C(t). The matrix
C(t) includes the functions and parameters of interest. It is assumed that interest lies in
the functional parameter and hence, the linear combination θ1 + θ2t. Thus, the matrix
C(t) is a 5× 4 matrix such that,

C(t) =

 I3 03

0T
3 1

0T
3 t

 ,

and

A =
∫ 1

0
C(t)C(t)T dt =

 I3 03 03

0T
3 1 1/2

0T
3 1/2 1/3

 .

To evaluate the performance of the Bayesian design criterion that is tailored for profile
factors, the optimal designs are evaluated under the alternative criteria; see Table 6.9.
The optimal designs under the two criteria are different. The efficiency values shown
in brackets in Table 6.9, prove that the optimal designs are performing well under both
criteria. However, the efficiency value of the optimal design under the Bayesian A-
optimality design criterion is slightly higher. Thus, the optimal design identified under
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the Bayesian A-optimality design criterion, is more robust to the choice of design crite-
rion.

Tailored criterion A-optimality

Tailored design 4.228 (1.000) 4.362 (0.988)
A-optimal design 4.254 (0.994) 4.310 (1.000)

TABLE 6.9: Objective values of the Bayesian A-optimality and Bayesian tailored to
profile factors design criteria, with BS basis of degree d = 1 for x•1(t) and single knot
at t = 0.5, linear basis for β2(t) and n = 12. Efficiency values are shown in brackets

after an evaluation of the optimal designs under the alternative criterion.

For the Bayesian A-optimality design criterion, there are five unique functions of the
profile factor; see Figure 6.22. The rest are repeated functions. Moreover, the design
values for the scalar factors are always at the boundaries. The combinations of the
functions of the profile factor and the values of the scalar factors under the Bayesian
A-optimality design criterion are given in Table 6.10.

i xi1(t) xi2 xi3

1 (a) -1.000 1.000
2 (b) -1.000 1.000
3 (c) 1.000 -1.000
4 (a) 1.000 1.000
5 (b) -1.000 1.000
6 (c) 1.000 1.000
7 (b) 1.000 -1.000
8 (e) -1.000 -1.000
9 (a) -1.000 -1.000

10 (d) 1.000 1.000
11 (c) -1.000 -1.000
12 (d) 1.000 -1.000

TABLE 6.10: 12 run optimal design of the Bayesian A-optimality design criterion. For
the functions of the profile factor labelled (a)-(e), refer to Figure 6.22

For the Bayesian design criterion tailored to profile factors, there are four unique func-
tions of the profile factor; see Figure 6.23. The rest are repeated functions. The design
values for the scalar factors are not always at the boundaries. The combinations of the
functions of the profile factor and the values of the scalar factors under the Bayesian
design criterion tailored to profile factors are given in Table 6.11.
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i xi1(t) xi2 xi3

1 (a) 1.000 1.000
2 (b) -1.000 0.443
3 (a) -1.000 -1.000
4 (c) -1.000 -1.000
5 (d) -1.000 -1.000
6 (c) 1.000 1.000
7 (d) 1.000 1.000
8 (b) 0.925 -1.000
9 (c) 1.000 -0.483

10 (c) -1.000 1.000
11 (d) -1.000 -1.000
12 (a) 1.000 1.000

TABLE 6.11: 12 run optimal design of the Bayesian design criterion tailored to profile
factors. For the functions of the profile factor labelled (a)-(d), refer to Figure 6.23
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FIGURE 6.22: Five unique functions of the profile factor under the Bayesian A-
optimality design criterion, with BS basis of degree d = 1 for x•1(t), single knot at

t = 0.5 and linear basis for β2(t).
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FIGURE 6.23: Four unique functions of the profile factor under the Bayesian design
criterion tailored to profile factors, with BS basis of degree d = 1 for x•1(t), single knot

at t = 0.5 and linear basis for β2(t).

6.7 BS basis for the functional parameters

In the previous examples in this chapter, focus has been given on how the performance
of optimal designs is affected by changes in the complexity of settings of the profile
factors. For this reason, the basis of the functional parameters are kept simple; for in-
stance, linear and quadratic. In this section, the aim is to investigate the performance
of the A-optimal designs under the assumption of more complicated basis for the func-
tional parameters β(t). For the investigation, a FLM involving a single profile factor
that takes the form of the model in (6.2) is considered. The number of runs of the ex-
periment is n = 12.

For the profile factor, it is assumed that control is represented through a cubic BS basis,
i.e., d = 3. The functional parameter is assumed to be represented by a linear BS basis,
i.e., d = 1. For the basis of the profile factor, the knot vector consists of 19 equally
spaced knots. Thus, the number of basis functions is nx,1 = 23; see (4.3). For the basis
of the functional parameters, the number of basis functions is nβ,2 ∈ {3, 4, 5}; defined
from the choice of 1-3 equally spaced knots.
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Due to the increase in complexity of the basis of the functional parameter, the functions
of the profile factor are more complicated. For nβ,2 = 3, the functions are similar to the
functions found for a quadratic basis, but slightly smoother due to the use of a B-spline
basis; see Figure 6.24. As the number of basis functions for the functional parameters
increases, the functions are getting more complicated, i.e., more wiggly; see Figure 6.25
and Figure 6.26. The complexity of the functions is calculated using the squared differ-
ences penalisation method from Section 5.10, and the values are shown on the figures
in red. The average wiggliness values of the functions when nβ,2 = 3, 4, 5 are 10.667,
14.667 and 20.000, i.e., average wiggliness increases as nβ,2 increases.

The objective values of the A-optimal designs for the three scenarios are in Table 6.12.
The objective values increase as the number of basis functions increases. This makes
sense because the number of parameters increases. To investigate if the increase in the
number of parameters is useful, the optimal designs are evaluated under the settings
of nβ,2 = 3 basis functions; see the last column of Table 6.12. From the investigation,
the complicated designs have higher variance when evaluated under a simpler model.
Hence, a large number of basis functions for the functional parameters is not needed,
unless the response surface is or is thought to be more complicated. Hence, the number
of basis functions needs to be chosen based on the flexibility needed to estimate the
functions of the profile factors.

nx,1 nβ,2 A-opt A-opt evaluated for nβ,2 = 3
23 3 5.386 5.386
23 4 13.062 7.662
23 5 26.120 11.281

TABLE 6.12: A-optimality objective values for cubic BS basis for the single profile
factor, linear BS basis for the functional parameter, the number of basis functions for
the profile factor constantly being nx,1 = 23, the basis functions for the parameter
changing between nβ,2 = 3, 4, 5 and n = 12 runs. The last column contains evaluations

of the A-optimal designs under the setting of nβ,2 = 3.
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FIGURE 6.24: 12 run A-optimal design with BS basis for x•1(t) and β2(t), with nx,1 = 23
and nβ,2 = 3. The values in red correspond to the complexity value of each function.
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FIGURE 6.25: 12 run A-optimal design with BS basis for x•1(t) and β2(t), with nx,1 = 23
and nβ,2 = 4. The values in red correspond to the complexity value of each function.
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FIGURE 6.26: 12 run A-optimal design with BS basis for x•1(t) and β2(t), with nx,1 = 23
and nβ,2 = 5. The values in red correspond to the complexity value of each function.

6.8 Conclusion

In this chapter, functional linear models were investigated and functions of profile fac-
tors for A- and D-optimal designs have been identified. An investigation on how the
performance of the optimal designs is affected by changes in the number of runs, the
number of basis functions and the basis system for the parameters has been carried out.
Control of the profile factors was assumed to be represented by B-spline basis of certain
degree and knots. Moreover, the basis for the functional parameters was assumed to
be either power series basis or B-spline basis.

It has been showed that increasing the number of runs, improves the performance of
designs in terms of A- and D-optimality, but the functions have more repetitions. If
the basis for the parameters is linear, increasing the number of basis functions for the
profile factors does not improve the performance of the designs significantly. Thus, a
large number of basis functions is not needed. However, if the basis for the parameters
is quadratic, the improvement is more significant, but huge number of basis functions
is similarly unnecessary. As the number of basis functions gets big, the improvement
by further increase in basis functions is getting less. To add a point, the A- and D-
optimal designs are more complicated as the basis for the parameters becomes more
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complicated, i.e., from linear to quadratic. A further increase in the complexity of the
parameters using B-spline basis have been considered, and the functions of the profile
factors were even more complicated.

Bayesian optimal designs have been identified using the roughness penalty approach.
An investigation on the sensitiveness of the optimal designs in changes to the smooth-
ing parameter have been carried out. The latter allowed a comparison between the
frequentist and the Bayesian optimal designs. From the investigation, the conclusion
was that for small values of penalty Λ, the Bayesian designs are similar to the frequen-
tist designs and when the penalty Λ is big, the designs are similar to the designs with
a linear basis. This happens because Λ penalises the quadratic term. Finally, opti-
mal designs for the Bayesian criterion tailored to the design of the FLM that tackles
to minimise the average posterior variance of the functional parameters β(t) directly
averaged with respect to time have been identified.
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Chapter 7

Design of Experiments for
functional generalised linear models

Generalised linear models (GLMs) are an extension to the common linear model. As
their name suggests, they generalise the idea of linear models, by using a link func-
tion to relate the linear model to response types that are not normally distributed; see
Dobson and Barnett (2018). Following this concept, the aim of this chapter is to gen-
eralise and extend the functional linear model (FLM), to form functional generalised
linear models (FGLM). The FGLM will then be able to model a response type that has
a distribution other than normal, as a function of profile factors.

GLMs are described in Section 7.1. After that, FGLMs are discussed in Section 7.2, and
the FLM methodology using basis functions in extended to FGLMs. The design prob-
lem is revised, and the challenge with optimality functions depending on the unknown
parameters is addressed. For this reason, the pseudo-Bayesian approach, that assumes
prior knowledge for the parameters, is followed. The pseudo-Bayesian approach is
discussed in Section 7.3. However, identifying pseudo-Bayesian optimal designs is
not straightforward, because they often result from analytically intractable, and usu-
ally high-dimensional integrals. The Monte Carlo and the quadrature approximation
methods, used to integrate numerically the intractable integrals, are discussed in Sec-
tion 7.4. The roughness penalty approach is extended to the FGLMs in Section 7.5.

Functional logistic and functional Poisson models depending on profile factors are con-
sidered in Sections 7.6 - 7.10. Sensitivity studies are raised, to investigate the perfor-
mance of the pseudo-Bayesian optimal designs, in different settings of the profile fac-
tors and the functional parameters.
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Moreover, FGLMs are computationally more expensive than FLMs. Thus, over-complicated
settings for the profile factors and the functional parameters are avoided.

7.1 Introduction to GLMs

GLMs are a generalisation to the traditional linear models to consider response vari-
ables whose distribution is other than normal; see Dobson and Barnett (2018). They
are widely used due to their flexibility in the response distribution and their variety
of data types, i.e., binary or categorical responses; see Russell et al. (2009) and McGree
and Eccleston (2012). Moreover, GLMs consist of three components which are defined
below and discussed in detail in Agresti (2018, Chapter 3). For the rest of this section,
the notation used is the notation from the linear model discussed in Chapters 1 and 2
and specifically equation (1.4).

1. Random component: The first component of the GLMs is the random compo-
nent. It refers to the distribution of the response yi, with i representing the ith run
of the experiment for i = 1, 2, . . . , n. The distribution of the response variable is
formed from a distribution that is a member of the exponential family of distribu-
tions (EFDs); see Wood (2017a, p. 103). The EFDs includes several distributions
including the normal, Bernoulli, binomial, Poisson and gamma distributions. For
instance, linear models are a special case of a GLM with normally distributed
responses. In the examples later in this chapter, primary focus is given to the
Bernoulli and Poisson distributions.

2. Systematic component: The second component of the GLMs is the systematic
component. It refers to the linear predictor of the model, that relates a vector η to
the controllable factors such that,

η = Fβ.

The matrix F and the vector β are the model matrix and vector of parameters
from (1.4), and η is a n× 1 vector with the ith entry being,

ηi = f (xi)
T β, i = 1, 2, . . . , n.

3. Link function: The third and final component of the GLMs is the link function,
that is is a one to one transformation g(µi). It provides a link between the random
and the systematic components, with µi the mean of the ith response, i.e., E(yi) =

µi. This means that, the mean response is linked to the linear predictor through
the link function, such that,

g(µi) = ηi = f (xi)
T β, i = 1, 2, . . . , n.
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The choice of link function depends on the distribution of the responses. For ex-
ample, the logit function is a link for the Bernoulli and binomial distributions, and
the log function is a link for the Poisson distribution. In examples demonstrated
later in this chapter, the choice of link function is logit for Bernoulli distributed
responses, known as logistic model, and log for Poisson distributed responses,
known as Poisson model. The logistic and the Poisson models are described in
detail in Dobson and Barnett (2018, Chapter 7) and Dobson and Barnett (2018,
Chapter 9), respectively.

The estimates of the parameters β can be found by solving U(β) = 0, with U(β) the
score functions, derived by differentiating the log-likelihood with respect to the param-
eters; see Wood (2017a, p. 106). The score functions are given by,

U(β, X) = FTΠ(y− µ) (7.1)

which depends on β through the systematic component and the mean. The matrix Π is
a n× n diagonal matrix with entries,

πii =
1

g′(µi)

1
Var(yi)

, i = 1, 2, . . . , n,

and X is the design matrix, as discussed in Chapter 2. The Fisher information is a
measure for the amount of information about parameters provided by experimental
data. It is a well-established characteristic of an experimental design used to assess and
optimize the design for maximizing the expected accuracy of parameter estimates. The
Fisher information matrix is given by,

I(β, X) = FTW F (7.2)

where W is an n× n diagonal matrix with entries,

wii =
1

g′(µi)2
1

Var(yi)
, i = 1, 2, . . . , n.

Furthermore, since y follows a distribution which is a member of the exponential fam-
ily of distributions, then using the log likelihood, the asymptotic variance-covariance
matrix of the parameter estimators is given by the inverse of the Fisher information
matrix,

Var(β̂) = (FTW F)−1, (7.3)

discussed in Wood (2017a, p. 106-108).
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Finally, the objective functions for A- and D-optimality, discussed in detail in Section
2.2 of Chapter 2, are updated to become,

ΨA(X) = tr
[
I(β, X)−1] = tr

[
(FTW F)−1] (7.4)

ΨD(X) = det
[
I(β, X)

]−1/p
= det

[
FTW F

]−1/p. (7.5)

The Fisher information matrix, thus, the designs, depend on the unknown model pa-
rameters. As a result, identifying optimal experimental designs is not as straightfor-
ward as for linear models. The difficulty of obtaining optimal designs, and an approach
to incorporate prior information for the model parameters is discussed in Section 7.3.

7.2 FGLM development

The motivation in this section is to extent the FLM methodology, to FGLMs. FGLMs
are models that model a response variable that belongs to the exponential family of
distributions, as a function of profile factors; see Marx and Eilers (1999) and Morris
(2015). A way of modelling the relationship between the response that follows an EFD
and J profile factors, is a FGLM given by,

yi ∼ EFD(µi, φ/wi)

g(µi) =
∫ T

0
f T(xi(t)) β(t) dt = ηi, i = 1, 2, . . . , n, (7.6)

with f T(xi(t)) and β(t) as in model (3.7), µi the mean of the response yi, φ the disper-
sion parameter with wi the weights of the dispersion parameter, and i the ith run of the
experiment. In matrix form, the additive FGLM is an extension to the model in (5.1)
and it is given by,

y ∼ EFD(µ, φA)

g(µ) =
∫ T

0
f T(X(t)) β(t) dt = η, (7.7)

with f T(X(t)) and β(t) as in model (5.1), µ the n × 1 vector containing the mean of
the responses, φ the dispersion parameter, and A the n× 1 vector of the weights of the
dispersion parameter with the ith entry being 1/wi, i = 1, 2, . . . , n.

It is straightforward to notice that the linear predictor in models (7.6) and (7.7) is iden-
tical to the right-hand side of models (3.7) and (5.1). Thus, the functional parameters
and the profile factors can be represented as a linear combination of basis functions,
exactly as the basis expansions in (3.11) and (3.12). A substitution of the basis function
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expansion into the FGLM from (7.7) updates the linear predictor to,

g(µ) = Zθ (7.8)

with Z the n× ∑Q
q=1 nβ,q model matrix and θ the ∑Q

q=1 nβ,q × 1 vector of unknown pa-
rameters, as defined in (5.10).

Remember from Chapter 5 that, the model matrix Z is the solution to an integral with
respect to time, of the product of the function f T(X(t)) and the vector of basis functions
bT(t), ∫ T

0
f T(X(t)) bT(t) dt.

As before, Z is partitioned in Q column blocks, with the qth column block a n × nβ,q

matrix Z•q, which is the solution to an integral of the form,

Z•q =
∫ T

0
fq(X(t)) bT

q (t) dt

=
∫ T

0
fq

(
x•1(t) x•2(t) · · · x•J(t)

)
bT

q (t) dt

=
∫ T

0
fq

(
Γ1c1(t) Γ2c2(t) · · · ΓJcJ(t)

)
bT

q (t) dt,

q = 1, 2, . . . , Q,

as in (5.12). The form of the integrals depends on the specification of the function of the
profile factors f , i.e., main effects, higher order polynomials and interactions. Finally,
bq(t) is the vector of basis functions from the basis expansion of the qth functional pa-
rameter, as before. For details on the expansion of each partition of the model matrix
refer to Chapter 5.

7.3 Pseudo-Bayesian A- and D- optimal designs

The FGLM is an extension to the GLM discussed in Section 7.1 with model matrix Z
instead of F and unknown parameters θ instead of β. Thus, equations for the score
functions, Fisher information matrix, variance of the parameter estimates, and hence
the A- and D- optimal objective functions are extensions to the equations in Section 7.1.

Following the equations from the GLM case, the score functions for the FGLM become,

U(θ, Γ) = ZTΠ(y− µ) (7.9)
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which depends on θ through the systematic component and the mean and with Π being
an n× n diagonal matrix with entries,

πii =
1

g′(µi)

1
Var(yi)

, i = 1, 2, . . . , n.

Similarly, following the derivation from (7.2), the Fisher information matrix for the
FGLM becomes,

I(θ, Γ) = ZTWZ (7.10)

with W the n× n diagonal matrix with entries,

wii =
1

g′(µi)2
1

Var(yi)
, i = 1, 2, . . . , n.

For GLMs, and thus for FGLMs, identifying optimal designs is not straightforward.
This is because the Fisher information matrix is a function of the unknown parameters
θ. As a consequence, the design also depends on the unknown parameters. For this
reason, in order to identify optimal experimental designs for GLMs, FGLMs, or gener-
ally for models for which the information matrix depends on the unknown parameters,
prior information of the model parameters are required.

This problem can be approached in different ways, including locally optimal designs,
sequential designs, maximin designs, and pseudo-Bayesian optimal designs; see Sec-
tion 2.5. In this chapter, the approach that is followed to incorporate the prior infor-
mation into the model and define the optimality objective functions is the pseudo-
Bayesian approach; see Chaloner and Verdinelli (1995), Overstall and Woods (2017),
citetwoods2017, and Section 2.5. Following the results from Section 2.5, the pseudo-
Bayesian A- and D- optimality objective functions are defined as,

ΨA(Γ) = Eθ

{
tr
[
I(θ, Γ)−1]}

=
∫

Θ
tr
[
I(θ, Γ)−1]π(θ) dθ

=
∫

Θ
tr
[
(ZTWZ)−1]π(θ) dθ,

(7.11)

ΨD(Γ) = Eθ

{
det
[
(I(θ, Γ)

]−1/p
}

=
∫

Θ
det
[
(I(θ, Γ)

]−1/p
π(θ) dθ

=
∫

Θ
det
[
ZTWZ

]−1/p
π(θ) dθ

= exp
{ ∫

Θ
− 1

p
log
(
det
[
ZTWZ

])
π(θ) dθ

}
,

(7.12)
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with p = ∑Q
q=1 nβ,q the total number of basis functions of the functional parameters.

It is usually more convenient, and in general advisable, to integrate the logarithm of
the determinant; see Atkinson et al. (2007, Chapter 11). Hence, designs Γ∗ ∈ X that
minimise the pseudo-Bayesian A- and D- optimality objective functions,

ΨA(Γ
∗) = min

Γ∈X

∫
Θ

tr
[
(ZTWZ)−1]π(θ) dθ, (7.13)

ΨD(Γ
∗) = min

Γ∈X
exp

{ ∫
Θ
− 1

p
log
(
det
[
ZTWZ

])
π(θ) dθ

}
, (7.14)

are known as pseudo-Bayesian A- and D- optimal designs, respectively; see Chaloner
and Verdinelli (1995), Woods et al. (2006), and Van De Ven and Woods (2014).

The challenge in identifying pseudo-Bayesian optimal designs is that the expectation of
the objective functions with respect to the prior distribution, results from analytically
intractable, and usually high-dimensional integrals. To overcome this challenge, such
objective functions must be approximated numerically. Suitable numerical integration
methods to approximate the intractable integrals, are discussed in the next section.

7.4 Approximation methods for intractable integrals

Up to this point, optimal experimental designs were identified from analytically tractable
objective functions. For pseudo-Bayesian optimal designs, the expectation of the objec-
tive functions with respect to the prior distribution often result from analytically in-
tractable and high-dimensional integrals of the form in (2.29).

In this scenario, the integral of the expectation of the objective functions with respect
to the prior distribution is approximated numerically. Numerical integration refers
to methods that compute the value of the integrable function at a finite number of
points. Thus, a higher number of points increases the approximation accuracy; see Gel-
man et al. (2013, Chapter 10). The methods discussed and applied in this chapter are:
Monte Carlo approximation which is a stochastic method; and quadrature approxima-
tion which is a deterministic method.

7.4.1 Monte Carlo approximation

Monte Carlo approximation is a stochastic method that evaluates numerically the ex-
pectation of a general function, as in in (2.29). It uses random samples, drawn from the
desired distribution; see Caflisch (1998), in this case the prior distribution of the param-
eters, π(θ). After generating a reasonable number of random samples B from the prior
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distribution, the expectation of the objective function is approximated as,

Ψ(Γ) = Eθ

{
ψ(θ, Γ)

}
=
∫

Θ
ψ(θ, Γ) π(θ) dθ ≈ 1

B

B

∑
b=1

ψ(θb, Γ), (7.15)

with ψ(θb, Γ) the objective function evaluated at the parameter random sample θb for
b = 1, 2, . . . , B. According to the law of large numbers that is discussed by Lapeyre
(2007), as the number of random samples becomes larger, the approximation gets closer
to the actual expectation,

1
B

B

∑
b=1

ψ(θb, Γ)→ Eθ

{
ψ(θ, Γ)

}
, as B→ ∞.

7.4.2 Quadrature approximation

Quadrature approximation is a weighted version of the approximation in (7.15), with
the integral evaluated at selection points. The approximation is defined as,

Ψ(Γ) = Eθ

{
ψ(θ, Γ)

}
=
∫

Θ
ψ(θ, Γ) π(θ) dθ ≈

B

∑
b=1

ωb ψ(θb, Γ), (7.16)

with θb and ωb for b = 1, 2, . . . , B, being abscissas and weights, respectively; see Got-
walt et al. (2009). As discussed in Gelman et al. (2013, Chapter 10), each weight value
ωb represents the space volume that is represented by the corresponding parameter
point θb.

In literature, different quadrature rules exist, that tackle both bounded and unbounded
integrals. In addition, depending on the form and the characteristics of the integrand,
there may be a specific quadrature rule that is more suitable and hence, more likely to
provide a good approximation. For instance, when the prior distribution is assumed
to follow a normal distribution, the Gauss-Hermite quadrature rule is followed, and
when the prior is assumed to be uniformly distributed, the Gauss-Legendre quadra-
ture rule is followed. Both the Gauss-Hermite and the Gauss-Legendre quadrature
rules are for one-dimensional integrals. However, the rules can be extended to multi-
variate integrals using Cartesian product grids or sparse grids. These are formulated
in the mvQuad package (Weiser, 2016), in the R software.

Gauss-Hermite is a quadrature rule with infinite domain, that is based on Hermite
polynomials; see Salzer et al. (1952). For a general function ψ̃(θ, Γ), it approximates
integrals of the form, ∫ ∞

−∞
exp(−θTθ) ψ̃(θ, Γ) dθ.
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By definition, the approximation of the integrals of the above form is discussed in Liu
and Pierce (1994) and it is given by,

∫ ∞

−∞
exp(−θTθ) ψ̃(θ, Γ) dθ ≈

B

∑
b=1

ωb ψ̃(θb, Γ), (7.17)

with B the number of quadrature points, θb the abscissas, and ωb the weights. Thus, to
approximate the required integral in (2.29), the approximation takes the form,∫ ∞

−∞
exp(−θTθ) ψ̃(θ, Γ) dθ =

∫ ∞

−∞
exp(−θTθ) {exp(θTθ) ψ(θ, Γ)π(θ)} dθ

≈
B

∑
b=1

ωb exp(θT
b θb) ψ(θb, Γ) π(θb),

(7.18)

with ψ̃(θ, Γ) = exp(θTθ) ψ(θ, Γ) π(θ), and a normal prior distribution with mean µ0

and variance Σ0, such that π(θ) ∼ N(µ0, Σ0). Depending on the choice of parameters
for the prior, the abscissas and the weights are rescaled. The Gauss-Hermite quadra-
ture rule is formulated in the mvQuad package (Weiser, 2016), in the R software.

Gauss-Legendre is a quadrature rule with finite domain, that is based on Legendre
polynomials; see Abramowitz and Stegun (1964) and Lether (1978). According to Hale
and Townsend (2013), Gauss-Legendre is the most commonly used rule. For a general
function ψ̃(θ, Γ), it approximates integrals over the interval [l, u] of the form,∫ u

l
ψ̃(θ, Γ) dθ,

for values l and u representing the lower and upper intervals of the parameter. The
approximation of integrals of the form above is given by Hale and Townsend (2013)
such that, ∫ u

l
ψ̃(θ, Γ) dθ ≈

B

∑
b=1

ωb ψ̃(θb, Γ), (7.19)

with B the number of quadrature points, θb the abscissas, and ωb the weights, as before.
Following the latter definition, the usually intractable integral in (2.29), is approximated
as, ∫ u

l
ψ̃(θ, Γ) dθ =

∫ u

l
ψ(θ, Γ)π(θ) dθ

≈
B

∑
b=1

ωb ψ(θb, Γ) π(θb),
(7.20)

with ψ̃(θ, Γ) = ψ(θ, Γ) π(θ), and a uniform prior distribution with parameters l and u
representing the lower and upper intervals, such that π(θ) ∼ U(l, u). According to the
interval values, the domain of the integral changes, and the abscissas and the weights
are rescaled. The Gauss-Legendre quadrature rule is also formulated in the mvQuad
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package (Weiser, 2016).

In conclusion, high dimensional integrals require a large number of quadrature points
to accurately approximate the solution. With that being said, the computational time
increases and hence, finding optimal experimental designs may be computationally
expensive.

7.5 FGLM roughness penalty approach

In this section, the aim is to expand the roughness penalty approach discussed in Sec-
tion 5.5, to the FGLMs. The parameter estimator and an asymptotic approximation
to the variance-covariance matrix of the parameter estimators are derived using the
score equations and the Fisher information matrix; see Sections 7.1 and 7.3. To incor-
porate a roughness penalty, instead of maximising the log-likelihood, the penalised
log-likelihood is maximised. The penalised log-likelihood p(θ) is defined as,

p(θ) = l(θ)−ΛθTR0θ, (7.21)

with l(θ) the log-likelihood, Λ > 0 the scalar smoothing parameter, and R0 the matrix
that is representing the roughness penalties, which is a ∑Q

q=1 nβ,q × ∑Q
q=1 nβ,q block di-

agonal matrix; as in (5.32) in Section 5.5. Thus, the estimating equations are updated
to,

U(θ, Γ) = ZTΠ(y− µ)− 2ΛR0θ, (7.22)

with Π as in (7.9). After that, the information matrix is updated to,

I(θ, Γ) = ZTWZ + ΛR0 (7.23)

with W as in (7.10). The connection with the Bayesian approach is that V−1 = ΛR0,
which comes from maximising the estimating equation in (7.21) and from the posterior
mode when the prior mean is centered around zero.

7.6 Functional logistic model involving one profile factor and
step function basis

In this example, a functional logistic model depending on the intercept, and a single
profile factor is examined. Thus, the functional of the profile factors f is,

f T(xi(t)) =
(

1 xi1(t)
)

, (7.24)
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with xi1(t) the single profile factor at the ith run of the experiment. The model in (7.6)
is simplified such that,

yi ∼ Bernoulli(µi)

ηi = β1 +
∫ T

0
β2(t)xi1(t) dt, i = 1, 2, . . . , n, t ∈ [0, 1], −1 ≤ xi1(t) ≤ 1, (7.25)

with link function g(µi) = log
(

µi
1−µi

)
.

It is assumed that control of the profile factor is represented via a step function basis,
i.e., BS basis of degree d = 0. The basis for the functional parameters is assumed to be
linear, i.e.,

θT =
(

θ1 θ2

)
=
(

θ1 θ21 θ22

)
, (7.26)

and quadratic, i.e.,
θT =

(
θ1 θ2

)
=
(

θ1 θ21 θ22 θ23

)
. (7.27)

The objective of the experiment is represented through the A-optimality objective func-
tion from (7.4). The method of approximation of the integral (7.11) is quadrature, for
normal prior distribution with mean 0 and variance 1,

θ1 ∼ N(0, 1), θ21 ∼ N(0, 1), θ22 ∼ N(0, 1), θ23 ∼ N(0, 1). (7.28)

As for the FLM, a sensitivity study is carried out to investigate how the number of runs,
the number of basis functions of the profile factor, and the parameter basis affect the
final designs. The choice of runs is n ∈ {4, 8, 12}, and the choice of the number of basis
functions for the profile factor is nx,1 ∈ {2, 3, 4, 8, 16, 100}. The constraints from Section
5.8 still apply. In every case, 1000 random starts are investigated.

The study exhibits similar results to the equivalent FLM example in Section 6.1. Firstly,
for the linear basis of the parameters results are available in Table 7.1. The optimal
designs identified, have at most two changes in the step function. However, most de-
signs have at most a single change in the step functions. To be precise, two changes
in the step function occur only in four run final designs. For n = 8, 12, every optimal
design found has a single change in the step function; for instance see Figure 7.1. Func-
tion patterns are similar when increasing the number of runs, i.e., same functions with
more repetitions, or translations of the existing functions. A selection of nested knots
is chosen except when nx,1 = 3. The objective value of the pseudo-Bayesian A-optimal
design under nx,1 = 3 and n = 4, is lower than the objective values of nx,1 = 2, 4. This
is the only case this happens; see Table 7.1. For n = 8, 12, the objective values under
nx,1 = 3 are higher than nx,1 = 2, 4, which is the case for the FLM example also.
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Additionally, as the number of basis functions of the profile factor increases, the opti-
mality values drop. However, the drop in the objective values becomes insignificant
from a relatively small nx,1 onwards. Thus, it can be argued that high number of basis
functions for the profile factor is not needed. For instance, comparing the designs for
nx,1 = 2, 3, 4, 8, 16 to nx,1 = 100, since it achieves the minimum value for every n, it is
clear to see that their performance does not differ significantly. This is also noticeable
from the A-efficiencies, which are almost always higher than 90%. This means that
designs found for small number of basis functions are efficient and comparable; see
Table 7.1.

n = 4 n = 8 n = 12

nx,1 A-opt A-eff A-opt A-eff A-opt A-eff
2 50.026 0.919 21.884 0.980 14.447 0.966
3 48.050 0.957 23.641 0.991 15.438 0.904
4 49.512 0.929 21.805 0.984 14.234 0.981
8 46.450 0.990 21.645 0.991 14.050 0.994
16 46.156 0.996 21.566 0.995 13.974 0.999

100 45.983 1.000 21.457 1.000 13.960 1.000

TABLE 7.1: Pseudo-Bayesian A-optimality values and A-efficiency values with n =
4, 8, 12 for the linear basis for β2(t) for the functional logistic model.
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FIGURE 7.1: Eight run pseudo-Bayesian A-optimal design for nx,1 = 8 for x•1(t), and
linear basis for β2(t) for the functional logistic model.
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Results for the quadratic basis, are also similar to the results found for the FLM. The
objective values of the optimal designs identified are in Table 7.2. The step functions
achieve at most three changes, with most of the optimal functions changing twice. It
is interesting to notice that in n = 12 run designs, the step functions change twice,
irrespective the number of basis functions; see Figure 7.2. Moreover, the quadratic
parameter basis is more sensitive to changes in the number of basis functions. In par-
ticular, increasing the number of basis functions causes a more significant change in the
performance of the designs, than it does for the linear case; see Table 7.2.

n = 4 n = 8 n = 12

nx,1 A-opt A-eff A-opt A-eff A-opt A-eff
3 2105.674 0.527 1018.511 0.510 678.416 0.500
4 1323.035 0.839 555.925 0.934 365.898 0.926
8 1172.411 0.947 532.386 0.975 349.056 0.970

16 1121.446 0.990 522.327 0.994 340.889 0.993
100 1110.486 1.000 519.025 1.000 338.650 1.000

TABLE 7.2: Pseudo-Bayesian A-optimality values and A-efficiency values with n =
4, 8, 12 for the quadratic basis for β2(t) for the functional logistic model.
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FIGURE 7.2: 12 run pseudo-Bayesian A-optimal design for nx,1 = 16 for x•1(t), and
quadratic basis for β2(t) for the functional logistic model.
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7.7 Functional logistic model involving one profile factor and
two scalar factors

In this section, the aim is to expand the example from Section 7.6, by adding two scalar
factors. For the scalar factors, main and main and quadratic effects are considered; as
in the FLM example in Section 6.2. Scalar factors are a special case for which a single
constant basis function is used; see Section 3.1. For only main effects, the functional of
the profile factors f is,

f T(xi(t)) =
(

1 xi1(t) xi2 xi3

)
, (7.29)

with xi1(t) the single profile factor at the ith run of the experiment, and xi2 and xi3 the
scalar factors at the ith run of the experiment. For the addition of the quadratic effects,
the functional of the profile factors f is,

f T(xi(t)) =
(

1 xi1(t) xi2 xi3 x2
i2 x2

i3

)
, (7.30)

with x2
i2 and x2

i3 the quadratic effects of the scalar factors at the ith run of the experiment.
Under this set up, the functional logistic model takes the form,

yi ∼ Bernoulli(µi)

ηi = β1 +
∫ T

0
β2(t)xi1(t) dt + gT(xi)ν + εi,

i = 1, 2, . . . , n, t ∈ [0, 1], −1 ≤ xi(t) ≤ 1, (7.31)

with link function g(µi) = log
(

µi
1−µi

)
, and

gT(xi)ν =

β3xi2 + β4xi3 Case 1

β3xi2 + β4xi3 + β5x2
i2 + β6x2

i3 Case 2.

For the single functional parameter, the linear basis is considered, i.e., nβ,2 = 2. Thus,
for the Case 1 and Case 2 model, the coefficients are,

θT =
(

θ1 θ2 θ3 θ4

)
=
(

θ1 θ21 θ22 θ3 θ4

)
,

θT =
(

θ1 θ2 θ3 θ4 θ5 θ6

)
=
(

θ1 θ21 θ22 θ3 θ4 θ5 θ6

)
,

respectively. Control of the profile factor is represented via a step function basis, i.e.,
BS basis of degree d = 0 and the number of basis functions is nx,1 = 4 from the choice
of interior knots λ = (0.25, 0.50, 0.75). The number of basis functions is kept low on
purpose, to avoid high computational cost due to the complexity of the model. The
objective of the experiment is represented through the pseudo-Bayesian A-optimality
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function from (7.11). Due to high dimensionality, quadrature approximation is inef-
ficient to use. To achieve numerical stability, a large number of quadrature points is
needed, causing a computational burden. Instead, a normal prior distribution is as-
sumed, with mean equal to zero and variance equal to two,

θ1 ∼ N(0, 2), θ21 ∼ N(0, 2), θ22 ∼ N(0, 2), θ3 ∼ N(0, 2),

θ4 ∼ N(0, 2), θ5 ∼ N(0, 2), θ6 ∼ N(0, 2),

from which 10000 points are generated, and the expectation is approximated using the
Monte Carlo method. The number of runs is n = 12.

Although the settings for the single profile factor are identical to the example in Sec-
tion 7.6, the final designs are not identical. In Sections 6.1 and 6.2, for the equivalent
examples of the FLM, the final designs did not differ. This may be due to the use of the
Monte Carlo approximation rather than a quadrature scheme. In Case 1, the optimal
design found for the profile factor is at boundaries. In Case 2, the optimal design for
the profile factor is at the boundaries with the exception of some points. Moreover, in
Case 1, the step functions achieve at most one change, but for Case 2, the step functions
achieve at most two changes. Meaning that, the functions of the profile factor are more
complicated for Case 2 compared to Case 1; see Figure 7.3 and Figure 7.4, respectively.

The values of the scalar factors are not at the boundaries; see Table 7.3. Moreover, the
columns of the scalar designs are not orthogonal, as it was the case for the columns
of the scalar design in Section 6.2. The scalar values in Case 2 do not include center
points equal to zero as in 6.2, but they include small values, close to zero, to allow the
estimation of the curvature. The objective values for both cases, as well as evaluations
of the designs under the opposite case, are given in Table 7.4. In Table 7.4, the values
in brackets are the A-efficiency values. The optimal design found in Case 2 is more
efficient than the design found in Case 1; see the A-efficiency values in Table 7.4. The
full optimal designs are the combinations of the optimal functions of the profile factor
in Figure 7.3 and Figure 7.4 with functions plotted by column, and the values of the
scalar factors in Table 7.3.
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Case 1

i xi2 xi3

1 0.403 0.913
2 -0.919 0.527
3 0.438 -0.913
4 -0.764 -0.754
5 0.218 0.982
6 0.946 0.104
7 0.541 -0.842
8 0.807 0.061
9 -0.861 0.587

10 -0.393 -0.051
11 -0.778 -0.747
12 0.050 0.006

Case 2

i xi2 xi3

1 0.084 0.031
2 0.113 0.094
3 -0.435 1.000
4 -0.246 -0.067
5 0.398 1.000
6 -0.395 -1.000
7 1.000 0.454
8 -0.229 -0.200
9 -1.000 0.417

10 0.392 -1.000
11 -1.000 -0.458
12 1.000 -0.455

TABLE 7.3: Optimal designs for main effects (Case 1) and main & quadratic effects
(Case 2) of the two scalar factors for the functional logistic model.

A-opt Evaluation of the final design under the opposite case

Case 1 25.316 (1.000) 25.894 (0.978)
Case 2 50.832 (1.000) 80.831 (0.629)

TABLE 7.4: A-optimality values of the Case 1 and Case 2 functional logistic model
with one profile and two scalar factors, linear basis for β2(t), nx,1 = 4 and n = 12.
Efficiency values in brackets of evaluations of the Case 1 and Case 2 optimal designs

under both cases.
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7.8 Functional Poisson model involving a single profile factor
with main and main and quadratic effect

In this section, the aim of the example developed, is to find D-optimal designs for a
functional Poisson model, that depends on a single profile factor with main, and main
and quadratic effect. The intercept is also included.

For the Poisson model with the main effect of the profile factor, the functional of the
profile factors f is,

f T(xi(t)) =
(

1 xi1(t)
)

, (7.32)

with xi1(t) the single profile factor at the ith run of the experiment. Subsequently, the
model from (7.6) takes the form,

yi ∼ Poisson(µi)

ηi = β1 +
∫ T

0
xi1(t)β2(t) dt, i = 1, 2, . . . , n, t ∈ [0, 1], −1 ≤ xi1(t) ≤ 1, (7.33)

with link function g(µi) = log(µi). For the Poisson model with the main and the
quadratic effect of the profile factor, the functional of the profile factors f is updated to,

f T(xi(t)) =
(

1 xi1(t) x2
i1(t)

)
, (7.34)

and the model becomes,

yi ∼ Poisson(µi)

ηi = β1 +
∫ T

0
xi1(t)β2(t) dt +

∫ T
0

x2
i1(t)β3(t) dt,

i = 1, 2, . . . , n, t ∈ [0, 1], −1 ≤ xi1(t) ≤ 1. (7.35)

For the function of the profile factor, control is represented by a degree d = 1 BS basis
with four equal interior knots λ = (0.20, 0.40, 0.60, 0.80). Thus, the total number of
basis functions for the profile factor is nx,1 = 6. For the functional parameters, a BS
basis of degree d = 1 and a single knot at t = 0.5 is considered, i.e., nβ,2 = nβ,3 = 3.
Thus, for the model with the main effect the coefficients are,

θT =
(

θ1 θ2

)
=
(

θ1 θ21 θ22 θ23

)
,

and for the model with the main and the quadratic effect the coefficients are,

θT =
(

θ1 θ2 θ3

)
=
(

θ1 θ21 θ22 θ23 θ31 θ32 θ33

)
.
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The expectation is approximated using the Monte Carlo method, and normal prior with
mean 0 and variance 2,

θ1 ∼ N(0, 2), θ21 ∼ N(0, 2), θ22 ∼ N(0, 2), θ23 ∼ N(0, 2),

θ31 ∼ N(0, 2), θ32 ∼ N(0, 2), θ33 ∼ N(0, 2)

The number of runs is n = 12, and the objective is to identify pseudo-Bayesian D-
optimal designs using the objective function in (7.12).

For the model with the main effect of the profile factor, the objective value of the final
design is 1.924. The objective value of the final design after the addition of the quadratic
term, is 7.283. The design found for the main effect, evaluated under the model with
main and quadratic effects results in a huge objective value which is 100000. Thus,
the D-efficiency value is close to zero. This is because the design with main effects is
always at the boundaries, not allowing estimation of the curvature when quadratic ef-
fects are assumed. If the final design for the main effect is used as starting design on
the model with the quadratic effect, the objective value is 7.710, which is very close to
the optimal. An evaluation of the design for the model which includes the quadratic
effect under the model with the main effect, gives a D-optimality value of 2.698, which
is 71.3% D-efficient.

Moreover, the functions of the profile factors for the model with main effects, are al-
ways at the boundaries, with at most two ramp changes. Most of the functions are
upward or downward one change ramp functions; see Figure 7.5. The values in red in
the figure, represent the complexity value of each function. On average, the complex-
ity value of the functions for the model with main effects is 8.000. The functions are
less complicated after the addition of the quadratic effect, with the average complexity
value being 3.858; see Figure 7.6. This is mostly because the functions do not get close
to the boundaries.
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FIGURE 7.5: 12 run pseudo-Bayesian D-optimal design for one profile factor with BS
degree d = 1 basis and nx,1 = 6 basis functions with only main effect considered, and

BS basis of degree d = 1 for β2(t) for the functional Poisson model.
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FIGURE 7.6: 12 run pseudo-Bayesian D-optimal design for one profile factor with BS
degree d = 1 basis and nx,1 = 6 basis functions with main and main and quadratic
effect considered, and BS basis of degree d = 1 for β2(t) and β3(t) for the functional

Poisson model.

7.9 Bayesian approach on the functional logistic model involv-
ing one profile factor

The functional logistic model from 7.6, with exactly the same settings for the single
profile factor is reconsidered. The addition in this example is that, the complexity of
the functions is penalised, to identify Bayesian A-optimal designs, with the roughness
penalties added into the information matrix; see Section 7.5. The prior choice for the
variance is σ2 ∼ IG(2, 1). Remember that, a choice of linear basis for the parameters
does not make sense, since the second derivatives in matrix Rp from Section 5.5 are
zero. For this reason, quadratic parameters are considered. The choice of a quadratic
basis for the functional parameters means that the matrix Rp has a non zero entry, i.e.,
r33 = 4.

The choice of smoothing parameter varies between Λ ∈ {0.01, 1, 10}. This is to inves-
tigate how the smoothing parameter affects the resulting Bayesian A-optimal designs,
and also to compare with the designs derived under the frequentist approach in Sec-
tion 7.6. The number of basis functions for the profile factor are nx,1 ∈ {3, 4, 6, 8, 15, 16}
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and the choice of runs is n ∈ {4, 8, 12}. The Bayesian A-optimality values of the final
designs, can be found in Table 7.5. It is clear to identify, that as the number of runs
increases, the objective values drop.

The range of basis functions investigated, is wider, compared to the FLM example in
Section 6.5. The reason is that, for n = 4 runs, the objective value when nx,1 = 3 is
lower, compared to when nx,1 = 4. Based on earlier examples in this thesis, this is un-
expected. To investigate this further, nx,1 = 6, 15 are added to the analysis, to form a
sequence of nested knot selections for t = 0.33 and t = 0.66, rather than just for t = 0.5.
In almost every case, the objective value is slightly lower for the choice of nx,1 = 15
compared to nx,1 = 16. Counter to other studies in this thesis, models nested with
t = 0.5 as a knot do not always perform better. The differences in the objective values
are mostly insignificant, but in some cases the functions of the profile factor achieve
fewer changes in the step functions for nx,1 = 15; see Figure 7.7 and Figure 7.8.

In some cases, the number of runs affect significantly the complexity of the Bayesian
A-optimal designs. This is noticeable in the number of changes in the step functions.
For example, the step functions achieve at most two changes for n = 8, Λ = 10, and
nx,1 = 16, but at most a single change for n = 12, Λ = 10, and nx,1 = 16; see Figure 7.7
and Figure 7.9.

The smoothing parameter Λ affects the resulting optimal designs in the same way as
in Section 6.5. When the value of the smoothing parameter is close to zero, the designs
are similar to the designs found under the frequentist approach with the quadratic
parameter basis. However, as the value of Λ increases, the designs become similar to
the designs found under the frequentist approach and the linear parameter basis. This
is because the quadratic term is highly penalised.
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Λ = 0.01

nx n = 4 n = 8 n = 12

3 99.804 74.967 66.358
4 101.487 72.918 65.398
6 99.094 72.891 65.211
8 97.791 72.876 65.001
15 97.555 72.766 64.890
16 97.632 72.772 64.894

Λ = 1

nx n = 4 n = 8 n = 12

3 49.084 24.435 16.061
4 50.687 22.643 14.964
6 48.594 22.490 14.811
8 47.488 22.483 14.782
15 47.180 22.304 14.717
16 47.202 22.411 14.717

Λ = 10

nx n = 4 n = 8 n = 12

3 48.621 23.971 15.595
4 50.225 22.185 14.503
6 48.134 22.030 14.346
8 47.031 22.024 14.314
15 46.722 22.304 14.256
16 46.744 21.944 14.249

TABLE 7.5: Bayesian A-optimality values for n ∈ {4, 8, 12}, nx,1 ∈ {3, 4, 6, 8, 15, 16},
and smoothing parameters Λ ∈ {0.01, 1, 10}, for the quadratic basis of β2(t) for the

functional logistic model.
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FIGURE 7.7: Eight run Bayesian A-optimal design for nx,1 = 16, Λ = 10 and quadratic
basis for β2(t) for the functional logistic model.
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FIGURE 7.8: Eight run Bayesian A-optimal design for nx,1 = 15, Λ = 10 and quadratic
basis for β2(t) for the functional logistic model.
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FIGURE 7.9: 12 run Bayesian A-optimal design for nx,1 = 16, Λ = 10 and quadratic
basis for β2(t) for the functional logistic model.

7.10 Bayesian design criterion tailored for profile factors to a
functional Poisson model with one profile factor

In this section the aim is to expand the investigation for the Bayesian design criterion
tailored for profile factors, from Section 6.6, for a single profile factor Poisson model.
The single profile factor choice is to avoid the excess computational expense involved
in FGLMs, compared to the FLMs. The single profile factor Poisson model takes the
form of the model in (7.33). The choice of the number of runs is n = 12.

It is assumed that control of the profile factor is represented by a BS of degree d = 1
with a single knot at t = 0.5. The choice for the basis of the functional parameters
is linear, thus, the coefficients are identical to (7.26). The expectation of the objective
function with respect to a prior distribution of the parameters is approximated using
normal quadrature, mean zero variance 1, thus, the prior specification is identical to
(7.28).
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The matrix C(t) that includes the choice of functions and parameters of interest is a
3× 2 matrix such that,

C(t) =

1 0
0 1
0 t

 ,

and subsequently the matrix A used in the design criteria for profile factors is a 3× 3
matrix such that,

A =
∫ 1

0
C(t)C(t)T dt =

1 0 0
0 1 1/2
0 1/2 1/3

 .

The optimal designs found are evaluated under the alternative criterion; see Table 7.6,
to provide a comparison amongst the designs. The efficiency values in brackets in Ta-
ble 7.6, show that the Bayesian design tailored for profile factors is slighly more robust
to the choice of design criterion. However, the efficiency values in the FLM in Section
6.6 are higher, compared to the functional Poisson model.

The functions of the profile factor have at most one change. For the pseudo A-optimality
design criterion, out of the 12 runs there are four unique functions for the profile factor;
see Figure 7.11, and the rest are repeated functions. For the Bayesian design criterion
tailored for profile factors, out of the 12 runs there are six unique functions for the
profile factor; see Figure 7.10, and the rest are repeated functions. Also, the Bayesian
tailored to profile factors optimal design has two constant functions at the boundaries.

Tailored criterion Pseudo A-optimality

Tailored design 1.001 (1.000) 7.106 (0.872)
Pseudo A-optimal design 1.206 (0.830) 6.296 (1.000)

TABLE 7.6: Objective values of the pseudo A-optimality and Bayesian tailored to pro-
file factors design criteria, with BS basis of degree d = 1 for x•1(t) and single knot at
t = 0.5, linear basis for β2(t) and n = 12, for the functional Poisson model. Efficiency
values in brackets of evaluations of the optimal designs under the alternative criterion.
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FIGURE 7.10: 12 run optimal design under the Bayesian design criterion tailored for
profile factors, with BS basis of degree d = 1 for x•1(t), single knot at t = 0.5 and linear

basis for β2(t) for the functional Poisson model.
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FIGURE 7.11: 12 run optimal design under the pseudo-Bayesian A-optimality crite-
rion, with BS basis of degree d = 1 for x•1(t), single knot at t = 0.5 and linear basis for

β2(t) for the functional Poisson model.
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7.11 Conclusion

In this chapter, FGLMs have been tackled. It has been showed that such models, are an
extension to the FLMs, as the linear predictor is identical to the right hand side of the
FLMs. Thus, the methodology with the functions of the profile factors and the func-
tional parameters represented by linear combinations of basis functions, still applies.
The design problem has been described, and the objective functions for A- and D- op-
timality have been revised. Due to the dependence of the designs on the parameters,
pseudo-Bayesian designs, that minimise the expectation of the objective functions with
respect to a prior distribution of the parameters, have been discussed. This is to pass
the available knowledge for the parameters. The expectation is usually the solution of
an analytically intractable, and most likely, high-dimensional, integral. Approximation
methods, including the Monte Carlo and quadrature methods, have been discussed, to
numerically approximate the solution.

Functional logistic and functional Poisson models involving profile factors have been
considered. Also, both the frequentist and the Bayesian approaches have been tack-
led. The investigation led to similar conclusions to the investigation of the FLM. For
instance, it has been showed that increasing the number of basis functions does not
improve the performance of the designs significantly, thus, a large number of basis
functions is not needed. However, a larger number of basis functions is needed com-
pared to FLM. Moreover, as the basis for the parameters is getting more complicated,
the functions of the profile factors are getting more complicated as well.

An example with and without a quadratic effect of a profile factor has been considered.
The addition of a higher order polynomial increases the computational expense, but the
functions of the profile factors are less complicated, even not always at the boundaries.
The design criterion tailored for profile factors has been used to find optimal designs
for a functional Poisson model.

In general, the settings of the profile factors and the functional parameters have been
less complicated compared to studies for FLMs. This is to avoid the excess computa-
tional burden. For models with high dimensionality, the Monte Carlo approximation
has been preferred. The reason is that, in high dimensionality, many quadrature points
are needed for an accurate approximation. This increases the computational expense
significantly.
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Chapter 8

R package fdesigns: optimal designs
for functional models

8.1 Introduction to the fdesigns package

In this chapter, the aim is to describe the R package fdesigns that stands for functional
designs, and demonstrate its use to find optimal experimental designs for functional
models. The package includes two main functions, named pflm() and pfglm(). Both
functions implement the methodology developed in this thesis, using basis functions
to restrict the function space. In addition to the main functions, the package includes a
support function, named P(). Furthermore, the package includes printing and plotting
functions of the resulting objects.

The function pflm() stands for parallel functional linear models, and it is used to find
optimal experimental designs for functional linear models using the coordinate ex-
change algorithm from Section 2.6. Similarly, the function pfglm() stands for paral-
lel functional generalised linear models, and it is used to find optimal experimental
designs for functional generalised linear models using the coordinate exchange algo-
rithm. The use of the word parallel in the names of the functions suggests that the
functions repeat the process for several starting designs. Further details of the two
main functions of the package, including the implementation, the arguments and the
output, are discussed in Sections 8.2 and 8.3.

Moreover, the support function P() stands for polynomials, and it is used to compute
profile factor polynomials of a specific degree. The support function is further dis-
cussed in Section 8.4 to define its use and explain its difference to built-in functions in
R that compute polynomial factors.
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A big part of the fdesigns code is written in C++, through the packages Rcpp and
RcppArmadillo; see Eddelbuettel et al. (2011) and Eddelbuettel and Sanderson (2014).
Rcpp and RcppArmadillo offer seamless integration of R and C++. This increases the
computational efficiency of the package and results in faster evaluation of the functions
in fdesigns.

The use of the functions in the package are demonstrated through several examples of
FLMs and FGLMs in Section 8.5. In every example, the set up of the model and the
settings of the profile factors and the functional parameters are identical to examples
from Chapter 6 and Chapter 7. In this way, the use of the package is exposed, and it en-
ables interested users to repeat the examples and reproduce the optimal experimental
designs.

The package is available on GitHub, and can be installed on your machine using the
following R code,

devtools::install_github("damianosmichaelides/fdesigns")

or via the link: https://github.com/damianosmichaelides/fdesigns.

8.2 FLM implementation in fdesigns

Usage of pflm()

Functional linear models depending on profile factors are handled through the function
pflm(). The function consists of several mandatory and optional arguments. Mainly,
the mandatory arguments allow the user to specify the structure of the model and iden-
tify the settings of the experiment, the profile factors and the functional parameters.
On the other hand, the optional arguments give the opportunity to the user to add a
smoothing parameter or to change default bounds of the time and the profile factors,
but mostly they remain unchanged in later examples. The usage of the function pflm()

is such that:

pflm(formula, nsd = 1, mc.cores = 1, npf, tbounds, nruns, startd = NULL,

dx, knotsx, pars, db, knotsb = NULL, lambda = 0,

criterion = c("A", "D"), dlbound = -1, dubound = 1,

tol = 0.0001, progress = FALSE)

with every argument explained in the next paragraphs and in the documentation of the
function, available using the code,

https://github.com/damianosmichaelides/fdesigns
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?pflm

in the R console.

Arguments of pflm()

The FLM structure is specified through the formula argument. The formula argument
is a built-in function in the stats package that is maintained by the R core team. The use
of formula gives to the user complete flexibility to define the main effects, interactions
and polynomials involved in the model. The number of starting designs is passed to
the functions using the argument nsd, that defaults to one. The number of cores in par-
allel computing is set through the argument mc.cores, that also defaults to one. The
time boundaries are defined as a vector of length two, i.e., the minimum and maximum
time, in the argument tbounds. The total number of runs of the experiment is repre-
sented by the argument nruns. Furthermore, the choice of optimality criterion is made-
through the argument criterion. Available optimality criteria include criterion="A"
and criterion="D".

The number of profile factors in the model is specified through the argument npf and
needs to match the number of factors specified in the formula. Scalar factors are treated
as profile factors and expanded as a BS of degree zero and no interior knots. Thus,
scalar factors are included in the argument npf, but their settings in the arguments that
follow make them differ. The degree of the BS basis for each profile factor is indicated
in the argument dx. The choice of dx must be a vector with its length identical to the
value npf and the minimum entry value is zero. The interior knots for each profile fac-
tor basis is passed to the function through the argument knotsx. The argument knotsx
must be a list with its length identical to the value npf. Each component of the list must
be a vector, specifying the choice of interior knots of the profile factors. If a profile factor
has no interior knots, for example a scalar factor, then the corresponding component in
knotsx must be an empty vector.

The settings of the model parameters are controlled through the arguments pars, db,
and knotsb. The argument pars is a character vector with accepted entries being
"power" or "bspline", representing what basis system to use for basis expansion of each
functional parameter. The argument db is a vector of the choice of degrees for the ex-
pansion of the parameters. If the basis choice is power series, then the degree one rep-
resents a linear basis, the degree two represents a quadratic basis, etc. The argument
knotsb is a list, with each component being a vector of the interior knots of each pa-
rameter. For no interior knots, the component must be an empty vector. For instance, a
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scalar parameter is defined by the choice of "power", degree zero, and no interior knots.
The default entry is NULL, meaning no interior knots for all parameters. The length of
the vectors pars and db, and the list knotsb must be identical to the number of terms
in the model, as specified by the formula. At last, penalisation of the complexity of
the parameters is controlled through the argument lambda. The argument lambda is
the smoothing parameter from Section 5.5. Thus, as the value of lambda increases, the
penalisation on the wiggly functions increases as well.

The starting designs are passed to the functions through the argument startd. The ar-
gument startd must be a list of length equal to the number of different starting designs
nsd. Each component of the list represents a single starting design, and it must be also
a list of length equal to the number of profile factors npf. Every component of a single
starting design must be a matrix named as per the terms in the formula argument. The
number of rows of the matrix must be equal to nruns and the number of columns of
the matrix must be equal to the number of basis functions of the corresponding profile
factor. However, if the argument startd is not specified, random starting designs are
generated. The lower and upper bounds of the design are specified by the arguments
dlbound and dubound. Both arguments must be scalar values, representing common
bounds for all profile factors. Due to properties of the BS basis, as discussed in Sec-
tion 4.4, the design bounds are equivalent bounds to the profile factors. The tolerance
value for the coordinate exchange algorithm is given by the argument tol, and the de-
fault value is 0.0001. Finally, the argument progress is a logical argument indicating
whether the iteration progress of the algorithm must be printed. The default is FALSE.

A list of the arguments of the function pflm(), and a short description for each, is
given in Table E.1 in Appendix E.1. The arguments with an asterisk are the mandatory
arguments in the function. The function is demonstrated in Section 8.5 and the inputs
are varied to assist the understanding of the arguments.

Output of pflm()

The function pflm() returns an object of class "flm". An object of class "flm" is a list
of multiple components, but the most important are the final design (design) and the
final objective value (objval). Additional components include: the number of itera-
tions to identify the final design (nits), the starting design that led to the final design
(startd), and several input arguments. Moreover, if the procedure was repeated for
several starting designs, the output includes the value of the repetition that led to the
final design (bestrep), and lists of all the starting designs (allstartd), the final designs
(alldesigns), and the final objective values (allobjvals). A list of the output compo-
nents of the function pflm(), and a short description for each, is given in Table E.2 in
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Appendix E.2.

A print of the resulting "flm" object provides a summary of information. The summary
of an "flm" object can be viewed using one of the following lines of code,

print()

summary()

in the R console. The summary takes the form:

The number of profile factors is: ()

The number of runs is: ()

The objective criterion is: ()

The objective value is: ()

The number of iterations is: ()

The computing elapsed time is: ()

Finally, a plot of the resulting "flm" object return the question "Which profile factor to
plot?". The user needs to provide a scalar value between one and npf, indicating which
profile factor functions to plot. After indicating the profile factor of interest, nruns
optimal functions of the profile factor are plotted. The functions of the profile of an
"flm" object are plotted using the code,

plot()

and then entering the profile factor of interest.

8.3 FGLM implementation in fdesigns

Usage of pfglm()

Functional generalised linear models depending on profile factors are handled through
the function pfglm(). A large proportion of the arguments of the function pfglm() are
identical to the arguments of the function pflm(), which is described in the previous
section. The reason for this, is that the structure of the model and the settings of the
experiment, the profile factors and functional parameters are identified identically. The
additional arguments; mandatory and optional; are used to specify the family of the
responses, the prior information, and the approximation method of the expectation of
the objective function with respect to the prior distribution. The usage of the function
pfglm() is such that:
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pfglm(formula, nsd = 1, mc.cores = 1, npf, tbounds, nruns,

startd = NULL, dx, knotsx, pars, db, knotsb = NULL,

lambda = 0, criterion = c("A","D"), family,

method = c("quadrature", "MC"), level = NULL, B = NULL,

prior, dlbound = -1, dubound = 1, tol = 0.0001,

progress = FALSE)

with every argument explained in the next paragraphs and in the documentation of the
function, available using the code,

?pfglm

in the R console.

Arguments of pfglm()

Most of the arguments of the function pfglm() are identical, in name and usage, to the
arguments of the function pflm(). Specifically, the identical arguments are: formula,
nsd, mc.cores, npf, tbounds, nruns, startd, dx, knotsx, pars, db, knotsb, lambda,
criterion, dlbound, dubound, tol and progress. They are described in detail in Sec-
tion 8.2 and in Table E.1 in Appendix E.1. The additional arguments of the function
pfglm() are: family, method, level, B, and prior.

The family argument specifies the distribution of the responses and the link function. It
must specify the name of the family of interest. The available families are the Binomial
and the Poisson, for the logit and log links, respectively. Specifically, they must be spec-
ified using the the family R function, or using a character string. Moreover, the method

argument is used to specify the method of approximation of the expectation of the ob-
jective function with respect to a prior distribution of the parameters. The available
approximation methods are method="quadrature", and method="MC", for determinis-
tic quadrature approximation, and stochastic Monte Carlo approximation, respectively.

The arguments level and B are optional arguments. The level represents the accu-
racy level. As the value of level increases, the number of quadrature points in each
dimension increases as well. If the method of approximation is method="quadrature",
and level=NULL, then it defaults to 5. A high value of level may increase the compu-
tation time; especially for complicated models. If the model is complicated, i.e., several
profile factors or interactions and polynomials, prefer to use method="MC". The argu-
ment B is a scalar value that represents the Monte Carlo sample size. If method = "MC",
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and B=NULL, it defaults to 10000.

Furthermore, the argument prior is used to specify the prior distribution. If method =
"MC", the prior must be a function of two scalar arguments, B and Q. The value of B is
the argument B from above, and Q is the total number of basis functions from the ex-
pansion of the functional parameters. The prior function must generate a B × Q matrix
of random sample from the prior distribution.

On the other hand, if method = "quadrature", the argument prior must be a list. Cur-
rently, normal and uniform prior distributions are available. For normal distribution,
the list must contain two components, named "mu" for the prior mean and "sigma2" for
the prior variance-covariance matrix. For uniform distribution, the list must contain a
single component named "unifbound", for the lower and upper bounds of the prior
distribution. Further details on the possible ways to pass "mu", "sigma2", and "unif-
bound", to the prior argument, as well as further descriptions of all arguments, are
given on Table E.3 in Appendix E.3, or in the documentation of the function pfglm() in
R.

Output of pfglm()

The function pfglm() returns an object of class "fglm". The object of class "fglm" is a list
of the components mentioned in the previous section for pflm(), but with additional
information for the choice of family, the prior specification, and the method of approxi-
mation. A list of the additional output components of the function pfglm(), and a short
description for each, is given in Table E.4 in Appendix E.4.

A print of the resulting "fglm" object provides a summary of information. The summary
of an "fglm" object can be viewed using one of the following lines of code,

print()

summary()

in the R console. The summary takes the form:

The number of profile factors is: ()

The number of runs is: ()

The objective criterion is: ()

The objective value is: ()

The number of iterations is: ()
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The method of approximation is: ()

The family distribution and the link function are: () and ()

The computing elapsed time is: ()

The final functions of the profile factors, resulting from an object of class "fglm, are
plotted exactly as described for objects of class "flm".

8.4 Profile polynomials in fdesigns

In the R software, polynomial effects of static factors are computed using the functions
I() and poly(), from the R build-in packages base and stats, respectively. The function
P() in the package fdesigns stands for polynomials, and it is used to compute profile
factor polynomials. In other words, it is an extension to the base functions, to handle
profile factors rather than static factors.

The reason of the extension to the build-in functions, is that profile factors are linear
combinations of basis functions. Thus, the coefficients are a matrix; see Chapter 5, in
contrast to a static factor that is a vector of scalar values. As a result, higher order
polynomials of profile factors are calculated using the Hadamard product of the basis
function combinations of the interaction factors.

The function P() is a support function in the package. Its main use is to specify the
polynomial effects of interest in the formula argument of the main functions. The usage
of the function P() is such that:

P(x, deg)

with the arguments explained in the next paragraph, as well as in the documentation
of the function, available using the code,

?P

in the R console.

Both arguments of the function are mandatory. The argument x is a matrix, that cor-
responds to the coefficient matrix from the basis expansion of a profile factor. When
the function is used in the formula in the main functions, the name of the profile factor
have to match the name of the profile factor in startd in the main function pflm() or
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pfglm(). The argument deg is a scalar value that corresponds to the degree of the poly-
nomial of the profile factor. A description of the two arguments is given on Table E.5 in
Appendix E.5, or in the documentation of the function P() in R.

Finally, the function returns an attributes list. The list contains the polynomial coeffi-
cient matrix of the profile factor, the argument x, and the argument deg.

8.5 Examples using the functions in fdesigns

In this section, the fdesigns package is demonstrated through several examples. Atten-
tion is given on the main functions of the package, meaning the functions pflm() and
pfglm(). The support function P() for computing profile factor polynomials, is used
in the formula argument of the main functions to specify polynomials in the functional
models. The examples cover various scenarios of functional linear and functional gen-
eralised linear models, including models with main effects, interactions, polynomials,
and smoothing to penalise complex functions.

Even though the functions pflm() and pfglm() are able to find efficient designs for
models depending on multiple profile factors, as the models become more complicated,
the computational expense increases, and significantly more computational resources
are required. For that reason, most of the examples tackled in this section are kept
simple on purpose. A few examples, mainly for generalised models, are slightly more
expensive to run, but the reader is informed. All examples are referenced to source
chapters, in order to demonstrate to interested users how to reproduce the optimal
designs.

8.5.1 FLM with one profile factor

In this example, the FLM with a single profile factor from Section 6.1 is considered. It is
assumed that control of the profile factor is represented by a BS basis of degree zero and
for this example, only the choice of three equally spaced interior knots is considered,
with time boundaries being 0 and 1. Thus, there are four basis functions for the profile
factor; see (4.3). Moreover, the choice of the number of runs is four.

tbounds <- c(0, 1)

nruns <- 4

npf <- 1

dx <- c(0)

knotsx <- list(c(0.25, 0.50, 0.75))
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nx <- rep(0, npf)

for (j in 1:npf) {

nx[j] <- dx[j] + length(knotsx[[j]]) + 1

}

One thousand starting designs are considered, which are generated and passed to the
function pflm() manually. Thus, the starting design must to be a list of 1000 compo-
nents, and each component must be also a list with one matrix component for the single
profile factor names as in the formula. The bounds of the profile factor are set to the
defaults. Alternatively, one could leave the startd argument to the default entry which
is NULL, and the function would randomly generate the starting designs. In this case,
a set seed for reproducibility has to be set.

indd <- list()

startd <- list()

dlbound <- -1

dubound <- 1

nsd <- 1000

for (c in 1:nsd) {

set.seed(c)

for (i in 1:npf) {

indd[[i]] <- matrix(runif(nruns * nx[i], dlbound, dubound),

nrow = nruns, ncol = nx[i])

names(indd)[i] <- paste0("x", i, sep="")

}

startd[[c]] <- indd

}

The functional parameter is assumed to be a linear power series and the objective cri-
terion is A-optimality. All other arguments are kept to their default values.

example1a <- pflm(formula = ~ x1, nsd = nsd, mc.cores = 1, npf = npf,

tbounds = tbounds, nruns = nruns, startd = startd,

dx = dx, knotsx = knotsx, pars = c("power"), db = c(1),

knotsb = list(c()), criterion = "A", lambda = 0,

dlbound = dlbound, dubound = dubound, tol = 0.0001,

progress = TRUE)

Printing the resulting "flm" object using the code,
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print(example1a)

provides the summary of the outcome,

The number of profile factors is: 1

The number of runs is: 4

The objective criterion is: A-optimality

The objective value is: 8.75

The number of iterations is: 5

The computing elapsed time is: 00:00:00

with the objective value being an exact match to the corresponding value in Table 6.1.
Additionally, the final design is extracted using the code,

example1a$design

and the outcome is a 4× 4 design matrix.

$x1

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 1 1 -1 -1

[3,] -1 -1 1 1

[4,] -1 -1 1 1

The optimal functions of the profile factor are plotted using the code,

plot(example1a)

The function returns the question,

Which profile factor to plot?

in which the user needs to enter the scalar value of the profile factor of interest; in this
case, 1. After that, the functions of the profile factor are plotted; see Figure 8.1, and
match the functions from Figure 6.2. To add a point, out of the nsd starts, multiple
final designs may attained the same final objective value, especially in simple models.
In such case, the final design and so the functions of the profile factor may be slightly
different or in different order of runs.
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FIGURE 8.1: Four run A-optimal design for nx,1 = 4, linear basis for β2(t) and step
function basis for x•1(t) for the FLM, plotted using the "flm" object in package fdesigns.

Alternatively, suppose that the objective criterion becomes D-optimality and the func-
tional parameter is represented by a quadratic power basis, with everything else remain
unchanged, then the code is,

example1b <- pflm(formula = ~ x1, nsd = nsd, mc.cores = 1, npf = npf,

tbounds = tbounds, nruns = nruns, startd = startd,

dx = dx, knotsx = knotsx, pars = c("power"), db = c(2),

knotsb = list(c()), criterion = "D", lambda = 0,

dlbound = dlbound, dubound = dubound, tol = 0.0001,

progress = TRUE)

print(example1b)

and the summary of the outcome is,

The number of profile factors is: 1

The number of runs is: 4

The objective criterion is: D-optimality

The objective value is: 4.583135

The number of iterations is: 6

The computing elapsed time is: 00:00:00



8.5. Examples using the functions in fdesigns 147

with the objective value being an exact match to the corresponding value in Table 6.4.

8.5.2 FLM with one profile factor and roughness penalty

In this example, the model with one profile factor as in the example from Section 8.5.1
is considered. The addition to the previous example is that the complexity of the pa-
rameter is penalised through a smoothing parameter Λ = 10. This scenario has been
investigated before, in the example from Section 6.5 to find Bayesian optimal designs.
The penalty is passed to the function through the argument lambda=10. The objec-
tive function is A-optimality and the parameter basis is a quadratic power basis. The
Bayesian A-optimal design can be found using the code,

example2 <- pflm(formula = ~ x1, nsd = nsd, mc.cores = 1, npf = npf,

tbounds = tbounds, nruns = nruns, startd = startd,

dx = dx, knotsx = knotsx, pars = c("power"), db = c(2),

knotsb = list(c()), criterion = "A", lambda = 10,

dlbound = dlbound, dubound = dubound, tol = 0.0001,

progress = TRUE)

print(example2)

and the summary of the outcome is,

The number of profile factors is: 1

The number of runs is: 4

The objective criterion is: A-optimality

The objective value is: 8.800694

The number of iterations is: 5

The computing elapsed time is: 00:00:00

with the objective value being an exact match to the corresponding value in Table 6.7.
The final designs and the optimal functions of the profile factor are extracted in the
same way as in the example in the previous section.

8.5.3 FLM with one profile factor and three scalar factors

In this example, the FLM with a single profile factor and three scalar factors from Sec-
tion 6.2 is considered. It is assumed that control of the profile factor is represented by
a BS basis of degree zero with three equally spaced interior knots and time boundaries
again being 0 and 1. As before, there are four basis functions for the profile factor.
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Firstly, the case 1 model with main effects of the scalar factors from (7.25) is considered.
Moreover, the choice of the number of runs is 12. The scalar factors are passed as pro-
file factors to the function pflm(), with degree zero and no interior knots to specify that
they are scalar factors. Thus, the argument npf is equal to 4.

tbounds <- c(0, 1)

nruns <- 12

npf <- 4

dx <- c(0, 0, 0, 0)

knotsx <- list(c(0.25, 0.50, 0.75), c(), c(), c())

nx <- rep(0, npf)

for (j in 1:npf) {

nx[j] <- dx[j] + length(knotsx[[j]]) + 1

}

The starting designs are generated and passed to the function as in the previous exam-
ple, with the bounds of the factors set to the defaults. The factors are named x1, x2, x3, x4
and must match the factors in the formula argument.

indd <- list()

startd <- list()

dlbound <- -1

dubound <- 1

nsd <- 1000

for (c in 1:nsd) {

set.seed(c)

for (i in 1:npf) {

indd[[i]] <- matrix(runif(nruns * nx[i], dlbound, dubound),

nrow = nruns, ncol = nx[i])

names(indd)[i] <- paste0("x", i, sep="")

}

startd[[c]] <- indd

}

The functional parameter is assumed to be represented by a linear power series and
the scalar parameters are represented through a power series of degree zero, as dis-
cussed in the description of the function pflm(). Moreover, the objective criterion is
A-optimality. All other arguments are kept to their default values.

example3a <- pflm(formula = ~ x1 + x2 + x3 + x4, nsd = nsd, mc.cores = 1,

npf = npf, tbounds = tbounds, nruns = nruns,
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startd = startd, dx = dx, knotsx = knotsx,

pars = c("power", "power", "power", "power"),

db = c(1, 0, 0, 0), knotsb = list(c(), c(), c(), c()),

criterion = "A", lambda = 0, dlbound = dlbound,

dubound = dubound, tol = 0.0001, progress = FALSE)

Printing the resulting "flm" object using the code,

print(example3a)

provides the summary of the outcome,

The number of profile factors is: 4

The number of runs is: 12

The objective criterion is: A-optimality

The objective value is: 2.833333

The number of iterations is: 10

The computing elapsed time is: 00:00:04

with the objective value being an exact match to the corresponding value found in
Section 6.2. The A-optimal design for the scalar factors is extracted using the code,

final_design_a <- example3a$design

scalar_design_a <- matrix(0, nrow = nruns, ncol = (npf - 1))

for (k in 2:(npf)) {

scalar_design_a[,k-1] <- final_design_a[[k]]

}

scalar_design_a

which gives a design at the boundaries that is identical to the case 1 design from Ta-
ble 6.5.

[,1] [,2] [,3]

[1,] -1 -1 -1

[2,] 1 1 1

[3,] -1 -1 -1

[4,] 1 -1 -1

[5,] -1 1 1

[6,] -1 1 -1

[7,] 1 1 -1
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[8,] -1 -1 1

[9,] 1 1 -1

[10,] 1 -1 1

[11,] -1 1 1

[12,] 1 -1 1

The order of the design runs may differ due to several designs attaining the same final
objective value. For instance, R finds that the best repetition is repetition 36, using the
component bestrep of the "flm" object.

example3a$bestrep

A print of the first 65 objective values, shows that the evaluation of several designs
gives the objective value which is 2.833333.

[1] 2.968759 2.964321 2.854940 2.949824 2.970566 2.953171 2.852684

[8] 2.853202 2.961305 2.885000 2.961604 2.900983 2.985471 2.852041

[15] 2.965235 2.834491 2.917935 2.941454 2.833333 2.834491 2.852251

[22] 2.917314 2.910675 2.870574 2.927504 2.894165 2.946153 2.968504

[29] 2.917842 2.916820 2.965131 2.966247 2.852476 2.852476 2.893333

[36] 2.833333 3.111223 2.853209 2.973834 2.833333 2.904321 2.893324

[43] 2.893324 3.012996 2.852341 2.876926 2.893324 2.928718 2.983806

[50] 2.918199 2.940833 2.935810 2.894522 2.961303 2.916820 2.907548

[57] 2.974558 2.919542 2.852041 2.833333 3.177417 2.833333 2.969806

[64] 2.893325 2.925782

For this reason, the designs may be slightly different or the runs may be in different
order.

In addition to the main effects of the scalar factors, the case 2 model in (7.25) contains
the quadratic effects of the scalar factors. In this case, the quadratic effects are passed
using the function P() that computes the polynomials. However, the FLM becomes
much more complicated, and the computational expense is significantly higher with
each repetition taking more than 30 minutes. For this reason, the code provided below
is for one starting design (computation time is expected to be about 32 minutes). The
starting design is for the repetition 130, which is the repetition that led to the final
design. The use of set seed is recommended, to achieve reproducibility.
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indd <- list()

startd <- list()

dlbound <- -1

dubound <- 1

nsd <- 1

set.seed(130)

for (c in 1:nsd) {

for (i in 1:npf) {

indd[[i]] <- matrix(runif(nruns * nx[i], dlbound, dubound),

nrow = nruns, ncol = nx[i])

names(indd)[i] <- paste0("x", i, sep="")

}

startd[[c]] <- indd

}

example3b <- pflm(formula = ~ x1 + x2 + x3 + x4 + P(x2, 2) + P(x3, 2) +

P(x4, 2), nsd = nsd, mc.cores = 1, npf = npf,

tbounds = tbounds, nruns = nruns, startd = startd,

dx = dx, knotsx = knotsx, pars = c("power", "power",

"power", "power", "power", "power", "power"),

db = c(1, 0, 0, 0, 0, 0, 0),

knotsb = list(c(), c(), c(), c(), c(), c(), c()),

criterion = "A", lambda = 0, dlbound = dlbound,

dubound = dubound, tol = 0.0001, progress = FALSE)

and printing the resulting "flm" object using the code,

print(example3b)

provides the summary of the outcome,

The number of profile factors is: 4

The number of runs is: 12

The objective criterion is: A-optimality

The objective value is: 4.50883

The number of iterations is: 18

The computing elapsed time is: 00:32:30

with the objective value being an exact match to the corresponding value found in
Section 6.2.
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8.5.4 FLM with two profile factors and their interaction

In this example, the FLM to consider depends on two profile factors and their inter-
action. This model has been tackled in Section 6.4 to compare the final designs of the
FLM with and without the interaction of the profile factors. The profile factors are rep-
resented by cubic BS basis and four equally spaced interior knots, with time boundaries
at 0 and 1. The addition of the interaction term and the use of cubic splines, increases
the computational expense, but not as much as the example with the quadratic effects
of the scalar factors. On average, starting designs iterate to their final designs in 10
seconds.

tbounds <- c(0, 1)

nruns <- 12

npf <- 2

dx <- c(3, 3)

knotsx <- list(c(0.20, 0.40, 0.60, 0.80), c(0.20, 0.40, 0.60, 0.80))

nx <- rep(0, npf)

for (j in 1:npf) {

nx[j] <- dx[j] + length(knotsx[[j]]) + 1

}

indd <- list()

startd <- list()

dlbound <- -1

dubound <- 1

nsd <- 1000

for (c in 1:nsd) {

set.seed(c)

for (i in 1:npf) {

indd[[i]] <- matrix(runif(nruns * nx[i], dlbound, dubound),

nrow = nruns, ncol = nx[i])

names(indd)[i] <- paste0("x", i, sep="")

}

startd[[c]] <- indd

}

The model includes three functional parameters, two for the main effects and one for
the interaction, which are represented by BS basis of degree zero and single knots at
t = 0.5. Moreover, the objective criterion is D-optimality. All other arguments are kept
to their default values.
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example4 <- pflm(formula = ~ x1 + x2 + x1:x2, nsd = nsd, mc.cores = 1,

npf = npf, tbounds = tbounds, nruns = nruns,

startd = startd, dx = dx, knotsx = knotsx,

pars = c("bspline", "bspline", "bspline"),

db = c(0, 0, 0), knotsb = list(c(0.5), c(0.5), c(0.5)),

criterion = "D", lambda = 0, dlbound = dlbound,

dubound = dubound, tol = 0.0001, progress = FALSE)

The summary of the "flm" object resulting from,

print(example4)

shows that the objective value of the D-optimal design is 0.335, which is an exact match
to the objective value found in the identical example developed in Section 6.4.

The number of profile factors is: 2

The number of runs is: 12

The objective criterion is: D-optimality

The objective value is: 0.3348156

The number of iterations is: 4

The computing elapsed time is: 00:00:06

Plots of the functions of a profile factor can be generated using the code,

plot(example4)

that returns the question

Which profile factor to plot?

and the user has to enter the scalar value of the profile factor of interest. In this example,
there are two profile factors, thus, either enter 1 or 2. For this example, the functions of
the first profile factor are plotted; see Figure 8.2, and match the functions from Figure
6.15.
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FIGURE 8.2: 12 run D-optimal design for the first profile factor of a FLM with two pro-
file factors of cubic BS basis and four equally spaced knots, degree d = 0 BS basis for
the functional parameters and interaction effect considered. The functions are plotted

using the "flm" object in package fdesigns.

8.5.5 FGLM with one profile factor and quadrature approximation

In this example, the functional logistic model depending on a single profile factor, from
Section 7.6 is considered. Thus, the family choice in R is "binomial". It is assumed
that control of the profile factor is represented by a BS basis of degree zero and for this
example, only the choice of seven equally spaced interior knots is considered, with time
boundaries being 0 and 1. Thus, there are eight basis functions for the profile factor;
see (4.3). The number of runs is eight.

tbounds <- c(0, 1)

nruns <- 8

npf <- 1

dx <- c(0)

knotsx <- list(c(0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875))

nx <- rep(0, npf)

for (j in 1:npf) {

nx[j] <- dx[j] + length(knotsx[[j]]) + 1

}
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One thousand starting designs are considered, which are generated and passed to the
function pfglm() manually, as in previous examples. Also, the bounds of the profile
factor are set to the defaults.

indd <- list()

startd <- list()

dlbound <- -1

dubound <- 1

nsd <- 1000

for (c in 1:nsd) {

set.seed(c)

for (i in 1:npf) {

indd[[i]] <- matrix(runif(nruns * nx[i], dlbound, dubound),

nrow = nruns, ncol = nx[i])

names(indd)[i] <- paste0("x", i, sep="")

}

startd[[c]] <- indd

}

The functional parameter is assumed to be a linear power series. The objective is to
identify pseudo-Bayesian A-optimal designs. The prior of the parameters is assumed
to be normal, with mean zero and variance one. To approximate the expectation with
respect to the prior, a normal quadrature scheme with abscissas and weights is applied.
All other arguments are kept to their default values.

example5 <- pfglm(formula = ~ x1, nsd = nsd, mc.cores = 1, npf = npf,

tbounds = tbounds, nruns = nruns, startd = startd,

dx = dx, knotsx = knotsx, pars = c("power"), db = c(1),

knotsb = list(c()), lambda = 0, criterion = "A",

family = binomial, method = c("quadrature"),

level = NULL, B = NULL, prior = list(mu = c(0),

sigma2 = c(1)), dlbound = -1, dubound = 1, tol = 0.0001,

progress = TRUE)

Printing the resulting "fglm" object using the code,

print(example5)

provides the summary of the outcome,
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The number of profile factors is: 1

The number of runs is: 8

The objective criterion is: A-optimality

The objective value is: 21.64537

The number of iterations is: 6

The method of approximation is: quadrature

The family distribution and the link function are: binomial and logit

The computing elapsed time is: 00:00:03

with the objective value being an exact match to the corresponding value in Table 7.1.
As for the FLM examples, the final design is extracted using the code,

example5$design

and the outcome is a 8× 8 design matrix, always at the boundaries.

$x1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] -1 -1 -1 -1 1 1 1 1

[2,] -1 -1 -1 -1 1 1 1 1

[3,] 1 1 1 1 -1 -1 -1 -1

[4,] 1 1 1 1 1 1 1 -1

[5,] -1 -1 -1 -1 -1 -1 -1 -1

[6,] 1 1 1 1 -1 -1 -1 -1

[7,] 1 1 1 1 -1 -1 -1 -1

[8,] -1 -1 -1 -1 1 1 1 1

The optimal functions of the profile factor are plotted using the code,

plot(example5)

and the value 1 is required, to plot the functions of profile factor 1. If more profile
factors are involved in the model, the input should be the profile factor of interest. The
final functions of the profile factor are available in Figure 8.3, and match the functions
from Figure 7.1.
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FIGURE 8.3: Eight run pseudo-Bayesian A-optimal design for nx,1 = 4, linear basis for
β2(t), and step function basis for x•1(t) for the functional logistic model, plotted using

the "fglm" object in package fdesigns.
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8.5.6 FGLM with one profile factor depending on main or main and quadratic
effect and MC approximation

In this example, the functional Poisson model depending on a single profile factor, from
Section 7.8 is considered. Thus, the family choice in R is "poisson". It is assumed that
control of the profile factor is represented by a BS basis of degree one, with the choice
of four equally spaced interior knots. Thus, there are six basis functions for the profile
factor. The time boundaries are 0 and 1, and the number of runs is 12. As in Section 7.8,
the model with main effect and then, main and quadratic effect of the profile factor is
tackled. The parameters are assumed to be represented by a BS basis of degree one and
single knot at t = 0.5.

tbounds <- c(0, 1)

nruns <- 12

npf <- 1

dx <- c(1)

knotsx <- list(c(0.20, 0.40, 0.60, 0.80))

nx <- rep(0, npf)

for (j in 1:npf) {

nx[j] <- dx[j] + length(knotsx[[j]]) + 1

}

The use of 12 runs and BS basis for the parameters, increases the complexity, and hence,
the computational expense. For this reason, the Monte Carlo approximation, with a
normal prior, mean zero and variance two, is preferred. The prior argument, when
method is "MC", must be a function. The function used is,

set.seed(100)

prmc <- function(B, Q){

matrix(rnorm(B * Q, mean = 0, sd = sqrt(2)), nrow = B, ncol = Q)

}

with set seed used for reproducibility of the results.

For the main effect case, the computing elapsed time for identifying one final design is
around 30 minutes, and the final design was identified from the 151th repetition. Thus,
the starting design is,

indd <- list()

startd <- list()

dlbound <- -1
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dubound <- 1

nsd <- 1

set.seed(151)

for (c in 1:nsd) {

for (i in 1:npf) {

indd[[i]] <- matrix(runif(nruns * nx[i], dlbound, dubound),

nrow = nruns, ncol = nx[i])

names(indd)[i] <- paste0("x", i, sep="")

}

startd[[c]] <- indd

}

The objective is to identify the pseudo-Bayesian D-optimal design for the 151th repeti-
tion. All other arguments are kept to their default values.

example6a <- pfglm(formula = ~ 1 + x1, nsd = nsd, mc.cores = 1, npf = 1,

tbounds = tbounds, nruns = nruns, startd = startd,

dx = dx, knotsx = knotsx, pars = c("bspline"),

db = c(1), knotsb = list(c(0.5)), lambda = 0,

criterion = "D", family = poisson, method = c("MC"),

level = NULL, B = 10000, prior = prmc,

dlbound = dlbound, dubound = dubound, tol = 0.0001,

progress = TRUE)

Printing the resulting "fglm" object using the code,

print(example6a)

provides the summary of the outcome,

The number of profile factors is: 1

The number of runs is: 12

The objective criterion is: D-optimality

The objective value is: 1.92431

The number of iterations is: 4

The method of approximation is: MC

The family distribution and the link function are: poisson and log

The computing elapsed time is: 00:37:20

with the objective value being an exact match to the corresponding value in Section 7.8.
The optimal functions of the profile factor are plotted using the code,
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plot(example6a)

and the plots in Figure 8.4 are the exact match to the functions in Figure 7.5.
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FIGURE 8.4: 12 run pseudo-Bayesian D-optimal design for one profile factor with BS
degree d = 1 basis and nx,1 = 6 basis functions with the main effect considered, and
BS basis of degree d = 1 for β2(t) for the functional Poisson model. The functions are

plotted using the "fglm" object in package fdesigns.

For identifying the optimal design for the Poisson model with main and quadratic ef-
fects, the code below can be used. However, the computational expense is massive. For
this reason, avoid running the lines below, unless using a supercomputer.

example6b <- pfglm(formula = ~ 1 + x1 + P(x1, 2), nsd = nsd, mc.cores = 1,

npf = 1, tbounds = tbounds, nruns = nruns,

startd = startd, dx = dx, knotsx = knotsx,

pars = c("bspline", "bspline"), db = c(1, 1),

knotsb = list(c(0.5), c(0.5)), lambda = 0,

criterion = "D", family = poisson, method = c("MC"),

level = NULL, B = 10000, prior = prmc,

dlbound = dlbound, dubound = dubound, tol = 0.0001,

progress = TRUE)

with printed output,

The number of profile factors is: 1

The number of runs is: 12

The objective criterion is: D-optimality
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The objective value is: 7.28274

The number of iterations is: 7

The method of approximation is: MC

The family distribution and the link function are: poisson and log

The computing elapsed time is: 07:42:29

for which the objective value is also a match to its corresponding value in Section 7.8.
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Chapter 9

Future work

9.1 Full higher order functional linear model

In the future, an aim is to extend the methodology developed in the thesis, to full higher
order FLMs. In the previous chapters, polynomials and interactions are incorporated
into the model through a functional of the profile factors, with a univariate functional
parameter, integrated on single index. For the single index integration and the use of
B-spline basis functions, closed form expressions of the integrals were derived. Accord-
ing to Morris (2015), the generalisation to the full model is more flexible. This is because
it does not omit some interaction terms, thus, it gives more information of the interac-
tion. The full second, and kth order FLMs, with multivariate parameter functions and
multiple integrals are discussed in Chapter 3, with reference to Yao and Müller (2010)
and Usset et al. (2016). The functional quadratic model, and the kth order FLMs poly-
nomials and interactions are given in (3.3), (3.4), and (3.5), respectively.

The form of the full model to consider is a combination of the models in (3.4), and (3.5).
The structure of the model, including the main effects of the profile factors, polynomials
and interactions, is specified through functionals of the functions of the profile factors
on multivariate indexing. The full kth order FLM, defines polynomials and interactions
up to and including the kth order, such that,

yi =
∫ T

0
f T
1 (xi(t1)) β1(t1) dt1 +

∫ T
0

∫ T
0

f T
2 (xi(t1), xi(t2)) β2(t1, t2)

dt1dt2 + · · ·+
∫ T

0

∫ T
0
· · ·

∫ T
0

f T
k (xi(t1), xi(t2), . . . , xi(tk))

βk(t1, t2, . . . , tk) dt1dt2 · · · dtk + εi, i = 1, 2, . . . , n.

(9.1)
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The J × 1 vector xi(t), that represents the functions of the profile factors at the ith run
of the experiment, is defined in (3.2). The functionals of the functions of the profile fac-
tors f T

r (xi(t1), xi(t2), . . . , xi(tr)), for r = 1, 2, . . . , k, are functions that has to be specified.
The specification of the functions f T

r (xi(t1), xi(t2), . . . , xi(tr)) forms the linear predictor
equation with the functions of interest. In contrast to the univariate surface model in
(3.1) for which a single functional is specified; for the model in (9.1) different function-
als of the functions of the profile factors are specified in every dimension.

The function fr(xi(t1), xi(t2), . . . , xi(tr)) is a Qr × 1 vector, with Qr the total number of
terms in the rth dimension integral in the model, for r = 1, 2, . . . , k. Specifically, the
function fr(xi(t1), xi(t2), . . . , xi(tr)) is the Qr × 1 vector defined as,

fr(xi(t1), xi(t2), . . . , xi(tr)) =


fr1(xi(t1), xi(t2), . . . , xi(tr))

fr2(xi(t1), xi(t2), . . . , xi(tr))
...

frQr(xi(t1), xi(t2), . . . , xi(tr))


i = 1, 2, . . . , n, r = 1, 2, . . . , k.

(9.2)

The total number of terms in the model is the addition of the number of terms in each
dimension,

Q =
k

∑
r=1

Qr, (9.3)

with Q1 = J if the single integral contains the main effects of the functions of the J pro-
file factors. Additionally, an intercept is incorporated in the model through the function
f1(xi(t1)). If the intercept is included in the model, the first component of the vector
of the function f1(xi(t1)) is 1, i.e., f1(xi(t1)) = 1. The basis expansions for the profile
factors, used to restrict the function space, are the same as in (3.12).

The functional parameters are represented through multivariate parameter functions
βr(t1, t2, . . . tr) for r = 1, 2, . . . , k, that are Qr × 1 vectors. The number of indexing vari-
ables in each parameter function depends on the order of the polynomial or interaction
it corresponds to. Specifically, the rth parameter function is defined as,

βr(t1, t2, . . . , tr) =


βr1(t1, t2, . . . , tr)

βr2(t1, t2, . . . , tr)
...

βrQr(t1, t2, . . . , tr)

 . (9.4)
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For simplicity and without loss of generality, focus is given on the full 2nd order FLM,
as a special case of the model in (9.1). The full 2nd order FLM is defined as,

yi =
∫ T

0
f T
1 (xi(t1)) β1(t1) dt1 +

∫ T
0

∫ T
0

f T
2 (xi(t1), xi(t2)) β2(t1, t2)

dt1dt2 + εi, i = 1, 2, . . . , n.
(9.5)

To assist the understanding, assume a model with two profile factors, i.e., J = 2. In
addition to the main effects of the profile factors, the model depends on the intercept,
the interaction of the two profile factors, and the quadratic effect of the first profile
factor. Thus, the linear predictor involves 1− and 2− dimensional integrals, i.e., k = 2.
The total number of terms is Q = Q1 + Q2 = 3 + 2 = 5. The intercept and main effects
of the profile factors are specified through,

f T
1 (xi(t1)) =

(
1 xi1(t1) xi2(t1)

)
, i = 1, 2, . . . , n, (9.6)

and the quadratic term and the 2−way interaction are specified through,

f T
2 (xi(t1), xi(t2)) =

(
xi1(t1)xi1(t2) xi1(t1)xi2(t2)

)
, i = 1, 2, . . . , n. (9.7)

For the example discussed above, the single and double parameter functions are de-
fined as,

βT
1 (t1) =

(
β11 β12(t1) β13(t1)

)
,

βT
2 (t1, t2) =

(
β21(t1, t2) β22(t1, t2)

)
.

The basis expansion of the univariate functional parameter is the same as in (3.11).
A way to represent bivariate (and multivariate) functions is through the full tensor
product of univariate basis; see De Boor (1978, p. 293). The bivariate tensor product
basis for t1, t2 is defined over the 2-dimensional region [0, T ]× [0, T ]. Each univariate
basis is allowed a different choice of degree and a different choice of knots. However,
for the bivariate parameter function below, identical basis are assumed. After that, the
bivariate function can be represented as a linear combination of the basis functions of
two basis, as in Fuchs et al. (2015),

β2q(t1, t2) =
nβ,2q

∑
l=1

nβ,2q

∑
m=1

θlmb2ql(t1)b2qm(t2)

=
[
b2q(t1)⊗ b2q(t2)

]Tvec(θ2q), q = 1, 2, . . . , Q2,

(9.8)

with b2q(t)T = [b2q1(t), bq2q2(t), . . . , b2qnβ,2q(t)] a nβ,2q × 1 vector of known basis func-
tions, and vec(θ2q) the n2

β,2q × 1 vectorisation of the nβ,2q × nβ,2q matrix θ2q. The basis
expansion of the the k-variate parameter function can be represented through the same
approach, by k individual basis.
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9.1.1 Methodology expansion

The basis expansions of the functions of the profile factors and of the functional pa-
rameters are substituted into the linear predictor of the model in (9.5). The aim is to
simplify the linear predictor to a familiar form, as in (5.10). After that, the method-
ology of Chapter 5 is expanded to the bivariate index integrals, in an effort to derive
closed form expressions. In matrix form, the FLM from (9.5) is given by,

y =
∫ T

0
f T
1 (X(t1)) β1(t1) dt1 +

∫ T
0

∫ T
0

f T
2 (X(t1), X(t2)) β2(t1, t2)

dt1dt2 + ε

(9.9)

for y = (y1, y2, . . . , yn) the n× 1 vector of responses, and ε = (ε1, ε2, . . . , εn) the n× 1
vector of independent error terms with mean zero and variance-covariance σ2 In. The
matrix X(tr) is a n× J matrix as defined in (5.2), for tr = t, r = 1, 2. Subsequently, the
function f T

r (X(t1), X(t2), . . . , X(tr)) is a n×Qr matrix,

fr(X(t1), X(t2), . . . , X(tr)) =


fr1(X(t1), X(t2), . . . , X(tr))

fr2(X(t1), X(t2), . . . , X(tr))
...

frQr(X(t1), X(t2), . . . , X(tr))

 , r = 1, 2, (9.10)

expanded further as in (5.4).

The functional parameters are expanded using the basis function expansions defined
in (3.11) for the univariate parameter function, and (9.8) for the bivariate parameter
function. The parameter function on single index is expanded as in (5.7),

β1(t1) =


bT

11(t)θ11

bT
12(t)θ12

...
bT

1Q1
(t)θ1Q1

 = bT
1 (t)θ1. (9.11)

The vector b1(t1) is the ∑Q1
q=1 nβ,q × 1 vector containing the known basis functions from

the expansion of the single index parameter function,

bT
1 (t1) =

(
bT

11(t1) bT
12(t1) · · · bT

1Q1
(t1)

)
, (9.12)

and θ1 is the ∑Q1
q=1 nβ,q × 1 vector of coefficients from the expansion of the functional

parameters,
θT

1 =
(

θT
11 θT

12 · · · θT
1Q1

)
. (9.13)
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The basis function expansion of the bivariate parameter function is defined as,

β2(t1, t2) =


[
b21(t1)⊗ b21(t2)

]T vec(θ21)[
b22(t1)⊗ b22(t2)

]T vec(θ22)
...[

b2Q2(t1)⊗ b2Q2(t2)
]T vec(θ2Q2)

 =
[
b2(t1)⊗ b2(t2)

]T
θ2. (9.14)

The vector b2(t1)⊗ b2(t2) is the ∑Q2
q=1 n2

β,q × 1 vector containing the known basis func-
tions from the expansion of the bivariate parameter function,

b2(t1)⊗ b2(t2) =


b21(t1)⊗ b21(t2)

b22(t1)⊗ b22(t2)
...

b2Q2(t1)⊗ b2Q2(t2)

 , (9.15)

and θ2 is the ∑Q2
q=1 n2

β,q × 1 vector of coefficients,

θT
2 =

(
vec(θ21)

T vec(θ22)T · · · vec(θ2Q2)
T
)

. (9.16)

The basis function expansion of the k-variate parameter function is defined by expand-
ing the above result accordingly.

The substitution of the basis expansions defined above, updates the model from (9.9)
to,

y =
∫ T

0
f T
1 (X(t1)) β1(t1) dt1 +

∫ T
0

∫ T
0

f T
2 (X(t1), X(t2)) β2(t1, t2)

dt1dt2 + ε

=
∫ T

0
f T
1 (X(t1)) bT

1 (t) dt1 θ1 +
∫ T

0

∫ T
0

f T
2 (X(t1), X(t2))[

b2(t1)⊗ b2(t2)
]T dt1dt2 θ2 + ε

= Z1θ1 + Z2θ2 + ε

= Zθ+ ε,

(9.17)

with Z the n× ∑2
r=1 ∑Qr

q=1 nr
β,q model matrix and θ the ∑2

r=1 ∑Qr
q=1 nr

β,q × 1 vector of un-
known parameters. The model matrix Z is the column bind of the matrices Z1 and
Z2,

Z =
(

Z1 Z2

)
, (9.18)

with Z1 a n × ∑Q1
q=1 n1

β,q matrix, and Z2 a n × ∑Q2
q=1 n2

β,q matrix. Subsequently, Z1 is
partitioned in Q1 column blocks, with the qth column block a n× n1

β,q matrix Z1•q , which
is the solution to the single integrals that depend on the main effects of the profile
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factors, derived in (5.14). The matrix Z2 is partitioned in Q2 column blocks, with the qth

column block a n× n2
β,q matrix Z2•q , which is the solution to integrals of the form,

Z2•q =
∫ T

0

∫ T
0

f2q(X(t1), X(t2))
[
b2q(t1)⊗ b2q(t2)

]T dt1dt2

=
∫ T

0

∫ T
0

f2q

(
x•1(t1) x•2(t1) · · · x•J(t1), x•1(t2) x•2(t2) · · · x•J(t2)

)
[
b2q(t1)⊗ b2q(t2)

]T dt1dt2

=
∫ T

0

∫ T
0

f2q

(
Γ1c1(t1) Γ2c2(t1) · · · ΓJcJ(t1), Γ1c1(t2) Γ2c2(t2) · · · ΓJcJ(t2)

)
[
b2q(t1)⊗ b2q(t2)

]Tdt1dt2, q = 1, 2, . . . , Q2.

(9.19)

Hence, the model matrix Z is partitioned in Q = Q1 + Q2 column blocks. Closed form
expression for single integrals that depend on the main effects of the profile factors are
derived in (5.14). The more complicate integrals for the bivariate parameter functions
and double integrals are tackled in the next section, for which closed form expressions
are also derived, given the use of B-spline basis functions.

The ∑2
r=1 ∑Qr

q=1 nr
β,q × 1 vector of unknown parameters θ is divided in 2 sub-vectors,

θ =

(
θ1

θ2

)
, (9.20)

with θ1 a vector of length ∑Q1
q=1 n1

β,q and θ2 a vector of length ∑Q2
q=1 n2

β,q.

9.1.2 Integrate on bivariate indexing

For the 2nd order FLM, the model matrix Z is a n × ∑2
r=1 ∑Qr

q=1 nr
β,q matrix, that is the

column bind of the matrices Z1, Z2, as in (9.18). As discussed in the previous section,
Zr is a n×∑Qr

q=1 nr
β,q matrix, partitioned in Qr column blocks, with the qth column block

a n × nr
β,q matrix Zr•q , for r = 1, 2. The Q1 column blocks from the matrix Z1, result

from single index integrals, exactly as in (5.14). Subsequently, the Q2 column blocks
from the matrix Z2 result from bivariate integrals, with every partition the solution to
an integral of the form in (9.19).
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A column block Z2•q of a 2-way interaction of the profile factors x•j1(t) and x•j2(t), is the
solution to an integral of the form,

Z2•q =
∫ T

0

∫ T
0

f2q(X(t1), X(t2))
[
b2q(t1)⊗ b2q(t2)

]T dt1dt2

=
∫ T

0

∫ T
0

x•j1(t1) ◦ x•j2(t2)
[
b2q(t1)⊗ b2q(t2)

]T dt1dt2

=
∫ T

0

∫ T
0

Γj1 cj1(t1) ◦ Γj2 cj2(t2)
[
b2q(t1)⊗ b2q(t2)

]T dt1dt2

= Γj1 j2

∫ T
0

∫ T
0

cj1(t1) b2q(t1) ⊗ cj2(t2) b2q(t2) dt1dt2

= Γj1 j2

{ ∫ T
0

cj1(t1) b2q(t1) dt1 ⊗
∫ T

0
cj2(t2) b2q(t2) dt2

}
,

q = 1, 2, . . . , Q2,

(9.21)

using properties of the Kronecker product. The matrix Γj1 j2 is a n×∏
j2
j=j1

nx,j coefficient
matrix for which each column is the Hadamard product of columns of the coefficients
matrices Γj1 and Γj2 from the basis function expansions of the profile factors that are
involved in the interaction; see Section 5.3 for a detailed description. The Hadamard
product of the functions of the profile factors, x•j1(t1) ◦ x•j2(t2), represents a 2-way inter-
action of the functions of the profile factors x•j1(t1) and x•j2(t2) if j1 6= j2, or a quadratic
polynomial if j1 = j2. The resulting expression in (9.21) is the Kronecker product of
two univariate integrals, depending on the product of the basis functions of the profile
factor and the parameter. For the choice of B-spline basis, closed form expressions for
integrals of the form in (9.21) are discussed in Section 5.9.

9.1.3 Further investigation on the full higher order FLM

Functional models involving bivariate parameter functions and double integrals have
been preliminary investigated. The linear predictor is still an extension to the linear
predictor of the linear model. The model matrix is made up of column block matrices,
with the number of column blocks being the order of the model. Subsequently, each
column block is further partitioned in more column blocks, depending on the number
of terms for each order. To derive the column blocks, the linear predictor of each term
is integrated with respect to time. The main effects are integrated on single indexing,
quadratic effects and 2-way interactions on double indexing. The methodology using
basis functions can be expanded and adjusted to the bivariate parameter functions. As
a result, it has been demonstrated that for the choice of B-spline basis, there exist closed
form expressions for the double integrals. Equivalently, this can be expanded to k-order
polynomials or k-way interactions, integrated on k-variate indexing.
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In the future, it is of interest to investigate the full 2nd (and higher) order FLM further,
develop examples and compare the optimal designs against the designs derived from
single integrals. Full higher order FGLMs are also going to be investigated. Addition-
ally, it is of future interest to expand the Bayesian approach using roughness penalties
from Chapter 5, to the full model. This will allow penalisation of the complicated mul-
tivariate parameter functions, to identify Bayesian optimal designs and investigate the
effect of the value of the smoothing parameter.

To conclude with, the R package fdesigns, discussed in Chapter 8, is used to identify
optimal designs for FLMs and FGLMs with univariate parameter functions and single
integrals. The R package fdesigns will be updated in the future, to include functions
capable of identifying optimal designs for functional multivariate models.

9.2 Prior choice effect to optimal designs for FGLMs

The optimal designs identified for the FGLMs are slightly more complicated, but in
general similar to the designs identified for the FLMs. This mainly occurs due to the
choice of zero mean prior. A difference between designs for FLMs and FGLMs is that
the latter needs a prior. In the future, it is of interest to assess the effect of the prior
specification to the optimal designs identified for FGLMs. After that, the characteris-
tics and the complexity of the optimal designs can be compared to the optimal designs
with zero prior mean and the FLM optimal designs.

As preliminary investigation, the n = 8 run FGLM, for linear parameter basis, nx,1 = 8,
and prior mean equal to five for all parameters, i.e.,

θ1 ∼ N(5, 1), θ21 ∼ N(5, 1), θ22 ∼ N(5, 1),

is reconsidered. The A-optimality value of the optimal design identified is 100.062. The
functions of the optimal design have at most two changes; in contrast to the optimal
design for zero prior mean that have at most one change; see Figure 7.1 and Figure 9.1.
Similarly, the n = 12 run FGLM, for quadratic parameter basis, nx,1 = 8, and prior
mean equal to five for all parameters is reconsidered. Thus, in addition to the prior
distribution of the parameters above,

θ23 ∼ N(5, 1).

The A-optimality value of the optimal design identified is 726.715. The functions of the
optimal design have at most three changes; in contrast to the optimal design for zero
prior mean that change twice at most; see Figure 7.2 and Figure 9.2.
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FIGURE 9.1: Eight run pseudo-Bayesian A-optimal design for nx,1 = 8 for x•1(t), linear
basis for β2(t), and non-zero prior mean, for the functional logistic model.
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FIGURE 9.2: 12 run pseudo-Bayesian A-optimal design for nx,1 = 16 for x•1(t),
quadratic basis for β2(t), and non-zero prior mean, for the functional logistic model.
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Further investigation using prior specifications from the normal and uniform distribu-
tions, and expectations approximated using the Monte Carlo or quadrature methods is
a future goal.

9.3 Alternative basis

In the thesis, focus has been given on the use of B-splines to expand the functions of
the profile factors. For the functions of the parameters, focus has been given on power
series and B-splines. The choice of the B-spline basis for the profile factors has been
beneficial through its properties and computational efficiency. Moreover, for B-spline
basis, the integrals with respect to time have been solved in closed form. Having said
that, the basis to use is not always a straightforward choice. A good basis depends
on the the problem in hand, the nature of the experiment, and the profile factors; see
Georgakis (2013). In future work, it is of interest to consider alternative basis, especially
orthogonal basis. An orthogonal basis, is a basis obtained from an orthonormal basis
or Hilbert space, and by definition the inner product of orthogonal basis is zero; see
Heuberger et al. (2005, Chapter 1). This increases the computational efficiency, since
calculations are less complex; see Georgakis (2013).

The B-spline basis is not orthogonal, however, any basis can be orthogonalised. In fact,
there exist orthogonalisation methods, and specifically methods that are natural for the
B-splines; see Liu et al. (2019). This means that, the basis keep most of its original struc-
ture, and the computational efficiency increases due to the orthogonality property. The
orthogonalised B-splines are usually refereed to as O-splines or OB-splines. As future
work, it is of interest to consider the one-sided and two-sided methods discussed by
Mason et al. (1993) and Liu et al. (2019), to orthogonalise the B-spline basis and adjust
them to the methodology of the thesis.

After that, other properties including normality and rotatability, discussed in Roche
(2018), will be considered.

9.4 Design of experiments for functional ODE systems

Differential equations are equations that involve derivatives of one or more functions.
They are used to provide information on how a system is changing, with respect to
controllable factors; see Braun and Golubitsky (1983, Chapter 3). Types of differen-
tial equations are the ordinary differential equations (ODEs) and the partial differential
equations (PDEs); see Ince (1956). ODE systems involve derivatives with respect to a
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single controllable factor; see Miller and Michel (2014, Chapter 1), in contrast to PDEs
that involve derivatives with respect to multiple factors; see Renardy and Rogers (2006,
Chapter 1). ODE systems are used in many disciplines, including engineering, biology,
medicine and physics.

A future interest is to consider time varying models with profile factors, defined by a
system of ODEs and develop a methodology that allows optimal designs to be found.
Time-varying systems are systems which describe the change of variables over time, by
linking the output derivatives to itself and controllable (functional) factors. Meaning
that, a solution to the ODEs represents the evolution of the system output variables,
referred to as states, with respect to time and the inputs. For instance, an ODE system
depending on profile factors is formulated as,

ẏ(t) = f (y(t), x(t), t|β), 0 ≤ t ≤ T

y(0) = y0 (9.22)

with y(t) and ẏ(t) the output and output’s first derivative, with the output factors also
called state factors. This is to inflate the fact that they represent the mathematical state
of a time-varying model. Additionally, x(t) are the profile factors, β are the unknown
parameters defining the system, and y0 are the initial conditions. Time-varying models
defined by a system of ODEs (or PDEs) are rather challenging due to high dimensional
and analytically intractable integrals. Thus, solutions usually need to be approximated
using numerical methods; see Ramsay et al. (2007) and Bock et al. (2013). In order to
be able to fit such models, the unknown parameters β need to be estimated, and if the
initial conditions are unknown, they are also included in the vector of unknown pa-
rameters.

For static factors, a design problem for time-varying systems is to choose the most in-
formative combination of time points and input values, at which observations of the
states should take place; see Overstall et al. (2019). Suppose a system of ODEs as in
(9.22), with s state variables, J input factors, n number of runs, and y0 the initial condi-
tions. The design problem is the choice of the static factors,

xT
i = (xi1, xi2 . . . , xi J), i = 1, 2, . . . , n,

and the time points, that minimise or maximise an objective function.

In the case of profile factors, the design problem becomes to appropriately choose the
time points, and the functions of the profile factors,

xi(t)T = (xi1(t), xi2(t) . . . , xi J(t)), i = 1, 2, . . . , n,
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Parameters are scalar, thus, restrictions would need to be imposed only on the function
space of the profile factors.

Often, knowledge about the unknown parameters is not available; see Atkinson et al.
(2007, Chapter 17), thus, sensitivity analysis to derive the sensitivity equations is needed.
The sensitivity equations are the partial derivatives of the responses with respect to the
unknown parameters and they represent the sensitivity of the responses to changes in
the parameters, see Dickinson and Gelinas (1976). For instance, if small changes in a
parameter lead to a large effect in the solution, the parameter is said to be sensitive, and
non-sensitive if otherwise. In this way, sensitivity analysis leads to the construction of
the Fisher information matrix.

The example discussed below, to motivate ODEs with profile factors, is the tank reactor
equations, that is discussed in Ramsay et al. (2007).

Tank reactor equations

A motivating example of a system of ODEs, that depends on profile factors, is the
tank reactor equations in Ramsay et al. (2007). Tank reactor is a common model for a
chemical reactor in chemical engineering. A tank reactor is subdivided into a cooling
jacket and a tank, with the jacket surrounding the tank. Also, there exists an impeller
stirring the contents of the tank. A fluid enters the tank with concentration Cin(t),
temperature Tin(t) and flow rate Fin(t). After that, a reaction produces another product
which exits the tank; with concentration and temperature C and T respectively. In the
cooling jacket that surrounds the tank, there exists a coolant which has temperature
Tco(t) and flow rate Fco(t). Moreover, the volume of the tank is set to unit. The tank
reactor procedure is modelled by the following system of ODEs,

Ċ(t) = −βCC(T(t), Fin(t))C(t) + Fin(t)Cin(t),

Ṫ(t) = −βTT(Fco(t), Fin(t))T(t) + βTC(T(t), Fin(t))C(t)

+ Fin(t)Tin(t) + α(Fco(t))Tco(t), (9.23)

with the functions βCC, βTT, βTC and α being weight functions,

βCC(T(t), Fin(t)) = κ exp
{
− 104τ(1/T(t)− 1/Tre f )

}
+ Fin(t),

βTT(Fco(t), Fin(t)) = α(Fco(t)) + Fin(t),

βTC(T(t), Fin(t)) = 130βCC(T(t), Fin(t)),

α(Fco(t)) =
aFco(t)b+1

Fco(t) + aFco(t)b/2
, (9.24)
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and t ∈ (0, 60). Ċ(t) and Ṫ(t) correspond to the first derivatives of concentration C(t)
and temperature T(t), respectively. The time-varying multipliers are linked with five
profile factors Cin(t), Tin(t), Fin(t), Tco(t) and Fco(t), a reference temperature Tre f and
depends on four unknown parameters β = (κ, τ, a, b). Note that, the factor 104 is used
to rescale the parameter τ and guarantee that the four parameters lie within the range
[0.4,1.8]. According to Ramsay et al. (2007), the parameter b is kept fixed at 0.5 because
an accurate estimation of all four parameters of the model is not attainable.

The experimental aim is to understand the dynamics of concentration C(t) and tem-
perature T(t), as determined by the five profile factors Cin(t), Tin(t), Fin(t), Tco(t) and
Fco(t) over time. Meaning that, the design of experiments problem is to find the right
functions of the profile factors and the time points at which the observations should
take place. Moreover, there are no initial conditions for concentration and temperature
defined as C(0) and T(0), thus, they become part of the problem. The high number
of profile factors, parameters, and the unknown initial conditions, make the design of
experiments problem for the tank reactor model challenging.

9.5 Design of experiments for functional non-linear models

In the real world, often data are modelled by functions which are non-linear in the
model parameters; see Seber and Wild (1989, Chapter 1). Such models are known as
non-linear models and they describe a non-linear relationship. As a result, optimal ex-
perimental designs for non-linear models also depend on the values of the unknown
model parameters; see Atkinson et al. (2007, Chapter 17).

A non-linear model, is an extension to the linear model in (1.1), and it takes the form,

yi = f (xi, β) + εi, i = 1, 2, . . . , n.

with yi, xi and β as in (1.1). The function f is a non-linear function of the controllable
factors and the vector of the parameters. The reason it is non-linear, its that it cannot
be represented as a linear combination of the parameters. For example, a non-linear
model is,

yi = xi1β1 + exp(xi2β2
2), i = 1, 2, . . . , n.

The function f specifies the structure of the model. It can often be exponential, loga-
rithmic, etc.
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A future interest is to consider non-linear models with profile factors, i.e., functional
non-linear models, and expand the methodology of this thesis to identify optimal de-
signs for this more complicated models. A functional non-linear model with scalar
responses collected, takes the form,

yi = f (xi(t), β(t)) + εi, i = 1, 2, . . . , n,

with xi(t) the profile factors at the ith run, and β(t) the functional parameters. The
function f is a non-linear function, as before. This model form is rather challenging
and analytically intractable, thus, numerical approximations are essential to identify
optimal designs; see Atkinson et al. (2007, Chapter 17). Knowledge of the parameters
can be passed through the use of prior information, as in FGLMs in Chapter 7. Sub-
sequently, the intractable integrals involved in identifying the optimal experimental
designs can be approximated using the numerical methods, MC and quadrature, also
discussed in Chapter 7.

Functional non-linear models have been addressed in the past by Kadri et al. (2010),
using a reproducing kernel Hilbert space, but in my knowledge there is no work ad-
dressing experimental designs for functional non-linear models using a parametric ap-
proach.
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Appendix A

B-spline basis as differences of the
Truncated Power Functions

This section describes the connection between the B-splines and the truncated power
functions. As discussed in Section 4.4, the BS basis are efficiently computed by the use
of the Cox-de Boor recursion formula; see (4.13). This formula comes from the expan-
sion of the formal definition of a normalised BS which depends on differences. In fact,
the degree d BS basis can be defined as scaled differences of the TPF with equally spaced
knots; see De Boor (1978, page 87) and Eilers and Marx (2010). Thus, the BS and TPS
basis systems belong to the same family of basis, and for every TPS basis there exists an
equivalent BS basis in the same space of functions; see Friedman et al. (2001, Chapter 6).

For the BS basis computation using differences, it is essential to have d + 1 extra TPFs,
achieved by extending the knot vector. The extended knot vector for the TPF has 2d+ 2
extra knots, i.e., d + 1 on the left and d + 1 on the right. The extra knots are still equally
spaced and can go beyond the interval 0 to T , even negative. The extended knot vector
for the TPF is,

λ̃ = λd− , ..., λ0, λ1, ..., λk, λk+1, ..., λk+d+1.

Without loss of generality, assume having a degree zero TPF with equally spaced knots
in the time interval 0 to T . The BS basis of degree zero is defined as TPF differences as,

B0
κ(t) = Υ0

κ(t)− Υ0
κ+1(t) = −∆Υ0

κ(t), (A.1)

with Υ0
κ(t) the κth function of the degree zero TPF and ∆Υ0

κ(t) the difference of the κth

and (κ + 1)th functions.

For example, assume that it is desired to compute a degree zero BS basis with two basis
functions from the choice of a single knot at t = 0.5. The extended knot vector for the
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TPF is the size three vector λ̃ = (0, 0.5, 1) returning three basis functions. The first BS
basis function is the difference of the first and second TPFs, and the second BS basis is
the difference of the second and third TPFs. As can be seen in Figure A.1, the difference
of the two basis functions in plot (a) are equivalent to the first BS basis function in plot
(b) that is found using the recursion formula.

The differences notation ∆, is expanded to degree one differences, for instance,

∆2Υ1
κ+1(t) = Υ1

κ+1(t)− 2Υ1
κ+2(t) + Υ1

κ+3(t),

and so on, for higher degrees. Using properties of the BS basis and expanding the idea
of using TPS basis differences to calculate BS basis, a general formula for BS basis of
degree d is,

Bκ,d(t) = (−1)d+1∆d+1 Υd
κ+d(t)

λdistd!
, (A.2)

for λdist being the distance between the knots. For more information on TPF differences;
see Eilers and Marx (2010), De Boor (1978, Chapter 9) and Binder and Sauerbrei (2008).
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FIGURE A.1: (a) First and second TPF basis functions of degree zero, equally spaced
knots and extended knot vector and (b) First BS basis function of degree zero and

single knot at t = 0.5, computed using the recursion formula.
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Appendix B

Marginal distributions

B.1 Marginal distribution for y conditional on β

The marginal distribution for y conditional on β is obtained from an application of the
conditional probability rule from Section 2.3 and then integrating out σ2,

π(y|β) =
∫

π(y|β, σ2)π(σ2) dσ2

=
∫
(2π)−

n
2 (σ2)−

n
2 exp

[
− 1

2σ2 (y− Fβ)T(y− Fβ)
]

× (b/2)
a
2

Γ( a
2 )

(σ2)−(
a
2+1) exp

[
− b

2σ2

]
dσ2

=
(2π)−

n
2 (b/2)

a
2

Γ( a
2 )

∫
(σ2)−(

a+n
2 )−1 exp

[
− (y− Fβ)T(y− Fβ) + b

2σ2

]
dσ2

=
(2π)−

n
2 (b/2)

a
2

Γ( a
2 )

Γ( a+n
2 )[

b + (y− Fβ)T(y− Fβ)
] a+n

2

∝
[
b + (y− Fβ)T(y− Fβ)

]−( a+n
2 )

∝
[
1 +

1
b
(y− Fβ)T(y− Fβ)

]−( a+n
2 )

=

[
1 +

1
a
(y− Fβ)T

[b
a

In

]−1
(y− Fβ)

]−( a+n
2 )

.

(B.1)

Hence, the marginal distribution for y conditional on β is a multivariate t-distribution,

y|β ∼ ta

(
Fβ,

b
a

In

)
, (B.2)

with a degrees of freedom, mean Fβ and scale b
a In.
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B.2 Marginal distribution of y conditional on σ2

The marginal distribution of y conditional on σ2 makes sense to argue that follows
a normal distribution, using that y|β, σ2 ∼ N (Fβ, σ2 In) and β|σ2 ∼ N (µ, σ2V). To
derive analytically the mean and variance, the law of total expectation and the law of
total variance fromWeiss (2006) are used to get,

Eβ(y|β, σ2) = Eβ

[
Ey|β(y|β)

]
= Eβ(Fβ)

= Fµ,

(B.3)

and

Varβ(y) = Eβ

[
vary|β(y|β)

]
+ Varβ

[
Ey|β(y|β)

]
= Eβ(σ

2 In) + Varβ(Fβ)

= σ2 In + σ2FV FT

= σ2(In + FV FT).

(B.4)

Hence, the marginal distribution of y conditional on σ2 is a normal distribution,

y|σ2 ∼ N
(

Fµ, σ2(In + FV FT)
)

. (B.5)
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B.3 Marginal distribution of y

The marginal distribution of y is obtained by considering that y|σ2 ∼ N (Fµ, σ2(In +

FV FT)) and σ2 ∼ IG(a/2, b/2) and then integrating out σ2,

π(y) =
∫

π(y|σ2)π(σ2) dσ2

=
∫
(2π)−

n
2 (σ2)−

n
2 |In + FV FT|− 1

2

× exp
[
− 1

2σ2 (y− Fµ)T(In + FV FT)−1(y− Fµ)
]

× (b/2)
a
2

Γ( a
2 )

(σ2)−(
a
2+1) exp

[
− b

2σ2

]
dσ2

=
(2π)−

n
2 |In + FV FT|− 1

2 (b/2)
a
2

Γ( a
2 )

×
∫
(σ2)−(

a+n
2 )−1 exp

[
− (y− Fµ)T(In + FV FT)−1(y− Fµ) + b

2σ2

]
dσ2

=
(2π)−

n
2 |In + FV FT|− 1

2 (b/2)
a
2

Γ( a
2 )

×
Γ( a+n

2 )[
b + (y− Fµ)T(In + FV FT)−1(y− Fµ)

] a+n
2

∝
[
b + (y− Fµ)T(In + FV FT)−1(y− Fµ)

]−( a+n
2 )

∝
[
1 +

1
b
(y− Fµ)T(In + FV FT)−1(y− Fµ)

]−( a+n
2 )

=

[
1 +

1
a
(y− Fµ)T

[b
a
(In + FV FT)

]−1
(y− Fµ)

]−( a+n
2 )

.

(B.6)

Hence, the marginal distribution for y is a multivariate t-distribution,

y ∼ ta

(
Fµ,

b
a
(In + FV FT)

)
, (B.7)

with a degrees of freedom, mean Fµ and scale b
a (In + FV FT).
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Appendix C

Methodology example proof

In this appendix, the aim is to provide a proof through an example for (5.23) that is,

Z•q = Γj1 j2···jK

∫ T
0

(
cj1(t)⊗ cj2(t)⊗ · · · ⊗ cjK(t)

)
bT

q (t) dt

= Γj1 j2···jK

∫ T
0

cj1 j2···jK(t) bT
q (t) dt, q = J + 1, J + 2, . . . , Q.

For the purpose of this example K = 3, meaning an interaction of three profile factors
is considered. The number of runs is n = 4, and the number of basis functions for the
three profile factors are nx,1 = 4, nx,2 = 3, nx,3 = 2. The coefficient matrices are such
that:

Γ1 =


−1 −1 −1 −1
1 1 1 1
−1 −1 1 1
1 1 −1 −1

 , Γ2 =


−1 1 −1
1 1 −1
1 1 −1
1 1 −1

 , Γ3 =


1 1
−1 −1
1 1
1 1

 .

The basis functions for the profile factors are such that:

c1 =


0
0
0
1

 , c2 =

1
1
0

 , c3 =

(
0
1

)
.

The Hadamard product of the coefficient matrices times the basis functions is given by:

Γ1c1 ◦ Γ2c2 ◦ Γ3c3 =


0
−2
2
−2

 .
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The matrix Γ123 becomes:

Γ123 =

(
1 1 1 1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1

)
,

and the vector c123 becomes:

c123 =
(

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
)T

.

Multiplying the two gives the matrix:

Γ123 c123 =


0
−2
2
−2

 ,

that match exactly the result of Hadamard products.
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Appendix D

D-optimal designs for linear
parameters and knot at t = 0.5

The aim of this section is to discuss some results from the FLM example with a single
profile factor, discussed in Section 6.1. Specifically, for linear parameters, the objective
values of the D-optimal designs does not change as the number of basis functions for
the profile factor increases. The only exception is for nx,1 = 3. This is because for three
basis functions, the knot vector of equally spaced knots does not include 0.5.

The model in Section 6.1 includes the intercept and a single profile factor, i.e., Q = 2.
Thus, the model matrix Z is a n × ∑2

q=1 nβ,q matrix, that contains a column of 1’s for
the intercept, and nβ,2 columns resulting from the product of the design matrix and the
solution to the integral of the product of basis functions,

Z•2 = Γ1

∫ 1

0
c1(t) bT

2 (t) dt, (D.1)

which for linear parameters is a n× 2 matrix, i.e., nβ,2 = 2. For the choice of BS basis of
degree zero for the profile factor and linear power series for the functional parameter,
the result is,

Z•2 =



1
nx,1

∑
nx,1
l=1 Γ1l

1
2n2

x,1
∑

nx,1
l=1 Γ1l(2l − 1)

1
nx,1

∑
nx,1
l=1 Γ2l

1
2n2

x,1
∑

nx,1
l=1 Γ2l(2l − 1)

...
...

1
nx,1

∑
nx,1
l=1 Γnl

1
2n2

x,1
∑

nx,1
l=1 Γnl(2l − 1)

 , (D.2)
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thus, the model matrix Z is given by,

Z =


1 1

nx,1
∑

nx,1
l=1 Γ1l

1
2n2

x,1
∑

nx,1
l=1 Γ1l(2l − 1)

1 1
nx,1

∑
nx,1
l=1 Γ2l

1
2n2

x,1
∑

nx,1
l=1 Γ2l(2l − 1)

...
...

...
1 1

nx,1
∑

nx,1
l=1 Γnl

1
2n2

x,1
∑

nx,1
l=1 Γnl(2l − 1)

 =
(

1n Z•2

)
, (D.3)

with 1n a n× 1 vector of ones. The information matrix is defined as ZTZ and it is given
by,

ZTZ =

(
1T

n 1n 1T
n Z•2

ZT
•21n ZT

•2Z•2

)
=

(
n 0T

2

02 ZT
•2Z•2

)
, (D.4)

with 02 a 2× 1 vector of zeros. In the second equality, 1T
n Z•2 = [ZT

•21n]T = 02, because
the sum of every column of the D-optimal designs identified is 0, i.e.,

n

∑
i=1

Γ1il = 0, l = 1, 2, . . . , nx,1, (D.5)

with Γ1il the ilth entry of the design matrix. As a consequence of (D.5), the sum of all
entries of the design matrix is zero,

n

∑
i=1

nx,1

∑
l=1

Γ1il = 0. (D.6)

Remember that the objective value of D-optimality depends on the determinant of the
information matrix. Following the result from (D.4) and properties of the determinant,

|ZTZ| = n|ZT
•2Z•2|, (D.7)

with ZT
•2Z•2 a 2× 2 matrix.

The upper diagonal entry of ZT
•2Z•2, denoted as ZT

•2Z•2[1,1] is given by,

ZT
•2Z•2[1,1] =

1
n2

x,1

[
n

∑
i=1

(
nx,1

∑
l=1

Γ1il

)2]

=
1

n2
x,1

[
n× n2

x,1

2

]
=

n
2

,

(D.8)

using that all the entries of the design matrix are at the boundaries, with half of the runs
constant at the boundaries, and half runs changing once at t = 0.5. The off diagonal
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entries of ZT
•2Z•2, denoted as ZT

•2Z•2[1,2] and ZT
•2Z•2[2,1] are identical and they are given by,

ZT
•2Z•2[1,2] = ZT

•2Z•2[2,1]

=
1

2n3
x,1

[
n

∑
i=1

nx,1

∑
l=1

Γ1il

nx,1

∑
k=1

Γ1ik(2k− 1)

]

=
1

2n3
x,1

[
n× nx,1 × n2

x,1

4

]

=
1

2n3
x,1

[
n× n3

x,1

2

]
=

n
4

,

(D.9)

using that half runs are changing once, i.e., n/2 runs the sum of the entries is zero,

nx,1

∑
l=1

Γ1il = 0, i = 1, 2, . . . , n/2, (D.10)

and the other half runs are constant, i.e., n/2 runs the sum of the entries is ±nx,1,

nx,1

∑
l=1

Γ1il = ±nx,1, i = n/2, n/2 + 1, . . . , n. (D.11)

The lower diagonal entry of ZT
•2Z•2, denoted as ZT

•2Z•2[2,2] is given by,

ZT
•2Z•2[2,2] =

1
4n4

x,1

[
n

∑
i=1

(
nx,1

∑
l=1

Γ1il (2l − 1)

)2]

=
1

4n4
x,1

[
n× nx,1 × n4

x,1

2
+

n
4

(
nx,1/2

∑
l=1
−(2l − 1)

)2

+
n
4

(
nx,1

∑
l=nx,1/2+1

(2l − 1)

)2]

=
1

4n4
x,1

[
n× n4

x,1

4
+

n× n4
x,1

16
+

n× n4
x,1

16

]
=

n
8
+

n
64

+
n
64

=
5n
32

.

(D.12)

Thus, the information matrix is updated to,

ZTZ =

n 0 0
0 n/2 n/4
0 n/4 5n/32

 , (D.13)

which does not depend on the number of basis functions nx,1, giving the proof for the
non-changing D-optimality objective value for linear basis and knot at t = 0.5. The
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determinant of the information matrix is calculated using (D.7),

|ZTZ| = n

(
5n2

64
− n2

16

)
=

n3

64
. (D.14)

Finally, when doubling and tripling the number of runs, the D-optimality objective
values are becoming a half and third, respectively. The reason is that the objective
function is adjusted on the total number of basis functions; see (5.30).
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Appendix E

Documentation of the functions in
fdesigns

E.1 Arguments of the function pflm()

Argument Description
formula* Object of type formula, to create the model equation. Ele-

ments need to match the list names for startd. Main effects
are called using the names of the profile factors in startd,
interactions are called using the names of the profile fac-
tors in startd separated with :, and polynomial effects are
called using the function P(). Scalar factors are called using
the same way and degree and knots through the arguments
dx and knotsx are used to specify the scalar factors. A scalar
factor is equivalent to a profile factor with degree 0 and no
interior knots.

nsd The number of starting designs. The default entry is 1.

mc.cores The number of cores to use. The option is initialized from
environment variable if set. Must be at least one, and for
parallel computing at least two cores are required. The de-
fault entry is 1.

npf* The total number of (profile) factors in the model.

tbounds* A time vector of length 2, representing the boundaries of
time, i.e., 0 and T.

nruns* The number of runs of the experiment.
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startd Representing the starting design but if NULL then random
designs are automatically generated. It should be a list of
length nsd, and each component should be a list of length
npf.

dx* A vector of length npf, representing the degree of B-spline
basis functions for the functions of the functional factors. A
scalar factor must have a zero degree entry.

knotsx* A list of length npf, with every object in the list representing
the knot vectors of each functional factor. A Scalar factor
must have no interior knots, i.e., an empty knot vector.

pars* A vector of length equal to the total terms in formula, rep-
resenting the basis choice for the (functional) parameters.
Entries should be "power" or "bspline". A scalar parameter
is represented through a "power" basis.

db* A vector of length equal to the total terms in formula, rep-
resenting the degree of the basis for the (functional) param-
eters. For power series basis the degree is: 1 for linear, 2 for
quadratic, etc. A scalar parameter must have degree 0.

knotsb A list of length equal to the total terms in formula, repre-
senting the knot vector of each (functional) parameter. For
parameters represented by a power series basis, the knot
vector should be empty or NULL.

lambda Smoothing parameter to penalise the complexity of the
functions of the profile factors. The default value is 0, i.e.,
no penalty.

criterion* The choice of objective function. Currently there are two
available choices: A-optimality (criterion = "A") and D-
optimality (criterion = "D").

tol The tolerance value in the optimisation algorithm. Default
value is 0.0001.

dlbound The design’s lower bound. The default lower bound is -1.

dubound The design’s upper bound. The default upper bound is 1.

progress If TRUE, it returns the progress of iterations from the opti-
misation process. The default entry is FALSE.

TABLE E.1: The arguments of the function pflm() with a description for each. The
asterisk * indicates a mandatory argument.
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E.2 Output of the function pflm()

Output Description
objval The objective value of the final design found from pflm().
design The final design found by pflm(). The final design is a list

of length equal to the number of profile factors, exactly as
the starting design startd.

nits The total number of iterations needed to identify the final
design.

time The computational elapsed time in finding the final design.
startd If starting designs were passed as an argument in pflm(),

then this is the starting design from the argument startd
that led to the final design. If no starting designs were
passed to pflm(), this is the starting design generated ran-
domly by pflm() that led to the final design.

tbounds The argument tbounds .
npf The argument npf.
criterion The argument criterion.
nruns The argument nruns.
formula The argument formula.
dx The argument dx.
knotsx The argument knotsx.
lambda The argument lambda.
dbounds A vector of length 2, containing the arguments dlbound and

dubound.
bestrep A scalar value indicating the repetition that led to the final

design.
allobjvals A vector of length equal to nsd, representing the objective

value from all of the repetitions.
alldesigns A list of length equal to nsd of all the final designs. Each

component of the list is a list of length equal to npf repre-
senting the final design in each repetition of the coordinate
exchange algorithm.

allstartd If starting designs were passed as an argument in pflm(),
then this is the argument. If no starting designs were
passed to pflm(), this is the starting designs generated ran-
domly by pflm().

TABLE E.2: The output of the function pflm() with a description for each.
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E.3 Additional arguments of the function pfglm()

Argument Description
family* Specifies the error distribution and the link function of the

functional generalised linear model. It can be the name of a
family in the form of a character string, or an R family func-
tion; see the R function family() for details. Currently, the
methodology is implemented only for the binomial family
with the logit link, i.e., family = binomial(link = "logit"),
and the Poisson family with the log link, i.e., family = pois-
son(link = "log").

method* A character argument specifying the method of approxi-
mation of the expectation of the objective function with re-
spect to a prior distribution of the parameters. Currently
there are two available choices: 1. Deterministic quadrature
approximation (method = "quadrature"); and 2. Stochastic
Monte Carlo approximation (method = "MC").

level An optional argument that specifies the accuracy level in
the quadrature approximation. It is the number of points
in each dimension. If NULL and method = "quadrature",
then it defaults to 5. A high value of level may increase
the computation time; especially for complicated models.
If the model is complicated, i.e., several profile factors or
interactions and polynomials, prefer to use method = "MC".

B An optional argument that specifies the size of the Monte
Carlo samples. If NULL and method = "MC", then it de-
faults to 10000. For method = "quadrature", B is computer
automatically according to the dimensionality of the func-
tional model and the level argument.
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prior* An argument to specify the prior distribution. For method
= "MC", it should be a function of two arguments B and Q.
Both arguments are integers. The value of B corresponds
to the argument B, and the value of Q represents the to-
tal number of basis functions of the functional parameters.
The function must generate a matrix of dimensions B by Q,
that contains a random sample from the prior distribution
of the parameters. For method = "quadrature", normal and
uniform prior distribution for the parameters are allowed.
For a normal prior distribution, the argument prior needs
to be a list of length 2, with the entries named "mu" for the
prior mean and "sigma2" for the prior variance-covariance
matrix. The prior mean can be a scalar value that means all
parameters have the same prior mean, or a vector of prior
means with length equal to the number of parameters in
the functional model. The prior variance-covariance can be
a scalar value that means all parameters have a common
variance, or a vector of prior variances with length equal
to the number of parameters in the functional model, or a
square matrix with the number of rows and columns equal
to the number of parameters in the functional model. For a
uniform prior distribution, the argument prior needs to be a
list of a single entry named "unifbound" for the lower and
upper bounds of the prior distribution. The bounds can
be a vector of length 2 that means all parameters have the
same bounds, or a matrix with the number of rows equal
to 2 and the number of columns equal to the number of pa-
rameters in the functional model.

TABLE E.3: The additional arguments of the function pfglm(), that are not used in
the function pflm(), with a description for each. The asterisk * indicates a mandatory

argument.
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E.4 Additional output of the function pfglm()

Output Description
family A vector of length equal to 2, containing the family and the

link function.
method The argument method.
B The argument B.
prior The argument prior.

TABLE E.4: The additional output of the function pfglm(), that is not included in the
output of the function pflm(), with a description for each.

E.5 Arguments of the function P()

Argument Description
x* A coefficient matrix from the basis expansion of a pro-

file factor. The name passed needs to match the name of
the profile factor from the argument startd in pflm() and
pfglm().

deg* The degree of the polynomial effect for the profile factor.

TABLE E.5: The arguments of the function P() with a description for each. The asterisk
* indicates a mandatory argument.
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