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• Agriculture ground data is often scarce in
conflict zones

• Yield variability is mapped at 10m using
Sentinel-2 data

• Yield is estimated using Bayesian model
trained with harvested data

• Environmental variables can strengthen
the model predicyive power
A B S T R A C T
A R T I C L E I N F O
Editor: Martin Drews
 Low levels of agricultural productivity are associated with the persistence of food insecurity, poverty, and other socio-
economic stresses. Mapping and monitoring agricultural dynamics and production in real-time at high spatial resolu-
tion are essential for ensuring food security and shaping policy interventions. However, an accurate yield estimation
might be challenging in some arid and semi-arid regions since input datasets are generally scarce, and access is re-
stricted due to security challenges. This work examines howwell Sentinel-2 satellite sensor-derived data, topographic
and climatic variables, can be used as covariates to accurately model and predict wheat crop yield at the farm level
using statistical models in low data settings of arid and semi-arid regions, using Sulaimani governorate in Iraq as an
example. We developed a covariate selection procedure that assessed the correlations between the covariates and
their relationships with wheat crop yield. Potential non-linear relationships were investigated in the latter case
using regression splines. In the absence of substantial non-linear relationships between the covariates and crop
yield, and residual spatial autocorrelation, we fitted a Bayesian multiple linear regression model to model and predict
crop yield at 10 m resolution. Out of the covariates tested, our results showed significant relationships between crop
yield andmean cumulative NDVI during the growing season,mean elevation,mean end of the season,meanmaximum
temperature and mean the start of the season at the farm level. For in-sample prediction, we estimated an R2 value of
51% for themodel, whereas for out-of-sample prediction, this was 41%, both of which indicate reasonable predictive
performance. The calculated root-mean-square error for out-of-sample prediction was 69.80, which is less than the
standard deviation of 89.23 for crop yield, further showing that the model performed well by reducing prediction var-
iability. Besides crop yield estimates, the model produced uncertainty metrics at 10 m resolution. Overall, this study
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showed that Sentinel-2 data can be valuable for upscaling field measurement of crop yield in arid and semi-arid
regions. In addition, the environmental covariates can strengthen the model predictive power. The method may be
applicable in other areas with similar environments, particularly in conflict zones, to increase the availability of
agricultural statistics.
1. Introduction

Over recent decades, humanity has faced several natural and anthropo-
genic related events which have posed a major risk to current and future
global food production. The consequences of these events have escalated
the level of poverty on national and global scales. In particular, the impact
of the recent Covid-19 pandemic has increased global poverty rates from
8.4 % in 2019 to 9.3 % in 2020 resulting in pushing >70 million people
into extreme poverty by the end of 2020 (World Bank, 2022a). One of the
most powerful tools to eradicate poverty and feed a projected 9.7 billion
people by 2050 is agricultural development (United Nations, 2019; World
Bank, 2020). In 2021, agriculture accounted for 4.3 % of the global gross
domestic product (GDP), however, its contribution to the total GDP was
higher than 25 % in many developing countries (World Bank, 2022b). In
addition, more than two-thirds of the population in poor countries work
in agriculture (Roser, 2013). Therefore, increasing agricultural productivity
could alleviate global hunger and food insecurity (Uphaus, 2008). How-
ever, there is inconsistency in the availability of input data among countries
to help improve agriculture productivity.

Currently, the lack of full coverage of ground agriculture data and diffi-
culties with access tomany areas in the developing world due to security is-
sues and other obstacles mean that traditional approaches to collecting
agricultural data are challenging (Eklund et al., 2017; Qader et al., 2021).
For example, obtaining survey estimates at the farm level for an entire dis-
trict requires a large number of crops cut data which is highly resource-
intensive (Murthy et al., 1997; Lobell et al., 2018). In addition, with the in-
creasing need for improving food insecurity and livelihood issues, reliable
farm-level estimates of yield are becoming ever more important (Sapkota
et al., 2016; Karst et al., 2020). Commonly, farmer self-reports and crop
cuts are used to measure crop productivity. Although the self-report ap-
proach is much easier and faster for collecting crop data, the reliability of
the approach can be questionable (Baumeister et al., 2007). These concerns
are due to the lack of standard measurement units, various conditions at
which the crop is harvested, a tendency to provide inaccurate numbers
and potential bias (Carletto et al., 2015; Gourlay et al., 2019; Wahab,
2020). A second common approach to measure crop production is crop
cut, where yield is harvested from a randomly selected portion of a farmer's
land (Fermont and Benson, 2011). However, adopting such an approach is
resource and time intensive, and it can lead to uncertainties since yield can
exhibit large spatial heterogeneities within farmland (Lobell et al., 2020;
Paliwal and Jain, 2020). In addition, Kosmowski et al. (2021) found that
protocol choices to select samples are important as alternative protocols
could result in various accuracies relative to the whole plot. Therefore, nei-
ther self-report nor crop cut approaches alone are able to offer a reliable
complete picture of crop productivity because of their limitations and in-
complete spatial coverage. In addition, such data collection might not be
possible in some areas due to limited resources, security challenges and ac-
cess issues.

Advances in remote sensing technology present opportunities for inno-
vation in local and global agricultural statistics systems (Carfagna and
Gallego, 2005; GSARS, 2017). However, not all the regions in the world
are able to benefit from such technological advancement. In Sub-Saharan
Africa, Bégué et al. (2020) concluded that to take advantage from this tech-
nological advancement and bridge the gap between technical analysts and
policy makers some key points such as capacity building, public-private
partnership, political will, proofs of concept and institutional commitment
are fundamental. With the combination of satellite-derived information
and ground data, statistical approaches can be used to predict crop yield
at the farm level (Burke and Lobell, 2017; Engen et al., 2021; Segarra
et al., 2022). For instance, a combination of high-resolution satellite
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imagery and field data collected from thousands of smallholder plots in
Kenya showed that satellite imagery can be used to estimate and under-
stand yield variation at the field scale and provide potential capabilities
that include a broader characterization of the source and extent of yield
gaps and the development of financial products aimed at African small-
holders (Burke and Lobell, 2017). Recently, the potential of Sentinel-2
and PlanetScope were evaluated to estimate maize yield in intercropped
smallholder fields in Malawi (Li et al., 2022). The results indicate that
maize yield with moderate accuracy (R2 = 0.51, nRMSE = 19.95 %) can
be estimated using Sentinel-2 red-edge vegetation index (VI), while
PlanetScope (3 m) only showed a marginal improvement in performance
(R2 = 0.52, nRMSE = 19.95 %). However, remote sensing-based crop
yield models require either crop cut data or comparable high-quality mea-
surements to produce better prediction results, than low-quality training
datasets (Sida et al., 2021). Quantifying farm-level crop production in ad-
vance could help policymakers, scientists, and decision-makers to improve
agricultural management and food security under a variety of environmen-
tal conditions.

In general, remote sensing data can be used for yield estimation in two
ways. First as an input to crop models where the remotely sensed informa-
tion is incorporated into simulating models for crop development and
growth. Examples of these models are the World Food Studies (WOFOST)
(Vandiepen et al., 1989), Crop Systems Simulation (CROPSYST) models
(Van Evert and Campbell, 1994) and Simulateur mulTIdisciplinaire pour
les Cultures Standard (STICS) (Brisson et al., 1998). Despite their ability
to obtain the soil-environment-plant interactions, these models are gener-
ally challenging to calibrate particularly in data-sparse environments due
to their complexity and high data demand (Moriondo et al., 2007). Other
researchers have combined remote sensing and crop growth models in
case of ground data scarce environments, where outputs of crop models
were used to calibrate remote sensing-based models (Lobell et al., 2015;
Leroux et al., 2019). On the other hand, yield prediction can be made di-
rectly from remotely sensed measurements through biophysical variables
quantified within the season and their relationship with ground yield
data using simple linear models (Mkhabela et al., 2011; Huang et al.,
2013; Bolton and Friedl, 2013). These approaches are widely used particu-
larly in developing countries because of their low demand for data and sim-
plicity of implementation.

Researchers have employedmultiple satellite datasets such as those pro-
duced from the Advanced Very High-Resolution Radiometer (AVHRR)
(Doraiswamy and Cook, 1995), Moderate Resolution Imaging
Spectroradiometer (MODIS) (Lopresti et al., 2015), MediumResolution Im-
aging Spectrometer (MERIS) (Dash and Curran, 2007) and Landsat (Kang
and Özdoğan, 2019) to map crop yield in different locations across the
world. However, considering the common cloud coverage issues and lack
of temporal or spatial resolutions of these datasets, mapping smallholder
yield is a challenge. Whitcraft et al. (2015) suggested that at early and
mid-agricultural season, which are crucial periods for crop type mapping
and crop yield forecasting, optical, polar-orbiting imaging might not be ef-
ficient for operational monitoring due to cloud issues, and alternatives
(e.g., microwave synthetic aperture radar, SAR) should be considered.
With the improvement of satellite products, several attempts have been
made to explore the possibility of using remote sensing data to map crop
yield and its variability within smallholdings (Jain et al., 2013; Burke and
Lobell, 2017). Although the outputs of these studies are promising, many
of them depend on commercial satellite data (Burke and Lobell, 2017) or
a combination of freely available and commercial satellite data (Jeffries
et al., 2020). Considering the financial aspect and limited resources, partic-
ularly in developing countries, obtaining such data is infeasible. In addi-
tion, using remote sensing data to map crop yield has been recognized as
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a data-intensive process. Furthermore, this process is more challenging
where agricultural practices are heterogeneous across neighbouring fields
(Jain et al., 2013) and field sizes are typically <2 ha (Lowder et al., 2016).

The recent improvements in temporal, spatial and spectral resolutions
from sensors such as the Sentinel-2 Multispectral imager (MSI) sensor
datasets with its global coverage and free access have opened new possibil-
ities formonitoring small smallholder farms. Recent studies have shown the
potential of Sentinel-2 to estimate crop yield (Lambert et al., 2018; Hunt
et al., 2019; Mehdaoui and Anane, 2020; Segarra). In a comparative analy-
sis between Sentinel 2 and Landsat 8 in semi-arid region of Iraq, Sentinel-2
derivative covariates produced the strongest relationship with the actual
grain yield (R2 = 0.77) (Faqe Ibrahim et al., 2022). In other examples of
semi-arid smallholder schemes, various data configuration of Sentinel-1,
Sentinel-2 and their derivatives were tested to obtain an accurate yield es-
timation and the results are promising (Ouattara et al., 2020; Chahbi
et al., 2022).

Despite providing predictive crop yield parameters, satellite images can
be used to derive other environmental factors such as elevation, slop and
climatic variables which are directly and indirectly related to the land pro-
ductivity. For instance, high-altitude areas have similar characteristics as
high latitudes including low temperature, high wind velocity and poor
soil which constraint the crop productivity (Dhillon, 2004). In addition,
soil formation, soil-water availability, climate andwater drainage can be in-
fluenced by the slope of landscape and ultimately affect the land fertility.
Furthermore, crop production is heavily affected by climatic condition in-
cluding long-term trends in average temperature and rainfall, extreme
weather events, interannual climate variability and shocks during growing
period (FAO, 2013; IPCC, 2022). These environmental factors could be em-
ployed in the remote sensing-based crop yield modelling to improve the
predictive power. In the UK, an accurate map of within wheat yield varia-
tion at 10 m resolution was possible using Sentinel-2 data (RMSE 0.66 t/
ha), and when environmental data were incorporated, further improve-
ment in the accuracy was achieved ((RMSE 0.61 t/ha) (Hunt et al., 2019).
In the complex land use where crops are intercropped under a dense tree
canopy in Burkina Faso, Sentinel-2 data was able to enlighten between 41
and 80 % of the variation in the ground crop production measurement
(Karlson et al., 2020). Similarly, the inclusion of parkland structure has im-
proved the explanation of observed yield variability from 46 % to 70 % in
Senegal's smallholder context (Leroux et al., 2020). However, Sentinel-2s
potential and the inclusion of environmental factors to map crop yield in
areas that are prone to drought and known as conflict zones have not
been fully explored.

With the advantage of remote sensing techniques, various machine
learning models have been studied for crop yield estimation using satellite
images at various spatial scales (Cunha and Silva, 2020; Xu et al., 2021;
Khaki et al., 2021; Pham et al., 2022). Based on recent systematic literature
reviews, Long Short-Term Memory (LSTM) and Convolutional Neural Net-
works (CNN) are the most widely used deep learning approaches for crop
yield prediction (Oikonomidis et al., 2022; Muruganantham et al., 2022).
However, to the best of our knowledge, no study has been carried out to in-
vestigate the potential of a combination of Sentinel-2 and environmental
data to model and predict crop yield in arid and semi-arid regions of Middle
Eastern countries using a robust statistical methodology. Bayesian modelling
approaches, in particular, have a greater capacity to accurately capture uncer-
tainty compared to the more common discriminative models in machine
learning (Shirley et al., 2020). An empirical Bayesian approach was applied
to the state-level maize yield and meteorological data for the US Corn Belt
from1981 to 2014 and the results showed that temperature and precipitation
had the largest impact on yield in the six months prior to the harvest (Shirley
et al., 2020). A county-scale corn yield prediction model was built in the US
based on a Bayesian neural network (BNN), and they found that the proposed
BNN model had the best performance among all the six approaches for the
ten testing years 2010–2019 achieving an average R2 of 0.77 (Ma et al.,
2021). In addition, besides its accurate corn yield estimation in a normal
year, the model was able to accurately estimate corn yield in abnormal
years when extreme weather events happened.
3

For the first time, here we explore the potential of various input datasets
including crop phenology and different vegetation indices derived from
Sentinel-2, climatic and topographic data, as well as crop cut to estimate
wheat crop yield at 10 m resolution. In addition, we adopt a Bayesian
modelling approach to predict crop yield and associated uncertainties in
arid and semi-arid regions of Iraq where extreme weather events and secu-
rity issues are prevalent. Furthermore, the research investigated the added
value of environmental covariates to improving the predictive power.

2. Materials and methods

2.1. Study area

Iraq consists of eighteen administrative governorates. This research fo-
cuses on the Sulaimani governorate, which is located in the northeastern
part of Iraq and is the largest governorate in the Kurdistan Region, border-
ing Iran from the east (Fig. 1a). Its elevation ranges from 176 to 3411 m
above sea level (Fig. 1b). It covers an administrative area of 17,023 km2

(Zakaria et al., 2013) with ten main districts including Pshdar,
Rania, Dokan, Sharbazher, Panjwin, Al-Sulaymaniyah, Chamchamal,
Derbendikhan, Halabja and Kalar (Fig. 1) (HDX, 2022). The climate of
the Sulaimani is driven by the Mediterranean zone with hot and dry sum-
mer and cold and wet winter. The annual average temperature and rainfall
ranging from 12 to 20 °C and from 400 to 1000 mm, respectively.

2.2. Data and pre-processing

For the model development and validation, a large set of variables were
derived from five types of data sources including time-series Sentinel-2
imagery, land cover, climatic data, topographic data and crop cuts. A
summary of the input datasets is presented in Table 1.

2.2.1. Sample stratification and crop masking
Crop yield can exhibit large spatial heterogeneity within a region due to

variations in ecological zones, climatic, topographic conditions and agricul-
ture management. To assure the randomness within the crop cut data col-
lection and sample representativeness, the study area was stratified.
Stratified sampling with strata for this work was defined by the combina-
tion of various attributes, including vegetation, topographic and climatic
variables. To do this, various input datasets were extracted and pre-
processed. The monthly rainfall data from October 2019 to July 2020
were extracted from the center for Hydrometeorology and Remote Sensing
(CHRIS) (Nguyen et al., 2019). The average and cumulative rainfall for the
corresponding period were computed. The mean, minimum and maximum
temperatures over the study periodwere extracted fromMOD11B3Version
6 product (Wan et al., 2015). The average NDVI over the study period was
extracted from the NOAA Climate Data Record (CDR) of Advanced Very
High-Resolution Radiometer (AVHRR) Surface Reflectance (Vermote
et al., 2014). The Shuttle Radar Topography Mission (SRTM) was used to
derive topographic variables including Digital Elevation Model and slope
(NASA, 2013). All the datasets were pre-processed and standardised in
terms of spatial resolution and spatial extent. The nearest neighbour resam-
pling approach was employed to resample all the datasets to 5 km spatial
resolution for the purpose of sample stratification.

To generate the cropmask for the study area, the GlobeLand30,which is
a 30m resolution global land cover data product developed by the National
Geomatics Center of China, was obtained from the GlobeLand30 website
(GlobeLand30, 2022) (Fig. 2b). The GlobeLand30 datasets encompass 10
land cover classes in total, including cultivated land, grassland, shrubland,
water bodies, forest, wetland, artificial surface, tundra, ice, bare land and
perennial snow.

Once the input datasets were ready and standardised, all of them were
compiled and the k-means unsupervised classifier (Lloyd, 1957) was used
to stratify the study area into five strata (Fig. 2a). These five sample strata
were considered during crop data collection to make sure the collected
crop cut data represents the study area.



Fig. 1. The boundary of Iraqi governorates where the study area is highlighted (a), and the tenmain districts in the study area (HDX, 2022) with their altitudes (NASA, 2013) (b).
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2.2.2. Crop cut data
Crop cut datawere collected for 138 randomly selected fields across our

study area in 2020. To collect crop data, the field team visited each farmer's
field at the time of crop harvest and selected a 1 × 1 m2 plot within each
field, harvesting the crop from these sub-plots, and weighting the crop
grain (yield) in the field. The lack of resources limited us to conduct more
than one crop cut in each field. However, in 17 farm fields, the crop cuts
were conducted by selecting three 1 × 1 m2 sup-plots at random from
each farmer's field to assess the spatial variation of the yield in the selected
field. To compute the mean yield of a field, the yield values from all 1 × 1
Table 1
Summary of the source of input datasets.

Category Variables Spatial resolution Source

Satellite imagery

NDVI1 0.05° AVHR
NDVI2 10 m Sentin
EVI 10 m Sentin
MTCI 10 m Sentin
LST 5600 m MODIS

Climatic Rainfall 0.05° CHRIS

Topographic
Elevation 30 m SRTM
Slope 30 m SRTM

Crop cut Yield 1 m field

4

m2 crop cut plotswere averagedwithin eachfield. In addition,five GPS points
for each of these fields were collected: four in each corner of the field and one
at the center of thefield. The collectedGPS locationswere used to create poly-
gons for each farm and spatially linked to Sentinel imagery.

To assess the accuracy of the yield data that were collected through the
crop cutting experiments, the average yield for each local area was com-
pared to the agricultural statistics in Sulaimani governorate. The Kurdistan
Region Statistics Office (KRSO) provides average yield in different local
areas in the Sulaimani governorate including Sulaimani, Halabja and
Garmian administrations.
Temporal resolution Purpose

R Average Year Stratification
el-2 5 days Crop yield Estimation
el-2 5 days Crop yield estimation
el-2 5 days Crop yield estimation

Monthly Stratification/ Crop yield estimation
Monthly Stratification/ Crop yield estimation
– Stratification/ Crop yield estimation
– Stratification/ Crop yield estimation
– Crop yield estimation



Fig. 2. (a) sample stratification for the study area and sample locations, (b) land cover type with a spatial resolution of 30 m for 2020 (GlobeLand30, 2022), (c) field photos
during crop cut data collection.
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2.2.3. Sentinel data and crop phenology
A collection of imagery from the Sentinel-2 MultiSpectral Instrument

(MSI) (Drusch et al., 2012) was used in this study. Since 2015, Sentinel-
2A dan 2B have been providing high-spatial resolution multi-band images
with an average revisit time of 5 days, when combined. This satellite con-
stellation enables environmental monitoring with diverse purposes, includ-
ing crop type classification (Campos-Taberner et al., 2019), yield prediction
(Hunt et al., 2019) and precision agriculture planning (Segarra et al., 2020).
MSI captures the Earth's surface in 12 spectral bands ranging from the blue
(443 nm) to the short-wave infrared part of the electromagnetic spectrum
(2190 nm). Typical Sentinel-2 images for crop monitoring have 10–20 m
resolution which is adequate for field-level monitoring though smallholder
farmer fields may require a higher resolution. To be noted that most of the
wheat crops in Sulaimani region have an area of>0.5 ha (more specifically,
themedian area of the 138 selected fields is 0.7 ha) such that the Sentinel-2
dataset is sufficient. The high temporal resolution of the dataset provided
by Sentinel-2 provides a broader opportunity for crop phenology studies
which can be exploited for crop monitoring with higher precision
(Segarra et al., 2020).
5

The Sulaimani Governorate is covered by 6 tiles of Sentinel 2, namely
tiles 38SMD, 38SME, 38SMF, 38SND, 38SNE, and 38SNF. Those tiles are
based on the US-Military Grid Reference System (MGRS). Sentinel-2 has
been providing data since June 2015 and the images from 2019 to 07-31
to 2020-10-31 were acquired for the current study. This time window
was determined to capture the cropping season of the main commodities,
including possible early start and late harvest dates.

Initial quality assurance was conducted by using the cloud mask band
(QA10) provided by the Sentinel-2 data. Besides pixel-wise masking, tile-
wise filtering was also performed by omitting the tiles with a cloud cover
percentage of <30 %. These initial filtering steps produced time-series
data containing 50–300 data points stored in every pixel.

To capture the greenness of the crops, several vegetation indices were
derived from top-of-atmosphere reflectance images. They are the normal-
ized difference vegetation index (NDVI) (Rouse et al., 1973), Enhanced
Vegetation Index (EVI) (Huete et al., 2002), and Medium Resolution Imag-
ing Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) (Dash and
Curran, 2004). NDVI is the most common index for vegetation monitoring
though this index tends to saturate at regions with high biomass (Huete
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et al., 2002). EVI provides a better sensitivity at high biomass by adjusting
the canopy background signal and utilizing the blue band to correct the at-
mospheric effects. Nevertheless, NDVI and EVI tend to correlate well in
semi-arid regions (Huete et al., 2002). Lastly, MTCI has a strong connection
with the leaf chlorophyll content (Frampton et al., 2013) which is propor-
tional to crop productivity.

The following formulae define the indices from Sentinel-2 bands. It is
noteworthy that the B6 band was resampled to match with other bands.

NDVIraw ¼ B8 � B4

B8 þ B4
, (1)

EVIraw ¼ 2:5 B8 � B4ð Þ
B8 þ 6B4 � 7:5B2 þ 10000

, (2)

MTCIraw ¼ B6 � B5ð Þ
B5 � B4

(3)

NDVI and EVI values range from −1 to 1, while MTCI has a typical
range of 1 to 6. The maximum value of each index was computed to be
used as covariates. Additionally, the phenology extraction was performed
using the NDVI through the following steps.

Firstly, the NDVI time series was passed to the Fourier analysis sequence
(Jakubauskas et al., 2001; Wagenseil and Samimi, 2006) for denoising dan
sampling the data in a homogeneous time interval. Essentially, a harmonic
function was fitted iteratively to the upper envelope of the raw data using
least squares regression.

NDVIsmoothed ¼ f tð Þ ¼ Aþ Bt þ
Xn¼nH

n¼1

Cn sin 2π nt
T

� �

þ
Xn¼nH

n¼1

Dn cos 2π nt
T

� �
ð4Þ

Here, t is the observation epoch expressed in year fraction, T=2 years
is themaximumperiod of variability, nH=6 is the number of harmonics. A,
B, C, and D are the regression coefficients. In total, there are 14 regression
coefficients obtained in this step. Afterward, fluctuations with higher
frequencies (higher number of harmonic) were filtered leaving more prom-
inent seasonal variations. Fourier analysis performs well when imple-
mented to the noisy time-series data and it shows superiority over the
Fig. 3. Time series plot of the raw (circles) and smoothed (lines) NDVI from

6

double logistic model when dealing with data with multiple cropping sea-
sons (Atkinson et al., 2012).

In order to account for the inter-annual variation of crop practices
(e.g., active crop in the first year and no crop in the second year), we use
2 years as the maximum period of variability and 6 as the number of har-
monics. This is equivalent to the samefitting procedure but using 1 year pe-
riod and 3 harmonicswhich is sufficient even for detecting double cropping
practices.

The ordinary Fourier analysis tends to underestimate the NDVI since it
involves least-square fit of a harmonic function such that the upper enve-
lope fit was implemented to overcome this issue (Bradley et al., 2007). To
get the upper envelope, the NDVI values were altered in every iteration
using the following rules.

NDVIraw,iþ1 ¼ max NDVIraw,i,NDVIsmoothed,i
� �

(5)

After three iterations, the smoothed NDVI that fits the upper envelope
was obtained. To achieve evenly spaced time series data for the phenology
extraction, the smoothed NDVI was reconstructed/recalculated for every 5-
day time interval. The procedures were implemented to every pixel in the
image collection and after this process, an image collection (time series
data) containing 93 images with appropriate timestamps from 2019 to
07-31 to 2020-10-31 was generated and ready for phenological parameters
extraction. Fig. 2 shows examples of NDVI time series from one pixel that
represents a crop and other pixels that is associatedwith natural vegetation.

The essence of phenological parameters extraction is to determine the
start, peak, and end of the season of interest (Fig. 3). This can be performed
using thresholding-based methods, derivative-based methods, and
autoregressive moving average methods (Caparros-Santiago et al., 2021).
In the current study, the first derivative of the smoothed NDVI was calcu-
lated and the inflection points were identified. Instead of using a root find-
ing algorithm, the approximate location of the inflection point was
identified as the point with the absolute value of the derivative of <0.01.
The peak of the seasonwas defined as the inflection point with positive cur-
vature and significantly high local maximum which is >80 % of the global
maximum and >0.20 NDVI. This criterion will be more important when
dealing with multiple cropping seasons or when inspecting areas with rela-
tively low peaks in NDVI. Two valleys or inflection points with negative
curvatures located before and after the peak was considered as the identifi-
cation of the start and end of the season. To avoid misidentification due to
pixels associated with crop (black) and with natural vegetation (red).
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local fluctuation, the start and end of the season should haveNDVI values of
<80% of the associated peak. Additionally, valid peaks should be preceded
by at least 6 consecutive points with positive derivative (consecutive ups)
while the valleys should be preceded by 6 consecutive downs or more.
When applied to the data with a 5-day time interval, this criterion can be
translated into consecutive ups or downs for more than a month which is
comparable to a previous study by Qader et al. (2015). After the identifica-
tion of the start and end of the season, more parameters were extracted
(Table 2, Fig. 4). Pixels with incomplete seasonal parameters were masked.

All these processes were performed in Google Earth Engine (GEE)
(Gorelick et al., 2017) which is a web platform providing a huge collection
of satellite imagery and vector/tabular data, cloud computing resources
and algorithms available in JavaScript and Python. For the current study,
a web-based interactive development environment provided by GEE was
used to run the JavaScript codes.

2.3. Statistical analysis

2.3.1. Exploratory data analysis and covariate selection.
We first verified that the dependent variable, i.e., crop yield at the farm

level, was approximately normally distributed as is required in a linear re-
gression context. We, however, opted to model crop yield on the log scale
to ensure that our modelled estimates were positive when these are back-
transformed. We then evaluated the correlations between the covariates
and their relationships with crop yield using scatter plot diagrams. We
alsofitted regression splines (natural splines) to obtain smooth curves to as-
sess potential non-linear relationships between the covariates and crop
yield. We considered log transformations of the covariates that appeared
to have non-linear relationships with crop yield, but this did not produce
any improvements in linearity. We also considered accounting for the
non-linear relationships using piecewise linear functions, but this did not
yield any improvements in predictive power (perhaps due to insufficient
data to capture the non-linear relationships), hence we did not pursue
this further.

In order to investigate potential (multi)collinearity among the covari-
ates, we fitted simple linear regression models to rank the covariates
based on their out-of-sample predictive ability. This was determined
using the predictive R2 statistic computed during a Monte Carlo cross-
validation exercise (other cross-validation techniques are also possible) in
which we used 80 % of the data for training and 20 % for validation. We
chose between highly correlated pairs of covariates (Pearson correlation
≥ 0.8 using their ranks. We calculated the variance inflation factor (VIF)
Table 2
Name of the Sentinel 2 and environmental parameters used as covariates in the
study.

Parameter Description

Start of the season (SOS) Valid valley before the peak of the season
Peak of the season
(TNDVI)

Time at which NDVI reaches a maximum in a year

End of the season (EOS) Valid valley after the peak of season
Length of the season (LOS) Time difference between EOS and SOS
Maximum NDVI
(MaxNDVI)

Maximum value of NDVI between SOS and EOS

Maximum EVI (MaxEVI) Maximum value of EVI between SOS and EOS.
MaximumMTCI*
(MaxMTCI)

Maximum value of MTCI between SOS and EOS

Cumulative NDVI
(CumNDVI)

Accumulation of NDVI from SOS to EOS. The value depends on
the time interval between consecutive data points (e.g., 5 days).

MaxLST Maximum Land Surface Temperature between October
2019 to July 2020

CumRain Cumulative Rainfall between October 2019 to July 2020
MinLST Minimum Land Surface Temperature between October

2019 to July 2020
Slope Slope
Elevation Elevation
MeanRain Mean Rainfall between October 2019 to July 2020
MeanLST Mean Land Surface Temperature between October 2019 to July

2020
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of the remaining covariates to further test for (multi)collinearity and poten-
tial overfitting using the multiple linear regression model as shown in
Eq. (1). All covariates with VIF values <4.0 were retained in the analysis
(Hair et al., 1995). Next, we assessed the presence of spatial correlation in
the residuals resulting from the multiple linear regression model by calcu-
lating their empirical variogram using the ‘gstat’ package in R.

Also, we have tested the added value of the environmental covariates
(Rainfall, Land Surface temperature, Elevation and Slope) in our analysis.
To do so, we excluded the environmental covariates from the analysis and
implemented the entirety of the analysis using only Sentinel-2 covariates
– from covariate selection to model-fitting and validation. Then both
modelling outputs were compered.

2.3.2. Crop yield model
The final model used for prediction is given by:

log Yieldið Þ ¼ β0 þ ∑p
j¼1βjxij þ ϵi, i ¼ 1, . . . , n ¼ 138, (6)

where xi1,…, xip are the covariates, β0,…, βp are regression coefficients and
ϵi is an error term assumed to be normally distributed withmean 0 and var-
iance σ2. We fitted the model in a Bayesian framework and placed non-
informative priors on the parameters: βj ∼ N(0,103)(j = 1,…,p) and log
(σ−2)∼N(0,10). Themodel was implemented in R using the R-INLA pack-
age (Lindgren and Rue, 2015; R Core Team, 2022). Using the fitted model,
we generated 1000 samples from the posterior predictive distributions of
crop yield for each of the prediction locations, which were summarized to
produce the 10 m × 10 m gridded estimates and associated uncertainties.

2.3.3. Model validation
We evaluated the predictive performance of the model using a k-fold

cross-validation exercises, with the folds created as random subsets of the
data and k set equal to 3. Using the true and predicted values, we computed
the R-squared statistic and the root-mean-square error (RMSE) to evaluate
predictive performance, both of which were averaged over the k folds.
We also examined the plot of the standardised residuals against the pre-
dicted values to assess the adequacy of the model.

3. Results

3.1. Crop mask assessment and ground yield validation

With the advantage of GPS coordinates that were collected for the crop
cut data, the generated crop map extracted from GlobeLand30 2020 was
validated. Out of 138 samples, 119 crop fields were correctly classified as
cropland which yielded an overall accuracy of around 86 %. To extend
the crop map to the crop fields that were not classified as cropland, the
crop map was manually modified.

Fig. 5a shows the locations of the selected crop fields with their ground
wheat crop yield (gm/m2) in Sulaimani governorate. Overall, the same pat-
tern can be seen in both estimates inwhich yield is generally high in Pshdar,
Sulaimani and Halabja compared to Garmian administration (Fig. 5a). Re-
garding the yield variation among the sub-plots within the same crop
field, three crop cut replications were carried out in 17 crop fields
(Fig. 5b). Fig. 5b illustrates the variation of the yield among the sub-plots
within crop fields. It can be seen from the figure that yield variations
among the sub-plots within a crop field are generally low. Table 3 shows
the comparison between yield estimates collected for this study and
KRSO data (KRSO, 2022). Regarding the quantitative comparison between
the two estimates, close agreement was observed in Sulaimani and Halabja
while the values are slightly different in the Garmian administration
(Table 3).

3.2. Covariate selection

In Fig. 6a, we show the correlations between the covariates and the
plots of the covariates against crop yield (on the log scale) (Fig. 6b). We



Fig. 4.Maps of phenological, climatic and topographic parameters used as covariates in the study.
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also show the histograms of crop yield on the original and logarithmic
scales (see supplementary information Fig. S1), both of which showed no
substantial evidence of departure from normality. We note that even though
some covariates (e.g., MEAN_SOS, MEAN_LOS, MEAN_MaxLST and
MEAN_MeanLST) appeared to exhibit non-linear relationships with crop
yield, accounting for these (using regression splines) (James et al., 2013) did
not lead to any improvements in predictive power as mentioned previously.
The ranks of the covariates based on their predictive R2 produced during co-
variates selection is shown in supplementary Tables S1and S2.

In all, eight covariates were selected for the analysis. These include:
MEAN_SOS, MEAN_EOS, MEAN_MaxMtci, MEAN_CumNDVI, MEAN_TNDVI,
MEAN_MaxLST, MEAN_Slop and MEAN_Elevation.

Wedid not observe any evidence of residual spatial autocorrelation in crop
yield after accounting for covariate effects (see supplementary information
Fig. S2), justifying the use of the model in Eq. (1) to predict crop yield.
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3.3. Crop yield model fitting, validation and prediction

The estimates of the parameters of the model are presented in Table 4.
The covariates that had significant relationships with crop yield were
MEAN_CumNDVI, MEAN_Elevation, MEAN_EOS, MEAN_MaxLST and
MEAN_SOS.

These covariates had significant positive relationships with (log-trans-
formed) crop yield except MEAN_EOS. On average, a unit increase in
MEAN_CumNDVI will increase crop yield by 12 % (=100 × (exp
(0.1156) − 1)) over a 10-m square area, holding other variables constant.
Similar interpretations can also be made for other covariates.

Fig. 7 compares the in-sample and out-of-sample predictions (based on a
k-fold cross-validation exercise) produced by the model with the observed
values. Both plots show that the model produced reasonable predictions
of the data in both cases. For in-sample prediction, we estimated an R2



Fig. 5. (a) Locations of the selected crop fields with their ground wheat crop yield (gm/m2) in Sulaimani governorate and (b) shows the yield variation for the 17 crop fields
where the crop cuts were conducted by selecting three 1× 1m2 sub-plots at random from each farmer's field. The distribution of the selected 17 crop fields is highlighted in
Fig. 5a by their numbers in Fig. 5b x-axis.
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value of 51 % whereas for out-of-sample prediction, this was 41 %, both of
which indicate reasonable predictive performance.

Further, the calculated root-mean-square error for out-of-sample predic-
tion was 69.80 g/m2 (= 63.69 g/m2 for in-sample prediction) which is less
than the standard deviation of 89.23 g for crop yield for 1-m square area,
further showing that the model performedwell by reducing prediction var-
iability.

To examine the role of the environmental covariates (Land Surface
Temperature, Rainfall, Elevation and Slope) in the model, we re-ran the
analysis (from covariate selection to model-fitting) excluding these covari-
ates and using only the Sentinel-2 covariates. Consequently, the selected
Sentinel-2 covariates wereMEAN_CumNDVI,MEAN_MaxMtci, MEAN_EOS,
MEAN_TNDVI and MEAN_SOS, which are also subset of the covariates in-
cluded in the full analysis. The model fitted using these covariates had an
in-sample R2 value of 43 % and an in-sample RMSE value of 69.08 %. Fol-
lowing a cross-validation exercise, as with the full model, we obtained an
out-of-sample R2 value of 35 % and an out-of-sample RMSE of 69.08.
These results clearly show that the inclusion of the environmental covari-
ates in the full analysis greatly improved the predictive ability of the
model (for the covariate selection, please see Tables S1and S2).

Next, we present the predicted crop yield and associated uncertainties
at 10 m resolution in Fig. 8.

These maps reveal substantial heterogeneities in crop yield, which does
not appear to exhibit any strong spatial structure. At the local level, it can be
seen from themap that higher yield estimates were recorded for Pshdar and
Table 3
Crop yield estimates for 2019/2020 from KRSO agricultural statistics data and crop cut

Winter crop yield data for 2019/2020 Sulaimani Range

Weight (Kgm/Dounm)

KRSO data 700 NA
Crop cut data 621 (100–429)
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Halabja while lower yield estimates were observed in Garmian administra-
tive. Theses spatial patterns are in line with KRSO data (KRSO, 2022). The
uncertainties (or standard deviations) associated with these predictions are
generally low, which further evidences the accuracy of the predictions.

Agriculture management is generally heterogeneous in the country and
farmers are using different techniques andwheat crop species which results
in substantial heterogeneities in final yield among the crop fields. In addi-
tion, variations in soil fertility and climatic variables might also cause het-
erogeneities in crop yield in the region. Larger errors in yield estimates
were observed for small areas that are either misclassified or close to the
Dukan and Darbandikhan lakes in which their reflectance might have
been disturbed by water.

4. Discussion

The traditional approach of crop monitoring and estimation requires a
complete enumeration of each district where crop-cutting experiments
are performed to estimate crop yield (Kosmowski et al., 2021). However,
relying only on the traditional approach to estimate crop yield at the farm
level may not be sufficient to provide yield estimates for all the crop areas
since unsampled areas are left unpredicted. In addition, crop cut data col-
lection may not be possible in some regions or countries because of insecu-
rity challenges. This work has collated various satellite-based covariates
and climatic and topographic variables that have relation to crop yield
and explored a statistical methodology to estimate yield at the farm level
data collected in this study for the local areas in Sulaimani governorate.

Halabja Range Garmian administration Range

600 NA 345 NA
617 (263–1038) 442 (85–940)



Fig. 6. (a) Plots of the correlations between the covariates. (b) Scatter plots of crop yield (on the log scale) against the covariates considered in the study. The blue lines are
simple linear regression fits while the red lines are from natural splines, with the corresponding uncertainties shown in grey.
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in a sparse data setting data environment. Such amodel can be expanded to
other areas with similar environments, particularly where access is re-
stricted due to security issues.

Overall, there is a strong agreement and correlation between predicted
and observed yield in the study area. Agriculture management is generally
heterogeneous in the country and farmers are using different techniques
and wheat crop species which results in substantial heterogeneities in
final yield among the crop fields. In addition, variations in soil fertility
and climatic variables might also cause heterogeneities in crop yield in
the region. Larger errors in yield estimates were observed for small areas
that are either misclassified or close to the Dukan and Darbandikhan
lakes in which their reflectance might have been disturbed by water.

The reliability of our modelling outputs relies on the quality of ground
yield and extracted variables. Our analysis reveals that the derived spectral
bands are on the top of the list in the ranking of the covariates in terms of
predictive power during covariate selection. This is in line with other find-
ings where strong relationships between remote sensing spectral indices
and crop yield were reported (Hunt et al., 2019; Skakun et al., 2017;
Cavalaris et al., 2021). Although, the climatic datasets used in our work
have very low spatial resolution compared to the Sentinel-2 covariates,
Table 4
Estimates of parameters of the fitted model showing the posterior means, standard devia
credible interval.

Parameter Mean St

Intercept 6.8571 2.
MEAN_CumNDVIa 0.1156 0.
MEAN_MaxMtci 0.0627 0.
MEAN_Elevationa 0.0006 0.
MEAN_EOSa −0.2227 0.
MEAN_MaxLSTa 0.0412 0.
MEAN_TNDVI −0.0533 0.
MEAN_Slop 0.0227 0.
MEAN_SOSa 0.1255 0.

Variance bσ2
� �

0.1475 0.

a Significant predictors of crop yield at 5 % level.
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they have produced a reasonable positive correlation with final yield. In
particular, maximum temperature is one of the covariates significantly cor-
related with crop yield. This indicates that rainfall and temperature could
be considered as one of the main crop yield drivers in the region. Topo-
graphically, the main fertile plains such as Halabja and Pshdar are located
in higher altitudes of the crop area in the region while Garmian administra-
tion, which exhibits low yield is situated in low altitudes. Such distribution
might have caused the significant positive relationship between yield and
elevation. Interestingly, the phenological parameters such as SOS and
EOS also produced a significant relationship with crop yield. This might
be because the study area is dominantly rainfed and the start and end of
the season are mainly driven by rainfall and temperature. Therefore, the
date of the phenological parameters may change due to climatic condition
and their variation could have different implications on the final crop yield.
However, these interactions and correlations merit further investigation
using study designs that can enable causal interpretations since our model-
ling did not consider possible interaction between the covariates.

Among the used spectral indices and climatic and topographic vari-
ables, this study found that maximum NDVI had the strongest relationship
with wheat crop yield. These findings are in line with that of Qader et al.
tions and the lower (2.5 % quantile) and upper (97.5 % quantile) limits of the 95 %

d. dev. 2.5 % 97.5 %

6384 1.6662 12.0410
0153 0.0855 0.1457
0909 −0.1162 0.2414
0003 0.0000 0.0012
1093 −0.4377 −0.0079
0130 0.0157 0.0667
1384 −0.3255 0.2188
0297 −0.0358 0.0812
0585 0.0105 0.2404
0200 0.1131 0.1915



Fig. 7. Plots of observed versus predicted yield for 10-m square areas showing the in-sample and out-of-sample predictive performance of the fittedmodel. The out-of-sample
predictions were generated using a k-fold cross-validation exercise.
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(2018) who found a strong positive correlation between crop production
and maximum NDVI at the governorate level in Iraq. Similarly, strong cor-
relations between NDVI and EVI with crop yield have been reported in
neighbouring countries including Syria and Iran (Jaafar and Ahmad,
2015; Mirasi et al., 2021). In addition, Gianquinto et al. (2011) reported
that different physiological processes essential to obtaining yield can be in-
dicated by the NDVI index. Although previous remote sensing models that
are based on a spectral index sensitive to chlorophyll content reportedmore
accurate crop yield prediction (Zhang and Liu, 2014; Jin et al., 2017; Ryu
et al., 2020), in this study, the coefficient of determination between maxi-
mum NDVI and EVI covariates with crop yield was double that of the
MTCI, indicating that NDVI and EVI are more sensitive to winter wheat
crop yield than MTCI in the study area. This could be due to the involve-
ment of lower spatial resolution band (20 m) in computing MTCI index
compared to the bands that are used in NDVI and EVI (10 m). In addition,
researchers have suggested different band combination in Sentinel-2
dataset to calculate MTCI (Karlson et al., 2020 suggested B8; Segarra
et al., 2022 suggested B6; Li et al., 2022 suggested B7) and it is not clear
which formula can produce the best results.

The lack of accuracy in the input datasets might have increased uncer-
tainties in overall yield prediction and affected their estimated relation-
ships with crop yield in this study. Although our model was shown to
exhibit a reasonable predictive performance, this can be improved in future
analyses through the inclusion of additional covariates. We will also com-
pare the Bayesian approach used here with machine learning approaches
which are particularly suitable for exploiting potential non-linear relation-
ships to improve predictive performance.

This work has focused entirely on winter wheat which is a major winter
crop type that is widely practised in the Sulaimani governorate (Eklund
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et al., 2017; KRSO, 2022). Within a similar crop calendar, some farmers
are planting barley. However, the crop mask that was used for this work
was not able to separate the crop types. This study adopted the
GlobeLand30 for 2020 and defined the crop mask through its cultivated
land cover typewhichmay representmore than one crop type in the region.
This might have added more uncertainties in the overall prediction since
the relationship between predictive variables and crop yield is species
specific (KRSO, 2022). In addition, although the cultivated land pro-
duced high accuracy based on the collected crop data locations, it failed
to exclude cropland fallow, which is widely practised in the region
(Eklund et al., 2017). This was concluded based on some visual compar-
ison between the crop mask and the crop phenology parameters. Fur-
thermore, the overall accuracy of GlobeLand30 2020 is 85 % and the
Kappa coefficient is 0.78 (GlobeLand30, 2022), but this accuracy
might not be achievable when the product is validated at the country
level. For instance, the older version of the GlobeLand30 2020 were
assessed in a similar environment and different accuracies were
achieved (Sun et al., 2016; Jokar Arsanjani et al., 2016). Therefore,
the lack of classification accuracy may result in mixing different land
cover types which can lead to inaccurate yield prediction.

Another uncertainty may emerge from the lack of replications in
crop cut data collection in each crop field. Besides overall low variation
of the yields among the sub-plots in the selected 17 crop fields where
more than one plots was taken, more replications should have been con-
sidered across the study area to assure the crop field representativeness
in terms of intra-spatial yield variation. This is mainly because, agricul-
tural management in this region is heterogeneous and environmental
factors such as soil type, climate condition, soil moisture and soil fertil-
ity may vary within a crop field (Hilmi, 2018). However, insufficient



Fig. 8. Predicted crop yield (a) and associated uncertainties shown as standard deviations (b) at 10 m resolution for Sulaimani governorate in Iraq.

S.H. Qader et al. Science of the Total Environment 869 (2023) 161716
resources and limited time during the pandemic were the major obsta-
cles to conducting more than one replication of crop cut data in each
crop field. In addition, the crop prediction was made at 10 m resolution
which are generally smaller than the agriculture field size and it can ac-
count for the variations within the field.

5. Conclusion

High resolution crop yield mapping is required in smallholder arid and
semi-arid farming systems for a wide range of applications including mon-
itoring food security and precision agriculture. However, high resolution
crop yield maps in smallholder arid and semi-arid farming systems are
scarce due to a lack of appropriate calibrated and validated crop yield
models. This work is one of the first to examine how well Sentinel-2-
derived information, topographic and climatic variables, can be used as co-
variates to accurately model and predict crop yield at the farm level in low
data settings of arid and semi-arid regions, using Sulaimani governorate in
Iraq as an example. The Bayesian multiple linear regression model was
fitted to model and predict crop yield at 10 m resolution in the absence of
substantial non-linear relationships between the covariates and crop
yield, and residual spatial autocorrelation. In the ranking of covariates
based on the predictive power, maximum NDVI produced the largest rela-
tionship with crop yield. Reasonable crop yield predictions were produced
12
for in-sample and out-sample predictions (in-sample R2 = 51 % and out-
sample R2 = 41 %). Our work shows that with freely accessible satellite-
derived data, climatic and topographic covariates, crop yield can be pre-
dicted accurately using statistical models in complex small holding arid
and semi-arid farming systems. This points to the potential for a broadly ap-
proach suitable for the data-poor setting environments, particularly areas
with insecurity challenges.
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