Supplementary table 1. Comparison between MAFLD and NAFLD for the identification of CKD

Author-Year	Study design	Study population	Diagnosis of	Diagnosis of	Results
			fatty liver	CKD	
Tanaka-2022	retrospective	13159 Japanese	liver ultrasonography	positive for urinary protein or	MAFLD better identified and predicted
[25]	cohort	32.8%NAFLD; 32.3%MAFLD		eGFR<60 mL/min/1.73 m ²	CKD than NAFLD.
Liang-2022	prospective	6873 Chinese	liver ultrasonography	u-ACR≥30mg/g and/or	Both equivalently increased incident risks
[20]	cohort	40.3%NAFLD; 46.7%MAFLD		eGFR<60 mL/min/1.73 m ²	of CKD.
Jung-2022	retrospective	268,946 Korean	fatty liver index ≥ 30	positive for urinary protein or	MAFLD better identified CKD than
[26]	cohort	27.4%NAFLD; 33%MAFLD		eGFR<60 mL/min/1.73 m ²	NAFLD.
Zhang-2021	cross-sectional	19,617 from US national surveys, 1999-2016	ultrasound-fatty liver index	u-ACR≥30mg/g and/or	MAFLD and NAFLD had comparable
[27]	study	26.4-33%NAFLD; 28.4-35.8%MAFLD		eGFR<60 mL/min/1.73 m ²	prevalence for CKD.
Sun-2021	cross-sectional	12,571 from US national surveys, 1988-1994	liver ultrasonography	according to the KDIGO guidelines	MAFLD better identified CKD than
[24]	study	36.2%NAFLD; 30.2%MAFLD			NAFLD.
Hashimoto-2022	cross-sectional	27,371 Japanese	liver ultrasonography	positive for urinary protein or	MAFLD was independently associated
[22]	study	2.3%NAFLD; 20.8%MAFLD		eGFR<60 mL/min/1.73 m ²	with CKD, while NAFLD not.

Note: u-ACR:urinary albumin-to-creatinine ratio; KDIGO: Kidney Disease Improving Global Outcomes