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ABSTRACT 

Doctor of Philosophy 

Free-Lagrange Simulations of Shock-Bubble 

Interaction in Extracorp,oreal Shock Wave Lithotripsy 

by Ahmad Riza J amaluddin 

Evidence have shown that significant amollnts of violent cavitation activity are present 

during Extracorporeal Shock Wave Lithotripsy (ESWL). This cavitation has been pos­

tulated to playa significant role in kidney stone disintegration during treatment. In this 

study, a swirl-free Free-Lagrange hydwcudc is used to simulate the axisymmetric jetting 

collapse of initially stable air bubbles in water as a result of interaction \vit h a planar 

lithotriptcr shock wave. Various cases were carried out in order to investigate the effect 

of 11Ilhbie size. the preSCIlce of a rigid boundary at various stand-off distances as well as 

n1ses involving a.rrays of bubbles. 

The Frce-Langrange Illethod is highly suitable for the simulation of highly deforming 

limys. The teclllliqlw also retains sharply resolved gas/liquid interfaces regardless of the 

degrC'C' of geometric deformation, and rcwals details of the dynamics of bubble collapse. 

This also helps in reducing the degree of nUIllcTical diffusion. The numerical code employs 

second order space and first order time accurate Godunov-type sol\·ers. For ,-alidation 

purposes two different cases were carried out - simulations of t he axis~-mmetric colla pst' 

llf a Imbble ])\" a planar step shock wave of various strengths and t\VO dimensional planar 

shock / wa ter colullln interactions. 

In addition to the abow. t\\"() separate nUlllerical acoustic codes have been developed 

1lsing the KirchhoWs mcthod and the Ffowcs \\"illiam-Ha,,"kings formulation. \\"hen cou­

pled to the Frce-Lagrange code, each can be used to obtain the far-field pressure signatures 

(If cm"itation ('vent.s. Both ll1ulll'rical codes ha,"c been \"cllidated against analytical results 

in predicting the far-field pressure signature emitted from an oscillating solid sphere. TIl\' 

relative merits of each method are given along v,"ith a few ana.lyses of the far-field pressure 

signature predicted from the lithotripter shock wnw/bubble interaction problems. 

The code has becn used to simulatc the collapse of single cavitation bubbles in free-field 

anclncar a planar rigid boundar~' for nuious stand-off distance. Simulation of an arm~" of 

bubbles arc also presentcd. The results clearly capture thc phenomcna of bubble collaps\' 

t hat an' bclie\Td to assist kidne)" stonl' fragmentation during lit hotripsv treatment. i.e. 

high speed liquid jet impact and bla,st wave emission. The far-tidd prcssurc signatllH' 

shows the expansion W<lve originating from the shock-bubble interaction (md the high 

amplitude blast wavc. 
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Chapter 1 

Introduction 

Owing to its destructive nature, the dynamics of cavitation bubble collapse have been 

studied for many years. It is understood that when single bubbles or clusters of bubbles 

collapse, two distinctive phenomena take place, i. e. emission of shock waves and formation 

of a high speed liquid microjet which pierces through the bubble interior (Fig. 1.1 ). The 

latter only occurs when asymmetry of the flow around the bubble is induced , either by 

t he close proximity of a boundary or by a pressure pulse such as a shock wave. Several 

cycles of collapse and rebound may occur , resul t ing in several emissions of shock waves 

and high speed microjets . 

Figure 1.1: Jet form ation during the collapse of an oscillating bubble at low pressure 
(0.04 - 0.05 baT) in a 60 - H z sound field. The bubble size is ea. 0.2 em. Photograph 
taken by Prof. LA Crum, University of rVIississippi [28] . 

Extracorporeal Shock Wave Lithotripsy (ES\iVL) is t echnique for shattering stones 

such as kidney stones or gallstones with shock vvave produced outside the bod~-. Ew r 

since it was first introduced in Germany in the 1980's, millions of kidney stone pati ent s 

around the world have been successfu lly treated "vit.h lithotripsy. The populari ty of the 

procedure has increased immensely. The perception t.hat ES\iVL t.reat.ment. does not cause 

any harm or any severe acute or lasting side effects, and as such is safe, ha ' been t he 
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rcason for its acceptance by patients and adoption by many health institution. However, 

it. is now realised t.hat., although ESWL appears to be an effective treatment for a wide 

variety of urinary tract calculi, this important technique is decidedly not problem-free. 

Studies of ESWL have showed that cavitation bubbles are induced in vivo near the 

lit.hotript.(~r focus by the tensile st.ress of lit.hotripter shock wave pulses [26]. The mechan­

ical stresses gencratcd by the shock-bubble interaction and subsequent jet impact on the 

kidncy stone havt: been identified as a possible mechanism of stone fragmentation during 

lithotripsy. In addition, the direct illlpact of the incident lithotripter shock wave may 

also assists in thc fragm{'ntation of thc kidney stone. 

Although the stones can be visualised at any time during the treatment on X-ray or ul­

trasound, it is difficult or impossible for the operator to judge the degree of fragmentation 

from viewing the image. As a result, the number of shocks generated during treatment 

is largely empirical. It is normal practice to give a pre-set number of shocks. typically 

1 (l()() to 40()() in one treatmcnt (spaced 1 second apart): the exact number depends on 

the stow' and the type of lithotripter. This is generally unsatisfactory. If too few shocks 

are givcn. the patient needs repeat trcatmcnt, resulting in an increase in v,"aiting lists. 

costs. lllanagement. and a decrease in health and morale. If more shocks than required 

t() fragmcnt the stone are given, the consequences can be ·worse. First l~" because each 

acoustic shock causes some collateral damage to soft tissues. Secondly. each shock source 

costs several thousand pounds and has a lifetime which is determined b~" the number of 

times it is fired. Thirdly. the longer the trf'atment. the fe\ver patients can 1)(' processed 

each da~". 

Despite thesE' findings. current commCl"cial lithotripters are not equipped ,yith an~" 

means to determine whet her sufficient shocks hm"e been given to cause the necessary 

degree of fragmcntation or eyen to assess Cjualitativel~" the cavitation acti,"ity in patients 

during clinical lithotripsy. One means of detecting the presence of cClyitation bubbles is 

to measure their acoustic emissions [26]. In an attempt to understand the correlation 

betwcen the acoustic cmission and bubble d~'namics. Zhong et al. [107] studied the dy­

namics of in ritro cayi tation using high-speed photogra ph~" and measured the associated 

acoustic emission in 'water emanating from the foclls of a.n electroll\"draulic shock \yaye 

lithotriptcr. Simultaneous high-speed phlltograph~' and acoustic emission measurements 

\Wl"l' used to characterise the iuertial cH,\"itation and associated ('mission in I'itro induced 

by lithotrips~" shock Wi-wes. In doing this. a clear correlation between the dYllamics of 

lithotripsy-induceclcavitatiou bubbles and the resultant aconstic emission ,,"as identified. 

Although cavitation bubbles mainl~" occur in clusters, most studies conccntnlte 011 

the collapse of singlc bubbles. This is because it reduces the complexity of the problem. 

Furthcrmore, if the dynamics of a single bubble and the basic nwchanisms of bubble 
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collapse are understood, it is easier to predict and analyse the behaviour of cavitation 

clouds. Nevertheless, when doing so, it is imperative that a number of assumptions are 

addressed accordingly. In most cases, single bubbles are generated by using an electric 

spark discharge or intense laser beam. By employing these methods, the size and position 

of the bubbles can be cOlltrolled, either by inducing the cavitation near boundaries or in 

the fre('-field. III order to observe tlw dynamics and evolution of the bubbles, high-speed 

photography is employed. However, understanding of the fluid mechanics involved is 

inc:omplde owillg to the limited temporal anel spatial resolution of available experimental 

diagllostics. 

Therefore, llllm(~rical silIlulations have become attractive since they have potential to 

show ill detail the process of 1mbbl(~ collapse. The most widely used numerical approach 

in the simulation of bubble collapse is the Boundary Integral l\lethod (BEd) [12. 10, 

91, 105, 104]. Results obtained using this method have been shmvn to agree well \vith 

those' acquired ('xpcrimcntally. The formation of a liquid jet when the collapse takes 

place' ncar a solid boundary is 'well captured. HO'weveL the assumption that the fluid 

is incompressible, irrotational and that the gas scalar properties are spatiallv uniform 

llwkcs it over-restrictive in its applications. Therefore, it is not suited to model flows 

which involye pressure disC'olltillllities such as shocks. 

Thl' phenomelloll of bubble collapse is a multi-phase problem \yhich im'olws liquid. 

gas and boundaries \"hidl could either be rigid. free surface or elastic-plastic material. 

Furthermore. t hl' fact that the phenomena of bubble collapse is a highly deforming fi uid 

problem makes the stud~' a \'er~' challellging tRSk. It is important that the exact location 

uf thl' interfaces that sl'parate each phase or material at Rny time' is tracked accuratel~-. 

r- lost conwntional com pu tatiollal fi uid dynamic (CFD) codes however are limited in their 

ability to capture sharp material interfaces. A number of numerical interface tracking 

methods han' been developed m'er the past ~Tars and these inc! ude moying-grid met h­

ods, yuluml'- trackillg met hods. surface-trackillg met hods and gradicnt met hods. Further 

discussioll that CUH'rs the t heorl'tical allal)'sis. nlllnerical simulations and experimental 

\york Oll bub ble d~'lWlllics is prescnted in detail in the next eha pter. 

The Free-Lagrange method is highl~' suitable for simulating the collapse of single 

1mbblcs. The method proyicies a clistinctin' adnLntage in multi-material fimY problems. 

In this method, the problem is great I)' simplified in that the type of fiuid in each m('sh 

cdl is assigned fwm the start of the silllulRtion and never chRnges. There are no mixed 

('ells alld hell('e the llwterial illtl'rfacc-'s al\\'a)'s coincide \\'ith mesh cdl boundaries. and 

arc sharp I)' resolved. The Free-Lagrange method also cwoids problems of mesh distortion 

and entanglement because mesh cnImecti\'ity is allmH'd tu C'vol\'(' naturall~'. 

A novd Frcc-Lagrauge com putatiollal ('odc, FlLcoll1l, has been deyclopcd by Ball [3] 
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and used to simulate various multi-material flow problems [4, 6]. The code solves the 

unsteady, inviscid and compressible Euler equations on an unstructured Lagrangian ref­

el"Cnce frame using Godunov-type solvers. 

1.1 Research Objectives 

The current research work of the author is part of a larger research programme involv­

ing a team of researchers from the University of Southampton and the Medical Physics 

Departlllent at St Thomas' Hospital, London. The aim of this research is to assist in 

the d(~sigIl of a sensor which will use the acoustic emissions generated hv reflection and 

rcwrhcration of the incident lithotripter pulse from the stone and tissue. as ,Yell as emis­

sicllls from cavitation activity, in order to diagnose whether the lithotripter focus is still 

on-target, th(~ degree to which cavitation is occurring, and the degree to which the stone 

has l)('conw fragmented. The interpretation of the emissions will be based on data to 

1)(' obtaincd frolll in-'l1itm and lTI,-vivo experiments carried out in the ~Iedical Physics 

Departlll('nt at St Thomas' Hospital, London, and from the numerical simulations. The 

instruJllmt will be dcveloped in view of the following facts, 

• The magnitude of the prilllary pulse l reflection ,'vill confirm and monitor the accu­

racy of lithotripter alignment during treatment. 

• Any abrupt changes in the spectral content of the primary reflection ,,'ill ",am of 

stonp shattering, so that treatment is not unnecessarily prolonged. 

• The ('nyitation signnture ,yill ,v am of excessive cavitation remote from the stone 

and associated collateral tissue damage. 

The role of the author's PhD research is. in part, to provide the numerical simulntion 

com POllC'llt of this project. Al though comparisons of in vivo data could haw been made 

wi th predictions oEthe far- field pressure made by the Gilmore t heoreticalmodel (explained 

in the llext chapter), tht' assumptions inherent in this model arc of doubtful ,'alidit~, in 

relation to lithotripsy. The model ignore's all~' interactions ,yith solids. obyiousl~- crucial 

for stone fragmentation. Furtlwrmore. it also assumes that the bubbles remain spherical 

at all times, and the gas homogen(-'ous, with the result that the presence of gas shocks and 

liquid microjets, which arc extrcmcl~' important for stonc fragmentation. are not included. 

Simulations which account for thesc features are thercfore sct'n as useful in llllckrstanding 

the dynamics of cavitation bubbles in ES\YL. Thus. a Free-Lagrange computational fiuid 

I A pulsed pressure wan' rl'sulting fmlll thl' rdil'ctillll of the incident litllOtripter shock wan' llll thl' 
kidney stonl' illld/or frolll thl' initial collapsl' and rl'bound of cm-itation llllbbks. 
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dynamics code (Vucalm) is used to model the production of jets in bubbles which are 

subjected to lithotripter pulses near stones. 

A necessary prerequisite is to simulate the interaction of an air bubble with a lithotripter 

shock wave using Vucalm. The computational code was originally developed for simulat­

ing fluid problems in the two dimensional planar co-ordinate system. In order to simulate 

the interaction of single cavitation hubbIes with a shock wave it is necessary to extend 

the cocic into axisymmdric geometry to model a bubble which is spherical in shape. This 

preliminary task had been ac:bi('v(~d [94], though further work was necessary within this 

PhD project to illlProve and further validate thl' code. The impetus of this study is also 

to gain a b(,tt(~r 11lHicrstanciing of the dynamics of cavitation bubbles. the collapse due 

to intcl'C),(tioIl with a shock, partic:ularl)· the phenomena which are responsible for both 

cavitation erosion and stone fragmentation. 

The theoretical study is also carried out to model what far field acoustic emissions 

might 1)(' prod uccd from thl' various processes \ve 'wish to diagnose. In order to com­

pare thc acoustic signature obtained experimentally in-vitro and in-vivo Kith that ob­

tained llUnwrically, tv,'() acoustic codes were developed using the Kirchhoff's and Ffmvc:s 

\Villiarns-Hawkings methods. The Vucalm code provide predictions of pressure signatures 

in the ncar-fidd which are then projected to the far-field using the acoustic codes. The 

two llllllleric:al acoustic codes are validated and comparisons are given to sho\\- the relatiye 

lllerit of each methods. 

to 

The objecti\-es of the currcnt research \vork can then be summarised as follo\\-s. I.e. 

• develop and \-aliciate the axisymmetric version of the Free-Lagrange code. 

• simulate the interaction of a lithotripter shock wave with an air bubble in water in 

free-field and near a plane rigid boundary for various stand-off distance. 

• investigate the dependency of the collapse on the shock strength and bubble initial 

radius, the formation of the high-speed liquid jet, shock wave emission, and the 

shape of the bubble during the' collapse and rebound. 

• develop a code to predict the far-field acoustic signature arising from the cavitation 

('vents using the Kirchhoff's (KeHF) and the Ffowcs vVilliams-Hi.l\ykings (F\VH) 

lllethods. 

• cxtcnd the' acoustic ('ode to problellls cOlllprising more than one bubble in order to 

predict thl' Hcoustic signature arising from the interaction of a lithotriptt'r shock 

WHV(' with a low dcnsity bubble cloud. 
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• provide information to assist in the development of a measuring instrument which 

can detect the various acoustic emissions arising from the interaction of lithotripsy 

pulses with the patient's tissues. 

1.2 Thesis Outline 

This thesis consists of ten chapters. The first chapter gives a general overVIew of the 

research work and the outline of the thesis. In Chapter 2, a review of the research in 

lmhbk dynamics including those in lithotripsy is presented. Here, an explanation of 

the dynalllics of a collapsing bubble is given. This is followed by a brief description of 

Extrac:orporcal Shock \Vave Lithotripsy (ES\iVL). This chapter also includes safety issues 

of the treatlllcnt. experimental and theoretical work carried out over the past years, and 

its relation to cavitation. Follmving this, a review of the relevant numerical methods for 

cavitation bubble simulation as \vell as a brief review of the KCHF and the F\YH methods 

mc given in Chapter 3. 

Chaptcr 4 giycs an OVcrVIC\,,' of the V ucalm code and the deri\'ation of governing 

equations of the axisYlllmetric version of the code. A more detailed deri\'ation is given 

in Appendix A. A discussion 011 the Kirchhoff and F\YH method algorithm and how 

the Vucalm ncar-field solution is used in cach aeroacoustic codes to obtain the far-field 

solution is gin'n in Chapter 5. 

The follo\\'ing chapter presents the validation of the Free-Lagrange and the t\yO aeroa­

('uustic cocks. Validation of the fornlC'r is lllade by comparing the results \\'ith a published 

article h~' Ding and Gracc\yski [35] and also by Igra and Takayama [52]. The aeroacoustic 

codes. on thc other hand. arc \'alidatecl against analytical results in predicting the far-field 

pressure signaturc emitted from an oscillating solid sphere. The case studies for the \'al­

idation of the axis~'mmetric Free-Lagrange code involve the simulation of shock/bubble 

illteraction for \'mious bubble initial sizcs alld shock strengths. The results are compared 

\yith theoretical analysis C1ncinumC'l'ical simulations using another method. _\ second \'ali­

datiun is a numerical simulation of shock \yaye interaction \yith a \yater culumn in air and 

cOlllparisons are made ll\llllericall~' as wcll as cxp('rimentall~' using interferomcter images. 

This allow the code to be validated agaillst cxperimental work. as well as examining the 

cocic's capability to simulate two phase fimY problems of air and \\'ater. inc! uding a strong 

plallar shock Wa\T. 

III Chapter 7. a s~'stematic methodolog~' is established for the simulation of the inter­

action uf a single stable cavitation bubble \yith a lithotripter shock \ya\'e. This indlllh's 

a parametric stud~' of lllcsh COll\'crgcllcc and of the material illterface smoot hillg nmtille. 

Based on the rcsults, thc lllllllcrical simulatiolls of the interaction of sillgle cm'itatioll 
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bubbles in free-field with lithotripter shock waves are carried out. The far-field pressure 

wave time history of each cases are also presented and discussed. Comparisons between 

the results obtained using the Kirchhoff method and FHW method are presented. 

In Chapter 8, the simulations of single bubble interaction with a lithotripter shock 

wave for various distaIl(:(~S from a plane rigid boumlRry, including attached bubbles, using 

the Free-Lagrange mdhod arc given. As in previous chapter, the far-field pressure wave 

time history of each cases arc also presented and discussed. 

In Chapter 0, simulations of thc interaction of a shock wave with an array of bubbles 

of various separation clisti::ulC'cS were also conducted and the results arc presented in this 

chapter. The allalysis was carried out to determine the degree of influence and interaction 

of tlw ncighbouring bubble'S. This was done by methodically increasing the separation 

bd.w(~cn the two 1mbhks, and analysing and comparing the bubble \yall position time 

history as well as the predicted far-field pressure signature with that of a single bubble. 

The data collected were then used in the next study which involve extending the single 

hubble problem to a low density bubble cloud. Far-field pressure time histories emitted 

from cavitation activity from varying bubble distributions and density are presented. 

Finally, a conclusion and suggestions for future works are presented in the final chapter. 
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Chapter 2 

Introduction to Bubble Dynamics 

2.1 Introduction 

It is helieved t hat the cause of cavitation erosion is due to the high-speed liquid jet impact 

and shock wave emission as a result of the collapse and rebound of the cavitation bubbles. 

HO\\'cwr, the mechanisms and impetus behind the collapse are not clearly understood. 

It is therdore the preliminary task of the research conducted here to re\'ie\,' the state 

of current knmdedge on the cl~'rlamics of bubble collapse. The revie\\' is presented in 

this chapter and it is divided into two parts. The first includes details of the t~'pes of 

bubble collapsc and the physical aspects regarding the research cle\'elopment in bubble 

dynamics - experimental and theoretical \yorks. The second part giws a brief insight 

into Extracorporeal Shock \Yave Lithotrips~' (ES\\,L). A fe\y aspects of the treatment are 

discussed. snch as the various type of lithotripters, its history, the ad\'antages as \yell as 

disadvcwtagl's of the treatmcnt. anel its relation to cavitation bubbles. 

2.2 Physical Aspects - Bubble Dynamics 

2.2.1 Types of collapse 

The interest in cavitation bubble dynamics can partly be attributed to its destructin' 

action not onl~. on solid surfaces in hydraulic machincry, but also its role in fragmentation 

of kidne~' stones in clinical lithotripsy. l\Iuch work has also been carried out on the role 

of cavitation collapse on the initiation of explosives [14]. 

Cavitation occurs \\"hen a ne\\" snrface or bounded volume is created within t he bod~' 

of a liquid. The hounded volume, or cavity. can either be cmpty or contains gas ur 

vapour [G2]. This is a general definition ranging from phcnomena snch as undcrw<'\ ter 

explosions and effervescence to the boiling of (1 liquid. The formation uf the ccl\'it~, ('(1n 
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be stimulated by a How, decompression , sudden deposition of electromagnetic or ionising 

radiation, or heat and acoustic waves. The latter is often referred to acoustic cavitation. 

In most practical circumstances , the cavity is not formed from the bulk of t he liquid , 

but is seeded from a pre-existing gas pocket or nuclei in the liquid. The interaction with 

acoustic waves will cause the bubbles to undergo both expansion and cont raction phases . 

Generally, the collapse of cavitation bubbles can be classified into two categories, sym ­

metr'ic and asymmetric collapse. Symmetric collapse takes place in an infi nite isotropic 

liquid , far from t he presenc of a boundary. In this type of collapse, t he bubble wall 

moves in the radial direction, oscillating about its mean radius. Asymmetric collapse, on 

t he other hand , occurs near a boundary, or when the collapse is induced by a shock wave. 

However, the above descriptions are only the general scenarios. 

A detailed descript ion of the mechanism of both types of collapse IS gIven lil the 

following subsection. In real life, the asymmetric collapse is the more common type of 

cavitation collapse and is also the main objective and study of the current research carried 

out by the author. This type of cavitation collapse is t herefore given greater attent ion. 

2.2.2 Symmetric Collapse 

Focusing lens Spherical shock wave 

Laser 
beam 

Optical breakd~ ~ 

Q) Q) 
pt maximum 1st minimum :!nd maximwn 

---------------~+--------~ ...... - ..... ... ..... .. . 
Growth phase Collapse phase Growth phase 

------------------------- .......... ....... .. . 
First cycle Second cycle 

Figure 2.1: Laser-induced vapour bubble 111 water. Schematic diagram of symmetric 
collapse . 

The sequence of the growth and collapse of a single bu bble in an infini te liquid is shown 

in Fig. 2.1. Good examples of symmetric collapse are the forced oscillat ion of a cavitation 

bubble in an ultrasound fi eld , and also spark-generated bubble in infini te flui d. Anot.her 

example is laser-induced bubble where a cavitation bubble is induced opt.ical ly using a 

high-energy laser beam focused int.o t.he wat.er. The cycle starts wi t.h t.he incept. ion of the 

bubble (Fig. 2.1 ). The initial pressure difference between t he bubble and t.he surrounding 

fluid will cause it t.o expand. The expansion leads to t he format.ion of a shock ,,-ave t.hat 

radiates out.ward . This wave dissipates part. of tIl(' energy contained in t.he bubble from 
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inception. 

When the bubble expands, the concentration of the gas decreases, and gas diffuses 

into the bubble from the surrounding fiuid. Furthermore, the inertia of the water causes 

the bubble to over-expand. The bubble surface will reach its maximum size and comes to 

rest and a steep pressure gradient is developed across tlw surface of the bubble as shown 

ill the third picture of Fig. 2.1. I3y this time the growth phase is completed. 

As a result of trw pressure gradient across the bubble interface, the collapse phase 

begins awl the bubble surface starts to contract spherically. The velocity of the collapsing 

1mbblc interface increases gradually. Towards the end of this phase. the contraction of 

the bubble surface is so rapid that the gas or vapour inside the bubble becomes highly 

('omprcss('d. The compression ultimately arrests the illward motion and causes the cavity 

to rc bouud, resulting in the emission of a spherical shock wave into the surrounding fi uid 

where the pressure was measured at 1 CPa [G2]. This clearly has damage potential if 

the ('ollc),pse occurs in the proximity of a solid surface. But with sphC'rical spreading. 

this shock ,van' does not retain its strength very far from the bubble. The amplitude of 

t he radiated pressure wave diminishes with relative radial distance. The emission of the 

shock wave is the most distillctive phenomenon of symmetric bubble collapse and marks 

t he end of the first cycle. 

As depicted in Fig. 2.1 a similar mechanism of bubble expansion and collapse takes 

place in subsequent cycles. '\lultiple bubble cycles are COlIlIllon for symmetric bubble 

collapse. The oscillatory behaviour of the bubble arises because gas bubbles in liquids 

possess the two dcmcnts ke.\· to all oscillators, stiffness and inertia. The stiffness is 

provided by the gas ,\'here potential energy is stored in the gas as the volume of the 

hllbble changes. This acts like a spring and causes the bubble to rebound \,'hen highl:' 

C0111 presscd. The inertia is associated v,ith the Illotion of the surrounding fi uid. further 

rebollnd shucks are emi ttcd on each c,\·cle. Follm"ing the c,Tlie behm'iuur. the bubble 

ma.\' disappear as the content of the bubble diffuses into the ,\'ater. or it ma:' become a 

stable bubble ,dlCn its pressure is in equilibrium \\'ith that of the surrounding ,Yater. 

The cavitation bubble might also experience a steady increase in its equilibrium radius. 

This is duc to a phenomcna knO\nl as "rcctified diffusion" in ,,'hich gas. that is initially 

dissolved in the \yater. diffuses into the bubble. As a result of diffusion, its final stable size 

is larger than the initial undisturbed cc)yit.\· size. Leighton [62] identified t,yO contributor.\· 

demcnts to (\ full dcscri phon of the processes, an . area effect' ane! a 'shell cffcct·. The 

laUer is related to the diff'crence in the concentration gradient of dissoh'cd gas in the 

water envdoping the bubble during the expansion and collapse phases. The former is 

related to the surface area of thl' bubble. Since the diffusion rate of gas is proportional to 

t.he surface area of the 1mbble, more gas ,yill enter during the expanded phase than "'ill 
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leave during the compressed phase of the bubble motion. Over a period of time, there 

will be a net influx of gas to the bubble interior. The growing bubble will eventually 

reach a stable size at which it is in equilibrium with the surrounding fluid. 

2.2.3 Asy mmetric Collapse 

Solid wall Solid wall Solid wa ll 

Inception Expansion Maximum 

Solid wall 

Elongation 

Solid wall 

Liquidjet 

~ 
\ 

Liquid jet fonned 

Figure 2.2: Schematic diagram of asymmetric collapse. 

Solid wall 

LiquidjCI 

Jet impact 

The asymmetric coll apse of a cavitation bubble can occur not only through an induced 

pressure gradient across the cavity by a boundary, but also by a transient pressure pulse 

engendered by a shock wave. The early stages of the bubble dynamics are similar to the 

. ymmetric case. The sequence of the events that take place in this type of collapse is 

illustrated in Fig. 2.2. 

A plane solid boundary is placed on the left hand side of the bubble at distance d. 

The nearest and farthest bubble interface to the wall are define in t.his report as 'near: 

and 'far ' bubble surface/wall respectively as shown in the third fram e of Fig. 2.2. Using 

this convention, sequences in the collapse process are explained as follows. 

In a manner similar to the symmetric collapse, the bubble undergoes an expansion 

due to its having a higher ini t ial pressure than t hat of the surrounding water. A spheri cal 

shock \:vave is emit ted due to the expansion, att.enuating approximately in proportion t.o 

l / r t hrough the water. This initial shock wave is reflected back into t. he surrounding 

wat.er by t.he boundary. 

A large pressure gradient across the bubble surface is induced as the bubble over-

xpands. At this moment. , the pressure within the bubble is much lower than the hydro­

static pressure of the water. The bubble "vould have reached its ma...'l::imum size, Rma~" and 

the shape that it acquires depends on the init ial distance, d, of t.he inception point. from 

the boundary. If the inception takes place close to the wall , the shape of t.he expanding 

bubble will deviate from being spherical. On the ot.her hand , for large di t.a.nce d. t.he 

bubble is likely to retain its spherical shape as t.he effect of fl ow retardation is minimal. 
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When the bubble collapses, the fluid flow near the wall is retarded by the presence of 

the boundary and consequently causes different contraction rates at different locations on 

the bubble surface. The collapse of the bubble surface on the near side is prevented by 

the boundary and the water appears to stagnate. On the other hand, on the far side, the 

bubbl(~ surface has the contraction rate siIllilar to that of the symmetric collapse because 

the fluid flow is not affected by the boundary. Consequently, there exists a pressure 

gradicnt across the bubble where the pressure of the liquid between the near bubble 

surface and the solid boundary is lower than that of the far bubble wall. 

The steep pressure gradient build up also causes the bubble to elongate as its centre 

moves towards the solid surface. Towards the end of the collapse, the right bubble surface 

involutcs and a high-velocity liquid jet is formed which penetrates the bubble as shown 

in Fig. 2.2. The liquicljet accelerates towards the solid boundary and eventually impacts 

on the near bubble wall. Owing to its high momentum, the impact generates an intense 

blast wave in the surrounding fluid. Following liquid jet impact, the bubble acquires a 

toroidal shape. Subsequently, the flow around the bubble turns into a ring vortex which 

draws the bubble closer to the boundary. The velocity of the liquid jet decreases as it 

is slowecl clown by the water layer between the solid boundary and the bubble. Besides 

the formation of liquid jets, shock waves are also emitted each time the bubble achiews 

minimum volume. In lIlost cases, the asymmetric collapse of a bubble is yiolent and 

oftl'n leads to bubble fragmentation. This has been observed experimentall~' and \yill be 

H'\'iewed later in this chapter. 

The high-speed liquid jet formation, as well as the emission of the shock waYe. are 

dependent on a dimensionless parameter knm\"ll as the stand-off parameter. or stand-oB 

distance in some texts, (, ,,·hich is defined as the ratio of initial distance of bubble centre 

from the boundary, d, to the maximum bubble radius, R max , i.e. (= dl Rmax. It has 

beC'n found that the behaviour of cavitation bubbles, during expansion and collapse. is 

strongly dC'jwncient on the stand-off parameter and that the influence of a boundar~- on 

Cl cavitation bubble decreasC's as the stand-off parameter gets larger [61]. 

Investigations of as~-mmetry in collapsing bubbles have concC'ntrated upon the pres­

enc(' of ad.i acent bOllndaries. but a second important mechanism is the acceleration of the 

upstrl'am wall b~' a shock pulse. The name COllYention to describe the collapse process is 

depicted in Fig. 2.3. The major effect of the shock is to acceleraJe the upstream bubble 

wall so that it tra\'ds tmyards the downstream one. \Vhen the shock \yaye reaches the 

bubble, a rdatively \v('elk shock is transmitted into the air cm'it~" and a strong expansion 

wave is produced in the water. The resulting momentum tnmsfer accelerates the bubble 

wall and starts thl' collapse from this side. As the shock moves nn. the "'hole bubble is 

enclosl'd b~T a higher pressure and collapses from all sid('s. ~'et aS~'mlllctricall~- duc to the 
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Shock Wave 

Upstream 
wall 

Downstream 
wall 

Figure 2.3: Name convention and schematic diagram of asymmetric collapse by a shock 
wave. 

Figure 2.4: Schlieren images of a two dimensional cavity of diameter 3 mm, collapsed by 
a shock wave travelling from left to right. The upstream surface involutes to produce a 
jet 1. Taken from reference [30]. 

unequal momentum t ransfer at different parts of the bubble wal l. This leads to the for­

mation of a liquid jet in the direction perpendicular to the shock front as shown in Fig. 2.4 

which shows the collapse of a two-dimensional cavity. The details of the collapse (e.g. the 

jet velocity) are dependent on the shock wave amplitude and its temporal profile (Phillip 

et al. [72]). The liquid jet will impact the dO'wnstream wall , generating a blast wave into 

the surrounding water. After jet impact, two lobes of compressed gas are t rapped in the 

closure and , as the jet penetrates the downstream wall , a pair of linear vort.ices subse­

quently form and travel downstream in the fl ow. The bubble would reach it.s minimum 

volume, and thus complet.es its primary collapse. On mos t. occasions (involving st. rong 
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shocks), the jet velocities produced by shock interactions are much higher than those 

caused by the asymmetric collapse near a boundary. Such jet impacts are likely to be a 

major source of damage on surfaces that are in the proximity of the collapsing bubbles. 

Furthermore, these events are so violent that they often lead to bubble fragmentation. 

2.3 Studies of Bubble Collapse 

2.3.1 Experimental Studies 

Kornfeld & Suvarov [59] were the first to suggest the formation of liquid jets as early as 

1944. Since tlH~n much work has been carried out which proved the existence of a jet in 

a cavity collapsing asymmetrically. The observation of a liquid jet in collapsing bubbles 

contrasts with lllost earlier analyses of the problem, which described the collapse as 

spherical. It ,,'as not until 1961 that the existence of a liquid jet in cavities was proven by 

N awli:, & Ellis [69] using a high speed photography technique. The bubbles \\'ere generated 

in ,vater by electric sparks between electrodes placed at various distances from a solid 

wall. This was followed by the experimental \york of Benjamin & Ellis [7] ,yho examined 

this phcnomenon further. Tlwir work prm'ided an impetus for theoretical discussion of 

asymmetric collapse. On'r the past few ~'pars, other experimental inYestigations hm'e 

been carried out to prove the existence of a liquid jet as a result of the interaction of the 

bubble with an incident shock wave [14, 15,30,31]. The bubbles collapse by involution of 

the upstream ,yall to form a jet ,vhich crossed the bubble and impact on the downstream 

wall. These two mechanisllls have been discussed in subsection 2.2.3. Other researchers 

have also provided photographic evidence of jet formation during asymmetric bubble 

collapse [55. 61, 72, 78]. 

In the carlier experiments. bubbles ,,,ere produced m the laborator~' by usmg the 

spark discharge method in water [69, 82, 55, 19, 80]. The problem Kith this method 

is umtrolling the initial size of the bubble, and the unavoidable mechanical disturbance 

produced by the electrodes. Nevertheless. using high-speed photograph~·. the migration 

of cavitation bubbles toward a nearby solid boundary was dearly captured. as ,Yell as the 

formation of a high-speed liquid jet, and the damage cause by the impact of the jet on 

soft al umini um and illdi UIll specimens. 

It was llot until thc 1970's that a lllort' accurate method was developed by Lauter­

born [G1]. He showed that intense laser is an effective tool for inHostigating ca,'itation 

bubble dynamics. This breakthrough opencd Cl U<:'\,' <w<.'nuc for the studies of optic c",'­
itation. Since then, the laser light focusing technique has been emplo~'ed in \'arions 

works [61, 87, 81, 18, 88, 78, 90, 97, 72]. The mcthod has the adYClutagc that the size 
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of the bubble can be controlled and can be produced at any desired location within the 

fluid and at any time. In addition, the cavitation bubble can be introduced without 

causing any disturbance in the liquid, and the dimension, location as well as quantity 

of the bubbles can be conveniently controlled. Observations of the bubble behaviour are 

thcn made using high-speed photography, where the dynamics of the bubble are studied 

frame by frame. Using this technique, Lautcrborn &, Bolle [61] showed good agreement 

between experimental work and theory obtained by Plesset &, Chapman [73] v;ho numeri­

cally inv(~stigatcd the collapse of a bubble in the neighbourhood of a solid boundary. The 

behaviour of the bubble clearly shows the involution of thc bubble wall and jet formation 

towards the boundary. They also nleclsurcd a maximum jet velocity of 120 ms-1 for a 

frallling ra.tc of 250()OO fralllcs/s and ( = 3'(l8. However, they implied that the jet ycIoc-ity 

is llluch higher than the calculated value as t he accuracy of the measured tip velocities is 

dependent on the framing rate used. The experimental study by Vogel and co-worker [97] 
was on llluch the same line. By using high-speed photography with up to 1 million frames 

per second, thcy observed the formation of a torus, caused by the jet flow through the 

bubble ccntre and radially along the solid boundary. 

Experimental \yorks on shock wave-induced collapse were reported by Dear et al. [31] 

\\'ho studied the properties and behaviour of 2D gas-filled cayities 'air discs' when col­

lapsed by shock waws. The cayities \,'ere formed in a gelatine la~:er which \yas placed 

between two thick glass blocks. A striker \vas projected to impact on the gel block and 

high speed photography was used to record the behaviour of the cavities and jet formation 

under such impact. The major advantage of using this method is that the cavity size. 

shape, llllluber and rdatiw position can be controlled. Dear employed the method to look 

at a few simple cavitv collapse configurations. In the study, a 3 ?TLm diameter cavit~· is 

collapsed by a shock wave of strength 0.26 G Pa that results in the formation of a microjet 

\\-ith an average velocity of clOD 171S-
1 (Fig. 2.4). An intense blast wave is generated as this 

high-speeclliquicljet impacts on the clmnlstream wall. The ad,-antage of stuch'ing bubble 

collapse two-dimensionally is that details of the process occurring \\-ithin the cm·it\· can 

he followed without the refraction problems associated with vie\ying through a curved 

wall. 

A similar method of generating 2D disc ca,-ities was also used by Bourne and Field [1 .. 1. 

15, 16]. Experiments on the interaction of an array of cavities with a shock \yaw \\'ere 

carried out 'which involved large shock strengths producing yiolent bubble collapse. ,vit h. 

in some circumstances, sonolumillcsccnce1
. Shock strengths in the range of 0.:26 - 3.5 G Pa 

I Light. elllissioll a .. ssociatcd with a partic\llar form of collapse. occ\llTing as a res\llt of high temperat\lre,; 
gCllerated within the collapsing b\lbblc. The lllechanism of this phenomena is still ckbatitblc altho\lgh 
the few nH'challisllls proposed so far call be categorised illto three .. thermaL mechanochemical and 
electrical [()2]. 

Ahmad R Jamal uddin 15 



Free-Lagrange Simulations of Shock-Bubble Interaction in ESWL 

w(~re used, generated using an impacting fiyer-plate or from an explosive lens. They ob­

served a jet in the direction of wave propagation after the shock wave-bubble interaction. 

It was found that if the incident shock was strong enough, the jet velocity can exceed 

the shock velocity in the surrounding fiuid. The collapse of a 3 mm cavity under a shock 

:otrcngth of 0.26 CPa re:oulteci in a jet velocity of 300 ms- 1 and under a shock strength 

of 1.0 CPa, the jet velocity reached a value of up to 5000 ms-1 for a 6 mm bubble. The 

impact of the jet i:oolatcs two lobes of highly cornpre:o:oed air, where considerable heating 

occurs. If one RSSurIW:O that :oollolumine:ocence is localised to regions of high temperatures, 

then from their rcsult:o it can also be inferred that the highest temperature are created 

inside the cavity at the final moments of collap:oe and are a:osociated 'with the impact of 

the jet and the later compression of an i:oolated pair of gas pockets. 

Other workcr:o include Tomita et al. [89] who examined in detail the interaction of a 

spark-induced shock wave with an air bubble and the induced collapse and jet formation. 

They fOllnd that the shock driven-collapse of an air bubble can induce a more intensive 

illlpact wall pressure than one generated by the same shock wave impinging directly 

onto the wall. The velocit~; of the jet, and consequently the impulsi\"e pressure on the 

walL arc dependent on the size of the bubble, the incident shock \\"ave strength and 

tlH~ stand-off distance. This observation, backed by other similar \\"orks. has led many 

to believe cavitation is the mechanism for stone comminution in clinical lithotripsy. A 

comprehensive de:ocription of the medical treatment as v;ell as the role of cavitation are 

given later in this chapter. 

A lllllllber of studies have been carried out to investigate the mechanism of ca\"itation 

damage. The analysis by Kling & Hammitt [55], indicated the formation of a liquid 

jet during collRpse which, under certain conditions, impinged upon a solid boundar~" 

\yith sufficicnt force and velocity to cause damage. They found damage produced by the 

collapsing bubbles on aluminium alloys which appeared :oimilar to damage produced b~' 

both the impact of a liquid jet and the impingement of a shock \\"an~ produced b~' the 

initiation of the spark-induced bubble:o. The craters produced b~" shock \yan' and thc 

jet could be differcntiated becau:o(' the bubble growth and collapse OCCUlTed at different 

locations. Hmwver. Shutler & 1\leslcr [82], \\"ho performed an experiment on spark­

induced bubbles, concluded that the cavitation damage is caused by a shock \yaw resulting 

from the collapse of the toroidal bubble, and not the jet. They indicated that the pressure 

pulse emitted when the bubble rebound caused the pit damage and circular patterns on 

the solid specilllen. Possible discrepancies could be due to the experimental set up. The 

electrodes to initiate the spa.rk-induccd bubbles in their work could have inhibited the 

ckvdopllll'nt of the jet as they were positioned in close proximity to the solid \yall and 

that a lower voltage settings were used to generated the bubbles. 
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Tomita & Shima [87] too found a circular pattern, but gave a different explanation 

of the generating mechanism. They observed the collapse of bubbles with initial radii 

of 3.5 mm and 5.1 mm near an indium specimen, and by a 5 M Pa shock wave. Their 

observations using high-speed photography showed that the liquid jet penetrates the 

bubbk, and subsequently impacts the boundary. This causes the flow around the bubble 

to tum into a ring vortex. A collision will occur between the radially flowing jet and the 

collapsing main bubble wall, resulting in the creation of micro-bubbles. Based on their 

analysis of the circular indentation found on the indium caused by spark-induced bubble 

collapse, they suggested that the damage pattern is caused not only by the collapse of the 

original bubble, but also the collapse of these tiny bubbles as they \vere exposed to high 

pressure from the jet impact and rebound of the original bubble. In addition, they also 

observcd damage pits caused by the interaction of an air bubble attached to the indium 

specillwn with a shock wave. In this casc, the pit formation resulted from the impact of 

a liquid .iet directly on the indium spccimen. 

The mean bubble motion (as well as the precise direction taken by the jet and its 

velocity history) depends on the impedance' of the nearby solid wall material and its 

distanc(' from the boundcl,l"!- [36, 72]. There have been studies of the interaction of a 

collapsing bubble with various surface materials [36, 91, 81, 87]. According to Shima 

ct al. [81]. the migration of the bubble is influenced not only b!- the properties of the 

boundary (stiffness and inertia) but also tlw stand-off distance, (. They also suggested 

that for a given stand-off distance, there exists a neutral bubble collapse. ,,-here the bubble 

centroid l"C'mains at its initial position with no migration. Studies haH' been carried out on 

the behaviour of a bubble ncar a boundary that behaws elastically. in order to discowr a 

Illcthod of prcn'nting cavitation dama.ge to surfaces [81. 88]. An interesting observation 

\nlS made b!' Brujan and associates [18]. The!' found that for some range of coating 

properties. no liquid jet is developed during bubble collapse. neither towards nor a\ya~­

from the boundary. In this case. the bubble collapses from its sides forming an hour-glass 

shape which l'wntually leads to bubble splitting. 

In practical cases. \yhere cavitation or hyo-phase flmy occms. ca\-itation bubbles sel­

dom exist as a single bubble, anel as a result they interact with each other. This is 

cspcciall!' so in cases \1"11('rc clouds of bubbles exist [85, 57. 88]. The degree of influence 

of a bubble on its neighbours is depcndent on their separation distance [57]. \Yhen se\-­

eral bubbles move neetr each other, vcry clear interactions are observed. ,,-hich induce 

asymllld.r:y and deformations on the bubble wall as \vell as attraction and repulsion ef­

fects [85]. It was found that the attrclction is mutual and identical ,,-hen the bubbles 

arc of equivalent size. For bubble of diH'crent sizes, it is the smallest \yhich undergo the 

grmtcst inH ucnce's [88, 85]. However, in the case of wry close 1mb bh's. flattening of the 
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Figure 2.5: Schilieren images of a rectangular array of nine cavities of diameter 3 mm, 
collapsed by a shock wave S . Note the layer-by-Iayer collapse. Taken from reference [30]. 

bubble wall occurs which could also lead to t heir coalescence. However, coalescence only 

occurs after simultaneous implosion of t he bubbles if t heir sizes are similar, or else after 

the collapse of t he smallest bubble. The role of the shock waves emitted during collapse 

also becomes significant if the collapse and rebound of t he bubbles are relatively violent . 

The shock waves produced by the collapse of a bubble can t ravel to adjacent bubbles and 

enhance their collapse, intensify ing the bubble collapse damage capability. 

Experimental studies ment ioned above confirmed that t he impulsive pressure gener­

ated by a mult iple interaction can be much higher than t hat caused by a single bubble. 

Dear and Field [30] studied the collapse of arrays of cavit ies using high-speed phot.ogra­

phy, where the init ial collapse is induced by an incident shock wave. The interact ion of t.he 

incident shock ,;vith t he cavity leads to the formation of a liquid jet, which penet.rates t.he 

bubble and impacts on the downstream wall. The impact generates an intense blast. wave, 

which is strong enough to induce the collapse of neighbouring cavit ies. It. was shown t.hat. 

a chain reaction of cavity collapse can occur given t he right. conditions of shock str ngt.h, 

cavity diameter and cavi ty spacing. A schlieren image of this chain-reaction is shovvn in 

Fig. 2. 5. However, most investigat.ions have looked , in early work at least, at an isolat.ed 

single cavity. 
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2.4 Theoretical and Numerical Studies 

Owing to the limitations in experimental investigations, many researchers have focused 

their work on numerical simulations to study the dynamics of cavitation bubbles. The 

collapse of a bubble occurs in a very short length of time (the order of microseconds) and 

eV(~1l with the utilisat.ion of a high-speed camera wit.h up t.o 1 million frames/s [72], the 

telIlporal resolut.ion is low and gives only sketchy results. Consequently, t.he shape of the 

bubble and the resultant liquid lIlicrojet cannot be determined accurately. Large errors 

also appear in experimental works in calculating the speed of t.he jet that is estimated from 

photographs of the collapsing bubble. In addition, experimental results are incapable of 

showing the interaction of the surrounding liquid wit.h the cavity at any instant. Hence, 

n1ll11crical silllulations offer great possibilities in revealing some important aspects of 

bu b ble collapse. 

The first \york OIl cavitation bubbles resulted from observations of the rapid erosion of 

steam-ship propellers ill the late nilletef~nth century [8]. A breakthrough in the theoretical 

analysis of bubble collapse and its relevance in engineering applications \yas achieved 

through the work of Lord Rayleigh [75]. He \vas the first to explain that erosion of 

ship propellers was due to hydraulic cavitation that occurs as a result of rapid pressure 

decrease caused by the high-speed movement of the propeller relative to the body of the 

fiuid. His anal)"sis of bubble conditions during the collapse phase laid the foundation of 

analytical work carried out until the present date. By considering the symmetric collapse 

of a spherical cavity, he succeeded in proving that the violent collapse of these bubbles 

could gencrate very high pressures. Rayleigh obtained the following result 

.. 3 ·2 1 
RR + -R = -[PL - Pool 

2 Poo 
(2.1 ) 

where R is the bubble radius, Poo is the liquid density at infinity, PL is the pressure 

in the liquid at the bubble surface and Poo is the pressure at infinity. The dots denote 

<:1. time rate of change. The calculation made by Rayleigh assumed incompressible fiuid 

alld that there is an absolute yaClllllll \yit.hin the bubble. It gin's the collapse time to 

reasonable accuracy, but predicts a collapse velocity of the bubble \Yall \\"hich tends to 

infinit.y as the cavity radius approa.ches zero. This contradicts the obseryed fact that the 

bubble rebounds when a minimum volume is reached. He recognised that a more realistic 

physical model is provided by allowing t.he cavity to contain a slllall quantity of insoluble 

gas. The compression of the gas \vunld ultimatcl)" a.lTests the inward motion and cause 

t.he cavity to rebound. Furt.hermore, the lllodel is limited to sphcrical collapse in an 

infillite liquid, and therdore it cannot describe the bdw\"iour of bubbles that collap::;c in 
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the vicinity of boundaries. 

In reality liquids arc both compressible and viscous; within the cavities there is a 

certain amount of vapour and gas and the change of pressure which causes the collapse 

of cavities takes place at some finite speed. These deviations from assumptions of the 

theory can only decrease the rate of collapse of cavities and, consequently, decrease the 

pressure. Thus Rayleigh theory only shows the possibility of great pressures arising but 

it fails to give their true values. In addition, any bubble producing a damaging effect 

in practice must. throughout its collapse, be so close to the solid boundary that very 

large departures from spherical symmetry are inevitable. This class of situation presents 

cL problelll significantly different and much more difficult thall the Rayleigh problem. 

Illlproved representations of the effects of gas and vapour contents and various other 

physical factors such as real-fluicl effects of temperature, liquid compressibility, viscosity 

and surface tensioll have been included in the theory since Rayleigh's time. Plesset 

awl Prospcrctti [74] take into account the gas withill the bubble, but neglect the liquid 

compressibility. A \vidcly used solution, taking into account compressibilit~,. \"as produced 

by Gilmore in 1952 [42]. Both these forlllulations also take into account the gas pressure, 

surface tellsioll and the liquid viscosity. and are therefore more realistic than the Rayleigh 

formulation. The inclusioll for the effect of liquid compressibility in the Gilmore model 

C'nable shock \\'eWC'S to form when the bubble rebounds. ::-Jevertheless. the models \\'ere 

derived under assumptions such as perfect gas inside the bubble and uniform pressure 

field in the bubble interior. 

The Gillllore equation has been extended by Akulichev to obtain the pressure field 

around the bubble and used to predict the far-field acoustic emission resulting from 

cavitation. The Gilmore-Akulichev formulation for bubbble dynamics is given by the 

following equations, 

R(l _ U) dU + ~(1- ~)U2 = (1 + U) + U (1- U)R
dH 

(2.2) 
C dt 2 3C C C C dR 

where, 
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H= r(R) dP 
}Poo p 

C = [C? + (m - 1)HP/2 

P(R) = Pg - 2o-jR - (4f.J/R)U 

U = dR/dt 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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C is the speed of sound at the bubble wall, P and p are the time-varying pressure and 

density of the liquid respectively, H is the enthalpy of the liquid, Cz is the infinitesimal 

speed of sound in the liquid, P(R) is the pressure at the bubble wall, Poo is the pressure 

at infinity, Pg is the pressure of the gas within the bubble, Po is the ambient pressure of 

tlw S11lTOUlHling liquid, CJ is the surface tension and fL is the coefficient of shear viscosity. 

Eqn. 2.3 is known as the Tait Equation, and typically for water m = 7 and B = 3.31 X 

108 Pa. The inclusion of compressibility effects makes the Gilmore formulation more 

appropriate than earli(~r models for the study of high amplitude bubble behaviour, such 

as rectified diffusion and lithotriptcr shock wave pulses [22]. 

However, it should lw lloted here that the Gilmore model assumes that the bubble 

relllains spherical at all time, the gas is homogeneous, and the presellce of shock \,,'aves 

and liquid ll1icrojcts, (which may be extremely important for stone fragmentation), are 

not included. Furthermore, the model also ignores any interactions \vith solids. which is 

obviously crucial for stone fragmentation. In addition, fragmentation of the bubble is also 

likely to occur as it approaches a miniUlum volume, seeding the liquid with more nuclei for 

subsequent driving pulses. Nevertheless, the Gilmore-Akulichev model is still employed 

ill Ulany acoustic cavitation analysis, because it readily predicts the far field acoustic 

('lllission re:mlting from cavitation that can be exploited for remote characterisation of 

Ccwi tation. 

Theoretical studies of bubble dynamics have mainly concentrated on spherical col­

lapse, and therefore have limitations in the stud:v of cavitation erosion. Such studies 

have evolved to include aSYlllmetrical collapse, including those induced b~- nearby bound­

aries and shock \"aves. The experimental \york by Benjamin and Ellis [7] \yas confirmed 

t heoretintlly by Plesset and Chapman [73] who used a finite-difference solution of the 

<,quations of motion. 

III Ulore recent ~'ears, the Boundary Integral I\Iethod (BII\I) has become a popular 

and useful technique to model nonspherical cavitation bubbles in liquids [10. 13. 104, 

105, 91. 12]. Sato and coworkers [77] numerically investigated the behm-iour of a gas 

bubble near a rigid boundou)- in an oscillatory pressure fidel. The BI?\I is employed to 

simulate the variation of the bubble profile \"ith time, and image theor~- is applied for 

sulving the differential equations describing the nonlinear oscillations and migrations of 

the spherical gas bubble. Their results showed the jet formation during collapse and also 

ill the rebound stage, as well as the migratory behaviour of the bubble tmyards and awa~' 

from the boundary, depending on the frequency of the oscillating pressure field in the 

SI urounding water. 

In 19~G, l3lake et oJ. [lJ]modellecl, via BIl\t the growth and collapse of transient ('m-­

itics near a rigid boundary in the presence of buoyancy forces and an incident stagnation-
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point flow. Their results showed the formation of the high-speed liquid jet when the 

bubble is collapsing. In another work, Zhang and associates [105] developed a three­

dimensional BIM to simulate the collapse of single and multi-bubbles near a free surface. 

They developed a numerical code which uses a method called 'a nine-noded Lagrangian 

interpolation' to determine the surface characteristics and material velocity. They showed 

that their results agree relatively well with that from the one-dimensional Rayleigh-Plesset 

equation and an axisymrrwtric model. The temperature fields inside asymmetric bubbles 

in the final stage of collapse have also been numerically simulated using a combined BIM 

and finite volume method on unstructured adaptive grids [102]. The heat transfer of the 

iuternal gas is taken into account and the asymmetric collapse of the bubble is induced 

by the presence of a solid \,vall. 

Numerical simulations using the Bnd have been shown to agree well with experimental 

results. However, in the formulation of the BUd, the fluid dynamics is modelled by 

assuming the fluid to be inCOlll pn~ssible, inviscid and irrotational and that the gas scalar 

properties arC' spatiaJly uniform [104, 105. 10, 13]. Since surface tension forces are less 

illlportant at the final stages of collapse, their effect is also neglected. ::\evertheless, the 

dfC'ct ma:,>' be important during bubble grmvth just after inception and also at the jet tip 

ill the later stages of collapse [13]. Although it can be argued that compressibility effects 

c\l'(~ generally unimportant during primary expansion and collapse as the \'elocities are 

t:'>Tpicall:,>' significantly less than the speed of sound in either the gas or the liquid. these 

()ssumptions restrict the computation to the first collapse only. 

In earlier BI1\1. the com put ation had to be stopped before the rebound phase of the 

hubble anel at the point of jet impact due to an inherent mathematical degenerac~' of the 

l'llllVentiOlml boundar~· integral equation (CBIE). The mC'thod fails \"hen the liquid jet 

approaches the opposite surface of the bubble in the final stage of collapse. This is due to 

the use of a governing equation that onl)' represents a singly connected surface [lC16]. The 

DUd method usillg the CBIE is therefore incapable of simulating the bubble d~'nalllics 

heyond the first collapse [10-±' 11] and is also O\'er restrictiw for general application due 

to the assumptions made. Zhang et oJ [104] succeeded in simulating the final stages of 

the collapse of a cavitation bubble near a rigid boundary includillg the jet impact and 

penetratioll processes, which is an advancement from earlier BI.1\1. In their \\'ork based on 

the algorithm formulated by Best [9], the CBrE is modified to account for the common 

surface or point upon jet impact and the equation is replaced by a hypersingular boundar~' 

integral equation (HBIE) which forms a closed cquaJion s:,>'stt'm where the old one failed. 

The technique introduces a 'cut surface', which allows the jet to penetrate the bubble and 

subsequcntly form a toroida.l ccwit.y. However, the incompressibility assumption made 

llleans the method is illcapable of llloddling blast Wc1,\'t' emission from t he jet impact 
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and shock wave emission into the surrounding fluid when the bubble rebounds. Hence, 

although the BIM can resolve the formation of the high speed liquid jet and the subsequent 

rebound of the toroidal bubble, the method is still limited for general applications of 

bubble collapse due to its assumptions, especially incompressibility. 

It was shown by Howle ct oJ [50] that liquid compressibility effects play an impor­

tant roI<: in the collapse of cavitation bubbles. Using the compressible Euler equations, 

they analysed the response of a 3 J.1m bubble to a lithotripter pressure pulse \vhere the 

peak compressive pressure is 1001\1 Pa. They found that the collapse velocities are vastly 

greater than the speed of sound in liquids. In his studies on the effects of compressibility, 

cOlIlparison was made between th<::: compressible Gilmore model and the incompressible 

Raylcigh-Plcsset equation. The n:sponse of the bubble to the pressure pulse \:vas plotted 

nud they discovered that the compressible and incompressible th0'ories agree \';ell before 

collapse but cliffeI' greatly during and after collapse. In the compressible case. the min­

illlulIl volume achieved upon collapse is larger than in the compressible case. Another 

apparent difference is that t he oscillations follm:ving collapse are heavily dam ped in the for­

lll('r, whereas the oscillations continue indefinitely in the latter. This finding emphasizes 

the importance of compressibility effects in numerical simulations of caTitation events . 

. ~\uother lllcthod known as the Volume of Fluid Method (VOF) was recenth· employed in 

Illoddling multiple three-dimensional gas bubbles rising in a quiescent liquid [41]. The 

Illethod assumes incompressible and immiscible fluids but takes into account the effects 

(If surface tension. The motion ELnd pulsation of a single bubble under the action of a 

111loyancy forces ,,·as clearly captured and they also extended the computation to fin' gas 

hubbles. 

I3all et 01. [6] used the Free-Lagrange numerical method in their simulation of a t\VO­

dimensional c)·lindrical ELiI' cavit), in water collapsed by a 1.9 G Pa incident shock. The 

nJIuputational code' V'l1U1.lm·. solves the t\vo-dirnensional unsteady compressible Euler 

('quations using a second order cxtension of the Goduno'." method. The method is suited 

for the bubble collELpse problem as it allows the air-\vater interface to be resolwd at all 

times. The results show the im'olution of the bubble surfELce to form a high-speed liquid 

jet, with Y(-:locity of about 2600m S-l, v,hich penetrates the bubble. The impact of its 

tip onto the opposite sick of the bubble surface produces an intense blast \vaw' \vith an 

initial peak owrpressure uf more than 4.7GPa. Although the results OITr-prcdict the 

telllperature of the air inside the bubble due the absence of heat transfer and real gas 

effects, it demonstrates that severe heating of the gas does occur during the collapse. The 

rcsnlts that were obtained also agree well with the experilllents of I30urne and Fidd [15]. 

It. is clear that acoustic cavitation is an ('non11ously broad area of stud)' of rdcnmce in 

a wide variety of practical processes. The anthor will concentrate his stwl\- on c<lyitatiun 
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collapse in the application of Extracorporeal Shock Wave Lithotripsy. The relation of 

cavitation bubbles with ESWL, and the dynamics of a bubble from the interaction with 

a lithotripter shock wave, are explained in the next section. 

2.5 Extracorporeal Shock Wave Lithotripsy 

(ESWL) 

Lithotripsy is a modern alternative to surgery for the treatment of kidney stones and for 

relid from kidney stone pain. It is a non-invasive technology which disintegrates stones 

iuto slllall particles. This is achieved by using intense shock waves generated outside 

('xtnv:orporeal) the body so that the pulverised stone can be passed out naturally via 

t he ureter. The device which performs the lithotripsy is called a lithotripter. 

2.5.1 Types of Lithotripters 

Shock waves are generated by different types of generators. Commercially available gen­

nators are 

1. Electrohydraulic (EH) - Shock wave is generated using a spark gap and then focused 

onto the stone via an ellipsoidal reflector. 

2. Electromagnetic (EI\I) - Planar shock wave is generated electromagnetically. The 

plane \\"ayes is focused by a convex acoustical lens. 

3. Piezoelectric (PE) - A spherical dish made up of piezoelectric elements is used to 

generate shock wave pulses. 

Schematics of the electrohydraulic and electromagnetic types of shock generator used 

inlithotripters appear in Fig. 2.6 and Fig. 2.7 respectively. In Fig. 2.6, the ,-ie\\" is towards 

the top of the patient's hettcl as the patient lays face up on a table. 

The clectroh~-c!raulic-sho('k generated lithotripter (Fig. 2.6) uses a half-ellipsoidal re­

fiecting chamber to focus shock \\"av('s, which are created when a powerful spark ,-aporises 

water at oue focus of the clli psoicl. Part of each \Vewe never hits the reflector, anc! this 

part (light blue) spreads out and weakens. However, the part of the \\"aw \\-hich hits the 

reflector (dark blue) converges on the other focus and becomes very intense, causing the 

stoue to crulllble. TIl(' dcctroh~'draulic will generate more than one shock from a single 

discharge, resulting from oscillation of the bubble generated at the first focus. 

Iu comparison, the EI\I shock gelleratm works on a silllilar principal to a loud spe<1ker. 

The shock W(W<:~ is produced electromagnetically b~- lUcans of a high yol tngc pulsed t hwugh 
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Figure 2.6: Electrohydraulic Lithotriptor (EH). 
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Figure 2.7: Electromagnetic Lithotriptor (EH). 

a coil in the base of the shock-head. This produces a magnetic fi eld which repels an 

adj acent metal membrane, thus init iating a high-pr ssure ·wave. This high pressure wave 

is t ransformed into a shock wave as it t ravels t.hrough de-gassed \vater. This plane wave 

is focused by a convex acoustical lens, creating a high-intensity fo cal zone for the effective 

destruction of renal stones. 

Although different techniques have been used for shock wave generation and focusing , 

the pressure waveforms produced by most exist.ing clinical lithotripters are similar [25]. 

However , Chuong et al. [21] found that the size and shape of the focus of the shock waves 

are different for all three li thotripters, result iug in varying extent of damage on a st.andard 
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stone phantorns2
. 

2.5.2 Advantages of Lithotripsy 

ESWL has become the treatment of choice for the majority of renal calculi because of 

its advantages over surgery. The main advantage of lithotripsy is that it is non-invasive. 

In contrast, other methods of stone removal require open surgery, extraction of the stone 

through a puncture in t.he side of the patient, or t.he insertion of an ureteroscope via 

the urethra with subsequent. stone fragmentation and removal by mechanical means. All 

these invasive procedures carry a higher risk of infection complications than non-invasive 

procedures such as lithotripsy. \Vit.h lithotripsy, patients generally experience extreme 

reduction in complication and pain. The total trauma is also less than that of surgery. 

Furthermore, post-treatment complications arc minimised and so too is the recuperation 

timf'. The lithotripsy procedure itself takes about an hour, with a recovery period of only 

a few days compared to w(~eks \vith surgery. In tIl(' event of disease recurrence. additional 

therapy can safely be administ.ered absent of the risks encountered \"!;ith repeat surgical 

procedures. The treatment to a patient, hO\vever, can not be repeated \vithin a short 

period of time to avoid any long term in.iuries. 

However, not all patients \yith kidney stOllE'S problem can be treated with lithotripsy. 

Surgery is resCl"wd as an option for cases \vhere other approaches have failed or should 

not be tried. The most COlllmon reasons for electing an open operation are unsuccess­

ful endoscopic stone manipulation, presence of anatomical obstruction in the intrarenal 

("ollecting system of the ureter, obesity, underlying medical problems and large stones [2]. 

2.6 Acoustic Cavitation 

2.6.1 ESWL-induced Cavitation Bubbles 

The tellsile strength of a liquid is tIlE' tension that exists in the liquid ,,'hich prewnt it 

from rupturing to form cclyitation. One method to measure the t.ensile strength of \yater 

is thnmgh dynamic stressillg by an acoustic field. At sufficiently high negatiw pressure 

cllnplitude, the liquid fails and cavitation will occur. The t.hresholds for bubble inception 

('all be llluch less negative. \\"hen there art' pre-existing nuclei or solid impurities in the 

Huid. The latter serve as nucleation sites and contain cracks and Cl"<:;\'ices in \vhich gas 

pockets may stabilise against dissolution [1. 62]. 

The acoustic wave at the lithotriptcr fucus in water has a form which is expected tll 

2 A c;tOll(, that i:c; fabricated tu llliIllic thl' lllcchallical :c;trl'llgth and acoustic impedance of renal calculi. 
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Figure 2.8: },Iodelled form of ESWL pressure waveform. 

produce significant amounts of cavitation [26, 22, 71, 65, 86]. It consists of a leading 

shock front (compressive wave) with peak positive pressure up to 100 AI Pa, followed by a 

diffrClction-inducecl tensile wave with a peak negative pressure down to -101'1 Pa, and a 

total pulse duration of 3 - 7 j.LS [25]. An idealised profile of the lithotripter pulse is shown 

ill Fig 2.8. Studies of ES\VL have showed that cavitation bubbles are induced inl'ivo 

l]('ar the lit.hotripter focus by the tensile stress of lithotripter shock ,yaw pulses [22. 26]. 

Similar cavitation phenomena \vere observed by Tomita et al. [86] from their in L'ifFO 

('xperimcnts. Coleman et al. [26] showed that cayitation bubbles could be formed after 

administration of a single shock. 

A 1l11mber of researchers have concentrated their ,York on prm'iding e,"idence of lit hotriptl-'r 

illduced cavitation bubbles. Kuwahara et al. [60] showed that the presence of micro-

111lbblcs correlates ""ith c'yiclence of illjur.V to dog kidneys during experimental lithotripsy. 

Ccwitation bubbles has also been found in liver parenchyma of patients undergoing gall­

stone lithotripsy by Zeman and associates [103]. The)' observed cm"itation actiyity near 

the focal point of the lithotriptcr at ever)! 0.83 S interval, t.he same time intelTal at ,yhich 

shock waws were administered. Out of a total of 50 lithotripsy treatments. the~" found 

that microll1lhble formation within the gallbladder was identified in 31 of the 3-1 Sllccess-

ful trcatments. Tlwy were unable to cletc'ct <1n)" bubbles in 11 out of the Hi IlllSllCCt'ssflll 

treatml'nts. Although the prescnce of bubbles docs not predict that stont's ,yill break. 

Sllc('(~ssful disint.cgrcl.tion is far less likel)! in cases ,\"lwre intense microbuhblcs do not furm 

at rclativd)! low lithotripkr po\wr. Based on this, thcy suggested that the presence or 

Ahlllad R Jamalllddin -r -I 



Free-Lagrange Simulations of Shock-Bubble Interaction in ESWL 

absence of microbubbles in bile during lithotripsy may be used as an important marker 

that can be predictive of fragmentation. 

2.6.2 Dynamics of Cavitation Bubbles and Acoustic Emission 

Bubble wall radius vs. time 
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Figure 2.9: Calculated response of a bubble to a typical lithotripter shock wave. The 
figure shows the effect of rectified diffusion on t.he final bubble size. 

Radiated pressure at r = 0.15 mm from the bubble center 
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Figure 2.10: Corresponding acoust.ic emlSSlOns result.ing from the bubble response III 

Fig. 2.9, recorded at. 1.5 mm fmm t.he bubble centre. 
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Church [22] employed the Gilmore-Akulichev model (Section 2.4) to examine the in­

teraction between cavitation nuclei of about 1 - 10 mm in radius and a lithotripter shock 

wave. He showed that the nuclei will be initially compressed by the leading shock front, 

and th(~n expanded by the ensuing tensile wave into a bubble of 1 - 3 mm in diameter 

in a few hundred microseconds. The variation of the bubble wall radius with time, for 

the interaction of a bubble (Ro = 10 f-lm) with a lithotripter shock wave, P+ = 60],,1 Pa 

and P- = 10 M Pa, is shown in Fig. 2.9. As explained earlier in Section 2.4, the Gilmore 

model incorporates th(~ compressibility of the liquid, and therefore allows the prediction 

of the pressure pulses emitted by the bubble on rebound. It is these pulses that form 

the basis of non-invasive' detection of cavitation in-vivo and in-vitTO. The corresponding 

pressure emission time history at l.5 mm from the bubble centre is given in Fig. 2.10 

(Section 2.2.2). The two plots were generated from a I\latlab code developed by Cun­

ningham [29], who was involved in the research project. 

The lithotripter shock reaches the bubble at time t = 0 s. The interaction of the shock 

wave with the bubble will cause it to collapse. defined here as the primary collapse of 

the bubble. After this, the negative tail of the driving waveform initiates an expansion 

phase of the bubble, as ShUWIl in Fig. 2.9. The bubble expands greatly and keeps the 

expanded radius long after the driving pressure has returned to atmospheric pressure. 

The length of this period depends on the initial bubble radius and the amplitude of 

the driving shock wave. Follmving the long expansion phase, tl1(' overgrm\'l1 bubble \vill 

undergo a violent secondary collapse. Fluid momentum during this ensuing collapse phase 

causes tIl(' bubble to compress to much less than its initial volume. This will generate a 

wry high temperature and pressure inside the collapsed bubble and causes the bubble to 

rebound. As the bubble rebound, a spherically diverging shock wave is emitted into the 

slllTounding fiuid. The bubble will then go into a collapse and rebound c~Tle before it 

('\'entually reaches a new equilibrium sizt'o On each rebound. a shock \\'m-e is emitted into 

t he surrounding fi uid as shown in Fig. 2.10. Owing to rectified diffusion. the theoretical 

stctble size of the bubble inl'il'o is estimated to be about 40 wn [22] (Fig. 2.9) .. :\ detailed 

(i<-scription of the dynamics of the cavitation bubble undergoing a sequence of collapse 

and rebound has been given in Section 2.2.2. The final stable bubble size of -10 pm has also 

heen estimated from experimental data by Cunningham and associates [29]. Their \-alue 

\\-,)S estimated not onl)T from the theoretical anal)-sis of the Gilmore-AkulichET model 

ciS Clmrch had clone, but. also from the time of the det.ect.ed acoustic emissions In 1'11'0 

approximated using time-frequency analysis. 

The ability t.o detect and quantify cavitation act.ivit.y near the focus of lithotriptcr 

using high-speed photograph)- and also acoustic ('mission mcasurements mH~- help in un­

derstanding of the effectiveness and safety of the treatment. The majority of experimental 
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works are in vitm, where the ultrasound is measured from within a water tank. In vivo 

acoustic field measurements on the other hand are not as straightforward. A few consid­

erations have to be taken into account and one particular is the design of the hydrophone 

probe. The probe has to be small enough to be inserted inside the body without causing 

any changes in the structure of the surrounding tissue, and also be insulated from the 

interual fluids. The hydrophone also needs to b(~ able to measure and withstand the large 

pressure amplitudes. It is also a major concerns that no bubbles are introduced when 

inserting the probc which may contribute to the measured acoustic signature. 1\lost im­

portant of all is the fact that most hydrophones are highly directional, and it is therefore 

illlperative that the sound field impinges the hydrophones at normal incidence. 

Vhth the right experimental set up, cavitation activity in vivo can be monitored and 

In:orciecl using a passivc, focused hydrophone, from which valuable information can be 

extracted [24, 107]. It is cOlllprehensible that the response ofthe single bubble modeled by 

the Gilmorc-Akuliclwv model is likely to differ from that of a bubble cloud in the in vitro 

('xperilllents. This may result from the variation in bubble radii as well as the mutual 

interaction between bubbles. Colelllan and co-\yorkers [24] presented an assessment of the 

kn~l of quantitative agreement between the Gilmore-Akulichev model and measurements 

of the acoustic emission from cavitation collapse in water driven by high amplitude pulsed 

ultrasound frolll an electrohyclraulic lithotripter. Their results were encouraging and 

substantiated that useful quantitative information, such as the bubble radius, can be 

()btained. Certain features of the modellll~W applv for a bubble cloud. It \yas found that 

t he "quiet" period due to the long expansion phase of the bubble after primar~' collapse in 

the Gilmorc-Akulichev model correlates \yith the measured separation of the peaks in the 

acoustic signal associated \\'ith the collapse of the cavitation bubbles. This finding \yas 

('xploited by Cunningham cLnci co-workers [29] to determine the radius of the cayitation 

1mbbles. 

The works of Zhong and CO-\\'orkers [Hl7] and Coleman et oL [26] suggest that cayita­

hon activity during ES\VL can be assessed using acoustic measurement techniques. The 

acoustic cmission from both studies revealed two distinctive bursts. The primarY and 

:·.;('conciary acoustic emission signals were found to comprise an initial and dela~-ed burst 

of pressurc spikes, corresponding to the initial expansion of shock \vave-induced cm-ita­

hon bubbles and their secondary collapses. Intermediate bursts \\'ere also obselTed \yhich 

correlate with the collapse of small bubbles. Additional pressure spikes of reduced ampli­

tudes were observed in both the primary and secondary acoustic emission signals, which 

were likely to be generated by the rebounds of cavitation bubbles after their pnmar,'; 

collapse [24, 107]. 

In another study, Delius ct al. [3J]lllcasured shock wan's inpi'po using P\-DF mem-
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1m-we sensors implanted in the lung wall of dogs. Ensuring that the hydrophones are 

correctly aligned (because of the directional nature of their sensitivity), they found that 

at the focus, the 'in vivo waveforms were similar in shape to what was measured 'in VitTO, 

but the shock amplitude was reduced by about 20%. These findings were also confirmed 

by Cleveland et al who carried out similar tests on pigs. However, the peak positive 

pressure was about 50% of the 'in vitro waveform. Also, the shock rise time measured 

in v'ivo was also greater compared to -in vitro. Both of these findings are consistent with 

the higher absorption in tissue compared to that in water. The similarity in shape of the 

waveform measured 'in vdro and in vivo suggested that the inhomogeneities in tissues do 

not alter the shock front significantly. The difference in rise time however has no effect on 

tlw dynamics of the bubble. According to Church [22], the bubble response is insensitive 

to the ris(~ time of the compressive part of the lithotripter shock wave. The 30% reduction 

difference in recorded pressure amplitude between in vitTo and in vivo measurements by 

DC'lius and Cleveland suggest the difference in attenuation between animal models. The 

thick layer of fat in the pig lllay have contributed in higher ultrasound ,vave absorption. 

The results by Cleveland et oJ [23] indicate that in vitro experiments used to evaluate 

lithotripsy performance are directly relevant to in vivo conditions [23] - an important 

finding in the studies of ES\VL. 

2.6.3 Mechanisms for Stones Fragmentation and Tissue Injury 

It has been recognised that the forced collapse of acoustically induced stable bubbles 

\\'it.h subsequent shock wave pulses can significantly increase the damage to a nearby 

solid surface or ewn to the surrounding tissue [71, 87]. It is important to note the role of 

preceding lithotripter shocks in populating or seeding the body fluid ,yit h relatiwly large 

stable bubbles. The interaction of preceding shocks with cayitation nuclei in the fluid 

",ill cause it tu undergo expansion and collapse oscillation phases until a stable condition 

is achieved as described earlier in the chapter. 

The mechanical stresses generated b!' the shock-bubble interaction. and the subse­

q1l(~nt jet impact on the kidne!' stone, have been identified as possible mechanisms of 

stonl' fragmentation during lithotripsy [28]. However, it should be understood that liquid 

jds arc not proposed here to play a solitary or en:n dominant role in stone fragmen­

tation. Reccnt studies hcwt' showed t.hat stress waves induced by the lithotripter shock 

waves ami by cavitation work synergisticall!r, rather t.hen independent I!'. to produce ef­

f('ctive and successful disintegration of rmal calculi in ES\VL [110]. It is postulated t helt 

the cavit.ation micro.icts induce discrete fiss1ll"es on the order of microns. ,yhich "'ill thcn 

propagate throughout t.hl' bulk of tIll' stone upon repeated stresses from the shock ,YaH' 
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itself [76]. 

In addition to destroying stones, it has also been found that clinical doses of shock 

waves induce renal injury in a majority of treated kidneys [32]. Blood stained urine is 

common during treatment. This finding contradicts earlier report [20] that the treatment 

was safe and not associat.ed with renal damage. However, the long-term effects of ESVv'L 

011 renal tissue and function are still yet to be completely determined [38]. A number 

of 'in v'ivo experimental works have been carried out in order to correlate structural and 

functional changes in kidney following shock wave treatment. Evan and co-workers [38] 

carried out a study to investigate the effect of ESWL on renal bioeffects by using minipig 

as animal model. Minipig is ideal as its kidney mimic that of human·s in terms of size, 

r(,llal anatomy and function. The changes in the t.issue structure and injury to the kidneys 

were found t.o be similar with those not.ed on lithotripsy patients . .t\Iassive bleedings which 

arc also calleel hematomas3 was consistently noted. Evidence has shown that the severity 

of injury may be related to treatment variables such as the number, energy output and 

frequency of the shock waves. Delius and associates et al. [33] observed that the extremity 

of renal injury induced by ES\VL increases \yith the number of shocks as \yell as the rate 

of shock administration. Similar findings were made by \Villis and ("o-\yorkers [99]. who 

,!Iso showed that an increase in the frequency anel energy density of the lithotripter 

shock waves intensify the damage, causing funct.ional impairment of the kidne)-s and 

reduction in blood fiow in humans, canines and pigs. Severity of injur)- also increased 

\,·hen the lithotript.er shock \\"aves arc administered in pairs. Conversel~·. a recent paper 

])\. Sokolov [84] and co-\\"orkers suggested that a dual pulse lithotripter increases stone 

("ulllminution at the focus b)' as much as 10 times in comparison to a com-entional single 

pulse lit.hotripter. Howeyer, the study \vas carried out in-vivo and the implementation of 

the lllet.hod in clinical Ii tllOtri PS)' was not addressed by the au thor. 

Besides in uio(), in vitro experiments using high-speed photograph)- haw also been 

useci t.o illustrate the destructive behaviour of collapsing cayitation bubbles. Phillip t:f 

oJ. [71] studied the interaction of a lithotripter shock wave with an artificiall)- produced 

stcl.ble air 1mbble. It was shO\yn that bubbles \vithin a certain size collapse as)-mmetricall)-, 

lccl.ding to the formation of lllicrojcts along the wave propagation direction. Besides this. 

they found that the jet velocity is dependent on bubble size and there exists a maximum 

value at a certain bubbk radius. For bubbles with initial radii in the range of 0.1-0.9 mm, 

lllil.ximal jet velocities of 400 - 800 77LS-
1 were measured. Moreover, the collapse time of 

the bubble was about 2 !LS \vhich means that the complete collapse phase has alread~­

('ucicd when the tensile part of the litllOtripter shock wave reaches the bubble. If the 

:lBlood blisters within the organ, a spac(' completely filled with blood, and ('\"('11 disrupted th(' llornwl 
kidn('y architectur(' [:;2]. 
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negative pressure were to interact with the collapsing bubble, the rate of collapse and 

corresponding jet velocity is expected to be reduced, and the collapse occurs less violently. 

This could also prevent the impact of the liquid jet on the downstream bubble wall from 

occurring, as the tensile part of the shock wave induces the expansion of the bubble. 

In the study by Philip et al. [71], he used a thick and strong foil to hold the bubble in 

place, which caused the bubble to collapse asymmetrically and form a high-speed jet. The 

jet dmnagcd the foil but did not always puncture it. The experimental results obtained by 

Phillip ct oL [71] also agree well with nunl(~rical results obtained using the Gilmore model. 

The destructive effects of cavitation produced by shock waves generated by a Dornier HT,13 

lithotriptcr have also been demonstrated on x-ray film, thin aluminium sheets. and thick 

lllctal pla.tes (0.2 - 1.0 mm) placed at the focal point of the converging shocks [26]. Deep 

(kpressions in the metal foil were found which were believed to be caused by the impacts 

of high-speed liquid jet developed in the collapsing cavitation bubbles. In man~' cases. 

the jet impacts were so violent that a hole was punched completely through the foil. 

Howard and Sturtevant [47] carried out experiments in "non-cavitating" fluids like 

("astor oil. They found that strcsses induced by the ES\VL shock \vaves in uniform media 

(no shock scattering) did not cause any damage to thin membranes, but damage occurred 

\y!len the lllembranes were imlllersed in heterogeneous media. According to them. there 

(\1'(' t\VO physical mechanisms, direct and indirect, v;;hich contribute to tissue injuries. 

The din~ct mechanism is attributed to scattering of the shocks from small-scale tissue 

inhoIllogeneities. whilst the indirect effect is pressurisation caused by cm-itation bubble 

collapse. ?\Iicrojets from collapsing bubbles were observed b~' Kodoma and Taka)'ama [56] 

\\'ho made a detailed experimental investigations on the interaction of shock \\-aves with 

hubbIes attached to a gelatine surface, rat livers or rat abdominal aortas in order to 

explain the mechanism of tissue damage b~' cavitation bubbles during ES\YL. Similar 

('xperiments were carried out b~- Lush et oJ. [65]. who observed the formation of microjets 

(lgainst a gelatine surfc).ce when bubbles were collapsed by lithotripter shock pulses. The 

collapse of these shock-induced bubbles also resulted in the formation of man~' microscopic 

shock waves. 

It is clear that despite the apparent advantages of lithotripsy. recent discoveries on 

tissue injuries following clinical treatment have undermined its reputation as being a safe 

and efficient lllethod for kidney stone treat.ment. Clearly, in order to minimise collateral 

damage, it is desirable to limit the intensity and duration of ES\\'L treatment to the 

lllinilllulll nccessary for adequate stone fragmentation. and also to minimise the \'ulullle 

of soft tissue exposed to the focal point of the litllOtriptcr pulse. This can be achit'wd 

if the foca.l point is accurately placed on the stone. U nfortunatcly, erroneous targeting 

arises from slight mOVC'lllC'nts of the pa.tients. Furthennorc. the targeting rel~' on approx-
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imate corrections for refraction of the lithotripter shocks by the patient's tissue. Most 

important of all, neither method provides a means to indicate when stone fragmentation 

has occurred. This would enable a timely cessation of treatment, minimising exposure 

to the shock waves, or would conversely warn if insufficient treatment had been given 

to achieve shat.tering. Consequently, a large number of ES\VL patients currently require 

re-treat.ment because initial ESWL therapy was ineffective. 

2.7 Improvement of Stone Fragmentation and 

Lithotripsy Safety 

A key issue in the success of the treatment is the ability to focus the shock waves so 

that they ideally damage only the stone and not the body. 1\l10st attempts at improving 

lithot.rips:v and its safety have concentrated on increasing the accuracy of shock focusing 

aud kidney stone tracking during clinical treatment. Others have carried out research 

t() enhance stOlle fragmentation, which would reduce the duration of the treatment and 

thereby minimise the volume of tissue exposed to the shock waves. In order to min­

illlise renal tissue injury, precise stone localisation with no erroneous shots to the renal 

parenchyma is essential. 

In current lithotripters. the t.argeting of the focal point on the stone is carried out after 

the stone has been identified by an expert before treatmellt. Once positioned. the shock 

\nwcs are always administered to the same place until repositioning is necessar!' due to 

the movement of the stone or the patient. However, the precise targeting of the kidney 

stone throughout the trcatn1(:'nt is difficult, mainly because the kiclne\' mo\'es during 

hreathillg. Kuwahara ct al. [GO] developed an anti-miss-shot dETice (A:'IICD) to preyent 

erroneously focused shock waws on health!, kidney tissues during ES\\'L. Experiments 

\\'('1'(' conducted on dogs to cnduate its effecti,'eness. The mechanism is similar to that 

uf a radar system, but rather than measuring the Doppler shift as \\'ell ciS the time taken 

for ultrasound to be transmitted and echoed back, Al\I CD analyses the intensit!, of the 

rdkcted ultrasound wav(-'s. A high level of reflected waves indicates accurate targeting, 

\y hill' a lmv level will indicate that the lit hotripter is incorrectl!' aligned. Consequent l!', 

shock waves arc not generated until re-alignment is made. In the test cases that \wre 

carried out with and without At\ICD, fragmentation of the stone \\'as obseryed in both 

Celses. However, microscopic exalllination revea.led injuries to the kidneys both \\'it hand 

without Al'dCD, though the sC'writy of the bleeding \\'as lower in the former. l\Iorcowr. 

tl](' method \vould reduce the nlllllber of shucks but not the treatment time. 

Orkisz ct oL [70] on the other hand, developed a softwcU'c ca.lled "Echotrack" \\'hich 
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performs a real-time tracking of the stone in ultrasound images and automatically adjusts 

the focal point of the shock waves. Their idea was to exploit the imaging system of the 

lithotripter and to apply an image-based target tracking algorithm to determine the 

current location of the stone in real time. The displacements of the stone may occur 

following breathing and movement of the patient. The lithotripter generator would then 

1)(' aligned automatically to the position of the stone. Validation of the system could not 

he precisely quantified using 'In 'lJivo tests alone. This is because the 1lse of ultrasound 

imaging alone does not provide means of determining the precise moment when the stone 

is completely fragmented. Hence, in vdr'O tests were also necessary. Initial pointing by a 

physician is still required, because only a human expert is able to distinguished a stone 

from other patterns present in the ultrasound image. The Echotrack is able to track the 

slone' as long i:1.S it is visible in tIl(' ultrasound images. Thus, the method fails when the 

stone' is not visible in the ultrasound images. They conclude that in comparison \,,'ith 

current generator. the integration of the system reduces the number of shocks almost by 

lwlf and ensures 80% of the shocks reach their target. 

The feasibility of using controlled, forced collapse of cavitation bubble for improved 

stone fraglllentation during ES\VL using tandem shock wave pulses was demonstrated by 

Zhong ct al. [108]. This idea is based on the findings that cavitation bubbles playa major 

role in stone fragmentation. Since the bubbles are formed following the incident shock 

\\"ewe, but well before the arrival of the next treatment pulse, their collapsed is uncon­

trolled and undirected. -1 Consequently, only a small portion of their energy contributes 

t () stone fragmentation [108], which leads to several thousand high-intensity shock \yan~s 

heing required to achieve successful treatment. Zhong et 01. [108] hypothesize that stone 

fragmentation lIlay be enhanced hv forcing the collapse of lithotrips~--induced cm-itation 

hubbles tmvarc!s the ta.rget. This is achieved using a secondary shock Kaw. \yhich is 

delivered to the focal point \yithin 300 - 500 /-is delay follmying the primar)- lithotripter 

shock wave. Encouraging results were obtained where, for the same number of shocks. 

stone volullle loss is greater if the secondar:'o- shocks are used. Hmwn'r. their \-alidation 

test cases were carried out in l,itro. Jnl'iuo studies are required to confirm the merits of 

t his new ESvVL method. A similar technique of stone fragmentation enhancement has 

1)('cn proposed by Xi and Zhong [100] as well as Zhong et 01. [lOg]. In the former. the 

secondary shock waves are generated using a piezoelectric annular array (PE.-\A). \yhile in 

the latter, a simple annular ring reflector is incorporated into the electroh:'o-dra ulie shock 

wave generator. However, unlike the method discussed earlier [108]. the roles of the sel'-

1 Although the collapse of Illlbbks is influcnced by the proximity of the stone. the se\-erit)· and instance 
uf collapse can be greatly dfectcd and controlled by the interaction \\'ith shock ,\'an's. If a bubble is 
cullapsing owing to the proximity of the ston(" thc scverity ofthe collapse is enhanced b)' thc impingelllent 
of the shock wave. 
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ondary shock wave and the main lithotripter shock wave are reversed. The secondary 

shock waves precede the main lithotripter shock wave to induced inertial cavitation bub­

bles, while control and forced collapse of the cavitation bubbles are achieved via the main 

shock wave. Both studies showed improvement in stone fragmentation, but as before, 

validation tests were only carried out in vitm using stone phantoms. 

Despite the encouraging results in all of the above methods, none provide a means of 

detecting and characterising the acoustic emissions from cavitation activity in patients 

during clinical lithotripsy. Moreover, the methods do not indicate when stone fragmenta­

tion is complete. An efficient and successful technique can be achieved by incorporating 

these techniques into a device, but at the expense of duration and complexity of the 

treatment. 

2.8 Conclusion 

The ultimate goal of ESWL is to fragment renal and ureteral calculi as efficiently as 

possible while minimising the potential for injury to surrounding tissues. It is hoped 

that comparative studies, such as those which measure shock wave, stone fragmentation, 

acoustic cavitation emission and bioeffects of high energy shock waves can be combined 

to understand further the mechanisms of stone fragmentation and tissue injury induced 

b\' shock wave lithotripsy. The understanding and findings from these studies, experi­

mentally or numerically, can then be used to improve the safety as well as the success of 

clinical lithotripsy treatment. 
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Chapter 3 

Numerical Schemes 

3.1 Computational Aspects - Flow Solver 

3.1.1 The Solvers - Eulerian and Lagrangian 

The most common flow models that have been adopted to solve the equations of com­

pressible and inviscid fluid dynamics are finite difference or finite volume in the Eulerian 

allCi Lagrangian reference frames. The forms of the governing equations vary for each 

method. Hmvever, their content is the same as they describe the same physical system 

\\'hichevCT reference frame or flow model is adopted. However, for certain applications the 

usC' of Lagrangian grid offers significant advantages over the more common Eulerian ap­

proach. There are some' basic considerations in selecting which reference frame in \\'hich 

1 he' flow should be solved. In the Eulerian flow model. the reference frame is fixed and 

How convects through the computational cells. A problem arises when representing the 

convective motion of multiple-phase flO\\'s, where it is inevitable that some numerical 

diffusion will occur O\ving to the averaging of flux between the dissimilar phases. The dif­

ficulty in capturing contact disCllntinuities leads to large pressure errors near the contact 

discontinui ty. which are oft en refereed to in literature as 'pressure osc-illa tions·. These 

pressure errors are proportional to the density ratio of the matericLls at the interface. and 

for large density jumps across an interface, the error may even degenerate into instability. 

Fixes for this problem are availn.ble, and one such fix is the so-called ghost-fluid method. 

analysed by Koren and co-workers [58]. The advantage of the Eulerian model is that it 

is capable of modeling flows with large deformations, where the existence of a material 

interface can be captured using an interface tracking or interface capturing method. The 

former explicitly tracks the interface and treats it like a boundary, while the latter clues 

llUt. require t.he explicit calculation of t.he interface. 

In cOlltrast, in the conventional Lagrangian mcthod, the grid IllO\'CS at the jon,l flm\' 
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velocity. Consequently, there is no mass transferred between grid cells. The advantage of 

t.his method is its clean capture of the material interface, which ensures an unambiguous 

separation of different phases during calculation. Hence, no material convects through 

the cdls and so, at least in principle, there is no numerical diffusion 1 . Therefore, the 

Lagrangian scheme can sharply capture contact discontinuities and material interfaces. 

It is suitable for simulating multiple-phases or multiple-fluids flows where resolution of 

cont.act. smfaces is important. The main problem of t.his method is wit.h regards t.o grid 

lllcLIlagell1Cnt.. If t.he flows involves significant deformation and shearing between grid cells, 

t.he grid will become increasingly distorted and will eventually leads to large numerical 

errors [3]. Hence, t.he Lagrangian scheme is limited to flows that involve small material 

ddornmtions. 

Arbit.rary Lagrangian Eulerian (ALE) is a method which has been developed to exploit 

t.he aclvcwtages offered by both Lagrangian and Eulerian techniques as discussed above. 

The Free-Lagrange (FL) met.hod is an advancement of Lagrangian method, which exploits 

the advant.ages of Lagrangian formulation. These methods are discussed in the next 

subsections. 

3.1.2 Arbitrary Lagrangian Eulerian (ALE) Method 

The disadvantages of the Lagrangian method can be alleviated by using the ALE (Ar­

hitrary Lagrangian Eulerian) methodology - a combination of Lagrangian and Eulerian 

schemes. In ALE method, each time step is divided int.o t.hree dist.inct stages: an updated 

Lagrangian stage, a rezoning stage and a remaping or advection stage. 

In t.he updat.ed Lagrangian st.age, a compirte Lagrangian solution of the floK problem 

is obt.ained, ,vhere the computational mesh is allmved to 1Il0\'e with the flo,,'. Follmying 

this st.age. the second proced nre is carried out in order to form a neK mesh that is less 

distort.ed than the initial mesh obt.ained from the Lagrangian st.age. The mesh wlocity is 

calculated and from ,vhich the new mesh is constructed. The degree of rezoning depends 

Oll the aIllount by which the initial computational mesh has been distorted. ,dlCre the 

Eulerian and Lagrangian forms are t.he limiting cases of the gencral ALE form. The final 

steege is the interpolation of flow variables where the solutions from the initial Lagrangian 

stage arc transferred to the new mesh. The rezoning procedure undoubtedly introduces 

n1Ullcrical diffusion in the results. 

This ALE scheme has been implelllented succcssfull:v b~' Smith [83] who modeled a ID 

spherically sYlllmetric underwater explosion. He utilised an ALE version of the acin'ctin' 

I All practical !l\lllH'rical schcmcs for solvillg Huid How cOlltain a finite amount of llumerical diffusiun. 
This is [wcausl' llumcrical diffusion arises from trullcation ('rrors that arE' a (,Ollseqm'll('l' of representing 
the Huid How equatiolls ill discrete forlll. 
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upstream splitting method (AUSM) shock-capturing scheme. Smith revealed that strong 

shock, contact and phase discontinuities were captured accurately using a moving grid 

method. Other shock capturing schemes that have been employed for solving compressible 

Euler equations in ALE formulations include the Godunov schemes and artificial viscosity 

methods [35]. All three shock-capturing schemes have been explored by Luo and co­

work<~rs [64] in modeling a one-dimensional spherically symmetric underwater explosion 

problem. It was founel that both HLLC and Goelunov methods produced identical results, 

but the AUS!",l scheme gcncratt~d erroneous oscillations near the gas-water interface. 

3.1.3 Free-Langrange Method (FL) 

In conventional Lagrangian method the corn pu tational mesh convects in a strict La­

gnUlgian fashion as the flow geometry evolves. As the meshes move at the local flow 

wlocity, significant shear strain can exists between neighbouring grids and the mesh will 

1 )('COIl1C increasingly distorted. This leads to numerical errors which typically result in 

the failure of the calculation. However, in the FL method, the grid connectivity is allmved 

to change freely according to flow deformation and is not restricted by a fixed mesh con­

ll('cti\'ity, snch that each grid point is allowed to change neighbouring nodes via a search 

procedure. The ability of this method to re-connect the mesh automatically results in an 

ullstructured mesh. This fundamental principle of the FL method makes it attractiw. as 

lJlesh tangling associated with highly deforming flows is avoided. 

Ball has successfully implemented this method in yarious flow modelling applications. 

involving large deformations of multiple-material fluids [3. 4, 6]. Using appropriate solvers. 

uumerical diffusion at contact discontinuities is minimised and material interfaces. that 

always coincide with the cell boundaries. are sharpl)' resolved. The relatiw merits of ALE 

,md FL had been cOlllpared b)' Ball and Barlow [95] in simulating the interaction between 

a cylindrical bubble of R22 gas. in air. with a weak shock. Both showed good agreement 

\\'ith experimcntal data. However, due to its free grid cOIlIlectivity. the FL scheme is 

better at capturing thin material filaments. It \yas also found that an ALEjFL h)'brid 

\nmld significantly reduce cOlllPutational cost compared to a full FL method. Further 

discussion of the FL method is presented in Chapter 4. 

In the FL code that will be implemented in the author's research work, a Godunov 

lllethod is incorporated. This method is a renowned shock-capturing methods for com­

putational fluid dynamics (CFD) based on solutions to local Riemann problems. This is 

discussed in the next section. 
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3.2 Godunov's Schemes 

In 1959, Godunov [43] suggested an approach for solving the numerical solution of the 

Euler equations. The method was originally designed to deal with gas dynamics equations, 

but has spn:acl to ot.her equations that are governed by the hyperbolic conservation laws. 

The maiu advantage of t.his approach, based on the solution of local Riemann problems 

(see section 3.3), is that it allows for the existence of discontinuous solutions. 

The first-order hyperbolic equation can easily be written as follows [53], 

au au 
-+c- =0 at ax (3.1) 

w here the variable u is a function of time t and distance x, i.e. u = f (x, t), and c is the 

cunvective speed, which must be greater than zero (c > 0). 

Godunov's approach t.o solving the la\\'s of conservation is to initially divide the domain 

of interest into discrete cells such that the grid points are cell centered. He postulated that 

t he flow could then be resolved by piecing together a collection of locally exact solutions of 

t he Euler equations of local regions. He suggested that over each computational cell, the 

fillw variables (U) could be assumed piece-wise constant, so that at each cell boundary, 

() discontinuity exists. The discontinuities at each cell boundary collectively form an 

array of mini-shock tube problems which can then be solved by applying the Riemann 

jJr()blt~m. The updated value of each flo\': variables at the new time lewl is awraged 

fwm the solutions obtaincd from each cell boundary which are then assigned to the cell 

("('ntred grid points as shO\vn in Fig. 3.1 ( a). These smaller localised exact solutions are 

t hen pieced toget her to obtain the complete solutioIl. As the Riemann problem itself is 

l'ssentially discontinuous, the Godunov method can locate correctly discontinuities and 

d('al with shocks. contact and rarefaction \vaves, hence getting around the limitations of 

dassical numerical methods. 

The Godunoy schemp utilising the piecc-wise constant cell approximation is highly 

diffusive. In orcler to overcome this problem, a piece-wise linear approximation is adopted 

which increases the accuracy of the solver to 2nd oreier, but "'hich introduces dispersion. 

Oscillatory behaviour in the vicinit.y of discontinuities, similar to that encountered \"ith 

2nd order central difference scheme'S, reappear. This is because the formulation of the 

piece-wise linear cell approximation results in the creation of non-physical local maxima 

anel miuima. 

The introduction of H 'Slope Limit.er' algorithm can alleviate this problem. An exam­

ple is j\IUSCL (1vIouot.onc Upstream-Centred Schcme for Conservation Laws). introduced 

h~' Van Leer [96] in 1979. A slope limiter examines the values at each cell boundar)'. as 

calculat.ed by t.he linear fitting procedure, and compares them to the cell ccntre Yi-l1ucs on 
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Figure 3.1: Cell average approximation of variable U. (a) A piecewise-constant (b) A 
picccwise-linec1,l' without slope limiting (c) A piecewise-linear with slope limiting. 

either side of the boundary. The gradient of the slope is then limited to ensure no 11e\\' 

lllcLxima or minima are created. These local extrema are responsible for the oscillator~­

behaviour ncar the shock and discontinuities. Fig. 3.1 illustrate the piecC'\\'ise-constant, 

piecewise-linear wi thou t slope limiting and piecewisC'-linear \vi th slope limiting (JI USC L ) 

distributions for fiow variable U in onc-dimensional problem. The circles represent the 

cell-centred value of U. 
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Although the scheme has been described for a one-dimensional (lD) uniform distrib­

ution of rectangular cells, the same principle apply to non-uniform arbitrary cell shapes. 

The principles of Godunov's approach easily extend to two (2D) or three (3D) dimen­

sions by counting for the extra fluxes through the additional cell interfaces. A variant of 

lIIU SeL-type slope limiter was employed by Ball [3, 4, 6] to simulate 2D compressible 

fiow simulations. Full algebraic details of the slope limiter are presented in [3]. 

3.3 Riemann Solvers 

The disadvantage of Godllnov's method and its higher-order extension is the difficulty of 

s()lving the nOll-linear Riemann problem exactly. Its solutions must be obtained using an 

iterative procedure at every cell interface. Clearly, this is an extremely CPU intensive 

process and relatively complex. Because of this, more efficient and simpler approximate 

TIiemanll solvers were developed. This was however, not at the cost of the two funda­

lllental features of Godunov-type methods. accuracy and robustness. 

Using approximate Riemann solvers, the dynamics of a flmv can be solved numerically 

\yith Imv cOlllPutational cost. An extremely effective and robust approximate Riemann 

s()lver known as HLL-Riemann solver, was suggested in 1983 by Harten. La.x & van 

LelT [4ti]. Increased simplicity was achieved by treating the Riemann problem as t\yO 

propagating pressure waves. This approach (two shock approximation met hod) ignores 

t he intermediate waves, i.e. the fiuid region bct\veen the shock and the rarefaction is ap­

proximated as being constant and the contact surface neglected. Einfeldt [37] exploited 

this method and improved it even further by proposing wave-speed estimates for the 

TIicomann problem in order to compute the numerical flux at cell boundaries. The new 

approximate Riemanll solver (HLLE) proposed by Einfeldt is simple and eas)' to imple­

lllent. Howen:r. it was found that the contact discontinuities is highly diffused due to the 

ucglecteel contact surface [37, 3]. 

Consequent.ly an improved version of the HLL-Riemann solver. termed HLLC. was 

iutroduced by Toro and co-\yorkers [92]. where the contact surface is restored. The as­

sumed wave struct.ure consists of two discontinuous pressure waves and an intermediate 

contact wave to represent the contact surface as shown in Fig. 3.2. A significant improve­

ment was made on the contact resolution in the Eulerian frame. The result is comparable 

to solutions from an exact. Riemann solver. while the simplicity of the HLL method is 

retained. Ball [3] confirmed the superiority of the HLLC over the HLLE Riemann solyer 

in a simulation of a blast wave problem using a FL finite volume method. 
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t 
Left wave 

Middle wave 

aM Right wave 

x 

Figure 3.2: Assumed wave pattern for H LLC approximate Riemann solver in the x - t 
plane. a is the associated wave speed. 

3.4 Aeroacoustic Schemes 

There arc many applications in which it is required to predict the far-field acoustic sig­

llature produced by fluid dynamic disturbances, e.g. helicopter rotor noise, automobile 

exhaust lloise and cavitation. Various approaches have been proposed to simulate these 

phenomena. The direct method solves the compressible Navier-Stokes equations and 

simultaneously resolves the flow and acoustic contributions. However, for practical ap­

plications this method is prohibitively expensive in terms of computer storage and CPU 

times. In most practical cases. it is tedious or impossible to numerically find a solution 

eH'rywhere in the flow field. This is because of errors owing to increasing mesh size in 

the far-field to reduce memory and computing time. It is therefore, an ad\-antage to de­

I"dop v;ays of obtaining the far-field noise or pressure signature from near-field solutions. 

The idealmcthod seems to 1)(' the separation of the computations into t\yO domains. one 

describing the non-linear generation of sound, and the other describing the linear propa­

gation of sound. The separation of the problem into linear and nonlinear regions allmys 

t he use of most appropriClt.e 11l1merical techniques for each. 

Hybrid methods have been del"doped which decouple the flO\y and acoustic parts. 

\\"herc the aerodynamic part of the flO\\- problem is solved first to determine acoustic 

sources. Following this, an acoustic scheme is implemented to obtain the associated far 

fidd radiation. Examples of such methods arc the acoustic analog~' of Ffm\"('s-\Yilliams 

Hawkings, and Kirchhoff's mcthod. The Kirchhoff method ewd the porous FfmYcs­

\\"illiarns Hawkings (F\YH) are attractive because they utilize surface integrals m-er i:1 

source region tu deterllline far-fidd acoustics, as oppused to the lllt'lllor~- intensin' \"01-

1UliC integrals found in traditional acoustic analogy methods. Doth methods han' beell 

applied to various aeroacuustic problems such as helicopter noise, .iet noise and propeller 

noise. The application of these lllethods has increased substantiall~- heca usc of the de-
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vdoprnent of reliable CFD methods that can be used for the evaluation of the near-field. 

These two methods and the numerical codes structure are described in the next sections. 

3.4.1 Kirchhoff's Method 

The Kirchhoff's method assumes that the sound transmission is governed by the simple 

wave equation. It includes the calculation of the nonlinear near-field on a control surface, 

performed hy other CFD method. The solutions on the control surface are then used as 

inputs to Kirchhoff formulations for the evaluation of the far-field solutions. This method 

provides an adequate link between the aerodynamic nonlinear near-field and the acoustics 

linear far-field. The full nonlinear equations are solved numerically in the near-field region. 

The control surface is assumed to enclose all the nonlinear flow effects and noise sources. 

The sOllnd pressure and its normal and time derivatives are assumed to be given over 

the surface C'nclosing the nonlinC'ar region wherein the sound source is generated. This 

lllethod has been extended for an arbitrary moving deformable surface [39]. 

The main advantage of this method is that it is simple and accurate. The surface 

integrals anel the first derivatives needed for the far-field solutions can be easily evaluated 

from the near-fidd computational fluid dynamics (CFD) data. Diffusion and dispersion 

errors associated with wave propagation in the far-field are avoided. Also. nonlinear 

cft'ccts such as shock \vaves are accounted for in the solution of the first region [67.68]. 

A disadvantage of the Kirchhoff method is that the control surface must be chosen 

to be in the linear flow region. such that the input acoustic: pressure pi = P - Po and its 

derivatives api/at and api/an cue compatible with the liner wave propagation. Therefore. 

t he surface must be chosen large enough to include the region of nonlinear behm'iour. 

Hmvever. this is a difficult task considering the linear region is not \\'ell defined and 

is problem dependent. Thus, it would be ideRI to position the control surface \yell (l\"m~' 

from the source region. but in most numerical CFD calculations the solutions are not well 

resolved away from the bod)'. It is important tll8,t the control surface is not positioned 

\"here the CFD mesh is coarse. A fint' grid is needed in the CFD solution to ensure 

proper wave resolution so that the Kirchhoff control surface can be placed there [66]. 

Therefore. the placement or distance of the Kirchhoff control surface is critical and is 

usually a com promise. 

Kirchhoft"s method is powerful technique for calculating the far-field pressure signa­

tme utilising numerical results that simulate complex phenomena. One example of the 

utility of the Kirchhoff method is its successful application by Lyrintzis [68] in helicopter 

noise predictiou. In this \york, unsteady aerod)'namic calculations ,"wre performed in the 

ncar field of a helicopter rotor in a reference frame fixed to the rotating blades. The 
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results from the CFD calculation provided data on a Kirchhoff surface surrounding the 

blade for subsequent application of the Kirchhoff formula to predict the noise radiated 

by the blade. 

3.4.2 Ffowcs-Williams Hawkings Method (FWH) 

The Ffowcs Williams and Hawkings equation for the amplitude of aerodynamic sound 

radiated by a moving object in a fluid is widely accepted in modern aeroacoustics. The 

FVvH equation is an exact rearrangement of the continuity equation and the N avier-Stokes 

equation into the form of an inhomogeneous wave equation with two surface source terms 

(lllonopolc and dipole tenns) and a volume source term (quadrupole term). The former 

are known as thickness and loading sources. 

The monopole and dipole terms arc easy to evaluate because they are surface in­

tegrals over the control surface. The nonlinear near-field flow can be evaluated using 

CFD calculations. The major difficulty \\'ith the F\iVH method is the evaluation of the 

quadrupole terlll which requires a volume integral calculation and therefore requires large 

cUlllPutational resources. Volume integration is also difficult to implement. 

However, the YWH approach has several advantages over the Kirchhoff method. First, 

('ach of the three sources in the F\iVH formulation as mentioned above has physical mean­

ing \vhich is helpful in understanding the noise generation. The loading noise is generated 

by the force acting on the fluid due to the presence of the body. The thickness noise on 

t he other hane!, is determined completely by the geometry and kinematics of the bod~·. 

The quadrupole: source term accounts for nonlinear effects, for example. the nonlinear 

\\'ewe propagation and steepening, variations in the local sound speed, turbulence in the 

flow field, vorticity as well as noise generated by shocks. 

The separation of the source term is also an advantage numerically because not all 

t('rms must be computed at all timcs if it is known that a particular source doC's not 

contributc to the sound field. A good example of this is in 1m\' speed tim\' \dwre the 

quadrupole term may be neglected which simplifies the problem greatly. The main ad­

nwtage of the F\VH method is that the formulations are well developed and haw robust 

1l11111('rical algorit hms. 

In most cases, the FvVH integration control surface Se is assumed to be both coincident 

\\'ith the surface of a physical body and is impenetrable. However, if the surface is assumed 

to be porous, the gClwral equation that is derived can be applied to a control surface Se 

ill a similar fashion as the I":irchhoff method explained in the preyious subsection. The 

('([nation may also be compcued more directly with the governing equation of the I":irchlwff 

formula given in the following chapter. Thus, in a similar mctlllWr to the I":irchhutf 
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formulation, the far-field pressure signature can be evaluated based on quantities on the 

arbitrary control surface provided by the CFD simulations. 

The rrmthematical manipulation in deriving the FWH for a permeable surface was 

shown by di Francescantonio [34]. He used a permeable and fictitious surface that does 

not correspond to a physical body, exactly like the Kirchhoff approach, to carry out study 

011 far-field helicopter noise prediction. If the surface is place on the impenetrable body 

of the helicopter blade, the classical FWH formulation is obtained. The non-linear effects 

arc thell taken into aCCoullt by tlw quadrupole volume terms. By moving the surface 

away from the body, part of the llon-lincarities is taken into account by the quadrupole 

volume terms and part by the surface integrals. If the surface is far enough from the 

body and that the perturbations are small, the evaluation of the volume integral can be 

avoided, and therefore reduces the computational cost of the acoustic calculations. 

The main advantage of FWH over the Kirchhoff method is that FvVH does not require 

that the How obeys the linear wave equation at the control surface, so it is less vulnerable 

to error if there is some moderate level of non-linearity in the acoustic field at the control 

surface. 
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Chapter 4 

Finite Volume Free-Lagrange 

method - The Vucalm code 

The Vucalm flo\v solver used in the present work was written and developed by Ball [3] 

from the University of Southampton. Although the present author spent a considerable 

amollnt of time developing the code, he took no part in the original construction of the 

solver and initial developmcnt. As a consequence, the detailed formulation and math­

clllatical technique of the solver does not form part of the novel contribution made by 

the present work. Hence, the description of the code and detailed mathematics are only 

briefly explained. 

'''hen the author undertook the research pro.iect, the axisymmetric wrslOn of the 

V ucalm code was newly developed and the validation 'work had only been carried out 

un a single phase conical flmdield rC'sulted from shock interaction with a cone. Hence. 

fmther validation work against published numerical or experimental results that inyolws 

shock waves and multi-phase flow of air and water was necessary. The validation ,York 

that was carried out by the author is presented in Chapter 6. Other significant changes 

on the code that ,yere made include: 

• The criteria for adaptive mesh refinement and derefinement and the division of mass 

for particles along the axis of symmetry. 

• The distribution of the material smoothing restoring forces between the target par­

ticle and its interface neighbours. 

• The structure of the Voronoi mesh. The initial mesh layout of the computational 

domain is divided int.o different regions, with varying mesh densities. The mesh 

structure is also circular in order t.o create a. wrinkle-free air bubble interface, A 

discllssion on the st.ructure of the mesh and mesh resolution study arc gin'n III 
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Chapter 7. 

• The boundary condition had to be modified in order to generate the lithotripter 

shock wave profile as depicted in Fig. 2.8. This figure was generated by running a 

simple shock tube problem in Vucalm. 

The changes mentioned in point number one and two above are discussed in this chapter. 

4.1 The Governing Equations - Axisymmetric Euler 

Equations 

The governing equations for fluid flow arise from three sets of physical laws which take the 

forllls of conservation requirements - Law of Conservation of lvlass, Newton's 2nd Law and 

1 st Law of Tlwrmodynamics. These three fundamental laws represent the mathematical 

statements \vhich describc the dynamics of fluid as well as solid mechanics. The principles 

can be applied to two different flow models, 1Nhich can either be fixed in space (Eulerian), 

where the flow convects through the control volume, or allowed to move \yith the flow 

in a Lagrangian manner. The governing equations are expressed in integral form v,;hen 

applied to a finite control Yolume, whereas the usc of an infinitesimal fluid element leads 

tu the differential form of the governing equations. 

The finite-volume mcthod is a direct discr('tisation of the integral ('quat ions. The 

dcriyation of the governing equations on a finite control volume is presented here as it has 

two advantages. First, the method ensures that the discretisation is conserntti\-e. Second, 

it can be applied on an unstructureclmesh that has an arbitrary number of cell boundaries. 

as a coordinate transformation for irregular meshes is not required. Furthermore, the 

lllethod is suitable for numerical simulations that involve flow discontinuities such as 

shock waves as it does not aSSUIlle continuous flow properties. In contrast. the finite 

difference method assumes that the flow is continuous, O\x;ing to the representation of the 

governing equations in differential form. In other words, integral equations describe what 

is happening to a finite aIllount of fluid, whereas differential equat.ions describe what is 

happening at. a point in the flm\,. 

The three governing equations derived froIll the three physical principles are. 

• Continuity equation 

• l'vIomentul1l equat.ion 

• Energy equatioIl 
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In Appendix A, the governing equations are derived in an axisymmetric Eulerian 

reference frame. These conservation laws lead to three conservation equations, in integral 

form, as follows, 

1. Physical principle: Conservation of mass (Continuity Equation) 

( 4.1) 

2. Physical principle: Conservation of momentum 

(4.2) 

3. Physical principle: Conservation of energy 

:t l EpredA + iii. (puE + up)rcdS = 0 (4.3) 

where A is the area enclosed by the boundary S in a plane containing the symmetry 

axis, p is the density, u is the velocity vector, p is the pressure, I is the unit tensor, ii is 

the outward unit vector normal to the boundary Sand E = f + (u . u) /2 is the specific 

C'nergy, and f is the specific internal energy. In axisymmetric flow, r e and r c are taken as 

the distance from the axis of symmetry to the elemental area dA and elemental line dS 

rcspectively. 

The three equations (Eqn. 4.1, 4.2, 4.3) can be combined in a compact form using 

vector notation as follows: 

:t l UTe dA + in. FTcdS = l GredA 

\vhere the forms used for U, F and G and are: 

( 4.4) 

( 4.5) 

The vcctor U is the Conserved Variables Vector (vector of dependent variables) as it 

contains the quantities conserved within the domain, i.e. mass, momentum and energ~·. 

Vector P on the other hand is the Flux Vector as it contains the flux terms across thc 

control volumc boundary. The vector G is a source vector that acconnts for the (L\:is~'lll­

llldric flow geollletry. P is the pressure and ey is the unit radial vector. Equation -1.--1 is 
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therdore known as the axisymmetric, unsteady, compressible and inviscid Euler equation. 

The equations given above are the Euler equations with respect to the Eulerian reference 

frame. A complete derivation and explanation of the entire notation used in the equations 

above is given in Appendix A. 

4.2 Transformation into the Lagrangian 

Reference Frame 

The governing equations can be transformed from the Eulerian into the Lagrangian ref­

(Tcnc:(~ frame in which the mesh, and hence the control volume, propagates at the local 

How velocity. Consequently, depending on the dynamics of the flow, the surface area A 

and the surface boundary S arC' time-dependent. 

Til(' transformation can be carried out by decomposing the flux vector into two sepa­

rnte terms, the convective and pressure terms. Consider the governing equation 4.5. The 

pressure terrn and convective term for the Hux vector F are (I p, up) and (pu, pfLfL, puE) 

respectively. Following TI.·epanier et a1. [93], the control volume can be assumed to con­

wet with an arbitrary velocity w. The velocity of the fluid relative to the control volumes 

becomes u - w. The flux vector F can therefore be written as 

[ 

p(u-w) J 
F= p(u-w)~ + Jp 

p(u-w)E + up 

( 4.6) 

III the Lagrangian reference frame, the control volume convects at the same local velocity 

as the flow, i.e. u = w. Therefore, the flux vector F is reduced to 

(4.7) 

It is clear from Equation 4.7 that the convective terms vanish. Consequently the conti­

nuity equation becomes 

:t lpredA = 0 ( 4.8) 

This simply means that the n18,ss inside the control volullle remains constant and does not 

vary with time. The equation is therefore redundant. Hence, it is m'Cessar~' to introduce 

another physicallavv in order to close the governing equations in thc Lagrangian reference 

fralllc. An obvious choice' is the conservation of volume which states 
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Equating the expression above (see Appendix A), and by conservation, we have 

8
8 ( redA + 1 it· urcdS = 0 
t J A(t) fs(t) 

( 4.9) 

Thus, tlw Euler equations in the Lagrangian reference frame can be written as 

81 - i - 81--8 Ure dA + it· FrcdS = -8 GredA 
t A(t) S(t) t A(t) 

( 4.1 0) 

\\"lwrc the wctor of conserved variables [J , the flux vector P and the source vector G 
1 )('comc 

(4.11 ) 

Equation 4.10 and Equation 4.11 describe a.xisymmetric, unsteady, inviscid. compressible 

Euler equations in a Lagrangian reference frame. Using these two equations. explicit 

('xpressions for density, temperature and velocities can be formulated for a time-marching 

procedure. 

4.3 Time Integration 

In order to advance the solution at a particle through one time step, one-dimensional 

Riemann problems are solved approximately at each cell boundary and the resulting 

lHIIllcrical fluxes art' summed in order to update the particle properties. Following Ball [3] 
and Tr~pani('r [93], Equation 4.10 above can be approximated using the expression belmy. 

(-t12) 

\vhere 

( 4.13) 

and 
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(4.14) 

For a J( sided polygonal Voronoi cell that forms the control volume, Fk is t he numerical 

flux on t he kih side, to be determined from the approximate Riemann solver , Sk is the 

side length , and 6t is the t ime step. The superscript • indicates the wave-processed state 

obtained from the solution of the 1D Riemann problem formed on the cell boundaries . 

y 

.... " ' .. .. , ...... -------'-- ---... ~ 
X 

Figure 4.1: Polygonal shape computational cells of Voronoi type used to represent cont.rol 
volumes inside a computational domain. The Riemann problem as discussed in Chapt.er 
3 is solved at each cell boundary. 

Fig. 4.1 illustrat.e a typical polygonal computational mesh. For a Lagrangian mesh, 

the cell boundary always coincides with the cont.act surface of the local Riemann problem. 

Therefore, both tLj, and pic are evaluated at t.he cell boundary. The \'ariable S is the cell 

side length, iLk is the unit. vector normal to cell boundary, p is density, m is cell mass . rc 

is distance of cell side mid-point. form t.he a...\:is of symmet.ry and Te is t.he ordinate of the 

cell cent.roid from the axis of symmetry. 

Let 

(4 .1 5) 

and 

(.:1 .1 6) 

Subst.it.ut. ing expression 4.15 and 4.16 int.o Equation 4.12 gives: 
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K 

~t [Un+1Vn+1 - unvnj = - L nk . F!:(rckSk) + GVn 

k=l 

( 4.17) 

n.(~aITanging for the vector of conserved variables U, 

- +1 vn [- b.t ~ - - ] 
un = V n+1 un - vn ~ nk . F!:(rckSk) + Gb.t (4.18) 

k=l 

However, it is known that the density can be written as 

p(t) = m/V(t) ( 4.19) 

\\·here m is the constant mass within the control volume. Hence, it is more convenient to 

\\"rite Equation 4.18 as 

(4.20) 

4.3.1 Density Update 

From Equation 4.11, the expressions for the three vectors are as follows 

u = 1 F= -u G= 0 (4.21) 

Substituting these into Equation 4.20 gives an expression for updating the densit~·. 

[ 
1 b.t K ] -1 

pn+1 = pn + m L u'k(rckSk) 
k=l 

( 4.22) 

where Uk is the outward normal velocity component at the boundary. This equation can 

then be us co to update U explicitly as follows. 

4.3.2 Velocity Update 

Similarly as before, 

u = pu F= Jp ( -1.23) 

Substituting into Equation 4.20 anci rearranging gives, 

( 4.24) 
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Tlw velocity vector can be divided into two separate components, the x-wise velocity 

component and the y-wise velocity component. The second term in Equation 4.24 takes 

illto account the geometry of axisymmetric flow and only effects the velocity in the radial 

direction (in y-direction). Hence the two velocity components are as follows 

x-component: 
K 

n+l n !:It '\:" (S ) 
u = u - - ~ nk' Pk rck k 

m 
k=l 

( 4.25) 

,,'-corn poncnt.: 
K 

n+l n !:It 2: (S) P !:It 
v = v - - nk . Pk rck k +--

m r pn 
k=l e 

( 4.26) 

4.3.3 Temperature Update 

From Equation 4.11, 

u= pE F= up ( 4.27) 

Substitut.ing into Equation 4.20 and rearranging gives an expression for the specific energy. 

K 

E n+1 En !:It '\:" - ( S) = - - ~ nk . UPk r ck k 
m 

k=l 

( 4.28) 

TIecall that the specific energy can be written as 

E = E + (u· u)/2 (4.29) 

where the specific internal energy, 

( 4.30) 

Substituting these expression into Equation 4.28 gives 

(4.31 ) 

where 

( 4.32) 

and 

( 4.33) 
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The velocity vectors can be calculated from Equation 4.25 and 4.26. Thus, Equa­

tion 4.22 , 4.24 and 4.31 are applied to calculate the density, velocity and t emperature at 

a new time level. 

4.4 The Vucalm Code 

In the next few sections, important features of t he Vucalm code are described . These 

include the adaptive mesh refinement and derefinement algorithm and the Voronoi mesh. 

4.4.1 Voronoi Mesh 

At the start of the calculation, the computational domain is filled with computational 

part icles. Each part icle is assigned with a fluid type, thermodynamic propert ies, co­

ordinates and fl ow conditions. In the Lagrangian frame, t he part icles sit within their 

own Voronoi cell and the mesh moves with the flow. The Voronoi diagram is const ructed 

based solely on the part icle posit ions to form polygonal cells t hat enclose each particle 

and the region closest to that particle (Fig. 4.2). The discretisation algorithm of the 

V oronoi mesh is described in detail in [3, 63, 48] . 

Material interface 

o Particle Domain boundary 
o Boundary marker o Temporary particle 

Figure 4.2: Ini tial Voronoi mesh u ed in the Free-Lagrange simulations. Bot tom horizon­
tal solid line is the a..xis of symmetry, the thick solid line represents a material interface and 
dots indicate positions of fluid particles . T he bubble/ water interface location is only for 
plotting purposes as the act ual location is determined by the boundaries shared bet,yeen 
the air and water cells. 

As illustrated in F ig. 4.2, each cell is of polygonal shape and it represents the cont rol 
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volume for time integration. Each particle can have at least 3 neighbours. The maximum 

11Illllbcr of ndghbours is unlimited and 6 is typical. Each particle adjacent to the boundary 

is assigned with one or more t(~IIlporary particles. These temporary particles are located 

Oll the boundary and their properties are interpolated from the the adjacent particle inside 

the dOlllain. The t<~mporary particle arc massless and they are used to impose boundary 

C()llditions. Boundary markers arc positioned on the computational boundaries. These 

arc us(~d to identify the boundaries during trw construction of the Voronoi mesh. 

To ensure that a slllooth and stable interface is achieved, a simple interface smoothing 

algurithIll, analogous to a surfa('(~ tension, is applied at the water/air interface. It pre­

V('uts nUllwrically seeded nichtlllyer-I\Ic~shk()v instability occurring on the interface v,'hen 

stmllgly shocked. For IllO!,(' details, r(,fer to Howell and Ball [49]. 

4.4.2 Mesh Weighting Factor 

III t he current code. the Voronoi nlPsh can either be constructed using '\\·eighted' or 'un­

\\'cighted' lllcthods. For tlw llln\'('ighted construction, the location of each computational 

('('ll boundary is lllidway betw('en a particle and its neighbour. Although the unweighted 

nH'sh is uncomplicated, stable and time efficient, error occurs in the regions \"here steep 

(i<-nsity gradient occurs such as in the vicinit~, of material interfaces. In this region. the 

gcollletriC' volume1 of each COlll putational cell deyiatcs significant l~' from thE' t hermod\'­

llCUllic volume of each c('1l2. This is a S011rce of error in filLX calculations bE:'cause it leads 

to the use of incorrect cell boundar~' lengt hs at boundary segments that separate cells of 

different densities. 

In order to minimise. a \\'cighted mesh is implemented, \\'here the location of each 

com putational cell boundaT~' is deterlllined by taking into account a 'weighting factor'. In 

Vucalm, the weighting factor is takcn to be a function of densit), and mass of the associated 

particle, (and the radial distance of the cell centroid from the axis of s~'mnletn' for the 

axisymmetric wrsion of the code). The construction of the weighted mesh increases the 

accuracy of the cell boundar~' length and consequentlY gives more accurate llllllwrical fiux 

calculation. The \wighting factor for the 2D version of the code is giYen b~'. 

(-,1.3-,1) 

where the subscript 11 is the particle n11mber under consideration, m 11 and P11 are the mass 

and density of the particle respectively. The axis)Tmmetric code, the \\'eighting factor is 

I V;,,'Ol1l = 7',.A. where r,. is t.1lt' radial dist.ance of t.ht' cdl ccnt.roid from t.he axis of s~·nlllll'try. and A 
is ('dl face arca. 

2\1111,'1'''' = (111/[1),.,-/1. \\·h('l'(' 11/ is ma;;s and p is the deIlsit~·. 
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given by, 

( 4.35) 

where r n is th(~ radial distance of the cell centroid from the axis of symmetry. Fund a­

lJl<'lltally, the weighting factor is equal to the square root of the particle length scale Le. 

J-i<'llce, if the masses of neighbouring particles are equal, the cell boundary is closer to 

thl' particles of higher density. 

In highly sheared flows, the mesh is completely reconstructed on every time step, so 

that the mesh connectivity Illay change freely in response to flow evolution. HO\yever, 

r(,("OllstructiClll of the Illcsh 011 every timc step is very inefficient. In order to reduce CPU 

tillle, the user may opt to reCoIlstruct the mesh less frequently, typically every:) - 10 time 

steps. III this case, the mesh nodes are 'coasted' where they are convected at the local 

fit)\\" velocity between reconstructiollS. Ho\w'ver, during coasting, cells near boundaries 

(\]"(' still r<~structured. The maximulIl nlll111wr of coasting steps depends on the nature of 

the flmy and is limited hy mC'sh distortion and tanglillg. 

4.4.3 Adaptive Mesh Refinement and Derefinement 

Thl' particle distributioll of the Vorolloi mesh reflects the local density variation. For 

high density regions. the grid is at its finest and so the flow structure is well resolwd. 

Normally. for multi-material flO\\· problems. the computational mesh near the interfaces 

undergoes large deformation. Consequently. a problem can arise O\ying to a large cell area 

ratio mismatch between t he water and gas particles. This can lead to numerical errors in 

the flux calculations and for t his reason. an adaptin- mesh refinement and derefinement 

algorithm is implemcnted in the "ucalm cock. It also helps in maintaining a stable and 

cconomica.l time step. 

In regions of exccssin' mesh density. the 'derdineml'nt" l"Uutine automatically identifies 

and lllerges adjacent pairs of fluid partides of the sallle fluid t~·pe. One example is in the 

simulations of shock-bubble interaction. Fig. -1.3 sho\\"s a region of high particle densit~· in 

the air ncar the air/water interface a,s thl' air com presses as a result of t he shock im pacting 

011 the upstream bubble '\\"all. Thus, tlw derdinclllent procedure is important in keeping 

the comput.ational cost to a lllinimum. It is important to note that the derefint'mt'nt 

procedure is only applied to regions wherc l111necessar~' high mesh resolutinn han- been 

generated t.o improvc silllulation dficienc)' but nnt at the cost of accurac~·. The process 

is also strictly cons('rY1ltin-. 

Due to the formulation of t he ".xis~·mIlll't.ric l'oeil', the mass of each indi"idual cdl is a 

funct.ion of t.he radial distance from the plane of S)·mllletry. Conscquent l~·. t hc nWH'mcnt 
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Figure 4.3: Voronoi mesh near an air / water interface. Thick solid line represents the 
material interface. The air / water interface location is only for plotting purposes as the 
actual location is determined by t he boundaries shared between the air and water cells . 

of particles from greater radial distance towards t he symmet ric line will cause grid expan­

sion . This will coarsen t he gri d and degrade accuracy. The ' refinement ' algorithm , which 

works in t.he opposite sense of the 'derefinement ' scheme, would therefore bifurcat.e t he 

coarse cell (parent particle) into two smaller cells (daughter part icles) . The properties of 

the form er are then distri buted conservatively to the daughter particles . 

All part icles inside t he computational domain are eligible to be bifurcated or combined. 

However, it is important that thes two procedures have negligible effect on the fl ow 

solu t ions at the time the procedure is carried out. . It is also essent ial t hat the resulting 

grid structure permit.s a healt hy and stable calculat ion. In t he current work. the cells are 

bifurcated based on two cri teria: 

• a non-dimensional parameter , t he' chamcte1'istic length ', Lc 

• t he number of times t he cell has previously been bifurcated . 

The Lc of a target par t.icle is the characteristic dimension of it.s 11 o1'onoi celL which is 

based on the densit.y of the cell , p, the mass associat.ed with the cell , ?n, and the ordinat.e 

of t.he centroid in y-a.,>;:is , T e . This is approximately the lengt.h scale or distance bet.ween 

two particles . Lc is given by t.he following equation, 

Lc = . ( 1n ) 
p x re 

( ·,1,36) 

Cells are bifurcated when Lc of a target particle is twice t hat of it.s neighbouring cells. 

The second criteria is created in order to prevent part.icles from being over- bifurcat.ed. A. 

number is assigned to each part icles in the computational domain t.o indica.t.e t.he number 

of times each pa.rticle has beCH bifurcat.ed. This number is incremented each tillle the 
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particle is bifurcated but is limited to a certain value, specified at the beginning of the 

silIlulation. A typical value of 50 is used in the simulations of cavitation bubble collapse 

presented in Chapter 7 and 8. 

In the 2D version of V ucalm, following the refinement procedure, each of the daughter 

particle has a mass that is half of that of the parent particle, i.e., 

( 4.37) 

wlww md is the Illass of daughter particle i = 1,2, mp is the mass of the parent par­

ticle. This is satisfactory for IllPsh construction using the weighted mesh met hod (see 

S('C'tion 4.4.2) because the comnlOn cell boundary shared between the daughter particles 

lies midway betw(~cn them. However, this is not true in the axisymmetric version of the 

('()(k If the same approach is applied to the mesh in axisymmetric geometry, the common 

cdl boundary of the two daughter particles will be formed closer to the particle that has 

a larger distance from tIl(' axis of symmetry. This is because the volume of each compu­

tational cell is a function of radial distauce from the symmetry axis. This is a common 

problem especially near the axis of symmetry where the ratio of radii bet\yeen the t\yO 

daughter particles are large. 

In order to generate a common bouudary that is equal distance to the t,,·o daughter 

particles. the lllass division of the parent particle is determined by taking into account 

the distance of the daughter particle from the symmetry axis, i.e. 

Ydi 
mdi = 7TIp X ---'---

Ydl + Yd2 
( .,1.38) 

where Ydl and Yd2 arc the distance of the two daughter particles from the axis of s~-mmetry. 

The refinement procedure is also essential as fine grid along the bubble boundar~- is crucial 

to maintain a smooth interface. Thus, efficient grid structure can be achiewd b~- the use 

of localised grid refinement. 

4.4.4 Material Interface Smoothing Algorithm 

As explained in Section .,1.l.3. material interfaces are resolve accuratel~- in Free-Lagrange 

method. This is because the interfaces always coincide with mesh cell boundaries. HOIY­

ever, the interfaces tend to \\Tinkle on (1 scale comparable to the mesh resolution and 

this wrinkle may grow whcn subjected to mesh-induced high wave-number instabilities. 

A sim pIc smoothing algorit hm is im plelll(,llted ill the ,- UCQ I II? code to COllnter t his ef­

fect [-19]. A mod.in('d wrsion of the algorithm is used to control thl' interface \\Tinklillg. 

The interface smoothing ,tigorithm is incnrporatl'd into the code formulation ]n- adding 
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a source term to the governing equations that acts as an artificial surface tension. This 

source term is only applied to particles which are in direct contact with a material inter­

face. The force acting on these particles reduces both the amplitude and growth rate of 

small-scale perturbations. 

Fluid 1 Fluid 2 

Figure 4.4: Close-up of the Voronoi mesh near an interface of two different fluid types 
showing irregularities on the interface. Dots represent fluid particles. Illustration of the 
intcrface smoothing algorithm construction. 

The smoothing technique is illustrated in Fig. 4.4. The figure shows a close-up of the 

Voronoi cells of two dissimilar fluids in the proximity of the material interface. The dots 

represent the coordinates of the fluid particles while the material interface is represented 

by the thick solid linc. 

On each time step. all t hl' particles on the interface are identified. For each particle. 

termed C1. 'target particle' (B). t\\'o neighbouring particles (A and C) on the interface and 

of the same fluid are identified. The normal displacement, x of the target particle from 

an imaginar)' line joining the interface neighbours A ---7 C is determined. Restoring forces 

(Fa. Fb, Fe) that are normal to A ---7 C arc then applied to three particles so as to chin' 

the displacement :2' towards zero. 

The effect of the restoring forces is to shift the particles to form a straight linC'. These 

forccs are applied to all eligible target pa.rticles and nmsequently help to reduce the 

am pli tudc of wrinkles in particle alignments adjacl'nt to interfacl's. The thick solid linC' in 

Fig. clA shows that tlH' material in!crface is dcfilled b)' thl' boundar~' of the \ 'unmoi l,t'll 

1 )('twecn the particles of dissimilar fluids. Therefore. the effect of t he applied rest nring 

force to the target particles is indircct. Howc\'cr, it is a pparcnt that when the interfcwt' 
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particles of both fluids are arranged in a smooth fashion, then the interface itself will also 

l)(~ smooth. 

The method implemented here is a simplified version of the technique described by 

Howell & Ball [49]. First consider a force of magnitude Fo obtained from 

( 4.39) 

where C\: is a gain specified by the user and Se is a non-dimensional scaling factor given 

by 

S _ mLe 
e - rilLe ( 4.40) 

where m is the mass of the target particle, and Le is the characteristic length defined 

('arlier in section 4.4.3. The parameter ril and L are similarly defined for a typical particle 

at the start of the simulation. In the original formulation [49], the restoring force was 

applied to only the target particle, i.e. Fa = Fe = 0 and Fb = Fo· This approach 

was effective but has an undesired side-effect of slightly increasing the pressure Kithin 

bubbles. Hence, a new approach is taken where the restoring forces is distributed betKeen 

the target particle and its interface neighbours such that FE = Fo/2 and F.4. = FE = Fo/4. 

U sing this formulation, the uet restoring force on each particle at the interface is zero for 

a smooth circular bubble. The choice of smoothing gain Q is ba.sed on user experience. 

and suitable values are found b~' running inexpensive trial simulations. 

For the current \\'ork, test cases \\"(:'re carried out to find the optimum value of Q for the 

shock/bubble interaction problem. The anal~'sis and findings are described in Chapter 6. 

4.4.5 Conclusion 

The Lagrangian Illeth()dolog~·. in which the mesh moves \\'ith the local flm\" wlocity and 

offers minimum nUlnerical diH'usion. makes it and ideal and aUractin' Illet hod for simu­

lating multi-phase and multi-ma tcrial d\namics problems. The t\\'o-dimensional planar 

version of the code has becn su('cessfull~' used in the past to inn:'stigate a confined c\lin­

clrical blast wan' [3], shock and blast attenuation b\ aqueous foam barriers H]. damping of 

lllcsh-induced errors in Frcc-Lagrange simulations of Richtm~'er-I\leshh)\' instabilit~· H9]. 
high velocity impact of clastic-plastic matcrials [48] and the collapse of a c~'lindrical air 

cavity in water \\"hen impactcd b~' a 1.9G Pa shock wave [6]. These \yorks han' demon­

strated the utility of Free-Lagrange method for unstead? multi-material flow. 

Validation of the a .. >;:is~"m!llctric Frcc-Lagrange code, FucaIm, has beell carried out and 

is pH'scnkd in Chapter G. Illitial \'nlidation \\'(Jrk has also bet'n carricd out on Clmicnl 

shock Hows by Tmangan [04]. 
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Chapter 5 

The Aeroacoustic Codes 

5.1 Introduction 

An important task of the research work is to investigate and evaluate the acoustic sig­

nature generated in the far-fi eld during the shock-bubble interaction, \yhich will then 

enable comparisons to be made with experimental data. Two aeroacoustic codes using 

the Kirchhoff 's method and Ffowcs-Williams Hawkings formulation (see Chapter 3, were 

developed by t he author. 

• Control points 
Linear propagation 
by aeroacoustic code 

VUCALM CFD Domain 

Nonli near sound processes 
confined to region inside 
control surface 

Nonlinear sound source 

I 

-$-
Observer in 
far-field 

Figure 5.1: Schemat ic of 11 ucalrn and aeroacoustic codes integration . 

T he integra.l formulations if the acoustic met.hods, allow t.he radiat.ing sound t.o be 

evaluated based on qua.ntit.ies on all a.rbit. rary ncar-field control surface t. hat encloses a.ll 
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tlle ncar-field sources. The two aeroacoustic codes allow the observer 1 location to be 

H.uywhere outside the source region. Whereas, if the CFD V ucalm code is used for this 

task alone, a mesh must be constructed from the source to the observer. The cost involved 

awl the errors incurred in long range propagation through the finite volume mesh make 

UJ(' technique an inappropriate choice for the far-field pressure computation. Therefore, 

('al('ulation of t.he far-field acoustic signaturc~ is carried out by taking a surface integral. 

The nUllwrical simulatiou usiug t.he lllain c:od(~ Vucalrn is used to evaluate the flow-field 

solutiou iu the ncar field awl t.hus on the control surface. This will then give enough 

informatiou for the analytical calc:ulatiou in the far-field (Fig . .5.1). 

5.1.1 Kirchhoff's Method Formulation 

The Kirchhoff formulation derived by Fara.ssat & l'vIyers [39] gives the far-field signature 

owing to sources contained within the Kirchhoff control surface. 

(x,t) 

r n 

e 
(y;r) 

Control surface S 

Figure .5.2: Kirchhoff's surface S and notation. 

The classical Kirchhoff formulation for a stationary control surface S (Fig . .5.2) can 

be written as [66] 

1 1 [<]) or 1 0<]) 1 or 0<])] <])(x t) = - - - - - - + - - - dS 
, 471 s r2 on ron cr on OT T 

(.5.1) 

where <]) is a quantity satisfying the wave equation (i.e. pressure disturbance. velocity 

pot.ential) in the exterior of the surface S: 

(. ') .)) 
u._ 

I Point in the far-field at which the wave propagatioll from near-field SOUI'CeS are rcsoh·pd. 
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([> and its normal and time derivatives ~, ?jJf must be continuous outside surface S. 

c is the speed of sound at ambient conditions. In the formulation, it is assumed that the 

surface is not deformable (rigid) and that it encloses all the nonlinear effects and sound 

sources. 

x 

Figure 5.3: Kirchhoff's control points and the axisymmetric form of the problem. 

The subscript T indicates the evaluation of the integrands at the emission (retarded) 

time. This is given by, 
, r 

T=t-T =t-­
c 

(5.3) 

where (x, t) and (y, T) are the space-time variables of the observer and the source respec­

tively, T' is the ,,-ave propagation time to observer, r = x - y is the radiation vector. 

r = Ix - yl is the distance between the observer and the source, and e is the angle be­

t\v('en the normal vector on tIl(' surface n and the radiation vector r. Equation (5.1) is 

an integral represC'ntation of ([> at points C'xterior to S in terms of information prescribed 

on the control surface S and can be used for the computation of acoustic pressure at an 

arbitrar.v point.. if the solution is known on surface S. 

The Kirchhoff scheme requires stored data for pressure and its deri,'atiws on the 

control surface. Since Kirchhoft"s method aSSUllles that the linear waH' equation is "alid 

outside the closed control surface S. S must be chosen large enough to include the region 

of all non-linear behaviour. Hmwver. the elccuraCy of the nUlllerical solution is limited 

to the region neen the surrounding of the source because of the increase of mesh spacing 

further aWelY from the source in CFD codes. Thus. cl judicious choice of 5 is required for 

the effectivencss of the I\.irchhllff llll'tlllld. 

In thc currcut work. the contwl surLwe thM lws been dlOSl'n is a sphere. The idea 

here is to incorporate the control surface in the "ll('alTlI CFD solution in iixisymllletric 

form. In (L\:is~'!llml't ric form. the hn.lf-circulllfcrl'ncc as depicted in Fig. ;).3 is rl)t ,tt t'd 
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about the axis of rotational symmetry, chosen here to be the x-axis, to give a spherical 

coutrol surface and volume as depicted in Fig. 5.4. 

y 

Axis or rotational 
symmetry 

~ '~H' 

Figure 5.4: Kirchhoff's geometric control points. 

Control points are distributed uniformly along the circumference of the circle, sepa­

rated by a constant angle de. During the Vucalm run, the pressure and its norIllal and 

time derivatives are evaluated at these control points (C~x;) by interpolation from neigh­

bouring cell centres. This data is stored for subsequent post-processing by the Kirchhoff 

code. These stored data are then interpolated onto the geometric control points (Cc) 
(Eqn. 5.4), each with an elemental area dS;' and coordinates (xn' y;, Zi). "'here i is the 

mllnber of control points in one sYll1nlC'trical rotation (Fig. 5.3). 

e n ( ) ei=l,k( ) 
QX; .rn,Yn = G .rnly;,zi (5A) 

The interpolation from the F ucalm partides to the control points is shown in Fig. 5.5. 

Three closest Vucalm particles of the samE' material, A, Band C to a control point Pare 

determined by carrying out spatial search. Initially, the nearest particle is predetermined 

ami two otl1('r particles are then selected to construct a triangle enclosing the control 

point. Following this, a linear interpolation is used between the three 1/ ucal m particles 

aIle! the fim\' propertics <It thl' control point is thl'n calculated based on the film' gradient 

wi thin thl' constructl'd tri,wglc. 

Thl' Kirchhoff integral is thcn c\'aluatcd b)' sumllling the contrilmtion of cHeh gelllllet­

ric coutrol points tu obLlin the pressure at ,\11 arbitm.ry point outside of the surbee S. 
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o Vucalm particles 

• Control points 

Figure 5.5: Interpolation from V ucalm mesh to the aero acoustic control volume. 

The normal unit vector at each control point is calculated using the following expression, 

(5.5) 

where Res is the control surface radius and rep is the radial vector of each geometric 

control points (Cc). 

5.1.2 Porous FWH Method Formulation 

The FVvH equation can be written as the following inhomogeneous wave equation in 

differential form [17], 

02 

-. -TijH(f) 
OXiXj 

- ::J0 [Pijnj + PUi(Un - vn)]6(f) 
uXi 

o 
+ ot [PaUn + p(Un - un)]6(f) (5.6) 

where Un is the fluid velocity in the direction normal to the control surface described by 

the equation f(x, t) = 0 and Un is the surface vdocity in the direction normal to the 

control surface. p' is the acoustic pressure, P - Po outside the source region. Pij is the 

com pressive stress tensor. \\' hich includes t he surface pressure Hlld the \'iscnus strC'ss. For 

all iuviscid filli<i, Pij = P'Oij, aud oi] is the l\:1'Oue('l\:er delta. Tij = Pij+PUiU}-c~lP-PO)r5ij 

is Lighthill's equivalent stress tCllSOr. If the perturbations is smalL the term c:! (p - Po) can 
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he replaced by p'. Ambient quantities are indicated by the subscript 0, while the vector 

and tensor have indices i and j. A dot symbol indicates source-time differentiation. H (f) 

is the H(~aviside function which is unity for f > 0 and zero for f < O. 

It is important to note that because the control surface is taken to be permeable and 

fictitious, the fluid flow across the surface S has to be considered. The flow can be due 

t.o fiuid perturbation velocity (un =I 0), and to the motion of the surface (vn =I 0), with 

til(' net flow being Un - Vn . In the classical formulation, this terrIl disappears because of 

t.ltl' nOll-penetration cOlldition across the control surface. The 0 2 is the \vavc operator, 

r ( 1 I c2
) ( 82 I 8t2

)] - \72
. 

Equation 5.6 above is the appropriate form of the FWH equation from which to 

(kwlop an integral representation that is easier to implement. A full derivation is given 

in References [17, 34, 40]. The mathematical manipulation can be greatly simplified by 

dl'fining the variables Ui and L; as used by di Francescantonio [34], given by, 

U; = [1 - (pI PO)]Vi + (pu;j Po) (5.7) 

and 

(5.8) 

Hence, using these definitions, the F\VH equation as given by Equation 5.6 may be 

written as, 

The contribution of the Lighthill stress tensor, Tij is the strength densit~· of acoustic 

quadrupoles distributed throughout the region exterior to the control surface S. 

The dipole term, L; involves an unstead~y force. and Ui gives rise to a monopole-t~'pe 

contribution that can be thought of &'3 unstead~' mass addition. di Francescantonio [3-1] 

interpreted the terms L; and Ui as a modified velocity and a modified stress tensor 

respectively. Equation 5.9 is particularly useful because it can be utilised directl~- to 

write an integral representation of the solution as follows, 

p'(X, t) = p~(x, t) + p~(x, t) + PQ(x, t) (5.10) 

where the subscript T, Land Q represent the thickness, loading and quadrupole SOUlTes 
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respectively and can be written as Equation 5.11 and 5.12 below. 

47fp~(x, t) 

(5.11) 

47fp~(x, t) 

(5.12) 

po(X' t) can be determined by any IIlethod that is currently available. The derivation 

of Equation 5.11 and 5.12 is givC'l1 in [40]. LA! = LiAIi and a subscript r or n indicates 

a dot product of the vector with the unit vector in the radiation direction r or the unit 

\'('ctor in the surface normal direction Ii respectively. 

Equation 5.9-5.12 above was derived directly from the equations of consen-ation of 

mass and momentunl. TIH'rvforc. it could be applied to an arbitrary surface ,,-hether or 

not the propagation is lincar outside the control surface. If the surface S is to be placC'd 

on the body of a source that is impenetrable. the classical F\\-H formulation is obtained 

where the non-linear "-HYC propagation is taken into account by the quadrupole ,-olume 

krms. As the surface is lllo"ed further a\yay from the source. part of t he nonlinearit~­

is taken into account by the quadrupole terms and part by the surface integrals. If the 

surface is far enough awa!'. the Lighthill stress tensor outside S can be neglected as giwn 

in Equation 5.11 and 5.12 abow, so that Po = O. 

A stationar!' control surface is used in the current work and therefore Cl = JI = 
AIr = Afr = LA! = O. Therefore, Equation 5.11 and 5.12 can be simplified further as 

shown in Equation 5.13-5.15 respectively, 

47fp~(x, t) = j [PO~rn] dS 
j=O I T 

(5.13) 

47fp~(x, t) = ~ j [L.r] dS + j [~;] dS 
c /=0 I T /=0 I T 

(5.14) 
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Therefore, 

(5.15) 

where 

Ui = pu;j Po (5.16) 

awl 

(5.17) 

The porous FWH method is applied on the Kirchhoff-type surface and therefore, the 

sallle discretisation techniquE' and control surface geometry as discussed in section 5.1.1 

is implemented here. 

5.1.3 Retarded-time Algorithms 

The interpretation of Equation 5.1 and 5.15 above is that the integration occurs over 

the physical surface with the integrand evaluated at the emission, or retarded time as 

that recorded in the V ucalm calculation. The formulation requires that the observer 

time t and location x are fixed during the evaluation of the integral. Because retarded 

time formulation is utilised, temporal interpolation of the input data is required. A time 

history of the variables, pi and its derivatives for the Kirchhoff method and p'. p and u 

for the F\VR arc deYclopecl b~· choosing both the observer position and the obsern'r 

time, evaluating the surface integrals and then step to the next ObSE'lTer time in the time 

history. 

Hl'nce, in the CFD llUmerical simulation. the input data is expedientl~· e\·aluated at 

the control points by spatial interpolation at thl' source time. At the end of the CFD 

simulation, a time history of the required data arc stored and utilised in the aeruacoustic 

coeies. A time incrcmcnt of the observer time is specified by the user and the upper 

and lower integral limit are calculated based on the duration of the recorded CFD data. 

Follovving this, a tcmporal interpolation of the data to the retarded time T at each location 

in the input data arc performed. The retarded time for each control point is simply the 

difference between the observer time t and the wave radiation time from the corresponding 

control point to the observer. Interpolation in time is necessary so that the contri butiuns 

from all control points can be added together at the' same observer time. A simple linear 

interpolation is used to determine the value' of the near-field data at the retarded timt'. 
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5.1.4 Conclusion 

Both the above formulations provide a Kirchhoff like formulation if the quadrupoles out­

sirk the control surface (PQ(x, t)) arc ignored. The two methods work well, and therefore 

d('ciding which method to use for a particular application can be difficult. The FWH 

requires tlw storage of (p,p' and PUi) for each control point, while (p, EJp/EJn and EJp/EJt) 

ar(' required by Kirchhoff. The Kirchhoff method is simpler, and easier to implement. 

Also, the porous FWH method allows for llonlinearitics on the control surface, whereas 

th(' Kirchhoff method aSSUllles a solutioll of the linear wave equation on the surface S. 

Thus if the CFD solution doC's not satisfy the linear wave equation on the control sur­

Lw(' t he results from the KirchhoH· met hod change dramatically. This leads to a higher 

s(,llsitivity for the choice of the cOlltrol surface for the KirchhoH· method. The solutioIl of 

t]j(' F\VH equatioll requin's a surface and a volume integral, but the solution is often \yell 

approximated by the surfac(, integntl alone. Furthermore, according to Brentner [17]. the 

solution is less sensitive to placement of the control surface even if the quadrupole volume 

term is neglected. In summary, the Kirchhoff method puts more stringent requirements 

011 the CFD method to reach to the linear acoustic field. Validations for both formula­

tiOllS are given in the next chapter and, along with the V ucalm CFD calculation, both 

lllethods are used in the current work to predict the far-field pressure signature from the 

shock/bubble interactioll. 
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Chapter 6 

Code Validations 

III this chapter, validation of the Free-Lagrange code, Vucalm, is presented in order to 

show the ability of the code to solve flow problems in axisymmetric form as well as multi­

phase flows. The validation was performed by carrying out two numerical simulations 

illvolving multi-phase flows. The two problems are 

• a..XisYI1lIIlt'tric shock-induced collapse of a spherical air bubble by a planar step shock 

(Ding and Graceswki [35]) 

• 2D planar shock interaction with a water column (Igra and Takayama [52]) 

These studies arc attractive because the simulations using V ucalrn can be compared 

with published axisymmetric numerical simulations and experimental findings. The t\yO­

dimensional form of the V ucalm code has been validated and implemented to perform 

various llUlllerical flow problems in the past. Hmvever, the code was recentl~' conYerted 

to an axisymllletric form b~' Turangan [94]. and although validation was carried out in 

his work comparisons \\"en' ()nl~' made \yith that of single phase flO\\·s innll\'ing conical 

shock \\·aves. Thus. further \'alidation of t he 2Lxis~'mmetric ycrsion of the l' ucal m code is 

necessary. Both published \\"(lrks mentioned abow are ideal as thc)' im'olw lllulti-phase 

flows problcms of air and \\·ater. as \Yell as shock "'ayes, and therefore relate direct l~' to 

the \\'ork carried out here. Although the second validation work mentioned aboye is a 

2-ciimellsional problem, the results arc nc\'erthcless useful as direct comparison can be 

made with experimental results. 

Validation work for the Kirchhoff alld Ffowcs \Yilliams-Hawkings aeroacoustic codes 

are also presellted ill this chapter. The problem that has been chosen for the \'alidation of 

the acroacoustic codes involves predicting the 2tcoustic pressure in the far-field. radiated 

by a rigid pulsator. 
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6.1 Introduction - The numerical work of Ding and 

Gracewski 

Ding and Gracewski [35] performed an Arbitrary Lagrangian Eulerian (ALE) simulation 

of (LXisYIlllIldric, invisc:icl, cornprcssibl(: flow for air bubble/shock interactions with both 

w( 'ak shocks (P < 30 11:1 P a) and strong shocks (500 < P < 2000 AI P a ). The use of ALE 

c()lllbillCS the advantages of bot h the Lagrangian and Eulerian methods (r('fer to section 

3.1.2 in Chaptcr 3). The Il1ll1wric:al work solves the Euler equations in axisymmetric 

cylindrical coordinates usiIlg a finite volullle Illethod tu investigate the response of an air 

1)\)1)])1(' to a step shock wave. To capture the shock, an artificial viscosity technique is 

illl pll'mentcd. Thl' buh ble is initiall~" spherical and is statically ill equilibri UIll \yi t h the 

slllTounding liquid. COIllpressibility of the fluid is taken into account and the model also 

aSSUllles an Cldiabatic process ('xc-cpt within t he shock front. It neglects am" diffusion be­

i\\"('('n the air bu bbl{' aIle! the s1llTOUlldiIlg fluid. The artificial viscosity met hod introduces 

a dissipative term in the shock front. Body forces, surface tension and shear viscosit~" are 

also neglected. 

Figure 6.1: Computational mesh (ALE). The initiClI bubble radius is 1.0 mm. The highl~' 
compressed mesh indicates the position of the planar incident shock. (Ding and GracelYski 
1996). 

A non-uniform rectangubr mesh (Fig. G.1) is used. The mesh motion inyolws a 

weighting method, where the mesh size is adapted using the pressure gradient in order to 

generate finer meshes ncar the shock front anel aroulld the air bubble. This ,yas desirable 

owillg to the large deformation illHllved in the proximity of the bubble, and also to define 

t he shock front by a thin layer in the computational mesh. Also, starting a pproximatt'l~' 

24 llwshes from the bubble centre, the lllesh size illcreases with a ratio of 1.05 farther mnl.\" 

from the bubble. In the comjlutatimwl dOlllain a total of SO x 160 cells are used. The mesh 
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design uses less computational t ime than uniform cells and maintains a good resolution 

near the air bubble. In the numerical work of Ding and Graceswki, the computat ion had 

to be stopped at the moment of jet impact as the cells within the air bubble were too 

small , and the time st ep became unacceptably small. Thus, comparisons could not be 

made for numerical results beyond the point of jet impact . Ding and Gracewski set the 

initi al thermodynamic properties to ISA sea level condition. 

6.1.1 Problem Specification 

-+ 

Shock 
Water 

-+ 

-+ 

6~ 

Air bubble 

ISA Sea Level 
Conditions 

Axis of 
symmetry 

~ 

.1 

3~ 

Figure 6.2 : The Geometry of the Ding and Graceswki problem. Ro is the ini t. ia l bubble 
radius. Tot t.o scale. 

The problem studied 111 t he present code validation work is illustrat ed in Fig. 6.2. 

As stated earlier , t his problem has been select.ed to match . as far as is practicable. the 

numerical simula t.ions carried out by Ding and Gracewski [35] . Nine strong shock wave 

cases are studied , wit.h initial bubble radius of 0.1 mm, 1.0mm and 10 mm, imploded 

by a shock of strength 0.528 CPa , 1.011 CPa and 2.06 CPa. The t.ent.h case is the \wak 

shock problem \vhere t.he shock strengt.h is 0.0205 CPa and t.he initial bubble radi us 

is 0.1 mn/'. The various cases are summarized in Table 6.1. At.t.ention will be focused 

on t he imulat.ion where t.he air bubble init.ia l radius is 0.1 mm, and shock strengt.h of 

0. 52 CPa. Fig. 6.2 above sho\vs t. he geometry of t he computational domain used for the 

simulation. A spherical air bubble, having one of the various sizes ment ioned earlier , is 

immersed in water at ISA sea level condit ions. The initial density and pressure of the air 

are 1.2246 kgm- 3 and 105 P a respect ively. The shock wave propagates t hrough the water 

from left t.o right as hown: a ll elapsed times are measured from t.he first shock/ bubble 

contact unless stated otherwise. The bot t.om domain boundary represent.s t.he cl.'\:is of 

symmetry. 

Boundary condi t.ions on t he left boundary are ini t.ially fixed at post-shock \'a lues in 

order to generate the illcollling shock wave. However , from t ime t = 1.5 ps oll\\'(uds. non-
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Case Initial Radius, Shock Strength, Post-shock density, Post-shock velocity, 
Ro (mm) P (GPa) p (kgm- 3 ) u (ms- 1 ) 

1 0.1 0.528 1146 259 
2 0.1 1.011 1221 428 
:3 0.1 2.060 1326 712 
'-1 1.0 0.528 1146 259 
[) 1.0 1.011 1221 428 
(j 1.0 2.060 1326 712 
7 W.O 0.528 1146 259 
8 10.0 LOll 1221 428 
~) 10.0 2.060 1326 712 
10 (l.1 0.0205 1009 13 

Table 6.1: Various cases of shock bubble interaction problems 

rdir~cting boundary conditions are applied in order to allow the escape of left-running 

wan~s which are generated by the shock/bubble interaction. In this simulation. the size 

of t he domain ,vas large enough such that the nUIIlerical simulation ,yas stopped before 

the Idt-coming wave reaches the left boundary. Because the mesh is mO\"ing at the 

same' local wlocity as the fimY (8,S defined b.\" the Lagrangiml principle). particles on the 

left domain will tend to move away from tIl(' bound8,ry, leaving a gap that ,yill cause 

vollll11etric errors and lIlesh problems. To resolve this, uniform columns of particles ,yith 

post shock conditions are introduced along the left boundary when needed. The upper 

and right boundaries are non-refiecting at all times. For a shock with P = 0.528 G Pa. 

the infiow velocit.\" is 259.26 ms- I
. For a shock strength P = 1.011 G Pa. it is -128.26 ms- I 

and for P = 2.06 GPa. the speed is 711.94 ms- I
. A mesh of approximatel)" 19 x 103 cells 

h8,s been used: in the initial (unperturbed) mesh the individual cells are annuli of square 

cross-section for conw'nience. 

6.1.2 Strong Shock Problems 

Fig. G.3( a) and (b) sho,\" I\Iach contours for the numerical results of Case -1 using ALE 

and Free-Lagrange methods respectively. Time t = 0 shows the point at which the shock 

had just impacted the g8,S cclyity, and the top cavity wall experienced 8, high-momentum 

impact with a speed of about 500 InS-I. The mH.'(imum Mach contour has been set at 

0.21 in accordance with the contouring plot of Ding and Gracewski, i.e. contours of 1\lach 

greater than 0.21 arc not plotted. At the initial conditions. the acoustic impedance of 

wakr is approximatd)' 3000 timl'S that of air. As a consequl'nt. as the incidcnt "",,tel' 

shock (A) strikes the upst.ream 1l\lhblr' wall. a rclatiwl.\" ,wak shock is transmitted into the 

Ahlllad R Jamalllddin 1-1 



Free-Lagrange Simulations of Shock-Bubble Interaction in ESWL 

(Fl (Al 

(El 

Dl 

(i) t = 0 J.lS (I) t = 0 J.lS 

(Fl 
(Al 

(iz) t = 0.4 J.lS 

(F) (Al 

(iii) t = 0.8 J.lS (iii) t = 0.8 J.lS 

(iv) t = 1.6 J.lS 

(a) Ding and Graceswki (ALE) (b) Vucalm (Free-Lagmnge) 

Figure 6.3: tvIach contours of a bubble, Ro = 1 mm. collapsed by a shock P = 0.528 GPa. 
Comparison between: (a) Ding [1 Graceswh (b) Fucalm. Labels (A)-(F) are described 
in the text. 

air cavity (B). and a strong expansion wave is produced in the ",-ater. running up,mrds 

and lcftwards (C). The partide velocity behind the expansion wan' is large. causing the 

upstream bubble \vall to deform (D). 

Although the two simulations arc gcllt'rall)- in good agreement, there are minor dis­

crepancies. If the results of Ding and Gracc\yski arc examined carefully. it can be seen 

that there is unph)"sical lwhm"iour in the simulation attributable to the mesh structure. 

Owing to the difference in acoustic impedance. <md thc sound speed in air and \yater. 

the \wak air shock propngn tes more slmdy and should decouple from the incident slwck 

(Fig. 6.J( ii)). However. t he ALE simulatiull shm\"s localised unphysical behm-iour in tlw t 

t he air shock develops a 1l1111HTicc11 prccursor (£) nt the bubble boundar)" \\"hich ad\-nnccs 
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ahead of the incident shock (F). The poor local mesh resolution inside the bubble in 

the Ding and Graceswki's problem contributed to unphysical behaviour. A reasonable 

good mesh resolution in the bubble is important to capture the shock and the flow of 

tlle air inside the bubble as it plays a part in dictating the collapse rate and direction of 

tbc bubble wall. Shock resolution is generally better in the Free-Lagrange result, partic­

ularly within the bubble, where compression of the Lagrangian mesh leads to "natural" 

rciinClIJent (sec Chapter 4, section 4.4.3). 

(i) t = 0.4 ).IS (I) t = 0.4 ).IS 

---~----,..--------. 

(i/) t = 0.8 ).IS (il) t = 0.8 ).IS 

(iii) t = 1.6).1S (iii) t = 1.6 ).IS 

(a) Ding and Graceswki (ALE) (b) Vucalm (Free-Lagrange) 

Figure 6.4: Pressure contours of a bubble. Ro = 1 mm, collapsed b~T a shock P 
0.528GPa. Comparison between: (a) Ding t{ Cran;s(fIki, (b) Vllcalm. 

Fig. 6.4 shows the pressure contours for Case 4. At t = 0, the shock front reaches the 

upstream of the air bubble. Fig. 6.4( i) on\Yards show the expansion \yan' a:o; the shock is 

reflected at the air/water interface. The spatially non-uniform deformation of the bubble 

\Yall yields a higher \\',l,tcr wlocity on the 1mbble centreline. At t = O.8~lS. (Fig. 6.4(ii)) 

the incidcnt. water shock hns traversed almost the full bubbll' width. A.t this nwmcnt. thc 

upstream interface is being 1'Ol'('('d into the bubbll'. The interaction bct,\"t'l'n the shock etnd 
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the expansion waves originating at the bubble surface has resulted in significant weakening 

awl curvature of the shock. The pressure gradient in the water near the upstream of the 

hubble increases as time progresses. 

It can be seen that as the rarefaction wave spreads away from the air bubble, the 

pn'ssurc gradient.s drive the water particles to flow toward the bubble. The shock front or 

How velocity meets the upst.ream of the bubble wall frontally, and therefore the momentum 

transfer is maximum. However, owillg to t.he interact.ion of the rarefaction wave and the 

iIlcidcllt shock, t.he resultant momentuIIl transfer is weaker near the right and do\vnstream 

part. of the bubble. FurtlWrIIlOl"C, the shock front. now meets the rest of the bubble 

houndary at. an angle, alld therefore the iIllpact is weaker than that experienced at the 

upst.ream of the bubble wall. These effects result in the asymmetric movement of the 

1 >111>bl(' wall where til<' upstream part of the bubble interface moves rapidl~·. while the 

downstrealll bubble wall rcmains static. 

A distinct liquid .iet is forlllcd which runs rightwards along the symmetrv axis. At 

t = l.G f-LS. t.he liquid .iet has penetrated through the bubble, isolating a lobe of trapped 

nwl highly compressed gas which form a toroid in three dimensions (Fig. 6.4( iii)). The jet 

wlucity reaches its highest \'aluc ncar the point of impact (Fig. 6.7(i)). where it acquires 

a n~locity of about 2250 ms- 1
. which is in good agreement with the yalue of 2200 ms-1 

lllcasured by Ding and Gnl.ccwski. The liquid-liquid impact produces an intense blast 

wave in the surrounding water i\'ith an initial peak oYcrpressure exceeding 3.5 CPa. It is 

clear from these framcs that t he downstream bubble \\'all remains statiollCiTY t hronghont 

the collapsc until hit b~' the jet. The results of Ding alld GnlCes\\"ki agrcE' \wll Kith 
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,--"" ~ ... ~~~ '_' ~~ ,_"'" ~'r~~~ ____ -_ _ '" /~, ,~. 

r", ~_,_~~~ ,-, E-,', ,_.",.~ -._.-~ .-~", ,_" '- >----<-_~ _ __'-,., 

~: ~::::::~~::::::--;::::-:--::-~ :~----------~ -'-..,. .. _,-" ~~---: -'---:--:-::-~--:~~::-~::::~-::-:: 
:-~ . "'""" ---~ -----------. .- .-. ~ --- --------.-

' .... ...-;-- ->-~ .. " ,--<"~-~--"......----~ ~" ,." '-' ,--..... ---. .. -,--., ,.', ~~ .... --<-,--'-~ ,-

~~~~--::=:---;:~~-,>~ -~-'~-::::::::;-=:-:.::-:-~---:--.:::-~~~-.:-:~....:::~~:..::-:-:::-::---: 

~·~,~o/~~~~~~~1~(~~~~~~~~ 
~~2~;i~~-{- ~~~~-:~~=_~:~~~~~~~~~:;_:~ 
~~ ~-: .~~~ __ > ,J-,., ,-, , ____ -:~_:::: ::-;--:-;~~=-::.::.:'~'--r ______ ~ ___ 

~~2 , ~:;r~:~~~~:~~::~~~~~~~;~ 
l .... ....-.~ V">-~,~--.,"-< _____ .-. ~-.. ~ ____ ~--'__......_,. .'~ .. ,.", i' , •. -._. ,_. _.' ._. >-. __ -... 

_L>-J,_.'-. -,>T-.-'--"'<...>'-• ........---~-.......,~-~-_~~'_'_~._;_~"'_ "-
-,~--,.- -~-_'-'-'---~~.......,.~~~~.'_,~ ___ __....___.r~-~~ _ __. -......_~_ 

~~~ .~~?-~~~~:: ~-===~::-~-~~~~~ -:~~~ 
~-:~':;-,:r;;:::~:-; ~-::--=:::-~~~-~:-:::::~ :-::-~~~~_- ~ ~ ~_::--~:-:~ :: :-;--:-_ 
->--'-"'-;-'- -;--.--; >-;-._- ~~ '-: . ..,---------..-.. _. - . , , '-, ~-----:---~ _ .. _ .. '-~--r-'-'-; .-<,-.-- , 

(a) (b) 

Figure 6.5: Shock/ca\'ity interaction, Ro = 1 mm. (a) t = 0.0 inS (b) t = l.0 I7lS. Close-up 
of Frcc-Lagra.nge Vorol1oi mesh. Heavy line is cavity boundary: dots indicate positions of 
'particles' at which How properties arc stored. Horizontal arrow indicates initi,,1 position 
and size of bubble. 

the 11 ucalm simulation in terms of the general pattern of rarefaction and slwck \\'an's, 
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although evaluation is difficult to make due to the low resolution of the frames taken from 

reference [35]. A slight disparity can be seen in the last frame of Fig. 6.4. In the results 

obtained using V ucalm, the jet has p(~netrated through the downstream cavity wall, 

producing a blast wave due to liquid-liquid impact. In Fig. 6.4a(iii), no blast wave from 

ill<' liquid-liquid impact is present, ctf)f)uIlling that the jet is at the point of impact, though 

thif) disparity is still questionablc duc the low picture quality. OveralL the dynamics of 

tll(' bubble anel surrounding ftuid from both lluIIwric:al methods arc in good agreement. 

The f)trnctun~ of tlw cOIllputatiollallllC'sh in the vicinity of the bubble at t = 0 J.L8 and 

t. = 1 J.L8 if) f)hOWll in Fig. G.;:;(a) awl Fig. G.G(b) rc~f)I)('c:tively. The particle dif)tributioll of 

tIl(' Vorolloi grid reftects the local dCllsity variation1 . For high density regions. the grid 

if) at itf) finest. and so tlH~ ftc)"\\' f)tructure is well resolved. Fig. 6.5(b) sh()\\"f) the increase in 

Ilj('f)h dcnf)ity withill t 11<' cavity behilld the air shock, mirroring the increase in air dcnsit\·. 

H()wever to maintain a stable and economical tiIlle step, the adaptive mesh ·refinement" 

awl 'cicrcfinclllC'nt' algorithm are illlplemented. Fig. 6.5 also shO\\"s the alignment of 

llJ('f)h cells along the bubble boundary as a result of the action of the interface smoothing 

routine, which acts as an artificial surface tension. A more detailed description of this 

routine' is givCl1 in Ref. [49]. 

In this validation work, the cells are bifurcated hasecl on the non-dimensional· char­

(Jcteristic length·, Le. In the prescnt \\'ork. the following criteria must be satisfied for 

refinemcnt to take place, 

• Criterion 1: Only cells along the air/water intC'rface are bifurcated if the Le of a 

particle is at least twice the f)izc of any· of i ts v~ oronoi neighbours. 

Ding and Graceswki's em plo~'ed all adaptive mesh generation technique. ,yhere the 

lllcsh automatically adapted to tht' prcssure gradient. Therefore. the meshes at the shock 

front and t he region around the bubble arc finer because the pressure gradients are higher. 

However, they reported that their ALE calculation \yas halted at jet impact due to dete­

riorating lllesh structure in the bubblt'. leading to an unacceptabl~· small timestep. In our 

work. a 'cierefinement" proceci ure has allO\,·cd the simulation to run be~'ond jet impact. 

\'.'hik maintaining an cl("C('pUtbk tim('step (Fig. 6.6). 

The liquid jet impa.ct 011 the dmnlstream bubble wall produces an intense blast ,yaw' 

in the slllTouuding water ,,·ith an initial peak o\"(-'rpressure exceeding 3.5 CPa. The shape 

of the blast waw if) highl~· as)·lllllll'tric (Fig. 6.6( a)) as the \yave advances relatiwly sIO\d~· 

to the left \)('caus(' of the high \yMer wlocity of the liquid jet. At t = 4.65 ps (Fig. 6.6(b)). 

the eel-vi ty is drawn iuto a Hlrtex fto\,·, created from the interaction of the high \'doci ty 

liquid jet and the rclatiwly st<ltic surrounding ftuid. 

I This is (JIlly true is there is Ill) reiilll'Illl'Ilt or dcrdiIH'llleIlt. 
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(a) t = 4.581'8 (b) t = 4.651'8 

Figure 6.6: Dynamics of the fiow beyond jet impact at t = 1.6 p,s. l::,Pwater = 0.1 CPa, 
l::,Pair = 0.050 CPa. The thick line represents the bubble interface. 
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Figure 6.7: The velocities of the jet tip for Ro = 0.1 mm. The solid line represent wlocities 
with P = 0.528 CPa. The doted curve represent velocities Kith P = 1.011 CPa. The 
dashed curves represent velocities with P = 2.06CPa. (a) Ding and Gracewski (b) 
Vucalm .. 

N uIllC'rica.l simulations were also ea.rried out for the various other cases listed in Ta­

ble 6.1. ThC' results obtainC'd by Ding and Grace\yski and those using i -ucal mare gin'n 

below (Fig. 6.7 - Fig. 6.9(a) and (b) respectivel)·). 'which show the \'ariation of tIlE' jet tip 

velocity Kith time. The jet tip wlocity using the i' ([calm cock was llleasured b~' taking 

the averagc of the absolute wlocity of piuticles at the tip of the jet. The kinks Oll the 

curve arc duc to the dercfinClllcnt and rcfincmcllt a.lgorithm. \\'h(:'n particles art' nllllbincd 
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or divided, a new set of particles near the jet tip are chosen for the calculation of the 

absolute velocity. The averaging of the absolute velocity of the new set of particles give 

rise to the kinks on the curves in Fig. 6.7(b), Fig. 6.9(b) and Fig. 6.8(b). However, Ding 

awl Grac(~wski did not give any explanation on the way the jet velocities are measured 

ill their lluIllerical simulation. It is impossible to tell the point or region at which the jet 

v('locitics arc t.aken - whether it is directly at. the t.ip or somewhere in t.he proximity of 

til(' t.ip of t.he high-velocity liquid jet. N evnthclcss, the results show good agreement as 

shown in Fig. G.7 (Cas(~s 1 - 3). Fig. G.b (Cases 4 - G) and Fig. 6.9 (Cases 7 - 9). 

Slight. disparit.y call be se('n during t.he first few microseconds after the point of shock 

illl pact.. III t.he result.s ()ht.ailJ(~d hy Ding and Graccwski. the variation of the jet yeloc:ity 

with tilIle show an oscillat.ing featurc v;hich is not present in the results obtained from 

1/ ucalm. Thl' numerical rt'sults by Ding and Graccswki and Vucalm (Fig. 6.7-Fig. 6.9) 

suggest that for a givcn shock strength, thc liquid jet velocity time history is almost 

identical, independent of the initial 1mbble size. This is expccted as tIl(' shock \'\"aW has 

a step profile and has no physical Icngth scale. Therefore. although the results are not 

shown here, regardless of the size of the bubble. the general pattern of the pressure and 

vd(}('it~r ficld are simil<lr to tlwt shown for Case 4 (of Table 6.1) as giwn in Figure 6.3 

awl Figure G.4. The argumcnt also holds for the jet \'elocit.y time histories \\'hich are 

idcntical for all three bubble sizcs. The onl\- diH'ert~ncc is in the time scale. \\'hich increases 

proportionally to the increase in the bubble sizc. The figures also shm\' that the jet speed is 

dependent on t he applied shock strength. In addition. the nHLxinlUm jet \-elocit\' achiewd 

upon liquid-liquid iIll pact of the liquid jet wit h the dO\\'nstream bubble \\'all increases wit h 

increasing shock strength. The stronger the applied shock, the greater the jet speed. and 

the sooner the air bubble collapscs. 

In the experimental work conducted In- Bourne and Field [15]. t he~' shO\\wl that 

the liqllid jet \'elocit~· increc1scs as cavity diameters are reduced (giwn thM a partic­

ular incidcnt shock pressurt' is held constant). Hmn'wl'. it should be noted that the 

experiments cond Ilcted \n'1'(' in two-dimcnsional geometries (refer to Section 2.3.1). The 

spherical geomctry of thc air 111lhble in both nunH:'rical works. Fucall?? and thM of Ding 

and Graccswki. transmits a fllcllssing air shock into the bubble and an expansion fan 

which decreases in strength as it prupagatcs spherically a\\'a~- from the bubble. AJthough 

focusing of the shock \yaH'S still nccnr in 2D. thc focussing effccts are stronger in thrce­

dimensional geomdr~·. 

According to Hammitt [.,15]. the 'real- fi uid' eH·ccts. in proba hk order of import anee 

from the vicwpoint of 111lbble collapse. arc thermal cff{'cts. liquid com prcssibilit~·. \'iscnsit\'. 

all( I snrface tension. Heat transfer has llt'{'n neglected in bot h met lwds. Conscqucnt l~·. t hl' 

nlllllericalcllde docs not l'llllsider eH'ecti\'dy the restraints upon bubble collapse imposed 
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by changes in internal pressure due to heat-transfer. However, the collapse occurs in the 

order of microseconds and hence the effect of heat transfer can be considered negligible. 

The results using V ucal m do show that the rate of increase of the .i et velocity decreases 

with time elS the bubble becomes highly compressed, resulting in increases in internal 

pn'ssuw and temperature. Liquid compressibility is considered in both the ALE and the 

Fr('c-Lagrangc~ codes. The c{)mpressibility effect is important in this study, as it involves 

thl' interaction of the air bubble with very strong shock waves and the generation of very 

illtl'nse blast wave fWIll the liquid jet impact on the downstream wall. Furthermore, a 

fraction of the energy of t lw bubbll' motion is radiated away as pressure ,vaves. The effect 

of viscosity bccomcs illlPortallt for rrlatively small bubbles and it is clear that it must. at 

ll'ast to somc exteut, reduce the rates of grO\\"th or collapse compared to those attained 

ill an inviscid liquid. Viscosity has a damping effect and provides a mechauism for the 

cOllversiotl of mechauical energy to thermal energy. Viscous effects do alter the pressure 

at t 11(' bubble \\"all and thus red uee the effective pressure differential in such a \';a\" as 

to reduce rates of (~ithl'r growth or collapse. In view of the dominant influence of ,,,,'ater 

ill('rtia on t he flow dynamics. it seems unlikely that viscosity and surface tension will play 

a lllajor role. In additioll, the short time scale of the whole collapse process suggest that 

iut ('1'- pha.se mass tnmsfer \Yill be unimportant. 

6.1.3 Weak Shock Problem 

The results of Ding and Graces\Yki, and from Vucalm, for the interaction of a spherical 

bubble with a weak shock are presented in Fig. 6.10( a) and (b) respectiwl~·. The ini­

tial density is lOOO kgm-3 in \yater and 1.2 kgm- 3 in air. Both the initial pressure and 

temperature are at ISA sea level conditions. The initial radius of the bubble is 0.1171171. 

Fig. 6.10 shows the 1\lach contour when a shock of strength 20.51\1 Pa impinges on the 

bubble. The results using Vucalm and the ALE method are almost identical. The time 

interval bet\veen each successive plot is 0.1 f.1S. As a result of the impedance mismatch. a 

rarefaction waves can be seen clearly in the ,,·ater and a very weak shock is transmitted 

in the gas after the shock interacts with the air-water interface. Fig. 6.10(a) shows the 

moment the shock first interacts with the bubble. 
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In Fig. 6.10(b), the shock has propagated past half of the bubble diameter. As a result 

of the difference in acoust.ic wave speed in air and water, the incident shock has decoupled 

aw 1 propagated ahead of the weak air shock. There is no significant. deformation of t.he 

bubble wall during this time because the incident shock is weak in comparison with the 

strong shock pro blclIls presented earlier. As can be seen in Fig. 6.10 ( c)- (f), owing to 

ill(' axisymmdric nat.ure of the problelIl, the: shock within the gas converges near the 

d()wnstream wall of trw bubble. Although the t.ransmitted shock in the gas is weak, it 

will result in an increase in pressure in that region and will affect the direction of the flow 

within the gas bubble. This observation highlights the importance of having a reasonable 

ll)('sh resolut.ion within the gelS bubble to represent the structure of the flm\' and hence the 

dVllamics and motion of the bubble wall. The low mesh resolution in the bubble in Ding 

awl Gracewski's numerical simulation also leads to poor shock capturing - the air shock 

is highly diffused and conforms to the mesh structure, "whereas the air shock is captured 

r('lntivdv \\'cll ill the problelll using the 1/ ucalm codc. The flow around the bubble on 

th{' other hand is dictated by the inertia of the surrounding water. A pressure gradient is 

created around the bubble which drives the fluid towards the bubble, causing the bubble 

wClll to collapse. As expected, the collapse of the bubble is much sluwer compared to the 

strong shock case. The nonsymmetric movement of the bubble interface is smalL so that 

110 distinct liquid jet is fOrIllPd, and the collapse proceeds almost sphericall~'. 

A successful comparison with a different numerical scheme has been made. The re­

sults generated using V ucalm agreed well with that using the ALE method of Ding and 

Graceswki [35]. 

6.2 Introduction - The numerical work of Igra and 

Takayama 

In this section, validation of the coe!e is carried out by comparing the results \yith the 

numerical scheme of Igra and Takayama [52] and also with appropriate interferograms 

from experimcntal work. 

Tht' motivation of Igra aile! Takayama's [52] work is to deyelop a scheme which could 

propcrl~' describe a gas-liquid interface \yi thout smearing the densi t~' jump across the 

interfacc 011 an Euleriall reference framc. Thc~' achic\'ed this by using Cl densit~, fUllc­

tion interface tra.ckillg nH'tlllld \yhich is similar in fClshion to the interfClce tracking CIP 

schemc. In the CIP schcllle. a density function S(,l'\'t'S as a lllarker corresponding to each 

fluid type, where it different \',due is allocated to each fluid. The lllm't'lllt'nt of the densit~, 

fUllction and hcn('(' the illterface can thell be described using the acin'ction el}uCltiOIl [5~]. 
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An improved method was presented by Xiao and Yabe [101]' where a tangent transfor­

mation of the density function was employed which yields a sharper interface, but minute 

oscillations on the interface still exist. The oscillations can be neglected for two-phase 

fiuws of small density ratio, but generate negative density near the interface for problems 

which involve large: dCllsity ratio such as air and wat(:r. To overcome this problem, the 

r<'gular CIP scheme is modified [52] awl a limiter is iIllposed to give a higher degre:e of 

accuracy. This modification is then cmployed intu a scheme known as C-GCP (CIP Com­

hined Unified Procccluw) ,vhich can treat both compressible and incompressible flows. 

IlIlprovcment was cLbo made by Igra and Takayama to this scheme, by solving the density 

of each phase separately. As a result, dCllsity diffusioll that occurred at the interface in 

cOlllpressible fiows problem can be minimised. The interface tracking problem in Eulerian 

llldhods, and in particular the CIP schellle as discussed here, highlights the advantage 

of Lagrangian scheme (lv('r otlwl" llllllleric:al methods. In the Free-Lagrange method, the 

int(~rfa(:c of the diffe:rent phases present are always sharply resolved and no mass transfer 

exists between cells of differing material. 

Using the modified scheme, Igra and Taka:vama [52] simulated the deformation and 

breakup of a cylindrical water column on shock wave loading. Comparisons \\'ere then 

Illade 'with experimental findings [51]. A cylindrical water column 'with an initial diam­

('tel' of 4.8 mm in air is exposed to a planar shock wave of I\Iach number jI = 1.47. 

In the present validation work, the numerical results using the CIP scheme, as well as 

interferogram images, are: compared with the numerical results using the F ucalm code. 

6.2.1 Problem specification 

The problem studied in this second code validation exercise is illustrated in Fig. 6.11. 

48= 
" M -- - - - - - - - - - - - - - - - - - - - - - - - - - -. 

I 
I 
I 

Shock I 
Air I 

I 
~ I -- I 0 

N 
I 
I -- Plane of I 

symp1etry: 
~ 

6mm 

Figure 6.11: The Geolll('tr~' of the 2D Igra &: Takayama validation problem (not to scale). 

TIl(' problem has been selected to lllMch, as far as is practicable, the: llumerical simu­

lations carried out by Igra and Takayanw. [52]. There aTe llllcertainties in the dinmeter of 
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the cylindrical water column and si~e of the computational domain. Fig. 6.11 above shows 

the geometry of the computational domain used for the simulation. The initial pressure 

for both air and water is 105 Pa, while the densities are 1.2246 kgm-3 and 1000 kgm- 3 

respectively. The shock wave propagates through the ail' from left to right and all elapsed 

tillles arc measured from the first shock-wat(~r column contact. The lower domain bound­

ary reprcscnts the plane of symmetry. 

Boundary conditions OIl the left boundary are initially fixed at post-shock values in 

order to gellerate the incoming shock wave, but, from t = 50 ps onwards. non-reflecting 

b()undary conditions are applied in order to allow the escape of left-running ,\,aves which 

arc generated by the shock-water colUlIln interaction. The upper and right boundaries 

are nOll-reflecting at all times. A lIlesh of approximately 31000 cells has been used: in 

the initial (unperturbed) Illesh. the inclividual cells in the main domain are square for 

cOllvcnience, ,vhile the structure of the mesh in the water column is circular in order to 

g('llcratc a smooth air-water interface. 

6.2.2 Flow evolution 

The interaction of a planar shock ,'lave, with mach number A18 = 1.47 in atmospheric air. 

\\'ith a water column is shO\'ln in Fig. 6.12. Fig. 6.12(a) and (b) are the numerical results 

obtained using the CIP scheme and Free-Lagrange method respectively. The figure shows 

the isopycnics in air 23 ps after the impact of the incident shock ,vave on the ,,-ater column 

surface. The contouring interval for the isop~-cnics is not given in the published paper. 

Hence, a value was chosen that provide not only good comparison with t he results plotted 

by Igra and Taka~'al11a, but also shows the characteristics of the shock ,Ya,-e-,Yater column 

intcraction. Although estimates to the flm\' geometry (water coluIllll and domain size) 

and isopycnic contouring intern,l were made. the results of the t,yO numerical scheme 

agrees relatively well. Both results shmy thE' "\lac11 stems2 and triple point3 ,,-ell. As the 

shock impacts on the ,Yater column \Yall. a strong reflected shock is propagated upstream. 

Intersection of the I\Iach stellls uccurs dmynstream of the ,Yater column. A.ccording tu 

Igra and Takayama. this intersection initiates the creation of a secondar~' reflected shock 

wave system. 

Fig. 6.13(a) and (b) shO\\· an intcrferogram corrcsponding to Fig. 6.12(a) and (b) 

respectively. The double exposure holographic interkrogram of Fig. 6.13( a) ,\'('IS t c1kcn 

from an experiment while Fig. G.13(b) Wc1S gencrMed nUlllerically using an interferugram 

lTll(' sho('k front forIlled b~' the Illerging of the incidellt alld rdkcted shuck froIltS. The tnm is gener­
all~- Ilsed with rd('!'en('e to a shock ,,-m·('. refil'cted otf a sllrfa('e. The 1\Iach stelll is nearl" perpendiclllar 
to the reflecting smfa('(' Hlld presents a slightl~- COin'ex (fonnud) fwnt.. The 'l\Iac11 steIll is also called the 
]\ Inch front. 

:'Thc intersection of the incident. rd:/('('tt'ct, and fllsed (or ]\Iach) shock fronts. 
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triple point 

Mach stern 

(a) Igra and Takayama (b) Vucalm 

Figure 6.12: Comparison between Igm and Takayama and Vucalm for the interaction of 
a shock wave wit h a water column. The density contour interval, 6.p for (b) is 0.1 kgm-3 

The time is 23 f..LS. 

(a) Igra and Takayama (experimental) (b) Vucalm (numerical simulation) 

Figure 6.1 3: Interferogram images . Comparison between Igm and Takayama and Vucalm 
for the interaction of a shock wave wit h a wat.er column. T he t ime is 23 f..LS . 

simulation algorit hm written in V ucalm bas d on an equation given in Ball et al. [5] . 

The dark ring (M) seen on the interferogram of Fig. 6.13( a) indicates the wet area 

where the water column contacted with a glass surface. Both images shows shock front.s 

similar to the gas phase isopycnics shown in Fig. 6.12. The comparison between t he two 

interferogram images show t.hat the general fringe pat.tern in air agrees well. In particular 

t.he form and position of the fringe that. extends from the water column t.o t.he incident 

shock just. below t.he t.riple poin t (N), as well as the fringe on t.he downst.ream of the 

colnmn (0 ) are well-predict.ed. The major differellce is in t.he t.hickness of t he fringes 

where th interferogralll image gCllera. t.ed via V ucalm are much t hicker. 

The rela.tionship between fringe order and pa t.h averaged gas densit.y is gi\'en b)" the 
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following equation [5] , 

(6.1 ) 

where N is the fringe order, G is an arbitrary value and is defined here as the gain and Po 

is the path mean fluid density at the fringe of order zero, i. e. the reference density. The 

difficul ty is in determining the fringe order spacing or gain and the value of the reference 

density. A ' trial and error ' approach was adopt d to match the interferogram fringes of 

the numerical simulation to that of the experimental work by varying t he value of G and 

Po. The fringe number is controlled by the gain , G, while the fringe spacing and posit ion 

can be controlled by altering the value of the reference density, Po. 

(a) Igra and Takayama (b) Vucalm 

Figure 6.14 : Comparison betv,'een Igm and Takayama and Vucalm for the interaction of 
a shock wave with a ,vater column. The density contour interval, 6p for (b) is 0.1 kgm-a 

The t ime is 43 fLS. 

(it) Igra and Takayama (experimental) (b) V1Lcalm (numerical simulation) 

Figure 6.15 : InterferograIll images . Comparison between Igra and Takayama (1999) and 
Vucalm for the interaction of a shock wave with a wat.er column, 53 fLS after shock impact . 
Labels (A) -(F) arc described in t.he text.. 
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Fig. 6.14(a) and (b) shows the isopycnics in air at 43 f-lS for Igra and Takayama and 

V ucalm respectively. Here again, the contouring interval chosen by Igra and Takayama 

could not be determined. The figures show that both the incident shock wave and the 

rcficcted shock wave have propagated further away from the water column. On the down­

stwam side of the water COIUlIlll, a cOIllplex secondary wave system is formed, consisting 

of it reficctecl shock wave which is c:r('at(~d by reflect.ion of the curved lvlach stems. The 

latter initiates a secolldary t.riple point [52]. These flow charact.eristics can be seen in 

hoth figures. The shock front. of t.he t'(~Slllts by Igra and Takayama appears to be diffused 

(·()Iltparcd to the result.s from V ucalm. According to Igra and Takayama. this is due to 

t.hl' shock capturing performance of the eIP scheme. Furthermore, the grid spacing in 

tlH'ir solution increases as a function of dist.ance away from the water column, \yhich is 

also conclusive t.o a highly diffused shock front. A high pressure region is generated near 

t h(' downst.ream side of the water column which causes a deformation of th(' \\'ater-air in­

terface. Bot.h results shmv a small vort.ex Ileal' the rear of the water column. The general 

structure of the isopycnics curves for both sets of results agree relatively ·well. 

Figure 6.16: N umerical isop~Tcnics at t = .J3 ps for shock wave interaction with a solid 
cylinder. Taken from Igra and Takayama [52]. 

Fig. 6.15(a) shows a double exposure holographiC interferogram taken from the ex­

periment, while fig. 6.15(b) is a numerical interferogram generated from 1 :uc:alm data. 

The dark ring seen on the iutcrfcrogram of fig. 6.15( 8.) indicates the \Yet area ". here the 

water column contacted c1 glclss surface. The iucident shock ",aye bas traversed the \yater 

col Ullln (A). The com parisun bet\yt'cu the two interferogram images shmy that the gen­

eral fringe pattern in air agrees well. In particular, it currectly predicts both the Yortcx 

structure (C) ou the dm\"llstreclln side of the COhllllll, and till' form cUld position llf the 

fringe that extl'uds from t he upstream of the \ynt.er columu to the !\IHch stem (B). Fllr­

tl)('rmOl'e. the predicted location of the reficcted \yaw (D), rdach stem (E). tri pk point 

(F) aud s('('oudcU'~T triph' point (G) are ill excelleut agreemeut "'it h experiment. 
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For comparison purposes, Igra and Takayama also ran a problem of an interaction of 

a shock wave with a solid cylinder. The isopycnics obtained for the flow field are shown in 

Fig. 6.16. A vortex exists ncar the rear of the solid cylinder and the reflected secondary 

shock wave reaches the solid wall. These features are less apparent in the numerical results 

ohtained for the water colurnn by Igra anel Takayama (Fig. 6.14). They argued that the 

differences arc attributed to the deformation of the water column surface, though the size 

of the vortex in Fig. 6.16 seems t.o agree well with t.hat obtained using t.he Vucalm code 

as shown in Fig. 6.14(1)). 

6.2.3 Conclusion 

The validat.ion of the tLxisymrrwtric and 2D version of the V ucalm code hiis been carried 

(Jut using two different cases. The simulations are compared wit.h the rC'sults from an 

,dt<'ruativc llUIllerical silllulations using ALE in the work of Ding and Graceswski [35] 

awl by Igra and Talvt~'all1a [52] \vhcre comparisons were also made with experimental 

filldings. 

In the validation work the dynamics of the bubble using V ucalm match that of Ding 

illld Graceswki. This includes the liquid jet velocity, impact or collapse time as \yell as the 

How around the bubble. shown by the lllach. pressure, and the jet yelocit~- time history 

plots. Despite the different lllet hods used. the results agree \yell. The differences are 

lllainl:y attributed to the Illesh structure used by Ding and Graceswki where a coarser 

cOlllPutational grid \yas used within the bubble. 

The interaction of a planar shock wa\'e \yith a water column was presented in the 

second part of this chapter. Isop~-cnics cun-e and interferogram images at t\\-O different 

stages of the flow \\"ere obt ained frOlll reference [52] and were com pared ,yi t h that using 

t.he V ucalm code. The results obtained agreed \',-ell \yit h the numerical and experimpntal 

findings of Igra and Takayama. Doth results show the ~lach stems and triple point as \\"ell 

as secondary triple point at later stages of the flow. The interferogram at t = -13 flS not 

only revealed a high pressure region dmynstream of t.he water column but also a \-ortex 

flow. The fringe number and spacing in air agree well \yit.h t.hp experimental interferogram 

images. 

Therefore it can be concluded, based on t.he works carried out in this chapter. the 

Vucalm code has been successfully validated for typical axisymmetric shock-bubble flm,­

field as well as against experimcntal findings of flows consisting of air, water and shock 

wclyes. 
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6.3 Aeroacoustic Codes Validation Test Cases 

Tlw problem that has been chosen for the validation of the Kirchhoff and F\VH aeroa­

(,()1lstic codes involves predicting the acoustic pressure in the far-field, radiated by a rigid 

pulsator. The sound pwssurc resulting from the pulsating rigid sphere was compared 

by means of values obtained with the Kirchhoff and FWH approach and with the exact 

s()l1ltion. Fig. 6.17 shows the geollletry of the problem where a single solid sphere is 

illlmersed in water. The illitial density for water is WOO kgm -3 while the initial pressure 

awl temperature arc 0.1 AI Pa and 288.15 K. The mean radius of the solid sphere is 

Rs = 0.02 mm. The lower domain boundary represents the axis of symmetry. 

/ 

I 

10mm 

Water 

Kirchhoff control surface 
-'-'-'-

, , 
\ 

\ 

JI 

nigid pulsator \ 

~--~----~~.-*~~==~.----~.~ 
R,; Res 

15mm 

Figure 6.17: The Geometry of the problem (Not to scale). 

6.3.1 Kirchhoff Test Cases 

The problem studied here is different to that involving a pulsating air bubble in water. 

Here, the pressure within the pulsating body does not vary as its volume changes during 

the oscillation, i.e. its internal pressure is invariant. Thus. the pressure in the fluid is 

gowrned by the interface motion alone. The pulsation of the solid sphere radiates a 

spherical sinusoidal wave into the surrounding water. 

The following anal)"sis for the h.irchhoff validation test cases is based up un Leighton [62]. 

\\"hen t.ll(' rigid sphere pulsates, the variation of t.he bubble radius \vit.h time is gi\"en by 

tIl(' following expression. 
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where Ro is the equilibrium radius of rigid sphere, Re is the displacement of sphere 

from equilibrium, such that R( t) = Ro + Re (t) and Reo is the radial displacement ampli­

tude of the pulsator. 

Differentiating (6.2) with time gives, 

(6.3) 

(6.4) 

where Uo = -iwReo and must equal the radial fluid particle velocity f at the sphere 

wall at all times. Therefore the acoustic pressure at the wall can be found from the 

product of the specific acoustic impedance for spherical diverging waves and the wall 

velocity [62]. 

It is known that the specific acoustic impedance for spherical waves, Z, is given by 

the following expression, 
Z = P(r, t) 

E( r, t) 
(6.5) 

It is shown in [62] that the diverging spherical waves that any point source radiates 

hm'e the form, 

p = ~ei(uJt-kr) 
r 

(6.6) 

where W has the units of [Pa.m]' is numerically equal to the acoustic pressure radiated 

by the source at unit distance from that source. Eqn. 6.6 can be explicitly modified to 

incorporate inconstant source strength and attenuation. For example [62], if the source 

is damped with time canst aut 3-1
, and if the attenuation coefficient is b, the pressure of 

spherical diverging waves is given by, 

P = '£e- 8(t-r/c) e-br ei(wt-kr) 

r 
(6.7) 

where the use of (t - ric) allows for the propagation time, and 7./.'e- b is the acoustic 

pressure amplitude 1 metre from the centre of the source at time t = ric. 

Thus differentiation of 6.7 with respect to T, and integration with respect to t, gives 

the oscillatory liquid particle velocity 

i(r, t) = (1 - ~) ~ 
kr poc 

(6.8) 

Hence, the acoustic impedance call be \\Titten as 

kr P ckr 
Z = POC--. = 0 (kr + i) 

kr-l 1 + (k/')2 
( 6.9) 
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of magnitude 

and of phase 

IZI = pockr 
VI + (krF 

tanX = 11kr 

At some fixed radius r, the acoustic pressure is given by 

where PA = we-ikr Ir. 

(6.10) 

(6.11 ) 

(6.12) 

From (6.5) and (6.10) , the pressure amplitude PA , the specific acoustic impedance Z 

awl the speed amplitude Uo can be written such that 

PA = UolZI = UoPoc cos X (6.13) 

and 
kr 

cos X = ~======= VI + (kr)2 
(6.14) 

Substituting (6.10), (6.14) and (6.3) into (6.5) and since 

(6.15) 

the acoustic pressure at the wall can be written as 

P(Ro, t) = pocUo cos Xei(wt+Xo) (6.16) 

where evaluation of equations (6.11) and (6.14) at the sphere wall (r = Ro) gives 

and 

cotXo = kRo 

kRo 
cos Xo = ~======~ VI + (kRo)2 

From above, the acoustic pressure at the wall can also be expressed as 

P(R t) = ~ei(wt-kRo) 
0, Ro 
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Equating (6.19) and (6.16) gives 

W = PocUoRo cos Xoei(kRo+Xo) (6.20) 

Therefore, the expression for the acoustic pressure at any radius r 2: Ro is given by 

P(r, t) = PocUo Ro cos Xoei(wt-k(r-RoJ+Xo) 
r 

the magnitude of which is 

IP( r, t) I = PoclUoIR6 k 

rJ1 + (kRo)2 

(6.21) 

(6.22) 

The results of the acoustic radiation of the pulsator were obtained using direct calcula­

tiOll. Instead of using the V ucalm code to simulate the near-field problem, the near-field 

pressure time history at ('ver)' control point on the control surface were calculated from 

Equation 6.22. This is carried out in order to separate the influence of mesh resolution on 

the Kirchhoff integral evaluation. For sufficient accuracy in the far-field calculations. the 

snrface quantities (p, ~~, ~~) should be ver)" accurate. This can be achiewd through the 

1Ise of a very fine mesh in the CFD calculations. Hmyever. memory and time constraints 

lllake this impractical. Test cases using V ucalm to produce the Kirchhoff control surface 

data were also carried out and is presented at the end of Section 6.3.1. 

The pressure and its normal and time derivatives are therefore calculated using Equa­

tiOll (6.21) and (6.22) directly into Equation (5.1). Taking the real part of Equation (6.21) 

gl\"CS, 

where 

3i{P(r, t)} = A cos(~t + Xo - k(r - Ro)) 
r 

A = PoCUoR6k 

J1 + (kRo)2 

Hence it follows that. 

8 A -!?- = --wsin(wt + Xo - k(r - Ro)) 
8t l' 

8p A [. r X ] 8x = r2 kxsm(,-d + Xo - k(1' - Ro)) - ; cos(wt + Xo - k(r - Ro)) 

8p = A [ky sin(wt + Xo - k(r - Ro)) - !!.. cos(wt + Xo - k(r - Ro))] 8y 1'2 . l' 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

( 6.27) 

where x and yare the control points C P~~i coordinates and r = J;r2 + y2. The normal 
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derivative can then be calculated using the dot product with the normal vector n at each 

('outrol point. The analytical solution is then calculated directly using the equations above 

for a solution at a single point (observer) in the far-field. In all the analysis, the observer is 

positioned 500 mm from the centre of the oscillating rigid sphere, i.e. x = (0,500 mm, 0). 

The following test cases were carried out in order to validate the Kirchhoff code and 

also to examine the sensitivity of the formulation to the following conditions: 

• Placement/Size of the integration surface 

• Frcqucncy of the radiated pressure wave 

• Number of control points 

• Data storage time increment ( time interval or resolution at which data are recorded) 

• Asymmetry between the centre of pulsator and the centre of the Kirchhoff control 

surface 

• Driving pressure profile (complexity of the radiated pressure) 

Frequency and Control surface Placement/Size Analysis 

The parameters of the driving pressure for the test cases are given in Table 6.2. In order 

to analyse the effect of wave frequency, two different frequencies are used, one being 10 

tiIlles greater than the othel'. 

Case w' i Period \Yaw length 
(5-1 ) (H:: ) (J15 ) (mm) 

High-freqm'nc~' .J.7837 x lO6 7.6 X 105 1.313 2.0 
Low-frequency .J.7837 x 105 7.6 X 104 13.1 20.0 

Table 6.2: Driying pressure parameters 

Tests are also carried uut for large (10mm ::; Res::; 20mm) and small (1 mm ::; 

Res ::; 2 mm) control surface radii (Res), to examine any dependencies bet,\'ecn Res and 

the driving pressure phase aud \\·awlt'ngth. The results (Fig. 6.18 anclG.19) shm\' that the 

formulation gives the same far-fidd pressure signature regardless of the dri\-ing pressure 

frequency and is independent of thc control surface placcment. Fig. 6.18 and 6.1~) also 

show that the start timc of ('(\ch plot is diffncnt for the t\\'() control surface radius sizes. 

This is because calculation of th(' far-fidd prl'ssurl' W<l\-C onl~' starts IylWll the radiating 

PH'SS) Jl'(' wm'l's emi Hed h~' t hl' pulsator reachcs the control surface. This cds\) l'xpbins 

til(' differcnt timl' basl's. 
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Figure 6.18: Control surface radius, Res study for high-frequency v;ave. 
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F igure 6.19: Cont rol surface radius, Res st.udy for low-fr equency wave. 

Control p oint resolut ion study 

The number of cont. rol points (NCP ) C~'xi is ad.i ust.ed by alto .r ing the value of 6.e \\'hich 

aut.omat. ically alt ers t he num ber of geomet ric cont rol point (Cb) in one rotat ion of the 

half circle along the x-a.\:.i s (symmetry a.'Xis). F ig. 6.20(a ) . hows t.hat. the difference in 

t.he far-fi eld pressure signa.t ure is small for 1'..rCP 2': 292. The calculated far-field noise 

approaches t.he analyt. ical solut.ion as the nUl1lber of control point.s inn ea es. T his is 

clearly depicted in F ig. 6.20 (b).In all subsequent "'ork. j\ C P = 1152 is used . 

Timestep study 

Good time resolu tiOll IS nceded t.o resolve det.a.ils such as high-frequenc)' content of the 

solu t. ion on t. he Kirchhoff 's sm facc S. F ig. 6.21 shows t.he effect of t.he number of points 
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Far- lie ld pressure history varia tion with CP resolu tion (Observe, (0,50Q,0]) 
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Figure 6.20: Far-field pressure history for t est cases with differing number of control 
points . Figure (b) is a close-up of t he curve near t he t rough of the signal wave. 

per period and per wavelength in t he retarded t ime. In this study, w = 4.7837 X 106 

F ig. 6.21(b) is a closer look of the curve near the trough at around 330 f-LS . It clearly 

shows t hat the error increases as dt increases especially for the case where dt = 0.064f-Ls , 

i. e about 20 times smaller than t he period of t he signal. The severi ty of the error would 

increase as t he frequency of the source wave increases . The smaller the time step in the 

retarded t ime, the more accurate the prediction of t he noise in the far-field. Therefore , it 

is important t hat the retarded t ime-step chosen for the calculat ion of the far-field is small 

enough to accurately capture t he high-frequency events and d iscont inuities in a signal. 

Determination of t.he optimum retarded t ime step is v ia t rial error and first approx.imat ion 

is made based on the V ucalm simula tion run time step . 

Driving pressure profile analysis 

This analysis is carried out in order t.o det.ermine the code capabilit.y in evaluating the far­

fi eld acousti c signature of a complex driving pressure wave . Two cases are studied here. 

in which t.he d riving pressure is constructed by combing t.wo sinusoidal pressure cycle of 

differing amplit.ude and freq uency. The amplit.ude of t.he t.est signal is such that t.he test 

problems are essent ially linear. The paramet.ers a re given in t.he table below (Table 6.3) . 

Tests are carried out for different. cont.rol surface radius, Res . The results a re presented 

in F ig. 6.22 and 6.23 and clearly show that t.he wave profi le in t. he far-field matches the 

profile of t.he driving preSS lll'e. T he a.greement. holds for va,rious Kirchhoff control surface 

placement.s and sizes . Therefore, it can be concluded that t he code is capable of capt.uring 

the det.ails of complex pressure waves a.nd predict its acoustic signa.t. ure in t.he fa.r- field . 
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Figure 6.21: Resul ts for t im estep study for different Res . Figure (b) is a close-up of curve 
(a) . 

providing t hat t he t ime-step chosen for the analysis is small enough. 

WI Pressure ampli tude PI W2 Pressure amplitude P2 

(8- 1 ) (MPa) (8-1 ) (M Pa) 

4.8 x 106 4.0 2.4 x 106 2. 0 
4.8 x 106 4.0 1.9 X 107 2.0 

Table 6.3: Driving pressure parameters made up of two separate contributors of differing 
pressure ampli t ude, P and frequency. 

DrIVIng pressure profile (Case 1) 
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Figure 6.22 : Case 1. (a) Driving pressure profil e (b) Far-fi eld pressure hi st or~' a t obscrwr 
with coordinates [0 mm, 500 mm, 0 mm] for di fferent. Res . 
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Oriving pressure profI le (Case 2) 
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Figure 6.23: Case 2. (a) Driving pressure profile (b) Far-field pressure history at observer 
with coordinates [0 mm, 500 mm, 0 mm] for d ifferent Res . 
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Figure 6.24: The geomet.ry of the problem for asymmet. ry st ud~·. 

III t.he asy mmet.ry st.udy, t.he centre of the rigid osci llating sphere and t he Kirch­

hoff control surface do not. lie at. t.he same coordinat.es . Thi. is illustrated ill Fig. 6.2.J . 

Therefore, t. he radia.t.ed spherical pressure "vave arrives at each control point.s at differ­

ing t.illle, amplit.ude and phase . The observer coordina.t.es is t.he sam e as in pre\-iOllS 

cases [0 mm, 500 mm, 0 mm], i. e. 50011W?, awc\.y from t.he centre of t.he oscillati ng sphere. 

The Kirchhoff cont.rol surface radius , Res and t.he rigid sphere radius, Rs is 2.0 mm al1d 

0.02 mm respect.ively. The result.s clearly shows exa.c t. agreement. bet.\\'een t.he predict.cd 
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far-field acoustic pressure wave and the analyt ical solution, despite the asymmetry be­

tween the position of the pulsator and the Kirchhoff control surface. 
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Figure 6.25: Asymmet ry study. Comparison of far-fi ld pressure history between numer­
ical and analytical solution. 
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Figure 6.26 : Est.imat.ed far-field pressure time history a t three different. Res . The 1/ucalm 
code was used t.o produce t.be Kirchhoff near field dat.a. 

Vucalm-Kirchhoff Hybrid Calculation 

Test cases were also carried out to invest.igat.e t.be a.ccuracy of t.he Kirchboff control surface 

dat.a calculated using t.be V ucalm code. Tbe layout. of t.be com pu t.at. ional domain IS a ' 
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shown in Fig. 6.17. The far-field results from three different control surface radii were 

calculated, i.c. at. Res = 1.0 mm, Res = 1.25 mm and Res = 1.5 mm. The resolution of 

the Voronoi mesh in the region of the control surface were kept constant for all cases to 

diminatc any possible ambiguity in the results owing to the influence of mesh resolution 

()]) the Kirchhoff integral evaluation. The observer is positioned 500 mm from the centre 

()f the rigid pulsat.or. The l'(~sult is shown in Fig. 6.26. 

The result show t.hat. the ncar field data calculated using V ucalm produces accurate 

estimation of t.he far-field prcss\ll'('- tillle history and is independent of the control surface 

placement. within t.he V ucalm comput.ational domain. However, it is understood that for 

t.he latter, the accuracy of the solution is highly influenced by the density of the CFD 

cOlllputational mesh in t.ll<' proximit.y of the control points. 

6.3.2 FWH Test Cases 

Di/-fcrcnt. set of equations for the pressure and velocity terms are used in order to take into 

account the phase differcn(,e betw('('n the two terms from near-field to the far-field. This is 

hecause unlike the Kirchhoff formulation, an accurate calculation of the particle Yelocity 

is necessary in the surface and ,"oimlle integral of the F\VH method as described in section 

-1.5.2. The amplitude of the test signals for the F\VH test problems satisfies the linear 

waye equation. In addition. since there is a large similarity in the hydrocode structure 

of the two arroacoustic codes and in the \YClY the two arc integrated into '-ucalm. the 

yalidation analysis is not carried out as detailed as that of the Kirchhoff method_ It is 

cOlllprehensible to jwli('Y(' that the analyses shO\\'n aboye anel its results arC' applicable 

here. Therefore, a simple test case is carried out to \'i:llidate the formulation of the F\YH 

code and its ability to predict noise in the far-fidel. The test cases carried out here is to 

('xamined whether the F\\'H formulation has been implemented correctly. The analysis 

is a for a spherical spreading \\'m-e originating from a point source. 

First, consider that the acoustic particle wlocit~- in the r direction. C. is in phase \\'ith 

the acoustic pressure. p, ('\'('ry\\"I1('re in the far-field of a simple acoustic source radiating 

spherical waves. In the far-field. the quantities p and U are related by the characteristic 

impedance as 

p(r, t)/U(T, t) = pc 

In general p and U are related by the T component of Euler's equation [5-1] 
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Suppose that in the near-field of a time harmonic source, the pressure is given by 

eik(r-ci) 

p= -iQs--­
r 

Then the corresponding particle velocity component in the r direction is 

U = ~(1 + ~)p 
pc kr 

(6.30) 

(6.31) 

It is clear from Equation 6.31 above that as kr becomes very large in the far-field, the 

simple plane wave relation (Eqn. 6.28) results. The real parts of Equation 6.30 and 6.31 

are 

p(r, t) = (Qs/r)sin(w(r/c - t) (6.32) 

all( 1 

U( r, t) = (Qs/ per )sin(w(r / c - t)) + (Qs/ kpcr2)cos(w(r / c - t)) (6.33) 

respectively. 

Equation 6.32 and 6.33 are used to generate the data at the control points for input 

to the FWH integral for the far-field calculation. 

Frequency and Control surface Placement/Size Analysis 

The parameters of the driving pressure for the test cases are given in Table 6.'1. 

I Case 
II 

...;.; Qs f Period I \\~aw length I 
(S-l ) (Pa) (Hz) (f-1s) (mm) 

I High-frequency 114.7837 x 10
6 2.0 X 103 7.6 X 105 

1.313 I 2.0 

I Low-frequency 4.7837 x 1()5 2.0 X 1()3 7.6 X 10-1 13.1 20.0 

Table 6.4: Driying pressure parameters 

Tests are carried out for large (5mm ::; Res::; 7.5mm) and small (0.2771771 ::; Res ::; 

2 mm) control surface radii (Res), to examine an~' dependencies between Res and the 

dri\'ing pressure phase and \yawlength. Both the low-frequency and high-frequency 

dri\'ing pressure wave arc m::cd for this (lJla!)'sis. The results are similar to the anal)'­

sis obtained using the Kirchhoff method. Fig. 6.27 and 6.28 shcm' that the predicted 

far-field signature arc indqwndent of l'lllltrol surface placelllent and in ('xcdit'nt agrce­

IlH'ut with the ,uml),tic(\! result regardless of the ciriying pressure frequency. The \\',lY(, 

p<ltterns. phase, amplitude and frequency of the predicted far-fidd noise arc ('sscntiall~' 

i<i('lltical to the analytical result. 
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Figure 6.27: Control surfac ' radius, Res study fo r high-frequency wa\-e (a) 0.2mm < 
Res::; 2.0mm (b) S.Omm ::; Res::; 7.SmnL 

6.3.3 Conclusion 

T he validation of both aeroacoust ic codes, Kirchhoff and F\i',-H , has b en carried out to 

analyse the sensitivit.y of t he methods to various parameters - frequency of the radiated 

pressure wave . size and placement. of the control surface, number of control points, t ime in­

crement. , asymmetry and complex d ri ving pressure. The resul ts obtained using the aeroa­

eoust. ic codes are in excellent agreement \"' it h respective analytical results. Therefore. the 

tests presented in t his chapter shows tha t the developed codes have been implemented 

correct ly. 
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F igure 6.28: Control surface radius, Res study fo r low-frequency \yaw (a) 0.2mm < 
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Chapter 7 

Simulations of Lithotripter Shock 

Wave-Bubble Interaction 

in Free-field 

In the next fc,v chapters. simulations of the response of an air bubble to a lithotripter 

shock wave using the Vucalm Free-Lagrange method are presented. In this chapter. 

shock-induced collapse are investigated for the case when the bubble is in free-field (infi­

nite fluid). 

The objectives of the current simulations are to model the interaction of a lithotripter 

shock wave ,vith a stable spherical bubble, and to observe: 

• the reflection, transmission and refraction of the shock waves as well as the wlocit~­

fields near the bubble. 

• the collapse of a spherical bubble in free-field 

• the formation of t.he high-speed liquid jet and its velocity-time histor~-

• the bubble volullle-time histor~' 

• the effect of mesh resolution on the accuracy of the results 

Besides the numerical simulations of the shock-bubble interaction using F ucalm. pres­

sure time history in the far-field are also calculated using both the Kirchhoff and F\\,H 

aewacoustic codes. Comparisolls bet.ween the results are aIso given. 

The first part of t.his chapt.er was presented at. the 2nd International Confarner of 

Computational Fluid Dynamics in Ju.ly 2002. Sydney. Ausfm!ia. 
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Free-Lagrange Simulations of Shock-Bubble Interaction in ESWL 

Prior to running t he numerical simulations, a consistent methodology regarding some 

numerical aspects was first established. This includes material interface smoothing (arti­

fi cial surface tension) and mesh resolution (grid convergence). 

7.1 Interface Smoothing Algorithm Study 

The effects of different values of the non-dimensional smoothing gain, ex, is demonstrated 

here. The interface smoothing a lgorithm was discussed in Section 4.4.1. Four different 

values of ex were used for the simulations of . hock/ bubble interact ion . The sole purpose 

of th is study is to determine an opt imum value of ex that a llows the bubble to evolve 

nat.urally while effectively maintain a smooth material interface. 

0.6425 mm Rigid boundary 
HI----------------------------------~.I 

....•.. ........•.••••.........•.. ......•• ••••••. .• •.•• ••• ••••.••• .••• % 

H 

Water 

Lithotripter 
shock wave 

Axis of rotational 
symmetry 

0.6 mm 

ISA sea level 
conditions o 

U, 

3 
3 

F igure 7.1: The geometry of the comput.ational domain for near plane rigid boundary 
problem . 

For t.his preliminary st.udy, simulat.ions of single cavitat.ion bubbles near a plane rigid 

boundary arc carri ed out. . The comput.ational domain is shown in Fig. 7.l. The distance of 

the init.ial bubble cent re from t he boundary, d, is 0.0-125 rmn (gi ving a st.and-off parameter. 

( of l.0625) . The bubble initial radius is 0.04mm [29] . A planar li t.hotripter pulse. 

with P+ = 60 !II Pa and P - = -10 !II Pa. propagates t.hrough t.he ,yater from left to 

right. (see Fig. 7.2). T he ,Yater is represented by the Tait Equation of Stat.e (EOS ) and 

is initially at ISA sea level conditions, i. e. t.he pressure, t.emperat.ure and density are 

10l.325 kPa, 288.15 !\' and 1000 kgm- 3 rcspect.ively. The bubble is a sumed t.o contajn 

air and is represent.ed by t.h e idea'! gas EOS. Wit.h ratio of specific heat , = 1.-1. The 

ini t.ial telllperat.urc, densit.y a.nd pressure for t. he a.i r arc 2 8.151( . l.22-16 kg177-3 and 
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Case 1 2 3 4 

Table 7.1: Cases for smoothing gain study 

101.325 kPa respectively. The lower domain boundary represents the axis of symmetry 

while the top and right boundaries arc non-reflecting at all times. All elapsed times are 

llH'asured from the first shock/bubble impact. The lithotripter pulse is introduced by 

illlposing a time-dependent pressure boundary condition on the left boundary. 

10.-----~------~------~-. 

8 

-20L-----~2------~4------~6--~ 

Time , f,LS 

Figure 7.2: I\Iodelled form of ESvVL pressure waveform. 

The analytical expression for the lithotripter pulse shock wave shape can be written 

as follows [22], 

(7.1 ) 

Here, Pa is the amplitude of the shock \\'ave. equal to the postive peak pressure P+ ,\'hen 

the rise time is zero, 0d is the decay constant, 9.1 x 1058- 1 , and ~' = 271 f is the radial 

frequency with f = 83.3 kH::. 

A simulation where no interface smoothing is included ,\'as conducted as a reference 

simulation. Three different slllOothillg gains, 0, ,\'ere used as giwll ill Table 7.1. The 

vcliues for 0: were obtain via a trial and nror method and from the valucs used in the 

validation work. The \'Cliue for ° is problem dependent and therefore furt her studies on the 

effect of the interface sllloothing gain \\'as necessary as the am plitucie of the lit hotri pter 

shock wave is much less than that usee! in the validation ,,'urk. In all the simulations 

carried out, thl' restoring furce distributioll of FB = Fo/2 and F..4. = Fe = Fo/-1 \\Tn' used 

(refer to Fig. ..1. -1). The rcaSOll for ill! pkll!cntillg this modificd SlllUUt hing tcdllliqlll' \\'itS 

giY(,ll in Sectioll -1.-1.4. Dming the earl~' stages of the bubble collapse, the ddul'llwtil)]l of 

Allllwd n .J amaluddill 107 



/ 
/ 

/ 
1<0 
! 

Free-Lagrange Simulations of Shock-Bubble Interaction in ESWL 

(ii) t = 0.206 JLs; 6Pw 

(iv) t 

(a) 

400MPa 6Pa = 50MPa 

400MPa 6Pa = 50MPa 

500MPa l:!.Pa = 400MPa 

! 
! 

/ 

2000MPa 6Pa 

,. 

1000MPa 

(b) 

Figure 7.3: Variations in the dynamics of the bubble and material interface for different 
sIlloothing gains (). Comparison between (a) 0 = 0 and (b) () = '-1 X 103 . ~Ptc and ~Pa 
indicate the incrcments l}('twecn contours in the water and air respectin·l~·. Sulid 'dot' 
indicates initial centrc of the bubble. 
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the bubble surface is minimal. Therefore, the results are identical and the figures of the 

bubble collapse during early collapse stages are not plotted and introduced here. 

However, towards the final stages of the collapse, the bubble undergoes a rapid de­

formation. The upstream bubble wall starts to involute to form a high-speed liquid jet. 

The selection of a suitable valuc of 0' is thndore made based on the comparison of the 

Imbhle cvolution towards the ('nel of the collapse stage. The comparison of the bubble 

collapse bdwccn t = O.19?j f.LS awl t = 0.214 f.Ls are shown in Fig. 7.3 and Fig.7.4. The 

rcsul ts from all three cases show consistcIlcy \vi t h the undamped casco 

At approximately t = O.2()G f.LS. the jet ha') impacted onto the: downstream bubble v,all. 

producing a toroidal buhbl(' awl gencrating a spherical bla')t wave into the surrounding 

wnt(:r. It is clear frolll Fig. 7.3(a)(ii - iv) that for the case when 0' = O. the highlY 

shearing fimv caused wrinkles 011 the bubble interface. Increasing the smoothing gain 0' 

t () .. lOOO illl proved the appearance of the material interface although signs of \\Tinkles on 

the interface still exist as depicted in Fig. 7.J(b)(iii). Following jet impact. the collapsed 

bu bble is drawn into a vortex fiow and llloves closer to the rigid boundary. The thickness 

of the bubble at t = 0.21 ps varies for differmt yalues of 0'. The size of the bubble for the 

CC1S(, when 0' = 16 X lO3 arc bigger tlmll the other three cases at t = 0.24 ps. The restoring 

force associated with the smout hing gain ('xc('ssiyel~' clamps the interface ane! CRuses an 

increase in pressure inside the jmbblc. This dalllpened the collapse of the bubble be~'ond 

jet impact and initiated an earl~' C'xpansion of the bubble. 

Fig. 7.5 shows the bubble volume time history for all four cases. Fig. 7.5( b) is a 

closeup of (a) and it is clear from the results t ha t the excessiw force applied to the 

interface particles \d1<'n the smoothing gain 0' is too high induces a higher collapse rate. 

Gin'n that the simulation \\'ith 0' = () is the jwnch mark for correct ph~'sical features of 

bubble collapse, comparison of bubble shape for various values of 0' shO\\·s that the use 

of 0' = 8 X 103 appears to be optimum in keeping the interface \\-Tinkles to a minimum 

while presen"ing the pb)'sical e\'olution of the bubble. 

Thus, based on the analysis, the restoring force is applied to the target particle and its 

interface neighbours \"ith 0' = 8 X 103 . This valut' of 0' is used for all simulation presented 

later in the report. 

7.2 Mesh Resolution Study 

The initial lllcsh layout of thc computational domain is divided into three regions. The 

first region covers the area wit hin the gas bubblc. The second regions ('O\'ers a fe\\' cells 

t hick around tbe circumfercncc of the air-water interfacc, \"hile the third region surrounds 

hot h the first awl secolld rcgion and is defined here as the main domain area. The \ 'onmoi 
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400MPa t1Pa = 50MPa 

(il) t = 0.206/-Ls; t1Pw 400MPa t1Pa = 50MPa 

(iii) t 0.21/-LS; t1Pw 500MPa t1Pa = 400MPa 

(iv) t = 0.214/-LS; t1Pw 2000 M Pa t1Pa = 1000 M Pa 

(a) (b) 

Figure 7.4: Variations in the dynamics of the bubble and material interface for different 
smoothing gains a. Comparison between (a) a = 8 x 103 and (b) a = 16 x 103 . ~P1C and 
6.Pa indicate the increments bC't\vC'cn contours in the \wtter and air respecti\"el~·. Solid 
'dut' indicates initial centre of the bubble. 
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-Gain=O 
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TimeJ.lli Tjmc~ 

(a) (b) 

Figure 7.5: Bubble volume ratio time history for different value of 0: (b) is a close-up of 
(a) . 

Figure 7. G: Initial Voronoi mcsh used in the Free-Lagrange simulations. Bottom solid 
line is the axis of sYI1lmdr~·. the semi-circular solid linc represents material interface and 
nots indicate positions of fluid particlcs. This figure is a close-up of Fig. 7.G to shm\" the 
Voronoi cells in the bubble ane! near the matl'rial interface. 

llll'sh of the problem ncar the bubble is shown in Fig. 7.6. The first and sccond regions 

arc made Ollt of hexagonal Vorouoi meshes that are generated in a circular manner to 

gi\'c a smooth bubble surface. The s('cond region hO\\"(::'ver. is madc fincr than the first. 

This is because, during the collapse of the bubble, the 1ll00'enH:'nt of particles due to thl' 

formation of the high-specd liquid jet "'ill result in coarser mesh. (:'spcciall~' around the 

cir(')ullfl'rl'uc(' of the bubbl(' surface aud uear the liquid jet mea. Hence. a high iuitialmt'sh 

H's()lutiun is needed to capture the dynamics uf the fimY ()('Curatd~·. and also to maiutilin 

() smooth air-wat('r illterface. r-Iorl'll\·l'r. thl' size of the cumputatilllwl n'lb inlTc(tsl'S 
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gradually furth(~r away from the bubble. In the main domain area on the other hand, 

tIl(' computational cells si;t,e are made much coarser in order to save on computational 

('()st. However care is taken to avoid any sudden change in the cell size at the transition 

boundary between the second region and the main domain area. The cell size of the main 

d()main is approximated from the area of the computational cell in the second region that 

li('S ncar the transition boundary (Fig. 7.7). This is to prevent any abrupt changes in the 

lIl('sh cdl si;t,(' between tlw second region and the main domain. 

I Transition boun 
i++++++-I-+-II-+-I-++-++-fi 

Figure 7.7: Initial Voronoi mcsh used in the Free-Lagrange simulations. depicting the 
lllC'sh transition between the lllain domclin and the second region. 

It is necessary to conduct a grid con\'crgcncc stud\' to determine the optimum degree 

of mesh resolution or nUlllber of grid points required to resol\'e the bubble e\'olution and 

tu capture the dynamics of bubble collapse at minimal computational cost. The initial 

cuuditions are the same as in Section 7.l. The smoothing gain 0: that is used in this stwi\' 

is kept constant at 4.0 x 103 for all cases. Three cases were simulated. "'it h t he number of 

initial grid points set at 6135 for the course mcsh. 32085 for the intermediate mesh and 

7740G for the fine mesh. Fig. 7.8 shows tIl(' initial structure of the 1}' oronoi mesh for all 

three' cases. 

Throughout t.he duratiou of the simulation. t.he number of grid points qULlted alhlH' 

\\'l)1l1d change as a result of t.he' refincment. and derefinement procedure t helt prcH'nts a cell 

Hrccl. ratio mismatch. Thc way in which both 'derefincme'nt' and 'refinC'ment' procedure 

works was cxplained carli('r in the report.. in Section 4.4.3. As the bubble starts tel collapse 

as i1 result. of the interaction \\'ith the litlwtripter shock \\'ewe. the size of the computational 

('<'lIs on the air-water interface, ,\lld ncar the region of the liquid jet. inlTl'a~es duc to mdius 

\·i\riat.ion. Dnring the collapse stage where the jet liquid starts to form, t hc rdillClllCllt 
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(a) Coarse Mesh 

(b) Intermediate Mesh 

(c) Fine Mesh 

F igure 7.8: V O?'onoi mesh of three different initial mesh resolutions . 
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I Case II Initial Grid Points Derefinement td, s 

1 6135 3.0 x 10 1~ 

2 32085 3.0 x 10-12 

3 77406 8.0 x 10-13 

Table 7.2: Cases for grid convergence study 

procedure is automatically executed to bifurcat.e the computational cells of the water 

ill the upstream region near thc interfacc. In cont.rast, the derefinemcnt procedure is 

called in order to reduce: the: high particle number density in air near the yicinity of the 

lJllbble surface as the bubble collapses. The refincment. and derefincment procedure that 

occurs ill air and water arc reversed when the bubble is expanding follO\\"ing t he primary 

c()llapse. Hence, the two procedures control and dictate the grid resolution especially 

twar the air-water interface. 

The derefinement procedure is executed when the time-step of the simulation falls 

below a value predefined by thc user at the start of the simulation. In the three cases 

considered here, three different time-steps that trigger the derefinement \\"ere used. This 

is given in Table 7.2. It is clear that the accuracy of the solution increases as the time-step 

decreases, but at the expense of an increase in computational cost. 

-'-. 
'. . - . - Course mesh 

0.9 - - - Intermediate mesh 
-Fine mesh 

0.8 

r 0.7 
'. '. 

0 0.6 
~ 
CD 0.5 E \ 
:l 
"0 0.4 > 

\ 

CD \ 

:E 
0.3 .Q 

:l 

, 
CD 

0.2 

0.1 

0 
0 0.05 0.1 0.15 0.25 

Time, lIS 

Figure 7.9: Bubble volume time history for various mesh resolution. "\ i is the initial 
bubble volume. The intermediate and fine mesh curves are in very good agreement. 

Fig. 7.9 shows the bubble ,-oIUnH'-tilllt' history of the thrce cases. Time is llle(-1,':;ured 

from the mOlllent the shuck frollt reaches th(' upstream bubble wall. It can be seen 

clearly tha.t thl' bubble volume history of the intertlwciiate and nnl' lllesh nrl' ill YeTY 
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good agreement , from the start of the collapse until the point where the simulat ion was 

stopped at t ~ 0.24 /Ls. The bubble collapse rate in the coarse grid case is greater than 

the other two cases . This is apparent h om t = 0 to t ~ 0.21 /LS, where the bubble st arts 

to rebound. The difference is apparent in t he early stages, i. e. t = 0 to t ~ 0. 15 /LS where 

the collapse for t he bubble with t he course mesh seems to occur earlier in t ime. Since 

the percentage differenc is almost constant during the collapse, the absolute difference 

in volume naturally decrease as t he bubble collapse. . Furthermore, the effect of the 

smoothing interface forces on the fluid interfaces are less for the fine mesh compared 

to the course mesh. This is because, t he distance x which dictate the magni tude of 

th rest.oring forces (Fig. 4.4) is smaller in the fine mesh case compared to the coarse 

mesh problem. Therefore, it is postulated that the interface restoring forces increases 

the bubble collapse rate in the latter. Following bubble rebound , the discrepancy in the 

bubble volume amongst these three mesh resolut ion is minute. The reason for this could 

be att ributed to the fact that the refinement and derefinement procedure that took place 

after the rebound leave the size of the meshes for all t hree cases approximately the same 

in the region of the bubble on rebound. Based on the plotted result for the three different 

grid resolutions, the intermediate mesh resolut ion is optimum in capturing the dynamics 

of the bubble collapse. It is t herefore used for t he simulations that are presented in this 

report unless stated otherwise. 

7.3 Lithotripter shock wave-bubble 

interaction in Free-field 

The simulat.ion of single cavitat.ion bubbles in free-field is presented here. 

1.0mm 
______ 0_. ____________ 0_0 -------0------ x 

ISA sea level 
conditions 

Water 

Kirchhoff/FWH 
control surface 

_.-._._.-. / .. ,.;.... . ... . ... . - .... .... ..... ... . ... 

Pressure record ing >i~int 
AxiS\of rotational 
symmetry 

~ Airbubble 

0.42 mm 

Figure 7.10: The geometry of t he problem. 
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The problem studied in the present work comprises a single spherical Ciir bubble irn­

llIersed in water (Fig. 7.10). The boundary and initial conditions are similar to that 

discussed in Section 7.1. A pressure recording point is positioned on the axis of rotCition, 

D.l i) mm from the initial bubble centre in order to register pressure pulses produced by 

cavitation event. 

The init.ial air bubble radius Ro = Cl.OG mm, which according to Colerrmn tt al. [24] 

was a typical mdius of a secondary stable bubble1
. Recent. findings by Cunningham 

!'/ oI [20] suggest.ed that the radius of a stable air bubble ncar the focal point of the 

lithot.ript.cr shock waw may he as littlc as 40 J-Lm. The work present.ed in this section 

\'·ilS carried out. before such findings were lllade, Cind t.herefore an initial bubble radius of 

G() 1-L1?1 was used. 

Howewr, it. should 1)(' not('(l t.hat the calculations of the predicted far-field pressure 

signat.ure present.cd lat.er in this chapter was made on a collapse of an air bubble with 

illitial radius of 40 J-L1TL. This correction was made in view that the results \\"ere to be 

com pared with those obtaiucd from experimcntal ,York. \Vhen comparisons were made 

betwecn the 40 J-Lm and GO J-Lm bubble radius cases, the results showed that the dynamics 

of the collapsing bubble arc similar. Both rcsults showed the formation of the high-speed 

liquid jet and blast wave from the liquid-liquid impact. The only major difference is in 

t he duration of the collapse and a slight reduction in the magnitude of the blast ,\-ave in 

the GOj.1m radius case. 

7.3.1 Results and discussion 

The rl'sults for the lithotripter shock wave-bubble interaction problem in free-field are 

giwn in Fig. 7.11 and Fig. 7.12. As a result of the profound acoustic impedance mismatch. 

il rdativdy \\"('ak shock is transmitted into the air bubble \\'hen the lithotripter shock (IS) 

(r('fl'r to Fig. 7.12) hits the ll'ft bubble ,,-alL whilst a strong expansion fan is produced 

in the water, running leftwards and up,,·ards (EX in Fig. 7.12(a)). The high particle 

v('loci t)· behind the incident shock causes the bubble wall to deform to the right. A.t 

t = lUl7 j.1S, t ht' incicil'llt shock has traversed almost the full bubble ,,-icit h (Fig. 7.11 (a)). 

Thl' interaction bct\n'cn thl' shock and ('xpansion \\·an's originating at the buhble surface 

rl'sults in v;eakcning and ClllTnture of t hc shock. The a.ir shock propagates mort' sIO\d~· 

awl dccouplcs from thl' illcident shock. The deformation of the upstream bubble \yall 

continucs after the incident shock has passed, beca11se nf the inertia of the water. 

Interaction of the li thotri pter pub' wit h the bub blc causes it to colla pst' rapidl\". Tht' 

I A s('c()]l(lar~· stable bubble is a bubblc ",hidl hilS lH'CIl forllled as a result of the intl'ral"tillil of a 
pl"('("('<iing lithotriptcr pulse with a ci\yitation nucleus. and ,,-hidl hilS reached a stMe nf IlWdWllicill 
('quilibrilllll with the sllI"!"ollll<ling Huit!. 
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t = 0 07 f-Ls 

(a) l:oP", = 10MPa; l:oP" = O.05AIPa 

t = 0.20 f-LS 

(c) l:oP". = 10 MPa: l:oPa = O.51IIPa 

t = 0.23 f-LS 

(e) l:oP" .. = 100 M Pa 

(b) l:oPw = 10 MPa; l:oPa = O .. ')MPa 

t = 0.22 f-LS 

(f) l:oP".=5MPa 

Figure 7.11: Pressure contours for an air bubble impacted by a lithotripter shock Kith 
P+ = gO !II Pa and P- = 10;\1 Pa. Horizontal arrows indicate initial position and size 
uf bubble. The symbols DPu' and DPa indicate the increments between contours in thc 
water and air respectively. 

pressure gradiellt in the water llcar the upstream bubble increases a~ timc progresses. 
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It is clear from Fig. 7.11 t.hat the collapse is asymmetric as the downstream bubble 

wall remains stat.ionary up to about t = 0.11 f-LS (Fig. 7.11(b)). At about t = 0.20 f-LS 

(Fig. 7.11(c)), t.he upstream bubble wall starts to involute to form a distinct jet of liquid 

numing to the right along the symllletry axis. The motion of the bubble during this phase 

is cont.rolled almost. exclusivdy by the iIH~rtia of t.he water. The liquid jet continues to 

accelerate and hits the dowIlstream wall at about t = 0.22 f-LS, isolating a lobe of trapped 

all< 1 highly COlllpl'Cssed gas which form a toroid in three dimensions (Fig. 7.11 (d)). The 

variation ofjd velocity with time is shown in Fig. 7.12(b). The jet continues to accelerate 

as it. pierces the bubble, rcachillg a maximum of over 120() ms- 1 immediately prior to jet 

ilJlpact. It is believed that high-spced jets of this type playa primary role in cavitation 

('J'()sioll [7] as wdl as formation of circular pits and indentation on metal foils [26] as 

discusscd in Chapter 2. It is dear that the initial colLipse and all the bubble motion 

shown in Fig. 7.11 arc driven soldy by the compressive component of the lithotriptcr 

]llllsc as the bubble cloes not ('nCoullter the tensile portion of the pulse before the primary 

('ollapse is com plcte. 

The impact of the jet on t h(' downstream bubble wall produces an intense blast "\\,i:lxe 

in the surrounding water. It also leads to the creation of bubble fragments (Fig. 7.11 (e)). 

Thesc fragments may ('oales('c "'it h t he main cayity or act as nuclei for furt her cayi tation 

('wnts. The peak overpressure excecds 1.0 CPa. As a result of the high wlocit"\· of the jet 

tiuid. thc blast wave acl\'an('('s relatiyd,v slmd~' to the left below the bubble. Consequent 1:,>'. 

the blast front is asymmetric. The interaction between t he high-momentum liquid jet and 

t hc downstream low- momentulll water produces a strong vortex flmy. 

In Fig. 7.11 (e), t he air (,Cl\'it~· is drawn into the yortex core "\yhile the blast "'aw 

cOlltinues to propagate outwards radiall)' from the bubble. The blast "\yan' product'S 

a sharp peak (13\\') 011 the pressure-time histor~' (,Ul'Y(, recorded at the pressure point 

(Fig. 7.12(a)). The strength of tIl(' blast \\'aw decreases a,s it propagates into the sur­

rounding water. The radiated bli:lst "\yan' could explain the large pressure spikes recorded 

b\ Zhong ct al. [107] ncar prilllar~' collapsc in their experiment al studies. 

The time histor~' of the c<t"\'i t)' volume is shmyn in Fig. 7.12 (a). The Hilume reduces 

almost linearly with timc from shock-bubble impact. until the first minimum at t :=:::; 

().22 {LS. The end of t he linear phase COITe lates "\yi th the liquid jet impact. .-\ t this 

time the internal pressure great I)' exc('cds t hat of the surrounding \",ater. and therefore 

t he bubble begins to expand. entering an oscillatun' state "\yith two further cycles of 

expansion and collapse. The sillllllatiun "\\'ClS halted ai't('r the third collapsc. hmn'H'r the 

Gilmore-AkulidH'"\' modd predicts that when the bubble cncounters the tensile portiun 

of the lithotriptcr pulse it will enter a phase of pl'llhmgl,d expansion. fllllmyed hy a s('rics 

of lower-freq HellC)' oscillations [2:2] (n der to Section 2. li.1 in Cha pt cr 2). 
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Figure 7.12: (a) Pressure and bubble volume time history. Pressure is measured at point 
'x' on Fig. 7.10. IS - Lit.hotripter shock, EX - Expansion waves, BW - Blast wave (b) 
Liquid jet. velocit.y history. 

7.3.2 Far-field Pressure Signature 

y 

x 

Figure 7.13: N oml'nclaturc and the aero-acoustic problem geollletr~·. 

A spherical cont.rol surface for the (,YHluHtion of the Kirchhoff and F\YH integrals 

IS positioned in the 1/ ucalm CFD computational domain as shown in Fig. 7.10. The 

Ahmad R Jamaluddin 1 EJ 



Free-Lagrange Simulations of Shock-Bubble Interaction in ESWL 

radius of the coutrol surface is Res = 0.2 mm and the number of control points along t he 

half circumference of the surface is 90 . In the calculation, the observer is placed at a 

dist ance of 150 mm from the initial bubble cent re, i. e. rb = 150 mm. This value is chosen 

because it is typical of the radiat ion distance wave from the lithotripter focal point to t he 

hyd rophone placed on the pat ient's skin during clinical in-vivo treatment. 

The nomenclature, geometry and reference frame for th aero-acoustic problems are 

ill ustrated in Fig. 7.13. The nomenclature used here in describing the observer position is 

identical to the one used for structuring and discretisation of the spherical control surface 

as described in Chapter 5 in Sect ion 4.5.1. The reference fram e (x, y, z) in Fig. 7.13 is 

analogous to the one used in the Vucalm formulation, i .. the lithotripter shock wave 

propagates in positive-x direction. However, in t he latter , t he x-axis represent the a.xis of 

symmetry. 

x 

• Observer 
Radiation path 

Figure 7.14: Blast wave radiation path to observer for different e and ¢ on the XY-plane. 

The variables e and ¢ are used to described the posit ion of the obsen -er. while Tb is 

the observer distance measureu from t.he ini t. ial bubble centre. Based on the geometry 

shown in Fig. 7.13 , t he polar coordinat.es for allY point. on t.he control surface and the 

observer are easily givell by, 

x I'b sin e sin 0 

z 7'& cos e sill ¢ (7.2) 
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and 

Kirchhoff Results 
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Figure 7.15: The free-field pressure signature predicted using the Kirchhoff method at an 
observer positioned 150 mm from the ini t ial bubble centre. The results for various e and 
¢ are plotted for comparison. 

Fig. 7.15 shows the pressure-time history calculated in the far-field using the Kirchhoff 

formul ation given in Eqn. 4.41. Results for various e and ¢ are plotted for comparison in 

order to determine the variat ion in the far-field pressure profile at different observer po­

sition and the dependency on the directionali ty of the li thotrip ter shock \Yaw. The same 

set. of integrat.ion surface and CFD input dat.a were used for all calculations. Calculations 

were also carried out. for bubble-fr e problems where no li t.hotript.er shock wave-bubble 

interact ion occurs (plot.ted as dashed lines in Fig. 7.15) . In t.hese cases. an 'empty' compu­

tational domain is created and t he shock wave is allowed to propagate across the Kirchhoff 

control surface. This calculat ion is necessary because the Kirchhoff formulat ion assumes 

that the ent ire source region is enclosed within the surface . Therefore, the contribution 

of the shock wave to the near-field input data could be a source of error in t.he prediction 

of t he far-field noise. However, the results in Fig. 7.15 (dott.ed curves) show t.hat the 

'sweeping' of the propagating shock waves across t.he cont. rol surface has minimal effect 

on the ampli t ude and profile of the far-fi eld waveforms resul t.ing from the shock-bubble 

interaction. 
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Comparison can be also made between the near-fidd pressure-time history (Fig. 7.12( a)) 

(\IJ( I the predicted far-field aeroacoustic waveforms (Fig. 7.15). The plotted results from 

the Kirchhoff calculations (Fig. 7.15) show that the predicted far-field pressure profile has 

silllilar characterist.ics t.o that calculat.ed directly from CFD calculation (Fig. 7.12(a)). 

Tlw trough of the (~xpallsi()ll wave and the stmrp peak of the spherical bl<::l.st W<::lve gener­

a1ed by the liquid jet iIllpact on the downstream bubble wall are c:le<::lrly captured. Owing 

to the aSYlllmdry of t.he bubble collapse, the peak positive pressure of the blast v,ave 

is greater when e = ~JOO, i.c. the observer is positioned closer t.o the origill of the blast 

wave compared to whell e = 27()o. As the observer position is rotated on the XY-plcule 

fWIll e = 00°, ¢ = GO° (blue lille) to e = 270°, ¢ = 60° (red line), the \van's travel longer 

distance to arrive at the observer locatioll and therefore, the amplitude of the pressure 

s('('n by the observer decreases. However, since Res = 0.2 mm and observer position 

I'd = 150 mm, the lIlCLXi!ll1ll1l variation in path length for the blast wave with e is only of 

tl](' order (l.OS %. Therefore. it is ]H'lieved that the directional nature of the blast \"'aye is 

lllOl"(' likely to explain the 0 bs('rvations. 

FWH Results 

Although discussion 011 the advantages and disadvantages of the FWH formulation and 

the Kirchhoff formulation \vere giY(,ll in Chapter 4, the deciding factor is how \\"ell these 

methods compare in practice. According to di Francescantonio [34] the main ad,'antage 

tu applying the F\YH equation on a Kirchhoff-type integration surface is that interaction 

\\'it h CFD codes is easier because the Ilormal derivative of pressure is no longer required. 

Alt hough this is true in most CFD numerical simulation, the calculation of the normal 

derinLtives in the V ucalm code is ('asil~' and rcaclil~' obtained. Furthermore. the calcula­

tions carried out in this \\"l)rk and in pn'yious test cases do nut include t he quadrupole 

source term, \\'hich grcatl~' simplified the cwroacoustic problelll. 

It is important to note here that the llulllcrical accur(K~' of both the Eirchhoff and 

F\YH codes arc wr~' similar because the Cjuadrature is based on the CFD grid. i.e. all 

retarded time com putatillns <::lnd quadrature points are identical for these 1\\'0 codes. Fur­

tl)('rmore, the characteristics of the control surface are identical \\"here a spherical contrul 

surface is used. In addi tioll in both methods. similar discretisation of t he surface and 

spatial interpolation tecllllique uf the input data arc im plc'mented. .-\8 in the Eirch­

hoff problem discussed abuw, the integration surface is located 150 m m from the initial 

bubble ccntre. The cakuliltion is perfurmcd un 00 control points placed along t he half 

circumferellce of thc axis),lllllldric control surface. 

The results of tIll' pH'dided far-field noise using thc F\\'H method for contrul SurfclCC 

radii of 0.2 1n771 and O.:3G I7lln me shown ill Fig. I. Hi and Fig. 1.11 rcspectiwh-. The rl':mlts 
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Figure 7.16 : The fr e-field pressure signature predicted using the FWH method at an 
observer positioned 150 mm from the initial bubble centre, The resul ts for various e and 
¢ are plot. ted for comparison. Cont rol surface radius, Res = 0.2 mm. 

for Res = 0.2mm are in agreement wit.h t.hat of the Kirchhoff results (Fig. 7.15 ). The 

vari ation of t.he pres. ure waveform for different. observer posit ion agrees v,'ell. However. 

as t.he cont. rol surface radius is increased t.o 0. 35 m m the amplitude of t.he far-fi eld pres­

sure is malleI' for all 5 observer positions. This could be attri but.ed t.o t he att.enuation 

and spreading of the near-fi eld pressure in \I ucalm calculation as it propagates across 

a coarser mesh. Another explanation for t he difference could be att.ributed direct ly to 

the formulation of the FWH code itself. According t.o Brentner 8.: Farassat [17] and di 

FJ·ancescant.onio [34], as t he integration surface is moved farther away, more and more of 

the quadrupole source cont.ribut ion is accounted for by t.he surface int.egrals. Hence, t he 

reduct. ion in t.he amplitude of t he far-field blast. wave pressure might. be because of the in­

clusion of higher degree of non-linearit.y in t.he F\ i\TH calculation. The nonlinearit.y causes 

steepening and shock dissipation. However, if this was th case , one would expect. t he 

difference betvveen t.he t.wo methods to be greater 'when Res = 0.2 rnm .. This is because 

t.he degree of nonlinearity is great.er when Res = 0.2 mm, t.han when Res = 0.35 mm. T he 

Kirchhoff met.hod is expected t.o be prone t.o error if t.he cont.rol surface is in non-lineal' re­

gion, while F\tVH is not. However , t.he results presented here show t.hat the Kirchhoff and 

F\iVH met.hods agree well for Res = O.2mm, Therefore, it. is unlikely t.ha.t. the discrepancy 
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F igure 7.17: The free-field pressure signature predicted using the FW H method at an 
observer posit ioned 150 mm from the initial bubble centre. The resul ts for various e and 
¢ are plotted for comparison. Cont rol surface radius, Res = 0.35 m m . 

is due to the greater non-linearity in region Res = 0.2 mm. One possible explanation is 

t he dissipat ion and dispersion errors due to coarsening of t he Voronoi mesh in t he Vucalm 

calculat ion. 

7.3. 3 N on-linear Wave Propagation 

T he usually assumed lin arity of acoust ic pressure with density is only an approximation 

valid at infinitesimal ampli tudes. A more accurate pressure densit.y relat ionshi p is giw n 

by t he series expansion, 
2 1 C6 B 2 

P = CoP + 2 Po A P + ... (7.-1 ) 

where Co is sound speed and B / A is t.he second order parameter of nonlinearity. Excluding 

the second t erm in Eqn . 7.4 lea,ds to linear acoustics, Keeping the fi rst h' .. o terms enables 

one to deal wit h problems in nonlinear acoustics. 

Nonlinear absorption is a process associated wi t. h nonlinear propagation t hat leads to 

a change in the aIll pli t.ude and shape of t he propagat ing wave, A met hod for t. ransforming 

plane'-wave solu t ions to account for spreading of spherical wav ,s is given in Hamil ton and 

Blackstock [44] . The solll tion fo r the pressure of a spherical wave \,'it h source' condition 
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p = f(t) at l' = 1'0 is given by Eqn. 7.5. 

1'0 j3p1' l' 
p(1', T) = - f( T ± - 3 In -) 

l' PO Co 1'0 
(7. 5) 

where T is the radial coordinate (defined posit ive outward), P is the density, c is t he sound 

speed , T is the coordinate for the ret arded time frame (i.e. T = t =f (1' - 1'o)/eo) and j3 

is t he t radit ional coeffi cient of nonlinearity for the fluid in which the wave propagates, 

given by 1 + 2~ ' 
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Figure 7.18: The pressure-time history at a control point . 

The pressure-t ime history recorded at. one of the control points on the cont rol surface is 

depict.ed in Fig. 7.18. The pressure-time history for a bubble-free problem is also plotted . 

For simplicity, we will ignore pressure cont.ribut ion from other cont rol point.s . Notice 

that in Eqn. 7.5 for any distance T, the higher pressure values will travel faster t. han t he 

lower pressure values . As a resnlt , at some propagation distance. t. he high ampli tude 

compressional pressure will overtake the lower pressure portion of t.he waveform. The 

nonlinearit.y effect on the pressure plot.t.ed in Fig. 7.18 is given in Fig. 7.19. The solution 

is no longer valid be .ause it predicts a multivalned waveform , which is not. physical 

The acoust ic propagation to t.he far-fi eld using the Eirchhoff and FV,-H methods dis­

cussed above were performed using linear wave propagation. Given the ampli t udes and 

distances involved , SO Ule addit.ional non-linear propagation may have occurred which ,yill 

have changed t.he sil c1,pe of the waveforms observed. The extent. of t. his effect. can be 

est imated by analysing t,he nonliucar spherical wave propagation as shown in Fig. 7.19. 
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Figure 7.19: The effect of non-linearity on the pressure amplitude and shape of the 
\\"Cweform shown in Fig. 7.18 

It is clear that the solution predicts multi-valued waveform. Technically the waw 

should be propagated in small steps. Each time the wave starts to become multi-valued 

t he multi-valued region should be replaced \",ith a shock front using the equal area rule 

(sec reference [44], page 1(2). The shock is then propagated at the mean of the t\yO 

wlocities appropriate to the pressures either side of the shock front. This is a ,,"eak shock 

Illodel. However. this approach was not taken. but it \\'ould remove the nmlti-,'alued 

reglOllS. 

7.3.4 Conclusion 

The simulation of the Dea.r field interaction of a single air bubble with a lithotripter pulse. 

i 11 el.."\:is~"mm('tri(' form. has becll performcd using the Free-Lagrange code \" ucal m. The 

results showed that the met hod allows sharp capture of the bubble boundar~" at all times 

alld su('('('ssfull~" predicts mClll\" details of the shock/bubble interactioll. The impact of the 

shock 011 the upstream 111lbbll' \\"all causes it to inyolute and form a jet of liquid. The jet 

pelletrates the interior of the bubble (mel strikes the dowllstream wall. generating a strong 

Ilcar-spherical blast ,,"ewe into the SlllTolUlding fluid. Successive c~"cles of rebound and. 

('()lliLpse occur prior to the long expansioll phase. each collapse of the bllbbll' ('mitting \wak 

pn'SSUl"<' waves into the surr01Ulding ,,"ater. This is predicted b~· the Gillllore- .4 .. klllichc\" 

nH)(lcl but has becn oyerlookl'cl by othcr ,,·or].;:crs. It is postulated that the liquid jet 

nlld strong spherical blast ""il\"(, Illay assist ill thl' fragml'lltation of kidlll'\" stOHl'S during 

dinical lith()trips~". 
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Comparison of the two aeroacoustic tools: the FWH equation and the Kirchhoff for-

1111l1ation for a stationary surface has been discussed. The FWH approach can include 

llonlincar fiow effects in the surfacc integration if the usual assumption of impenetrable 

smfacc is rdaxcd. Both the expansion wave and the intense blast wave were sharply 

captured in the far-fidd using both methods. The results also showed good agreement 

()]I integration surface locat(~cl at Res = 0.2 mm from the initial bubble centre, but F\VH 

sh(}wed a n~duction in the amplitude of the blcL.'..,t wave when the F\;YH control surface is 

positioIled at Res = 0.35 mm. However, with the current information gathereel ancl clue 

to lilllited time, it is not possible to determine the exact explanation for the differences. 
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Chapter 8 

Simulations of Lithotripter Shock 

Wave-Bubble Interaction 

Near a Solid Wall 

Numerical simulations of single bubble collapse near, or in contact with, a plane rigid 

houndary are presenteel in this chapter. Simulation runs are carried out at various stand­

off distances. 

The objectives of the current chapter are to investigate: 

• the reflection, transmission and refraction of the shock waves as well as the velocity 

fields near the bubble. 

• the collapse of a spherical bubble near a solid boundary and that of an attached 

bubble 

• the effect of the dimensionless stand-off distance parameter, ( 

• the formation of the high-speed liquid jet and the velocity-time history 

• the pressure-time history measured on the rigid wall 

• the bubble volume-time history 

The pressure time histories in the far-field are presented and comparisons between the 

F\VH and Kirchhoff results are discussed. 

8.1 Computational Domain and Initial Conditions 

The problem chosen to stud~' the interaction of a single spherical air bubble immCl"sed 

in water ncar a solid boundary with a lithotripter shock wave is Shm\"11 ill Fig. 8.1. The 
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Figure 8.l: The geometry of the problem. Not to scale. 

ini t ial density for air and water are 1.2246 kgm - 3 and 1000 kgm- 3 respectively ,vhile t he 

initi al temperature and pressure for both fluids are O.I M P a and 288 .15 K. The init ial 

air bubble radius Ro = 0.04 mm [24], while d is the distance of t he init ial bubble cent re 

to t he boundary. 

At the initiation of the calculation, in a manner similar to the problem in 'free­

field ' (see Section 7.3), t he li thotripter pulse is int roduced by im posing a time-dependent 

pressure boundary condit ion on t he left boundary. A planar lithotripter pulse, wi t h 

P + = 60 M P a and P - = -10 JI.J P a, propagates t hrough the water from left to right . 

The top boundary is non-refl ecting at all t imes . A pressure recording point is posit ioned at 

t he solid boundary on the a..xis of symmet ry, in order to regist r pressure pulses produced 

by t he cavi t.at ion event . A mesh of approximately 35 x 103 cells has been used. The lower 

domain boundary represents t he a..xis of symmetry. All elapsed times are measured from 

the first. shock/ bubble impact. 

The Kirchhoff and t he F\I\-H control surface is shown in Fig. 8.1. The radius of t he 

control surface is Res = 0.2nwl and the number of control points along the half circum­

ference of the surface is 90. In the calculation , the observer is placed at. a distance of 

150 mm from the initial bubble centre, a t 5 different location on the XY - plane wi th 

Tb = 150 m m. Beyond the rigid boundary, t.he cont rol points lie outside t.he CFD compu­

tational domain (dott.ed line) and t.he dat.a recorded at each of t. hese point.s are fo r ambient 

conditions with zero pressure disturbance, pi = O. Therefor e, t.he only cont. ribut.ors t.o 

the far-field pressure signature are the cont rol point.s tha t. lie wit.hin t.he computational 

domain (shown as dashed line) . 

The parameters of the simulat ions are given in Table 8.1. The initi al bubble rad ius 
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Case Initial Radius, Shock Strength, Distance, Stand-off distance, 
Ro (pm) P+ (MPa) d (pm) ( 

1 40 60 42.5 1.0625 
2 40 60 45.0 1.125 
:3 40 60 55.0 1.375 
4 40 60 65.0 1.625 
5 40 GO 75.0 1.875 
6 40 60 85.0 2.125 

Table 8.1: Various cases for 'stand-off distance study 

awl lit.hot.ript.er shock st.rellgth are kept constant in the study, while varying the distance 

of t he bubble centre from t.hc solid wall. In t.he calculation of the parameter 'stand-off 

<list ance', t.he value for Rmax is taken as the bubble initial radius. This assumes that the 

illitial radius is the maxiIllum radius the bubble before it is collapsed by the lithotripter 

sIwek wave. TIl(' water is n~pr(,sl'ntcd by the Tait EOS and is initially at ISA sea level 

cOllditions. Tlw bubble is assumcd to contain air and is represented by the ideal gas EOS. 

Thus the ratio of specific heat, !. is 1.4. 

8.2 Results and Discussion 

8.2.1 Detailed analysis of ( = 1.0625 (Case 1) 

III this problem, the aSYIllmetric collapse ofthe bubble is induced not onl)' by the relatiYely 

strong incident lit.hot.riptcr shock wave but also by the presence of the rigid boundar)' in 

the \'icinity of the bubble. These two factors are contributory elements to a full description 

()f t he bubble collapse processes. The results of shock/bubble interaction for Case 1 is 

giwn ill Fig. 8.2-8.-1 in \yhich pressure contours arc plotted to illustrate the changes in 

1m hble d)'namics and ill t he surrounding fluid. The stand-off distance for this problem is 

1. ()G25. 

Fig. 8.2(a) is 0.02 {IS after shock impact. As a result of tIl(' large difference in acoustic 

illl pedance betwcen t he air and \\"Clter. a \\"('ak shock is transmitted into the air and a rt'la­

t iydy strollg expansion \YClH' is generated in t he surrounding \\·ater \y hen t he Ii thot ri pteI' 

shuck wave strikes the upstrcClm bub blc wall. The particlc \'docit)' behind the shock is 

high and therefore a large monH'ntlll11 will impact thc gas-water interface. This causes the 

1m h ble wall to deform to tl)(' right. Fig. 8.2 (b) om\'cuds shm\' the reflection of the shock 011 

t he air / wat.er i11!.erfacc, \V here it is reflected as an t'xpa11sion \ya\,e. The expansion ,,'an's 

propagates Idtwards alld \lp\yards \\·hile the main incident shock tran'rs{'s dO\\'l1strcam 
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~water=5 MP 
~air=0.025 

(a) t = 0.02/-,8; ( = 1.0625 

~water = 5 MPa 
~air = 0.025 MPa 

(c) t = 0.06/-,8; ( = 1.0625 

(e) t = 0.10/-,8;( = 1.0625 

~warer = 5 MPa 
~air = 0.025 MPa 

(b) t = 0.04/-,8; ( = 1.0625 

~warer = 5 MPa 
~air = 0.025 MPa 

(d) t = 0.08/-,8; (; = 1.0625 

(f) t = 0.12/-,8; ( = 1.0625 

Figure 8.2: Pressure cont.ours of a bubble with initial radius Ro = 40 pm collapsed by 
(\ lithotript.cr shock wave with strengt.h of P+ = 60 l\I Pa. The stand-off pam.nIeter.,,- is 
1.()()2G. 
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and impact on the right solid wall. Although the transmitted shock inside the bubble 

is very weak compared to the compressive wave of the lithotripter shock, it will induce 

substantial heating of the bubble gas. 

The interaction between the incident lithotriptcr shock and the expansion waves orig­

illa1ing at the 111lbbk surfacc has rcsultc:d in significant weah~ning of the shock. At 

I '" O. U(j f.L8 (Fig. i).2 ((:)), the incident shock has traversed the full bubble width and 

illl pacts on the nearby solid boundary. The rdh~cted shock further interacts with the 

('xpansion wave and is weakcncd further. At this moment, the top of the interface starts 

tu collapse. Thc shock which has be('n transmitted into the air bubble \yill propagate 

Il)()j"(' slowly awl will decouple frOlll tlH~ incident shock while the bubble wall continues 

tCl deform. HowevCT, the downstream bubble wall nearest to the solid boundary is not 

a\\',1J"{' of the pH'sence of the shock and is not affected by the shock impact. This results 

in the asymmetric mOYCllH'nt of t Ill: bubble \yall \\There the upstream part of the bubble 

illtcTface lllo\TS rapidly to the right, while the downstream wall of the bubble remains 

st<1 tic. The refkcted shock iIll pacts 011 t he downstream side of the bubble and strengthens 

t 11(' air shock. The impact also increases the incidence angle of the air shock at the point 

uf shock contact on the bubble interface. The smooth curvature of the air shock \yhich 

("(mfonns to the upstrealll bubble interfacc shape is disrupted b~' a \yeak transmitted air 

shock from the top right of the bubble surface. 

The pressure gradient in t he water near the top of the bubble increases as time pro­

gresses (Fig. i).:3( a )-(f)). The pressure gradients drive the particles to flmy tmyard the 

111lbble. Further interaction \\'ith the reflected incident shock leads to a build up of 

n0l1-unifonn pressure distribution around the bubble surface with the pressure on the 

upstrealll higher than that on the downstream side ncar the solid boundar\". As the re­

ficct('d shock lllOWS on. the \\'hole bubble is enclosed b~' a higher pressure and collapses 

frOlll all sides. ~·('t asymml'tricall~' due to the unequal momentum transfer and pressure 

distribution at different parts of the bubble \yall. At t = O.()1-+~18 after shock impact. the 

bu h1>l(' has lost its spherical s~·mIlldry. It is clear that the flO\\' conn'rges towards the 

rigid bounda.ry (mel in thc' direction perpcndicular to the incident shock [1-+. 15]. 

The initiall)' \H'ak air shock propagating \yithin the bubble has strengt hened due to 

the focusing effect arising frulll the spherical gcolllctr~' of t he problem and CUlTature of 

the bubble in1crface (Fig. 8.:3(a)). I3y t = O.I.J ~lS, the left llloying reflected shock has 

tn)\'crsed the full bubble width. se\'erd~' \wCl.kened as it trmTrs('s through the expansion 

\Y<lY(' originating from the bubble surface. As depicted in Fig. 8.:3 (b). t he shock \yi thin 

the gas COll\'t'l-gt'S ncar the dmynstream wall of the bubble and \yill result in an increast' 

in pressure in that region. The iutricate shape of the air shuck is a consequence of 

but h the geoIlletry of the bubble \\'nl1 which confine'S the shock and the \'"uia tion of the 
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!-',(,()Ilwtry with timc. Morr~over, the spatially non-uniform deformation of the bubble wall 

yields a higher water velocity on the bubble centreline. This in turn generates additional 

cOlJlpression waves in the air near the upstream bubble wall, which strengthen the air 

shock. This is as shown in Fig. 8.3( c)-(f) and Fig. 8.4 onwards. 

Whell t = O.18p,s (Fig. 8.4(a)), it is clear that the bubble has elongated and the 

d()wllstream bubblc wall has flatt(~IHXl d1H:~ to the presence of the solid boundary. The 

welter on the upstwam wall accelerates towards the rigid wall, but the water layer trapped 

1 )('tWCCll the downstream bubble wall and the rigid boundary appears to stagnate. The 

slight elongation of bubble in the axial c1in~cti()n is due to the interaction with the reflected 

illcideIlt shock which induccs the contractioIl of the top bubble surface. This bubble 

l)('lmviom or deformation is not scen in the problem for shock-bubble interaction in free­

field. At this stage. the bubble undergoes a rapid deformation with a formation of a 

distillct liquid jet nllllling to the right along the symmetry axis (Fig. 8 . .J(a)). Another 

kilt me which is not se('l) ill the fre(~-fidd problem is in the shape of the liquid jet head. 

Tlwre appears to be an illdelltation ill the jet tip on the symmetry axis. This is clearly 

(kpicted in the lllagnification of Fig. 8.4(a). It is postulated that this resulted from a 

recirculating fluw at the tip of the jet, illduced llear the upstream of the bubble \yall from 

t h(' illteraction of the reflected incident shock \\"ith the strong expansion ,,·ave originating 

fmlll the bubble surface. Furtherlllore, as the jet deforms the upstream bubble VI-all. 

cOlllpression wan's are produced in the air. The build up in pressure near the proximity 

of the liquid jet induces a secondary air shock. ,,·hich propagatps to the right \yit hin the 

1m b hIe. 

After O.18.J JiS after shuck impact, tllE:' jet tip is lllore pronounced and has reached half 

\\'(l\' through the collapsing bubble (Fig 8.-±(b)). As the jet accelerates tmyards the rigid 

huundar~·. the pressure inside the 1mbblc increases rapidl~-. The strength of the secondary 

air shock illcreases and illlpacts Oll the opposite bubble surfacp. This shock has formed 

all oblique rcflection at the top bubhle ,,·all. The incidence angle at the point of reflection 

in("l"e(ls('s \\"it h time d u(' to t he wall curvature but \vill undergo a near-normal reflection 

on t 11(' downstream \\"cdl which has flattened due to t he presence of the solid boundan·. 

The liquid jet hits the downstrealll wall bet\H'en franH's Fig. 8.-±( b) and (c). On impact. 

the jet prod un's em intcnse blast wave ill the surrounding water. The maximum effect of 

t he blast waw is localised at the point of liquid-liquid impact and the peak 0\"(,'1'-pressure 

de("i1Ys rapidly with distm)('e from the jet impact point. 

At t = o. H)21IS, the j<:'t has penetrated through the bubble, isolating a lobe of trapped 

air and highl~· COlllj)lTss('d gas that reselllbles a tear-drop (Fig. 8.4( d)). It also leads to 

the creatioll of bubble fraglllents, originating from the air la~n· trapped bet\wen the jet 

tip awl the downstream int('rfacc prior to impact. This is probably c1 ll1Ulwrical artd<ll"t 

Ahmad n Jamaluddin 133 



Free-Lagrange Simulations of Shock-Bubble Interaction in ESWL 

(a) t = 0.14 J1.S; ( = 1.0625 

(e) t = 0.164jJ.S; (= 1.0625 

LlPwater = 20 MPa 
LlPair = 2.4 MPa 

(e) t = 0.172 J1.S; ( = 1.0625 

(b) t = 0.16 J1.S; ( = 1.0625 

LlPwater = 20 MPa 
LlPair = 0.8 MPa 

(d) t = 0.168J1.s; (= 1.0625 

LlPwater = 40 MPa 
LlPair= 10 MPa 

(f) t = 0.176 J1.s; ( = 1.0625 

Figure 8.3: Pressure contours of a bubble with initial radius Ro = 40 fLTn collapsed b~· 
a lit.hotripter shock wave with strength of P+ = 60 iII Pa. The stand-off paramctcr.( is 
l.(lG25. 
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M'warer = 50 MPa 
M'air= 12MPa 

(a) t = 0.18 JlS; ( = 1.0625 

M'warer = 200 MPa 
M'air = 200 MPa 

(c) t = 0.188 JlS; ( = 1.0625 

M'water = 150 MPa 
M'air= 100MPa 

(e) t = 0.196 Jl8; ( = 1.0625 

M'warer = 50 MPa 
M' air = 20 MPa 

(b) t = 0.184Jls; (= 1.0625 

M'warer = 200 MPa 
M' air = 200 Mpa 

(d) t = 0.192Jl8;( = 1.0625 

M'warer = 100 MPa 
M'air = 50 MPa 

(f) t = 0.200 Jl8; ( = 1.0625 

Figure 8.4: Pressure contours of a bubble with initial radius Ro = 40 pm collapsed b~' 

a lit.hot.ript.er shock wave wit.h strengt.h of P+ = 60 !II Pa. The stand-off param(:ter.( is 
1.()(j25. The insert. frame is a magnification of the flow and bubble interface. 
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, although it is possible that such a mechanism could occur in reality. However, it is 

very difficult to quantify experimentally due to the physical size and time scale of the 

problem. If such tiny isolated islands of gas do exist, they may coalesce with the main 

cavity as the fiow evolves or act as nuclei for further cavitation events. The interaction 

()f these' nuclei with the tensile part of the lithotriptel' shock wave will cause them to 

expand and collapse, either spherically or asymIJlctrically, depending on the nature of the 

flO\\' around the bubble and the degree of infiuence of the nearby solid boundary. These 

1 J1l bhl(: fragments could also be collapsed by shock waves emitted from the collapse of 

ll('ighbouring 1m h bl(~s. 

The interaction between the high-momentuIll liquid jet and the downstream low­

lllOllle'lltmll water prod uees a strong toroidal vortex fiow. In addition, the fiu\\" is also 

r('directed radially along t he rigid boundary. As a result of the high-velocity in the jet 

fillie!, the blast waY(' advanc(~s relatively slowl)T to the left below the bubble (Fig. 8.4( d)). 

The Strollg spherical blast \vave propagating to the right will impact on the rigid boundar)' 

,\!le! will he refiected back into t he surrounding fi uid. Part of this \vave \\'ill interact \vit h 

11)(' n'maining ('(witv (Fig. 8.4(f)). 

III Fig. 8.4( e) and (f), the air cavity as well as the bubble fragments are drawn into the 

\'()rtex core that brings the bubble even closer to the solid boundary. The rebound and 

collapse of this air cavity is C'xpected to cause further damage to the nearby solid bound­

my This has been postulated by Shima [79], who identified four damage mechanisms 

hum bubble collapse positioned either very close or attached to a solid boundary: 

l. primary bubble collapse 

2. the impact of the high-speed liquid jet on the dO\vnstream bubble v,'all 

J. the collapses of man)' minute bubbles (bubble fragments) from the interaction be­

t\ve('ll the outward radial flow follO\ving the liquid jet impact and the collapsing 

bubble surface 

-1. the rebound of the torus-like bubble. 

The damage pattern arising from these impulsive pressure and jet formation of the main 

cC\yity awl bubble fragments has been observed on 0.02 rmn thick aluminum foil and 

iudium speciIllCll by Coleman ct al. [26] and Tomita and Shima [87] respectiwl)'. The 

rebound of the ('(wity occurs soon after the jet impact when the air inside the bubble 

l)('nlllH's highly compn'ssed. Simila.rly to the free-fidd problem, a second collapse is 

('xpected tu take place \\' hen the bub bIe pressure drops below the surroundillg "'ater 

pressure. 
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Upstream and Downstream Bubble Wall Velocity Time History 
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Figure 8.5: Upstream and downst ream bubble wall velocity time history. Comparison for 
different stand-off distance (SD), (, as given in Table 8.1. 

8.2.2 The effect of Stand-off Distance, (, on the bubble behav-

lour 

In t his sect ion , studies are made to observe t he behaviour of t he air bubble at SLX different 

stand-off distances from the solid boundary. The ini t ial condi t ions of t he various problems 

are similar to Case 1 and have been given earlier in this chapter. The various parameters 

are summarised in Table 8.1. 

The vari ation of the bubble wall velocity fo r different stand-off distance is depicted in 

Fig. 8.5 . Upstream bubble wall velocity (UV) refers t o the wall velocity of the upstream 

wall near the symmetry axis, which will lat.er deform into a high-speed liquid jet . The 

jet t ip velocity of the collapsing bubble is measured by taking t he average of t he absolute 

velocity of particles at the t ip of t he jet. (identified as particles on t he interface and t.he 

symmetry axis) . It should be recalled here t.ha t. t he jet has a 3D a.xisymmetrical structure 

in t hat it is a body of revolution. The reason why it is important here is because the 

liquid jet has an off-a.xis component which is slightly divergent. The jet has a concave 

tip such that the leading annular front of t he jet \.vill actually impact on the dmn1st ream 

wall earlier than the jct centrelinc. However , t he average motion of t he liquid jet is along 

the a..xis of symmetry and therefore, the value calculated here gives a good approximation 

of t he jet velocity. T he downstream bubble wall velocity (DV) on the other hand is the 
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wall velocity of the bubble in contact with the axis of symmetry and nearest to the solid 

1)( lllIldary. 

The solid curV(;S and t.he dashed line represents UV and DV respectively. All six cases 

a show similar trend in t.hat the velocity of the wall increases towards the end of the 

c()llapse phase. As discllssed in Cbapt.er 2, the asymmetry in the collapse of the bubble 

call be induced by two diffcI'(~Ilt rncdmnisms, the dose proximity of a rigid solid boundary 

awl from the int.('l'action with a shock wave. Based on the plotted wall velocity curves, 

1he degree of infhwnc:c or contributory effect.s from both clements can be identified. Both 

C1l!'VCS represcnting t.he upstream wall and downstream wall can be categorised into two 

groups. It is clear that t.here exist a transition point (a value for () at yvhich the influence 

()f the solid boundary 011 the collapse of the bubble is significant. lJV and DV for both 

(',\S(,S where ( = 1.0G25 and ( = 1.125 can be distinguished from the other sets of curves 

which l'<'pws('nt cases v;l1('re the distance of the bubble from the rigid \vall is relatively 

large. In the two former cases, the bubble is positioned very dose to the solid \vall. 

The curvcs which represent the upstream wall velocity for ( = 1.0625 and ( = 1.125 

shO\\·s that after t = (US f-LS the jet vdocity increases dramatically as it approaches the 

opposite \vall. These differ from the other four cases. 3 - 6, where the yariation shm.,-s 

2\ morc gradual rise. Both t he upstream v\'all veloci t:v for Cases 1 and 2 approaches 

OWl' 20()O ms- I compared tu Cases 3 to G where the maximum jet velocity is less than 

l()()() ms- I
. The rate at which the velocity of the upstream \,"all increases for ( = 1.0625 

is higher than that for ( = 1.125 though the maximum \yall velocity achiewd in Case 2 is 

a]lproximatcl~" 100 ms- I higher. HO\yever. the higher acceleration in Case 1 means that 

the .iet impact occurs earlier than that in Case 2. 

The nlriation of the downstream bubble wall velocity for Cases 1 and 2 can also be 

e(lsily differentia ted from the ut her cases. HmH'\'er, the trend is reversed such that the 

\\'(111 \'docity is smaller for Cases 1 and 2 in comparison to Cases 3 to 6 \\"herc the D\" 

ill('l'eases gradualh" tu about 250 InS-I. This correlates \,"ith earlier explanation that the 

collapse is highl~" asymmetric. The \\'ater on the upstream \nl11 accelerates to\\'ards the 

rigid wall, hut the \yMer layer trapped betwcen the dmYllstream bubble wall and the rigid 

boundary appears to stagnatc. The downstream wall for Case 1 sta~"s almost stationary 

hut the wall wlucity incl'C'as('s \\'ith incrcasing (. \\"lll'n the bubble is wr~" dose to the 

rigid h()unclar~". the dmYllstream \\"all is shielded from the oncoming lithotripter shock 

\\'([\'(' as \\'ell as from its reflection off the rigid buundary. As ( increases. the incident 

shock will indue(' tilt' cullaps(' uf the dmYllstl'C'am \\'all and this is furt her enhanced b~- the 

iUl]Jact of the reflected shock \\',we onto th(' bubble surface. 

The time histor~" of the bubhlc volume' at different stand-uff distanc(' is shown in 

Fig. 8.6, normalised by the initial \"(lllllll(" Ii. The vuhulle reduces almost linearh- \\"ith 
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Bubble Volume Time History for Different Stand-off Distance 
1r--=~~------~------~========~ 

-- SD=1 .0625 
0.9 -- SD=1 .125 

-- SD=1 .375 
0.8 -- SD=1 .625 

-- SD=1 .875 
0.7 -- SD=2.1 25 

;;; - 0.6 

---> 0.5 

0.4 

0.3 

0.2 

0.1 

0.05 0.1 0. 15 0.2 
Timef..l.s 

Figure 8.6 : Bubble volume time history. Comparison for different stand-off distance, (, 
as given in Table 8.1. 

time from t ~ O.l,us to t ~ 0.17,us, during which interval the volume rat io, V IV; falls 

from ~ 0.7 to ~ 0.15. This linear pha.se ends as the liquid jet approaches t he downst ream 

bubble wall. Following the jet impact , the results shows that the volume cont inues to 

decline, but at a reduced rate, reaching a minimum at about t = 0.18,us . As discussed 

earlier , the jet t ip lies away from the symmetry axis and impacts on the opposite bubble 

wall a distance away from the bubble centre line. Therefore, the minimum volume is 

actually achieved after liquid jet impact. At around minimum volume (1.26E - 15m3 ) . 

the cavity enters the vortex core and begins to expand under the influence of the increased 

in local static pressure in the air. 

The curves also show an apparent trend in the rate at which the bubble collapses 

where t he rate increases with decreasing C. This agrees with the bubble wall velocities 

plot (Fig. 8.5) discussed earlier. One might expect that the collapse rate for Cases 3 to 6 

should be higher t han Cases 1 and 2 because of t he fact t hat the contract ion of the bubble 

wall occurs in all directi ons, including from downstream , which remains almost static in 

t he latter. Hovvever , the high liquid jet velocity and the deform ation of t he upstream wall 

in Cases 1 and 2 compensate for the small contraction rate of t he downstream bubble 

wall and therefore the rate of coll apse is greater as C decreases . The figure also shows 

that the t ime for t he bubble to reach minimum volume increases with increasing C. In 
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Pressure Time History Recorded by the Pressure Reco rded On the Solid Boundary 
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Figure 8.7: Pressure loading time history recorded on the symmetry axis at the solid 
boundary for different stand-off distance as given in Table 8. 1. 

comparison, for ( = 00 (free-fi eld ), the bubble does not experienced lateral compression. 

In the near rigid boundary cases, t he interact ion with the refl ected incident shock wave 

leads to lateral compression of the collapsing bubble. The collapse near a rigid boundary 

is also more violent that that in the free-fi eld case. For ( = 1.0625, the liquid jet velocity 

exceeds 2000 ms- 1 (Fig. 8.5), while for ( = 00, the maximum velocity of the upstream 

wall is approximately 1300ms- 1 (Fig. 7.12). 

The general profi le of the pressure loading t ime history recorded at a particular point 

near t he bubble is presented in F ig. 8.7. In this case, a pressure recording point is placed 

at the corner of the domain between the rigid boundary and the a..'\:is of symmetry as 

shown in F ig. 8.1. 

The results are qui te similar to the pressure-time history measured for the free-field 

problem as presented in Chapter 7. T he pressure peak registered on the rigid boundary 

corresponds to the blast wave that is produced from the liquid-liquid impact of the high­

speed liquid jet . The pressure due to the primary incident shock is not apparent on the 

curves as the transducer on the boundary is shielded by t.he bubble. As the strength 

of the blast wave decreases with increasing dist ance from the impact point. the peak 

pressure recorded on the rigid boundary decreases with increasing ( . This is because 

the blast wave, which propagates approximately spherically, attenuates approximately in 

proportion to 1/ 1'2 through the liquid . Follovving the sharp pressure peal< of the blast 
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Case Figure I Left Column I Right Column I 
1 and 2 Fig. 8.8 - 8.11 ( = 1.0625 ( = 1.125 
3 and 4 Fig. 8.12 - 8.15 ( = 1.375 ( = 1.625 
5 and 6 Fig. 8.16 - 8.19 ( = 1.875 ( = 2.125 

Table 8.2: Listing of figures for ( parameter study 

wave, two other peaks can be observ(;cl for ( = 1.0625, ( = 1.125 and ( = 1.37.5. The 

hrst n~gisters the large dynamic: pl"(~ssure of the high-speed liquid jet as it hits the rigid 

houndary. It. is postulated that the second peak registers the pressure wave emitted 

fmlll tIl<' rebound of the collapsed bubble. The amplitude is much 100\'er than the other 

two peaks a,nd as ( increases, the amplitude of these t\VO pressure peaks decreases. The 

IllilximuIll pressure loading recorded varies from nearly 7000 J\1 Fa for ( = 1.062·5 to a 

1l)(,]"C 50U j\I Fa for Case G where ( = 2.125. It is likely that it contributes to the ca\"itation 

('msion 011 the ncarlrv surface and stone fragmentation in ESvVL. 

Evolution of the bub hIe \yi th different st and-off distculce is depicted in Fig. 8.8-

Fig. 8.19. Pressure contours are plotted in air and water: while the heavy line represents 

tIl(' bubble interface. The contouring inten"al for both air and water is given in each 

fmlllc and the value chosen is different in sOlnc scquences. Listing of the all the figures is 

giwn in Table 8.2. 

The hrst figure for each stand-off distance sequence is at 0.16/15 after shock impact 

awl the sequcnce follO\\"s the Se1lne time intelTal in all cases. B)- this time the incident 

lithotripter shock waw has rdlected off the rigid boundary and traversed the full bubble 

\\'id t h for the sC'cond timC'. The \wak air shock that \yas transmitted into t he air as a result 

llf t he shock impact has strengthened and propagates towards the rigid boundarv. This 

air shock front can be seen clearl)- in frames (a)-(d) in Fig. 8.8. Fig. 8.12 and Fig. 8.16. 

The rdatiwl)- large IllOllH'ntum impact of the incident lithotripter shock on the gas­

\yater intnfac(' causes the bubble \yall to deform to the right. The results for Cases 2 - 6 

presented here shmy that the bubble evolution and the pressure field are similar as in 

(',\s(' 1. Tl](' interaction of the incidcnt shock and the bubble causes it to deform and 

lc'lds to the formation of a liquid jet. One obvious difference bet\yeen the sequences at 

t = O.Hl/15 - t = 0.168/15 (Fig. CS.8, 8.12, 8.16) fur all six case's is the size and shape 

of the air bubble. It is clear that for ( = U1625 aud 1.125 (Fig. 8.8). the bubble is 

lIluch larger and has elongated due to the infiuencl' llf the rigid boundar\". The 1mbhk 

fur Cases J - G (Fig. CS.12, CS.16) on the other hanel, are much smalkr and are nlllrc 

similar to the collapse of a 1mbblc- in free-field. This agre(,s ,,-it h earlier discussiun t lwt 

the lwhcwionr of the lmhhlc \yith differcnt ( studied here shows two differcut trends. awl 
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(a) t = 0.16J.!s;( = 1.0625 (b) t = 0.16J.!s; (= 1.125 

(c) t = 0.164 J.!s; ( = 1.0625 (d) t = 0.164J.!s; ( = 1.125 

(e) t = 0.168J.!s;( = 1.0625 (f) t = 0.168 J.!S; ( = 1.125 

Figure 8.8: Sta7ld-offpammeter study, (. Pressure contours of a bubble with initial radius 
Ro = 40 f.17n collapsed by a lithotripter shock ,vewe with strength of P+ = GO JI Pa. Left 
colullln ( = l.(lG25: Right coluIlln ( = 1.125. 

Ahlllad n .J aIllal uddin H2 



Free-Lagrange Simulations of Shock-Bubble Interaction in ESWL 

L1I'water = 20 
L1I'air =l.2 MPa 

(a) t = O.I72j.ts;( = l.0625 

L1I'water = 40 MPa 
L1I' air = 5 MPa 

(c) t = 0.176j.ts;( = l.0625 

L1I'water = 40 MPa 
L1I' = 6 MPa 

(e) t = 0.18 j.ts; (= l.0625 

L1I'water= 
L1I'air = 12 

(b) t = O.I72j.ts;( = 1.125 

L1I'water = 40 MPa 
L1I'air = 5 MPa 

(d) t = 0.176j.ts;( = 1.125 

L1I'water = 40 MPa 
L1I' air = 6 Mpa 

(f) t = 0.18 j.ts; ( = 1.125 

Figure 8.9: Stand-off pamm.ctcT study, C. PressurE' contours of a bubblE' with initial rc1dius 
Ro = 40/Lm collapsed b~' a lithutripter shock \vave with strength of P+ = GO J! Pa. Left 
COIUlllll ( = 1.0G25; Right colullln C = 1.125. 
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M'air = 6 MPa 

(a) t = 0.184p.8; (= 1.0625 

M'water = 200 MPa 
M'air = 100 MPa 

(c) t = 0.188p.8;( = 1.0625 

(e) t = 0.192p.8;( = 1.0625 

M'water = 40 MPa 

(b) t = 0.184p.8; (= 1.125 

M'water = 200 MPa 
M' air = 100 Mpa 

(d) t = 0.188 P.8; (= 1.125 

=::::;~~~~~~ M'water= 100 
~ M'air = 50 MPa 

(f) t = 0.192 P.8; ( = 1.125 

Figure 8.10: Stand-off pam.mc:tcT study, (. Pressure contours of a bubble \,"it h initial 
radi1ls Ro = 40 {In? collapsed b~" a lithotripter shock wave with strength of P+ = GO JI Po. 
Ldt col1lmn ( = 1.0G25; Right columll ( = 1.125. The insert frame is a magnification of 
the flow awl b1lbble interface. 
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(a) t = 0.196J.Ls;( = 1.0625 

(c) t = 0.200J.Ls;( = 1.0625 

(e) t = 0.204 J.LS; ( = 1.0625 

M water=100 MPa 
Mair = 50 MPa 

(b) t = 0.196 J.LS; ( = 1.125 

(d) t = 0.200 J.Ls; ( = 1.125 

(f) t = 0.204 J.LS; ( = 1.125 

FignHc 8.11: Stu.lId-ofJ parameter study, (. Pressure contours of a bubble ,yith initial 
f(ldius Ro = ell) ~lm collapsed by a lithotriptcr shuck ,yaw with strength of P+ = 60 JI Po. 
Ldt column ( = 1.0625: night colullln ( = 1.125. The insert fran1<' is a magnificatiun of 
the fiow and buhble interface. 
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that a transition point for ( that refiects the asymmetry effect of the solid boundary lies 

s(Jmcwhere betw(~cn 1.125 and 1.375. Below a certain value of (, the contributory effect 

fmlll the rigid boundary is significant. 

For ( = 1.0625 and 1.125, fiow is retarded by the presence of the rigid boundary 

alld causes the downstrealIl bubble wall to become fiattened. The downstream surface 

('ss('ntially stagIlat(~S as the bubble collapses. This results in the asymmetric movement 

of the 1mbblc wall where the upstrcam part of the bubble interface moves rapidly to the 

right) whil(~ the downstrealll wall of the bubble remains static. However. in Case's 3 to 

G. ill(' interaction of th(~ downstream bubble surface with the incident lithotripter shock 

(lllCl its rcfi(~ctioll has ill(lu(:(~d the collapse of the surface from this side of the bubble. 

TIl(' PITSSU['(' gradients drive the particles to fiow towRrcl the bubble. This correlates '.\'ell 

il](' upstrealll awl downstream bubble wall velocity profile plotted in Fig. 8.5. Since the 

('( lllaps(' occurs in all direction. the size of the bubble is much smalkr in comparison to 

11l(' bubble in Cases 1 awl 2. If cOlllpcu-ison is lllRde of the size of the bubble Rt a certain 

tim(, in the bubble ('vollltion ill Fig. 1:5.8. Fig. 8.12 Rnd Fig. 8.16. it is apparent that the 

size of the 1mbhlc decreases '.\'ith increasing (. HoweveL it should be noted here that 

il clifkr('nt scale ,\'elS used for Cases 3 - 4 plots. The size of the bubble increases Kith 

in<Teasing (, though till' rate of change of bubble volume decreases '.yith increasing (. 

This is shown clearly in the bubble vol Ullle- time histor~' curves in Fig. 8.6. 

?\I()r<:~m'er. because the the dmnlstream surface in Cases 3 to 6 collapses and mon's 

(l\ya~' from the rigid boundary. an impact of the air shock on the downstream ,yall occurs 

at about t = O.68f1s (frame (c) and (f) in Fig. 8.12 and Fig. 8.16). The air shock in Cases 

1 Clnd 2 on the other hand. conwrges to the bottom right of the bubble and no impact 

un t he downstream hub ble wall takes place. Because of the larger iIll pedance of '\'(lter 

rl'latiw to air. the air shock is refiected back as a shock ,yaw and trawls to the left in 

t he direction a'.yay from the rigid b()mlClar~·. The sequences are Shm\'11 in Fig. 8.12 (a) and 

(c) for ( = 1.375: Fig. 8.12(b) and (d) for ( = 1.625 and Fig. 8.17(a) to (e) fur ( = 1.875: 

Fig. 8.17(b) to (e) for (= 2.12S. 

After t = 0.16 ~lS, in all six cases. the contraction of the bubble surface is more 

pronounced especiall~' from the right Side'. \\'h('re the high pressure region builds up. In 

all six cases. an increase in pressure gradient occurs at a small distance a,ya~' from the 

axis of synlllll'try on the upstream bubble '.yall. It is postulated that this resulted from 

a circula.ting ftmy near the upstn'cull bubble surface, induced from the interaction of 

the refiected incident shock wit h the strong expansion ,yave originating from the lm b hlc 

surface. The time at which it occurs is smaller with decreasing (. \\'hich relates \yith 

the propagatioll of the rt'fiectnl incidcnt lithutriptcr shock wan' from the rigid bll1UHLuy. 

The build-up of this pressure gradicnt and circulating limy near till' llpstreC1ln bub hlc 
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(a) t = 0.16 fLS; ( = 1.375 

Lti'water = 10 
0.1 

(c) t = 0.164fLS; (= 1.375 

(e) t = 0.168fLS;( = 1.375 

(b) t = 0.16fLS; (= 1.625 

Lti'water = 10 MPa 
Lti'air = O. MPa 

(d) t = 0.164 fLs; ( = 1.625 

Lti'water = 10 MPa 
=0.2 

(f) t = 0.168 fLs; ( = 1.625 

Figure 8.12: Stand-off' parameter study, (. Pressure contours of a bubble with initial 
radius Ro = 40 J.L7n collapsed by a lithotripter shock wave with strength of P+ = 60 j\1 Pa. 
Left cohunll ( = 1.375; R.ight column ( = 1.625. 
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~-Wa!er = 20 MPa 

(a) t = 0.1721-£8; ( = 1.375 

Mwater= 
Mair= 1 MPa 

(c) t = 0.1761-£8;( = 1.375 

Mwater = 40 MPa 
Mair= 4 Mpa 

(e) t = 0.181-£8;( = 1.375 

M water = 20 MPa 
Mair = 0.4 MPa 

(b) t = 0.1721-£8;( = 1.625 

M water = 20 MPa 
~,..........-'-..l MPa 

(d) t = 0.1761-£8; ( = 1.625 

Mwater = 40 MPa 
Mair=4 

(f) t = 0.181-£8; ( = 1.625 

Figure 8.13: Stand-off parametcT study, (. Pressure contours of a bubble \yith initial 
radius Ro = 40 vm collapsed by a lithotripter shock wave with strength of P+ = 60 M Pa. 
Ldt column ( = 1.375; Right column ( = 1.625. 
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M'air = 15 MPa 

/ 

(a) t = 0.184p,s; (; = 1.375 

M'water = 200 MPa 
M'air = 100 MPa 

(c) t = 0.188p,s;(; = 1.375 

M'water - 100 MPa 
M'air = 10 a 

(e) t = 0.192p,s;(; = 1.375 

M'water = 50 MPa 
M'air = 15 MPa 

(b) t = 0.184p,s; (; = 1.625 

M'water = 200 MPa 
M'air = 100 MPa 

(d) t = 0.188 p,s; (; = 1.625 

(f) t = 0.192 p,s; (; = 1.625 

Figure 8.14: Stand-off· parameter study, C. Pressure contours of a bubble with initial 
radius Ro = 40 {LTn collapsed by a lithotripter shock \vave with strength of P+ = 60 ~U Fa. 
Left column ( = 1.375: Right column C = 1.625. The insert frame is a magnification of 
the flow and bubble interface. 
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(a) t = 0.196 /Ls; ( = 1.375 

(c) t = 0.200 /Ls; ( = 1.375 

(e) t = 0.204/Ls; ( = 1.375 

.M'water= 10 MPa 

.M' = 0.1 MPa 

(b) t = 0.196/Ls;( = 1.625 

.M'water = 50 MPa 
. = 50 " 

(d) t = 0.200 /Ls; ( = 1.625 

(f) t = 0.204/Ls; (= 1.625 

Figure 8.15: Stand-off pamrneier st.udy, (. Pressure cont.ours of a bubble with initial 
radius Ro = 40 Jim collapsed by a lithot.ript.er shock wave wit.h strength of P+ = 60 JU Po.. 
Left colullln ( = 1.375: Right column ( = 1.625. The insert frame is a magnification of 
tIl(' How ami bll b bIe interface. 
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~ater = 10 MPa 
Mair = O.l MPa 

(a) t = 0.16JLs;( = 1.875 

Mwa~~MPa 
M airj.l MPa 

-~---

(c) t = 0.164JLs; (= 1.875 

Mwater = 10 MPi . 
Mair= 0.1 

(e) t = 0.168JLs;( = 1.875 

Mwater = 10 MPa 
a 

(b) t = 0.16 JLS; ( = 2.125 

Mwater = 10 MPa 
Mair = O.llVu::a--_ 

(d) t = 0.164JLs; (= 2.125 

Mwater = 10 MPa 
Mair=O.1 MPa ---

(f) t = 0.168JLs; (= 2.125 

Figure 8.16: Stand-off parameter study, (. Pressure contours of a bubble with initial 
radius Ro = 40 Inn collapsed by a lithotripter shock wave with strength of P+ = 601\1 Pa. 
Left column ( = l.875; Right column ( = 2.125. 
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M'water = 10 MPa 
t-.Pair - .2 MPa 

(a) t = 0.172 J.Ls; (" = 1.875 

(c) t = 0.176J.Ls;(" = 1.875 

(e) t = 0.18 J.LS; (" = 1.875 

M'water = 10 MPa 
M'air = 0.2 MPa 

(b) t = 0.172J.Ls;(" = 2.125 

(d) t = 0.176 J.Ls; (" = 2.125 

f..Pwater = 10 MPa 
f..P air = 0.5 

(f) t = 0.18 J.Ls; (" = 2.125 

Figure 8.17: Stand-off parameter st.udy, (. Pressure contours of a bubble with initial 
radius Ro = 40 f.11n collapsed by a lithot.ript.er shock wave wit.h strengt.h of P+ = GO M Pa. 
Left colulllll ( = 1.875: Right colulllll ( = 2.125. 
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~WHt<== 20 MPa 
Lll'air = 2 

(a) t = 0.184J.Lsj ( = 1.875 

Lll'water = 50 MPa 
Lll' . MPa 

(c) t = 0.188J.Lsj( = 1.875 

~Pwater = 200 MPa 
Lll'air = 100 MPa 

(e) t = 0.192J.Lsj( = 1.875 

(b) t = 0.184J.Lsj ( = 2.125 

~Pwater = 50 MPa 
Lll' air = 15 MPa 

(d) t = 0.188 J.LSj ( = 2.125 

Lll'water = 200 MPa 
Lll'air = 200 MPa 

(f) t = 0.192 /-LSj ( = 2.125 

Figure 8. Hl: Stand-off parameter study, (. Pressure contours of a bubble Kith initial 
radius Ro = 40 11m collapsed by a lithotripter shock wave with strength of P+ = 60 M Pa. 
Left colullln ( = 1.875; Right columIl ( = 2.125. The insert frame is a magnification of 
the flow and bubble interface. 
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(a) t = 0.196Ils; (= 1.875 (b) t = 0.196Ils;( = 2.125 

M'water= 50 MPa ~,,'.:, 

£\Pair = 50 ~ ~ ..•...... "~\ \\ 
------ ~ / (.(:(~~]. /;;."111: \ .. " " ~\~;S'I' , , 

/\~~/,' ;,. : -"I .. " , /';"; ( \' \ 

(c) t = 0.200 Ils; ( = 1.875 (d) t = 0.200IlS;( = 2.125 

(e) t = 0.204Ils; (= 1.875 (f) t = 0.204Ils; ( = 2.125 

Figure 8.19: Stand-off parameter study, (. Pressure contours of a bubble \yith initial 
radius Ro = .:10 pm collapsed by a lithotripter shock wave with strength of P+ = GO jJ Pa. 
Ldl column ( = l.875; Right column ( = 2.125. The insert frame is a magnification of 
thl' flow and bubble interface. 
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smfacc occurs at t c:::: 0.168113 for (= 1.0625 and 1.125 (Fig. 8.8(e) and (f)), t c:::: 0.172113 

for (= 1.375 (Fig. 8.13(a)), t c:::: 0.176113 for (= 1.625 (Fig. 8.13(d)), t c:::: 0.184113 for 

(= 1.875 (Fig. 8.18(a)) and t c:::: 0.18811$ for (= 2.125 (Fig. 8.18(d)). 

Towards the end of the collapse phase, the bubble undergoes a rapid deformation 

,vilh the fornmtioll of a high-spc(;d liquid jd that penetrates through the bubble. This 

is it COllscqucncc of th(~ acceleration of the water on the upstream side towards the rigid 

h()undary that causes thc upstream surface to involute and forms a jct as shown in 

Fig. 13.!:.l(c) and (f), Fig. 13.13((~) anel (f) and Fig. 8.18(a) and (c). In turn, it generates 

additional compression waves in the air l1(~ar the upstream bubble wall resulting in a 

seCimelary air shock being transmitted into the bubble. The shctpe of the jet is more 

distinct, i.c. sharper, in Case 1 and Case 2 compared to the other four cases \I;here the 

'shoulder' of the jet is lIlore pronounced. Furthermore, owing to the circulation flmv near 

the upstn'am b11bble wall, the liquid jet is conc,wE' and consequently the first impact of 

the jet head on the clmvnstreaIll wall cloes not occur on the centre line of the bubble' as 

depicted in the 'fn'(~-fidd' problem. Since the vdocity of the jet on the axis is larger in 

CilS('S 1 and 2 than in Cas('s 3 to 6 (Fig. 13.5). the concavity of the nose of the jet near 

the axis subsides resulting ill a much sharper jet tip in the t\l;O fonner cases. The smaller 

jl't tip width in CClS('S 1 awl 2 is also cilw to the elongation of the collapsing bubble. The 

slight elongation of the wall is clue to the intnactioll with the reflected incident shock 

\\' hich ind uc('s t hc contraction of the top bubble surface. 

The concm'ity of the jet head is highly prominent for ( = 1.375 and ( = 1.625. The 

jd head is relat.iyel~· wide and much fiattcr especiall~' in Ca;;;es 5 and 6. and. because 

t he development tilllE' for the circulat.ing flu\\" near the upstream surface is larger as the 

llllhble gets furt.her awa~' from the rigid boundary. the deviation of the jet head fwm 

the 21xi21l in(TeclSCS \\'it h increasing (. As the jet accelerates to\\"arcls the rigid uoundary. 

tIll' pressure inside the bub hIe increases rapidl~'. The liquid jet hits the dcnnlstream \\"al1 

lll'j\wCll t = O.18.Jps alld t = ().18.J~L3 for Cases 1 to 4 and uetween t = 0.188p$ and 

t = O.1!:.l2 P$ for Cases 5 and 6. The time' to minimum bubble yolume on the other hand 

is smaller with decreasing ( (Fig. 8.6). 

On impact, t.he jet produces an intl'nse blast \\"(1\'(' in the surrounding \\"ater. The 

mnximl1lll pressure loading rc'cordecl by the t.ransducer on the uoundar~' \'aries from nearl~' 

7()()O MFa for ( = 1.()625 to a merE' 500 MFa for Cast' 6 \\·herc ( = 2.125 (Fig. 8.1). For 

C21ses 1 and 2, at t = 0.192 ~l3, the jet has penetrated throl1gh thc uuuble isolating a 

t.oroidal bubble in 3D of trapped air and highly com pressed ga;;; (Fig. 8.1 O( (:') and (f)). In 

Cas('s 3 to 6, because of the highly COnnLYC jet, the impact of t hl' jet on the dm\"llstrcam 

\\·(\11 splits the air 111lbblc int.o t\\"(), isolating two rings of highly compressed air. separated 

by tiny circl1lar gas or bl1 bble fragments. These bl1 bblc fragmcnts uriginatl' fWIll the 
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air layer t rapped between the jet tip and the downstream interface prior to impact. In 

addit ion, the high pressure wit hin t he bubble will cause these fragments and lobes of air 

to expand . 

In Cases 1 and 2, where the collapse occurs very close to the rigid boundary, the flow 

of the jet following jet impact is redirected radially along the boundary. The penetrat ion 

of the jet induces a circulation in the air inside the bubble. This leads to the formation of 

a ring vortex t hat brings the bubble even closer to the rigid boundary. In Cases 3 to 6, the 

formation of the vortex fl ow is mainly due to the interaction between t he high-momentum 

liquid jet and the downstream low-llloment um water. The strong spherical blast wave 

propagating to the right will impact on t he rigid boundary and will be refl ected back 

into the surrounding fluid . Part of this wave will interact wit h the expanding bubble. 

The damage potential arising from the collapse of the bubble such as in Cases 3 to 6 is 

small as the jet fl ow and the strong blast wave are dampen d by the water separating the 

bubble and the solid boundary. 

8.2.3 Far-field Calculations 

Kirchhoff Results 

x 10' Far- field pressure disturbance Signature for ~=1 .0625 
8~~~~~~~~~--.---~----.----.---, 

- With bubble. 6=270· <l>=60· 

6 

- - No bubble. 6=270· <l>=60· 
With bubble, 6=270· ",=30· 
No bubble. 6=270· ",=30· 

- With bubble, 6=270· $=0. 
- - No bubble. 6=270· <l>=0· 

rn 4 - With bubble, 6=90· <l>=30· 
~ - - No bubble. 6=90· <l>=30· 
g - With bubble , 6=90° q, ;;60° 
jg 2 - - No bubble, 6=90· <1>=60· 

" u; 
i5 
OJ 0 

" (/) 
(/) 
OJ 

0:: -2 

-4 

_6L-__ ~ ____ L-__ ~ ____ L-__ ~ ____ L-__ ~ __ ~ 

98.3 98.4 98.5 98.6 98.7 98 .8 98.9 99 99.1 
Time [us] 

Figure 8.20: The far-field pressure signature predict.ed using t he Kirchhoff method at an 
observer positioned 150 mm from the ini tial bubble centre, ,vith ( = 1. 0625 . The result.s 
for various e and ¢ are plotted for comparison. 

Fig. 8.20 and Fig. 8.21 shmvs the pressure-time history calculat.ed ill t he far- fie ld for 
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X 104 Far- field pressure disturbance signature for S=2.125 
6~==============~.---,-~~---'----'---, 

- With bubble, 9=2700 $=600 

4 

- - No bubble, 9=2700 $=600 

With bubble, 9=2700 $=300 

No bubble, 9=2700 $=300 

- With bubble, 9=2700 $=00 

- - No bubble, 9=2700 $=00 

co - With bubble, 9=900 $=300 
eo. 2 
Q) - - No bubble. 0=900 $=300 

g - With bubble , 9=900 $=600 

2 l'----- _N_o _bu_bb_l e~, 9: =::::90:
0 

~$=;;;;60;;;!0~t\ :s 
Ui 0 
'6 
~ 
:::J 
C/) 

:fl-2 
0: 

-4 

_6L---~--~--~----~--~--~--~----~~ 

98.2 98.3 98.4 98.5 98.6 98.7 98.8 98 .9 99 99.1 
Time[~J 

Figure 8.21: The far-fi eld pressure signature predicted using the Kirchhoff method at an 
observer positioned 150 mm from the initial bubble centre, wit h ( = 2.125. The results 
for various e and ¢ are plotted for comparison. 

( = 1. 0625 and ( = 2.125 respectively. Resul ts for van ous e and ¢ are plotted for 

comparison in order to determine t he variation in t he far-field pressure profile at different 

observer posit ions and the dependency on the di rectionality of t he lithotripter shock wave. 

The same set of integrat ion surface and CFD input data were used for all calculations. 

Similarly t.o t he free-field problem, calculations for bubble-free problems v,'ere also carried 

out (plotted as dashed lines) . 

Unlike the free-field problem, t he effect of the propagating shock wave is more signif­

icant as t.he rigid boundary reflect.s the incident li t hotripter shock wave. Therefo re. the 

propagating incident shock wave are captured twice in t he Kirchhoff and F \ iVH surface 

integral. Nevertheless, the blast wave could still be captured as a sharp peak. The t iming 

of the arrival of t.he blas t wave peak relative t.o the cont.amina tion from the lithot ript r 

shock wave does not. overlap . The far-field pre sure waveforms for bubble-free problems 

(plott.ed as dotted line) clearly show t.hat the blast wave can be unambiguously separat.ed 

from t.he li t. hot.ript.er signat.ure. For example, the large t. rough for ( = 1.0625 (solid blue 

line) bet.ween 98 .6 p,s t.o 98.75 p,s can be at.tributed to t.he incident shock wave . The large 

negat. ive pressure for t.he free-fi eld case (dashed blue line) confirms this. The ma:'\:imum 

pressure amplit.ude predict.ed for ( = 1.0625 is approx 70 kPa and t.h is value deo'ea es 

by approximately 10 kPa when ( = 2. 125 . The reduct.ion in the ma.-..;:imum pressure 

amplitude is because of the increase ill t.he initial bubble centre distance from t.he rigid 

Ahmad R Jamaluddin 157 



Free-Lagrange Simula tions of Shock-Bubble Interaction in ESWL 

boundary. 

For ( = 1.0625 (Fig. 8.4), the reflection of the blast wave is not very clear. The second 

pressure peak is not as obvious as when ( = 2.125. This is because the delay between 

the primary and reflect ed shocks may be too small to resolve. For ( = 2.125 , owing to 

the distance of the bubble from the rigid boundary, the blast wave has t ime to develop 

into a full spherical pressure wave and is reflect ed clearly on the rigid boundary. 

FWH Results 

x 10' Far-field pressure disturbance signature for ~=1.0625 
8rr====c====~==~~--'----'----'----'----' 

- With bubble . 8=270° ~=600 

- - - No bubble. 8=270° 9=60° 

6 With bubble . 8=270° ~=300 

Q) 
u 

~ 2 
.0 
:; 
Vi 
'6 
1'! 0 
:J 
<n 
<n 
Q) 

a: 
-2 

No bubble . 8=270° $=30° 

- With bubble. 8=270° ~=Oo 

- - - No bubble . 8=270° $=0° 

- With bubble. 8=90° 9=30° 

- - - No bubble. 8=90° ~=300 

- Wnh bubble . 8=90° 9=60° 

- - - No bubble. 8=90° ~600 

I , 
I \ 

I 

98.4 98.5 98.6 98.7 98.8 
Time [Ils) 

98.9 99 99.1 

F igure 8.22: The far-field pressure signature predicted using the FWH method at an 
observer positioned 150 mm, from the ini t ial bubble centre, "vith ( = 1.0625. The results 
for various e and ¢ are plotted for comparison. 

As in the Kirchhoff problem discussed above, the integration surface is located 150 mm 

from th ' initia l bubble centre, The calculation is performed on 90 control points placed 

along the half circumference of the axisymmetric control surface. The results of t he 

predicted fa r-fi eld noise using the FWH method for control surface radii of 0.2 m,m is 

shown in Fig . 8.22. The resul ts for Res = 0.2 mm is in agreement '''i t h that of the 

Kirchhoff results (Fig . 8.20). The resul ts for R es = 0.2 mm are ident ical and the peak 

pressures of using the FWH method match really well with that plotted in Fig. 8 .20. 

The variation of the pressure waveforms for different observer position also agrees ,,,el l. 

The result.s show that. t here is no difference in the t.wo methods abili t.y t.o distinguish 
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Case Initial Radius, Shock Strength, Distance, Stand-off( distance, I 
Ro (p,m) P+ (MPa) d (p,m) 

7 40 60 30.0 0.7.5 
8 40 60 3.5.0 0.87.5 
9 40 60 38.0 0.9.5 

Table 8.3: Various cases for 'stand-off distance study of pre-attached bubbles 

the lithotripter signature from the blast wave signature. The problem has high degree of 

llulllinearity owing to the illcident shock wave, its reflection on the rigid boundary and 

the high pn~ssurc amplitude of the blast wave. As some degree of nonlinearities are taken 

illt() account by th(~ surface integrals in the F\VH formulation, the F\VH method gives 

a morc consistent and acceptable results regardless of the control surface position. In 

addition. th(· ('ost of calculations is the same for both methods. 

8.3 The interaction of lithotripter shock wave with 

an attached bubble 

III this section. llUlllerical simulations are carried out in order to study the interaction 

()f it pre-aUadwd 1mbblc on a rigid boundar)' with a lithotripter shock \yaw pulse. The 

illi tial layout and specifications of t hc computational domain is similar to the problem 

llear a solid bOlllldar)· discussed in previous scction. but with the distance of the initial 

bubble centre d smaller than the initiRI mclius of the bubble, Ro. i.e. ( < l. The initial 

prupertics for hoth air and "Yater arc at ISA sea-lewl conditions. A planar lithotripter 

shock wa\'(~. "'ith P+ = 60 1U Pa and P- = -lCUI Pa, propagates through the v,ater 

from left to right. 

A pressure recording point is positioned at the solid boundar)· on the axis of s)'mmetl'Y 

and tlwrefore lies \\'it hin the air bubble. The paTameters of the current problems are gi\'Cn 

in Table 8.:3. Time is measured from the moment of shock impact in each case. 

8.3.1 Results and discussion 

The upstream bubble wall time histury is given in Fig. 8.23. Initiall)'. the wlocity of 

the upstream \\'all illcreases gradually. It then accelerate as it Rpproachcs the final stage 

of collapse. The end the ClUTes represents the point at which jet impact on the snlid 

h()undary occurs. The velocity variation for ( = 0.875 and ( = 0.9.5 are almost idcnticaL 

\\'hilc for ( = 0.75 the upstream ,,,,all velocity deviat.es from that of the former at around 
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0.1 f-LS. Consequently, the collapse rate for Case 7 is higher than Case 8 and 9 as depict ed 

in the bubble volume time history curves in Fig. 8.24. The relationship of the impact 

wall pressure and the dimensionless stand-off dist ance is shown in Fig. 8.25. It is clear 

that the maximum pressure loading on the wall decreases with increasing ( . The initial 

pressure rise at the bottom of the curves originated from t he impact of t he secondary 

air shock on the rigid boundary. The impact wall pressure, when ( = 1.0625 is nearly 

7000 MFa (Fig. 8.7). For ( < 1, where the bubble collapses with some parts touching the 

wall , the impact pressure decreases to a minimum ( ~ 4000 NI Fa for ( = 0.95). However, 

if ( is reduced even further, the maximum impact wall pressure begins to increase again. 

This trend was observed experimentally by Shima [80]. 

Upstream Wall Ve locity Time History For Attached Bubble 
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Figure 8.23: Upstream and downstream wall velocity t ime history for a pre-at.tached 
bubbles . Comparison for different stand-off distance, (, as given in Table 8.3. 

The next few figures present.ed here are preliminary results. A more detailed analysis 

is required in order to determine the right contact angle between the att.ached bubble 

surface on the rigid boulldary as a consequent of surface tension. In the following study, 

the effect of surface tension is neglected and the contact angle is assumed to be at right 

angle to the rigid boundary. For any given solid/ liquid interact.ion , t.here exists a range 

of contact angles which may be found. The value of the contact angle is dependent. on 

the surface tension and the boundary surface roughness . 

The evolut.ion of the pre-attached bubble wit.h different. stand-off distance (( < 1) is 

depicted in Fig. 8.26 - Fig. 8.29. Pressure contours are plotted in air and water from 

which the refl ect.ion, transmission and refraction of the shock waves near the bubble arc 
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investigat ed to provide a clear view of the bubble response. The heavy line in the figures 

represents the bubble interface. 
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Attached Bubble Volume Time History 
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- 8 0=0.95 

0.05 0. 1 0. 15 0.2 0.25 
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Figure 8.24: Pre-attached bubbles volume time history. Comparison for different stand-off 
distance, (, as given in Table 8.3 . 

The sequence starts 0.02/-is after shock impact. The impact of the lithotripter shock 

on the bubble wall t ransmit a weak shock into the bubble and a strong expansion wave 

into t he surrounding water. The earlier stages of the bubble collapse is similar to the 

case where ( > 1. At this early stage, the deform at.ion of the bubble wall and dynamics 

of the flow around the bubble are identical fo r the three different st.and-off distances for 

( < 1 as well as the six cases where ( > 1 discussed earlier . 

The sequ nee shmvn in Fig. 8.27 shows that the pressure gradient in t. he wat.er near 

the upstreR,m side of the bubble increases as time progresses . The first. apparent differ­

ence between the three cases is t.he 'wett.ed area'l of the at tached bubble increases wit.h 

decreasing ( . This is t. rue from t = 0 and is an artefact of t.he ini t. ial geometry of the 

bubble. 

At about. t = 0.168 /-is , the upst ream bubble \-vall start.s to involute to form a liquid jet 

running to the right along t he symmetric a.-::is (Fig. 8.28(b), (f) and (j)) . Like t.he previous 

cases , secondary compress ion waves are induced inside t.he bubble due t.o the high defor­

mation of t.he upst.ream wall by the jet and the large pressure gradient(Fig. 8.28(d) ,(h) 

and (l)). This secondary shock will impact direct.ly ont.o t.he solid boundary and the 

I The circular a rea of the bubble attached to the rigid bounda.ry. 
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Pressure Loading Time History On Solid Boundary For Attached Bubble 
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Figure 8.25: Pressure loading t ime history recorded on the solid boundary for different 
stand-off distance fo r pre-attached bubble. as given in Table 8. 3. 

t ime at whieh the impact occurs varies with stand-off distance, i. e. at t = 0.176 J-LS for 

(= 0.75; at t = 0.180J-Ls for ( = 0.875 and at t = 0.184 J-Ls for ( = 0.95 . This is fund a­

mentally different from the previous cases. In cases where ( > 1, the shock refiects from 

an air-water interface, where as here the shock impacts directly on the boundary which 

could be a kidney stone, and thus could be a potent ial damag mechanism. 

The collapse t ime of these bubble are very short, less than 0.18 J-LS for ( = 0.75 . 

Therefore, it is immediately apparent that the collapse process of t he gas bubble by t.h 

lithotripter shock wave is very violent . The acceleration of the liquid jet will continue unt il 

it eventually impacts directly onto the solid boundary. The time to impact increases with 

increasing ( . A close up of the liquid jet impact on th boundary is given in Fig. 8.30 . 

It is clear from the Fig. 8.30 that the jet diameter decrease wit.h decreasing ( . The 

liquid jet impact emits a very. t. rong asymmetric blast wave into the surrounding water 

which subsequent ly interacts wi th t he isolated toroidal bubble, causing it to collapse even 

furt.her as shown in Fig. 8.29((g), (h ), (k) and (1 )) . Prior to jet. impact the secondary air 

shock forms an oblique refi ection at the top bubble wall (Fig. 8.30( a) and (b )) . At t ile 

fin al stages of coll apse, t he radial velocity at the base of the gas bubble at.tains a high 

value. Due to the presence of the boundary, the jet fi ov\' is redirect.ed rad i all~' out",'ard 

and consequent.ly forms a rad ially spreading sheet. of water (radial jet) which propagat.es 

along the rigid boundary. The form at.ion of t.his radial jet. was not. expect.ed, t. hus no 

measurement was made on its velocity. However, it is believed t.hat. t.he jet achieved i:l. 
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high velocity upon impact on the top wall, as a strong 'hemispherical' ring blast wave is 

emitted into the water due to the liquid-liquid impact. It is postulated that this could 

]w a potential additional damage mechanism for shock wave lithotripsy. This secondary 

jet is also much narrower than the primary jet (Fig. 8.30(d), (e) and (f)). 
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M'water = 200 MPa 
M'air= 10 

(a) t = 0.18811-8;(=0.95 

M'water = 100 MPa 
M'air = 20 Mpa 

(d)t= 0.19211-8;(=0.95 

(b) t = 0.18411-8; (= 0.875 (c)t= 0.18011-8;(=0.75 

(e) t = 0.18811-8; (=0.875 (f) t = 0.18411-8; (= 0.75 

Figure 8.30: Close-up of secondary liquid jet and resulting blast wave due to jet impact 
on the top bubble wall. Illitial radius is 40 f-Lm and shock wave strength of P+ = 60 "II Pa. 
Clllllparison for different stand-off distance, (. Left column: ( = 0.95: I\1iddle column: 
( = 0.875: Right column: (= 0.75. 

8.4 Conclusions 

The nunH'rical SilllulettiOllS of asymmetric cavitatioll bubble collapse, induced b~' a lithotripter 

shock wave, using the Free-Lagrange method have been successfully carried out. Various 

problems hewe becn investigated for differcnt stand-off dist.ance. The results shm\" the 

gClleral features of asymmct.ric bubble collapse. These include, 

• tIl(' formettion of a high-specd liquid jet that pCllctrates the interior of the bubble. 

The direct.ion of the jet. is normal tll t.he incident shock and t.mnmis t.he rigid 
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boundary when the collapse occurs near the proximity of a solid wall. It would 

be interesting to see the jet direction if the shock and the solid boundary are not 

aligned, but this would require a full 3D simulation, which is outside the scope of 

the present work. 

• the emission of a blast wave as a result of a liquid-liquid impact when the high-speed 

liquid jet impacts 011 the dowllstream bubble surface. 

• the elongation of the bubble for small values of (. 

• the generation of a secondary air shock for bubble collapse near solid boundary. 

• the formation of a radially spreading sheet of water in the pre-attached problems. 

The jet is induced by the radial flow of the primary jet on the rigid boundary. The 

impact of this jet on the top bubble wall generates a relatively strong blast wave 

into the surrounding fluid. 

• The air shock propagates through the bubble \vith increasing strength, and for 

cases wherc ( < l.375. the shock converges ncar the downstream bubble wall and 

influences the direction of the fluid flow \vithin the bubble. For cases ,,-here ( ~ 

1.375, the air shock ,,-ill impact on the downstream bubble surface and is reflected 

back into the bubble. 

• The incident shock is reflected by the boundary and the impact on the dovmstream 

and top bubble wall causes lateral compression of the bubble. 

• The plots for upstream and downstream bubble wall velocity variation \\"ith time 

show that there exists a transition value for ( at which the contribution of the solid 

bounclax)T on the bubble behaviour is significant. The study showed that for P+ ::::::: 

60 iII Pa and Ro = 40 ~Lm. this transition point lies bet\\"een l.125 < ( < l.375. 

• The jet has a conca,vc tip such that the lea,ding annular front of the jet '\Yill actuall)­

im pact on the downstream \vall earlier than the jet centreline. 

• In addition, the rate of collapse of a bubble near a solid boundary increases with 

decreasing (. 

• The ma.ximllm pressure registered on the rigid boundary decreases \vith increasing ( 

due to the characteristics of a spherical shock where the strength decreases rapidl\ 

with increasing radial distance from the centre of the shock source. 
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• For problems involving pre-attached bubbles, where ( < 1, the maximum impact 

pressure on the wall falls to a minimum, but increases back again as ( is decreased 

even further . 

• Numerical simulations on the interaction of a pre-attached bubble with a lithotripter 

shock also showed the formation of a radially spreading liquid jet. 
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Chapter 9 

Multi-bubble Simulations 

III practical cases, where cavitation or two-phase flow occurs, cavitation bubbles seldom 

('xist as a single bubble, awl as a result they interact with each other. This is especially 

s() in cases where clouds of bubbles exist. The degree of influence of a bubble on its 

neighbours is dependent on their separation distance. In this chapter, simulations of 

til(' response of an array of air bubble to a lithotripter shock wave using the Vucalm 

Free-Lagrange method are presented. 

The objectives of the current simulations are: 

1. to Illodel the interaction of a lithotripter shoek wave with two stable spherical 

bubble, and to observe: 

• the re'flection, transmission and refraction of the shock waves 

• the collapse of the spherical bubbles in free-field 

• the formation of the high-speed liquid jet and its velocity-time history 

• the effect of the bubble separation distance and degree of influence of neigh­

bouring bubbles 

• bubble' wall position time history for both air bubbles 

2. to predict the far-field pressure wave signature emitted from a cloud of bubbles 

9.1 Lithotripter shock wave-bubble array 

interaction in Free-field 

The problem studied in t.he present work comprises two spherical air bubbles immersed 

in water (Fig. 9.1). The water is representcd by t.he Tait Equation of Stat.e (EOS) and 

is initially at ISA sea level conditions, i.e. the pressure, t.emperat.ure and density are 
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1.0 mm 

ISA sea level 
conditions 

Air bubbles 

Water 

Axis of rotational : 
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3 

Figure 9. 1: The geom et ry of the problem (Not to scale) . 

101.325 kPa , 288.1 5 K and 1000 kgm- 3 respectively. The bubbles are assumed to contain 

air , which is represented by the ideal gas EOS. Thus the ratio of specific heat , 'Y, is 1.4. 

The ini t ial temperature, density and pressure for the air are 288. 15 K , 1.2246 kgm-3 and 

101.325 kPa respectively. A planar lithotripter pulse, similar to the one used in Chapter 

7, wit h P+ = 90 M Pa and P - = -10 M Pa , propagates t hrough the water from left to 

right . The lower domain boundary repres nts t he axis of symmetry. All elapsed t imes 

are measured from t he fi rst shock/bubble impact . The lithotripter pulse is introduced by 

imposing a t ime-dependent pressure boundary condition on the left boundary. The top 

and right boundaries are non-reflecting at all times . 

The separat ion distance between the initial centre of t he bubble is given by L. Simula­

tions for four different L were studied and are discussed in this chapter , i. e. L = 0.085 mm, 

L = 0.09mm, L = 0.1 mm and L = 0.2n?'m. The initial air bubble radius , Ro is 0.04mm. 

9.1.1 Results and discussion 

The results for the lithotript.er shock wave-bubble array interaction problem in free-fi eld 

R,re given in Fig. 9.2-9.5. The shock waves moves from left to right . The bubbles are 

separated by 0.09 mm. The symbols 6 Pw is increments bet.ween contours in t.he ,Yater, 

whi le 6Pa1 and 6 Pa2 indicate the increments between contours in t.he air in bubble 1 

i-\,nd hnbble 2 respectively, 

At t = 0.111 j..LS, the incident shock has t.raversed t.he two bubbles (Fig. 9.2(a)) . The 

interact ion between t.he shock and expan. ion waves originR,t. ing R,t t he bubble surface 

results in wCR,kening and curvat ure of t he shock. The dynamics of the collapse of bubble 

1 is nearly identical to t.he problem fo r a single air bubble in free-field. Bubble 1 is 

collapscd by t. he shock wave and a strong air shock propagates in bubble 1, ,yhile a ,yeak 
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(a) [).Pa1 = 0.2 Pa, [).Pa2 = 0.2 Pa 
[).Pw = 50Pa 

0.175p,s 

(c) [).Pa1 = 20Pa, [).Pa2 = O.lPa 
[).Pw = 100Pa 

t 0.143p,s 

(b) [).Pa1 = 1 Pa, [).Pa2 = 0.1 Pa 
[).Pw = 50Pa 

t = 0.183p,s 

(d) [).Pa1 = 500 Pa, [).Pa2 = 2 Pa 
[).Pw = 500Pa 

Figure 9.2: Pressure contours for etIl array of air bubbles impacted by a lithotripter 
shock. Separatiun distance, L is 0.09 mm. Figure shO\\·s the collapse of the bubbles cmd 
the formation of a liquid jet in bubble 1 (left). 

pressuH' \\"elY(' is transmitted in the air of bubble 2. During the time that bubble 1 is 

collapsing. 1mbblc 2 has been shielded from the initial incident shock \niW and has onl~' 

experienced a slight lateral compression (see Fig. 9.2((,) ommrds). The liquid jet begins to 

fmlll ill bubble 1 Fig. 9.2(b), dewlopillg ill alllplitude h)' Fig. 9.2(c). The jet trawls across 

thl' 1mbblc alld re(1ches the dm\'llstrcam \\'all at approximatel)' t = 0.182p5 (Fig. 9.2(d)). 

At this time, bubble 2 shO\\'s no sigll of liquid jet formation. 

At t = (J.Hn fLS (Fig. 9.3(a)). the air cavity uf bubble 1 is drmYll into the Hwtcx core 

"'hile til(' blast \\'ave cOlltinue's to propagate outwards radially from the bubble. The blast 

,,",)W arisillg from the liquid-liquid jet impact of bubble 1 impacts on the upstream \\'all 

of bubble 2, causing it to collapse to produce a jet (Fig. 9.3(c)-(d)). On impact. the 

streugth of the blast \Yaw is calculated to be approximatcl)' 0.5 G Pa. A. strong air shock 

is "Iso transmitt('(l in 1mbblc 2. The strength of the blast \\'CtH' decreases as it propagates 

iut() the slllTollllCling \n)ter. It is dear that the collapse of bubble 2 is gn'ath- amplified 

b~- the blast wave originating from the cull apse uf 1mbblc 1. FollO\\'ing jet imprH't. the 
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t = 0.191 J-Ls 

(a) tlPa1 = 500 Pa, tlPa2 = 4 Pa 
tlPw = 200 Pa 

t = 0.215 J-Ls 

(c) tlPa1 = 20Pa, tlPa2 = 10Pa 
tlPw = 50Pa 

t = 0.199 J-LS 

(b) tlPa1 = 500 Pa, tlPa2 = 5 Pa 
tlPw = 200Pa 

~t = 0.231J-Ls 

\ 
'\ 

(d) tlPa1 = lOPa, tlPa2 = 10Pa 
tlPw = 50Pa 

Figure 9.3: The blast wave generated by bubble 1 impacts on bubble 2, leading to the 
formation of a liquid jet (L = O.09mm). 

high pressure in bubble 1 causes it to expand. 

t = 0.239 J-Ls 

(a) tlPa1 = 500Pa, tlPa2 = 100Pa 
tlPw = 200Pa 

t 247 J-LS 

(b) tlPa1 = 500 Pa, tlPa2 = 500Pa 
tlPw = 200Pa 

Figure 9.4: The liquid jet pierces through bubble 2 and impacts on the dmYllstream \yall. 
Separatioll distallcc. L, is 0.09 171m. 

I3~' t = 0.23~) /18 (Fig. 9..4(a)), bubble 1 has expanded to a YOIUlllC greMcr than the 

('()llnpsing bubble 2. The pressure gradicnt ncar thc upstream of bubble 2 contilllles to 

Allllmd n .Tamaluddin 17-l. 



Frc(~-Lagrange Simulations of Shock-Bubble Interaction in ES\VL 

illcrease with time. A high speed liquid .i(~t is formed and impacts on the downstream 

wall of bubble 2 at 0.239 f-LS. As a result of the lateral compression experienced by bubble 

2 earlier in the collapse process, the liquid jet that is formed is narrower than that of 

1mbblc 1. On impact, the jet produces an intense blast wave in the surrounding water 

(Fig. ~J.4(h)). This blast wave will interact with the c:xpanded bubble 1. and cause the 

];11 tcr to Ilndergo a sec:owlary collapse. At t = O.24,s f-LS, the jet has penetrated through 

11](' bllbble isolating a lobe of trapped air and highly compressed gas that resembles a 

('ilr-drop (Fig. ~.G(b)). 

It is belicved that if a third bubble is positioned downstream of bubble 2. a chain 

j'(',lction would occur and the third bubble would collapsed in a similar manner by the 

('()llapse and n,bollwi of the second bubhle'. This situations for bubble collapse and jet 

f()rlllation ar(' likely to take placl' during typical cavitation conditions, since pressure 

\\'(\VCS from the collapse and rebound of some bubbles will pass over neighbouring bub­

I>1('s. Therefore. it is ncc(;ssary to carry out a study to investigate how the collapse of 

]wighbouring 1mbbles are affected by their Illlltllal interactions. It is shown here. that for 

L = o.O!:) nnn. bubble 2 is shielded fwm thl' incident lithotripter shock \\"aw. Ho\\-ever. 

(h(' blast waY(' originating from the collapse of bubble 1 interacts \\'it h bubble 2. This is 

(\]wlogous to an incident shock \\'ave passing 0\-('1' hubble 2, causing a jet in the direction 

()f the shock. The study here is limited to axisymmetric geometries and the bubbles are 

positioncd in a line' normal to the incident shuck \yave. Dear (;: Field [30] carried out 

('x]wrimental \\'ork to study the behaviour of triangular arra:vs of 2D ul.yities. \yhere the 

('(l\-ities aTC st aggcred in a three, two and one arra,''-. It was obsel",ed that a chain reaction 

of collapse occurs. Unlike the results ShmYll hert'. thc second cayity is onh- part I~- in the 

sll<ldow of t he first un'it)- and t herdore the incicient shock ,yaH' impacts on the second 

1m h ble as~-mmct ricall:;. As a result, the liquid jet funned b~- cayi ty t\yO is not so \n~ll 

fmllled and is not nurmal to the incident shock \YR"\,(-'. 

Three other cases for different separation distcUlce, L \wre studied. and the results 

arc depicted in Fig. 9.6. The bubble \yall time history for bubble 1 is plotted in black. 

The continuous lines depicts the upstream \yall of the bubble \yhilst the dashed lines 

rders to the downstream b11 b ble wall. The point \dll're the two line meet is \yhere the 

liquid-liquid jet impact occurs that produccs an intense blast \\'a\'C in the surrounding 

\\-<tt.(T. For bubble 1, this puint of impact is labeled 'X'. The wall position uf bubble 2 

fur the four cases arc plotted in coluur. The plotted curves make it easier to obscryt' the 

clfcct of separation distance' on the Imhblc \\-all motion. for bubble 2 in particular. 

As tile incident shock waw hits the upstream \Yall uf bubble 1 (black lint's). t ht' up­

s1 ream wall collapse gradually ami then accelerates towards the dmYllstn'am \ndl. forming 

,\ iligh-sp('cd liquid jet. Hu\WH'r. throughout the d mation of the cull apse . t he dll\\'n~trcam 
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(a) (b) 

F igure 9.5: Near spheri cal blast wave emitted from t he liquid-l iquid impact as t he jet 
impacts on t.he downstream wall of bubble 2. The t ime is 0.248 j..LS, 6.Pa1 = 500 Pa, 
6.Pa2 = 5 Pa; 6.Pw = 200 P a and L = 0.09 mm. Fig. (b) is a magnification of bubble 2 
in (a) . 

:[ 

x 10'" Bubble wall position time history for two bubble array problems 
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Figure 9.6: Bubble wall posit ion t ime history for bubble 1 and 2. 

wall appears to remain almost stationary. However , if the collapse of the bubble 1 \\"as 

to be examined closely, it was found tha t t he collapse of t he downstream wall does take 

place (F ig. 9.7 ). For L = 0.085mm, the upstream wall of bubble 2 is shielded by bubble 

l. The collapse of the form er oIlly occurs follovv ing t he liquid jet impact of bubble l. It is 

apparcut that. the coll apse is initia ted by t.he blast wave that. is generat.ed b~' the Jiquid-
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liquid impact at point X on the curve. Similar trend can be observed for L = 0.09 mm 

(yellow lines ) and L = 0.1 mm (green lines) . The influence of the incident lithotripter 

shock wave on the upstream wall of bubble 2 gradually increase at la rge value of L. For 

L = 0.2 mm, the collapse of the upstream wall motion increa.ses gradually and accelerates 

towards the end of the collapse pha.se where a liquid jet is formed. The motion of t he 

wall is similar to that of bubble 1. 

Bubble 1 wall position time history X 10-4 

5.5 i'--'-''------,----.---.---.----.--- -.- ---, 

5.4 

5.3 

5.2 

g 5.1 
'w o 
.::- 5 
OJ 
~ 

4.9 

4. 8 

4.7 

0.05 0.1 

- L=0.085mm - upwall 
- - L=0.085mm - dnwall 
- L=0.09mm - upwall 
- - L=0.09mm - dnwall 
- L=0.1 mm - upwall 
- - L=0.1 mm - dnwall 
- L=0.2mm - upwall 

L=0.2mm - dnwall 

0.15 0.2 0.25 0.3 0.35 
Time[~l 

Figurc 9.7: Bubble 1 wall posit ion t ime history for various L. 

From Fig. 9.7, it is clear t hat. t he bubble wall t ime hist.ory of bubble 1 are diffe rent. 

for all four cases t.owards the end of the collapse phase. The upstream wall coll apse at 

t.he samc ratc IV hi Ie t he degree of collapse of t he downst. ream wall varies "" it h separation 

distance L. It. is apparent. t.hat. bubble 2 shields t he down. t ream wall of bubble 1 from the 

incident shock wave. For L = 0.085 mm where the bubbles are very close to one another. 

the invvard collapse motion of t he downstream wall is minute in comparison to the case 

when L = 0. 2mm (dashed blue linc) . As a consequent of t his mot.ion of the downst r am 

wall , th t ime to j et impact decreases with increasing L . 

It is bclieved that thcre is a critical value of L above which bubble 2 behaves like an 

isola ted bubble in frce-field with no mut ual int.eractions wi t h bubble 1. This is depict.ed 

by plotting a dimensionl ess parameter A.L against t hc norlll al ised separation d ist.allce 

L j Ro · This is given in Fig. 9. 8. The paramcter A.L is given by t he foli OlYing equation , 

(9.1 ) 
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Figure 9.8: Buhble array interaction study. Normalised parameter AL against separation 
distance L. 

,,·here L is the bubble initial separation distance, Us is the incident shock wave velocity, 

awl tj2 and tjl are the time to jet impact for bubble 2 and bubble 1 respectively. It is clear 

fWIll Fig. 9.8 thClJ -'h reaches an asymptotic value for large value of L. If the separation 

distance is greater than 0.2 mm, it can be assumed that the two bubbles are sufficiently 

felr apart that they do not affect the dynamics of one another. This information ,yill 

1)(' used in t hc next section, \\'here the far-field pressure wave signature from a cloud of 

("(l\'itation bubbles are carried out. If L/ Ro c:::: 5. the bubbles can be neglected from the 

ullculation. 

9.1.2 Far-field Pressure Signature From Cavitation Cloud 

III this scction. the Kirchhoff solution for a single bubble in free-field is extended to a 

lll11lti-Imbblc problem. A Gaussian normal distribution is llsed to randollll~- distribute 

the bubbles in water, with high 1mbble dmsity concentrated around the focal point of 

the ('unverging inciclmt lithotripter shock wave (Fig. 9.9 and Fig. 9.10). The focal size 

is (,olllmonl~' used to describe the spatial pressure distribution of the acoustic field of 

Cl Iithotripter. In water, the region of the focal point coincides ,vith the position of 

high tcmporal peak negative pressure. In this stud~', the focal regiun of the lithlltripter 

Sh'.lCk Wi)Vl' is approxinwtcd to )w of a cigilT-slwpecl volulllt'. GO 172m lung imd 10 mm in 
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diameter [27, 23]1 

,30mm 

Shock wave 
focal point 

y 

Figure g.9: Cigar-shaped lithotripter shock wave focal point. A normal distribution of 
t he bubbles relative to t.he focal point. 

Although it is described here that. air bubbles are dist.ributed randomly, it is actually 

t he Kirchhoff control surface for an an isolated air bubble that is distributed based on 

Cl llormal distribution about the focal point of t.he shock wave (Fig. 9.11). Hence, each 

(,(llltrul surface represents a single bubble in free-field, each emanating an identical far­

fidel pressure signature to that shown in Fig. 7.15 in Chapter 7. In the study here. 1000 

1 mbbles are randomly generated and the observer is positioned 500171171 from the bubble 

d(lllcl centre, ",here e = 270° and 9 = .:15°. 

A n1llnlwr of assumptions have been made for the prediction of the far-field bubble 

dum] pressure signature. The)' are as follcw;s: 

1. Highest densit:y of bubbles is ncar the focal point of the lithotripter shock ,yaw and 

that the distribution is approximated as a Gaussian distribution. 

2. There is no shielding effeet between bubbles, as cliscussed in previous section. 

J. The collapse of the bubbles is caused by the incident lithotripter shock I,'aw and 

not the blast wewe emanated from liquid jet impact of neighbouring bubbles. 

4. The pressure peak positive amplitude seen by each bubbles is identical at P+ 

gO jl.J Pa, i.e. the strength of the shock ,vave remains constant as it trawrses through 

the cloud of bubbles. 

1 Th('se valucs art' used as the limits "'hen distributing til(' bubbles using the norlllal distribution. 
TIl(' bubble cloud sizc gcnnated is thl'rcforc < GO /11171 in til(' X-dircction and < 10/1)/1) in the Y nne! 
Z-dircction. 
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Figure 9.10: Three-dimensional plot showing the bubble (Kirchhoff control surface) dis­
tribution. 
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Figure 9.11: Random bubble distribution in X-V and X-Z plane. 

5. The cloucl. of bubbles is initiat.ed from cavitation nuclei by a preceding lithotripter 

shock \",we. The bubbles then undergo a series of expansion and collapse phase 

before reaching a st.able equilibrium size of 40 f-Lm. The far-field acoustic waw of 

the bubble cloud predicted here is for the interaction of these stable bubbles with 

thl' subsequellt incidcllt lithotriptcr shock wave. 

G. The pn'ssun' signature of t.he bubble cloud at the observer point is giWll b~' a lillcnr 

sllllllllatioll of the pressure sigll<1Jures of t.he individual bubbles. 
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7. Any scattering and attenuation by soft tissues or fluid are neglected. 

8. The collapse time of the bubbles is staggered to simulate the finite time taken for 

the shock to sweep through the cloud. 
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4 Far-field pressure signature (1000 bubbles) 
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figure 9.12: PrC'dicted pressure signature emanatC'd from a bubble cloud 'which consists 
of lOOO bubbles, 

The far-held pressure signature shown in Fig. 9.12 is calculated by taking a linear 

smllIllation of the pressure signatures of individual bubble. Thus. the high pressure 

rQ2;ion of the far-held signal (betwC'C'n 335 f.1S - 355 f.1s) corresponds to the region of high 

1m b hIe dcnsi ty. Pressure \yaVC'forms originating from a single bubble can also be dearl~' 

secn ill Fig. 9.12 around t = 320l-LS and t = 370 f.1s. It is also apparent that the duration 

of t hC' signal is highh' dependent on the position of the observer, the distri bur ian of the air 

1mbbles and the size of the bubble cloud. If thC' results shown in Fig. 9.12 are comparable 

tu the results calculated from the Gilmore model, then one could argue that there are onl~' 

Illillor discrepancies between the results from the spherical collapse and the aS~'mmetric 

collapse. It is postulated that the distribution of the bubbles and size of the bubble cloud 

in experiment.al study can be approximated using the method described abon'. 
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Chapter 10 

Conclusion and Future Work 

This chapter summarises the work conducted in this research, including all important 

filldings related to the validation of the Free-Lagrange method and its application in 

slj()ck-lmbhle interaction studies. In addition, suggestions for possible future work are 

pn·scnted. 

10.1 ConcI us ions 

The newly developed a..xisyrnnlC'tric version of the Free-Lagrange code 1/ucalm has been 

used to simulate the interaction between a shock wave and a spherical air bubble. This 

lllet hodolog\' has been chosen as it allmvs the material interfaces to be sharpl~' resoln~d 

at all times. Since material interfaces are ahvays stationary relati\'e to the mesh. no 

additional interface tracking or modeling algorithm is required in multi-material prob­

lellls. The mdhod also hc!ps to reduce numerical diffusion at the material interface as 

\\'cll as cnsurillg exact COllS('lTation of mass. In addition. Lagrangian met huds all 0\\' the 

tilll(' histOlT of individual parcels of fluid to be tracked. illcluding. for reacting flO\\'s. 

their chemical his tor)'. The usc of the Free-Lagrallge method for simulations invoh'ing 

multi-phase fto\\'S is attractin' lwcause it avoids mesh tangling issues experienced bv 

cOllvelltiollal fixed-connectivity schemes such as conventional Lagrangian schemes. 

Validation of the axisymmetric version of the Frcl'-Lagrange, V ucal In code has been 

l'nrried out ill order to shm\' the ability of the code to soh'e flo\,; problems in aXiS)'mllletric 

forlll. The \'aliclation was performcd by nUT)'ing out two numerical simulations invoking 

lllulti-phase flows. The two problcms arc 

• shock-ind uc('d collapse of a spherical air bubble by a planar step shock (Ding and 

Graceswki [:35]) 

• the interactioll of a shock with a water collllllll (Igra and Taka~'(lma [5:2]) 
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In the comparison with the present work and Ding and Graceswki's, the numerical 

silllulation agrees with the previously published numerical data in that the jet speed is 

iudependent of the initial gas cavity size, but depends on the applied shock strength. The 

results also show good agreement in the pressure contours, Mach contours and velocity 

\·('dor. The shock-cavity iuteractiuns is shown to b(~ physically complex. The interaction 

(d· a plauar shock wavc with a water column was prcscnted in the second part of Chapter 6. 

ls()pycuics and interf(Togram images at two different stages of the flow were obtained from 

rI'fcrcuC'c [52] and were compared with that usiug the vucalm code. The results obtained 

agreed well with the n1llIHTic:al awl experimental findings of Igra and Takayama. Both 

results show the ?vlach stems and triple point as well as secondary triple point at later 

st()g('S of the flow. Tlw interf<~rograIll at t = 43 f-LS not only revealed a high pressure region 

d(JwnstrealIl of the water column but also a vortex flow. The fringe number and spacing 

ill air agreed quite well with the expcrinwntal interferograIll images. 

The UUlll(Tical simulations of asyulluctric cavitation bubble collapse induced by a 

litliotriptcr shock wave in free-field as \vell as for nine different stand-off distance have 

1 w('n successfully carried out. The results show the general features of asymmetric: bubble 

("( Jllapsc. This include: 

• The formation of high-speed liquid jet that penetrates the interior of t he bubble. 

• The emission of a blast wave as a result of a liquid-liquid impact \\'hen the high­

speed liquid jet impacts on thc downstream bubble surface. 

• The elongation of the bubble for small value of (. 

• The generation of a secondary air shock for bubble collapse near a solid boundary 

• The induced radially spreading sheet of water along the solid boundar~' in the pre­

attached bubble problems. 

• The forlllation of a concave liquid jet head \vhich is thought to be caused by the 

interaction of the collapsing bubble \vith the reflected incident shock \yaw. 

• In the bubble array stud~', it was found that lllutual interaction bet\wen neighbour­

ing bubbles is minimal when the separation distance, L, is over 5Ro. 

• For 5Ro, shielding of the incident lithotripter shock ,,;ave on one bubble (bubble 

2) occurs. Furthermore, if the s('paration distance is slllall enough. the blast \yaH' 

genl'rated frOlll the colln.ps(' of on(' bubble can l'nhanced. the collapse uf neighbouring 

bubbles. 
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The work presented here includes the development and implementation of two aeroa­

(,()llstic: codes for the study of shock-bubble interaction to predict the acoustic signature 

ill the far-field. The two acoustic formulations implemented are the Kirchhoff's method 

iUI( I Ffowc:s-Williams-Hawkings method. When coupled to the Free-Lagrange code, each 

Illdhod call be llsed to obtain the far-field pressure signatures of cavitation events. Both 

ll1l1lwric:al codes have heell validated against analytical results in predicting the far-field 

pH'SSllre sigllatnrc emitted fwm an oscillating solid sphere. 

The Kirchhoff's allCl FvVH integral formulations allow the radiating sound to be evalu­

;It.(~d based on qllantiti(~s OIl an arbitrary lJ(~ar-fidd control surface. The idea is to solve the 

II()ll-lilH~ar probkms in tlw llcar-field, using V ucalm, and a surface integral of the solution 

oyer the ('olltrol surface then gives enough information for the analytical calculation in 

the far-field. It \Ve1.,) clearly shmvn that t\VO methods work well. To summarise: 

• The F\\"H requires the storage of (p, pi and pud for each control point. while 

(p,8pj8n ami 8pj8t) are required by Kirchhoff. 

• The Kirchhoff method is simpler, and easier to implement. However. the method 

puts more stringent ncquirements on the CFD method to reach to the linear acoustic 

field. 

• The porous FvVH method allows for nonlinearities on the control surface, \vhereas 

the Kirchhoff method assumes a solution of the linear wave equation on the surface 

S. 

• The predicted far-field \\w,;efonn clearly captures the radiated expansion Kaw and 

the sharp peak of the blast v;ave, gC'nerated from the liquid jet impact. 

• The ,"ariation of the pressure Kavcform for different observer position using the two 

llIcthods agrce well for Res = 5Ro. 

• The results of the predicted far-field pressure signature of a bubble cloud show that 

thc density of the signal is highly dependent on the bubble distribution. 

10.2 Future Work 

The iLxisYlllmetric Free-Lagrange code, which has been used and developed here offers a 

lot of potcntial for future expluitation. This includes physical and computational aspects. 

l'ossi ble future works inclnde: 
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10.2.1 Physical aspects 

• Simulations of shock-induced collapse of an air bubble with different init ial radius 

and shock strength . 

• Simulations near an elast ic/plast ic boundary or a material with strength such as 

copper , steel or materials that can be used to represent kidney stones. 

• Simulations with different surface geometry, e.g. notch shapes and sizes, for a range 

of stand-off distances . 

10.2 .2 Computational Issues 

" 

Lithotripter 
shock wave 

". 

(1 ) 

, .... _.~i~oid/b.~~~.~~~ . . :-.. :\, 
" '. I 

i 'k2)i b No bubble ~ . " .; , 
" " , "':: __ _ _ ::- _ ____________ _ _ __ _ _ _ __ 4 

" 

Figure 10.1: Bubble cloud problem diagram. Region 1: Free-field; Region 2: ( = 2.125: 
and Region 3: ( = 1.0625. 

• Incorporate t he long expansion and subsequent. collapses into t he CFD simulations. 

As discussed in Chapter 2, t he int.eraction of t he shock wave \yith the bubble \\'ill 

cause it to collapse, and after which , t.he negative t.ail of t.he driving wawform 

iuitiates a long expansion phase of the bubble. Following the long expansion phase. 

the overgrown bubble will undergo a violent inert ial collapse. Subsequent. cycles of 

rebound and collapse wi ll occur until t.he bubble reaches an equilibrium tate with 

the surrounding wat.er . In the current work , numerical simulat. ions are st.opped 

fo llowing primary collapse of t.he bubble by t.he li thotripter shock \\'aw. Current 

simulations show that t.he t. ime t.o collapse is about 0.18 f.1.S and, according to t.he 

Gilmore-Akulichev model , t.he illt.eraction of t.he t.ensile part. of t he lit.hot.ript er shock 

wit.h t.he collapsed bubble will induce an expansion phase for over 200 f.1.S. l\Iodrling 
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this long expansion phase is therefore time consuming and very expensive. One 

way of modeling the expansion phase is to incorporate the Gilmore model. The 

idea is to used the Free-Lagrange code to numerically simulate the primary collapse 

of the bubble, then incorporate the Gilmore model to calculate the long expansion 

phase and obtained important paraIlleters which will then be incorporated back 

into V ucalm to simulate the secondary collapse of the over-expanded bubble. The 

gcoIlwtry of the bubble need to be simplified to a sphere for the period when the 

Gilmore model is us(~d. Tlw third stage of the work is quite similar to an underwater 

explosion or lascr-inclllc(xi cavitation problem, but the simulation starts from the 

stage at vvhich the bubble has already reached its ma.ximum size and is at the point 

of collapsing . 

• The hubble cloud far-fidd pressure signature presented in Chapter 9 ,,;as generated 

from near- fidd data from the free- fidd simlllation of a single bubble. It would be 

interesting to stlldy the predicted far-field waveform generated from the near-field 

signatures from different ca.ses, e.g. the near rigid boundary problem \yit h different 

stand-off distances. Sec Fig. 10.1. The ellipsoidal dotted line represents t he focal 

region of the lithotripter shock waw. Three regions are identified. a free-field region 

(TIegion 1) ami two regions near a rigid boundary, e.g. Region 3: ( = 1.0625 and 

Region 2: ( = 2.125. 1000 bubbles arc gC'nerated randomh' and three different 

solutions \yill be used to model this problem. The rigid boundary represents a 

kidney stone, and dm\'llstrcam of this hOUIldc1,r)'. the fi uid is shielded from the 

lithotripter shock \yaw, and therefore no bubble exists. This model \yilliook at the 

affects of tht' rigid b()undar~' on the predicted far-field \yawforIn . 

• The far-field pressure signature predicted from the collapse of a bubble cloud can 

be rcgenerated by using a delta function of 0.2 !lS duration as the densit~- frequene)' 

distribution is highlY dependcnt on the bubble density and distribution. As 1-ucalm 

sulution is expensin'. thc usc of a delta functioll is attractin' as it is reproducible 

for an~' caSt's. For example, the pressure signature emanated from a bubble cloud 

studied in Chapter 9 ca.n be taken as a linear summation of a delta function that 

would replace the solution obtain using the 17 ([calnl a.nd aeroacoustic codes. The 

fn'qucncy from the predicted far-field pressure signature is approximateh' 0.0 ps du­

ration, ,,'hich gives a frequenc~' in the order of "'1 H:::. This agrees \yit h experimC'ntal 

findings which suggest that tht' frequency content from the collapse of mino-bubbles 

is of the same order. \:\'ith this information. the \york could usefulh' be extended 

to ('om pare with experimental results. 
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Appendix A 

Conservation Laws for Continuous 

Media 

A sd of conservation equations arising from first principles describes the fluid behaviour. 

There exist three fundamental principles of conservation. These are 

• Conservation of Mass 

• Conservation of Momentum 

• Conservation of Energy 

y 

y 

s fi 

Ilx x 

x 

Figure A.l: An arbitrary fixed area .4 bounded by surface boundary 5 in .2' - Y plane' 

Consider the detailed Eulerian finite volume model shown in Fig. A.l and apply to 

this model physical principles. Let A be an imaginary face area, enclosed b~- a surface 
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boundary S that is fixed in the x - y plane. Within the control volume and on the 

bounding surface, an elemental surface area dA with its centroid ordinate Te, and elemen­

tal surface boundary dS can be construct ed respectively. On the elemental line dS with 

an ordinate of its middle point Te , pressure p is acting inwards into the area A, while a 

unit vector , normal to the surface n, and a velocity vector u are pointing outwards. Note 

that the overbar symbol d notes a vector. In a Cartesian coordinate system, t hese two 

vectors can be divided into x and y components as illustrat d in Fig. A.l . 

y y 

dS 

x x 
unit thickness 

z z 
(a) 2 - d'imensional (b) Axisymmetric 

Figure A.2: Schematic diagram of (a) 2D and (b) axisymmetric 

For a 2D probl m (Fig. A.2 (a)), t he area A and line S represent the volume and 

'circumferential' area respectively. The Bow is planar and is defined as per unit. t hickness 

- in 2D Vllcalm code, thickness is taken as 1m. 

On the other hand , in the axisymmetric case, t he face area A enclosed by line S 

is rotated about an axis of symmetry, chosen here to be the x-axis. t.o giw a ring-like 

control volume as depicted in Fig. A.2 (b). The y-axis is equivalent t.o the T-a..xis . As a 

consequence, both the volume and surface area enclosing the cont rol volume are functions 

of radial distance T, measured from t.he a;;:is of symmetry. Following Pappus theorem [9 ]. 
t he volume is the product of the face area A and the circumference eTe, and e is t he angle 

of rotation. Thus, the control volume and t.he wrapping surface area are 

Volume = e IA T e dA Surface Area = e Is re dS (A.l ) 

In the derivation of the axisymmetric governing equations, the angle of rotation, e is taken 

as lTadian. It is important that the surface boundary S enclosing face area .rl does not 

intersect "vith the axis of symmetry to give an unphysical negative volume that \'iolates 

the axisymmetric geometry. It. should be noted t. hat. , because t.he control yolume is fixed 

in the fr ame in t.h e Eulerian reference frame, both t.he surface area and control \'oluI1lt' 
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are not time dependent parameters. In the next section, the three physical principles are 

considered to formulate the governing equation. 

A.I Conservation of Mass - Continuity Equation 

Let the first physical principle be - Mass is conserved. For a finite control volume fixed 

ill space, the following statement can be constructed: 

(

Rate of changc~ of Ivlass of ) ( ) Mass Flux of Fluid 
Fluid Occupying Volume = 

. Through Control Surface 
Enclosed by Surface 

For an elemental volumc of redA, the mass of this element would then be prdA. Hence, 

the Illass of fluid in the elemental volume is predA. Therefore, the total mass m contained 

Y\'ithin the control volume V is given by the integral 

m = lpredA (A.2) 

\\' here p is the density. The rate of change of mass m is therefore 

m = 8m = ~ r pre dS 
8t 8t iA (A.3) 

and this is the left-hand side of statement A.I. Now, consider the volume fllLX across the 

control surface element redS which is 

-n· uredS (A.4) 

Hence, the mass flux through the elemental surface area is given by: 

(A.5) 

Since n. is by convention positive when pointing outwards from the control volume. the 

1ll<1,SS flow is negative or out of the control volume when n . u is positive. It follows that 

t lw net mass flux can be written as 

(A.G) 

Therefore, h:v conservation, 

:t 1 pre dA + is n . pure dS = 0 (.-\.7) 
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which is the first governing equation and is known as the mass conservation or continuity 

equation. As in this case, a swirl free axisymmetric flow is considered, the gradient in 

the circumferential direction is equal to zero, 

a 
ae = 0 (A.8) 

III addition, there is no circumferential velocity (ve = 0) and hence no net mass flux in 

tlw circllIufewntial direction of the control volume. 

A.2 Conservation of Momentum 

Ilv definitioll, momentum is conserved. Thus we have, 

(

nate of change of ) 

I\Iollll'ntulll of Fluid 

Encloscd by Surface 
(

Net Momentum FlUX) ( Body Force ) 
of Fluid Through + Acting On 

Control Surface Control Volume 

This is base Oll N ('\vton 's 2nd Law which states that the time rate of change of the mo­

mcntmn in the cont1Ol volume is equal to the force acting on the control volume. 

The forces that act on fluid elements can be categorised into two - body forces and 

SIII:f(].(·C fonTs. Body forces are forces which act from a distance (external effects) on the 

lllass of lllaterial ('ontained \yithin the control yolume. Examples include magnetic. gra\'­

itMional and electric forces. SlLlface forces on the other hand. are due to the pressure 

distrilmtioll oyer the control surface as well as viscous forces due to normal and shear 

stresses \yithin the material. The viscous forces can be ignored when considering momen­

tUlll conscl'Yatioll in an inviscidmedia. As in the current \vork, normal and shear stresses 

due to viscosity cue excluded. The inclusioll of bod\' forces "'ill onl\' be considered for 

specific problcm. 

HCllce. the elemcntal volume l'edA has mass, 

(A.9) 

Hence, the momentum of fluid element is simply the product of the elemental mass 

(Eqn. A.9) and the local velocityu. The totalmomentul1l over the whole control \'Olllllle 

is t.herefore, 

(A.I0) 
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alld the rate of change of momentum is 

:t lpuredA (A.ll) 

The mass fiux across the control surface is defined earlier in Eqn. A.6. Its product with 

the velocity u gives the momentum fiux. Thus the net momentum fiux over the whole 

control surface S is the sum of all the elemental momentum fiux as follows, 

-is n· puurcdS (A.12) 

y y 

..--______ r-________ --:=-~~...:..:To~p side 

a b 
A 

de'''! L-____ ~ ____ __+---------____ ~~ 

x 
(a) (b) 

Figure A.3: Finite volume of angular extent de 

The force that acts on t.he cont.rol surface is categorised into a normal force that is 

the t.otal contribution of pressure force and normal stress of materials, and a shear stress 

of materials. Now let us consider t.he forces act.ing on the surface reS and let i be the 

total stress tenS07·. In the Cartesian coordinate system where one a.xis is set as the axis 

of symllletry, the cOlllPonents of this stress are given in the x, y and e directions. First. 

let Ft be the total surface force acting on the boundary surface reS, then 

(A.13) 

\\. here the stress te11sor i is defiued iu a matrix furm as 
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T= 
[ 

(Jx Txy Txz 1 [-P 0 0 1 
Tyx (Jy Tyz 0 -p 0 

Tzx Tzy (Jz 0 0 -p 

= -Jp (A.I4) 

The entries Tij are all zeros as only the pressure distribution is considered. The 

ll(·gative sign is because the pressure is acting inwards. J is the unit tensor. 

Thus the total surface force Pt acting on the control volume fixed in space can be 

\nitten as 

Pt = - is nJprcdS (A.I5) 

The extra forces arising from the axisymmetric geometry of the problem are classified into 

,\ source term in the governing equations. Now cOIlsider Figure A.3 below which show an 

arbitrary area A. presented here as a rectangle for simplicity, is rotated 'with respect to 

the x-axis to giv(' a finite control volume of angular extent de. 
Duc to geometry, the surface area on the outer part of the control \·olume. a-b. is 

lmger than the inner part, a-b. As a consequent, by assuming a uniform pressure in the 

surrounding fluid. the force fout is larger than the force fin' These forces act in opposite 

direction to each other and are in equilibrium due to an extra force fext from contribution 

of pressure P acting normal to either side of the control volume (labeled a and b on 

Figure A.3). I\otc that the sides aa and bb han' the same area. i.e. Aaa = Abb = A .. As 

the area are the same, fa = fb. It should be Iloted that, this pressure P. should not be 

confused with the p pressure acting on the boundary (wrapping) surface of t he control 

YOlullle. Although. in the case of a uniform pressure field p = P. fa and fb do not cancel 

(',\eh other out as they are not parallel, but accelerate the control yolume in the positiw 

),(ldial direction. 

The radial component of fa and fb gives the extra resultant force, fext. Since fa 

.h = P A , the radial component of the force acting on sides a and b is given by 

fext = 2PAsin (~de) (A.I6) 

Fur small angle approximation, Equation A.I6 reduces to 

fext = PAde (A.17) 

Fur the cntire control volume of 1 radian rot.ation, the total extra force III the radial 

direction is given by, 
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Fext = 11 PAde = PA (A.18) 

or in vector notation 

(A.19) 

vv·here 

(A.20) 

aud fly is the unit radial vector. 

This shows that the extra force that exists due to the geometry of the axisymmetric 

flow acts only in the radial direction, i.e. y-component of momentum. 

Tlwrdore, combining all the expressions (A.10, A.12, A.15, A.19) gives, 

aa r puredA = - 1 n· puurcdS - 1 n· JprcdS + r gredA 
t}A ~ ~ ~ 

(A.21) 

or 

(A.22) 

A.3 Conservation of Energy 

Iu order to formulate a complete system of conservation laws, the conservation of energy 

lllust be considered. This Imv is deduced from the First Law of Thermodynamics and is 

defined as follows: 

Rate of change 

of Energy of 

Fluid in 

Control Volume 

Net Energy Flux 

of Fluid into Control 

Volume across 

Control Surface 

The energy contain within an elemental volume TedA is, 

,,·here, 
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U·U 
E=e+--

2 

+ 

·Work done on 

the Control 

Volume at the 

Control Surface 

(A.23) 

(A.2-l) 
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is the total specific energy (per unit mass), which comprises of E is the specific internal 

ellergy and kinetic energy. Therefore, the total energy in the entire control volume is 

1 EpredA 

Hence, the rate of change of total energy is given by 

The mass flow across the surface element r cdS is 

(A.25) 

(A.26) 

(A.27) 

HeIlce, the energy flux is the product of energy E and mass flux -n . purcdS across the 

surface dement. It follows that 

(A.28) 

Cllld over the entire control surface, the total energy flow is given by 

-is n· puErcdS (A.29) 

:\ow, the rate of ,York done due to the pressure force acting on the surface element rdS 

is given by the principle rate of work done = force x velocity. Given the force due to the 

pressure distribution on the surface element is -n· prcdS, the rate of \vork done in vector 

furm is -n . purcdS. Integrating over the entire control surface yields the total rate of 

work done, 

-is Fi . purcdS 

Hcncl', the energy equation can be expressed as 

! 1 EPTe dA + is n· (puE + up)rcdS = 0 

(A.30) 

(A.31) 

\\"hich is the third and final conservation equation. The external force fat. described 

earlier ill Section A.2, docs not do any work since the circumferential velocity is equal 

to zero. Therefore, there is no energy term in C. The three conservation equations. 

Equatioll A.7, Equation A.22 awl Equation A.31 Illay be cOll\'cnicntl~' expressed in a 

("Olll pact form as follows: 
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(A.32) 

where 

(A.33) 

The vectors [J and P are the conserved variable vector and flux vector respectively. 

The vectors G and fI are the source vectors resulting from the consideration ofaxisym­

metric geometry. These governing equations (Eqn. A.32 and A.33) are the unsteady, 

("()mpressible Euler equations in axisymmetric form. 

A.4 Conservation of Volume 

Transformation from Eulerian to Lagrangian reference frame causes the convective terms 

ill the flux vector to vanish. As a consequence the continuity equation becomes 

81 -8 pTedA = 0 
t A 

(A.34) 

,,·hich is a redundant expression since it states that the mass within the control \·olume 

is invariant \vith time. Therefore, another physical principle - volume is conserved - IS 

required to provide a close set of governing equations. The principle states that 

Considering a volume element TedA and integrating, the volume enclosed bv control 

surface T cdS is given by, 

v = r Te dA 
JA(t) 

Thus the rate of change of volume is 

. 81 V = - TedA 
8t A(t) 

The volumc change due to the movemcnt of the elemental surfaces is given b:r 
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(A.37) 

Integrating for the entire control surface gives, 

is n· firc dS (A.38) 

Equating the rate of change of volume and the total volume change, we have, 

aa ( r edA + 1 n . fir cdS = 0 
t J A(t) hit) 

(A.39) 

Therefore, the Euler equations in the Lagrangian reference frame can be written in a 

c()mpact form as: 

aa ( [fredA + 1 n· FrcDS = ( GredA 
t J A(t) !S(t) J A(t) 

(A.40) 

Therefore, the vector of conserved variables becomes, 

(A.41) 

cUld the flux vector becomes, 

(A.42) 

Hence, the integral form of the conservation laws for an inviscid, unsteady, compress­

ible Elller equations in the Lagrangian reference frame are obtained. 
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