A decade of child pedestrian safety in England: a Bayesian spatio-temporal analysis 
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Summary
Background: Child pedestrian injury is a public health and health equality challenge worldwide, including in high-income countries. However, child pedestrian safety is less-understood, especially over long time spans. 
Methods: We used a Bayesian space-time interaction model to understand the association between road crashes involving child pedestrians in England from 2011 to 2020 and a host of socio-economic, transport-related and built-environment variables. We identified high-crash local authorities and investigated spatio-temporal trends in child pedestrian safety over the study period.
Findings: We found that child pedestrian crash frequencies increase as child population, unemployment-related claimants, road density, and the number of schools increase. Nevertheless, as the number of licensed vehicles per capita and zonal-level walking/cycling increase, child pedestrian safety increases. In addition, we found that after adjusting for the effect of covariates, the rate of decline in crashes varies between local authorities. Our study revealed social inequity in childe pedestrian safety in England. Overall, Southern England has experienced more improvement in child pedestrian safety over the last decade than the northern regions.  
[bookmark: _Hlk104830169]Interpretation: Child pedestrian safety has improved in England since 2011. However, the socio-economic inequality gap in child pedestrian safety has marginally improved. The presence of localised risk factors/mitigation measures contributes to variation in the spatio-temporal patterns of child pedestrian safety. To better inform safety and public health policy, our findings support the importance of a targeted system approach, considering the identification of high-crash areas while keeping track of how child pedestrian safety evolves over time. 
Funding: Medical Research Council

Research in Context
Evidence before this study
We searched PubMed, Web of Science, Scopus, TRID, and EMBASE for articles published, with search terms (“road crash” OR “road safety” OR “road accident” OR “traffic accident” “crash frequency” AND (“child” OR “children”) AND (“pedestrian”) AND (“England” OR “United Kingdom”) and have not found any paper that analysed child pedestrian crash data across the whole of England over a long period of time. When we removed the terms “child” and “children”, we mainly found studies that focused on finding associations between crash frequencies and a range of built-environment, transport, and sociodemographic factors. We also found studies that investigated spatiotemporal patterns of road crashes at various geographic area level, but none of these considered a spatio-temporal analysis of child pedestrian safety.  
Added value of this study
[bookmark: _Hlk104795583][bookmark: _Hlk104829263]To our knowledge, this study is the first to explore spatial-temporal patterns of child pedestrian crashes at local authority level in England from 2011 to 2020. We used a Bayesian space-time interaction approach, adjusting for multiple relevant covariates, and accommodated spatial and temporal dependencies in the data. This enabled us to (i) identify statistically important area-level variables that can explain child pedestrian safety, (ii) reveal spatial patterns and national trend in child pedestrian crashes across England over the last decade, (iii) identify high-crash local authorities, and (iv) understand how road safety conditions evolved in each local authority over the study period.  
Implications of all the available evidence
The results indicate that child pedestrian crashes have been gradually declining in England over the last decade. Some local authorities (mainly in urban areas of northern England) exhibited higher expected child crash frequencies than national average. More deprived local authorities have been experiencing a higher number of child pedestrian crashes and there is no evidence suggesting that socioeconomic-related inequality gap has narrowed from 2011. Efforts to improve child pedestrian safety would be more successful if emphasise is given to areas where safety improvements are most warranted and to evidence-based policy making in conjunction with interventions that can address social inequalities. 

Introduction

Road safety is a global public health concern and one of the leading causes of death for children over the age of five years1,2. Child pedestrians are particularly vulnerable road users due to their limited physical, cognitive-perceptual, and social development.3 According to the UK Department for Transport, only in 2019 in England, 4,700 child pedestrians under the age of 15 sustained traffic-related injuries out of which 1,200 were killed or seriously injured. Ensuring children’s safety on roads is a major public health priority as it can prevent various adverse physical, mental, and social consequences and can promote walking among children, increasing childhood physical activity. 

Adopting active modes of travel, including walking and cycling, from early ages has positive impacts on both personal and planetary health. However, the number of children walking has in general declined over the last decades. For example, based on the National Travel Survey statistics, in England in 1998/2000, an estimated 49% of children under 16 walked to school while in 2017 this rate fell to 43%. Research suggests that this reduction is partly due to traffic safety concerns. 4,5 To help address this issue and reverse this trend, it is essential that policies are geared towards making roads safer and enjoyable for children. 

Child Pedestrian injury is a multi-faceted problem with many contributory factors such as driver characteristics 6, vehicle features 7,8, road configuration 9,10, environmental 11, built-environment 12, and socio-economic and ethnic features.13-17 In addition to these factors, there are geographical and temporal variations influenced by place- and time-specific factors and interventions such as reduced vehicles circulations around schools, implementation of 20 mph speed limit zones, school walking bus, School Street schemes, among the others. 

Previous research has mainly focused on identifying high-crash areas and linking the risk to explanatory variables to quantify the effect of several risk factors through a combination of geographic information systems and statistical models. 18-23 Due to the nature of road crash data, there might be spatial and temporal dependencies between observations; and therefore, statistical models need to accommodate these dependencies.24 However, considering spatial-temporal dependencies 25 as well as child safety 15 is relatively limited in the crash literature, especially in England. In this study we investigate the spatiotemporal patterns of child pedestrian safety at Lower Tier Local Authorities (LTLA) level in England from 2011 to 2020. The main aims are to (i) explain the association between child pedestrian crash frequencies and LTLA level characteristics, including a host of deprivation, transport, and built-environment variables, (ii) identify LTLAs with particularly high crash frequencies for child pedestrians, (iii) evaluate the persistence of spatial patterns of child crashes over time, and (iv) pinpoint local time trends for each LTLA. 

Methods
Data sources
The outcome of interest was the annual counts of crashes involving child pedestrians at local authority level in England. Crash data were obtained from the Department for Transport, which collects information on crashes that occurred on public roads, reported to the police, and recorded on STATS19 forms. As the focus of our study was to model child pedestrian crash frequencies, information relating to the location of crashes, road user types (e.g., pedestrian, cyclist, driver), and age of individuals involved in crashes were extracted from the STATS19 databases. We only included crashes between a motorised vehicle and a child pedestrian, who was less than 16 years old. This yielded 50,993 crashes involving child pedestrians over the period 2011-2020. Using the geographic coordinates of the crashes, we obtained yearly crash counts at LTLA level. We removed Isles of Scilly due to the sparsity of outcome data and the City of London because many explanatory variables for the latter were missing. This resulted in 315 LTLAs with a mean crash of 161, standard deviation of 169.83, minimum of 6, and a maximum of 1,808 over the study period. 

To model child pedestrian crash frequencies, we considered several sociodemographic, transport, and built-environment features, based on literature, domain expertise, and data availability. As sociodemographic covariates, we considered percent of child (0-15 year) population[footnoteRef:1], number of licensed vehicles[footnoteRef:2] per capita, the proportion of claimants [footnoteRef:3], percent population who are White3, and job density3. The number of licensed vehicles in 2020 per capita was calculated by dividing the total number of registered vehicles by local authority population. The proportion of claimants for 2011-2020 was defined as the proportion of residents aged 16-64 claiming some form unemployment-related benefit. From the annual population survey3, we obtained yearly unemployment rate, and yearly percent of population in employment who are manager, directors, and senior officials for 2011-2020.  [1:  Provided by Office for National Statistics, https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland (last accessed 25-03-2022)]  [2:  Provided by Department for Transport Driver and Vehicle Licensing Agency available from https://www.gov.uk/government/statistical-data-sets/all-vehicles-veh01#statutory-off-road-notification-vehicles-sorn (last accessed 25-03-2022)]  [3:  Available from https://www.nomisweb.co.uk/ (last accessed 25-03-2022)] 


As transport-related variables indicating travel behaviour and exposure at LTLA level, we included the proportion of adults who do any walking or cycling at least three times per week, the proportion of adults who do any walking or cycling at least five times per week[footnoteRef:4], and road density. To obtain road density, the latest road network data sourced from Ordnance Survey Meridian[footnoteRef:5] was overlaid with LTLA boundaries. We then calculated road density by dividing the total length of A roads and B roads by the total land area of each LTLA.  [4:  Provided by Department for Transport and available from https://www.gov.uk/government/statistical-data-sets/walking-and-cycling-statistics-cw (last accessed 25-03-2022)]  [5:  Obtained from https://digimap.edina.ac.uk/ (last accessed January 2022)] 


Built-environment variables included the number of schools, the number of bus stops, and the number of business establishments (as a proxy of activity levels) in each LTLA. School information was provided by the Department for Education “get information about schools” register (downloaded in December 2021 from https://get-information-schools.service.gov.uk/Downloads), bus stop locations were retrieved from Point of Interest Ordnance Survey data, and the number of business establishments were obtained from Office for National Statistics. Note that some variables were available at a yearly basis. For other variables we considered the latest and/or the most relevant available data. This is because the data availability and LTLA boundaries have changed over the study period. The descriptive statistics of the explanatory variables and data sources are summarised in Table 1.A of the appendix (pg 2-3). 

Note that we could not use several other potentially useful variables such as traffic volume and land use characteristics in our analysis as their LTLA boundaries did not match the boundaries associated with our outcome of interest. However, as we will discuss in the section of results, our models perform very well in replicating the observed data so this would not cause any major issue in this study. This is partly because some other variables, such as road density, that we included in our data act as a proxy measure, for example, for traffic volume. 

Statistical analysis
We used a Bayesian Space-time Poisson lognormal model to evaluate associations between various relevant contributory factors and annual child pedestrian crashes, while accommodating dependencies between adjacent LTLAs and years. After adjusting for the effect of the covariates, we accounted for the residual spatial variability through spatially structured random effects represented by a conditional autoregressive (CAR) prior. 26 The residual spatial term accounts for the dependencies between neighbouring LTLAs, which are conceptualized as LTLAs that share a common border. To account for the temporal dependency, we included temporally structured random effects using a random walk of order 1 (RW1), which captures the national temporal trend. Additionally, we included a space-time interaction term modelled as independent random walk for each LTLA. 27 The interaction term adds additional flexibility to the model and allows capturing local temporal deviations from the national (overall) time trend. Therefore, the temporal patterns in each LTLA are assumed to be temporally smooth but independent across space. A full specification of the model is provided in the appendix (pp3-6). Inferences were performed through Markov Chain Monte Carlo (MCMC) simulations in the NIMBLE Package in R.28 We checked the convergence of the parameters using the Gelman-Rubin statistic 29 and visually using trace plots. In total, 20,000 post burn-in samples were obtained from the posterior distribution of the model parameters. In addition to the above-described model, we fitted other competing models with different specifications for space, time, and space-time effects, and compared the model fit using the Watanabe–Akaike information criterion (WAIC) (appendix pp3-6). However, these models did not improve the fit. 

We report the posterior summary of the magnitude of the effects of various covariates on child pedestrian safety in terms of marginal effects (see Section 2.1 of the appendix for further details).30 Marginal effects provide a more straightforward  interpretation of the effect of covariates on safety, revealing the change in expected child pedestrian crashes following one unit change in each covariate. To check the goodness of fit of the model, we conducted posterior predictive checks and estimated Bayesian p-values 31, which is based on quantifying the discrepancies between predicted data, using the proposed model, and the observed data. 

Identifying high-crash areas (hotspots), spatial distribution of residuals and area-specific time trends
Using the expected crash frequency, we identified high-crash areas, where safety improvement programmes are most warranted.  Using the posterior medians of the spatial residuals allowed us to identify local authorities with increased crash frequency, after adjusting for the effect of the covariates in our model. We then classified LTLAs based on the posterior probability of the exponential of the spatial residuals in each LTLA being above one. Following the threshold criteria developed by Richardson et al. 32, if a probability was larger than 0.8 for an LTLA, it was classified as an LTLA with excess child pedestrian crash frequency (after accounting for explanatory variables that are in the model). Such areas are where other unknown/unmeasured risk factors (other than those in the model) have a negative impact on child pedestrian safety. Therefore, further investigation is needed to identify the reasons behind this, which in turn helps improve safety in those areas.

The inclusion of the space-time interaction term allowed each LTLA to have its own specific temporal trend, which is composed of the sum of the temporal residuals and the space-time interaction term. Similar to the approach adopted by Boulieri et al.33, we report the probability that the estimated incidence of child pedestrian crashes in an LTLA represents an increase compared to the national one. 

Role of Funding source

The funder of the study had no role in study design, data collection, analysis, interpretation, or writing of the report.

Results 
Associations between LTLAs characteristics and child pedestrian safety

[bookmark: _Hlk103762868][bookmark: _Hlk103706873]Table 1 report the magnitude of the impact of explanatory variables on child pedestrian crash frequencies in terms of marginal effects. The posterior summary of regression coefficients and model parameters are reported in the appendix (Table 4A pp 7). Road density (with a marginal effect of 11.01) had the largest (decreasing) impact on child pedestrian safety. Road density can act as a proxy exposure measure for motorised traffic, which is known to have a deteriorating effect on pedestrian safety. 34 Our finding regarding road density is consistent with the results of previous studies. 35 One unit increase in child population, on average, resulted in 1.8 additional child pedestrian crashes per year. For every 10 additional schools, expected child pedestrian crash frequencies increased by 1.27 per year. One potential explanation is that an increase in child population and the number of schools leads to an increase in exposure, decreasing safety. 25,36,37 In terms of deprivation, one unit increase in unemployment-related claimants resulted in 0.48 additional child pedestrian crashes per year. In contrast, one unit increase in the number of licensed vehicles per capita decreased child pedestrian crash frequencies by 8.98 crashes per year. The latter variables relates to deprivation and previous studies have also found a negative association between deprivation and pedestrian safety. 15,25 Finally, one unit increase in the proportion of adults who walk or cycle at least three times per week decreased expected child pedestrian crash frequencies by 0.18 crashes per year. This is an interesting finding that, in accordance with previous research (see; e.g., Stoker et al.,38 and Jacobsen et al., 39 ) indicates that the higher the prevalence of walking and cycling in LTLAs, the safer the road network for child pedestrians. 

Table 1. Posterior summary of marginal effects
	Statistically important explanatory variables
	Mean
	95% credible interval

	
	
	2.5%
	97.5%

	Child population (%)
	1.80
	1.35
	2.23

	Proportion of unemployment-related claimants
	0.48
	0.16
	0.81

	Licensed vehicles per capita
	-8.98
	-13.35
	-4.18

	Road density
	11.01
	8.45
	13.91

	proportion of adults who walk/cycle 3 times per week
	-0.18
	-0.34
	-0.04

	Number of schools
	1.27
	1.11
	1.42



In relation to deprivation, Figure 1 displays that number of child pedestrian crashes in 2011 and 2019 in relation to the proportion of population claiming some sort of unemployment-related benefit. Since 2020 included lock down periods and major shift in travel behaviour due to the COVID-19 pandemic40,41, we restricted our comparison to 2011 and 2019 as the two extremes of the study period. As shown in Figure 1, the expected number of crashes was positively associated with the deprivation level. Although the number of crashes has gradually decreased, the gradient is only slightly decreased. In other words, as the proportion of unemployment-related claimants increased in 2019, the expected child pedestrian crash frequency increased at a slightly lower rate compared to that of 2011. 

[image: Chart, scatter chart
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Figure 1. Expected crash frequency in relation to deprivation. 

Spatial distribution of expected child pedestrian crash frequencies 
Figure 2 displays the spatial distribution of yearly expected child pedestrian crashes over the study period (the darker the colour, the higher the expected value). Figure 2 implies that there is a relatively considerable spatial variation in expected child pedestrian crashes across England. Also, Figure 2 shows the evolution of child pedestrian safety in England over the last decade.  In 2011, there was a difference of 218.3 [95% CrI 197.1-240.9] crashes between the LTLA with the lowest (Rutland) and the highest child pedestrian crash frequencies (Birmingham). Although road safety has in general improved over the study period, in 2020, there was a gap of 112.22 [98.9-125.4] expected annual crashes between LTLAs (Rutland and Birmingham) with the highest and the lowest expected crash frequencies. Figure 2 can be used by local authorities to prioritise safety interventions and to inform resource allocation across England. For example, in 2019, Birmingham had the highest expected child pedestrian crash, followed by Leeds, Bradford, Liverpool, and Croydon.  
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Figure 2. Spatial distribution of expected child pedestrian crash frequencies from 2011 to 2020


[bookmark: _Hlk103763131]Overall spatial and temporal effects 
Figure 3 shows the map of exceedance probabilities of spatial residuals being greater than 1. This allows us to identify LTLAs with excess child pedestrian crash (shown in darker colour where the probability of exceedance is >0.8), after adjusting for the effect of the covariates. We found that 42% of the LTLAs (132 LTLAs) experienced excess crash from 2011 to 2020. These are mainly located in urban areas, especially in Northern England: Yorkshire and the Humber regions. 

[bookmark: _Hlk103851423]Figure 4 shows the posterior median, including the 95% uncertainty band of the temporal trend, over the study period, representing the average national time trend. The time trend expressed in terms of the expected child crash frequency is also displayed in the appendix (pp8). We observed a decreasing time trend, with year 2020 showing a much steeper decline compared to the other years, perhaps reflecting the effect of the Covid19 pandemic and its associated lockdown and work from home policies in England. Note that such policies resulted in reduced exposure (traffic volume, and walking and cycling) in general. 42 Between the years 2013 and 2017, we observed a relatively moderate but consistent decreasing trend. Figure 4 confirms a non-linear behaviour of temporal patterns over time.


[image: Chart, map

Description automatically generated]


[image: Map

Description automatically generated]

Figure 3. Mapping posterior probability of spatial residuals being larger than 1. The map of Greater London is enlarged for better visualization.
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Figure 4. Posterior median and 95% credible intervals of the overall (national) temporal trend 

[bookmark: _Hlk103763686]LTLA-specific time trends through space-time interaction
By specifying a space-time interaction term as an independent random walk for each LTLA, we were able to capture local time trends. Such local trends are due to the fact that the effects of some unknown highly localised variables vary smoothly over time while operating independently with respect to their locations. In fact, previous research in the field of road safety indicates that the effect of contributory factors may vary over time.43 In the presence of missing localised variables (e.g., climate), the interaction term can act as a surrogate measure for these unmeasured/unknown variables. This allows us to capture their effects to some extent, thereby addressing unobserved heterogeneity more fully. The time trend for all LTLAs exhibited downward trend (similar to the national trend shown in Figure 4) with different degrees of deviation from the national trend (see pp9-10 of the appendix). The decline in crash incidence was slower in some local authorities when compared to the national trend.
Figure 5 displays the map of the probability that, after accounting for the covariates, the incidence of child pedestrian crashes is higher than the national one in each LTLA in each year. The incidence of child pedestrian crash in North Lincolnshire was below the average national incidence between 2011 and 2013, but it exceeded the national value (with probability >80%) after 2018. This trend suggests that there are specific risk factors in North Lincolnshire that contribute to the deterioration of road safety for children, which requires further in-depth investigations. In contrast, the crash incidence in the local authority of Bournemouth, Christchurch and Poole in 2011-2013 resulted higher than the average national, but child pedestrian safety improved over the recent years such that after 2017 the incidence of crash became less than the average national child pedestrian crash incidence.
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Figure 5. Probability of LTLA- specific time trend exceeding the national trend over the study period

Discussions
[bookmark: _Hlk104829506]We modelled child pedestrian crash counts in England from 2011 to 2020. From a policy insight perspective and with the aim of improving child pedestrian safety across England, our results can be used for prioritising the allocation of safety interventions. This can be achieved based on the identification of high-crash local authorities (so called hotspots) and tracking how different local authorities have evolved over time in terms of child pedestrian safety. Overall, the southern part of England has experienced higher levels of improvement in child pedestrian safety over the last decade compared to the northern regions. Many local authorities of Birmingham, Leeds, and Bradford had the highest expected child pedestrian crash frequency throughout England over the study period.

Understanding contributory factors affecting zonal-level child pedestrian safety can provide useful insights toward designing and implementing effective large scale countermeasures. For example, based on our findings, increased levels of walking and cycling seems to increase road safety for children. In accordance with previous research, the reason could be driven by safer street regulations and designs where the prevalence of walking and cycling is relatively high. Also, this could be attributed to motorists adjusting their driving behaviours in the presence of increased numbers of pedestrians and cyclists (e.g., lowering driving speeds). 36,44,45 

Our specification of space-time interaction relaxes the model assumption as each local authority can have its own temporal pattern. Consequently, this specification not only led to more reliable statistical inferences but also allowed us to provide further insights with the same set of data. Estimating the LTLA-specific time trends suggests the presence of localised risk factors or may reflect the impact of local interventions and policies, which requires further in-depth investigations. This can be particularly important from a public health perspective and also for implementing cost-effective safety interventions. We noticed a major reduction in expected child pedestrian crash frequencies in most local authorities in 2020, which is expected due to the recent pandemic (see, for example, the work by Katrakazas et al.46 for a discussion on the effect of the Covid-19 pandemic on road safety). However, the expected child pedestrian crash frequency was less affected in certain regions such as Cornwall and Northumberland. 

Since 2011, child pedestrian crashes have decreased by more than 50% in England. However, some local authorities still struggle to improve road safety conditions for children. One important factor is deprivation which has a negative impact on road safety. The socio-economic disparities in child pedestrian crashes might be partially driven by exposure disparities as children in deprived areas are more likely to walk to school. 47,48 Therefore, road safety policies need to target more deprived areas through safety improvement programmes such as reducing traffic volume and speed, designing walking-friendly infrastructures, education, and training programmes. In addition, whilst child pedestrian crash frequencies have declined over the last decade, its association with deprivation over time has not changed substantially. If road safety interventions successfully target deprived areas, the association between deprivation and child crash frequency would weaken in the future. With increasing interest in policies to encourage children to walk, efforts to improve child pedestrian safety is successful only when a system approach is adopted, emphasising on data-informed engineering interventions in conjunction with interventions that address deprivation. 
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