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Abstract: Methane (CH4) hydrate dissociation and CH4 release are potential geohazards currently
investigated using X-ray computed tomography (XCT). Image segmentation is an important data
processing step for this type of research. However, it is often time consuming, computing resource-
intensive, operator-dependent, and tailored for each XCT dataset due to differences in greyscale
contrast. In this paper, an investigation is carried out using U-Nets, a class of Convolutional Neural
Network, to segment synchrotron XCT images of CH4-bearing sand during hydrate formation, and
extract porosity and CH4 gas saturation. Three U-Net deployments previously untried for this
task are assessed: (1) a bespoke 3D hierarchical method, (2) a 2D multi-label, multi-axis method
and (3) RootPainter, a 2D U-Net application with interactive corrections. U-Nets are trained using
small, targeted hand-annotated datasets to reduce operator time. It was found that the segmentation
accuracy of all three methods surpass mainstream watershed and thresholding techniques. Accuracy
slightly reduces in low-contrast data, which affects volume fraction measurements, but errors are
small compared with gravimetric methods. Moreover, U-Net models trained on low-contrast images
can be used to segment higher-contrast datasets, without further training. This demonstrates model
portability, which can expedite the segmentation of large datasets over short timespans.

Keywords: U-Net; methane hydrates; microtomography; sediment microstructure; semantic segmentation

1. Introduction

Deep sea sediments and perfmafrost host large quantities of methane (CH4), an energy
source and potent greenhouse gas that may be a contributor to climate change [1,2]. Much
of this CH4 is present as hydrates (clathrates), that is, solid crystalline lattices of water at
low temperature and high pressures that enclose CH4 molecules. 164 m3 of CH4 gas at
normal temperature and pressure can be stored in one m3 of hydrate [3]. However, the
extent of the world-wide CH4 hydrate inventory is subject to considerable uncertainty [4,5].
This is in part due to discrepancies between measurements produced by geophysical and
electrical resistivity methods [6,7]. These discrepancies are potentially associated with
hydrate and CH4 gas distribution heterogeneity in the host soil [8]. Uncertainties regarding
the global CH4 hydrate inventory affect resource estimation and CH4 emission prediction
models [5,9,10]. CH4 hydrate formation and dissociation has also been associated with
changes in the mechanical characteristics of the host sediment. For instance, hydrates may
strengthen and stiffen the sediment matrix by creating inter-grain cementation bonds [11,12].
This is speculated to lead to, for example, underwater slides that may trigger tsunami or
damage seabed infrastructure such as cables and pipelines [13–15].

Recently, researchers have shown that X-ray computed tomography (XCT) can be
used to successfully detect hydrate and CH4 gas bubble distribution heterogeneity and

Methane 2023, 2, 1–23. https://doi.org/10.3390/methane2010001 https://www.mdpi.com/journal/methane

https://doi.org/10.3390/methane2010001
https://doi.org/10.3390/methane2010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/methane
https://www.mdpi.com
https://orcid.org/0000-0002-6940-9918
https://orcid.org/0000-0002-6152-7207
https://orcid.org/0000-0002-2570-5934
https://orcid.org/0000-0002-1851-3467
https://orcid.org/0000-0002-8438-1415
https://orcid.org/0000-0002-3290-3592
https://doi.org/10.3390/methane2010001
https://www.mdpi.com/journal/methane
https://www.mdpi.com/article/10.3390/methane2010001?type=check_update&version=2


Methane 2023, 2 2

characterise changes in sediment microstructure associated with hydrate formation and
dissociation [8,16–18]. This has been possible in great part due to advancements in image
segmentation techniques. Segmentation is the process of classifying 2D pixels or 3D
voxels into regions, for example, the solids, liquids and gases present in XCT images of
geomaterials. Microstructural parameters such as grain, pore and bubble size, shape and
orientation can then be derived from the segmented image, as well as volumetric (bulk)
quantities such as porosity and CH4 gas saturation ratios.

Some of the most common segmentation techniques used in geomechanics and geo-
science are greyscale thresholding and watershed algorithms [19,20]. The former involves
the selection of a greyscale range to classify pixels or voxels into regions of interest. Water-
shed algorithms redefine the image as a map where greyscale intensities form topographical
elevations and catchment basins. Pixel/voxel markers within these basins are used to de-
fine the materials (or ‘labels’) present in the image, and the algorithm then morphologically
dilates these markers until they fill their catchment basins [21,22]. Greyscale range deter-
mination in the case of thresholding techniques and marker grey value and location in
the case of watershed techniques are operator and/or method dependent [19,23,24]. The
values assigned to these parameters also depend on the recorded greyscale contrast, which
is highly reliant on the X-ray imaging instrument and how it is optimised [25]. Sample het-
erogeneity or density changes during an in situ experiment will further introduce contrast
variability in space and time [19,26]. As a result, thresholding and watershed segmentation
are typically optimised per XCT scan, and objective comparison is difficult given that the
data treatment varies between datasets. These issues often result in segmentation proce-
dures in geomechanics and geoscience that are highly demanding of computing resources
and operator time.

Novel alternative approaches have employed machine learning to segment multiple
material phases present in XCT images of soil and rock samples [27,28]. For these applica-
tions, segmentations are produced via a mathematical model optimised or ‘trained’ using
a series of ‘ground truth’ example segmentations of XCT images provided by the user.
Within the realm of machine learning, convolutional neural networks (CNNs) are a class of
deep neural networks that employ convolutional layers where the filters (‘kernels’) used to
separate image features are learned [29]. Researchers have recently begun exploring the
application of CNNs to segment XCT images of soil and rock [30–33].

U-Nets are a class of CNN originally designed to segment biomedical images [34]. The
U-Net architecture is composed of downsampling (encoding/contracting) and upsampling
(decoding/expanding) paths. The former reduces the spatial dimensions of the data while
increasing feature information; the latter recombines spatial and feature data to generate
the label image. Both paths are linked by connections that can feed the output from the
contracting path directly into the corresponding level of the expanding path, thereby
allowing the transfer of spatial information and the preservation of fine-grained details
in the output label image. A limitation to the implementation of U-Nets (and CNNs in
general) to segment XCT images of soil and rock is the preparation of training and validation
datasets, which often require labour-intensive manual segmentation (hand-annotation) of
many images.

The suitability of such time- and resource-saving approaches have not been examined
before in research on methane-bearing sediments. This paper explores this application
using three U-Net implementation strategies to segment a large number of synchrotron
radiation XCT (SXCT) volumes of CH4-bearing sand during hydrate formation and dissoci-
ation experiments; two of these U-Net implementations are entirely novel to the field of
geomechanics and geoscience. These strategies were focused on the segmentation of the
CH4 phase, as it exhibited low contrast with regard to the brine-hydrate phase and was less
common in the data compared to the other material phases, as shown in Figure 1a. This
rendered the use of conventional thresholding or watershed techniques largely unsuitable.
The aim of this investigation was thus to determine if U-Nets can accurately segment XCT
images of soil samples with varying greyscale contrast between material phases using
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only a small number of training and validation images, therefore reducing operator and
computing time and allowing for objective data comparison.
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Figure 1. Grey value histograms of reconstructed and post-processed SXCT images: (a) of XY slice
1050 of an intermediate contrast scan, showing the frequency distribution of pixels for each material;
(b) of two whole 3D images showing the grey value difference between histogram peaks as a measure
of image contrast.

Section 2 of this paper presents the details of the in situ hydrate formation experiment
as well as the methodology used to acquire, reconstruct and post-process the SXCT data.
Section 3 describes the three U-Net approaches used, as well as the conventional seg-
mentation methods and accuracy metrics used for comparison and performance analysis
purposes. Results are presented and discussed in Section 3 and outcomes are summarised
in Section 4.

2. Materials and Methods
2.1. Methane Gas Hydrate Formation and Dissociation Experiments

A custom rig designed and manufactured by Sahoo et al. [8] for in situ SXCT imaging
of gas hydrate formation and dissociation was used in the present study. The rig is made
of polyether ether ketone (PEEK) and consists of a monolithic 2 mm internal diameter by
23 mm tall cylindrical vessel with 0.8 mm thick walls and an enlarged base, as shown in
Figure 2. The soil sample is placed through the bottom of the rig. The pore fluid injection
pipe is connected to this inlet, as depicted in Figure 2. The rig features thermocouples at
the base of the scan zone, shown in this Figure, to measure sample temperature. The SXCT
imaging zone in this study corresponds to a vertically centred 1.755 mm-tall region within
the 10 mm-tall scan zone.
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Leighton Buzzard sand Fraction E (LBE) with mean grain diameter of 100 µm was
used as surrogate marine sediment. LBE is an angular silica sand widely used as standard
laboratory material in geomechanics research. The sand was tamped into PEEK vessel
to a target porosity of 35%. A vacuum pressure of less than 1 Pa was applied through
the injection pipe to reduce air presence in the pore space. A calculated volume of brine
solution (3.5% NaCl by weight, representative of deep ocean water; [35]) was thereafter
injected into the sample, such that approximately 90% of the pore volume became saturated.
CH4 gas was then injected at 10 MPa and the valve to the sample closed. The sample was
gradually cooled to a target constant temperature of 2 ◦C using a N2 cryostream. This
thermobaric condition enabled hydrate formation in the pore space instead of ice. The
target temperature was maintained for 30 h to complete the hydrate formation process [11].

2.1.1. Set-Up and Image Acquisition

Data was collected on beamline I13-2 at Diamond Light Source (DLS). Scans were
performed using a polychromatic ‘pink beam’ at 30 keV peak energy. The detector system
used was a scintillator-coupled pco.edge 5.5 camera fitted with a 4× optic magnification
lens, resulting in an effective pixel size of 0.8125 µm. The X-ray projection size was
2560 × 2160 pixels (width × height).

Scans were carried out in situ at various time intervals after reaching 2 ◦C. The
number of projections and the exposure time per projection varied amongst scans to
reduce acquisition times at specific moments of the CH4 hydrate formation process. Table 1
correlates each scan discussed in this paper with the time after the start of the 30 h sustained
2 ◦C period, as well as the scan specifications used.

Table 1. SXCT scan summary.

Dataset Time at 2 ◦C (h) Projections Exposure Time per Projection (ms)

IC01 0.00 1501 200
IC02 1.53 1501 200
LC03 5.38 3001 30
LC04 10.72 3001 30
HC05 20.77 1501 30
HC06 30.02 1501 30

2.1.2. Tomographic Reconstruction and Post-Processing

Tomographic reconstruction was carried out using Savu [36–38]. Two Savu reconstruc-
tion pipelines were used: one with and one without Paganin phase enhancement [39]. These
pipelines were labelled ‘phase contrast’ (Figure 3b) and ‘absorption contrast’ (Figure 3a),
respectively. Both pipelines implemented filtered back-projection reconstruction [40,41]
and pre-reconstruction algorithms for speckle and ring artefact suppression [37,42] and the
automatic determination of the centre of rotation [43]. Further processing was carried out
on the output from both reconstruction pipelines using Fiji [44,45]. This consisted in:

1. The application of a median filter of kernel size 3 to the absorption volume and the
halving of the resulting greyscale values;

2. The application of an unsharp mask filter of radius 3 and weight 0.70 to the phase
contrast volume;

3. The elementwise averaging of both volumes.

This procedure resulted in a single reconstructed volume with clear edge detail and
phase contrast (Figure 3c).

Finally, to mitigate the halo-like or ‘cupping’ artefact caused by the preferential attenu-
ation of lower-energy X-rays close to the specimen surface, known as beam hardening, as
well as by truncation artefacts introduced by attenuation from sample regions outside the
field of view [46,47]), each slice was convolved with two mollifier functions with an inverse
shape to that of the cupping artefact. This flattened the horizontal (XY) grey value profile of
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each slice. A circular mask with a radius of 1100 pixels was then applied to remove voxels
at the outer edges of the field of view (FOV), which were resistant to cupping correction.
An example output slice is presented in Figure 3d.
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Figure 3. Slice 1050 of an intermediate-contrast SXCT dataset showing the output of the reconstruction
and post-processing stages: (a) reconstruction through absorption contrast pipeline; (b) reconstruction
through phase contrast pipeline; (c) output from filtering and volume averaging; (d) Cupping
correction output.

As outlined in Section 1, limited greyscale contrast between the CH4 gas and the brine-
hydrate phase persisted after reconstruction and post-processing. Distinction between these
two phases became increasingly difficult as the distance between the 3D image histogram
peaks for the sand and non-sand phases reduced, as exemplified in Figure 1b. This distance
is therefore used in this paper as an overall measure for image contrast, with regard to the
ease with which the material phases could be identified and segmented. Considering this,
intermediate contrast dataset IC01 89062 (Table 1) was selected initially to investigate the
suitability of U-Nets to perform segmentations.

2.2. U-Net Segmentation

Three different methodologies were used to create trained U-Net models to segment
the three main material phases present in the images: sand, brine-hydrates and CH4 gas.
These were:

1. A 3D hierarchical approach where two separate 3D U-Net models were trained to
perform binary segmentations: On the sand phase vs. the others and the CH4 gas
phase vs. the others;

2. A 2D multi-label and multi-axis approach where a single 2D U-Net was trained to
classify the three labels. The encoder section of this U-Net implementation was pre-
trained on the ImageNet dataset [48], meaning that the network should only require a
small amount of ‘transfer’ training in order to achieve acceptable results on new data;
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3. RootPainter software, which uses a graphical user interface (GUI) and human inter-
vention by interactive corrections to train a lightweight binary 2D U-Net model.

The U-Net models produced by each method were used to segment a
1554 × 1554 × 2000 voxels sized region of the 2560 × 2560 × 2000 voxels sized recon-
structed and post-processed volumes, hereafter termed ‘analysis region’ and ‘total volume’.
The analysis region was inscribed within the cylindrical FOV of the total volume and omit-
ted the black pseudo-background generated during reconstruction. Figure 4a shows the
analysis region for dataset IC01. All analysis regions discussed in this paper are available
in Alvarez-Borges et al. [49]. It is emphasised that the segmentation of the sand phase via
U-Nets was done to assess the multi-label segmentation capacity of the algorithm. Due to
its uniformly high-contrast and well-defined edges, sand could be easily segmented with
any ‘conventional’ method, for example, thresholding.
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Figure 4. For dataset IC01: (a) analysis region used for U-Net segmentation; (b) location of 3D
training and 3D validation subvolumes; (c) location of 2D learning subvolume; (d) quantitative
analysis slices.

2.2.1. Training and Validation Data

The U-Net training procedures required both greyscale and label datasets. The latter
was the ‘ground truth’ information used during training and validation. Label data was pro-
duced by hand-annotating the sand, CH4 gas and brine-hydrate in the greyscale data using
Avizo Lite® software. This was carried out on small subregions of the analysis volumes to
reduce labelling time. The 3D hierarchical approach initially used a 384 × 384 × 384 voxels
sized training subvolume and a 256 × 256 × 256 voxels sized validation subvolume, se-
lected from two different regions of the 3D image (Figure 4b). These are hereafter referred
to as 3D training and 3D validation subvolumes, respectively. RootPainter requires 2D
label images (slices) of at least 572 × 572 pixels in size for both training and validation, as
explained later in Section 2.2.4. Therefore, a 572 × 572 × 572 voxels sized subvolume was
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delimited for this purpose (Figure 4c), hereafter referred to as 2D learning subvolume. The
same 2D learning subvolume was used only to train the 2D multi-label models, with the
3D validation subvolume used for validation as with the 3D methods.

The 2D and 3D training and validation subvolume coordinate origins relative to
the global origin of the total volume are listed in Table 2 (note in column three that all
subvolumes were 3D arrays, despite their naming and usage). The global coordinate system
origin is indicated in Figure 4. All training, validation and segmented data used in this
investigation are available in [49].

Table 2. U-Net training and validation subvolume details (shown in Figure 4).

Subvolume Name Usage Size (Voxels) X Y Z U-Net Method

3D validation validation 256 × 256 × 256 1133 1753 50 3D hierarchical

3D training training 384 × 384 × 384 1343 943 1158 3D hierarchical

2D learning training & validation 572 × 572 × 572 1343 943 1158
RootPainter;

2D multilabel;
3D hierarchical *

* For additional comparison with 2D methods.

2.2.2. 3D Hierarchical Segmentation

The 3D hierarchical U-Net model was implemented in the Python library PyTorch [50]
and based upon an existing implementation of a residual 3D U-Net from the litera-
ture [51,52]. This model had 35.3 million trainable parameters and five downsampling and
upsampling stages. Voxel intensity values were rescaled and clipped, truncating values
beyond 2.575 standard deviations of the mean to mitigate the skewing effect of outliers.
The ground truth label volumes (3D training subvolume with three labels: sand, brine-
hydrates and CH4 gas) were used to create separate binary label volumes, one with sand
vs. background and the other with CH4 gas vs. background. These volumes were used as
the label data for training the separate binary 3D U-Net models.

Unlike the multilabel 2D U-Net implementation described later, this model had not
been pre-trained on ImageNet and was therefore likely to require a larger amount of train-
ing data to reach a high segmentation accuracy. To overcome this, the TorchIO library [53]
was used to sample 128 × 128 × 128 voxels sized regions from the greyscale 3D training
subvolume and generate 48 sets with random noise, flips, blurs, affine, and elastic trans-
formations to be used as an extended training data set for each training epoch (i.e., a full
training cycle). This procedure is termed ‘augmentation’. These 128 × 128 × 128 voxels
regions matched the input size of the U-Net.

During training, U-Net model parameter optimisation (i.e., the process of updating
the model parameters on each training iteration) was carried out with a method known
as AdamW [54]. The learning rate, a parameter that controls the step size of the updates
made by the optimiser, was initially determined automatically and then cycled up and
down every epoch to reduce the need to tune this parameter and to accelerate the training
process [55]. The parameters β1, β2 and weight decay were set at 0.9, 0.999 and 0.1,
respectively. Binary cross entropy (BCE), a measure of the uncertainty between two data
distributions, was used as the loss function (the function minimised by the optimiser during
training). Training progress was monitored using Intersection Over Union (IOU) on the
validation set as the evaluation metric. If either no improvement in validation loss occurred
after 40 passes of the entire training dataset (epochs) or 100 epochs were completed, the
model with the lowest validation loss was saved. This was aimed at preventing overfitting.
Software source code for this method is available from King and Alvarez-Borges [56].

When predicting the segmentation of the analysis region, two binary predictions were
produced for each data set, one for sand vs. background and the other for CH4 gas vs. back-
ground. These two label volumes were then combined using a label hierarchy: first, a new
volume was created with all voxel labels set to brine-hydrates, then the labels correspond-
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ing to CH4 gas were transferred from the CH4 vs. background prediction, and lastly the
labels corresponding to sand were transferred from the sand vs. background prediction.

2.2.3. 2D Multi-Label Segmentation

Training of the 2D U-Net with multiple labels was performed using the 2D learning-
subvolume using two approaches. The first mimicked that of RootPainter, described later,
with the network being trained on horizontal 2D (XY) slices through the image volume. The
second, multi-axis approach, utilised slices taken in the XY, XZ and YZ planes (coordinate
system shown in Figure 4). A 2D U-Net was used with a ResNet34 encoder [57]. This model
had a total of 41.2 million trainable parameters and four downsampling and upsampling
stages. This encoder was loaded with pre-trained weights from ImageNet. The model was
created with Fastai [58], a Python library which has a high-level interface that utilizes Py-
Torch. Default Fastai image augmentations were used during training. These consisted of
random image crops, zooms, rotations, flips, affine transforms and brightness and contrast
adjustments. The loss function used was cross entropy (CE) and the evaluation metric used
was the number of correctly labelled voxels expressed as a percentage. Training was carried
out for 15 epochs.

For the single-axis implementation, the XY greyscale stack and corresponding label
stack of 572 images were randomly split into training (80%) and validation (20%) sets. The
input image size for the model was also set to 572 × 572 pixels to match that used by
RootPainter. When predicting the segmentation for the analysis region, data was fed into
the network in the form of 2000 XY slices of size 1554 × 1554 pixels.

For the multi-axis approach, the 2D greyscale learning subvolume and correspond-
ing label data were sliced into 2D images in the XY, XZ and YZ planes, resulting in 1716
(572 × 3) training image and label pairs. These images were also randomly split into a
training (80%) and validation (20%) set. The input image size for the model was again set
to 572 × 572 pixels. When predicting the segmentations for the analysis region, an averag-
ing approach for data produced from each plane was used as described by Tun et al. [59],
but with a modification to take the multiple labels into account. In short, this averaging
approach consisted in slicing, segmenting, and rotating the volume across the XY 4-fold
symmetry plane and then splitting and hierarchically recombining the 12 resulting segmen-
tation volumes so that two label volumes were obtained, one containing labels for sand
vs. background and the other for CH4 vs. background. These two binary label volumes
were then combined into a multi-label volume as done for the data output from the 3D
hierarchical method (Section 2.2.2).

Software source code for this method is available from King and Alvarez-Borges [56].

2.2.4. RootPainter Segmentation

RootPainter [60] is a client-server application originally developed to segment plant
root features from photographs of soil profiles [61,62]. The client GUI is employed to
annotate 2D images from a dataset, such as a tomography image stack of horizontal (XY)
slices, as in the present case. The tomography slices and corresponding annotations are
then read by the server and used to train the segmentation model using a U-Net variant
with 1.3 million trainable parameters and four downsampling and upsampling stages. This
is implemented in PyTorch and described by Smith et al. [61] and Smith et al. [62]. To
execute the training routine, the software creates a validation dataset by randomly selecting
one annotation image out of every five created. The accuracy of the model produced
at the end of each training epoch is evaluated using the F-score parameter described by
Smith et al. [62]. At the end of each training epoch, F-score values for the current and
previous model are compared and the one with the highest value is saved. Training is
stopped if 60 epochs are completed without F-score improvements.

RootPainter uses interactive corrections. These are created by annotating image slices
overlaid with the segmentation labels produced by the best model currently available.
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These corrective annotation slices are added to the training and validation datasets so that
the five to one ratio is maintained.

RootPainter 0.2.5 can only predict binary segmentations (‘foreground’ vs. ‘back-
ground’). Therefore, it was initially used to segment the CH4 gas phase only. The 2D
learning sub-volume was used for training and validation.

Sparse annotations have been shown to produce better results than dense/intensive
annotations when interactively training U-Net models [61,63]. Thus, arbitrarily sparsely
annotated images were produced by converting all CH4 gas labels into foreground and
enclosing them with background labels that included brine-hydrate and sand pixels, as
shown in Figure 5a,b. This was done by morphologically dilating the CH4 label of each
slice in the training dataset and re-labelling the added pixels as background. The annotated
slices were then copied into annotation and validation directories, maintaining the five-to-
one ratio. Training was initiated after copying the first batch of five images. Further batches
were added if a training epoch finished without further improvements in F-score and the
model could not segment the majority of CH4 pixels, or if the erroneously segmented
pixels were patently greater than the number of correctly segmented pixels, as shown in
Figure 5c. Corrective annotation was started after a training epoch had produced a model
that segmented most of the CH4 regions with a roughly equivalent number of erroneously
labelled pixels, as presented in Figure 5d,e. Once a model was produced that could segment
CH4 without evident erroneously labelled pixels, the software was left to carry on training
until the 60-epoch limit was reached. The resulting model was then used to segment the
analysis region slice by slice.

Methane 2023, 1, FOR PEER REVIEW 10 
 

 
Figure 5. RootPainter usage example (on IC01 data): (a) XY slice from 2D learning subvolume; (b) 
slice annotations used from training and validation with CH4 (foreground) shown in red and back-
ground shown in green; (c) initial segmentation output with a large number of erroneously labelled 
voxels; (d) improved segmentation with a small number of erroneously labelled voxels; (e) annota-
tive correction of mislabelled voxels. 

2.4. Thresholding and Watershed Segmentation 
To compare the performance of the U-Net methods with conventional segmentation 

routines, the SXCT data was segmented using manual and automatic thresholding, and 
the watershed method. Images were downsampled to 8-bit as in the U-Net methods de-
scribed previously. A bilateral filter was used before segmentation to improve threshold-
ing performance and mitigate over-segmentation (filter parameters were:100-pixel spatial 
kernel, 50-pixel window size, and a grey-value kernel of 30 counts; implemented in Py-
thon using the open-cv library, Bradski [64]; see, e.g., Paris et al. [65] for filter description). 

Manual thresholding was carried out by selecting a single threshold value for all 
slices by visual inspection. Automatic thresholding was performed on a slice-by-slice ba-
sis using the multi-level Otsu method [66] implemented using the scikit-image Python 
library [67]. 

Watershed segmentation was carried out in Fiji using the morphological segmenta-
tion tool in the Morpholibj library [68]. It consisted in the application of a morphological 
gradient with radius of 1 and the automatic determination of markers by finding local 
minima (with a tolerance of 8 greyscale intensity values), prior to the watershed ‘inunda-
tion’ phase. The output label image contained different labels for all features in the grey-
scale input image, including sand and brine-hydrate. Labels corresponding to regions in 
the 8-bit volume with mean greyscale intensity values below 50 to 70, depending on the 
dataset, and above 130 were classified as CH4 gas and sand, respectively. The remaining 
voxels were classified as brine-hydrates 

2.5. Quantitative Analysis 
The central 40 XY slices of the segmented analysis region were compared with hand-

annotated counterparts created in Avizo Lite® and considered to represent ‘ground truth’ 
labels. These slices do not intersect any of the training or validation subvolumes. These 
ground truth volumes are available in Alvarez-Borges et al. [49]. The previously men-
tioned IOU metric was used to evaluate segmentation performance. IOU is defined as: 

Figure 5. RootPainter usage example (on IC01 data): (a) XY slice from 2D learning subvolume;
(b) slice annotations used from training and validation with CH4 (foreground) shown in red and
background shown in green; (c) initial segmentation output with a large number of erroneously
labelled voxels; (d) improved segmentation with a small number of erroneously labelled voxels;
(e) annotative correction of mislabelled voxels.

2.3. Thresholding and Watershed Segmentation

To compare the performance of the U-Net methods with conventional segmentation
routines, the SXCT data was segmented using manual and automatic thresholding, and the
watershed method. Images were downsampled to 8-bit as in the U-Net methods described
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previously. A bilateral filter was used before segmentation to improve thresholding per-
formance and mitigate over-segmentation (filter parameters were:100-pixel spatial kernel,
50-pixel window size, and a grey-value kernel of 30 counts; implemented in Python using
the open-cv library, Bradski [64]; see, e.g., Paris et al. [65] for filter description).

Manual thresholding was carried out by selecting a single threshold value for all slices
by visual inspection. Automatic thresholding was performed on a slice-by-slice basis using
the multi-level Otsu method [66] implemented using the scikit-image Python library [67].

Watershed segmentation was carried out in Fiji using the morphological segmentation
tool in the Morpholibj library [68]. It consisted in the application of a morphological
gradient with radius of 1 and the automatic determination of markers by finding local
minima (with a tolerance of 8 greyscale intensity values), prior to the watershed ‘inundation’
phase. The output label image contained different labels for all features in the greyscale
input image, including sand and brine-hydrate. Labels corresponding to regions in the 8-bit
volume with mean greyscale intensity values below 50 to 70, depending on the dataset,
and above 130 were classified as CH4 gas and sand, respectively. The remaining voxels
were classified as brine-hydrates.

2.4. Quantitative Analysis

The central 40 XY slices of the segmented analysis region were compared with hand-
annotated counterparts created in Avizo Lite® and considered to represent ‘ground truth’
labels. These slices do not intersect any of the training or validation subvolumes. These
ground truth volumes are available in Alvarez-Borges et al. [49]. The previously mentioned
IOU metric was used to evaluate segmentation performance. IOU is defined as:

IOU =
TP

TP + FN + FP
, (1)

where TP refers to the number of voxels or pixels correctly predicted to correspond to
the label of interest (‘true positive’), and FP and FN are the number of voxels or pixels
incorrectly predicted to be part of the label of interest (‘false positive’) and voxels/pixels
incorrectly predicted to belong to any of the other material phases (‘false negative’), in each
case. A comparable analysis of U-Net accuracy has been done by, e.g., Karabağ et al. [69]
and Phan et al. [32].

IOU returns a value between 0 and 1, where the latter corresponds to the scenario
were the segmentation matches the validation image pixel by pixel (or voxel by voxel).
In the following sections, quantitative analyses were carried out on a slice-by-slice basis
(i.e., using pixel counts as input).

3. Results and Discussion
3.1. Segmentation Performance Comparison

Figure 6 compares the original and segmented central slice for dataset IC01, produced
using the three U-Net methods (Section 2.2) and three standard methods (Section 2.3).
Training and validation in both the 2D multi-label approach and RootPainter was carried
out using XY slices only (i.e., single plane). Figure 7a presents accuracy metrics for the
segmentation of CH4 gas in the central 40 XY slices this dataset. It may be noted that
RootPainter delivered slightly higher metrics than the other two U-Net methods, but this
difference in performance cannot be readily identified in Figure 6. Figures 6 and 7a also
show that, for this dataset, watershed and manual thresholding methods return lower
accuracy results than the U-Net approaches, and that Otsu-thresholding performed poorly.
In fact, the Otsu approach consistently segmented the brine-hydrate and CH4 gas as a single
label, as evident in Figure 6e. This is chiefly due to the absence of well-defined inter-class
variance extrema between these materials and the small relative size of CH4 bubbles [70,71].
In later comparisons, results from the Otsu method are omitted for this reason.
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Figure 6. (a) Original XY central slice of dataset IC01; (b) hand-annotated ground truth labelled slice;
(c) segmented slice using the 3D hierarchical method; (d) segmented slice using the 2D multilable
singe-axis approach; (e) RootPainter segmentation of the CH4 gas phase; (f) Otsu auto-threshold
output; (g) manual thresholding output; (h) Watershed segmentation. CH4 gas shown in white, brine
in grey and sand in black.

Since each model had been trained to convergence with their respective data, the
slightly lower performance metrics observed in Figure 7a for the 3D hierarchical output,
compared to that of RootPainter, may be attributed to the smaller training subvolume used.
To present a more balanced comparison, a further 3D hierarchical model was trained on a
subvolume of the same size as the one used for both 2D methods, i.e., the larger 2D learning
subvolume. This comparison is presented in Figure 7b, where it is evident that RootPainter
still outperformed the 3D hierarchical approach, though the difference between methods
reduced. While an even larger training subset may deliver more substantial improvement,
the preparation of such data would require much greater operator input, which is contrary
to the aim of this study.

Figure 7a,b show that pre-training on the ImageNet database for the 2D multi-label
method did not result in a significant segmentation performance advantage over the 3D
hierarchical method. A similar outcome on the effect of transfer learning has been reported
by He et al. [72]. They remarked that, ultimately, pre-training primes the U-Net for feature
identification, which leads to fewer training iterations rather than greater segmentation
accuracy. Such appears to be the present case, as the 2D multi-label approach produced
similar results to the 3D hierarchical method with up to six times fewer training epochs, as
shown in Tables 3 and 4.

A disadvantage of the use of 2D U-Net segmentation methods that operate solely with
XY slices, such as RootPainter and the single-axis 2D multi-label method, is that horizontal
stripe artefacts may appear in the vertical (YZ or XY) slices of the segmented volume. This
occurs because training and segmentation does not account for feature continuity between
slices. Such artefacts are absent in the output of the 3D hierarchical implementation, which
is reflected in the “smoothness” of the line showing the per-slice metrics for this approach
in Figure 7. These artefacts can be mitigated by predicting segmentation of data slices taken
along different axes and subsequently recombining them into a single volume, as done
for the multi-axis 2D method, described in Section 2.2.3. This also improves the algorithm
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segmentation performance metrics, as shown in Figure 7b, but at the expense of greater
computation times, as presented in Figure 8.
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Figure 7. Performance metrics for the segmentation of CH4 gas on the central 40 XY slices of: (a) IC01
using the 3D hierarchical, the single-axis 2D multilabel and RootPainter U-Nets; (b) IC01 using the
3D hierarchical (with the 2D learning subvolume), the multi-plane 2D multilabel and RootPainter
U-Nets; (c) LC03 using the 3D hierarchical and Rootpainter U-Nets; (d) LC03 using the 3D hierarchical
and RootPainter U-Nets trained on subvolumes from IC01; (e) HC05 using the 3D hierarchical and
RootPainter U-Nets trained on subvolumes from IC01; (f) HC05 using the 3D hierarchical and
RootPainter U-Nets trained on subvolumes from LC03. Watershed and thresholding results shown
for reference.

Table 3. Binary 3D hierarchical U-Net training metrics.

Training Data Source Labels Training Epochs Final Training
Loss (BCE)

Final Validation
Loss (BCE)

Final Validation
Metric (Mean IOU)

IC01–3D training
subvolume

CH4 vs. background 94 0.0313 0.0237 0.935
Sand vs. background 83 0.0317 0.0332 0.977

IC02–2D learning
subvolume

CH4 vs. background 84 0.0055 0.0307 0.918
Sand vs. background 85 0.0426 0.0290 0.980

LC03–3D training
subvolume

CH4 vs. background 82 0.0178 0.0371 0.759
Sand vs. background 69 0.0305 0.0471 0.957

Table 4. Single- and multi-axis 2D multilabel U-Net training metrics.

Training
Data Source Labels Training Epochs Final Training

Loss (CE)
Final Validation

Loss (CE)
Final Validation

Metric (%) *

IC02–2D learning
subvolume

Single-axis (pre-trained) 15 0.0200 0.0140 99.48
Multi-axis (pre-trained) 15 0.0190 0.0120 99.59

* %–Percentage of correctly labelled voxels.
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Figure 8. Segmentation time required using an Nvidia Tesla V100® GPU for the U-Net methods
and HPCC of 40×Intel Gold 6242R® CPU @ 3.10 GHz for the standard methods. Benchmarking
data were extracted from the reconstructed and post-processed scan IC01 and are available from
Alvarez-Borges et al. [49]. Excludes time spent on the preparation of training datasets.

3.2. U-Net Performance on Data with Different Greyscale Contrast

The trained U-Net models created with all three methods described above were able to
predict high-quality segmentations for the intermediate contrast dataset IC01 when trained
on subsections of the same dataset. To examine if similar results could be obtained on
datasets exhibiting lower greyscale contrast, both 3D hierarchical and RootPainter U-Nets
were used to segment ‘low’ contrast dataset LC03 (Table 1, Figure 1b), using 3D training
and 2D learning subvolumes of the same data for training, respectively. Figure 7c presents
the performance metrics resulting from this approach, as well as those of watershed and
manual thresholding methods applied to the same volume. It may be noted that both
U-Net methods return lower metrics than those used on IC01. The IOU computations show
that, on average, 74% and 85% of the voxels predicted to be CH4 gas were true positives
in the 3D hierarchical and RootPainter results, respectively. In comparison, these average
values were 92 and 94% for IC01.

Figure 9a shows that, for both U-Net methods, the lower performance metrics of the
segmentation for LC03 are driven by false positives. However, false positives are over twice
as numerous than false negatives in the results for the 3D hierarchical approach, whereas
they only surpass false negatives by about 30% in the RootPainter segmentation. For both
methods, most false positives correspond to ground truth brine-hydrate voxels incorrectly
labelled as CH4 gas, as depicted in Figure 9b. This indicates that the reduced grey value
differentiation (i.e., contrast) between CH4 gas and brine-hydrate phases restricted U-Net
segmentation accuracy, as anticipated. Despite this, the U-Net methods significantly out-
perform the standard approaches, as shown in Figure 7c. In fact, performance numbers
reveal that watershed and manual thresholding cannot deliver a reliable quantification of
the material phases of this low contrast dataset.
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3.3. U-Net Segmentation Model Generalisation across Datasets (Model Portability)

To examine U-Net model portability, ‘low’ and ‘high’ contrast datasets LC03 and
HC05 (Table 1, Figure 1b) were segmented using the models produced from training on
‘intermediate’ contrast dataset IC01. Figure 7d,e presents the performance metrics of the
resulting segmentations. It can be observed that segmentation accuracy is lowest in the
case where the U-Net models trained on mid-contrast dataset IC02 were applied to the low-
contrast dataset LC03. IOU values from this process are comparable to those obtained from
the thresholding and watershed methods applied to mid-contrast dataset IC01, and thus,
quantification from these segmentations may be unreliable. The U-Net model trained on
IC01 produced higher accuracy segmentations of high-contrast dataset HC05, comparable
to those for the segmentation of low-contrast dataset LC03 using models trained ‘natively’
on LC03 subvolumes. Yet, it is evident that U-Net models trained on subvolumes of IC01
perform best when applied to the same ‘native’ IC01 dataset, as shown by Figure 7a,e.

As segmentation performance appeared to be higher when U-Net models trained
on lower contrast data were used to segment higher contrast data, models trained on
low-contrast LC03 images were used to segment high-contrast dataset HC05. Performance
metrics are presented in Figure 7f. This Figure shows an overall improvement in perfor-
mance metrics compared with segmentations produced with the U-Net models trained on
IC01 (Figure 7e). However, an instance of localised poor performance for RootPainter can
be observed in the profiles of Figure 7f, which resulted from a cluster of FP pixels on a single
slice. This emphasises the limitations of the slice-by-slice (2D) segmentation described in
Section 3.1, and denotes a broadly similar pattern of FP-driven model inaccuracy as for the
results discussed previously in Section 3.2 (Figure 9).

3.4. Applications and Implications

The segmentation of XCT or SXCT images of soil and rock samples is often carried out
to determine parameters such as porosity or liquid/gas saturation, as discussed in Section 1.
The varying performances of the U-Net methods used in the present investigation result in
differences in the parameters calculated from the segmented images. This is exemplified in
Figure 10, which compares porosity and CH4 gas saturation (by volume) ratios derived
on a slice-by-slice basis from the segmented volumes produced with the 3D hierarchical
approach (3D training sub-volume) and RootPainter, which were the procedures that
seemed to provide the best results with the least user time. Calculation details are provided
in Appendix A.
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Results presented in Figure 10 correspond to two application scenarios, that is:

1. U-Nets trained on sub-volumes of the dataset of interest are then used to segment
the entire dataset, shown in Figure 10a,d. As discussed in Section 3.2, differences in
greyscale contrast affect the performance of the resulting segmentation. A training
sub-volume needs to be created for each scan;

2. U-Nets trained on sub-volumes of a low-greyscale contrast dataset are then used to
segment other ‘unknown’ datasets of higher greyscale contrast (model portability).
This is presented in Figure 10e,f, corresponding to parameters derived for high-contrast
dataset HC05 using segmentations produced from U-Nets trained on sub-volumes of
low-contrast dataset LC03. Thus, only one training sub-volume is needed to segment
multiple scans.

Porosity and CH4 saturation calculations derived from manual thresholding and
watershed methods are also included in Figure 10. This Figure suggests that, while U-Net
models trained on a sub-volume of the same data delivered high segmentation performance
metrics for the CH4 gas phase, the derived parameters deviated from ground truth values to
some extent, this being more acute for porosity inferences. In fact, in most cases watershed
or thresholding methods delivered more accurate porosity profiles. A comparison between
the mean absolute error (MAE) for the porosity and CH4 saturation calculations along with
the mean IOU values for the combined CH4 gas and sand labels from the three volumes
used to generate Figure 10 is shown in Figure 11. This Figure reveals that, while there is
a general trend of lower MAE for derived material parameters with higher segmentation
accuracy, the correlation exhibits some scatter. Considering that both CH4 gas saturation
and porosity are in part derived using the number of sand voxels and that these are
significantly more numerous than pore voxels (CH4 gas and brine-hydrates), it may be
proposed that errors in porosity/CH4-saturation estimation originate from inaccuracies in
the segmentation of the sand phase. This is evidenced in Figure 12 for dataset IC01, which
presents (a) IOU metrics for the segmentation of the sand phase and (b) the number of FP
and FN voxels. Figure 12a reveals that the inaccuracies in the segmentation of the sand
phase are relatively small in terms of metrics, which are in fact higher than those of the CH4
gas phase presented in Figure 7a. However, Figure 12b shows that the number of FP and



Methane 2023, 2 16

FN voxels is large compared to the size of the CH4 gas and brine-hydrate phases, which
amount to roughly 3.0 × 104 and 8.75 × 105 voxels per slice, respectively. This, in turn,
affects parameters calculated from voxel counts. This denotes that the estimation of soil
parameters based on ratios between material phases from segmented images is particularly
sensitive to the relative size of said phases. It should be noted, however, that the maximum
absolute errors presented in Figure 11 for U-Net-derived parameters (1.40% and 0.26% for
porosity and CH4 gas saturation, respectively) are smaller than those commonly reported
for laboratory methods [73–75].

Methane 2023, 1, FOR PEER REVIEW 16 
 

of the sand phase are relatively small in terms of metrics, which are in fact higher than 
those of the CH4 gas phase presented in Figure 7a. However, Figure 12b shows that the 
number of FP and FN voxels is large compared to the size of the CH4 gas and brine-hy-
drate phases, which amount to roughly 3.0 × 104 and 8.75 × 105 voxels per slice, respec-
tively. This, in turn, affects parameters calculated from voxel counts. This denotes that the 
estimation of soil parameters based on ratios between material phases from segmented 
images is particularly sensitive to the relative size of said phases. It should be noted, how-
ever, that the maximum absolute errors presented in Figure 11 for U-Net-derived param-
eters (1.40% and 0.26% for porosity and CH4 gas saturation, respectively) are smaller than 
those commonly reported for laboratory methods [73–75]. 

Figure 12a also shows that thresholding and watershed methods are very effective at 
segmenting abundant, high-contrast, well-defined features like sand, as stated in Section 
2.3. Indeed, the use of U-Nets may not be necessary or recommended if only such seg-
mentations are required, as mentioned in Section 2.2.2. However, mainstream methods 
return unsatisfactory CH4 gas saturation measurements, particularly for the low-contrast 
89069 volume, as shown in Figure 10. This is due to their inability to detect scarce, low-
contrast features like CH4 bubbles, as demonstrated in Section 3.1. 

 
Figure 10. Porosity and CH4 gas saturation profiles for the central 40 XY slices of data sets IC01 (a,b), 
LC03 (c,d) and HC05 (e,f) derived using image segmentations obtained from 3D hierarchical and 
RootPainter U-Net models trained on sub-volumes of IC01 (a,b) and LC03 (c–f). Parameters derived 
from manual thresholding and watershed segmentation methods also shown. 

 

Figure 11. Comparison of mean absolute errors for (a) porosity and (b) CH4 gas saturation estimations
with mean IOU metrics for the segmentations used. W03 denotes the use of a U-Net model trained
on a sub-volume of low-contrast dataset LC03; RP refers to RootPainter.

1 
 

 

Figure 12. (a) IOU metrics for the segmentation of sand in dataset IC01 using the 3D hierarchical
method (3D training/validation sub-volume) and RootPainter, and (b) associated false positive (FP)
and false negative (FN) sand voxels per slice of the central 40 XY slices. Metrics for the manual
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Figure 12a also shows that thresholding and watershed methods are very effective at
segmenting abundant, high-contrast, well-defined features like sand, as stated in Section 2.2.
Indeed, the use of U-Nets may not be necessary or recommended if only such segmentations
are required, as mentioned in Section 2.1.2. However, mainstream methods return unsatis-
factory CH4 gas saturation measurements, particularly for the low-contrast 89069 volume,
as shown in Figure 10. This is due to their inability to detect scarce, low-contrast features
like CH4 bubbles, as demonstrated in Section 3.1.

A further application for U-Net segmentations of XCT/SXCT images of soil and
rock is 3D data visualisation, which can then be used to investigate, for instance, CH4
gas distribution within the pore matrix. Such application can greatly benefit from model
portability. To exemplify this, Figure 13 compares 3D views of the CH4 gas phase produced
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by segmenting datasets obtained at different stages of hydrate formation (Table 1) using
the RootPainter model trained on the low-contrast LC03 sub-volume. Despite the presence
of a modest number of segmentation errors in the form of small islands on some of the
images (Figure 13b–d), the U-Net model produces sensible 3D representations of the data,
and changes in CH4 gas distribution as it is consumed for hydrate formation can be clearly
distinguished. In a further example, a 2D multi-label U-Net, trained using the single-
axis approach on the 2D learning subvolume from scan IC01, has been used to segment
a higher-contrast SXCT scan from a similar experiment carried out at the Swiss Light
Source (SLS) originally reported by Sahoo et al. [8]. The post-processing steps described
in Section 2.1.2, except cupping correction, were applied to the reconstructed data and
a 1554 × 1554 × 2000 voxel region was extracted from the centre of the 3D image (data
is available from Alvarez-Borges et al. [49]). Results are shown in Figure 14, where it is
seen that the model delivers qualitatively accurate 3D views of the distribution of all three
material phases, without any additional training, corrections or user input.
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Figure 13. XCT-derived 3D views of CH4 gas depletion during hydrate formation, with t denoting cooling
time in minutes after reaching 2 ◦C: (a) t = 0, (b) t = 92, (c) t = 323, (d) t = 643, (e) t = 1246, (f) t = 1801.
Segmentation carried out using a RootPainter U-Net model trained on the low-contrast LC03 data.

Both examples demonstrate the capability of U-Net models to segment multiple SXCT
images of CH4-bearing soil, despite being obtained using different instruments and set-
ups. The U-Net models used only a single (572)3 voxel sub-volume for training and did
not require any additional training, corrections or user input to segment new images.
A key implication is that training of a single U-Net model on a low greyscale contrast
dataset could be used to deliver insight on variations in sediment morphology in other
datasets. This has valuable applications. For example, segmentations are often required
during a short period of time with limited operator input, such as during data acquisition
at a synchrotron or other X-ray facility. The availability of pre-trained U-Net models
would allow segmentations and sediment morphology/microstructure information to be
produced within a short time after acquisition and reconstruction. Pre-trained models
could also be used to segment numerous and/or large data sets over shorter timespans
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with reduced user effort and bias. However, accuracy will remain lower that what could be
obtained with a model trained ‘natively’ on a subset of the target SXCT volume.
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Figure 14. U-Net segmentation of an independent data set from Sahoo et al. (2018a) acquired at
SLS, using a 2D multi-label single-axis U-Net model trained on the 2D learning subvolume for IC01:
(a) reconstructed SLS volume; (b) sand; (c) brine-hydrate; (d) CH4 gas.

Future work could encompass, for instance, an analysis of the effect of U-Net segmen-
tation accuracy and training strategy on ‘second order’ metrics such as particle, pore and
bubble morphometry, as well as the potential for improving a model’s ability to generalise
and accurately segment new data by including training data from several SXCT volumes
with varying contrast characteristics.

4. Conclusions

The application of U-Nets to segment SXCT images of CH4-bearing sand has been
investigated. The general aim was to determine if these convolutional deep learning
networks, trained on a small set of images (≤(572)3 voxels), were capable of accurately
segmenting large SXCT datasets (2000 × (1554)2 voxels) of different greyscale contrast,
with focus on the CH4 gas phase. Training images were obtained from a hand-annotated
subset of the reconstructed SXCT data. Three U-Net deployment methods were used: 3D
hierarchical, 2D multi-label and the RootPainter application. Quantitative comparisons
amongst U-Net segmentation outputs, along with mainstream thresholding and watershed
methods, were carried out using the IOU metric. Major outcomes of this investigation are
presented below.
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1. For a given SXCT data set, the three U-Net deployment methodologies produced
models capable of delivering segmented images of the CH4 gas phase with average
IOU metrics of at least 0.74 and up to 0.93. This demonstrated that the U-Net methods
used were capable of accurately identifying the CH4 gas phase using a small number
of training images. RootPainter delivered marginally higher IOU metrics than the
other methods but suffered from minor horizontal stripping artefacts and required
more human intervention and proportionally higher computing time;

2. Greyscale contrast between material phases in the different SRXCT datasets was
a significant factor affecting U-Net segmentation accuracy. The lowest segmenta-
tion performance metrics corresponded to SRXCT datasets exhibiting the lowest
greyscale contrast, while greater segmentation accuracy resulted from the use of
higher contrast data;

3. All U-Net segmentations of CH4 gas outperformed thresholding and watershed meth-
ods. However, mainstream methods proved to be more accurate at segmenting
abundant, well-defined, and high-contrast features, like sand. U-Net methods are,
thus, not recommended for this task;

4. The ability of a U-Net model trained on a subset of one dataset to generalise and pro-
duce an accurate segmentation of a different dataset, was explored. It was found that
models trained on lower-contrast images were able to produce accurate segmentations
of higher-contrast data without additional training. In comparison, U-Net models
trained on higher-contrast images were found to deliver poor results when used to
segment lower-contrast data. ‘Portability’ was further demonstrated by accurately
segmenting independent data from a different synchrotron facility without additional
training. This suggests that targeted training on small amounts of ‘ground truth’ data
can produce U-Net segmentation models that can be used for rapid segmentation of a
large number of different datasets with additional user input or training. However,
segmentation accuracy will be lower than that of a model ‘natively’ trained on subsets
of the target dataset;

5. The effect of segmentation accuracy on image-derived material parameters was inves-
tigated by calculating porosity and CH4 gas saturation profiles using U-Net segmenta-
tions. A general trend of lower mean absolute error of the derived parameter with
greater segmentation accuracy was found, but the correlation exhibited some scatter.
Considering that porosity, fluid saturation and other parameters are ratios between
material phases, it was proposed that errors in derived parameters are not only linked
to segmentation accuracy metrics but to the number of false positive and negative
voxel labels of the largest phase relative to the other phases.
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Appendix A

Porosity was calculated as:

Porosity (%) =
volume of pores

total volume
× 100, (A1)

and CH4 gas saturation was determined as:

CH4 saturation =
volume of CH4

volume of pores
× 100, (A2)

where the volume of CH4 gas amounts to the total number of CH4 gas voxels, the volume
of pores is the sum of CH4 gas and brine-hydrate voxels, and the total volume is the total
number of voxels in the image multiplied by the voxel volume (0.8125 × 0.8125 × 0.8125 µm).
For the RootPainter method, the sand phase has been segmented using the same approach
used for CH4 described in Section 2.2.4, but using sand labels and only one quadrant of each
annotation slice to produce sparsely annotated training and validation images.
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