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Identification of genetic factors associated with myeloid neoplasms 
by 

Gabriella Galatà 

Myeloid neoplasms are clonal haematopoietic disorders characterised by the abnormal 

proliferation of specific myeloid cell types. The first part of this thesis focuses on mastocytosis, a 

rare haematological neoplasm characterised by the uncontrolled proliferation of mast cells. To 

test the hypothesis that germline variants can alter the risk of developing mastocytosis, a two-

stage case-control genome-wide association study was conducted in five European populations 

with 1,035 KITD816V-positive cases and 17,960 controls. This analysis identified three genome-wide 

significant SNPs: rs4616402 (Pmeta=1.37×10-15, I2=4.2), rs4662380 (Pmeta=2.11×10-12, I2=0) and 

rs13077541 (Pmeta=2.10×10-9, I2=0). Expression and methylation quantitative trait loci analysis 

were used to identify candidate genes located near the SNPs, specifically CEBPA, TEX41 and 

TBL1XR1. Statistical analysis with available clinical data, showed that rs4616402 was associated 

with age at presentation (P = 0.009; beta = 4.41; n = 422) in patients with non-advanced disease. 

Additional focused analysis identified suggestive associations between mastocytosis and genetic 

variation at TERT, TPSAB1/TPSB2, and IL13. Finally, a gene-based analysis was performed using 

the summary statistics of the stage 1 meta-analysis and multiple regression which suggested that 

the VEGFC gene is also associated with mastocytosis. The findings described in this thesis 

demonstrate that multiple inherited common risk variants predispose to KITD816V positive 

mastocytosis and provide novel avenues for functional investigation. 

In the second part of this thesis, the genetics of somatically acquired uniparental disomy (aUPD) 

in myeloid malignancies was investigated. Several regions of recurrent aUPD have been identified 

in patients affected with haematological neoplasms, many of which harbour somatic mutations 

that drive clonal proliferation. Similar regions of aUPD have also been identified in apparently 

healthy individuals, especially the elderly, which confer a tenfold increased risk of developing 

haematological malignancies. Large-scale sequencing initiatives of individuals unselected for 

cancer therefore represent a valuable resource to identify novel regions of aUPD and the 



 

 

underlying somatic mutations which drive clonal haematopoiesis (CH). Whole-exome sequence 

(WES) data for 49,996 individuals from the UK biobank (mean age = 56.5 years) was used to 

develop an automated pipeline for identifying aUPD regions and a new scoring system (gg score) 

to select aUPD regions with high confidence for manual review. Precision and recall were used to 

evaluate the gg score. The recall (or sensitivity) showed that it correctly identifies 55% of the 

predicted aUPD regions, although the model can also produce false negatives. On the other hand, 

the score performed well in term of precision and indicated that 90% of the aUPD regions were 

correctly classified. The methodology was then applied to WES data from a Swedish Case-Control 

study of Schizophrenia consisting of 12,380 samples and with a mean age of 65. Genes targeting 

the aUPD regions identified in the Swedish cohort are known (MPL, 1p; TET2, 4q; EZH2, 7q; JAK2, 

9p; FLT3, 13q; MEG3-DLK1, 14q). Regions of aUPD were screened for somatic mutation if they 

were overlapping in two or more samples. However, only JAK2V617F was confirmed in all five 

samples with UPD9p and new aUPD regions with unknown gene target were not identified. This 

work showed that the frequency of sample with aUPD regions identified by WES data is lower 

(0.2-0.3%) than expected (1-2%) and provides an estimate what is needed in term of sample size 

to detect aUPD regions from WES data. 
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Chapter 1 Introduction 

1.1 Cancer overview 

Cancers are a group of diseases that are characterised by uncontrolled cell division and decreased 

cellular death, both of which are influenced by genetic and epigenetic control (Strachan and Read, 

2011). Mechanisms have evolved, such as apoptosis and deoxyribonucleic acid (DNA) repair, in 

part to protect the human body from malignancy, and these processes can be impaired by both 

germline and somatic mutations (Strachan and Read, 2011; Stratton et al., 2009). Germline 

mutations occur in sex cells and can therefore be passed onto offspring where they will be present 

in every cell. Somatic mutations occur in non-germ tissue and are not inherited. They are clonal in 

nature, so a clone of cells can be defined by a founding mutation and separated into subclones by 

subsequent mutations. Somatic mutations can be further categorised into drivers and passengers 

(Stratton et al., 2009). Driver mutations confer a growth advantage so they are positively selected 

and give rise to the hallmarks of cancer such as cell proliferation, immortalisation, metastasis, 

angiogenesis and evasion of growth suppressors (Hanahan and Weinberg, 2011). Passengers on 

the other hand are selectively neutral and not required for the initiation or maintenance of 

carcinogenesis. Most likely they simply happened to be present in a cell that acquired a driver 

mutation. Distinguishing between driver and passenger mutations has become one of the 

central goals of cancer genomics, although this is complicated by the observation that some 

tumours can contain up to 100,000 passenger mutations and fewer than 20 driver mutations. 

However, haematological malignancies are much simpler, and fewer driving mutations are 

required to generate a tumour (Stratton et al., 2009). In general, the mutational rate across cancers is 

highly heterogeneous: a study of 7,664 tumours across 29 cancer types showed that 1 to 10 driver 

mutations are needed to convert a normal cell into a cancer cell (Martincorena et al., 2017). 

1.1.1 Oncogenes, tumour suppressor genes and the two-hit hypothesis 

Mutations target specific genes, traditionally known as oncogenes and tumour suppressor genes, 

resulting in the conversion of a normal cell into a malignant tumour (Strachan and Read, 2011). 

Proto-oncogenes are present in normal cells and generally encode for proteins promoting cell 

proliferation, arresting cell death or inhibiting cell differentiation. Proto-oncogenes are usually 

activated in somatic cells by dominant genetic changes such as point mutations, gene 

amplifications and translocations (Figure 1.1) (Chial et al., 2008). Point mutations can be found 

within a promoter or a gene. The human telomerase reverse transcriptase (TERT) gene, for 
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example, has been implicated in a wide range of cancers, and single nucleotide substitution in the 

promoter of this gene can enhance mRNA expression (Horn et al., 2013; Huang et al., 2013). Point 

mutations within genes can instead produce normal protein with constitutive activity (e.g., KIT 

and JAK2) or degrade protein function (Gnanasambandan et al., 2010; Laine et al., 2011). Gene 

amplifications and overexpression of the amplified gene can lead to malignant transformation 

both in solid cancers (e.g., HER2 mainly in breast cancer) and haematologic malignancies (e.g., 

MYC in lymphoid leukaemia) (LʹAbbate et al., 2018; Neve et al., 2001; Zakrzewski et al., 2019). 

Proto-oncogenes activated by chromosomal translocations have been associated with gene 

hyperactivation as a consequence of new super-enhancers (e.g., MYC in multiple myeloma) or 

fusion genes (e.g., BCR-ABL1 in chronic myeloid leukaemia) (Hnisz et al., 2014; Lancho and 

Herranz, 2018; Peiris et al., 2019). In particular, chromosomal translocations involved in 

haematological cancer will be discussed in Section 1.2 of this thesis. Other mechanisms such as 

hypomethylation of long interspersed nuclear element-1 (LINE-1) have been associated with the 

activation of proto-oncogenes in various human cancers (Bae et al., 2012; Hur et al., 2014; 

Roman-Gomez et al., 2005). Activated proto-oncogenes, called oncogenes, promote cell 

proliferation and differentiation (Strachan and Read, 2011). 

 

Tumour suppressor genes encode for proteins involved in several mechanisms such as the 

inhibition of cell proliferation, apoptosis, replication and DNA repair. According to the two- hit 

hypothesis proposed by Knudson in retinoblastoma (Rb), carcinogenesis in some cases can initiate 

when the cell has mutations in both alleles of a tumour suppressor gene; i.e., they are recessive 

(Knudson, 2001). If a tumour suppressor is inactivated, mechanisms that control the normal cell 

cycle will be lost (Strachan and Read, 2011). Familial Rb (accounting for 25–35% of Rb cases) is an 

autosomal dominant disease where one mutated allele is inherited (Jagadeesan et al., 2016). For 

most tumour suppressor genes, however, inactivation of both alleles corresponds to somatic 

events. Inactivation of tumour suppressor genes is often caused by whole-gene deletion of one 

allele, mitotic recombination or duplication of the mutant allele, which may be detected by loss of 

heterozygosity (LOH) of informative markers upon a comparison of tumour and normal tissue. 
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Figure 1.1 Proto-oncogene activation mechanisms. 

Proto-oncogenes are genes involved in the regulation of the cell cycle. Genetic changes such 
as point mutations, gene amplification, chromosomal translocation and hypomethylation can 
activate proto-oncogenes to become oncogenes. 

 

As more mutated genes have been discovered in cancer it has become apparent that the model of 

dominant oncogenes and recessive tumour repressor genes is rather simplistic with many genes 

in fact having both dominant and recessive characteristics at the cellular level (Soussi and Wiman, 

2015). 

1.1.2 Clonal evolution in cancer 

Cancers evolve by clonal evolution, a concept formulated in the 1970s by Nowell (Nowell, 1976). 

He proposed that most neoplasms are the result of an evolutionary process initiated by a single, 

previously normal cell. An initial event gives rise to a proliferative advantage and clonal 

outgrowth. Acquisition of additional mutations, possibly in the context of genomic instability, 
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gives rise to further subclones. This evolutionary process will lead to a selection of more aggressive 

subclones which, due to their growth advantage over the normal cell, will begin to predominate 

and, for solid tumours, metastasise and invade local tissue. The rate of acquired epigenetic 

changes has been estimated to have a crucial role in genetic changes in clonal evolution 

(Siegmund et al., 2009). Overall, both genetic and epigenetic changes and subclonal selection 

processes result in advanced human malignancies characterised by uncontrolled proliferation 

(Flavahan et al., 2017; Nowell, 1976). More recently, it has become apparent that cancer 

evolution is not a simple linear process, but involves branched evolution and complex interactions 

between subclones (Greaves and Maley, 2012). Data on acute lymphoblastic leukaemia (ALL) in 

childhood revealed more dynamic clonal expansions, which occur without a preferential order. In 

fact, dominance and the architecture of subclones change constantly before subclones begin to 

dominate in early cancer development (Anderson et al., 2011). 

1.1.3 Heterogeneity and hierarchical organisation in cancer 

Cancer is characterised by genetic heterogeneity whereby different tumour cells have unique 

mutation profiles that form a hierarchical organisation (Caldas, 2012). Mouse model experiments 

gave, for the first time, evidence of heterogeneous subpopulations in a single tumour line. The 

analysis of isolated sub-clones showed their different metastatic potential consistent with the 

heterogeneity of cancer (Harris et al., 1982). This heterogeneity and hierarchy of tumour 

subpopulations was also demonstrated in human acute myeloid leukaemia (AML) using non-

obese diabetic mice with severe combined immunodeficiency disease (NOD/SCID) transplanted 

with human leukaemic cells (Bonnet and Dick, 1997). AML is composed of multiple distinct cell 

types and maintained by slow-cycling leukaemic stem cells (Clevers, 2011). Dick and Bonnet 

demonstrated in vivo the hierarchical organisation of a leukaemic clone by comparing the 

organisation of the normal and the AML haematopoietic system in humans. In fact, they were able 

to detect a primitive leukaemic stem cell that produces clonogenic leukaemic progenitors (AML-

CFU) and leukaemic blasts (Bonnet and Dick, 1997). 

1.1.4 Insight into clonal evolution 

Genetic diversity and epigenetic plasticity in cancer can lead to clonal evolution, drug resistant 

subclones, therapeutic failure and tumour relapse (Greaves, 2015). Advanced technologies such as 

single nucleotide polymorphism (SNP) microarrays and next-generation sequencing (NGS) have 

been widely used to investigate clonal evolution and genetic heterogeneity, and have improved 

our knowledge of the genotypic and phenotypic evolution of tumour cells (Ding et al., 2012; 

Landau et al., 2014; McGranahan and Swanton, 2017). For example, SNP arrays were used for 

genome-wide analysis of copy number variant (CNV) and LOH analysis on diagnostic and relapse 
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bone marrow (BM) samples of 61 patients affected with ALL (Mullighan et al., 2008). The results 

of the study showed no difference in CNVs between relapse and diagnostic samples on 8% of the 

patients, while 34% of the relapse samples showed clonal evolution of the diagnostic clone. This 

study demonstrated how a common ancestral clone can give rise to major and minor clones that 

are both present at diagnosis, and how the minor clone can acquire new genetic alterations and 

generate a new clone that is positively selected and responsible for relapse. In an illustrative case, 

two deletions at relapse were reported, one of which was present in a minor clone of the 

diagnostic sample, whereas the second one was acquired during a different stage of the evolution 

of the relapse clone (Mullighan et al., 2008). In patients with AML, clonal evolution can also be a 

cause of death after tumour relapse. In a study performed with 8 patients from different French-

American-British subtypes of AML, the primary tumour, relapse, and matched normal skin samples 

were sequenced using NGS, and new clonal mutational patterns in tumour relapse were identified 

(Ding et al., 2012). In order to investigate the cytotoxic effect of the chemotherapy on the 

evolution of the tumour, transversion (substitution of a purine for a pyrimidine or vice versa) and 

transition (changes from purine/pyrimidine to another purine/pyrimidine) in the relapse-specific 

tumour were compared with the changes identified in the primary tumour. The comparison 

revealed an increase in transversions for relapse-specific mutations. Although the primary tumour 

sub-clones were eradicated by therapy and therefore absent at relapse in 50% of the cases, this 

study showed that the cytotoxicity of the therapeutic treatment alters the clonal structure of the 

tumour and allows a more aggressive clone to dominate and contribute to drug resistance at 

relapse (Ding et al., 2012). Overall, these results show that different classes of mutations can be 

responsible for clonal evolution and need to be investigated in further studies. Furthermore, 

targeting with future therapies needs to consider not only the primary clone but also its 

subclones, and this should be one of the main foci of cancer research in order to minimise the 

impact of relapse after treatment (Mullighan et al., 2008). 

1.1.5 Cancer stem cell model 

According to the cancer stem cell (CSC) concept, the growth of tumours is driven by a group of 

slow-cycling CSC with pluripotency, self-renewal and chemo-resistance capabilities. The CSC 

model presumes that the tumour is composed of two groups of cell; differentiated cells that have 

lost their proliferative capability, and CSCs, which represent the tumourigenic part of the tumour. 

Therefore, this feature contributes to relapse and supports the hypothesis of using CSCs as the 

target for new strategies in cancer therapy (Clevers, 2011). Moreover, recent identification of 

several markers and an understanding of signalling pathways associated with CSC proliferation, 

apoptosis and differentiation have given insight into the development of drugs that used in 



Chapter 1 

6 

combination with traditional treatment are under evaluation in preclinical and clinical studies 

(Dragu et al., 2015). 

1.1.6 Cancer classification 

Based on the International Classification of Diseases for Oncology, Third Edition (ICD-O-3) (Fritz et 

al., 2013), cancers can be named according to the type of tissue where they originate. The NIH 

National Cancer Institute (https://training.seer.cancer.gov/disease/categories/classification.html) 

lists approximately 200 types of cancers, which can be grouped into six main categories based on 

histological type (NIH National Cancer Institute): 

• carcinoma, cancer that originates in epithelial tissue; 

• sarcoma, malignancies of connective tissue (bone, cartilage, smooth muscle, skeletal 

muscle, blood vessels, adipose tissue, etc.); 

• myeloma, a type of cancer that affects plasma cells. Plasma cells are leucocytes involved 

in immunoglobulin secretion and originated from B-cell differentiation (Oracki et al., 

2010); 

• leukaemia, liquid cancers usually affecting leucocytes. Red blood cells can also be 

affected; 

• lymphoma, solid cancers that originate in the lymphatic system. The main lymphomas are 

Hodgkin’s disease and non-Hodgkin’s lymphoma; 

• mixed types, containing different cell types. 

Haematological malignancies (leukaemia, lymphoma, myeloma) can be defined as myeloid or 

lymphoid depending on which cell lineage in haematopoiesis is affected, and acute or chronic 

depending on the tempo of onset and degree of differentiation. The classification of lymphoid and 

myeloid neoplasms was summarised in the fourth edition of the World Health Organization 

(WHO) classification of tumours of haematopoietic and lymphoid tissues (Swerdlow et al., 2008). 

In 2016, new clinical, prognostic, diagnostic and genetic findings derived from gene expression 

and sequencing studies led to a further revision of the WHO classification. For instance, systemic 

mastocytosis (SM) was reclassified and is no longer considered a subgroup of myeloproliferative 

neoplasms (Arber et al., 2016a; Swerdlow et al., 2016). Details of the new classification for SM are 

described on paragraph 1.2.5.1. 
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1.2 Myeloid Neoplasms 

Myeloid neoplasms are clonal haematopoietic disorders that are characterised by constitutive 

activation of signal-transduction pathways and other changes which lead to transformation and 

abnormal proliferation of haematopoietic stem cells (HSC), overproduction of one or more cell 

types in the myeloid lineage in the BM, and an increase in specific myeloid cells in the peripheral 

blood (Korn and Méndez-Ferrer, 2017). In the most recent WHO classification, these malignancies 

are categorised into major subtypes which include myeloproliferative neoplasm (MPN), 

myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN), myelodysplastic 

syndromes (MDS) and AML (Arber et al., 2016b). Recently, progress has been made through the 

identification of new driver mutations that can be used for diagnosis and to estimate the 

prognosis of these disorders (Arber et al., 2016a; Patel et al., 2017). However, despite an updated 

classification and increased understanding of their molecular pathogenesis, these are 

heterogeneous disorders and some overlapping features remain. Myeloid malignancies are mainly 

sporadic; however, a small group of cases associated with germline mutations have been reported 

both in children and adults. Germline mutations associated with familial myeloid neoplasms will 

be discussed in the following paragraphs together with the description of the disease subtypes 

(Arber et al., 2016a; Baptista et al., 2017). A distinct group of myeloid neoplasms known as 

therapy-related myeloid neoplasms (t-MNs) can arise in patients that follow chemotherapy or 

radiotherapy for a primary tumour or an autoimmune disease (Arber et al., 2016b). Cytotoxic 

treatments are known to play an important role in the pathogenesis of these diseases (Hasan et 

al., 2008). However, data have shown that familial predisposition has also been found to be 

involved in the development of t-MNs (Churpek et al., 2016). 

1.2.1 Myeloproliferative neoplasms 

MPNs are clonal haematological diseases that are characterised by an excess production of 

several haematopoietic lineages (e.g., erythroid, megakaryocytic and granulocytic cells), BM 

fibrosis and symptoms related to peripheral blood (PB) cell abnormalities (Kim et al., 2015). 

According to the latest WHO classification, MPNs are grouped into seven main malignancies: 

chronic myeloid leukaemia (CML), chronic neutrophilic leukaemia (CNL), polycythaemia vera (PV), 

essential thrombocythaemia (ET), primary myelofibrosis (PMF), chronic eosinophilic leukaemia 

(CEL) and MPN unclassifiable (MPN-U) (Arber et al., 2016a; Skoda et al., 2015). Evidence in the 

literature demonstrates that genes encoding a protein with tyrosine kinase activity are mutated in 

many haematologic malignancies and most MPN (Klampfl et al., 2013; Tefferi and Vardiman, 2008). 

The defining molecular marker used for the diagnosis of CML is the fusion gene between the 



Chapter 1 

8 

breakpoint cluster region gene (BCR) and ABL1 proto-oncogene 1 (BCR-ABL1) resulting from a 

translocation between chromosomes 9 and 22. The derivative chromosome 22, called the 

Philadelphia chromosome, is usually identified using molecular genetics techniques or by karyotype 

investigation. MPN cases without BCR-ABL1 are known as BCR-ABL1 negative MPN and their 

identification together with other factors have diagnostic and prognostic importance; CSF3RT618I 

or other CSF3R activating mutations together with other diagnostic criteria are strongly associated 

with CML, and the presence of JAK2 (Janus kinase 2)V617F is usually associated with PV, ET or PMF. 

Occasional PV cases have JAK2 exon 12 mutations, but the majority of JAK2V617F negative ET and 

PMF cases are characterised by the presence of myeloproliferative leukaemia proto-oncogene 

(MPL) or calreticulin (CALR) mutations. The small proportion of ET and PMF cases that test 

negative for JAK2V617F, MPL and CALR mutations are referred to as triple-negative MPN (Arber et 

al., 2016a; Kim et al., 2015). In recent studies, other disease-causing genes have been revealed to 

be mutated in MPN and, as shown in Table 1.1, different mutations can affect signalling, 

epigenetic abnormalities, splicing factors, DNA repair/tumour suppressor gene (Patel et al., 2017). 

Many of these genes are also mutated in MDS/MPN, MDS and AML. 

1.2.2 Myelodysplastic syndromes 

MDS is a myeloid malignancy and one of the most frequent haematopoietic disorders, especially 

in the elderly (Arber et al., 2016a). It is characterised by peripheral cytopenia, impaired 

haematopoiesis, dysplasia of haematopoietic cells and elevated risk of developing AML. Cytopenia 

is an essential diagnostic feature and according the WHO it is defined by specific thresholds of 

haemoglobin, platelet and neutrophil counts. According to the WHO classification, the degree of 

dysplasia and blast percentage also need to be considered in order to define specific MDS 

subtypes. The threshold of dysplastic cells is 10% in MDS; however, some individuals may have 

levels of dysplasia greater than 10%, so alternative causes of dysplasia need to be taken into 

account before a definite diagnosis can be made. Recurrent acquired mutations in SF3B1, TET2, 

SRSF2, ASXL1, DNMT3A, RUNX1, U2AF1, TP53, EZH2 and many other genes have been identified in 

patients affected with MDS (Haferlach et al., 2014; Papaemmanuil et al., 2013). Some mutations can be 

useful for prognosis. For example, TP53 mutation if present in patients with del(5q) is a predictive 

factor of poor response if the patients undergo specific treatment such as lenalidomide (Mallo et 

al., 2013). 
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1.2.3 Myelodysplastic/myeloproliferative neoplasms 

MDS/MPN is a group of diseases with clinical, laboratory and morphological features of both MPN 

and MDS. The karyotype may present the same abnormalities as seen in MDS (Arber et al., 2016a). 

Targeted sequencing of genes often mutated in myeloid disorders identifies variants in 80% of 

patients affected with chronic myelomonocytic leukaemia (CMML), the most common MDS/MPN 

subtype. The most commonly affected genes are SRSF2, TET2 and ASXL1, while mutations in 

SETBP1, NRAS/KRAS, RUNX1, CBL and EZH2 are identified at a lower rate. All these genes are 

mutated in other MDS/MPN subtypes, with broadly different mutational patterns associated with 

four specific entities being highly relevant for their diagnosis (Meggendorfer et al., 2018). For 

example, atypical CML (aCML) is a rare MDS/MPN subtype that, similarly to CNL, is characterised 

by neutrophilia, but it is associated with SETBP1 and ETNK1 mutations. In most cases, JAK2, CALR, 

MPL are generally not present in this MDS/MPN subtype but CSF3R mutations are seen in 10% of 

aCML cases (Arber et al., 2016a; Wang et al., 2014a). Juvenile myelomonocytic leukaemia (JMML) 

is another MDS/MPN subtype initiated by RAS-activating mutations and characterised by 

overproduction of monocytes and granulocytes (Chang et al., 2014). JMML occurs in children, 

and almost 90% of the patients have somatic and sometimes germline changes in PTPN11, KRAS, 

NRAS, CBL and NF1 (Arber et al., 2016a). MDS/MPN with ring sideroblasts and thrombocytosis 

(MDS/MPN-RS-T) and MDS/MPN-Unclassifiable (MDS/MPN-U) are other MDS/MPN subtypes 

under the 2016 WHO classification. MDS/MPN-RS-T in most cases (70%–90%) is strongly 

associated with mutations in the spliceosome gene SF3B1 co-existing with an MPN driver 

mutation, such as JAK2V617F (50%-65%), CALR or MPL mutations (<10%) (Arber et al., 2016a; Reinig 

and He, 2017). MDS/MPN-U is a very rare, heterogeneous neoplasm that comprises less than 5% 

of MDS/MPN. It can sometimes not be distinguished from aCML and not much is known about the 

disease (Chaudhury et al., 2015). 

1.2.4 Myeloid neoplasms with germline predisposition 

A small group of familial myeloid neoplasms associated with germline mutations have been 

reported and a common finding is that genes mutated in sporadic cases are also found to be 

mutated in familial cases. For instance, 10–15% of sporadic AML have normal karyotype and 

somatic mutations in the CEBPA gene, which is also mutated in familial AML, an autosomal 

dominant condition with nearly complete penetrance (Baptista et al., 2017). For example, 

sequence analysis of the germline DNA in three family members (two siblings and their father) 

affected with AML revealed c.212delC mutation (Smith et al., 2004). Mutational analysis in 3 

families with a familial platelet disorder (FPD/AML) revealed heterozygous RUNX1 missense 
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mutations which segregate with the disorder in all of the family members tested (Michaud et al., 

2002). Subsequently many other germline mutations predisposing to MDS/AML have also been 

reported throughout the RUNX1 gene, including missense, nonsense, frameshift and indel 

mutations (Baptista et al., 2017). Inherited GATA2 mutations associated with familial MDS/AML 

have also been reported in several studies (Gao et al., 2014; Hahn et al., 2011) and the growing list 

of predisposition genes associated with myeloid neoplasms also includes DDX41, ANKRD26 and 

ETV6 (Obrochta and Godley, 2018). 

1.2.5 Mastocytosis 

Mast cells (MCs) originate from the multipotent HSC that, after leaving the haematopoietic tissue 

as mast cell progenitors (MCPs), migrate through the peripheral blood to the connective or 

mucosal tissue, and then proliferate and differentiate into MCs (Kitamura et al., 1979). Once 

differentiated, MCs maintain high expression of the KIT receptor, also known as CD117 (Chen and 

George, 2018). MC granules mainly store mature tryptase, a tetrameric serine protease, and 

activation of MCs can lead to an elevated basal serum tryptase level, which has been established 

to be clinically significant in mastocytosis as well as other myeloid neoplasms (Arber et al., 2016a; 

Khoury and Lyons, 2019; Payne and Kam, 2004). Mastocytosis is a heterogeneous neoplasm that 

is characterised by abnormal growth and accumulation of clonal MCs in the BM and/or other 

tissues/organs. Mastocytosis can occur during childhood or adulthood. In most childhood cases, 

mastocytosis is limited to the skin, whereas in adults a systemic condition is more common with 

less than 5% of cutaneous forms in adults. The disease will present itself in males and females in 

equal ratios, although affected males are more predominant during childhood and female 

predominance is more likely to happen in adulthood 

(https://rarediseases.info.nih.gov/diseases/6987/mastocytosis#ref_8371). 

Classification and diagnostic criteria of mastocytosis were revised in 2016 by the WHO (Arber et 

al., 2016a). Mastocytosis represents a specific disease category, and due to its peculiar features is 

no longer considered a subgroup of MPNs, although it is clearly related to these disorders (Arber 

et al., 2016a). Mastocytosis is currently subclassified into three groups; cutaneous mastocytosis 

(CM), SM and mast cell leukaemia (MCL). CM occurs more frequently during childhood and is 

considered a skin disease. In contrast, SM occurs with a higher incidence in adults and the 

neoplastic MCs form focal and/or diffuse infiltrates in several tissues/organs such as bone marrow 

(BM), liver and spleen, leading to their functional impairment (Kristensen et al., 2011). The 

research described in the following two chapters focuses on SM, and in the following paragraph I 

will give more insights into this disease. 
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1.2.5.1 Systemic mastocytosis 

SM is a rare disease with a worldwide prevalence estimated to be between 1/20,000 and 

1/40,000 (https://www.orpha.net/). According to the WHO diagnostic criteria, a biopsy of the BM 

or sections of other extracutaneous organs is needed to detect aggregates of MCs, where an 

aggregate contains at least 15 MCs. This represents the major diagnostic criteria for SM. 

Depending on which organ is primarily affected by MC accumulation, five different SM subtypes 

have been identified. Indolent systemic mastocytosis (ISM) is the most common phenotype and is 

associated with a normal life expectancy. ISM only rarely develops into a more advanced 

phenotype. Smouldering systemic mastocytosis (SSM) also has a relatively benign phenotype but 

it can transform into an advanced subtype. The remaining SM subtypes are associated with a 

shorter life expectancy; systemic mastocytosis with an associated haematological neoplasm (SM-

AHN), aggressive systemic mastocytosis (ASM), and mast cell leukaemia (MCL) (Arber et al., 

2016a). Sometimes, the major criteria may not be sufficient for the final diagnosis and therefore 

the following minor diagnostic criteria have been established for SM: biopsy sections of BM or 

extracutaneous organs showing more than 25% MCs with atypical or spindle-shaped morphology; 

detection of a KIT point mutation at codon 816 in the BM or another extracutaneous organ; MCs 

in BM, blood or other extracutaneous organ expressing CD2 and/or CD25 which are not expressed 

under healthy physiological conditions; baseline serum tryptase (BST) level greater than 20 ng/mL 

(assuming the absence of an unrelated myeloid neoplasm). Based on WHO 2016 guidelines, the 

diagnosis of SM is established following the detection of the major criteria and one minor 

criterion, or at least three minor criteria (Arber et al., 2016b; Chen and George, 2018; Valent et 

al., 2017a).  

1.2.5.2 The KIT gene and driver mutations that activate the KIT receptor 

The KIT gene encodes the receptor tyrosine kinase KIT. The extracellular domain of KIT contains 

five Ig-like modules that bind stem cell factor (SCF), a cytoplasmic region containing a regulatory 

juxtamembrane domain (JMD) and a tyrosine kinase domain (TKD). The extra and intracellular 

domains are connected by a hydrophobic transmembrane domain (TMD). KIT is expressed 

throughout the entire development of MCs and is essential for their survival (Kitamura et al., 

2007). KIT is normally activated by stem cell factor (SCF) binding, which induces dimerisation of 

the receptor and upregulation of the tyrosine kinase activity and subsequent downstream 

signalling pathways (Figure 1.2). 

 

Gain-of-function mutations in the KIT gene constitutively activate the KIT receptor, causing 

continuous growth and survival of MCs in the absence of SCF (Kitamura et al., 2007). Approximately 
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90% (Table 1.2) of adult SM patients have a specific somatic driver mutation (c.71763A>T 

p.D816V, substitution of an aspartate with a valine) in KIT which is significant for both diagnosis of 

mastocytosis and therapeutic decision-making (Baird and Gotlib, 2018). Other rare somatic KIT 

mutations (e.g. D815K, D816Y, D816F, D816H, D820G, V560G, A502_Y503dup) have been detected 

in less than 5% of patients (Table 1.2) (Conde-Fernandes et al., 2017; Manthri et al., 2020; Mital et 

al., 2011; Ustun et al., 2016). Somatic mutations have been identified in other genes in advanced 

SM patients (e.g. TET2, SRSF2, ASXL1, CBL, RUNX1, RAS, EZH2 and JAK2V617F) and some of these 

additional mutations confer a poor prognosis, notably SRSF2, ASXL1 and RUNX1 (Jawhar et al., 

2015; Manthri et al., 2020; Valent et al., 2017b). Although the KIT receptor is considered a target 

of the tyrosine kinase inhibitor (TKI) imatinib, this compound is ineffective against D816V, as this 

mutation locks the receptor into an active conformation that imatinib is unable to access (Frost et 

al., 2002). Other KIT mutations, however, may be responsive to imatinib (Manthri et al., 2020; 

Mital et al., 2011) and encouraging clinical results have been obtained in mastocytosis using the 

alternative KIT inhibitor midostaurin (Gotlib et al., 2016), and more recently avapritinib (Gilreath 

et al., 2019). Cladribine is a non TKI-based chemotherapy, and although it has been effective for 

mastocytosis patients, its use has declined with the advent of TKIs targeting KIT; however, it still 

remains a safe drug to consider during pregnancy (Gilreath et al., 2019). KIT mutations are not 

only seen in mastocytosis but also characterise gastrointestinal stromal tumours (GST) and are 

often seen in AML with core binding factor fusion genes RUNX1-RUNX1T1 and CBFB-MYH11 

(Faiyaz-Ul-Haque et al., 2018; Hirota et al., 1998; Ishikawa et al., 2020; Liu et al., 2020). In GSTs, 

the most common mutations are localised on exon 11 (70% of cases); these mutations have also 

been reported to be involved in the development of liver metastasis (Liu et al., 2020; Tanaka et 

al., 2010). However, other KIT mutations in GST patients are found on exon 9 (5–10%),13 (1–3%) 

and 17 (<1–3%) as well as a novel cyclin Y like 1 (CCNYL1)-BRAF gene fusion (Liu et al., 2020). 
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Figure 1.2 Schematic of KIT receptor and localisation of main somatic and germline mutations 

observed in the sequence of the KIT gene in association with SM.  

The figure shows the KIT receptor tyrosine kinase in its monomeric form. KIT is a proto-
oncogene of 21 exons, located on chromosome 4, that encodes the KIT transmembrane 
receptor comprised of 976 amino acids. The receptor is composed of an extracellular domain 
(ECD) (in light grey), a TMD (in purple) and an intracellular domain. The ECD contains five Ig-like 
modules which are crucial for positioning KIT dimers in the correct orientation during the 
dimerisation of the receptor. The cytoplasmic region contains a JMD (in magenta) and a TKD (in 
yellow) composed of TKD1 and TKD2, and linked by a kinase insert domain (KID). The most 
common activating mutation (D816V) highlighted in bold, occurs in TKD2 and affects the 
cytoplasmic phosphotransferase domain’s (PTD) activation loop (A-loop). The ligand binding 
site and dimerisation site are in the ECD. In the figure, the exon numbers are shown in boxes 
and the main somatic (in black) and germline (in red) mutations identified in SM are indicated in 
the corresponding exonic regions (Baird and Gotlib, 2018; Ustun et al., 2016). Mutations 
marked as germline may also be acquired somatically. 



Chapter 1 

15 

 

Familial cases of CM and SM have also been reported (Hartmann et al., 2005; Wasag et al., 2011), 

with some families testing positive for inherited KIT mutations. A case study reported a father and 

two children affected with CM and harbouring a KIT p.N822I missense mutation. It was shown 

that this mutation constitutively activated the KIT receptor and also that N822I is resistant to 

imatinib but sensitive to dasatinib (Wasag et al., 2011). A study described a novel KIT germline 

mutation in exon 8 (del419) in a German family affected with gastrointestinal stromal tumour and 

mastocytosis. This mutation is a deletion affecting the extracellular domain of the receptor and 

was previously reported in one case of AML as well as childhood CM. In vitro experiments 

demonstrated that the constitutive phosphorylation of KIT was inhibited by imatinib (Hartmann et 

al., 2005). Another interesting study reported a K509I mutation associated with familial SM. A 

woman and her daughter harboured the same mutation and after sequencing both parents of the 

woman, the mutation was identified as an acquired de novo mutation, which was transmitted to 

the daughter. In vitro experiments showed that imatinib was able to induce apoptosis of MCs 

harbouring the KIT K509I mutation. The clinical condition of both patients improved remarkably 

after three months of treatment with imatinib (de Melo Campos et al., 2014). 

 

Mastocytosis is considered clinically to be part of a wider range of mast cell activation disorders 

(MCAD), including mast cell activation syndrome (MCAS). MCAS is a poorly understood 

immunological condition in which mast cells inappropriately and excessively release chemical 

mediators, resulting in a range of chronic symptoms, including anaphylaxis. Thus far no clearly 

recurrent genetic abnormalities have been described in MCAS; however, a review of familial cases 

showed that approximately 75% of mast cell activation disease (MCAD) patients had at least one 

first-degree relative with MCAD, which indicates a significant germline contribution (Molderings et 

al., 2013). 
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Table 1.2 Mutations in the KIT gene sequence in patients with mastocytosis. 

DOMAIN MUTATION LOCATION FREQUENCY 
(ADULTS)  

FREQUENCY 
(CHILDREN) 

Extracellular domain 
Ig-like module 5 

Missense, indels Exon 8 5% 20% 
Missense, 

duplication 
Exon 9 <5% 25% 

Transmembrane 
domain 

Missense Exon 10 rare rare 

Intracellular domain Missense, 
deletions 

Exon 11 <5% <5% 

Tyrosine kinase 
domain 

D816V Exon 17 80–90% 40% 
D816 other Exon 17 <5% 5% 
missense Exon 18 <5% rare 

1.3 Clonal haematopoiesis in healthy people 

Clonal haematopoiesis (CH) refers to the clonal expansion of any haematopoietic cells which have 

acquired somatic mutations or chromosomal abnormalities over time (Jaiswal and Ebert, 2019). 

Several studies have shown that the expansion of haematopoietic cell clones in the general 

population, termed age-related clonal haematopoiesis (ARCH)/clonal haematopoiesis of 

indeterminate potential (CHIP), is common in healthy elderly individuals and is associated with an 

increased risk of developing haematologic cancer as well as other cancers, cardiovascular disease 

and other age-related diseases (Bick et al., 2020; Busque et al., 2012; Genovese et al., 2014; 

Jacobs et al., 2012; Jaiswal et al., 2014, 2017; Laurie et al., 2012; Xie et al., 2014). For the purpose 

of this thesis, I will focus on the association between CHIP and haematological malignancies. A 

study performed on blood-derived DNA from a Swedish cohort identified genes that are most 

frequently mutated in association with clonality and observed CH with somatic mutations in 10% 

of individuals aged 65 or older. The 12,380 samples were unselected for blood cancer and their 

health condition was followed for up to 7 years after sample collection. Interestingly, 42% of 

participants who developed haematological malignancy during the study period had CH at study 

entry (Genovese et al., 2014). These results were confirmed by a second study of 17,182 samples 

coming from five different populations (African-American, East Asian, European, Hispanic, South 

Asian) (Jaiswal et al., 2014). Although individuals with CH are clearly at risk of developing a 

haematological malignancy, the rate of progression was only about 1% per annum. 

1.3.1 CHIP/ARCH and associated mutations 

DNMT3A, ASXL1 and TET2 are frequently mutated in patients with AML and MDS, and are also the 

most frequently mutated genes in apparently healthy individuals with CH (Busque et al., 2012; 

Genovese et al., 2014; Jaiswal et al., 2014). Findings from another study suggested that DNMT3A 
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R882H is particularly common in driving clonal events. They also demonstrated that CHIP is far 

more frequent, as they observed CH with DNMT3A and TET2 mutation in 95% of the healthy 

samples aged 50–60 (Young et al., 2016). Other frequently mutated genes are PPM1D, JAK2, 

TP53, GNAS, BCORL1 and SF3B1 (Genovese et al. 2014; Jaiswal et al. 2014; Xie et al. 2014). These 

genes can be used as a marker for early detection of CH in individuals that have not developed 

clinical symptoms for haematologic cancers (Genovese et al., 2014). 

 

1.4 Chromosomal abnormalities in myeloid neoplasms 

Genome instability and mutations are one of the hallmarks of cancer (Hanahan and Weinberg, 

2011). Chromosomal abnormalities in cancer were first described between 1890 and 1914 by 

Hansemann and Boveri who were performing microscopic analysis of cancer cells (Calkins et al., 

1914; Hansemann, 1890). Both chromosomal and molecular abnormalities can be responsible for 

the initiation of a malignant event and they can also be identified as clonal markers (Nowell, 

1976). Not all the cells in the malignant tissue acquire genomic anomalies and some cells do not 

acquire proliferative advantage (Heim and Mitelman, 2015). A study conducted on 50K samples 

from the general population using SNP microarray data showed that detected mosaic 

chromosomal anomalies associated with CH tend to overlap with the same regions of copy-

number variants or copy-number neutral events as those that are seen in haematological 

malignancies (Laurie et al., 2012). The investigation of chromosomal abnormalities in the genome 

is particularly important for the genetic diagnostic and clinical management of haematological 

malignancies (Arber et al., 2016a; Swerdlow et al., 2016).  

1.4.1 Chromosomal abnormalities 

Balanced chromosomal translocations are key abnormalities in the diagnosis of leukaemia and 

lymphoma and for understanding the pathogenesis of these diseases. Translocations may 

generate dominantly acting fusion genes that act as primary drivers of the disease process, or may 

result in aberrant expression of neighbouring genes. The prime example of a reciprocal 

translocation giving rise to a fusion gene is the Philadelphia chromosome, the smaller derivative 

of a translocation event between chromosome 9 and chromosome 22. The BCR-ABL1 fusion gene 

resulting from this rearrangement encodes a deregulated tyrosine kinase protein and is 

associated with the development of CML, as well as up to 50% of ALL and 1% of AML (Johansson 

and Harrison 2015; Kang et al. 2016). 
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1.4.2 Loss of heterozygosity 

LOH is a common genetic event occurring in cancer (Ryland et al., 2015). It involves the 

conversion of heterozygous loci to a homozygous state by a variety of mechanisms. LOH can cause 

the loss of normal function of one allele in a tumour suppressor gene or oncogene in which the 

other allele was already inactivated. Alternatively, LOH can convert a heterozygous driver mutation 

to homozygosity, which may provide an additional clonal advantage. Regions of LOH may span 

entire chromosomes or short sections of DNA, and they can occur due to copy number losses 

(CNV-LOH) or they can be copy number neutral (CNN-LOH), associated with acquired uniparental 

disomy (UPD) (O’Keefe et al., 2010; Ryland et al., 2015). 

1.4.3 Acquired uniparental disomy  

UPD is a type of LOH event whereby both copies of a chromosome pair or parts of chromosomes 

have originated from one parent (Engel, 1980). Inherited UPD, where both chromosome copies are 

inherited from one parent, occurs due to errors in meiosis and is associated with developmental 

disorders resulting from abnormal expression of imprinted genes (Robinson, 2000). In contrast, 

somatically acquired UPD (aUPD) occurs in cancer as a result of mitotic errors, either non-

disjunction resulting in aUPD of a whole chromosome, or more commonly recombination 

involving a whole chromosome arm or terminal segments followed by disjunction and DNA 

replication resulting in aUPD/LOH in the recombined region (Tuna et al., 2009) (Figure 1.3). 

1.4.4 Regions of aUPD in healthy people 

Regions of aUPD in healthy individuals represent another form of CHIP/ARCH. Only 0.5% of people 

under the age of 50 are affected but this rises to 2–3% of individuals over 50 and 10% of elderly 

individuals aged 65 and older. Importantly, the chromosomal regions affected are almost identical 

to those seen in patients with haematological malignancies and involve the same mutant genes 

(Genovese et al., 2014; Jacobs et al., 2012; Laurie et al., 2012). The finding of aUPD in an 

otherwise haematologically normal individual is associated with a tenfold increased risk of 

subsequently developing haematological neoplasia (Jaiswal et al., 2014; Laurie et al., 2012). This 

observation suggests that large genomic datasets accumulated in the study of benign conditions 

could be used to facilitate the detection of rare abnormalities associated with haematological 

neoplasms. 
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1.4.5 Detection of aUPD 

Regions of aUPD cannot be detected by conventional chromosome analysis but can be detected 

using SNP arrays or NGS to examine the status of polymorphisms (Afyounian et al., 2017; Score 

and Cross, 2012). Several bioinformatics tools, such as B allele frequency (BAF) segmentation 

(Figure 1.4), ExomeAI and Segmentum, have been developed for identifying regions of allelic 

imbalance (AI) in cancer cells from both SNP array and NGS data (Afyounian et al., 2017; Nadaf et 

al., 2015; Staaf et al., 2008). 

 

 

Figure 1.3 Mechanism of acquired UPD. 

Mechanisms leading to segmental and numerical aUPD. Segmental aUPD can be either 
telomeric or interstitial. Telomeric aUPD can occur following a single mitotic recombination 
event leading to exchange of chromatids (a). This mechanism can also generate interstitial 
aUPD although two consecutive or simultaneous homologous recombination steps are 
required (Makishima and Maciejewski, 2011). Numerical aUPD can also be a result of mitotic 
errors, such as chromosomal non-disjunction, in which cohesin complexes holding the 
chromatids fail to be removed and sister chromatids are incorporated into the same daughter 
cell (b). Another mechanism causing numerical aUPD is anaphase lag if during the anaphase a 
chromosome is delayed in its movement and fails to be incorporated into one of the two 
daughter nuclei. Anaphase lag can be followed by degradation of the chromosome not 
entering the nucleus and replication of the remaining chromosome (Strachan and Read, 2011). 

 

To generate SNP array data, fragmented single-stranded sample DNA is hybridised to the array, 

which consists of up to one million or more nucleotide probe sequences using modern platforms. 

SNP array genotyping generates two intensity values, one for each allele, for each SNP on the 

array. After hybridisation, the signal intensity, which is associated with the quantity of target DNA 

in the sample, is measured. The intensity values are transformed to give normalised intensity 

values (R) and allelic intensity ratios (θ) which are used to calculate BAF and log R ratio (LRR) for 

identifying structural chromosomal variation. The BAF reflects the probe intensity for a SNP 
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relative to the expected probe intensity for AA, AB and BB genotypes. The BAF plot is the amount 

of B allele observed in a probe that should concentrate at zero for zero copy (genotype AA), at 0.5 

for one copy (genotype AB) and at 1 for two copies (genotype BB). BAF values of 1 or 0 are 

therefore expected in LOH regions. However, in a tumour sample with LOH the BAF values may 

not reach 0 or 1 because of mosaicism; i.e., the tumour consists of a mixed population of cells 

with and without LOH. In these cases, the BAF values need to be significantly different from 0.5 in 

order to identify LOH regions. 

 

LRR is the ratio between observed normalised intensity of the experimental sample versus the 

expected intensity. In a LRR plot, copy number gains and losses are indicated by values that are 

significantly greatly or lower than zero respectively (Illumina, 2010; Staaf et al., 2008). In NGS data 

from paired tumour/normal samples, the BAF and LRRs are calculated using read depth for 

reference and alternate alleles, which is extracted from the binary alignment/map (BAM) file. 

Different algorithms are then used to calculate the BAF and LRR based on the read depth data 

(Afyounian et al., 2017; Nadaf et al., 2015). Regions of aUPD are identified as regions with BAF 

that are significantly different from 0.5 and that have two copies (copy number neutral) and 

therefore look normal in the LRR plots (Illumina, 2010) (Figure 1.4). 
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Figure 1.4 BAF, mBAF and LRR plots obtained with BAF segmentation. 

Panel A represents the BAF plot for chromosome 4. Panel B shows the transformation of BAF 
values, which are reflected along the 0.5 axis to give mirrored BAF (mBAF). Regions of AI are 
identified where the segmented mBAF is > 0.56 (red dashed line) and highlighted by a red 
rectangle. The green line shows the circular binary segmentation (CBS) profile applied to the 
mBAF values to identify regions of similar allelic proportions. The plot in panel C is the copy 
number profile with CBS in green used to merge regions with similar level of LRR. 

1.4.6 Identification of genes underlying aUPD in haematological neoplasms 

The identification of regions of recurrent aUPD has led to the discovery of both novel driver genes 

and imprinted loci associated with haematological neoplasms (Chase et al., 2015; O’Keefe et al., 

2010). For example, SNP array profiling revealed a minimal recurrent region of aUPD on 

chromosome 11q in 58 patients with aCML, JAK2 mutation-negative myelofibrosis or JAK2 

mutation-negative PV. Subsequently, the CBL gene on 11q23.3 was identified as a candidate gene 

and sequenced in patients with 11q aUPD and a bigger cohort of MPN patients. These sequencing 

studies identified a causal somatic CBL mutation in 3 of the 11q aUPD patients and in 26 patients 

from the wider MPN cohort (Grand et al., 2009). Similarly recurrent regions of aUPD and mutation 

screening have been used to identify TET2 on chromosome 4q24 in MDS patients (Langemeijer et 

al., 2009; Massé et al., 2009; Mohamedali et al., 2009), EZH2 on 7q36.1 (Ernst et al., 2010; 

Nikoloski et al., 2010), JAK2 on 9p (Kralovics et al., 2002; Tiedt et al., 2005), MPL on 1p and FLT3 

a.

b.

c.
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on 13q (Kralovics et al., 2002; Raghavan et al., 2008; Score and Cross, 2012). In contrast, the 

imprinted MEG3-DLK1 locus was identified as a target of 14q aUPD after demonstrating the 

consistent loss of maternal chromosome 14 and gain of paternal chromosome 14 (Chase et al., 

2015). 

 

1.5 Genome-wide association studies 

Genome-wide association studies (GWAS) have given much insight into the genetic basis of 

complex and multifactorial diseases and have generated many scientific discoveries over the last 

15 or more years (Ferrari et al., 2014; Ku et al., 2010; Tapper et al., 2015; Visscher et al., 2012). 

The aim of a GWAS is to identify genes which predispose to a trait of interest. The method 

involves genotyping approximately 1 million SNPs spread across the genome in as many unrelated 

cases and controls as possible. The SNPs are then tested for association with the trait of interest 

by comparing their allele frequencies in cases and controls. SNPs with significantly different allele 

frequencies can then be used to pinpoint the causal gene(s) (Visscher et al., 2017). In contrast to 

rare variants related to Mendelian disease, which can be identified using linkage and sequencing 

technologies (Boycott et al., 2013), GWAS are more suited to detecting common variants 

underlying polygenic disorders (Smith and Newton-Cheh, 2009). One of the strengths of this 

technique is that no prior hypothesis of likely candidate genes or disease pathogenesis is needed. 

Therefore, GWAS may discover novel pathways and genes that would not have been considered 

based on their function. 

 

To date a one stage GWAS of mastocytosis (Nedoszytko et al., 2020) and two GWAS of MPN have 

been reported (Hinds et al., 2016; Tapper et al., 2015). Tapper et al. demonstrated that genetic 

variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to JAK2-unmutated MPN and that 

HBS1L-MYB and the JAK2 46/1 haplotype influences whether JAK2V617F mutated cases presented 

with PV or ET. They also showed that SNPs in TERT are associated with MPN and that additional 

SNPs in SH2B2, ATM, CHEK2, GFI1B, and PINT predispose to JAK2V617F-positive MPNs (Tapper et 

al., 2015). A second GWAS was performed to identify germline alleles predisposing to Philadelphia 

chromosome-negative MPNs and JAK2V617F CH in the general population. As a result, inherited 

genome-wide significant loci were found in or near TERT, SH2B3 and TET2. The joint analysis of 

the stage 1 and replication results identified additional germline risk factors associated with age-

related JAK2V617F CH as well as JAK2V617F-negative MPN (Hinds et al., 2016). These studies have 

recently been extended with the identification of new risk loci for MPN, and functional data 
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indicating that selected risk loci modulate the function of HSCs (Bao et al., 2020). GWAS have also 

been very successful in lymphoid disorders with the identification of multiple loci predisposing to 

ALL, chronic lymphocytic leukaemia and myeloma (Di Bernardo et al., 2008; Chubb et al., 2013; 

Crowther-Swanepoel et al., 2010; Papaemmanuil et al., 2009). 

 

GWAS of rare diseases with a non-Mendelian pattern of inheritance have also been very 

successful, especially among neurodegenerative disease (e.g., amyotrophic lateral sclerosis, 

frontotemporal dementia and corticobasal degeneration) and cancer (Campa et al., 2020; Chio et 

al., 2009; Ferrari et al., 2014; Kouri et al., 2015). For example, a recent study conducted on 

European individuals affected with a rare malignant tumour of the eye identified a risk allele in a 

region associated with overexpression of the CLPTM1L gene (Mobuchon et al., 2017). 

1.5.1 Study design and population structure 

Study design and population structure need to be considered before sampling and genotyping 

based on the disease prevalence and how the disease segregates in the family. The main study 

designs are population-based or family-based. Population-based studies include case-control 

studies of unrelated people, cross-sectional studies, prospective and retrospective cohort studies 

and studies in population isolates. 

 

Case-control studies are sensitive to population stratification; for this reason both cases and 

controls should be selected from a homogeneous population (Lieb, 2013; Smith and Newton-

Cheh, 2009). In a population study design, even though population stratification can be adjusted 

during the analysis, it is more opportune to minimise these types of errors during the study design 

by sampling cases and controls from the same population (Zondervan and Cardon, 2007). In 

contrast, family-based studies are performed within the family and will not present problems due 

to population stratification (Hong and Park, 2012). However, it can be difficult to accumulate a 

large number of affected pedigrees. Family studies may therefore lack power to detect genetic 

effects due to their small sample size. However, studies have shown that case-control and family-

based designs give relatively similar estimates of association (Evangelou et al., 2006).  

 

Successful GWAS requires sufficient statistical power and appropriate sample size in order to 

reduce spurious results (Jones, 2003). The power of a genetic study measures the probability of 
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detecting the hypothesised association between a SNP and the disease. A large number of 

samples are more informative and give more strength to the study. In some case-control studies, 

the number of cases is limited because the disease is rare. In this situation, study power can be 

increased by increasing the number of controls (Mobuchon et al., 2017; Smith and Newton-Cheh, 

2009). 

1.5.2 Single nucleotide polymorphisms 

GWAS uses high-density arrays to genotype approximately 1,000,000 SNPs in a single reaction, 

screening many patients on a genome-wide scale (LaFramboise, 2009; Manolio et al., 2009). SNPs 

are the most common genetic variation in the genomic DNA, and are selected to have a frequency 

greater than 1% in the entire population (LaFramboise, 2009). SNPs consist of single base-pair 

(bp) change in certain genome positions and, on average, they occur once in every 300 base pairs of 

the human genome (Strachan and Read, 2011). SNPs are bi-allelic, and the less common allele is 

known as the minor allele (Bush and Moore, 2012). The SNP database (dbSNP), has catalogued a 

total of 364,060,923 human SNPs for build 151, which are identified with an unique “reference 

SNP” (rs) number 

(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+summary&

build_id=151). 

1.5.3 Data quality control 

Assessment of data quality is an important step during GWAS. Quality control (QC) can be 

considered under two different aspects. The first is related to technical quality; e.g., missing SNPs 

data due to intensity measurement issues when performing genotype calls. The other aspect is 

downstream QC, aimed at evaluating the different sources of error. Genotype QC is performed by 

analysing raw intensity data using specific genotype-calling algorithms that estimate the 

probability for AA, AB or BB genotypes. Only the genotypes whose probability is over a set 

threshold are selected as ‘called’, whereas the remaining genotypes are indicated as ‘missing’. It is 

important to apply the correct threshold depending on the study. For instance, in GWAS a high 

calling threshold could generate a high rate of missing genotypes and reduce genomic coverage 

and genetic power, which are important factors for detecting association. Genotype quality can 

be manually inspected using cluster plots, and it is recommended that after association testing 

these plots are checked for all SNPs taken forward for replication (Anderson et al., 2010).  

 

Downstream QC is applied after the genotypes have been called. The main purpose of QC is to 

remove samples and SNPs with poor genotyping that can lead to false positive associations. 
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Usually, up to one million markers are tested for GWAS; therefore, even a low rate of poor 

genotypes can lead to numerous false positives that should not be selected for replication. These 

downstream steps analyse data from samples (subject-based quality measures aimed at assessing 

genotyping errors such as contamination, duplication or poor DNA quality) and SNPs (variant-

based quality measures) and those poorly genotyped will be removed (Anderson et al., 2010). 

1.5.4 Linkage disequilibrium 

Linkage disequilibrium (LD) describes the non-random association between alleles at two or more 

linked loci on a contiguous stretch of genomic sequence. The term was coined to describe the 

correlation between genetic variation in a population over time. Considering a haplotype block as a 

genomic region with linked sets of alleles, LD describes also the low probability of altering the 

haplotype structure through recombination events (Andrew, 2007). LD patterns are a result of 

population size, natural selection, genetic distance, rate of recombination and mutation events 

over many generations. 

 

As a result of LD, the frequencies of two alleles observed in the same haplotype compared to the 

frequency expected if the alleles are independent may show positive or negative LD (Goode, 

2011). Based on their allele frequencies, positive LD occur when two alleles exist on the same 

haplotype more often than expected, whereas a negative LD means that alleles can occur 

together less frequently than expected (Earp and Goode, 2017). The difference between the 

observed and the expected frequencies can be measured by different LD metrics. D’ and r2 

represent the most commonly used measures of LD (Devlin and Risch, 1995). The covariance (D) 

represents the difference between expected and observed haplotype frequencies and, since it is 

sensitive to allelic frequencies, it is not calculated at the extreme values of 0 or 1 (Goode, 2011). 

In order to reduce frequency dependence, Lewontin used the measure D’, which is a normalised D 

ranging from 0 to 1 that can represent complete linkage equilibrium or no recombination between 

the two markers respectively. LD between genetic variants is more often measured using the 

Pearson correlation coefficient, also termed squared correlation coefficient (r2), which is also 

scaled from 0 to 1 for completely independent and dependent (co-inherited) polymorphisms, 

respectively (Bush and Moore, 2012; Lewontin, 1964). LD r2 is dependent on allele frequencies, so 

in order to increase the likelihood of detecting disease association, it is important to take into 

account the maximum difference in allele frequencies between two loci when selecting candidate 

SNPs (Wray, 2005). LD measures represent an essential tool in several steps of a GWAS, such as 
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imputation, detection of strand issues, selection of independent SNPs and clumps of correlated 

SNPs, and defining regions of interest. 

1.5.5 Association tests 

In GWAS, the association between genotype and phenotype is performed for each SNP using 

contingency tables or regression to assess differences in the distribution of alleles or genotypes 

(Bush and Moore, 2012). The null hypothesis of no association with the disease is true when no 

significant difference is detected in allelic or genotypic frequencies between cases and controls. 

 

In a case-control study, genotypic tests use a 2×3 contingency table of genotypic counts which has 2 

degrees of freedom (df). These tables can be collapsed to test for both dominant and recessive 

models. Allelic tests may also be applied, which use a 2×2 contingency table with one df. Allelic 

tests are considered to be most powerful statistic for testing a multiplicative model of 

penetrance. 

 

In some studies, the association test needs to account for the effects of population, 

epidemiological risk factor (e.g., gender, diet or geographic location) and clinical variables (e.g., 

treatment, body mass index). In these situations the factors can be treated as covariates, using 

linear regression for quantitative traits and logistic regression for binary traits such as case or 

control status (Clarke et al., 2011). For instance, spurious association signals can occur if there are 

differences in ethnicity between cases and controls since allele frequencies may vary as a result of 

ethnicity rather than association with disease risk. To minimise spurious association due to ethnic 

differences, principal component analysis (PCA) or multidimensional scaling can be used to either 

identify and remove outliers or to generate principal components that can be used as covariates 

in the statistical association tests that account for difference due to population stratification 

(Anderson et al., 2010).  

 

The statistical analysis involves multiple independent tests, a fraction of which may produce false 

positive association signals (type 1 errors). For instance, if a total of 106 alleles need to be tested 

in a GWAS, a strict control for type 1 error is required (Dudbridge and Gusnanto, 2008; Pe’er et 

al., 2008). This is generally accounted for by adjusting the threshold needed in a single test for the 

null hypothesis to be rejected. The Bonferroni correction represents a widely accepted approach 

to adjusting the P-value threshold for genome-wide significance and to minimise the number of 
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spurious positive results due to multiple comparisons. This corresponds to dividing the P-value 

threshold (0.05) by the total number of markers (N) used before testing the association, and the 

resulting conventional threshold for genome-wide significance is 5 × 10−8 (=0.05/1 million) (Khoury 

and Yang, 1998). 

1.5.6 Follow-up of results: Replication studies 

Because of possible errors (e.g., systematic genotyping errors, statistical errors) that may arise 

during GWAS, replication studies in independent samples are required to validate the association 

observed at stage 1 (Chanock et al., 2007). It is important that the replication study has sufficient 

power to confirm or refute findings. Sample size and genetic power therefore need to be 

considered during the replication and discovery stages (Jones, 2003; Smith and Newton-Cheh, 

2009). In order to confirm that observed association is not due to genotyping artefacts, in stage 2 

SNPs should ideally be genotyped on a different platform and reanalysed. The selected SNPs could 

be highly correlated with the phenotype in one cohort used in stage 1 of the analysis, but the 

same SNPs could be poorly correlated in a different ancestry group (Smith and Newton-Cheh, 

2009). This can be determined using the tool Tagger implemented within the program Haploview; 

this is a SNP haplotype-tagging method based on HapMap samples (de Bakker et al., 2005). 

1.5.7 Meta-analysis 

To increase power and give new insight into the aetiology of diseases, meta-analysis can be used 

to combine evidence from separate GWAS. Because of the larger sample size and independent 

cohorts, this approach can reduce the number of false positives and increase the significance of 

true positives (Smith and Newton-Cheh, 2009). Recent studies have demonstrated that meta-

analysis of GWAS data can identify new susceptibility loci involved in complex diseases (Nalls et 

al., 2014; Pharoah et al., 2013). Before performing the meta-analysis, any kind of heterogeneity 

(e.g., sample structure, individual ancestry, population structure, results) between studies must 

be considered. Heterogeneity of results can be examined using forest plots and statistics such as 

the χ2-based Cochran’s Q test and I2 (Smith and Newton-Cheh, 2009). The former is used to detect 

whether there is a statistically significant heterogeneity between the combined studies (Zeggini 

and Ioannidis, 2009). The I2 test is able to analyse whether the percentage of variation is 

attributed to heterogeneity or to chance (Higgins et al., 2003; Zeggini and Ioannidis, 2009). Once 

the statistical variation has been detected and the results from each study have been weighted, 

the data can be jointly analysed. In meta-analysis, a model termed random-effect allows the 

effect size to be different between cohorts and can be used if the variation is due to heterogeneity. 
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On the other hand, if the between-studies variation occurs by chance, a fixed-effect model is most 

appropriate, as it assumes that the variant has one true effect size (Smith and Newton-Cheh, 

2009). 

1.5.8 Data imputation and the HapMap project 

The choice of markers that are representative of the LD pattern of the genome is an important 

part in the design of GWAS, with a key parameter being the proportion of common variation that 

is tagged by the subset of genotyped SNPs. Markers that are not directly genotyped but are in 

high LD with the genotyped markers can be recovered through imputation. In this way, the causal 

allele could still be detected through its correlation with marker loci genotyped in the assay and 

associated with the disease. Imputation can be used to improve the resolution of GWAS by 

estimating what the genotype should be for SNPs with missing genotypes and for SNPs that were 

not genotyped on the array (Chanock et al., 2007; Sherry, 2001). Genotypes are estimated using 

the LD pattern in sequenced reference datasets (e.g. HapMap) and known genotypes from the 

study. The International HapMap Project is the main source for LD information and has produced a 

map of common human DNA variants that cluster together to form haplotype blocks. The HapMap 

Consortium used data from healthy individual including African ancestry from Nigeria (Yoruban in 

Ibadan, YRI), Chinese (Han Chinese from Beijing, CHB), Japanese (Japanese in Tokyo, JPT) and 

European (Utah residents with ancestry from northern and western Europe, CEU) ancestry to 

catalogue population-specific differences in genetic variation. The project was completed in 2009, 

having genotyped 3,000,000 SNPs from 1,301 individuals from 11 human populations (Altshuler et 

al., 2010b). Another resource in use for genotype imputation is the Human Reference Consortium 

(HRC), a large reference panel mainly of European ancestry of 64,976 human haplotypes with 

39,235,157 SNPs derived from whole exome sequencing (WES) data. A total of 20 studies have 

been added in the panel and these also include the 1000 Genomes Project Phase 3 cohort. The 

increased number of SNPs, haplotypes and populations coming from the HRC has enabled an 

increase of marker density in GWAS samples and therefore the accuracy to infer initially 

unobserved genotypes (Iglesias et al., 2017; McCarthy et al., 2016). 

1.5.9 Strength and weaknesses of GWAS 

GWAS have been very successful, having identified nearly 157,000 robust associations involved in 

a wide range of complex disorders, which are highly replicable within and between populations 

(MacArthur et al., 2017). However, despite these successes, the GWAS approach has some 

limitations that need to be considered along with their design and analysis. The detection of false 

positives is one of the main weaknesses of GWAS. For this reason, study design, QC, correction for 

multiple testing and replication are all critical steps to optimise the chance of detecting true 



Chapter 1 

29 

 

positive association whilst maintaining the power of the study (Pearson and Manolio, 2008). 

Applying stringent significance thresholds is one way of minimising false positives, but multi-stage 

studies performed on breast cancer and multiple sclerosis have showed that the most robust 

findings are not necessarily the most significant signals in the discovery stage (Hunter et al., 2007; 

Strachan and Read, 2011; Verma, 2012). 

 

Since the development of high-throughput SNP arrays approximately twenty years ago, the costs 

have fallen and the number of SNPs in the arrays have increased. It is now possible to genotype 

between 200,000 to 2,000,000 SNPs in a single array (Chee et al., 1996; Visscher et al., 2017). 

These improvements have helped to reduce false negatives through increased SNP coverage and 

by making genotyping of more samples affordable. 

 

Typically, SNPs identified by GWAS are not causal but in LD with the causal variant(s). 

Furthermore, risk SNPs are typically located in intronic or intergenic regions. As a result, the 

biological and functional role of associated SNPs is often unclear and further studies involving fine 

mapping and functional analyses are required to identify the causal mutation and gene involved, a 

task that is often very difficult. 

 

When GWAS started there were high expectations of discovering the genetic factors accounting 

for the heritability of complex traits (Visscher et al., 2008). However, despite huge GWAS for adult 

height involving 253,288 individuals, which identified 697 variants with genome-wide significance, 

their combined effect could only explain 20% of the heritability (Genovese et al., 2014). The so-

called “hidden heritability problem” can be explained by at least three factors. The first is that the 

susceptibility in the great majority of complex traits is attributed to a large number of variants 

with subtle effects that will require enormous sample sizes to detect (Strachan and Read, 2011). 

Indeed, by considering all common variants the majority (60%) of heritability in adult height could 

be explained (Visscher et al., 2017). 

 

Second, disease susceptibility may be due to a highly heterogeneous collection of rare variants 

that display Mendelian inheritance and play a major role in the development of the disease 

(Strachan and Read, 2011). This is the case of atopic dermatitis or eczema, a common and 
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complex trait caused by common variants that, in contrast to polymorphisms, cause complete loss 

of function of the filaggrin gene (FLG). Almost 10% of the European population carries one of the 

five specific FLG variants. Different sets of variants are common within different populations 

(Irvine and McLean, 2006). Other approaches should be considered, such as WES or whole 

genome sequencing (WGS), to discover gene variants that cause susceptibility to complex disease 

with monogenic Mendelian inheritance patterns (Strachan and Read, 2011). In other cases, rare 

forms of common diseases with Mendelian patterns can be caused by highly penetrant variants 

with low (0.5%<MAF<5%) or rare minor allele frequency (MAF<0.5%) which could explain part of 

the missing heritability (Gibson, 2012). Since these variants are not covered by conventional 

genome-wide genotyping arrays, new methodologies such as a rare variant association study 

(RVAS) can be adopted to identify rare variants associated with phenotypic variation (Auer and 

Lettre, 2015). 

 

The third factor that may account for part of missing heritability in GWAS is represented by 

additive epigenetic changes (e.g., histone modifications, DNA methylations) transmitted for more 

generations and that are not taken into account by GWAS (Strachan and Read, 2011; Trerotola et 

al., 2015). 

 

Finally, some have considered that another weakness of GWAS is that the identified variants tend 

to have small effect sizes which limit or prevent clinical utility. However clinical utility is only one 

consideration, and even small effect sizes may provide important new biological insights into 

disease pathology. 
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1.6 Aims of study 

As reviewed above, genome-wide genetic studies have revealed the importance of germline 

variation and somatic mutations in the pathogenesis of haematological malignancies. 

Furthermore, ongoing WES and WGS sequencing projects targeted at specific disorders or 

conducted at a population level are generating increasingly large datasets of sequence variation. I 

hypothesise that further insights into the pathogenesis of myeloid neoplasms may be obtained by 

focusing on genetic predisposition to specific, genetically-defined subtypes of disease. In addition, 

I hypothesise that large sequence datasets from individuals unselected for a malignant phenotype 

can be mined to gain new insights into blood cell clonality as a precursor to haematological 

malignancies. In this context I aim to: 

 

 (i)  Identify genetic predisposition to mastocytosis using the GWAS approach, and using the 

somatically acquired KITD816V marker to help to ensure homogeneity of cases, and 

 

 (ii)  Utilise WES datasets to identify regions of AI and aUPD, and explore the potential of this 

approach to identify novel driver mutations associated with CH and myeloid neoplasms. 
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Chapter 2 A Genome-Wide Association Study of 

Systemic Mastocytosis 

2.1 Introduction 

Most occurrences of SM are sporadic and over 80% of SM patients have a somatic KITD816V 

mutation. Familial cases of SM are rare and little is known about the contribution of germline 

predisposition. However, several familial cases have been reported involving rare highly penetrant 

germline mutations in the KIT gene (Hartmann et al., 2005) or acquisition of somatic KIT 

mutations including D816V (Broesby-Olsen et al., 2012; Zanotti et al., 2013), S849I and M835K 

(Molderings et al., 2013) by multiple family members. The simultaneous occurrence of these 

somatic mutations, which includes one pair of monozygotic twins, is unlikely to occur by chance and 

suggests the involvement of inherited predisposition to acquired somatic KIT mutations similar to 

those seen in MPN involving the somatic mutation JAK2V617F (Broesby-Olsen et al., 2012; Jones et 

al., 2009). Further evidence from family-based studies has suggested that SM has a heritable 

component following the observation that 74% of patients with systemic MCAD (n=62/84) had at 

least one first degree relative with suspected MCAD based on a self-reported questionnaire 

(Molderings et al., 2013). Furthermore, several constitutional genetic variants have been 

associated with the development of different mastocytosis phenotypes in relatively small 

candidate gene studies (Daley et al., 2001; Lange et al., 2017; Nedoszytko et al., 2009, 2018; Rausz 

et al., 2013). 

 

When this study was started, no GWAS had been undertaken to test for germline predisposition to 

SM. However, other GWAS had demonstrated that germline variation at several loci is associated 

with the risk of developing MPN and can influence whether MPN patients develop ET or PV 

(Tapper et al., 2015). Our hypothesis is that inherited genetic factors also predispose to SM. To 

test this hypothesis, I conducted a two-stage GWAS of SM. To limit genetic heterogeneity and 

increase power, the GWAS focused on SM patients with somatic KITD816V mutations only. The 

identification of genetic markers associated with SM may have a clinical impact and will provide 

insights into understanding whether inherited markers are key factors for predisposing to or 

protecting from the development of the disease. At stage 1, 479 KIT D816V-positive SM patients 

were recruited from the United Kingdom and Germany. For comparison, publicly available control 

cohorts were obtained, consisting of 9,597 healthy controls from the Wellcome Trust Case Control 

Consortium 2 (WTCCC2) and the Cooperative Health Research in the Region Augsburg (KORA) 
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study (Burton et al., 2007; Holle et al., 2005). A replication cohort of 666 Spanish, Danish and 

Italian SM cases with KITD816V mutations were recruited and compared against matching controls 

to replicate selected SNPs from stage 1. 

 

2.2 Materials and Methods 

2.2.1 Discovery and replication cohorts 

Careful ethnicity matching of cases and controls at the design stage of the GWAS was aimed at 

reducing the chance of heterogeneity both in the primary and in the replication study. Prior to 

quality control (QC), the stage 1 discovery cases consisted of 479 SM cases (hereafter referred to 

as SM-1). All of these patients had a somatic KITD816V mutation and were recruited from the UK 

(n=329) and Germany (n=150). At stage 2, 666 independent KITD816V replication patients were 

recruited from Spain (n=399), Denmark (n=185) and Italy (n=82). Participants provided informed 

consent for sampling according to the Declaration of Helsinki. All mastocytosis cases were adults 

diagnosed using standard procedures. The stage 1 discovery cohorts were recruited from two 

diagnostic laboratories (Wessex Regional Genetics Laboratory, UK and Munich Leukaemia 

Laboratory, Germany) based on (i) referral for investigation of mastocytosis and (ii) testing 

positive for KITD816V. A detailed breakdown of WHO-defined clinical subtypes and other clinical 

information was not available for these cases, but <10% were known to have advanced SM. 

Clinical subtypes were available for stage 2 cases whose diagnosis was simplified into two main 

disease groups, non-advanced and advanced. Non-advanced cases (MCAS=mast cell activation 

syndrome, CM=cutaneous mastocytosis, ISM=indolent systemic mastocytosis, SSM=smouldering 

systemic mastocytosis) have a good life expectancy and very few of them are likely to develop 

advanced disease. The advanced disease group is characterised by shorter life expectancy and a 

more severe phenotype. As described by the WHO classification, only three subtypes 

(ASM=aggressive systemic mastocytosis, SM-AHN= SM with an associated haematologic neoplasm 

and MCL=mast cell leukaemia) are included in the advanced disease group (Arber et al., 2016b). A 

breakdown by subtype for stage 2 cases is given in Table 2.1. Additional diagnostic and clinical 

variables were only available for the Spanish and Italian cohorts due to ethical limitations 

regarding consent. The study was approved by UK NRES Committee South West reference 

10/H0102/61; Germany: MLL cohort, BLAEK ethics commission, reference 05117; Spain: ethics 

committee of the University Hospital of Salamanca reference 2016/PI16/00642; Italy: local Ethics 
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Committee, March 12, 2019, protocol number 14560_OSS. The Danish SM study was performed 

in accordance with the Danish National Committee on Health Ethics. 

 

Table 2.1 Breakdown of stage 2 patients cohorts by disease subtype. 

  Non-advanced Advanced  
Cohort n MCAS CM ISM SSM ASM SM-AHN MCL N/A 

Spain 399 6 4 368 3 9 8 1 0 

Denmark 185 0 13 152 5 0 12 0 3 

Italy 82 2 0 64 4 8 1 1 2 
MCAS: mast cell activation syndrome; CM: cutaneous mastocytosis; ISM: indolent SM; SSM: smouldering 
SM; ASM: aggressive SM; SM-AHD: SM with associated haematologic neoplasm; MCL: mast cell leukaemia; 
N/A: Data not available 

2.2.2 Description of control cohorts 

For comparison, 5,200 UK controls from WTCCC2 and 4,397 German controls from KORA were 

used (Table 2.1). Both WTCC2 and KORA control cohorts comprised two separate studies. The 

WTCCC2 cohort consisted of participants from the 1958 British birth cohort (BBC, n=2,699) and 

participants from the National Blood Service (NBS, n=2,501) (Burton et al., 2007), while the KORA 

controls were KORA_A (n=1,938), representing a subset of follow-up F3 of the population-based 

survey KORA S3, and KORA_B (n=2,459) (Holle et al., 2005), representing an independent subset 

of KORA S3/F3. 

The stage 2 replication controls were obtained in collaboration with the Spanish National DNA 

Bank Carlos III (SNDNAB, n=1,062) (Bosch, 2004; Julià et al., 2013), a Danish study of ischaemic 

heart disease (Inter99, n=6,184) (Jørgensen et al., 2003; Pisinger et al., 2005) and the Italian 

Invecchiare in Chianti study (InCHIANTI, n=1,210) (Ferrucci et al., 2000; Tanaka et al., 2009). 

The Spanish individuals were all adults, gave informed consent and were determined to be 

healthy based on self-reported health status obtained from personal interviews. See 

http://www.bancoadn.org for further details. 

The Inter99 study is a randomised, non-pharmacological intervention study for the prevention of 

ischaemic heart disease (Husemoen et al., 2003; Jørgensen et al., 2003). In brief, more than 

13,000 individuals between 30 and 60 years of age and from 11 municipalities in the south-

western part of Copenhagen were randomly selected from the Danish Civil Registration System. 

Overall, baseline examinations were attended by 6,784 (52%) individuals and genotype 

information was available for 6,184 individuals. The Inter99 study was approved by the Scientific 

Ethics Committee of the Capital Region of Denmark (KA98155) and registered as a clinical trial 
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(ClinicalTrials.gov; ID-no: NCT00289237). The study protocols were in accordance with the 

Helsinki declaration and approved by the local ethical committees.  

The InCHIANTI study is a population-based epidemiological study aimed at evaluating the factors 

that influence mobility in the older population living in the Chianti region in Tuscany, Italy. The 

details of the study have been previously reported (Ferrucci et al., 2000). Briefly, 1616 residents 

were selected from the population registry of Greve in Chianti (a rural area: 11,709 residents with 

19.3% of the population greater than 65 years of age), and Bagno a Ripoli (Antella village near 

Florence; 4,704 inhabitants, with 20.3% greater than 65 years of age). The participation rate was 

90% (n=1453), and the subjects ranged between 21–102 years of age. The study protocol was 

approved by the Italian National Institute of Research and Care of Aging Institutional Review, the 

internal Review Board of the National Institute for Environmental Health Sciences (NIEHS) and by 

the Medstar Research Institute (Baltimore, MD). 

The number of samples that were recruited and used for analysis after QC (see 2.2.5 and 2.2.7) in 

the discovery and replication stages is shown in Table 2.3 and Table 2.6 respectively. An overview 

of the two-stage study design and sample numbers is shown in Figure 2.1. 

 

 

Figure 2.1 Two-stage study design. 

An overview of the two-stage case control study design and sample numbers, before QC, that 
were used to investigate inherited predisposition to SM. In the discovery stage, SM patients 
and healthy controls from the UK and Germany were tested for association using binary 
logistic regression. Evidence from these separate cohorts was combined using a fixed-effect 
meta-analysis. SNPs selected for replication were tested in three European cohorts (Spanish, 
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Danish and Italian) using binary logistic regression. Another fixed-effects meta-analysis was 
used to determine the final effect size and significance levels by combining evidence from the 
discovery (stage 1) and replication stage (stage 2). 

2.2.3 Genotyping 

DNA was extracted from peripheral blood or bone marrow. The stage 1 cases were genotyped for 

960,919 SNPs using Infinium OmniExpress exome chips (version 8_1.4_A1) and the Genome 

Studio software (GSGT Version 1.9.4) at the Clinical Research Facility in Edinburgh. These data are 

available on request from ArrayExpress (accession number E-MTAB-9358). The stage 2 cases 

(n=666) were genotyped for 92 SNPs, selected from the stage 1 analysis, using custom designed 

Kompetitive Allele Specific PCR (KASP) at LGC Genomics Limited (Hertfordshire, UK) (He et al., 

2014). Briefly, KASP is a fluorescence resonant energy transfer (FRET) PCR based assay. Genotypic 

data for the control cohorts were obtained from published studies (Bosch, 2004; Ferrucci et al., 

2000; Jørgensen et al., 2003; Julià et al., 2013; Pisinger et al., 2005; Tanaka et al., 2009). 

 

For the WTCCC2 stage 1 controls, the NBS and BBC subsets were separately genotyped using the 

Illumina 1.2M Duo chips platform and Illumina’s programme was used to call SNPs with a 

posterior probability >0.95 (Teo et al., 2007). The German controls from KORA_A (a subset of 

follow-up F3 of the population based survey KORA S3) were genotyped using Illumina human 

Omni chip (version 2.5-4v1_B) for 2,443,177. KORA_B controls (an independent subset of KORA 

S3/F3) were genotyped for 730,372 SNPs using Illumina human Omni express chips (version 

12v1_H) (Holle et al., 2005). 

 

Controls from SNDNAB, Inter99 and InCHIANTI were genotyped using Illumina Global Screening 

arrays, Illumina HumanOmniExpress-24 (versions 1.0A and 1.1A) and Illumina Infinium HumanHap 

550K SNP arrays which include 18, 90 and 45 of the SNPs selected for replication respectively. 

Genotypes for the remaining SNPs were determined by imputation (Appendix Table A.6). 

2.2.4 Imputation 

Imputation of the discovery cohorts was used to increase SNP density and enable fine mapping 

around significant loci. SNPs were imputed using the Sanger imputation server (McCarthy et al., 

2016) which used EAGLE2 for pre-phasing into the Haplotype Reference Consortium (HRC release 

1.1), and positional Burrows-Wheeler transform (PBWT) for imputation. Imputed genotypes were 

quality controlled by excluding SNPs with info score <0.80, posterior genotype probabilities less 
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than 0.99, minor allele frequency less than 1%, greater than 10% missing genotypes or extreme 

deviation from HWE (P-value ≤ 1x10-10). 

 

In the stage 2 control cohorts, genotypes for the remaining SNPs were determined by imputation. 

In brief, SNPs and/or samples were removed from SNDNAB due to a low call rate (<98%), 

significant deviation from HWE (P-value <0.0001), extreme heterozygosity (|F|>0.10) or evidence 

of second-degree relatedness (IBD>0.25). Genotypes for additional SNPs were obtained by 

imputation, which involved a two-step process. In the first step, the observed data were phased 

using SHAPEIT (version 2.r837). In the second step, the phased data were imputed using IMPUTE2 

(version 2.3.0) with default settings, an effective population size (-Ne) of 20,000 which is 

recommended for achieving high accuracy across all population groups and reference haplotypes 

from phase 3 of the 1,000 Genomes Project (Auton et al., 2015). Imputation was performed in 

5Mb chunks, as recommended, and then joined (Howie et al., 2009). Genotypes with an 

uncertainty greater than 0.1 were set to missing and the remainder were used as hard calls. SNPs 

with low imputation quality were excluded (INF0 score < 0.6).  

 

Genotyping and QC of the InCHIANTI study has previously been described (Tanaka et al., 2009). In 

brief, SNPs and/or samples were removed due to low call rate (<97%), HWE (P-value <10-4), 

heterozygosity (> 0.3), MAF (<1%) and sex mismatches, leaving 1,210 samples and 495,343 

autosomal SNPs that passed quality control. SNPs were imputed using the Michigan Imputation 

Server, HRC haplotype reference panel (HRC r1.1 2016) and SNPs with low quality score were 

removed (INFO ≤0.7).  

 

Genotyping and QC of the Inter99 study have previously been described (Graae et al., 2018). 

Individuals were genotyped using the Illumina HumanOmniExpress-24 SNP arrays (versions 

v1.0_A and v1.1_A) and the GenomeStudio software. QC filtering was applied before imputation, 

which involved selection of non-monomorphic SNPs, samples with a call rate ≥98%, and SNPs in 

HWE (P-value > 10-5). Additional SNP genotypes were imputed using Eagle for pre-phasing 

autosomal SNPs and imputed to the Haplotype Reference Consortia panel (HRC version r1.1) by 

following the standard protocol on the Michigan imputation server 

(https://imputationserver.sph.umich.edu/index.html) (Das et al., 2016). All variants included in 

this study were in HWE (p > 0.05) and had high imputation quality scores (INF0≥0.9). 
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2.2.5 Quality control of the stage 1 data 

Prior to analysis, the quality of the genotypic data was assessed and cleaned using standard QC 

procedures for GWAS (Anderson et al., 2010). Plink v1.90p was used to check genotype 

missingness (per sample and per SNP), MAF, HWE, sex mismatches, heterozygosity (Figure 2.3), 

cryptic relatedness, strand orientation and ancestry as detailed below (Chang et al., 2015). 

Duplicate markers are deliberately included in raw genotyping data to access the concordance 

rate of genotype calls for a specific array. Therefore, as an additional QC step, these duplicate 

SNPs were identified and removed prior to testing for association (Gogarten et al., 2012). Plink 

was used to merge datasets together and to flip those SNPs detected as not bi-allelic; this step 

ensures that strand orientation is concordant in each dataset. Strand assignment for palindromic 

SNPs (A/T-G/C) were checked and when necessary assigned to the correct strand using Genotype 

Harmonizer (GH) (Deelen et al., 2014). A manifest file for the Omni express exome chip (version 

8_1.4_A1), developed by Will Rayner (Wellcome Centre for Human Genetics, University of 

Oxford), was used to update strand orientation, genomic location, SNP name and chromosome in 

the SM-1 dataset (Rayner and Mccarthy, 2011). In the KORA datasets, the SNP name was updated 

using the Illumina rsID-conversion file which is specific for each genotyping platform (KORA_A rsID 

Conversion File; KORA_B rsID Conversion File). The number of SNPs and samples removed by 

these QC measures in the stage 1 data is shown in Table 2.3 and Table 2.4. 

2.2.5.1 Per-individual missingness 

QC of the stage 1 genotypes involved the removal of samples with a large proportion of missing 

genotypes, which indicates poorly genotyped samples possible due to low quality DNA. Since 

GWAS aims to associate SNPs with disease, removing one marker might have a greater effect on 

the study than removing one individual (Smith and Newton-Cheh, 2009). This approach maximises 

the number of SNPs in the study and avoids removal of markers due to a subset of poorly 

genotyped individuals. For this reason, the QC on individual missingness was performed before 

the per-marker QC. Individuals with missing genotypes for 10% or more SNPs were excluded from 

the analysis. The proportion of missing genotypes per individual was determined using Plink and 

plotted in R Studio to visualise the distribution. For the unimputed KORA dataset per individual call 

rate ≥97% was applied by the KORA-study Group (Holle et al., 2005). 

2.2.5.2 Per-SNP missingness 

SNP-specific missingness rate is used to detect and exclude poorly genotyped SNPs, which could 

reduce the possibility of identifying a real association with the disease phenotype (Anderson et 

al., 2010). After poorly genotyped individuals were removed, the per-marker missingness QC were 

carried out, and SNPs with missing genotypes greater than 10% were detected and removed using 
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Plink (Chang et al., 2015). For the unimputed KORA dataset per SNP call rate ≥98% was applied by 

the KORA-study Group (Holle et al., 2005). 

2.2.5.3 SNP minor allele frequency 

Rare SNPs (MAF < 5%) can frequently produce false positive results due to small sample size and 

sampling errors. In general, for case-control GWAS with modest sample size a MAF threshold of 

1–2% or higher in studies with smaller sample size is recommended (Anderson et al., 2010). In this 

step, SNPs with a MAF less than 5% were excluded both from cases and controls. 

2.2.5.4 Hardy–Weinberg equilibrium 

HWE states that there is a predictable relationship between allele and genotype frequencies 

under the assumptions of no mutation, random mating, no gene flow, infinite population size, and 

no selection. When these assumptions are met and case/control cohorts have been genotyped at 

the same time using the same genotyping array, SNPs with significant deviation from HWE (exact 

test P-value ≤0.001) in controls are indicative of genotyping error and should be removed from 

both cases and controls (Wigginton et al., 2005). However, since our cases and controls were 

genotyped separately, HWE was assessed separately in cases and controls. SNPs were excluded if 

they had modest deviation from HWE in controls (P-value <0.001) or extreme deviation in cases (P-

value ≤1x10-10) which most likely reflects poor genotyping rather than disease association 

(Marees et al., 2018; Turner et al., 2011). A higher P-value threshold was used in cases because 

modest deviations from HWE might occur due to association with the disease while extreme 

deviations are most likely due to genotyping error (Affymetrix, 2011; Hammerschlag et al., 2017; 

Tapper et al., 2015). For the unimputed KORA dataset, HWE P-value < 1x10-10 filter was initially 

applied by the KORA-study Group (Holle et al., 2005). 

2.2.5.5 Sex check 

As a crude check of sample provenance and quality, and to avoid sex inconsistencies that could 

arise from data handling issues, the genotypic data was used to infer sex. Samples were removed if 

the inferred and reported sex were discordant. To infer sex the X chromosome homozygosity rate 

was calculated for each individual using Plink and plotted in R Studio to visualise the distribution 

(Chang et al., 2015). Male calls were made if the X-chromosome homozygosity was greater than 

0.8 and female calls were made if it was below 0.2 (Figure 2.4). Individuals with discordant 

reported and inferred sex were removed (Anderson et al., 2010). Although males have one copy 

of the X chromosome they are not expected to have 100% homozygosity due to the 

pseudoautosomal regions (PARs). PARs are terminal regions of homology between chromosomes X 
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and Y which act like autosomes in the sense that they can recombine and contain both 

heterozygous and homozygous variants (Strachan and Read, 2011). 

2.2.5.6 Sample heterozygosity 

Another important QC step is to assess the evidence for DNA sample contamination or potential 

consanguinity using per sample heterozygosity. Excess heterozygosity is suggestive of DNA 

contamination or recent admixture, whereas deficiencies may indicate failed hybridisation, large 

chromosomal deletions or inbreeding. To identify samples with outlying levels of heterozygosity 

the autosomal heterozygosity rate (het_rate) per sample was calculated using the following 

formulae in Plink: het_rate=[N_HOM-N_NM]/N_NM), where N_HOM is the number of 

homozygous genotypes and N_NM is the total number of non-missing genotypes per sample. The 

heterozygosity rate for all samples versus the proportion of missing genotypes was plotted in R 

studio to visualise the distribution, and samples with mean heterozygosity values ±3 standard 

deviations (SD) from the mean were excluded (Figure 2.3). 

2.2.5.7 Approaches for data merging and strand orientation check 

To carry out further QC, the case control datasets were merged despite significant challenges due 

to them being genotyped by different facilities using different SNP arrays. The issues involved in 

merging such datasets were highlighted by the electronic Medical Records and Genomics 

(eMERGE-I) Research Network which include: mismatched genotyping (strand forward or reverse 

orientation), the use of different SNP names and locations and errors introduced by the merging 

procedure, which have the potential of creating significant array or batch effects (Zuvich et al., 2011). 

Additional QC checkpoints were therefore used to address these issues. Firstly, SNP names and 

locations were updated in the SM-1 cohort using curated strand files for the respective SNP arrays 

that were downloaded from the McCarthy Group (Rayner and Mccarthy, 2011). To update the 

SNP name in KORA controls, an rsID-conversion file was downloaded from the Illumina website 

and used to convert the Illumina identifiers (kgp) to the corresponding rsID (KORA_A rsID 

Conversion File; KORA_B rsID Conversion File). After updating the SNP names and location, the 

case and controls datasets were merged using Plink and any mismatched strands for non AT/GC 

were detected as triallelic SNPs. The genotyping strand for these SNPs were corrected using the 

flip option in Plink or removed if unresolved (Chang et al., 2015). Despite these updates, SNPs 

with the same location but different names may still be identified when merging. To correct these 

‘same position’ warnings, SNPs with the same location and alleles were combined using the ‘--

merge-equal-pos’ option in Plink. 
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2.2.5.8 Relatedness 

Bias could be introduced if duplicates or related individuals are tested for association, as their 

genotype may be over-represented and the allele frequencies would not reflect the real 

population frequencies. If during recruitment of cases and controls some related individuals were 

inadvertently collected, checking for evidence of relatedness between samples is a standard QC 

procedure to ensure that duplicates, sample mix-ups, and related samples (first and second-

degree relatives) are removed from the analysis. Pairwise values of genome-wide average identity 

by state (IBS), which describe the number of shared alleles between a pair of individuals, were 

therefore used to check for evidence of relatedness. To calculate IBS a set of autosomal SNPs in LD 

were selected using LD-based SNP pruning in Plink (Figure 2.2). SNPs in LD were selected using a 

maximum pairwise genotypic correlation (r2 <0.5) within a window size of 50kb that was shifted in 

steps of 5 SNPs across the genome (Chang et al., 2015). SNPs in linkage equilibrium with a 

maximum pairwise genotypic correlation (r2 threshold <0.5) were selected. SNPs selected after 

pruning were used to calculate genome-wide average IBS between each pair of individuals that 

passed QC. For sample pairs with evidence of relatedness (IBS >=0.86) the sample with the lowest 

genotyping rate for all SNPs passing QC was excluded (Burton et al., 2007). 
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Figure 2.2 Method to select independent SNPs for IBS metrics and multidimensional scaling. 

The flow diagram outlines all the steps performed to select autosomal SNPs in linkage 
equilibrium. The list of SNPs that are shared between all the datasets are listed and extracted 
in all datasets. The autosomal markers remaining after one round of LD-based SNP pruning (--
indep-pairwise 50 5 0.5) were extracted from the merged dataset and used to calculate the 
pairwise IBS. Palindromic A/T and G/C SNPs were removed from the Hapmap data to facilitate 
combining these samples with the cases and controls. 

 

2.2.5.9 Population stratification 

In order to examine population stratification, infer ancestry and to check if the cases and controls 

form a homogeneous population, a multi-dimensional scaling analysis was performed using Plink. 

All merged datasets were combined with genotype data from the HapMap study that had already 

been quality controlled. The HapMap samples are from three reference populations consisting of 

55 samples with ancestry from northern and  western Europe (CEU) from the Centre d’Etude du 

Polymorphisme Humain (CEPH), 43 Han Chinese samples from Beijing, China (CHB) and 55 

Yoruban samples from Ibadan, Nigeria (YRI). For analysis, a subset of uncorrelated markers (SNPs 

not in LD) were selected by LD pruning (Figure 2.2) and used to calculate a matrix of IBS values 

between all pairs of individuals. These pairwise IBS values were used as the input for multi-

dimensional scaling analysis which generated five principal components. To examine the results 

and infer ethnicity, R Studio was used to make a scatter plot from the first two principal 
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components (C1 and C2; Figure 2.5). Samples with outlying values for C1 (±3 SD from the mean for 

stage 1 cases and controls and HapMap CEU) were considered ancestry outliers and excluded 

from further analysis. 

2.2.6 Preliminary analysis of the stage 1 data 

At this point of the QC, a preliminary case versus control analysis of the stage 1 data was 

performed and summarised using a quantile-quantile plot to determine if the test statistic was 

inflated and whether this could be related to problems with the merging process such as 

unresolved strand issues at AT/GC SNPs. After this test, the GH software was used to detect 

strand issues at AT/GC SNPs in the pre-merged controls based on differential LD patterns in 

comparison with the cases (Deelen et al., 2014). Strand mismatches were called by GH when the 

number of negative SNP correlations exceeded positive ones and these SNPs were then flipped in 

the control dataset using Plink. SNPs failing alignment were removed. Unknown strand 

assignment can also be addressed by comparing the MAF between datasets (Deelen et al., 2014). 

For further evaluation, the MAF difference between cases and controls was checked for AT/GC 

SNPs and SNPs with MAF difference greater than 0.34 were removed (Table 2.5). After correcting 

these mismatched AT/GC SNPs, the merging and preliminary case controls analysis were 

repeated. 

2.2.7 Quality control of the stage 2 data 

The same QC measures described in stage 1 were applied to the stage 2 cases, with the 

exceptions that per sample QC measures for heterozygosity, sex-mismatch, cryptic relatedness 

and non-Caucasian ancestry were not performed due to the small number of SNPs genotyped. In 

cases, QC was performed at the marker level only using per locus missingness whereby SNPs with 

greater than 10% missing genotypes were excluded (see 2.2.5.2) and SNPs with extreme deviation 

from HWE (p<1×10-10) were excluded (see 2.2.5.4). QC and imputation of the stage 2 controls has 

previously been described (Ferrucci et al., 2000; Jørgensen et al., 2003; Julià et al., 2013; Pisinger 

et al., 2005; Tanaka et al., 2009). The control datasets were obtained from a previous GWAS in 

collaboration with the SNDNAB, INCHIANTI and the University of Copenhagen who had performed 

their own QC and imputation (see 2.2.4). These data were further scrutinised using per locus 

missingness and HWE, and the number of samples and SNPs removed from the stage 2 data by 

these QC measures are shown in Table 2.6 and Table 2.7. 
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2.2.8 Statistical analysis 

2.2.8.1 Genetic power calculation 

The power to detect SNPs associated with SM was estimated using the Genetic Power Calculator 

(GPC) (Purcell et al., 2003) with the following parameters and assumptions. The sample size was 

determined by the number of cases and controls that passed QC both in stage 1 and stage 2. 

Although the incidence of SM is estimated to be approximately 1–9 in 100,000 (Coltoff and 

Mascarenhas, 2019) a minimum value of 1 in 10,000 had to be used. The controls were labelled as 

unselected as they had not been screened to confirm the absence of disease. To account for 

possibility of misclassified controls the power calculation assumed that a proportion of controls 

equal to the incidence may be misclassified. The genotyped SNPs were assumed to act via a 

multiplicative disease model and to be in linkage disequilibrium (D’= 1) with the causal variant. A 

range of minor allele frequencies (0.05, 0.1, 0.2, 0.3, 0.4) and effect sizes (1.1 ≤ OR ≤ 2 in 0.1 

increments) were then used to estimate the power to detect genetic effects at a genome-wide 

level of significance (P-value ≤5×10-8) (Figure 2.14). 

2.2.8.2 Logistic regression model of association 

After QC, the stage 1 data were tested for disease trait SNP association using binary logistic 

regression in Plink. Samples from the UK and Germany were tested as two separate populations, 

and samples with evidence of non-Caucasian ancestry were excluded rather than adjusting the 

association analysis for population stratification. A fixed-effects inverse variance-weighted meta-

analysis was then used in Plink to combine evidence from the stage 1 cohorts (UK and Germany) 

and to determine the final effect sizes and significance levels by combining evidence across stages 

1 and 2. To examine the effect of this decision, the ancestry outliers were retained, and the stage 

1 analyses were repeated. In this second analysis, the first two principal components from the 

multi-dimensional scaling analysis were used as covariates in the logistic regression to account for 

the effect of population stratification (see 2.2.5.9, Figure 2.13 and Table 2.9). 

To ensure that the separate and pooled analyses generated results that relate to the same risk 

allele, a file containing the minor allele in the pooled data was used to specify the risk allele in 

both the pooled and separate analyses. Results for SNPs that were only genotyped in one control 

population were obtained from the initial analysis, as a minimum of two cohorts are needed for 

meta-analysis. To examine the effectiveness of the QC measures and assess evidence for any 

systematic biases, the GWAS results from the stage 1 analysis of the UK and German cohorts and 

the stage 1 meta-analysis were visualised and interpreted using quantile-quantile plots (QQ plots) 

(Figure 2.7) and a Manhattan plot (Figure 2.8). The QQ plots were generated using a custom R 

script, and the qqman R Studio package was used to construct the Manhattan plot (Turner, 2018). 
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Results from the final meta-analysis of stages 1 and 2 were displayed in a forest plot using Stata 

(Figure 2.12). The FUMA software was used to generate regional plots of the stage 1 association 

results obtained with the imputed data (Watanabe et al., 2017). Heterogeneity of results in the 

meta-analysis was examined through the c2-based Cochrane’s Q and I2 statistics, which describe 

the percentage of variation across studies that is due to heterogeneity rather than chance. 

2.2.8.3 Conditional analysis 

Several TERT SNPs have been identified as risk factors for the development of haematological 

malignancies, including MPN (Tapper et al., 2015), as well as some solid tumours (Hung et al., 

2019; Rafnar et al., 2009). Putative secondary signals were evaluated in Plink by performing 

conditional analysis on the index variant in the TERT locus. (Chang et al., 2015). 

2.2.9 Clumping 

To minimise false positives and the potential for overlooking signals with compelling functional 

evidence but modest significance, the following method was used to select SNPs for follow-up at 

stage 2. A clumping procedure was used to shortlist SNPs for follow-up at stage 2 using Plink 

software (Chang et al., 2015). For this analysis, results from the meta-analysis were used unless 

the SNP had been tested in one population only. Meta-analysis was prioritised since it favours 

SNPs that are significant in both populations, which reduces potential false positives and increases 

the likelihood of replication. The clumping procedure was used to identify clusters of correlated 

SNPs that contained at least one SNP with a P-value < 0.001 (P1). The most significant SNP within 

a clump is hereafter referred to as an index SNP. Clumps were formed by identifying all other 

SNPs in LD (r2≥0.5) and within 500kb from an index SNP. A greedy algorithm was used to construct 

these clumps so that each SNP could only appear in a single clump. Finally, index SNPs were only 

shortlisted for follow-up if the clump included at least one other correlated SNP with a P-value 

less than 0.01 (P2). This procedure ensured that only the most significant independent loci (index 

SNP with P<0.001) with supporting evidence from at least one correlated SNP (r2≥0.5, kb <500kb 

and P<0.01) were considered for follow-up at stage 2. This strategy and the parameters used are 

similar to those applied by previous studies (Chang et al., 2015; Tapper et al., 2015) and the 

default settings were used in Plink (Table 2.2). In relation to the default values, the P-value for 

selecting index SNPs was raised to 0.001 to account for the fairly modest sample sizes at stage 1, 

which limit study power. The distance between correlated SNPs was increased to 500 kb to 

accommodate long range LD and limit the number of shortlisted SNPs in close proximity to each 

other. 
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Table 2.2 Clumping parameters in Plink. 

 

 P1 P2 r2 Kb 
Default parameters 0.0001 0.01 0.5 250 
Applied parameters 0.001 Default Default 500 
The table shows the parameters used to determine the level of clumping: P1 = P-value threshold for the 
index SNPs; P2 = P-value threshold for the SNPs in the clumps; r2 = LD threshold for clumping; Kb is the 
physical distance in kilobases from the index SNP for clumping. The first row shows the parameters applied 
in Plink by default, the second row shows the parameters applied to determine clumps for the GWAS 
analysis. 

2.2.10 Functional annotation and criteria for SNP selection 

Following the clumping procedure, gene-based annotation of all the index SNPs eligible for 

replication was performed using ANNOVAR (Wang et al., 2010). The list of the nearest genes was 

submitted to GeneAlaCart, a tool that extracts information from the GeneCards database to 

generate a spreadsheet containing all the functional annotations associated with the list of genes 

(Stelzer et al., 2011). Genes were retained if their biological function from GeneAlacart was 

related to kinase activity (Receptor Tyrosine Kinase (RTK) or KIT), haematopoiesis, myeloid 

leukaemia, or myeloproliferative or MC conditions such as mastocytosis (Appendix Table A.2). To 

minimise false positives and the potential for overlooking signals with compelling functional 

evidence but modest significance, the following method was used to select 92 index SNPs for 

follow-up at stage 2. First index SNPs that according to annotation from GeneAlacart (Stelzer et 

al., 2011) were located within or adjacent to a gene with functional relevance were given priority. 

The number of selected SNPs was then infilled to 82 by selecting the remaining most significant 

index SNPs. To add support and to guard against failed or problematic genotyping, additional 

SNPs were selected as backups for each of the most promising index SNPs in terms of either their 

biological relevance, individual significance or level of support from correlated SNPs. 

2.2.11 Identification of clonal mosaicism using BAF segmentation 

DNA from SM patients was extracted from peripheral blood leukocytes, which are expected to 

consist of a mixture of clonal and non-clonal cells. To assess the frequency of somatic changes, 

which could affect the association analysis, BAF segmentation was therefore used to analyse all of 

the stage 1 cases and to identify genomic regions of AI that were subsequently categorised as 

either aUPD, copy number gains or losses using a separate script. Since this analysis requires 

genome-wide data, BAF segmentation was only applied to the SM patients from stage 1 (n=479) 

(Staaf et al., 2008).  
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Briefly, to identify AI regions using BAF segmentation, non-informative markers with BAF less than 

0.1 or greater than 0.9 were excluded and the remaining BAF values were mirrored at 0.5 to give 

mirrored BAF values (mBAF). The data were further cleaned using triplet filtering to remove SNPs 

where the absolute difference between preceding or succeeding SNPs was greater than 0.6. 

Finally, circular binary segmentation (CBS) was used to identify regions with similar mBAF values 

that were classified as a region of AI if the mean mBAF value was greater than 0.56.  

 

A custom script was then used to categorise the AI regions as likely aUPD if the region was greater 

than 2Mb in length, extended to the telomere and had a neutral copy number (LRR between 

−0.15 to 0.065) (68). AI regions greater than 2Mb were classified as a copy number gains if LRR 

was greater than 0.073 or loss if LRR was less than −0.14 (Staaf et al., 2008). An automated 

method was used to extract regions of AI involving KIT (hg19 chr4:55,524,095 – 55,606,881). 

Acquired UPDs tend to be greater than 1Mb in size and extend to the telomere, and we used a 

custom program to identify telomeric AI regions. There are numerous interstitial regions of AI 

which may be interesting if they overlap in multiple samples. Furthermore, these regions may 

help to narrow down large candidate regions of aUPD that extend to the telomere. After 

identifying telomeric AI regions, an automated method was used to detect internal AI regions 

greater than 3Mb from regions that passed QC. To identify minimal recurrent regions, internal AI 

regions were converted to bed files and intersected using bedtools. AI regions overlapping in 3 or 

more samples were selected and added to the ideogram used to examine and visualise the 

regions of AI. In the scatterplot (Figure 2.9), per sample metrics for the total number of AI regions 

and percentage of the autosome consisting of AI regions were used to make a scatter plot and to 

identify any sample outliers. To calculate the autosomal AI percentage, the length of the 

autosome was defined by the Illumina Infinium OmniExpress exome chip that was used to 

genotype the SM cases which came to 2.792GB (Appendix Table A.4). In the ideogram (Figure 

2.11), regions of aUPD were plotted on a chromosome ideogram to identify recurrent regions. 

2.2.12 Replication and final meta-analysis 

The replication data included 666 SM patients from Spain, Denmark and Italy and 8,456 controls 

(Figure 2.1). Logistic regression, as described in Section 2.2.8.2, was used to test the SNPs that 

were selected for replication and passed QC. To determine the final significance and effect size, a 

fixed effects meta-analysis was used to combine the evidence from stages 1 and 2. Regional plots 
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of the stage 1 imputed data were generated using FUMA (Watanabe et al., 2017) to investigate 

the candidate region surrounding SNPs that reached genome-wide significance in the final meta-

analysis. 

 

2.3 Results 

2.3.1 Quality control of cases at stage 1 

Following QC, a total of 39 patients (Table 2.3) were removed from the SM-1 cohort due to these 

samples having either more than 10% missing genotypes (n=19, Figure 2.3), mismatches between 

inferred and reported gender (n=2, Figure 2.4), autosomal heterozygosity exceeding +/- 3SD from 

the mean (n=9, Figure 2.3) or evidence of cryptic relatedness (IBS>=0.86, n=9 UK). Before 

performing the heterozygosity check, 1,699 non-autosomes (X, Y, mitochondrial chromosomes 

and pseudo-autosomal region of X) were removed. Both mean (0.29) and SD (0.0056) calculations 

were based on 743,882 autosomal variants scanned in Plink. Sex was inferred using X-

chromosome homozygosity and two samples with a mismatch between the inferred and reported sex 

were removed. For subsequent analyses, inferred sex was used for samples where the reported sex 

was unknown (n=9). 

 

At the marker level, a total of 368,912 SNPs were removed from the SM-1 dataset during QC (Table 

2.4). These SNPs include those with more than 10% missing genotypes (n=1,725); MAF less than 

0.05 (n=340,313), extreme deviation from HWE (p<1×10-10, n=240), duplicate markers (n=14,939), 

not bi-allelic SNPs (n=4) and SNPs failing genotyping (n=3). After these QC measures were applied, 

592,007 SNPs (449,874 in the UK and 583,528 in the German cohort) and 414 cases remained for 

further analysis (Table 2.3). 
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Figure 2.3 Quality control for autosomal heterozygosity and per sample missingness.  

Horizontal dashed lines indicate the thresholds used to identify samples with outlying levels 
of heterozygosity in the stage 1 SM patients (±3 SD from the mean). Vertical dashed lines 
show the threshold used to remove samples with more than 10% missing genotypes. A. SM-1 
patients from the UK and German cohorts. The upper dashed line corresponds to 0.30 (het 
mean +3SD), the lower one corresponds to 0.27 (het mean −3SD). B. Healthy controls from 
the WTCCC2 cohort. The upper dashed line corresponds to 0.34 (het mean +3SD), the lower 
red line corresponds to 0.33 (het mean −3SD). C. Healthy controls from the KORA_A cohort. 
The upper dashed line corresponds to 0.24 (het mean +3SD), the lower red line corresponds 
to 0.23 (het mean −3SD). D. Healthy controls from the KORA_B cohort. The upper dashed line 
corresponds to 0.24 (het mean +3SD), the lower red line corresponds to 0.23 (het mean 
−3SD). 
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Figure 2.4 Sex inference based on X chromosome homozygosity. 

The expected homozygous rates are greater than 0.8 for males and less than 0.2 for females 
(Anderson et al., 2010). Samples highlighted in light blue were removed because the inferred 
and reported sex were not concordant. A. In the SM-1 cohort 2 samples were removed.  
B. No discordance between reported and inferred sex was identified in the healthy controls 
from the WTCCC2 cohort. C. KORA_A: Two samples with X chromosome homozygosity rate 
between 0.8 and 0.2 were removed; D. KORA_B: Sex inconsistency was identified in two 
samples and these were removed. 

 

2.3.2 Quality control in control datasets at stage 1 

Although QC had already been applied to the genotypic data for controls from the WTCCC2 and 

KORA cohorts, they were tested again using our own QC thresholds. The second round of QC 

removed 84 individuals (Table 2.3) due to autosomal heterozygosity exceeding +/- 3SD from the 

mean (n=23 WTCCC2, n=17 KORA_A, n=38 KORA_B; Figure 2.3), evidence of relatedness 

(IBS>=0.86, n=1 WTCCC2, n=1 KORA_A) or mismatches between inferred and reported gender 

(n=2 KORA_A, n=2 KORA_B; Figure 2.4). To perform the heterozygosity check, non-autosome SNPs 

(X chromosome, Y chromosome, pseudo-autosomal region of X, mitochondrial chromosome) 

were removed (WTCCC2=40,355, KORA_A=49,888, KORA_B=16,833). Both mean (WTCC2=0.33, 

KORA_A=0.23, KORA_B=0.31) and SD (WTCCC2=0.0021, KORA_A=0.0015, KORA_B=0.0022) 

calculations were based on autosomal variants (WTCCC2=887,903, KORA_A=1,846,164, 

KORA_B=656,562) scanned in Plink. 
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At the marker level, a total of 504,270 SNPs were removed from WTCCC, 1,813,477 in KORA_A 

and 155,872 in KORA_B following specific exclusion filters (Table 2.4). 

 

Table 2.3 Sample sizes before and after quality control in stage 1. 

 Stage 1 cases Stage 1 controls 

Quality control measure UK Germany WTCCC KORA A KORA B 

Total samples pre-QC 329 150 5200 1938 2459 

≥10% missing genotypes 18 1 0 0 0 

Patients with outlying heterozygosity 3SD 5 4 23 17 38 

Patients with gender mismatch 2 0 0 2 2 

Patients with relatedness 9 0 1 1 0 

Ancestry outliers 21 5 0 5 4 

Samples remaining 274 140 5176 4328 

After sample QC, 414 cases remained at stage 1. The 26 ancestry outliers were retained when the stage 1 
analyses were repeated with adjustment for population stratification. QC: quality control, SD: standard 
deviation. 

 

Table 2.4 SNP number before and after quality control in stage 1. 

 Stage 1 cases Stage 1 controls 
Quality control measure UK Germany WTCCC KORA A KORA B 
Total observed SNPs pre-QC 960919 954144 2380310 721694 
SNPs failed genotyping 3 0 0 0 
SNPs with ≥10% missing genotypes 1725 24263 29469 19016 
SNPs with MAF ≤ 5% 340313 71631 1085092 120853 
SNPs failing HWE* 240 3598 2376 1250 
Not bi-allelic SNPs 4 3 4 0 
Unknown strand 0 372 439 291 
Duplicates/triplicates 14939 2 4378 1 
MAF difference >0.34  0 7 1 1 
Not in cases and controls 153821 20167 404394 691718 14460 
Total observed SNPs passing QC 449874 583528 449874 583528 
Imputed SNPs with info score >0.8 and 
MAF>0.01 

7397922 7253056 7397922 7253056 

HWE* 200212 195134 200212 195134 
Duplicates 5816 5396 5816 5396 
Total imputed and observed SNP 
remaining 

7191894 7052526 7191894 7052526 

In total 592,007 SNPs were tested at stage 1. Of these, 441,395 were tested in both the UK and Germany 
cohorts, 8,479 were tested in the UK only, and 142,133 were tested in the German cohort only. QC: quality 
control, MAF: minor allele frequency, HWE: Hardy-Weinberg equilibrium. *HWE P-value <1×10-10 in cases, 
P-value <0.001 in controls. 
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2.3.3 Merging of cases and controls  

To aid merging a strand file for the Illumina Infinium OmniExpress exome chip was downloaded 

from Will Rayner’s website (https://www.well.ox.ac.uk/~wrayner/strand/) and used to update the 

chromosome and genomic locations for 603,592 SNPs and to flip the genotyping strand for 

301,568 SNPs. An rsID conversion file was also downloaded and used to update 603,319 SNP 

names. Following these measures, the cases and controls were merged and any non AT-GC SNPs 

that generated two or more alleles were detected and flipped (n=707 in WTCCC2, n=163 in 

KORA_A, n=171 in KORA_B). During merging, SNPs with ‘same position’ warnings were detected 

in KORA_A (n=1,273) and KORA_B (n=10) and resolved using the ‘--merge-equal-pos’ option in 

Plink. 

2.3.4 Relatedness and population stratification 

Multidimensional scaling analysis was performed to assess the evidence for population 

substructure, which can generate false positive and false negative results. For this analysis the 440 

stage 1 patients, 9,513 controls (n=5,176 WTCCC2, n=4337 KORA) that passed QC were used, and 

153 individuals from HapMap (n=55 CEU, n=43 CHB, n=55 YRI). A total of 331,793 SNPs present in 

each dataset were extracted from the merged dataset, and 150,381 variants were removed using 

LD-based SNP pruning (Figure 2.2). Pairwise measures of IBS were then determined using 181,411 

autosomal SNPs in linkage equilibrium. Based on these IBS measures, during QC we removed 11 

samples (cases=9, controls=2) with evidence for cryptic relatedness (IBS>0.86) (Table 2.3). A 

multidimensional scaling analysis was also performed using the pairwise measures of IBS. When 

plotting the first and second components from multidimensional scaling, most cases and controls 

formed a single cluster overlapping with the Caucasian reference population from HapMap 

(Figure 2.5 A). The close ancestral relationship between most cases and controls suggests they 

have European ancestry and are suitable for comparison. However, there was evidence of non-

Caucasian ancestry in 26 cases (21 UK, 5 German) and 9 KORA controls. The mean of the C1 values 

of the European groups (WTCCC2, KORA, SM-1, CEU) was calculated and samples with ±3 SD 

(0.0023) or more from the mean (0.0013) were considered ancestry outliers in further analysis. 
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Figure 2.5 Multidimensional scaling plots. 

Multidimensional scaling plot generated by plotting the first two components (C1 and C2).  
A. SM patients from the UK (pink circles) and Germany (dark blue circles), KORA controls 
(KORA_A turquoise, KORA_B brown) and WTCCC2 controls (orange), reference populations 
from HapMap for Utah residents with Northern and Western European ancestry (CEU, red 
circles), Yoruban individuals from Ibadan, Nigeria (YRI, blue circles), Han Chinese in Beijing, 
China (dark green circles). Samples with outlying values for C1 (±3 SD from the mean for stage 
1 cases and controls and HapMap CEU) were considered ancestry outliers and excluded from 
further analysis (light green circles). B. The MDS plot is showing C1 and C2 components for 
patients (pink and dark blue circles) and controls (turquoise, brown and orange circles). 
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Multidimensional scaling analysis was again performed on the study cohorts only (stage-1 

cases=440, controls=9,513) to assess substructure of Caucasian population, the reference 

populations from HapMap were excluded from the analysis. A total of 151,907 SNPs were 

removed after LD-based SNP pruning and the remaining genotype data (n=180,332 SNPs) were 

used to calculate a genome-wide pairwise IBS distance matrix and to perform the 

multidimensional scaling analysis. As shown in Figure 2.5 B, one major cluster was identified. This 

shows that the small population substructure in this study should not have appreciable effect on 

the final results. It is worth noting that WTCCC2 controls are shifted slightly to the right with 

limited overlap with the UK cases; also, the overlap between German cases and controls suggests 

some point of difference between UK cases and controls, which can be due to several factors, 

such as residual QC issue or different genotyping chips. 

 

2.3.5 Preliminary analysis of the stage 1 data  

To assess the merging process, a preliminary analysis of the stage 1 data was performed as a 

pooled analysis that tested the UK and German cohorts as a single European cohort. Logistic 

regression was used to compare the pooled set of cases (n=440) and controls (n=9,513) for all the 

SNPs that passed the initial QC. For this analysis, the ancestry outliers were retained and the first 

five principal components from the multi-dimensional scaling were used to correct for population 

stratification, and a QQ plot was used to inspect the results. Although the QQ plot showed no 

evidence for systematic biases between the cases and controls (genomic inflation factor λ=0.96) 

there were 174 SNPs (Appendix Table A.1) that reached genome-wide significance (P-value < 

5×10-8), which is more than expected given the modest sample size and estimated study power 

(Figure 2.14). To investigate further, these significant SNPs were stratified by their alleles, which 

showed that 77% had palindromic alleles, either AT/TA (20.1%) or GC/CG (56.9%). This is more 

than expected given the proportion of AT/GC SNPs that were tested (Figure 2.6), and suggests 

that unresolved strand issues at palindromic SNPs may account for the excess of significant SNPs. 

Following this observation, the GH program was used to assess the evidence for strand 

mismatches at AT/GC SNPs by comparing the LD pattern between cases and controls (Deelen et 

al., 2014). This analysis identified 853 palindromic AT/GC SNPs with potential strand issues (n=687 

in WTCCC2, n=159 in KORA_A, n=7 in KORA_B) that were flipped using Plink (Table 2.4). Strand 

assignments could not be resolved for 1,102 AT/GC SNPs (n=372 in WTCCC2, n=439 in KORA_A, 

n=291 in KORA_B) because of a lack of SNPs that are in LD in the surrounding area, and so these 

ambiguous SNPs were removed (Table 2.4). AT/GC SNPs were evaluated further, SNPs with MAF 
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difference > 0.34 between cases versus controls were identified as outliers and removed from 

further analysis (Table 2.4 and Table 2.5). 

 

Table 2.5 SNPs with highest MAF differences between case and control datasets. 

CHR SNP  BP MAF_A MAF_U MAF difference A1 A2 Ctrl Dataset 

6 rs6553229 153316274 0.1036 0.8934 0.7898 G C WTCCC2 

6 rs6553229 153316274 0.1036 0.9049 0.8013 G C KORA_A 

6 rs6553229 153316274 0.1036 0.90257 0.79897 G C KORA_B 

13 rs10507391 31312097 0.3244 0.674 0.3496 A T WTCCC2 

23 rs28861531 1374728 0.1127 0.8682 0.7555 G C WTCCC2 

23 rs17881232 1464821 0.255 0.7248 0.4698 C G WTCCC2 

23 rs17808080 2591888 0.1824 0.7715 0.5891 T A WTCCC2 

23  rs731477  155228954 0.1167 0.8792 0.7625 G C WTCCC2 

23 rs731478 155229100 0.1183 0.8789 0.7606 G C WTCCC2 
CHR: chromosome; SNP: SNP identifier; BP: base pair; MAF_A: minor allele frequency in affected 
individuals; MAF_U: minor allele frequency in unaffected individuals; A1: alternative or minor allele; A2: 
reference allele. 

 

After processing the AT/GC SNPs, the preliminary analysis was repeated and resulted in only one 

SNP with genome-wide significance. The significance threshold was therefore reduced to P-value 

<10-4 and the SNPs reaching this level of significance were stratified by their alleles. This showed 

that the proportion of significant SNPs by allele were similar to those in the total tested, 

suggesting that the strand issues have been resolved.  
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 Figure 2.6 
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2.3.6 Logistic Regression 

In the preliminary analysis, logistic regression was used to compare all of the cases (n=440) and 

controls (n=9,513) and test all the SNPs that passed QC. In this analysis the first five principal 

components from the multidimensional scaling analysis were used as covariates to correct for 

population stratification.  

 

After quality control of the stage 1 data and after resolving the residual strand issues for AT/GC 

SNPs, binary logistic regression was used to test the stage 1 data as two separate populations 

from the UK and Germany. In this analysis, 35 ancestry outliers were removed (UK = 21, German = 

5, KORA = 9) before testing the UK (274 cases versus 5176 controls) and German (140 cases versus 

4328) populations (Table 2.3). A fixed effects meta-analysis was then used to combine summary 

statistics from the separate analyses of the UK and German cohorts. Results from the meta-

analysis are available at LocusZoom (http://locuszoom.org/) under “Mastocytosis GWAS” (Pruim 

et al., 2011). 

 

At stage 1, a total of 592,007 SNPs were tested for association with KITD816V positive mastocytosis. 

Of these, 441,395 were tested in both the UK and Germany. An additional 150,703 SNPs were not 

genotyped in both control populations and could not be combined by the meta-analysis, which 

needs a minimum of two cohorts.  Of these SNPs 8,479 were tested in the UK only, and 142,133 

were tested in the German cohort only (Table 2.4). The quantile-quantile (QQ) plots for each 

analysis and their low genomic inflation factors (λ ≤1.038) demonstrate a close agreement with 

the null hypothesis up to the tail of the distribution, where SNPs with P-values less than 10-4 

become more significant than expected by chance alone (Figure 2.7). 
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Figure 2.7 QQ plots of P-values from the stage 1 analyses. 
The QQ plots of the observed versus expected P-values when testing the association with SM 
at stage 1 for separate analysis of the UK (A) and German (B) cohorts and meta-analysis (C). 
The black diagonal indicates expected QQ plot under null hypothesis when no SNPs are 
associated with SM. The area between the curved lines represents the 95% confidence interval 
(CI) of the expected P-values on the plot. The −log P-values are mostly within the 95% CI until 
SNPs with P-values <10-4 start deviating from the levels of significance that are expected by 
chance alone (C). The −log P-values of UK (A) and German (B) analysis are mostly within the 
95% CI. 

 

A Manhattan plot summarising the results of the stage 1 meta-analysis is shown in Figure 2.8. A 

total of 18 SNPs were identified with the less stringent threshold of suggestive significance (P-

value < 1×10-5). The Manhattan plots showed that there were several peaks of significant SNPs 

with support from nearby SNPs, most notably on chromosomes 2, 3, 4 and 11. However, only one 

SNP, on chromosome X, surpassed the genome-wide level of significance. 
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Figure 2.8 
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2.3.7 Clumping 

A clumping procedure was used to select the most promising SNPs for replication analysis at stage 

2. Results for 441,395 SNPs obtained from the meta-analysis were used, as they will help to select 

SNPs with a similar trend in both the UK and German cohorts that are more likely to be replicated. 

A limited number of index SNPs (n=79) were identified using the default parameters in Plink 

(Chang et al., 2015). For this reason, less stringent parameters were used, and identified a total 

of 441 index SNPs with a P-value less than 0.001 and support from at least one correlated SNP 

(r2<0.5) with a P-value less than 0.01 and within 500 Kb of the index SNP. 

2.3.8 Functional annotation and selection of SNPs for replication 

A gene-based annotation of the 441 index SNPs was submitted to ANNOVAR and a list of 560 

genes was generated (Wang et al., 2010). The list of genes was submitted to GeneAlaCart and 

reduced to 50 genes with biological relevance, which include kinase activity (receptor tyrosine 

kinase (RET) or KIT), haematopoiesis, myeloid leukaemia, myeloproliferative or MC conditions 

such as mastocytosis (Appendix Table A.2) (Stelzer et al., 2011). It is plausible to speculate that 

the strategy applied to a shortlist of only 50 genes, may have overlooked some interesting signals. 

As discussed in Chapter 5, this can be due to missing knowledge at the time the analysis was 

performed. The following criteria were then used to select SNPs for replication at stage 2. First, 44 

index SNPs were selected located in or flanked by a functionally relevant gene, with a moderate 

significance threshold (P≤0.001) and supported from correlated SNPs (Appendix Table A.6). The 

list of selected SNPs was then infilled to 82 by selecting the 38 most significant index SNPs and 

with support from correlated SNPs (Appendix Table A.6). To add support and to guard against 

failed or problematic genotyping, 10 additional SNPs were selected as backups for each of the 

most promising index SNPs in terms of either their biological relevance, individual significance, or 

level of support from correlated SNPs (Appendix Table A.6). After these selection criteria were 

applied, a total of 92 SNPs were selected for replication. To ensure that no interesting association 

signals were overlooked, the shortlisted SNPs were highlighted in a final Manhattan plot (Figure 

2.8). One SNP achieved genome-wide significance in the stage 1 analysis, rs7884433, but it was 

not selected for replication because it lacked support from any of the SNPs in strong LD (r2>0.8) 

and is thus likely to be a technical artefact. 
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2.3.9 Identification of clonal mosaicism using BAF segmentation 

To assess the frequency of somatic changes, which could affect the association analysis, BAF 

segmentation (Staaf et al., 2008) was used to analyse all of the stage 1 cases (n=478) and to 

identify genomic regions of AI. The raw output from this analysis includes a text file that lists all 

the AI regions that were detected in each sample (Appendix Table A.3). To examine the raw 

output from BAF segmentation and to identify any sample outliers, the total number of AI regions 

and the percentage of autosomal AI regions in each sample was determined and plotted (Figure 

2.9). Visual inspection of the plot identified 24 outlying samples that had either 95% or more of 

their autosome being called as regions of AI (n=21) or more than 3,000 separate regions of AI (n=3). 

During the QC steps, 19 of these outliers were found to have more than 10% missing genotype. 

Therefore, of the 414 individuals tested for association with mastocytosis, five other samples 

were excluded for the BAF segmentation analysis (Appendix Table A.5). 

 

 

Figure 2.9 Scatter plot showing the percentage of AI coverage versus the number of AI regions 

The scatter plot of the number of AI regions versus the percentage of autosomal AI shows 
that samples with either > 95% of autosomal AI or > 3,000 AI regions are outliers due to noisy 
array results. The 24 outliers are displayed in red. 

 

The BAF plots for each of these samples were examined, which showed that the SNPs in these 

samples had a wide range of BAF values and did not form the expected genotypic clusters (Figure 

2.10 B). 
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Figure 2.10 BAF, mBAF and LRR plots of two samples for chromosome 4. 

A. The 4q region represent a region of aUPD. This is detected by the clear shift away from the 
heterozygous BAF value of 0.5 compared to the p arm that shows a normal 4p region. B. In 
noisy samples, the plotted data show a messy array for each chromosome of the same 
sample. 
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After removing the samples with noisy arrays, a custom script was used to categorise the 

remaining AI regions as either copy number neutral regions of aUPD (LRR between −0.15 and 

0.065) if they were greater than 2Mb in length and extended to the telomere, copy number gains 

if the LRR was greater than 0.073 or copy number losses if the LRR was less than −0.14 (Staaf et 

al., 2008). This analysis showed that SM genomes are relatively simple with only 51 cases showing 

likely somatic copy number changes or aUPD (Figure 2.11). Large regions of aUPD and copy 

number alterations were rare, occurring with a similar frequency to that observed in MPN (Geyer, 

2019; Tapper et al., 2015). Since these abnormalities are rare and do not overlap in a large 

proportion of patients it is unlikely that they will affect the association tests in the GWAS. 

Furthermore, apart from isolated cases the genomic regions with somatic changes did not include 

the risk factors that were identified and none of these regions were excluded from further 

analysis. 
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2.3.10 Replication in mastocytosis GWAS 

Of the 92 SNPs selected, 75 were successfully genotyped in 666 KITD816V mastocytosis cases from 

Spain, Denmark and Italy. Additional controls (n=8,456) from the same populations that had 

previously been genotyped were used for comparison. After QC, 621 cases and all the controls 

remained for analysis (Table 2.6). All SNPs passed QC in cases although 19 were excluded from the 

Spanish controls due to per SNP missingness (≥10%) following imputation (Table 2.7). 

 

Table 2.6 Sample sizes before and after quality control in stage 2. 

  Stage 2 cases Stage 2 controls 
Quality control measure Spanish Danish Italian SNDNAB Inter99 InCHIANTI 
Total samples pre-QC 399 185 82 1062 6184 1210 

≥10% missing genotypes 30 14 1 0 0 0 
Patients with outlying 
heterozygosity 3SD 

0 0 0 0 0 0 

Patients with gender mismatch 0 0 0 0 0 0 
Patients with relatedness 0 0 0 0 0 0 

Ancestry outliers 0 0 0 0 0 0 

Samples remaining 369 171 81 1062 6184 1210 

 

Table 2.7 SNP number before and after quality control in stage 2. 

 Stage 2 cases Stage 2 controls 
Quality control measure Spanish Danish Italian SNDNAB Inter99 InCHIANTI 
Total observed SNPs pre-QC 92 92 92 92 

SNPs failed genotyping 17 0 0 0 
SNPs with ≥10% missing 
genotypes 

0 19 0 0 

SNPs with MAF ≤ 5% 0 0 0 0 

SNPs failing HWE* 0 0 0 0 

Not bi-allelic SNPs 0 0 0 0 
Unknown strand 0 0 0 0 
Duplicates/Triplicates 0 0 0 0 
MAF difference >0.34  0 0 0 0 

Not in cases and controls 0 0 0 0 

Total observed SNPs passing 
QC 

75 73 92 92 

QC: quality control, MAF: minor allele frequency, HWE: Hardy-Weinberg equilibrium.  
*HWE P-value < 1×10-10 in cases, P-value <0.001 in controls 
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Samples were tested for association with SM as three separate cohorts using binary logistic 

regression. The final significance levels and effect sizes were determined using a fixed effects 

inverse variance-weighted meta-analysis to combine evidence from stages 1 and 2. This meta-

analysis identified three intergenic SNPs with genome-wide significance, rs4616402 

(Pmeta=1.37×10-15), rs4662380 (Pmeta=2.11×10-12) and rs13077541 (Pmeta=2.10×10-9) (Table 2.8). 

 

Table 2.8 Summary of the most significant SNPs from meta-analysis of stages 1 and 2.  

SNP, rs identifier from dbSNP; Alleles, risk associated/non-risk associated allele; RAF, risk allele frequency in 
Europeans from 1000 genomes; PMETA, fixed effects meta-analysis of stages 1 and 2; OR, odds ratio; CI, 95% 
confidence interval; I2, heterogeneity index (0–100). 

 

Results for the three SNPs reaching genome-wide significance are summarised in a forest plot 

which shows that each SNP is significant in four of the five cohorts tested and that there is 

evidence for the same trend in the remaining population (Figure 2.12). I2 statistics showed that for 

each SNP there was no evidence of heterogeneity between cohorts (Table 2.8). Results from the 

meta-analysis of stages 1 and 2 for all SNPs tested are shown in Appendix Table A.6. 

SNP Chr Location 
(hg19) 

Alleles RAF Gene PMETA OR (CI) I2 

rs4616402 19q13 33,753,555 A/G 0.240 SLC7A10-CEBPA 1.37×10-15 1.52  
(1.37–1.68) 

4.2 

rs4662380 2q22 145,316,407 C/T 0.189 LINC01412 2.11×10-12 1.46  
(1.32–1.63) 

0 

rs13077541 3q26 176,925,740 G/A 0.464 TBL1XR1-
LINC00501 

2.10×10-9 1.33  
(1.21–1.45) 

0 
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Figure 2.12 Forest plots and meta-analysis for three SNPs reaching genome-wide significance. 

Forest plots for each SNP associated with SM at a genome-wide level of significance. Odds 
ratios (OR = ES) and 95% confidence intervals (CI) are displayed on the x-axis. Results are 
shown for each cohort (UK, German, Spanish, Danish and Italian) and the combined analysis. 
The SNP subtotals and diamond show the final OR and CI for a fixed effects meta-analysis of 
all five cohorts and uses I-squared to assess heterogeneity in effect sizes between cohorts. 

 

2.3.11 Comparison of the stage 1 analyses 

To investigate the possibility of residual population stratification, the stage 1 analyses were 

repeated without removing 26 samples with evidence of outlying ancestry (Table 2.3) and 

adjusting the association analysis using the first two principal components from MDS. The top 

three SNPs retained genome-wide significance, with rs4662380 and rs13077541 becoming slightly 

more significant (Table 2.9), which suggests an absence of residual population stratification in the 

original analysis. The results for all SNP tested in both stage 1 analyses were viewed side-by-side 

in QQ plots (Figure 2.13). Their genomic inflation factors (λ ≤1.02) showed that both analyses 

generated similar significance profiles and demonstrated a close agreement between the 
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observed and expected P-values up to the tail of the distribution, where SNPs with P-values less 

than 10-4 began to deviate from the null distribution. Consequently, systematic biases such as 

separate genotyping of cases and controls, population stratification, or clonal somatic changes in 

the SM cases are therefore considered to be unlikely to contribute to the significance of these 

SNPs. 

 

 

Figure 2.13 QQ plot of the stage 1 meta-analysis with and without correction for population 

stratification. 

The analysis without correction excluded 26 ancestry outliers. These samples were included in 
the analysis, which corrected for population stratification using the first two principal 
components from the MDS analysis. 

 

Table 2.9 Summary of the most significant SNPs from meta-analysis with adjustment for 

population stratification. 

SNP, rs identifier from dbSNP; Alleles, risk associated/non-risk associated allele; RAF, risk allele frequency in 
Europeans from 1000 genomes; PMETA, fixed effects meta analysis of stages 1 and 2; OR, odds ratio; CI, 95% 
confidence interval; I2, heterogeneity index (0–100). 

SNP Chr Location 
(hg19) 

Alleles RAF Gene PMETA OR (CI) I2 

rs4616402 19q13 33,753,555 A/G 0.240 SLC7A10-
CEBPA 

5.26×10-15 1.5  
(1.36–1.66) 

6.68 

rs4662380 2q22 145,316,407 C/T 0.189 LINC01412 7.17×10-13 1.47  
(1.32–1.64) 

0 

rs13077541 3q26 176,925,740 G/A 0.464 TBL1XR1-
LINC00501 

5.32×10-10 1.34  
(1.22–1.47) 

0 
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2.3.12 Genetic power calculation 

Following QC, the stage 1 and stage 2 analyses involved 1,035 mastocytosis cases and 17,960 

controls. According to these sample sizes and using a multiplicative disease model, this study is 

estimated to have 80% power to detect rare SNPs (MAF=0.1) with a relative risk of 1.82, and 

common SNPs (MAF=0.4) with a relative risk of 1.56 (Figure 2.14). Although these power 

estimates are encouraging, only one SNP with genome-wide significance was identified by the 

stage 1 analysis. The lack of genome-wide significant SNPs is most likely due to the relatively small 

number of cases and the power estimates being somewhat inflated by the comparatively large 

number of controls. Despite the small number of SNPs reaching genome-wide significance in stage 

1 there were 18 SNPs with suggestive levels of significance and several of these formed well 

supported peaks on the Manhattan plots. Furthermore, three genome-wide significant SNP were 

replicated at stage 2. Due to the potential to overlook SNPs with smaller effect sizes, we used a 

set of selection criteria rather than significance alone (see 2.2.10) to identify 92 SNPs for 

replication. 

2.3.13 Association with TERT 

The stage 1 analysis included rs2853677, which has been linked to both MPN and JAK2V617F 

associated CH (Hinds et al., 2016). This SNP is within TERT at 5p15 and marginally failed to meet 

the criteria for analysis at stage 2; however, the stage 1 meta-analysis for directly genotyped UK 

and German cases showed Pmeta=0.0011, suggesting the possibility of an association. To examine 

this in more detail genotypes for 64 additional SNPs spanning TERT were imputed and tested for 

association with mastocytosis. As shown in Appendix Table A.7, 7 SNPs achieved P values of 

<0.001. The strongest of these was for rs7726159 (Pmeta=8×10-5), an established risk SNP for 

multiple cancer types (Wang et al., 2014b). One secondary association at TERT was identified for 

rs2853677, which remained significant after conditioning on rs7726159 (Pconditional= 0.035). No 

associations were seen with other SNPs that predispose to other MPN (Bao et al., 2020) or CHIP 

(Bick et al., 2020) in the stage 1 data (Table 2.10).  
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2.3.14 Association with TPSAB1 and TPSB2 

Copy number variation at TPSAB1, the gene at 16p13 encoding α-tryptase, is associated with 

elevated serum tryptase levels in hereditary α-tryptasaemia (Lyons et al., 2016). My analysis did 

not include direct copy number analysis of this gene; however, a recent study linked TPSAB1 

duplications with three SNPs including rs58124832 (Lyons et al., 2018). This SNP was genotyped at 

stage 1 and met our criteria for analysis at stage 2, yielding a suggestive overall association with 

mastocytosis (Pmeta=9.03×10-6). The Cochran’s Q test and I2 statistics showed no evidence of 

heterogeneity between cohorts; however, the association was significant in only two cohorts 

(PGerman=0.0058, PUK=0.0042) and borderline in a third cohort (PSpanish=0.05; Appendix Table A.6). 

2.3.15 Associations with other genetic factors 

A thorough search of the relevant literature yielded 14 SNPs that have been associated with the 

development of or phenotype of human mastocytosis (Daley et al., 2001; Lange et al., 2017; 

Nedoszytko et al., 2009, 2018, 2020; Rausz et al., 2013). Of these, 11 were directly genotyped or 

could be imputed from the stage 1 data (Table 2.11) but only one of these was significant; 

rs1800925 in the promoter region of IL13 at 5q31 (Pimputed = 0.008). This SNP has been linked to 

the development of adult SM and serum interleukin-13 levels (Nedoszytko et al., 2009) and 

inflammatory disorders such as chronic obstructive pulmonary disease (Ahmadi et al., 2019).  
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2.4 Discussion 

This study represents the first two-stage case-control GWAS of mastocytosis. Although the 

disease is defined in most cases by the presence of a somatic KITD816V driver mutation, 

mastocytosis is in fact a complex disorder with diverse clinical phenotypes and outcomes. In this 

study, constitutional genotype has been identified as an additional factor that predisposes to 

mastocytosis. The use of molecular criteria to define cases in this study, rather than clinically-

defined subtypes, plus careful matching of cases and controls with regard to ethnicity aimed to 

reduce the chance of heterogeneity in both the discovery and replication cohorts. Matching of 

cases and controls, despite the use of small sample sizes, has been successful in other GWAS 

investigating genetic predisposition of rare diseases in European ancestry (Mobuchon et al., 

2017). Thus, with a relatively modest cohort size by current GWAS standards, it was possible to 

identify and validate 3 SNPs that achieved genome-wide significance, and identify further SNPs 

with suggestive associations at TERT, IL3 and TPSAB1/TPSB2. Importantly, except for rs1800925 

(IL13), none of the previously published associations were confirmed (Table 2.11). These 

publications included several candidate gene studies plus a recent GWAS that did not include a 

replication cohort (Nedoszytko et al., 2020). Both these approaches are highly prone to false 

positive results, although it is also possible that differences in genetic predisposition between 

populations may account for the lack of replication. An example of failure to replicate, due to 

difference in allele frequencies and reduced genetic power, was seen in GWAS of major 

depressive disorder when comparing populations from Europe and Asia (Cai et al., 2015). 

 

The genomic DNA used in my study was extracted from peripheral blood leukocytes, which can 

potentially have both clonal and non-clonal origin. The possibility that clonal somatic changes 

might affect the GWAS analysis was considered. For example, recurrent somatic chromosomal 

changes or small copy number variants at high levels of clonality would lead to systematic errors 

in the assignment of constitutional genotypes in the affected regions. To exclude any spurious 

association due to somatic changes in the clonal lineage, an analysis of aUPD and copy number was 

performed on the discovery cohort, which showed that genomes of mastocytosis cases are 

relatively simple with only 51 cases having somatic copy number changes or aUPD (Figure 2.11). 

This is not unexpected since the size of the neoplastic clone in mastocytosis is often very small, 

and expected to be well below the resolution of SNP arrays (Arock et al., 2015). Chromosome 4q 

was the most frequent region of aUPD, although this was only present in 2.2% (9/414) of patients 

(Figure 2.11). In addition, no recurrent copy number changes or regions of aUPD were seen at the 

same location as the genome-wide significant SNPs identified in this study. The low incidence 
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overall of recurrent aUPD and copy number changes suggests that they are unlikely to have 

influenced the GWAS. Of interest, there was no evidence that genetic variation at KIT was 

associated with KITD816V-positive mastocytosis, in contrast to MPN in which the somatic JAK2V617F 

mutation is more likely to arise on certain JAK2 haplotypes (46 and 1) (Jones et al., 2009).  

 

Lastly, the genotyping data were thoroughly quality-controlled and the QQ plots and their low 

genomic inflation factors from the stage 1 analyses showed no evidence for systematic biases 

between cases and controls such as recurrent somatic changes or population substructure (λ ≤ 

1.02; Figure 2.7). Consequently, clonal somatic changes are unlikely to account for the significant 

GWAS findings. 

 

At stage 1 after the logistic regression analysis, 92 SNPs were selected for follow-up using the 

clumping procedure (Table 2.2). A stage 2 analysis was performed on the discovery cohort 

comprising of 666 cases and 8456 controls. Following the meta-analysis of five mastocytosis 

KITD816V-positive cohorts from stage 1 and stage 2, three SNPs with genome-wide significance 

were identified (rs4616402, rs4662380 and rs13077541). 

 

rs4616402 (P-value = 1.37×10-15) was the most significant marker, associated with a 1.52-fold 

increased risk of development of KITD816V-positive mastocytosis. This singleton SNP at 19q13 was 

tested in all 5 populations (Figure 2.12). It is located 36.8 kb downstream of solute carrier family 7 

member 10 (SLC7A10) and 37.3 kb upstream of CCAAT enhancer binding protein alpha (CEBPA) 

(Figure 3.1 A). CEBPA is a single exon gene that encodes a leucine zipper transcription factor 

(C/EBPα) that binds CCAAT motifs in the promoter region of target genes 

(www.ncbi.nlm.nih.gove/gene). It is expressed in myeloid progenitor cells and involved in the 

proliferation arrest and differentiation of several types of cell lines including the myeloid lineage 

(Boyd and Arber, 2011). Several studies have defined a critical role for C/EBPα in myeloid 

development as well as malignant transformation of myeloid cells (Avellino and Delwel, 2017). 

CEBPA mutations have been shown to play an important role in inhibition of the wild-type C/EBPα 

tumour suppressor protein. About 13% of adults and 20% of children affected with AML harbour 

mutations in the CEBPA gene, usually in cases with a normal karyotype (Naeim et al., 2018). Cases 

with biallelic CEBPA mutations have a favourable outcome and, therefore, CEBPA testing is 

recommended in AML patients with normal karyotype (Griffith et al., 2017). Familial AML with 
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germline CEBPA mutations have been identified and are characterised by an autosomal dominant 

inheritance and 10-year-survival rate of 67% (Geyer, 2019). Interestingly, CEBPA was also a target 

of somatic mutations in an adult patient diagnosed with SM with associated CH non-mast cell 

lineage disease (SM-AHNMD) (Jayakumar and Xie, 2018) suggesting that CEBPA mutations might 

co-operate with KITD816V in disease progression. Of interest, two other deregulated tyrosine 

kinases in haematological malignancies are known to interact with CEBPA or C/EBPα: the BCR-

ABL1 fusion protein downregulates CEBPA by a post-transcriptional mechanism (Perrotti et al., 

2002) and oncogenic FLT3 mutants disrupt C/EBPα function by ERK1/2-mediated phosphorylation 

(Radomska et al., 2006). CEBPA is thus a strong candidate gene associated with the signal at 

rs4616402. The right gene SLC7A10 flanking rs4616402 is a protein-coding gene and to date has 

not been related to myeloid malignancies or relevant biological process.  

 

The second most significant SNP, rs4662380, is located at chromosome 2q22 within LINC01412 

and 109 kb upstream of testis expressed 41 (TEX41). Both of these genes are long non-coding 

RNAs (lncRNA) of unknown function, but due to the possibility of long-range interactions between 

GWAS signals and target genes it is unclear if either is directly relevant to SM. The competing 

endogenous RNA (ceRNA) hypothesis was outlined in 2011 to explain how a large proportion of 

RNAs from the transcriptome (protein coding genes, pseudogenes and lncRNAs) can communicate 

with each other via microRNAs, which may be considered as letters of a new RNA language (Qi et 

al., 2015; Salmena et al., 2011). lncRNAs are known to play an important role in cancer 

progression by modulating the expression of miRNAs or target proteins (Rathinasamy and 

Velmurugan, 2018) and additional studies have revealed their important role in proliferation, 

apoptosis and differentiation of leukaemia cells (Liu et al., 2019). Notably, a study conducted to 

investigate the role of COMMD6 in tumourigenesis and malignant progression led to the proposal 

of ceRNAs networks on the basis of differentially expressed transcriptome from the cancer 

genome atlas database. In addition, a TEX41-miR-340-COMMD6 ceRNA network in head and neck 

squamous cell carcinoma (HNSC) identified a potential tumour-promoting role for TEX41 and 

COMMD6 (Yang et al., 2019). The same role for TEX41 in promoting tumour progression was also 

identified in cervical cancer (Li et al., 2018), confirming it as a potential gene involved in molecular 

mechanisms in several human tumours.  

 

Zinc finger enhancer-box (E-box) homeobox 2 (ZEB2) and ZEB2 antisense RNA 1 (ZEB2-AS1) are 

other genes near rs4662380. ZEB2 is a gene encoding for a transcription factor with a zinc finger 

motif of about 23 amino acids that binds E-box-like sequences (CANNTG, where N is not a specific 

nucleotide) in the promoters of target genes (Strachan and Read, 2011). This protein is a complex 
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transcription factor with several functional domains that can also interact with other proteins to 

form a transcriptional complex that can activate or repress transcription of target genes (Remacle 

et al., 1999). ZEB2 has been linked to both myeloid and lymphoid leukaemias (Bolouri et al., 2018; 

Goossens et al., 2019) and plays a critical oncogenic role in the malignant transformation of 

several tumours such as breast cancer (Duan et al., 2019) and glioblastoma (Safaee et al., 2021). 

In a recent study of a subgroup of immature acute leukaemias, four types of translocation 

involving BCL11B were identified with ZEB2-BCL11B being the only rearrangement producing a 

fusion gene (Di Giacomo et al., 2021). Also, ZEB2-AS1 is another lncRNA that promotes the cell 

proliferation and invasion of several types of cancers (Gao et al., 2018; Guo et al., 2018; Wu et al., 

2017; Xu et al., 2019; Zhang et al., 2019). The overexpression of ZEB2-AS1 was demonstrated to 

be highly associated with poor clinical outcomes in patients affected with AML, particularly a 

shorter overall survival rate (Shi et al., 2019). In addition, a recent study showed both in vitro and 

in vivo using a mouse model, that cell proliferation was suppressed and apoptosis of AML cells 

increased when silencing ZEB-AS1. They were able to identify a regulatory role for ZEB-AS1 in the 

proliferation of AML cells through the ZEB2-AS1/miR-122-5p/PLK1 ceRNA network (Guan et al., 

2020; Salmena et al., 2011). Thus, there are a number of possible candidate functional 

mechanisms to explain my GWAS findings at rs4662380 that merit further investigation.  

 

The final significant SNP rs13077541 (P-value = 1.224 × 10-9) is located on chromosome 3 (Figure 

3.1 C). The association signal is located 10,692 bp downstream of transducin beta like 1 X-linked 

receptor 1 (TBL1XR1) and 234 kb upstream of lncRNA 501 (LINC00501). TBL1XR1 is a member of 

the WD repeat-containing gene family and encodes a protein required for transcriptional 

activation. It shares sequence similarity with TBL1X, a component of both histone deacetylase 3 

and nuclear receptor corepressor complexes that are required for transcriptional activation by a 

variety of transcription factors. TBL1XR1 is also involved in rare translocation events such as the 

TBL1XR1-PIK3CA fusion in breast cancer and prostate cancer where the TBL1XR1 sequence 

contributes only the 5’ untranslated region, which drives the overexpression of its partner 

(Stransky et al., 2014). A TBL1XR1-PDGFRB fusion was also identified in association with myeloid 

malignancies and marked eosinophilia. The pathogenic fusion results in an in-frame 

rearrangement containing the tyrosine kinase domain of PDGFRB and the N-terminal of TBL1XR1, 

which promotes protein dimerisation (Campregher et al., 2017). Interestingly, several other 

fusions involving the receptor tyrosine kinase PDGFRB have been found in association with MPN, 

including another WD repeat family member, suggesting a strong association between these gene 

fusions and myeloid cancers (Hidalgo-Curtis et al., 2010). 
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GWAS have been very successful in identifying genome-wide significant associations (Tam et al., 

2019). Up to January 2019 3,730 GWAS have been published and have successfully identified risk 

loci for several traits including rare diseases and cancer (Chio et al., 2009; Ferrari et al., 2014; 

Kouri et al., 2015; Mobuchon et al., 2017). However, GWAS often require large sample sizes and it 

can be difficult to acquire sufficient numbers of cases when dealing with rare diseases such as SM 

(estimated prevalence only 1–9/100,000). In fact, only relatively small case cohorts were available 

for the study and thus the power to detect SNPs with small effect sizes (OR<1.82) was limited 

(Figure 2.14). In this study controls are unselected, meaning that they are randomly selected from 

the population, and they have not been screened for disease. In this case, the power calculation 

will assume that a proportion of controls in relation to the disease prevalence will develop the 

disease, so the statistical power will be reduced. The higher the disease prevalence, the lower will 

be the power of detecting genetic effect. However, we are investigating a rare disease and this 

reduction in power is expected to be very limited since there is an increase in power in relation to 

the prevalence of the disease when using unselected controls. In my study, cases from multiple 

populations were used to accrue a sufficient sample size. However, the presence of multiple 

populations could also introduce some limitations such as reducing the genetic similarities 

between individuals and therefore introducing genetic heterogeneity. To minimise heterogeneity, 

we only selected KITD816V-positive cases both in stage 1 and stage 2 of this study and performed 

case–control comparisons in separate populations followed by meta-analysis. Another limitation 

of the study is the use of many control cohorts that had been genotyped by different facilities 

using different genotyping arrays. Strand inconsistency, and different locations and SNP names 

are some of the issues that can make the analysis very challenging if additional QC checkpoints 

are not addressed before the data are merged. The use of independent cohorts coming from 5 

different populations could potentially make the replication of the selected SNPs more difficult. 

However, all the cohorts chosen for this study belong to the Caucasian population, therefore they 

are not dramatically different. According to previously published GWAS findings, it was expected 

that a reasonable percentage (1–3%) of the selected SNPs should replicate with adjusted P-value 

<0.05 (accounting for the number of SNPs tested at stage 2). In my study, three genome-wide 

significant SNPs from the 75 that were successfully genotyped at stage 2 were tested in all five 

populations and significant in 2/3 of the replication cohorts (Figure 2.12), providing compelling 

evidence for real effects. 

 

Variants passing the threshold of genome-wide significance (P-value < 5 × 10-8) were investigated 

further to assess their association with mastocytosis. In the following chapter, in silico functional 
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follow-up such as expression quantitative trait loci (eQTL) will be presented and discussed. This 

analysis is very important for identifying potential target genes and investigating the effect of 

genotype on gene expression levels that are likely to affect the   disease phenotype (Nica and 

Dermitzakis, 2013; Spain and Barrett, 2015). 

 

To conclude, this chapter describes the background of the two-stage GWAS of mastocytosis, as 

well as the methods, results obtained from the stage 1 and stage 2 analysis, and a discussion of 

the limitations of the study. Consideration of the three signals has identified three strong 

candidate genes, CEBPA, TEX41 and ZEB2, plus other genes of potential interest. Translating the 

new findings into causal variants and providing proof for target genes is the most challenging step 

in a GWAS, especially for those SNPs in intronic or intergenic regions of the genome with 

unknown function. For the SM-GWAS, additional analysis in other independent cohorts will help 

to confirm these findings, and detailed functional and genetic studies will be needed to provide 

insights into their biological significance, to localise candidate causal variants and to analyse 

gene–gene or protein–protein interactions. 
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Chapter 3 Post-GWAS analysis 

3.1 Introduction 

Genome-wide association studies have been very successful in identifying thousands of unique 

common variants that influence individuals’ predisposition to complex traits (Buniello et al., 

2019). In most instances, understanding the underlying mechanism by which these variants 

impact the associated phenotype is still limited, because most of these variants are located in 

non-coding regions of the genome and are more likely to have regulatory functions rather than 

disrupting the reading frame for a protein. Although the variant-to-function translation remains 

challenging, many research groups have made further steps in identifying key genes in biological 

processes, diseases underlying causal variants, and biological pathways associated with altering 

the risk of developing the respective disease (Gallagher and Chen-Plotkin, 2018). The 

identification of target genes represents the first step in tackling the link between a genetic 

association and the biological function. 

For example, the first GWAS looking at the association between blood disorders (β-thalassemia 

and sickle cell disease) and fetal haemoglobin (Hbf), (tetramer of two adult α-globin and two fetal 

γ-globin subunits; after birth two β-globins will replace the fetal ones), identified a strong 

association (rs11886868) with the BCL11A gene on chromosome 2 in disparate population studies 

(Lettre et al., 2008; Uda et al., 2008). β-thalassemia samples with mild phenotype and carrying the 

risk allele were found to have elevated Hbf levels compared with those with a severe form of the 

disease (Uda et al., 2008). Follow-up studies examining the role of BCL11A in modulating Hbf 

levels found that this gene serves as a key regulator of haemoglobin production. By examining the 

expression of BCL11A in adult erythroid cells, they saw that cells carrying two risk alleles 

(associated with high Hbf) showed a reduced expression of this gene compared to those 

homozygous for the non-risk allele (low Hbf). Knockdown of BCL11A in differentiated erythroid 

precursors showed an increase in γ-globin levels showing a clear molecular function of BCL11A in 

silencing the γ-globin genes (Sankaran et al., 2008). This information has provided biological 

insights for better understanding of haematopoiesis and has led to the identification of two major 

transcriptional repressors, BCL11A and ZBTB7A, regulating γ-globin genes and haemoglobin 

switching (Martyn et al., 2018; Sankaran et al., 2009). Decades of research have ultimately led to 

ongoing clinical trials to suppress BCL11A and reactivate the developmentally silenced γ-globin 

genes to increase the amount of Hbf in patients affected with sickle cell disease (e.g. 

ClinicalTrials.gov Identifier: NCT03282656). 
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Following the identification of a large spectrum of variants associated with MPN (Bao et al., 2020; 

Bick et al., 2020; Hinds et al., 2016; Jones et al., 2009; Kilpivaara et al., 2009; Olcaydu et al., 2009; 

Tapper et al., 2015), potential target genes were also identified using a variety of approaches such 

as genetic fine-mapping and targeted variant-to-function assay (Bao et al., 2020; Ulirsch et al., 

2019). Functional investigation of CHEK2, for example, showed that loss-of-function variants 

within this gene are associated with increased risk of CH. In addition, researchers proved the 

involvement of CHEK2 in stem cell expansion, as they showed that suppression of this gene 

allowed increased expansion of human haematopoietic progenitor cells (Bao et al., 2020).  

An important step for understanding the role played by the identified loci is also the identification 

of the key cellular type and tissue for mediating disease risk (Cano-Gamez and Trynka, 2020; 

Nandakumar et al., 2020). For instance, following the identification of over 400 independent risk 

factors associated with type 2 diabetes (T2D), the Human Islet Biobank was established as part of 

a collaborative effort (Fuchsberger et al., 2016; Thurner et al., 2018). This allowed a detailed 

characterisation of the tissue to be performed and consequent understanding of the human 

pancreatic islets and regulatory mechanisms using different omics data (van de Bunt et al., 2015; 

Gaulton et al., 2010; Viñuela et al., 2020). To facilitate identification of the most specific tissue for 

each identified association, a tool named TACTICAL (Tissue of ACTion scores for Investigating 

Complex trait-Associated Loci) has recently been developed to obtain what are called tissue of 

action (TOA) scores and select key tissues in the pathogenesis of complex phenotypes (Torres et 

al., 2020).  

The GWAS described in Chapter 2 has led to the identification of three genome-wide significant 

SNPs associated with increased risk of developing KITD816V-positive mastocytosis. The aim of the 

post-analytical interrogation was to take advantage of this variation to better understand 

mastocytosis. The majority of variants reported by GWAS are in noncoding regions of the 

genome; these lead variants may not be causal but might be in high LD (r2>0.8) with the casual 

variant. This chapter will describe the in silico approaches that were used to explore the 

relationship between the regions containing genome-wide significant SNPs and mastocytosis, and 

to nominate a number of target genes that are potentially impacting key mechanisms in patients 

(Boyle et al., 2012; Ward and Kellis, 2016; Watanabe et al., 2017). Additionally, this chapter 

describes a gene-based analysis of the stage 1 data which used multiple SNPs to generate P-values 

for individual genes. 
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3.2 Materials and Methods  

3.2.1 Post-analytical interrogation of SNPs 

3.2.1.1 Functional annotation using HaploReg 

SNPs in LD are inherited together in the population and can be used to define causal regions. The 

genome-wide significant associations were therefore investigated to see if SNPs in LD are also 

associated with mastocytosis. Lead SNPs and variants in high LD (r2 ≥0.8) with the lead SNPs were 

identified and annotated to determine their biological relevance using HaploReg (version 4.1) 

(Ward and Kellis, 2016). This tool integrates a range of databases (e.g. ENCODE Project, Roadmap 

Epigenomics Project, dbSNP, EBI-NHGRI GWAS Catalog) and uses data from the 1000 Genomes 

Project Phase 1 release to calculate LD for four ancestral populations, including Europeans 

(Altshuler et al., 2012; Buniello et al., 2019; Kheradpour and Kellis, 2014; Kundaje et al., 2015; 

Sherry, 2001). The SNPs were listed and annotated with respect to genomic features, such as 

mammalian evolutionary sequence conservation elements, using SiPhy and GERP statistics and 

epigenomic features. These are described in the following paragraph (Davydov et al., 2010; 

Lindblad-Toh et al., 2011). HaploReg v4.1 is updated to November 2015, and annotations with 

respect to previously identified GWAS associations are only available up to this date (Ward and 

Kellis, 2016). Many other SNPs associated with various blood traits and MPN have been identified 

in more recent studies (Bao et al., 2020; Bick et al., 2020), Therefore, for a more accurate 

annotation, the EBI-NHGRI GWAS Catalog was also explored using FUMA GWAS (Watanabe et al., 

2017). 

3.2.1.2 HaploReg approach for epigenomic annotation 

The DNA inside the nucleus is associated with proteins to form chromatin, a complex, dynamic 

molecular structure (Van Steensel, 2011). When scientists first started to look at these structures, 

microscopic analysis revealed only two chromatin states (Baker, 2011). Heterochromatin or 

‘closed’ chromatin is a highly condensed state, within which genes are not accessible to the 

transcriptional machinery. On the other end, chromatin can have an extended state known as 

euchromatin or ‘open’ chromatin, which enables active transcription (Strachan and Read, 2011). 

Following the application of computational analyses, researchers used a set of five histone 

modification marks (Table 3.1) and recurrent ones have been grouped into several different 

conformations or chromatin states that have mapped several regulatory elements as the critical 

elements in gene expression (Baker, 2011). To interpret GWAS results and to investigate whether 

the SNPs identified in this study are in regulatory elements of the genome, the 15-state chromatin 

model was used in this study, which is based on a multivariate hidden Markov model and captures 
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all the key interaction that occur between the chromatin marks (Ernst and Kellis, 2017; Ward and 

Kellis, 2016).  

 

Table 3.1 Histone modification marks. 

Marks Abbreviation Function 
Histone H3 lysine 4 trimethylation H3K4me3 Associated with promoter regions 
Histone H3 lysine 4 monomethylation  H3K4me1 Associated with enhancer regions 
Histone H3 lysine 36 trimethylation  H3K36me3 Associated with transcribed regions 
Histone H3 lysine 27 trimethylation  H3K27me3 Associated with Polycomb repression  

(gene silencing)  
Histone H3 lysine 9 trimethylation  H3K9me3 Associated with heterochromatin regions  

(gene silencing) 
H3K4me3 and H3K4me1 (Heintzman et al., 2007; Igolkina et al., 2019); H3K36me3 and H3K27me3 (Bonasio 
et al., 2010; Li et al., 2007); H3K9me3 (Li et al., 2007; Peters et al., 2003). 

 

The 15-state model consists of 8 active states associated with gene transcription (states 1–8 in 

Table 3.2) and 7 repressed states (states 9–15 in Table 3.2) that take into account DNA 

methylation, transcription factors binding, evolutionary conservation and DNA accessibility 

(Kundaje et al., 2015). 

 

Table 3.2 15 Chromatin states. 

State No Chromatin state Abbreviation 
1 Active transcription start site (TSS) TssA 
2 Flanking active TSS TssAFlnk 
3 Transcription at gene 5’ and 3’ TxFlnk 
4 Strong transcription Tx 
5 Weak transcription TxWk 
6 Genic enhancers EnhG 
7 Enhancers  Enh 
8 Zinc finger protein genes and repeats ZNF/Rpts 
9 Heterochromatin Het 

10 Bivalent/poised TSS TssBiv 
11 Flanking bivalent TSS/Enhancers BivFlnk 
12 Bivalent enhancer EnhBiv 
13 Repressed Polycomb ReprPC 
14 Weak repressed Polycomb ReprPCWk 
15 Quiescent/low Quies 

 

The 15 different states are available for 147 cell or tissue types on the basis of the epigenomic 

information generated from the 111 reference human epigenomes of the NIH Roadmap 
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Epigenomics Consortium and the 16 additional epigenomes from the Encyclopedia of DNA 

Elements (ENCODE) (Dunham et al., 2012; Javierre et al., 2016; Kundaje et al., 2015; Ward and 

Kellis, 2016). For the post-GWAS analysis, chromatin accessibility was interrogated in two cell 

lines relevant to mastocytosis, the blood cell lines E035 (primary haematopoietic stem cell) and 

E123 (K562 chronic myeloid leukaemia cell line), using the HaploReg tool (version 4.1) (Figure 3.1) 

(Ward and Kellis, 2016). 

3.2.1.3 RegulomeDB for interpretation of regulatory variants 

Most GWAS associations are located in non-coding regions of the genome and are more likely to 

have regulatory functions (Gallagher and Chen-Plotkin, 2018). RegulomeDB was used to interpret 

the functional effect that variants mapping to regulatory regions may have on protein binding 

(Boyle et al., 2012). RegulomeDB is a database that combines 962 experimental datasets from 

several sources including ENCODE and across more than 100 tissues and cell lines. Briefly, 

ENCODE transcription factors (TF) for chromatin Immunoprecipitation sequencing (ChIP-seq) and 

the modified version ChIP-exo, histone ChIP-seq, formaldehyde-assisted isolation of regulatory 

elements (FAIRE), DNase I hypersensitive site data and a collection of eQTL and dsQTL data were 

all included. These data are integrated together into a tool that assigns a RegulomeDB score to 

each variant in order to estimate their potential regulatory effect and identify functional variants. 

According to this heuristic scoring system (Table 3.3) the lower scores represent higher 

confidence for a variant to be located in a region of the genome with functional relevance. 

Variants with lower scores show increased confidence for their functional relevance. Variants 

scoring 1 have been associated with expression of target genes and are likely to affect binding; 

variants scoring 2 are likely to affect binding; variants scoring 3 are less likely to affect binding; 

variants scoring 4, 5 and 6 have minimal binding evidence. 

 

Table 3.3 RegulomeDB scoring system. 

Category  Subcategory Description of the score 
1 A eQTL + TF binding + matched TF motif + matched DNase footprint + 

DNase peak  
B eQTL + TF binding + any motif + DNase footprint + DNase peak 
C eQTL + TF binding + matched TF motif + DNase peak 
D eQTL + TF binding + any motif + DNase peak 
E eQTL + TF binding + matched TF motif 
F eQTL + TF binding/DNase peak  

2 A TF binding + matched TF motif + matched DNase footprint + DNase peak  
B TF binding + any motif + DNase footprint + DNase peak 
C TF binding + matched TF motif + DNase peak  

3 A TF binding + any motif + DNase peak  
B TF binding + matched TF motif  

4 NA TF binding + DNase peak  
5 NA TF binding or DNase peak  
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Category  Subcategory Description of the score 
6 NA Motif hit  

 
eQTL: expression quantitative trait loci; TF: transcription factor; DNase: enzyme deoxyribonuclease. 
Adapted from Boyle et al., 2012. 

 

3.2.1.4 Long non-coding RNA investigation 

Long noncoding RNA (lncRNA) are known to promote the proliferation of several types of cancer 

(Huarte, 2015). This large class contains non-coding RNA genes longer than 200 nucleotides that 

have known regulatory functions, and studies have suggested that they can regulate expression of 

nearby genes (Marchese et al., 2017). For instance, the overexpression of ZEB2-AS1 is associated 

with poor clinical outcomes in patients affected with lung cancer, AML and breast cancer 

(Gourvest et al., 2019; Guo et al., 2018; Zhang et al., 2019). To annotate and investigate causally 

relevant lncRNAs, the fifth release of LNCipedia (Volders et al., 2019) and version 1 of the Cancer 

LncRNA Census (CLC) (Carlevaro-Fita et al., 2020) were used. LncRNAs located in proximity to our 

genome-wide significant SNPs were queried by their names using the publicly available LNCipedia 

resource built with a web-interface and containing 21,488 unique transcripts. In contrast to the 

other databases, the CLC has the advantage of including only high confidence genes that have 

strong genetic and functional causal roles in cancer. 

3.2.1.5 Pleiotropy/GWAS catalog 

Pleiotropy is association between the same variants with multiple traits (Gratten and Visscher, 

2016; Solovieff et al., 2013). Genomic research has shown that this phenomenon is common for 

many complex traits, including cancer (Wu et al., 2018). The NHGRI-EBI GWAS Catalog was used 

to examine whether the annotated lead variants or their proxies also influence blood counts or 

apparently unrelated phenotypic traits. The GWAS Catalog, a publicly available resource of SNP-

trait association and summary statistics from early July 2019 contains more than 150,000 unique 

SNP associations for 17 trait categories and over 4,000 publications (Buniello et al., 2019). 

3.2.1.6 Quantitative trait locus analysis (QTL) 

To test for association between genetic variation and transcript level of a gene, expression 

quantitative trait loci (eQTL) analysis of the lead SNPs and their proxies (r2 ≥0.8) was performed in 

blood using GTEx v8 and QTLbase (Carithers and Moore, 2015; Zheng et al., 2020). 
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To gain further functional insights, methylation quantitative trait loci (mQTL) analysis was 

performed with QTLbase to study the association between the annotated SNPs and epigenetic 

regulation in non-diseased human whole blood (Zheng et al., 2020). Most of the QTL results that 

are displayed in QTLbase come from studies conducted within European populations, however in 

some instances results derive from groups of combined ethnicity, which are indicated as mixed 

populations (Zheng et al., 2020). The results from the eQTL contain important statistical values, 

including P-value, effect size and tested allele. If the tested allele is not specified, as in GTEx, the 

result reported refers to the expression of the alternative or minor allele compared with the 

reference. The effect size is normalised according to the statistical method applied, beta in GTEX 

and normalised effect size (NES) in QTLbase, where magnitude has no direct biological 

interpretation. Negative NES/beta indicates that the tested allele is associated with a reduction in 

gene expression, whereas a positive NES/beta indicates increased gene expression. 

3.2.1.7 CADD score 

Combined annotation-dependent depletion (CADD) is a score used to estimate deleteriousness of 

SNVs and indels in any location of the human genome. This is a machine learning method freely 

available to give an estimate of pathogenicity. CADD scores were used because they were shown 

to have greater predictive accuracy (AUC) when compared with other metrics used for prediction 

of pathogenic mutations that are reported in the ClinVar database (Landrum et al., 2020). The 

CADD score takes into account many different features such as sequence conservation across 

species, structural and biochemical features of the protein (Kircher et al., 2014). The higher the 

score, the more deleterious the predicted consequences of the SNP is, and 12.37 represents the 

suggestive threshold for estimating whether a SNP should be considered deleterious or not 

(Kircher et al., 2014). The score for the lead SNPs and their proxies was generated using the most 

recent version v1.4 for the human genome build GRCh37 (https://cadd.gs.washington.edu). 

3.2.2 Data analysis 

3.2.2.1 Description of clinical features in the Spanish and Italian cohort 

Diagnostic and phenotype variables at initial diagnosis (advanced disease = ASM, SM-AHN, MCL; 

non-advanced disease = all other subtypes, Table 2.1), the presence or absence of skin lesions 

(yes/no), sex, BST (ng/mL) and age were available for the majority of the Spanish (n=369) and 

Italian (n=81) cohorts, but not other cohorts. Bone marrow involvement and D816V mutation 

burden were only available for some of the Spanish cases. 
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3.2.2.2 Association with clinical features 

Statistical analysis was performed on a cohort of 450 individuals (n=81 from Italy, n=369 from 

Spain) after removing those individuals with more than 10% missing genotypes (n=31). Three 

categorical variables (initial diagnosis, skin lesions and sex) were tested for association with allelic 

counts of the three significant SNPs using Fisher’s exact test. A fixed-effect inverse variance-

weighted meta-analysis was used to combine evidence from the two cohorts. Normal distribution 

of continuous variables (tryptase, age and D816V mutation burden) was checked using 

Kolmogorov-Smirnov and tryptase levels were normalised using quantile transformation. 

Following normalisation, continuous variables were tested using linear regression following 

Kolmogorov-Smirnov checks for normal distribution and normalisation of tryptase levels using 

quantile transformation. 

3.2.2.3 Gene-based test 

Gene-based analysis as well as the single-marker association test represent valuable approaches 

when investigating complex traits. The gene-based approach allows the joint effect of weakly-

associated markers seen by single-SNP analysis to be considered collectively (de Leeuw et al., 

2015). The summary statistics from the stage 1 meta-analysis (Ncases=414; Ncontrols=9,504;) were 

used as input in FUMA to perform a gene-based analysis of association with SM which uses 

MAGMA (version 1.08) to apply multiple linear regression and obtain gene-based P-values. For 

the gene-based test, the P-value is computed for each gene using all the SNPs located within 

genes and including SNPs in a 10kb window in both directions around genes. MAGMA takes into 

account gene size, number of SNPs in a gene, and from the reference data with similar ancestry, 

corrects for LD between markers. The 1000 genomes phase 3 data of European ancestry was used 

as the reference to account for LD between SNPs (Altshuler et al., 2010a). The default settings in 

FUMA were used to determine the number of independent loci from the meta-analysis 

(Watanabe et al., 2017). The sample size was specified for each SNP as n=9,918 if the SNP was 

tested in both populations, n=4,468 if the SNP was only tested in the German population or 

n=5,450 if the SNP was tested in the UK population only. This analysis maps all the input SNPs 

against all the protein coding genes across the genome, and to identify significant genes, a 

Bonferroni-adjusted P-value was used to correct for multiple testing. 
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3.3 Results 

3.3.1 Functional annotation and candidate gene mapping 

The functional relevance of the three regions associated with mastocytosis were explored using 

RegulomeDB and HaploReg to see if the risk SNP or their proxies (r2 ≥0.8) were located in regions 

that might have regulatory functions based on alteration of transcription factor (TF) binding 

motifs, chromatin modification or DNA methylation profiles (Appendix Table A.8). Additional 

functional insights were gained by performing eQTL and mQTL analysis on the lead SNP and 

proxies using GTEx v8 and QTLbase (Carithers and Moore, 2015; Zheng et al., 2020). Lastly, SNPs 

were imputed and the stage 1 meta-analysis was repeated to fine map around the lead SNPs and 

generate association results for SNPs in high LD which had not been directly genotyped.  

 

The most significant SNP, rs4616402, is located in an intergenic region at chromosome 19q13.11 

between SLC7A10 (36.8Kb downstream), a solute carrier gene, and CEBPA (37.2kb downstream), a 

gene encoding a transcription factor that co-ordinates differentiation and proliferation of myeloid 

progenitor cells (Figure 3.1A). QTLbase analysis showed that that rs4616402 is strongly associated 

with CEBPA expression in blood cells in three independent eQTL studies (PeQTL=2.30×10-14; PeQTL= 

2.96×10-11; PeQTL= 9.20×10-9) (Lloyd-Jones et al., 2017; Võsa et al., 2018a; Westra et al., 2013). No 

additional SNPs were identified in high LD with rs4616402, but the RegulomeDB score for this SNP 

was 4, suggesting the possibility that it might have functional consequences. Specifically, the risk 

allele is predicted to alter three TF binding motifs (Arnt_1, Gm397 and Hmx_1, Appendix Table 

A.8). The chromatin structure surrounding rs4616402 shows an enrichment of H3K4me1 in 

primary haematopoietic stem cells, a histone mark (7_Enh) that is often associated with primed 

enhancers (Yao et al., 2020). No association between rs4616402 and expression of SLC7A10 was 

found and there is no published evidence to suggest that SLC7A10 has a role in the development 

or pathogenesis of cancer, including leukaemia. 

 

The second most significant SNP, rs4662380, is located in the first intron of LINC01412, a lincRNA 

gene (Figure 3.1B) at chromosome 2q22.3. This SNP increases the risk of developing mastocytosis 

by 1.46. Twelve other SNPs in LINC01412 were found to be in strong LD (r2>0.8) with rs4662380 

and were thus considered as proxies. Three of these are located in candidate enhancers (7_Enh: 

rs13413446, rs6722387, rs16823865) in primary haematopoietic stem cells and one (rs16823855) 

is located in the flanking region of an active transcription start site (2_TssAFlnk) in K562 cells 

(Table 3.3). The RegulomeDB scores suggest that two proxies affect binding of TFs; rs4662227 
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(score=2c) and rs13413446 (score=3a). The remaining proxy SNPs only had weak or no evidence 

for functional consequences. However, the GWAS catalog (Buniello et al., 2019) indicates that one 

of the proxies, rs16823866, has been strongly associated with white blood cell counts in two 

previous studies (P=4×10-18 and P=6×10-11) (Astle et al., 2016; Chen et al., 2020; Kanai et al., 2018). 

Lastly, QTLbase analysis indicated that the lead SNP rs4662380 (PeQTL=2.55×10-11) and four proxies 

including rs16823866 (PeQTL=2.55×10-11) were strongly associated with expression of a closely 

located gene, TEX41, in neutrophils (Chen et al., 2016).  

 

The third SNP, rs13077541, is located at chromosome 3q26.32 in an intergenic region between 

transducin beta like 1 X-linked receptor 1 (TBL1XR1, 10.6kb upstream) and another lncRNA gene 

(LINC00501, 86.5kb upstream) (Figure 3.1C). This SNP is associated with a 1.33-fold increase in the 

risk of developing mastocytosis. Fifty-three additional proxy SNPs were identified to be in strong 

LD (r2>0.8) with rs13077541, a number that includes 27 TBL1XR1 intronic SNPs (Appendix Table 

A.8). Eleven of these proxies are located in active region of chromatin, including three in 

transcription start sites (1_TssA: rs34302523, rs12493005, rs12486557) and two in the 5’ 

transcribed region (3_TxFlnk: rs34311793, rs35072945) in K562 cells. The RegulomeDB scores 

identified five proxies that are likely to affect TF binding (score2a-c: rs7616138, rs1920131, 

rs6790639, rs34302523 and rs6772872). Of these 5 SNPs, rs6790639 is particularly interesting, as 

the PU.1 TF, encoded by the Spi-1 proto-oncogene (SPI1), has been shown to bind to this region in 

K562 cells using chromatin immunoprecipitation analysis (Dunham et al., 2012). PU.1, together 

with other TFs, in known to regulate the expression of genes that are critical to myelopoiesis (Van 

Riel and Rosenbauer, 2014). Using QTLbase, the lead SNP (PeQTL=5.70×10-8) and one of the proxies, 

rs16823866 (PeQTL=9.52×10-9), were found to be strongly associated with TBL1XR1 expression in 

CD4+ naïve T cells (Chen et al., 2016). In addition, there is evidence for the lead SNP being an 

mQTL, supported by results from a study conducted on five independent European populations 

(Gaunt et al., 2016a), showing that rs13077541 is associated (p<1.03×10-13) with a specific CpG 

site (cg001132484, chr3:176916496, rs1025797382) in blood (Appendix Table A.10). cg001132484 

is located at the TBL1XR1 promoter, 2KB upstream TBL1XR1 and according to K562 methylation 

450K Bead Array data from the ENCODE project, this is a partially methylated (200 < methylation 

score < 600) CpG site (UCSC). LINC00501 has not been functionally described on LNCipedia 

database or CLC. 
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A SNP, rs58124832, yielding a suggestive association with mastocytosis was also investigated and 

the eQTL analysis indicated it to be strongly associated with the expression of both TPSAB1 

(PeQTL<1.9×10-58) and TPSB2 (tryptase-β2; PeQTL=1.96×10-75) in blood (Lloyd-Jones et al., 2017; Võsa 

et al., 2018b). 

3.3.2 Association with clinical features 

To determine whether the three significant SNPs associated with mastocytosis are also associated 

with particular clinical features, Fisher's exact tests and linear regression were used to correlate 

allelic counts with clinical phenotypes in the Spanish and Italian cohorts (Table 3.4). These were the 

only cases with available clinical information. A significant association was found between 

rs4616402 and age at presentation (n=422; P=0.009; beta=4.41) in patients with non-advanced 

disease (Table 2.1) that remained significant after correction for multiple testing. No association 

with age was seen in the much smaller group of cases (n=26) with advanced disease, and it is 

important to note that this a subgroup for which additional mutations may be a confounding factor. 

In cases with non-advanced disease, the age of onset was estimated to increase by 4.41 years per 

risk allele. No associations were found by comparing allelic counts with gender, skin lesions, 

baseline tryptase levels, or disease phenotype.  
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  Table 3.4 
A

ssociation betw
een the m

ost significant SN
Ps and clinical phenotypes in the Spanish and Italian cohorts. 

 
 

rs4662380 
rs13077541 

rs4616402 
Phenotype 

N
o Cases 

P value 
Effect size (CI) 

P value 
Effect size (CI) 

P value 
Effect size (CI) 

Initial diagnosis (indolent/advanced) 
422/26 

0.175 
0.58 (0.26–1.27) 

0.646 
0.88 (0.50–1.54) 

0.238 
0.60 (0.25–1.40) 

Sex (F/M
) 

235/214 
0.266 

1.18 (0.88–1.60) 
0.384 

1.12 (0.86–1.46) 
0.904 

1.03 (0.65–1.61) 
Skin lesions (+/−) 

275/122 
0.638 

1.08 (0.77–1.51) 
0.151 

0.81 (0.60–1.08) 
0.406 

1.23 (0.75–2.00) 
Age at diagnosis  

422 
0.668 

0.55 (−1.97–3.07) 
0.625 

0.67 (−2.02–3.35) 
0.009 

4.41 (1.09–7.73) 
Tryptase  

417 
0.452 

−0.08 (−0.29–0.13) 
0.136 

−0.17 (−0.39–0.05) 
0.249 

0.17 (−0.12–0.45) 
KIT

D816V M
utation burden 

109 
0.946 

−0.16 (−4.96–4.63) 
0.163 

3.43 (−1.41–8.28) 
0.648 

−1.47 (−7.88–4.93) 
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3.3.3 Gene-based test 

The gene-based analysis identified the vascular endothelial-derived growth factor C (VEGFC) gene 

as significantly (P-value=2.34 × 10-6) associated with mastocytosis (Figure 3.2). A further 8 genes 

were found with P-value < 0.001, with the most significant one being TPSAB1. In Table 3.5 the 

results are shown for the 20 most significant genes. Input SNPs were mapped to 19,540 protein 

coding genes. The Bonferroni adjusted P-value of 2.559 × 10-6 was used after correcting for 

multiple testing; i.e. only VEGFC was significant after the multiple testing correction. At stage 1, 

the most significant SNP mapping to VEGFC is rs6820170 (P-value  = 9.3×10-7, P-valuemeta= 1.69×10-

4; Appendix Table A.6), which is located in an intronic region (Figure 3.3). This signal is supported 

by 10 other SNPs in the clump (P <0.001). rs6820170 was tested at stage 2 but failed to replicate 

in the Spanish (P-value=0.65), Danish (P-value=0.44) and Italian cohorts (P-value=0.15). The 

second most significant SNP in the clump (P-value = 1.58×10-6), rs11131764, is intergenic and was 

selected as a backup signal, however it failed genotyping at stage 2. Sixty three additional proxy 

SNPs were in strong LD (r2>0.8) with rs6820170 (Appendix Table A.9). Of these, ten proxies had a 

RegulomeDB score of 2b (rs4146612, rs13132761) and 3a (rs3822038, rs1692787, rs1471813, 

rs1995083, rs2877967, rs7694268, rs2333530, rs3755972), suggesting that they could affect 

protein binding (Table 3.3). The lead SNP is predicted to alter two TF binding motifs (Hbp1; 

PRDM1_known1). The chromatin structure surrounding rs3755972, one of the SNPs in strong LD 

(r2=0.89), shows an enrichment of H3K4me3 in primary haematopoietic stem cells, a mark which 

is often associated with promoter regions (Heintzman et al., 2007; Igolkina et al., 2019), and a 

bivalent enhancer (Table 3.2) characterised by two histone marks that can be associated with 

both activation or repression of transcriptional events, both of which are crucial during cell 

differentiation (Blanco et al., 2020). One SNP rs13122901 is in strong LD (r2=0.91) with the lead 

SNP, and in the stage 1 meta-analysis of the imputed data it surpassed the genome-wide 

significance (P-value = 1.37 × 10-12). QTLbase analysis showed that the lead SNP is strongly 

associated with chr4:177628507-177628507 methylation in blood (P-valuemQTL=3.1×10-6) (McClay 

et al., 2015). An association between rs6820170 and VEGFC expression is only detected in the 

thyroid (GTEx2015_v6).  
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Table 3.5 Results for gene-based association with mastocytosis. 

CHR START STOP N SNPS N PARAM N P GENE 
4 177594689 177723881 15 3 8959 2.34×10-6 VEGFC 

16 1280697 1302555 3 2 8101 0.00023405 TPSAB1 
12 21907889 21938515 1 1 9918 0.0004032 KCNJ8 

6 111398781 111562397 15 3 9555 0.00047077 SLC16A10 
4 79798281 79870592 2 1 9918 0.00073203 PAQR3 
5 179068298 179089445 1 1 4468 0.0007667 AC136604.1 

19 4219495 4247528 4 1 9918 0.00084005 EBI3 
19 35605417 35643355 12 3 9918 0.00094844 LGI4 

5 133474633 133522729 5 3 8828 0.00097557 SKP1 
20 5272317 5307378 20 4 9373 0.0010449 PROKR2 

5 1307859 1355214 11 2 9016 0.0010621 CLPTM1L 
23 135034229 135066222 6 1 9918 0.0011011 MMGT1 

3 31689382 32129072 128 42 8613 0.0011201 OSBPL10 
7 140362953 140406061 9 2 9918 0.001205 ADCK2 
6 111570551 111602370 5 2 9918 0.0012344 KIAA1919 
1 182859000 182932660 5 2 7934 0.0013396 SHCBP1L 

11 93201638 93286674 28 8 7972 0.0016447 SMCO4 
14 23379720 23408794 5 1 9918 0.0018362 PRMT5 
19 45302328 45334673 8 4 9918 0.0019452 BCAM 
14 23430383 23461851 4 2 9918 0.0020915 AJUBA 

CHR: Chromosome; START/STOP: Gene boundaries annotated on build hg19; N SNPS: Number of SNPs 
mapping the gene including SNPs that are in 10Kb window both directions; N PARAM: Number of relevant 
parameters used in the model; N: Sample size used for analysing the gene; P: The gene P-value computed 
using MAGMA; GENE: Gene name. 
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Figure 3.2 
Results of the gene-based associations of KIT

D816V-positive m
astocytosis. 
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Figure 3.3 Regional plot of the imputed stage 1 meta-analysis for VEGFC SNPs selected for 

stage 2. 

Results from stage 1 meta-analysis using imputed SNPs in regions surrounding the VEGFC 
signals. The lead SNP (rs6820170) is identified by a red circle and the purple circle indicates 
the backup SNP (rs13122901). The colours of other SNPs represent the strength of LD (r2) with 
the lead SNP as indicated by the key. The most significant SNP is also labelled rs11131764 and 
the colour shows that it is in strong LD (r2>0.8) with the index SNP. Protein coding genes and 
non-coding genes are shown in the lower track with arrows to indicate the direction of 
transcription, and thick lines represent the location of exons. The bottom of the panel shows 
the 15 state chromatin track (chromHMM) in primary haematopoietic stem cells (E035) and 
K562 cells using data from the NIH Roadmap Epigenomics Consortium (Kundaje et al., 2015). 
Physical positions relate to build 37 (hg19) of the human genome. At the bottom left of the 
figure the colour of each candidate state is indicated, followed by a chromatin state 
description. 
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3.4 Discussion 

In theory, common inherited genetic variation might influence the development and diagnosis of 

mastocytosis by a number of different mechanisms. First, genetic variation could promote or 

favour the outgrowth of a KITD816V-positive clone that arose by random mutation in a 

haematopoietic stem cell (fertile ground hypothesis). Second, it might increase the probability of 

a KITD816V mutation arising in a stem cell, possibly as a consequence of a generally increased 

mutation rate (hypermutability hypothesis). Third, it might promote or exacerbate the 

development of clinical symptoms such as rash, itching or abnormal blood counts in a patient with 

a KITD816V-positive clone, thereby increasing the chance that the patient might seek medical help 

(phenotypic hypothesis). These potential mechanisms are considered below for each association. 

 

Focusing on the three significant SNPs identified associated with mastocytosis, the strongest 

association was found for rs4616402 at chromosome 19q13. Interestingly, this SNP was 

associated with age at diagnosis for patients with non-advanced disease. rs4616402 is located in a 

predicted enhancer, and the risk allele is associated with lower expression of CEBPA (Lloyd-Jones 

et al., 2017), which is located 37.3kb upstream. Another SNP at 19q13, rs78744187, has been 

linked to basophil counts in a previous study and also been shown to affect the activity of another 

CEBPA enhancer (Guo et al., 2017), but this variant is in weak LD (r2 = 0.22) with rs4616402 

(Arnold et al., 2015) and therefore cannot account for the association observed in this study. Of 

potential relevance, high C/EBPα expression is known to inhibit the generation of mast cells from 

mast/basophil common progenitors, while low C/EBPα expression inhibits the generation of 

basophils (Bick et al., 2020). Although the consequence of different expression levels of C/EBPα in 

the presence of KITD816V remains to be defined experimentally, it is plausible that reduced CEBPA 

expression linked to the rs4616402 risk allele may be relevant to both the fertile ground and 

phenotypic hypotheses defined above by promoting a cellular environment that favours mast cell 

production. Low CEBPA expression is a common feature of AML, although the underlying 

mechanism is unclear (Avellino and Delwel, 2017). Potentially, rs4616402 might be relevant to 

this observation and it would be interesting to genotype this SNP in AML and relate the findings to 

CEBPA expression. Overall, it is clear that detailed functional studies are required to understand 

the relationship between KITD816V-driven mastocytosis and CEBPA expression. 

 

The second most significant SNP, rs4662380, at chromosome 2q22.3, is associated with elevated 

expression of the nearby lncRNA TEX41. The role of TEX41 in promoting tumour progression has 
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been described in other human cancers (Li et al., 2018; Yang et al., 2019) although the mechanism 

is not understood. For the first time, we have associated TEX41 with myeloid cancer, however the 

functional involvement of TEX41 in mastocytosis is not clear and needs to be investigated.  

 

ZEB2 is another nearby gene but no association was found between rs4662380 and ZEB2 

expression. It is important to note that mRNA expression does not always reflect protein 

abundance. Identifying pQTLs also becomes necessary for understanding the direct effect of 

genetic variants on protein abundance (Robins et al., 2021). In fact, Robins et al., after comparing 

eQTLs and pQTLs in the brain, identified an overlap between pQTLs and eQTLs but not vice versa. 

Interestingly, similar results were also reported in human blood, making this evidence more 

generalisable to other tissues and cell types (Emilsson et al., 2018; Sun et al., 2018).  

 

In another study, rs16823866, a SNP in LD with rs4662380 (r2 = 0.99), was associated with 

elevated white blood cells and specifically with elevated basophil counts in three independent 

population-based studies (Astle et al., 2016; Kanai et al., 2018; Vuckovic et al., 2020). Mast cells 

and basophils are highly related, with basophils being found mainly in the peripheral blood 

whereas mast cells are resident within tissues. Although the mechanism underlying this 

association is unclear, this finding suggests that an association between rs4662380 and 

mastocytosis may be relevant to the phenotypic hypothesis, since individuals with abnormal 

blood counts may be more likely to be investigated clinically.  

 

The risk allele for the third SNP, rs13077541, at chromosome 3q26.32, is linked to reduced 

expression of TBL1XR1 (Chen et al., 2016). The same SNP is also significantly related to the 

methylation level of a specific CpG site (cg001132484, chr3:176916496, rs1025797382) located at 

the TBL1XR1 promoter (Gaunt et al., 2016b), suggesting that change in gene expression could be 

affected by methylation of this site. This gene fuses to PDGFRB, ROS1, RARA and RARB as a 

consequence of rare chromosomal translocations in myeloid malignancies (Campregher et al., 

2017; Murakami et al., 2018; Osumi et al., 2018) but the significance of altered expression in 

relation to mastocytosis remains to be established. 
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MAGMA, a gene-based association method widely used with GWAS summary statistics (Marioni 

et al., 2018), was applied to the stage 1 mastocytosis GWAS to combine stage 1 association 

statistics from all SNPs within a gene (de Leeuw et al., 2015). Following this statistical analysis, 

VEGFC was the only significant gene after Bonferroni correction (P-value of 2.6 × 10-6). Two SNPs 

mapping VEGFC were selected for replication. The most significant SNP in VEGFC (P-value = 

9.3×10-7, P-valuemeta= 1.69×10-4; Appendix Table A.6), rs6820170, was tested at stage 2 but failed 

to replicate in the Spanish (P-value = 0.65), Danish (P-value = 0.44) and Italian (P-value = 0.15) 

cohorts. This could be due to a number of reasons such as a lack of power at stage 2, or 

heterogeneity between cohorts. Therefore, it does not rule out the stage 1 result and this signal 

should be tested in other independent cohorts. 

 

VEGFs are members of a family of proteins (e.g. VEGFA, VEGFB, VEGFC, VEGFD, VEGFE) that are 

very important in vasculogenesis and angiogenesis; VEGFC and VEGFD are known to be mainly 

involved in lymphangiogenesis in hyperplasia of the skin (Apte et al., 2019; Jeltsch et al., 1997). In 

the last 20 years, the role of VEGFs in the pathogenesis of cancer and non-malignant disorders 

such as ophthalmic diseases has become clear, since the continuous growth of blood vessels 

carrying nutrients is crucial to maintain homeostasis within the tissue environment (Apte et al., 

2019). Interestingly, a study conducted with 64 mastocytosis cases and 64 healthy controls 

evaluated the serum concentration of three VEGFs and identified that both VEGFA and VEGFC 

levels were significantly higher in mastocytosis patients. VEGFD did not show the same pattern 

(Marcella et al., 2021). Whether elevated VEGF levels are a cause or consequence of mastocytosis, 

and whether SNP genotype within VEGFC is linked to expression levels in serum should be 

investigated further. 

 

Mast cell activation followed by degranulation leads to the release of several bioactive molecules, 

including histamine, tryptase and proinflammatory cytokines (Frenzel and Hermine, 2013). A 

GWAS was performed in relation to levels of circulating cytokines and growth factors to gain 

insight into inflammatory diseases that might share common causal pathways and underlying 

pathology. Ahola-Olli et al. identified a SNP, rs6921438, in the VEGFA locus associated with 

concentration of five cytokines (VEGF, IL-7, IL-12p70, IL-10 and IL-13) (Ahola-Olli et al., 2017). 

Another GWAS in a European population also identified the same lead SNP, rs6921438 (P-

value=6.11×10-506), associated with circulating VEGF levels (Debette et al., 2011). Conditional 

analysis on rs6921438 identified another SNP in the same locus, rs12214617, located in the 

promoter flanking region of VEGFA, which suggests a potential role in regulation of transcription. 

The role of VEGF as an upstream regulator has been supported by Mendelian randomisation 
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performed using both SNPs (Ahola-Olli et al., 2017). Particularly interesting in relation to 

mastocytosis is the association identified between IL-13 and VEGFA and the role that IL-13 could 

play in the pathogenesis of mastocytosis. As described in Chapter 2 (see 2.3.15), rs1800925 at IL-

13 was linked to mastocytosis in a previous study and this link was supported by my stage 1 

analysis (Table 2.11). 

 

The statistical analyses conducted with mastocytosis patients identified significant associations 

with tryptase alpha/beta-1 (TPSAB1) and tryptase beta-2 (TPSB2), two genes located at 16p13.3, a 

region known as the human tryptase locus. The GWAS identified a suggestive association between 

rs58124832 and mastocytosis. The eQTL analysis revealed this locus to be associated with the 

gene expression level for TPSAB1 and TPSB2. The association between TPSAB1 and mastocytosis 

was also revealed from the gene-based analysis. TPSAB1 and TPSB2 encode serine protease 

produced largely by mast cells. While TPSAB1 only encodes the a-tryptase, both TPSAB1 and 

TPSB2 encode the b-tryptase (Schwartz et al., 1981). Levels of BST >20 ng/mL represent one of 

the minor diagnostic criteria for SM that were confirmed by the WHO in 2008 and updated in 

2016 (Valent et al., 2017a). However, this is not always the case. Elevated BST level in association 

with clinical features (e.g., gastrointestinal and cutaneous symptoms) are seen in 4–6% of the 

general population with no mastocytosis or mast cell activation. A study performed in 35 families 

linked TPSAB1 duplication and triplication to a significant increase in BST level. The correlation 

between phenotype and gene dose, an inherited phenotype known as hereditary 

a-tryptasaemia, was demonstrated by designing a digital droplet polymerase chain reaction 

(ddPCR) genotyping assay to identify duplication or triplication of a-tryptase (Lyons et al., 2018). 

In mastocytosis, an increased BST level reflects the increased mast cell burden in mastocytosis 

patients (Schwartz et al., 1995). Another study, consistent with Lyons et al., used the ddPCR assay 

to assess the TPSAB1 CNV and compare with tryptase levels in mastocytosis patients. They 

showed that the prevalence of hereditary a-tryptasaemia and associated BST levels were 

significantly higher in mastocytosis cases compared to control cohorts. After demonstrating the 

correlation between TPSAB1 CNV and mastocytosis, TPSAB1 CNV was proposed as a novel genetic 

biomarker to predict the risk of severe anaphylaxis in patients with mastocytosis (Greiner et al., 

2021).  

 

In my analysis, a SNP located in the exonic region of CACNA1H, rs58124832, reached a suggestive 

level of significance after meta-analysis. This SNP is part of a haplotype that co-segregates with 
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the TPSAB1 CNV in Caucasian families (Lyons et al., 2018) and is strongly associated with higher 

expression of both TPSAB1 and TPSB2 (Lloyd-Jones et al., 2017; Võsa et al., 2018b). Interestingly, 

TPSAB1 is also the second most significant gene (P-value=2.3×10-4) identified from my gene-based 

test analysis. However, it did not retain significance after correcting for multiple testing, and thus 

this result must be confirmed in an independent cohort with genome-wide genotyping. These 

results need to be investigated further to understand the functional involvement of TPSAB1 in 

modulating disease severity in mastocytosis, and potentially to identify therapeutic approaches to 

modulate the α-tryptase-dependent response. Although the TPSAB1 CNV is associated with 

disease severity in mastocytosis (Greiner et al., 2021), it seems likely that elevated BST levels 

associated with the CNV are also related to the phenotypic hypothesis since patients with high 

BST may be more likely to be investigated for KITD816V and/or be diagnosed with mastocytosis. 
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Chapter 4 Identification of genetic targets of acquired 

uniparental disomy 

4.1 Introduction 

Uniparental disomy (UPD), described in 1980 by Engel, is usually associated with congenital 

abnormalities and arises when two copies of a chromosome or part of a chromosome are 

inherited from one parent (Engel, 1980). However, UPD can be somatically acquired (aUPD) 

through mitotic recombination or non-disjunction errors (Figure 1.3) and is strongly associated 

with the presence of cancer driver mutations in the affected region (Tuna et al., 2009). It is 

believed that an initial somatically acquired driver mutation promotes clonal expansion, but 

subsequent aUPD converts this mutation to a homozygous state which then confers an additional 

clonal advantage. Array based studies have indicated that aUPD is widespread in cancer, including 

up to 30% of cases of myeloid malignancy. Specific gene targets have been identified for the most 

common recurrent regions, for example JAK2 mutations are associated with aUPD of the short 

arm of chromosome 9 (9p), TET2 mutations with aUPD 4q, EZH2 mutations with aUPD7q, CBL 

mutations with aUPD 11q and several others (Chase et al., 2015; Ernst et al., 2010; Grand et al., 

2009; Kralovics et al., 2002; Langemeijer et al., 2009; Massé et al., 2009; Mohamedali et al., 2009; 

Nikoloski et al., 2010; O’Keefe et al., 2010; Raghavan et al., 2008; Score and Cross, 2012; Tiedt et 

al., 2005; Wang et al., 2016). However, there are other regions for which the genetic targets have 

not been identified. Thus, I hypothesise that better definition of recurrent aUPD in myeloid 

disorders will help to identify regions of the genome that harbour novel cancer driver genes. 

 

Myeloid neoplasms are relatively uncommon and SNP array analysis of large numbers of 

individuals is expensive. However SNP microarray data from diverse GWAS using DNA extracted 

from blood cells have identified mosaic abnormalities such as aUPD in individuals unselected for 

haematological malignancies (Jacobs et al., 2012; Laurie et al., 2012). These studies were 

extended by WES analysis of 29,562 individuals with the finding that somatically acquired myeloid 

driver mutations (particularly DNMT3A, TET2 and ASXL1) are unexpectedly common in the 

population at large (Genovese et al., 2014; Jaiswal et al., 2014). Although aUPD occurs at a lower 

frequency in these individuals it has been shown to increase with age (only 1% in individuals less 

than 50 years, 2-3% in individuals over 50 years old and 10% in the elderly aged 65 and older) 

(Genovese et al., 2014; Jacobs et al., 2012; Laurie et al., 2012). Furthermore, clonal mosaicism in 
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the elderly is associated with a tenfold increased risk of developing haematological cancer and 

these regions of aUPD and the underlying somatic mutation are the same as those identified in 

both mature B-cell neoplasms and myeloid malignancies (Laurie et al., 2012). Owing to these 

features, aUPD in apparently healthy individuals is now recognized as a specific condition which is 

termed CHIP or ARCH (Genovese et al., 2014; Jacobs et al., 2012; Laurie et al., 2012). Increasingly 

large publicly available datasets of WES and WGS data derived from blood cells are also being 

accumulated which can be interrogated directly for aUPD and mutations. I propose to exploit such 

datasets to identify regions of aUPD and associated genetic targets. 

 

As a proof of principle, the Cross/Tapper research group identified five cases with aUPD22q, of 

which three cases had a known myeloid malignancy and two were identified from a Swedish 

population-based study of elderly men. WES analysis identified a novel gene, PRR14L, as the target 

of aUPD22q. Although the function of PRR14L is still unknown, functional studies suggested its 

involvement in cell division (Chase et al., 2019). 

 

Although aUPD is predominantly associated with somatic mutations in specific genes, other 

mechanisms have been described. The Cross/Tapper research group identified a minimal 

recurrent region of aUPD involving 11.2 Mb on chromosome 14q which contained an imprinted 

region (DLK1-MEG3). WES failed to identify any recurrently mutated genes in affected individuals 

but testing the DLK1-MEG3 methylation status in cases with aUPD14q in blood cells showed an 

increase in methylation, which is associated with the gain of the paternal chromosome, and 

demonstrated for the first time that aUPD14q can target an imprinted locus and can promote clonal 

haemopoiesis either as an initiating event or as a secondary change (Chase et al., 2015). This 

represents the first imprinted locus targeted by both somatically acquired UPD as well as 

constitutional UPD in association with the developmental disorders Temple syndrome and 

Kagami-Ogata syndrome. 

 

Another study has demonstrated that aUPD may be associated with the loss of a deleterious 

germline variant. Specifically, two families with cytopenia and predisposition to MDS showed the 

coexistence of rare (0.00003% of frequency reported in the Genome Aggregation database 

(gnomAD)) inherited mutations and aUPD. Germ line gain-of-function heterozygous mutations 

were identified on SAMD9L a tumour suppressor gene located at chromosome 7q. Mutated 

SAMDL9 is associated with impaired haemopoiesis; UPD7q in this context leads to clonal 



Chapter 4 

107 

 

restoration of homozygous wild type SAMDL9 with a selective advantage over the mutant 

background (Tesi et al., 2017).  

 

To test the hypothesis that large population cohorts which are unselected for haematological 

malignancies can be used to identify recurrent regions of aUPD and associated mutations, I have 

focused on WES data obtained from the UK Biobank (Van Hout et al., 2020) and a Swedish case 

control study of Schizophrenia (Purcell et al., 2014) consisting of 49,996 and 12,380 individuals 

respectively. The UK Biobank dataset was used to develop a step-wise method for identifying 

aUPD from WES data based on extended regions of AI that were detected using B allele frequency 

(BAF) segmentation (Staaf et al., 2008). The Biobank data are ideal for method development due 

to the availability of both WES and array based genotype data, which are optimal for BAF 

segmentation and have previously been used to identify aUPD (Dawoud et al., 2020). These array-

based aUPD calls were used for comparison. The Schizophrenia data were used for further 

validation of the method and were selected as an exemplar WES cohort as (i) the study group was 

unselected for haematological disorders, (ii) DNA from peripheral blood cells was used for 

analysis, and (iii) the median age of the study was relatively old at 65 years and this would be 

expected to be enriched in clonal abnormalities compared to younger populations. The specific 

aims of this work are to develop a method for identifying regions of likely aUPD using WES data 

and identify candidate mutated genes in the affected regions that could be responsible for the 

development of myeloid malignancies and associated with clonal proliferation. The final analysis 

was focused on known genes with relatively frequent mutations, specifically MPL, TET2, EZH2, 

JAK2 and FLT3 mutations as well as exploring the possibility of discovering new aUPD regions 

overlapping in multiple samples.  

 

4.2 Materials and Methods 

4.2.1 The data sample 

The large-scale cohort used for the analysis of aUPD regions comes from the Sweden- 

Schizophrenia Population-Based Case-Control Exome Sequencing study (dbGaP Study Accession: 

phs000473.v2.p2). The dataset is publicly available through the Database of Genotypes and 

Phenotypes (dbGaP, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000473.v2.p2) distributing genotype datasets from studies which 
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investigate the interaction between genotypes and phenotypes (Mailman et al., 2007) and 

developed by the National Center for Biotechnology Information (NCBI, 

https://www.ncbi.nlm.nih.gov/). The second version of Sweden- Schizophrenia Population-Based 

Case-Control cohort used for this study was released in October 2016 and in this report, I will 

refer to this cohort as Schizo-WES02. Details of the schizophrenia data had been described 

previously and a brief description is here provided (Ganna et al., 2016; Purcell et al., 2014; Ripke et 

al., 2013). The peripheral blood (PB) sampling of 12,380 subjects (6,135 cases and 6,245 controls) 

aged between 19 and 93 years old (mean age 65) took place between 2005 and 2013 (Genovese et 

al., 2014) and were selected either from the Swedish National Hospital Discharge Register or from 

Swedish population registers. 

 

The UK Biobank (UKB) is an open access resource available to the scientific community that wish 

to conduct health-related research studies for a wide range of diseases and without establishing 

collaborations. This large population-based prospective study combines baseline, genotypic and 

phenotypic data from 500,000 participants aged between 40-69 (mean age 56.5), recruited 

between 2006 and 2010 and assessed in 22 centres in the UK (Sudlow et al., 2015). The UKB 

contains different sources of genetic data: 1) genome-wide array based genotyping performed on 

all UKB participant and in coordinates relative to GRCh37, this data has allowed novel discoveries 

though population genetic analyses (Bycroft et al., 2018); 2) whole exome sequencing (WES) is 

performed on 49,997 participants and in coordinates relative to GRCh38. These participants are 

prioritized because of more complete phenotype data and are available since March 2019. One 

sample was removed because it did not have enough DNA for sequencing. Data for an additional 

150,000 participants was made available in October 2020, after starting this analysis. For this 

reason, WES data of the first released 50,000 samples were used for this research project and in 

this thesis this cohort will be referred to as UKB-WES50. 

 

Initially, an exemplar dataset consisting of 120 samples from the UKB-WES50 were selected for 

method development. According to the matched array data these samples included 17 with aUPD 

(chr2=1; chr6=4; chr9=9; chr13=2; chr17=1) and 40 with the somatic JAK2V617F mutation, which are 

more likely to have 9p aUPD. Most of the exemplar samples were free from all types of cancer 

(n=64) while 35 were diagnosed with a haematological malignancy and 21 were diagnosed with 

other types of cancer.  
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4.2.2 Whole-Exome Sequencing 

Whole-Exome Sequencing is a NGS technique to capture the whole exonic sequences in the 

genome that are involved in coding for proteins. Following the drop of sequencing costs, WES 

data have been produced in numerous genetic studies, for which array-based genotyping were 

previously available. In the context of aUPD analysis, WES data is expected to be more useful than 

SNP array data because it should enable researchers to investigate somatic mutations in specific 

genes associated with regions of aUPD. 

 

Sequencing, alignment and variant calling of the Swedish-WES02 cohort were all performed at the 

Broad Institute. The samples were sequenced using either the Agilent SureSelect Human All Exon 

Kit targeting 29 Mb of the human genome or the Agilent SureSelect Human All Exon v.2 Kit 

targeting 33 Mb of the human genome. Sequencing was performed on IlluminaGAII, Illumina 

HiSeq2000 or Illumina HiSeq X Ten instruments, with pair ended sequencing reads of 75 base pairs 

and mean target coverage of 90x (Ganna et al., 2016). After completing the sequencing step, the 

Picard/Burrows-Wheeler Aligner (BWA)/ Genome Analysis Toolkit (GATK) pipeline was used to 

analyse the raw read data (BAM file). During alignment, a bioinformatic tool called Picard 

(http://broadinstitute.github.io/picard/) was used to perform data pre-processing and 

intermediate analyses (manipulation of FASTQ and SAM files, marking duplicate reads, filtering, 

sorting). BWA is another bioinformatic tool used during the alignment to map reads against the 

reference human genome (version GRCh37) and generate outputs in the Sequence Alignment 

Map (SAM) format (Li and Durbin, 2009; Teo et al., 2007). For the downstream analysis, GATK tool 

was used to process the SAM files and calling variants (Depristo et al., 2011) in the Variant Call File 

(VCF) format (Danecek et al., 2011). Variant calls were made on the entire sample creating a 

single multi-sample VCF that, following relevant approvals, was downloaded from the online 

dbGaP through Aspera Connect v3.6.2 and NCBI SRA Toolkit. 

 

The UKB-WES50 VCFs were released in March 2019, and were pre-processed by Regeneron 

Genetics Center and GlaxoSmithKline using two protocols, Functional Equivalence (FE) (Regier et 

al., 2018) and Regeneron Seal Point Balinese (SPB) (Van Hout et al., 2020). In August 2019, the 

UKB reported an issue in marking duplicate reads, this was only limited to the exome data 

processed with the SPB pipeline. Therefore, for this analysis that started in November 2019, only 

the data produced using the FE pipeline was used (http://www.ukbiobank.ac.uk/wp-
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content/uploads/2019/08/UKB-50k-Exome-Sequencing-Data-Release-July-2019-FAQs.pdf). 

Genomic DNA samples were transferred from the UKB to the Regeneron Genetics Center and 

stored at -80 C prior to sample preparation. Exome capture was performed using a fully-

automated approach developed at the Regeneron Genetics Center. A slightly modified version of 

IDT’s xGen probe library was used and supplemental probes were added to capture regions of the 

genome poorly covered by the standard xGen probes. In total, 39 Mbp of the human genome 

(19,396 genes) were included in the targeted regions. The multiplexed samples were sequenced 

using 75 bp paired-end reads with two 10 bp index reads on the Illumina NovaSeq 6000 platform 

using S2 flow cells. Complete sequencing protocols are described in detail by the summary 

manuscript (Van Hout et al., 2020). Following the completion of sequencing, raw data were 

converted into FASTQ files using the DNAnexus platform. During the alignment, BWA-mem was 

used to align the FASTQ-formatted reads to the GRCh38 reference human genome in the BAM file 

(Li and Durbin, 2009), Picard MarkDuplicates tool was used to flag duplicate reads. GATK 3.0 was 

used for the variant calling and a gVCF was generated for each sample. Then files were subject to 

hard filtering of variants with inbreeding coefficient<-0.03 or without at least one variant 

genotype of DP≥10, GQ≥20 and, if heterozygous, AB≥0.20 

(http://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170). 

4.2.3 Variant Quality Score Recalibration  

Variant Quality Score Recalibration (VQSR) was used to improve the accuracy of the confidence 

score for each variant in the WES VCFs. An automated pipeline was developed to prepare the 

UKB-WES50 data and apply VQSR. Initially the gVCFs were indexed using IndexFeatureFile 

(McKenna et al., 2010). The single sample gVCFs were loaded into a datastore using 

GenomicDBImport, then GenotypeGVCFs was used to generate multi-sample VCFs in which all 

samples have been jointly genotyped (Auwera et al., 2014). The process of merging generated 

batches of 100 samples, except for the last batches which contained 174 and 122 samples. A total 

of 499 multi-sample VCF files were generated. The VQSR was performed separately for SNPs and 

indels. The recalibrated scores were then used to exclude low quality variants by applying a 

minimum threshold of phred>=20 for both SNPs and indels which is equivalent to 1% chance of 

error. These settings are in-line with the GATK best practice guidelines which recommended 

applying VQSR on at least 30 WES samples so that there are enough variant sites to apply the 

Gaussian mixture model. 

 

To efficiently manage file preparation and VQSR on such a large number of VCFs, job arrays and 

dependencies were used to submit a maximum of 64 simultaneous jobs to the university’s high 
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performance computer (HPC, IRIDIS4). To avoid interference between the parallel jobs, an empty 

directory with a unique name was generated for each job that was used as the workspace for 

GenomicsDBImport. 

4.2.4 WES data processing 

Having created multi-sample VCFs and performed VQSR, the next steps were to extract the data 

into single-sample VCFs, perform QC filtering and to generate the input files for BAF segmentation 

software (Staaf et al., 2008) that was used to identify regions of AI. BCFtools (Danecek et al., 

2021) was used to extract single sample VCFs, to annotate variants’ name based on the 

information from dbSNP build 151 (available from https://ftp.ncbi.nlm.nih.gov/snp/organisms/) 

and to apply the QC measures aimed at excluding variants that were: mitochondrial, had missing 

genotypes, had a mean depth (DP) less than 10, quality score (Qual) less than 20, a recalibrated 

quality score less than 20, minor allele frequency less than 1%. Filtered VCFs were compressed 

using BGZip and indexed with Tabix, which is a standard way to store VCFs to aid efficient 

manipulation  (Li, 2011). Finally, input files for BAF segmentation were generated using VCFtools 

(Danecek et al., 2011) to extract the allelic depth (AD), genotype (GT) and rsID for each variant in 

the filtered VCFs. Variants without an rsID were named according to their genomic location 

(chr:position) using a custom python script (mkVAF.py). It is widely reported in the literature that 

genotypes generated in WES data can be prone to higher level of genotyping errors compared to 

array-based technologies (Carson et al., 2014; Koboldt et al., 2010; Ledergerber and Dessimoz, 

2011; Nielsen et al., 2011). Studies have also demonstrated that variants with these type of errors 

may remain after applying GATK’s VQSR filter (Van der Auwera and O’Connor, 2020; O’Rawe et 

al., 2013). To address this issue the mkVAF.py script was used to check the AD and GT variables 

and remove false positives that were incorrectly called as heterozygous (0/1 and 1/2) or 

homozygous (0/0 and 1/1) in the absence of reads supporting either the reference or alternate 

alleles. Variants were removed if their genotype information was discordant with the AD number 

supporting either the reference or alternate allele. Furthermore, the python script checks for 

multiple entries at the same location and excludes duplicate variants. As shown at the bottom of 

Figure 4.1, the generated input file contains four columns: marker name, chromosome, base pair 

location and variant allele frequency (VAF=A/D, where A is the number of reads with the alternate 

allele and D is the total depth). The input for BAF segmentation usually contains a measure of 

copy number for each variant which can be used to categorise AI regions as either copy number 

gain, loss or copy number neutral (aUPD). In SNP-array data, copy number is measured by the log 

R ratio (LRR) which compares observed and reference probe intensities [log2(observed 

intensity/reference intensity)]. The same calculation of LRR is not possible for unpaired sequence 
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data although copy number could be determined in these samples by comparing sequencing depth 

from the Binary Alignment/Map (BAM) file with reference regions from elsewhere in the exome 

(Straver et al., 2017). However, at this stage of the study, alignment file in BAM format were not 

available for CNV classification. 

 

Figure 4.1 Automated pipeline to process WES data.The flowchart outlines all the steps performed 
to process the WES data and generate input files for BAF segmentation: data collection; if VQSR method has 
not been applied to the data, the variant recalibration procedure was applied to produce recalibrated files 
in multi-VCF format; the extraction of the single sample VCF for each individual of the study; the SNP tag 
annotation was added to the VCF file; the filtering of the VCF; the extraction of SNP tag and AD from the 
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VCF file; VCF file info are then used from the python program (mkVAF.py) to generate the input file for BAF 
segmentation where each row contains information for different variants. 

4.2.5 Run BAF segmentation using WES data 

BAF segmentation (Staaf et al., 2008), a method for identifying regions of AI from B allele 

frequencies (BAF) obtained from SNP array genotyping, was used and described in chapter 2 

(Section 2.2.11). However, for this work WES datasets were used to extract and store the B allele 

frequencies (referred to as VAF) in files generated from the automated pipeline (Figure 4.1). 

These input files were run through the BAF segmentation program to identify AI regions in the 

WES data. The raw outputs are saved in a text file which uses five features to define the 

segmented AI regions detected, these features are described in Table 4.1. 

 

Table 4.1 Features to define a segmented AI region. 

Feature by BAF seg Description 

No. of informative SNPs The number of SNPs with an mBAF value < 0.9 and > mBAF 
threshold 

Total No. of SNPs Total number of SNPs after triplet filter is applied and non-
informative SNPs are removed 

mBAF Mirrored BAF data along the 0.5 axis 
Heterozygosity rate The heterozygosity rate for each AI region 
Size Size of the AI region in bp 

The table lists five AI-characterizing features and their description. The number of informative SNPs can be 
the same as or a fraction of the total number of SNPs. Therefore, during the data processing was checked 
that the number of informative SNPs was less than or equal to the total number of SNPs. 

 

4.2.5.1 High and low stringency settings 

BAF segmentation provides several parameters that can be used to alter the stringency of quality 

control and sensitivity of AI detection. To optimise this tool for application to sequencing data, 

the exemplar UK Biobank data (n=120) were analysed using high and low stringency settings 

(Table 4.2). 

Table 4.2 BAF segmentation settings. 

BAF segmentation 
parameters used/default 
value 

Description of the parameters Low stringency 
settings 

High stringency 
settings 

--ai_threshold/0.56 mBAF threshold for calling 
regions of AI based on segmented 
mBAF values. 

0.6 0.65 
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BAF segmentation 
parameters used/default 
value 

Description of the parameters Low stringency 
settings 

High stringency 
settings 

--non_informative/0.97 mBAF threshold for removing 
putatively non-informative 
homozygous SNPs. 

0.9 0.9 

--triplet/0.8 Threshold for triplet filtering used 
to improve removal of putatively 
non-informative homozygous 
SNP. 

0.6 0.6 

--ai_size/4 Minimal number of SNPs a 
segmented region should contain 
in order to be called as AI. 
Segments with less numbers of 
SNPs are removed from further 
analysis. 

4 (Default) 10 

BAF segmentation parameters applied to the WES data and their description. The two columns on the right 
show the low and high stringency settings used in this work. 

 

To evaluate sensitivity and specificity of the proposed settings, the results obtained with BAF 

segmentation were cross-validated against the array results for the same 120 samples. The BAF 

segmentation results obtained from the genome-wide array data on the UK Biobank participants 

are publicly available (Dawoud et al., 2020), and were used for this project to understand how 

well results from the exome analysis agree with the SNP-array results. Overlaps between the WES 

and SNP array results were identified using bedtools intersect (Quinlan and Hall, 2010) and 

samples with AI regions that overlapped by at least 2 Mb where classified as true positive (TP). 

Samples with AI regions identified only by SNP array were classified as false negative (FN), 

whereas samples with no AI regions were identified as true negative (TN) if there was 

concordance by both genotyping methods. False positive (FP) were present if samples with AI 

regions were not identified by Dawoud and colleagues. A confusion matrix, with rows 

representing true class and columns representing the predicted class, was used to display this 

information (James et al., 2013). Sensitivity (TP/[TP+FN]) and specificity (TN/[TN+FP]) were 

calculated considering the array results as a truth dataset which is the preferred method to 

identify AI regions and were used to determine which BAF segmentation settings performed best 

(Table 4.6). 

 

Following manual review of the BAF plots, a number of compelling AI regions were identified that 

had not been shortlisted in the comparative array-based analysis (Dawoud et al., 2020). These 

regions were large (> 5.4 Mb), extended to the telomere, had high mBAF scores (> 0.81) and were 

therefore considered to be likely regions of high level aUPD. As a result, these regions were added 

to the list of true positives and the sensitivity/specificity values were recalculated (Table 4.7). The 
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BAF segmentation parameters, either high or low stringency setting, with the highest sensitivity 

and specificity were identified and applied in a further analysis of the complete UKB-WES50 and 

Schizo-WES02 datasets.  

4.2.5.2 Assessment of VQSR filter 

VQSR assigns an accurate confidence score to each putative variant call and was applied to the 

UKB-WES50 data as part of the QC process (Section 4.2.4). The Swedish data were downloaded 

after VQSR had been applied so this step was not repeated (Figure 4.1). To investigate the effect 

of VQSR, the exemplar UKB-WES50 subset of 120 samples were analysed with and without 

recalibration using BAF segmentation and the low stringency settings. The raw results were 

compared using a scatter plot to observe the relationship between the total number of AI regions 

per sample and the percentage of the autosome covered by regions of AI per sample. 

4.2.5.3 Processing UKB-WES50 and Schizo-WES02 

Following the VQSR assessment and the evaluation of best parameters for BAF segmentation, 

both UKB-WES50 and Schizo-WES02 datasets were run through BAF segmentation using low 

stringency settings. 

4.2.6 Identify and remove low quality samples  

A scatterplot was made to examine the raw output from BAF segmentation and to identify and 

exclude low quality samples. Per sample metrics for the total number of AI regions and 

percentage of the autosome covered by AI regions were used to make the scatterplot and to 

identify any sample outliers in both the Swedish-WES02 and UKB-WES50 cohorts. To calculate the 

autosomal AI percentage, the total length of the 23 chromosomes was defined using python 

dictionaries which store the chromosome length for both hg19 (2.881 GB) and hg38 (2.875 GB). 

Outlying samples with an excessive number of AI regions and/or large proportion of the genome 

composed of AI were considered to be indicative of low sample quality and were removed. 

4.2.7 Filtering strategy and data preparation 

The frequency of AI events detected by BAF segmentation were higher than expected based on 

published studies (Jacobs et al., 2012; Laurie et al., 2012). To bring the frequency of AI events in-

line with these expectations, a stepwise method was developed to select AI regions with strong 

supporting evidence and properties associated with aUPD events. Dawoud et al. developed a 

custom script to exclude FP regions identified by BAF segmentation in SNP array data. The filtering 
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method, applied to array data only involved the following steps: merge regions <2Mb apart; drop 

regions with a size <2Mb; keep regions with a density of at least one marker per 20 Kb. This 

strategy was adapted by applying thresholds that were more appropriate for WES data, adding 

new features for filtering (listed in Table 4.3 and in italics in the text) and supplementing the 

output file to aid the removal of FP regions and enable statistical analysis. First of all, consecutive 

AI regions were merged using bedtools (Quinlan and Hall, 2010) when the distance between them 

was less than 4 Mb. The distance between two regions was increased because of the low density 

marker that are used with WES compared to array data. As a result of this step, the values for 

mBAF, heterozygosity rate, physical size of AI region, number of informative SNPs and total 

number of SNPs were recalculated and saved in the output file. Second, TP and FN calls that were 

identified during the cross-validation process (4.2.5.1) were used to investigate potential causes 

of the FN results and to establish the minimum size of AI regions (>=5 Mb). Merged regions that 

were smaller than this were removed. 

 

Samples from the exemplar dataset that carried the JAK2V617F mutation, a somatic mutation 

known to be associated with 9p chromosomal abnormalities, were used to determine the best 

SNP density threshold (bases per marker) (Table 4.3). Several cut-offs were used (100, 250, 400, 

550, 700, 850 Kb) and the minimum value that resulted in detection of all 9p aUPD positive 

samples was defined as the best threshold for this filter.  

 

Three more features were added to the output file: Bases per informative marker, which defines 

the rate of Kb per informative marker; coverage of the merged region; centromere overlap, which 

represents the percentage of each AI region overlapping the centromere (Table 4.3). Annotation 

files, downloaded from the Genome Reference Consortium 

(https://www.ncbi.nlm.nih.gov/grc/human), were used to extract centromere locations and 

chromosome lengths for both hg19 (Church et al., 2011) and hg38 (Schneider et al., 2017). The 

new features generated at this stage were used for the subsequent logistic regression (LR) model 

that was developed for prediction of AI regions (4.2.9). 

 

Table 4.3 New features generated to aid the filtering of FP calls. 

New Features Description Threshold value 

new_size The new size of an AI event following the 
merging of consecutive regions 

5 Mb 
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New Features Description Threshold value 

Bases per marker Define the rate of kb per marker (size/Total No 
of SNPs) 

850 Kb 

Bases per informative 
marker* 

Define the rate of kb per informative marker 
(size/No of informative SNPs) 

NA 

Coverage* (size of individual events/new size) NA 
Centromere overlap* AI region percentage overlapping the 

centromeric region 
NA 

NA: Not applicable; *These features were used to build the LR model (Section 4.2.9) and not for filtering. 

 

This work has given the opportunity to analyse over 60,000 WES genomes. The size of the AI 

regions and FP calls presented the need to handle computationally the stepwise method 

described above. Therefore, a user-friendly tool, BRawO (BAF Raw Output), was developed to 

manipulate the output file, to generate new features (Table 4.3), to calculate the empirical score 

(heterozygosity rate x number of informative SNPs x coverage) (Dawoud et al., 2020) and to apply 

a number of filters to the BAF raw output file from BAF segmentation. BRawO facilitated the 

stepwise approach in a number of ways: by selecting the genome build (hg19 or hg38) of the 

dataset; by removing noisier samples with too many AI regions and/or a large proportion of AIs in 

their genome; by defining a maximum distance (Mb) to allow the merging of consecutive regions; 

by filtering regions according to their size (Mb); by removing AI regions with low marker density; 

by selecting only telomeric regions that falls within a defined distance (Mb) from the end of the 

chromosome. Positional and optional arguments of this tool are descried in Table 4.4 and Table 

4.5.  

 

Table 4.4 Positional argument of BRawO. 

Positional arguments Description 
ai_regions_file The file containing the AI data to be analyzed. 

The file must be tab delimited. 
hg_ref The Human Genome (hg) reference to be used. 

You can choose one among "hg19" and "hg38" 

 

Table 4.5 Optional argument of BRawO. 

Optional arguments Description 
--max-perc-AI-regions-per-
sample 

Max allowed percentage of AI regions per sample. 
Samples with more percentage of AI regions than 
this threshold are filtered out 
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Optional arguments Description 
--max-AI-regions-per-sample Max allowed number of AI regions per sample. 

Samples with more AI regions than this threshold 
are filtered out 

--region-merge-distance-Mb The maximum distance in Mb between two 
regions for them to be merged by bedtools 

--min-ai-region-size-Mb Minimum size, in mega bases units, of the merged 
AI regions that will be selected. Smaller regions 
are filtered out. 

--max-bases-per-marker-kb Max bases, in kilo-bases units, per marker. Regions 
with more bases per marker are filtered out. 

--telomeric-keep-width-Mb Width in mega bases of the telomeric regions to 
be kept. All events falling outside this width after 
the chromosome starts or before the 
chromosome ends are dropped. 

-h, --help Show the help message and exit 

 

4.2.8 Visual inspection of selected AI regions 

BAF segmentation generates, for each sample, a file with two plots per chromosome, a BAF plot 

representing the BAF values and a mBAF plot with the mBAF values reflected along the 0.5 axis. 

(Figure 4.2). After running BAF segmentation and filtering the raw output, a visual inspection of 

the segmented regions was carried out to annotate them as likely aUPD, false positives or 

negatives independently of the published array based results (Dawoud et al., 2020). AI regions 

were annotated as false positives when the markers on the plot were not clearly and consistently 

separated over the entire region or when they were identified by a small number of SNPs with 

low density and large gaps in coverage that were frequently associated with centromeric regions 

(Figure 4.2 A). Regions were annotated as likely aUPD when the markers in the BAF plot showed a 

clear and consistent shift away from the expected heterozygous BAF value of 0.5, indicating a 

clonal LOH which can be more or less pronounced (Figure 4.2 B). The level of clonality can be 

inferred by the average mBAF value of the AI region where subclonal events have a more subtle 

shift away from 0.5 and mBAF values that are closer to 0.5. 
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Figure 4.2 
BAF segm

entation plots. 
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BAF and m
BAF plots for four sam

ples w
ith AI regions that are classified as either FP (n=3) or TP (n=2) after m

anual review
. BAF plots show

 the BAF and m
BAF plots are the 

transform
ation of BAF values along the 0.5 axis. Circular binary segm

entation is applied to m
BAF values to identify regions of sim

ilar allelic proportions (green profile). 
Regions of AI are identified w

here the segm
ented m

BAF is > 0.6 (red dashed line) and are highlighted by a red rectangle. A. The m
BAF plot displays three FP regions on 

chrom
osom

e 9: the centrom
eric region is characterised by low

 m
arker density; the tw

o sm
all regions did not pass the size filter. The low

er panel show
s tw

o telom
eric AI 

regions on chrom
osom

e 3 that w
ere classified as FP because the supporting m

arkers do not split clearly from
 the 0.5 axis and all m

arkers on the chrom
osom

e have a broad 
spread of BAF values. B. Both panels show

 AI regions that w
ere categorised as TP (aU

PD
) due to the clear shift in m

BAF values com
pared to background m

arkers, their size 
and proxim

ity to the telom
ere. The high m

BAF value of the AI region in the top panel (m
BAF=0.82) is suggestive of a high m

utation burden. 
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4.2.9 Logistic regression model for predicting likely aUPD 

Both Schizo-WES02 and UK-WES50 were run through BAF segmentation and the stepwise method 

was applied to remove low quality samples and FP calls. Following visual inspection of the mBAF 

plots, filtered AI regions from the UK-WES50 data were labelled as likely aUPDs or false positives. 

The labelled data were split into a training (70%) and test dataset (30%) with the same ratio of 

UPD classes (real to FP) to reduce sampling error and to maintain heterogeneity of both sets. The 

heterogeneity is a fundamental feature to train the model on a balanced dataset. The training set 

was used to fit the logistic regression (LR) model to implement a scoring system, subsequently 

referred to as the gg score, that estimates the probability of each AI region being a real UPDs and 

is used to rank all of the AI regions. The LR model was optimized using an L2 regularization also 

known as ridge regression, to improve numerical stability and to prevent overfitting. The optimal 

regularization parameter C used in the L2 regularization was found using cross-validation (CV). 

The k-fold CV was used to split the train set into k smaller sets and at each computed loop, one 

part of them was used as “validation set” so that the final optimal value is the mean of the values 

computed at each loop. The 5-fold CV thus optimizes the use of the available data, with respect to 

a classical train-test split. The final and unbiased evaluation of the predictive performance of the 

LR model was obtained by applying the fitted LR model to the test set. A flow chart describing the 

design of this study is shown in Figure 4.3. The LR model was built from the logistic function 

included in python (Baranwal et al., 2011). 

4.2.9.1 Sequential feature selection 

Feature selection consists in finding the set of features that produces the best-performing 

predictive model. Sequential Feature Selection (SFS) can be used to perform a forward selection 

or a backward selection which, respectively, iteratively adds the best features or removes the 

worst ones, on the basis of the CV score of the estimator (Ferri et al., 1994). In both cases, n-1 

features were ranked based on the average score obtained on a 5-fold CV splitting of the data. In 

a first step, backward SFS was used to remove the pair of features that affected the performance 

the least. Then, forward selection was applied to the remaining features, by adding the predictors 

one by one, until the CV score stopped improving significantly. After performing forward SFS, a 

further manual check was conducted, which resulted in adding one more feature to the final set, 

that was deemed to bring relevant improvement to the performance. Further details are 

explained in Section 4.3.6 (Results). 
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Figure 4.3 Flow chart of the logistic regression model.  

Schematic representation of the procedure and data used for training the logistic regression 
model that generates the gg score. Feature selection (purple) and model training and 
application (green). The blue box indicates the WES data processed through the LR algorithm. 
The black box indicates the entire UK-WES50 data that was annotated only in part. 

 

4.2.9.2 Evaluation metrics 

Commonly used metrics such as area under the receiver operating characteristic curve (AUC), 

precision, recall and F1-score were calculated on the test set and used to determine the 

performance of the LR model. 

 

The Receiving Operating Characteristics (ROC) curve is a graphic that shows the benefit of 

applying a certain statistical test. It simultaneously traces out the two types of errors for every 

possible threshold as these vary from 0 to 1. The true positive rate or sensitivity on the y-axis 

represents the fraction of AI regions that are correctly identified. The x-axis shows the false 

positive rate, which represents here the fraction of false positive calls that are incorrectly 

classified as AI regions. The ideal ROC curve hugs the top left corner of the graph, indicating a high 

true positive rate and a low false positive rate (James et al., 2013). The performance of the model 

is given by the AUC, which ideally indicates excellent and good predictions for values >0.9 and 

>0.8 respectively. An AUC=0.5 indicates that the model is not discriminative and its performance 

can be attributed to chance alone (Swets, 1988). 
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Precision measures how many of the predicted positive cases are correctly classified. On the other 

hand, recall (or sensitivity) measures the proportion of true positive instances that are correctly 

predicted, which in this case is the primary aim of the model. Models can be optimized using a 

measure called F1-score which is a weighted average of both precision and recall. In the optimal 

scenario, with perfect precision and recall, the highest F1-score is 1, whereas if either precision or 

recall is zero, it can reach its lowest value, zero (Powers, 2007). Due to the pronounced imbalance 

between the positive and negative classes, I chose to optimize the model using the ROC-AUC 

metric. 

4.2.9.3 Validation of the gg score 

To validate the gg score, I compared its performance to an existing scoring system that was 

developed using SNP-array and BAF segmentation (Dawoud et al., 2020). This score is defined as 

the product of bases per marker, heterozygosity rate and coverage and empirical threshold of ≥9 

was used to select likely somatic events. Having applied this scoring system to the labelled UKB-

WES50 data set I examined the distribution of scores across false positives and likely aUPD events 

and compared these results with the distribution of the gg scoring system. The python plt.hist() 

function was used to plot the histograms of both scores and compare their distribution for false 

positive and likely aUPD. 

4.2.10 Identification of candidate somatic driver variants from WES data 

Finally, the gg scoring system was applied to the Schizo-WES02 data and a score greater than 0.5 

was used to identify AI regions that were likely to be real UPDs. If we assume that the logistic 

regression output is the probability that the example belongs to class 1, the 0.5 threshold 

corresponds to choosing the class (0 or 1) with the highest probability in the binary classification. 

Ideograms were generated with karyoploteR to visualize the likely aUPDs (Gel and Serra, 2017) 

and if these were overlapping in two or more samples, the single sample VCF was extracted and 

searched for novel and/or known somatic mutations in the target genes. First of all, 

SAMtools/Bcftools was used to filter the VCF file to remove variants that did not pass the VQSR 

filter and with low read depth (DP<10) (Danecek et al., 2021). Then, SnpSift was used to extract 

variants that intersect a specific gene known to be the target of aUPD and the file was annotated 

using wANNOVAR (Cingolani et al., 2012; Yang and Wang, 2015). Putative somatic mutations were 

screened for in five genes known to be aUPD targets: MPL (aUPD1p), TET2 (aUPD4q), EZH2 

(aUPD7q), JAK2 (aUPD9p) and FLT3 (aUPD13q). 
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4.3 Results 

4.3.1 BAF segmentation parameters for WES data 

To determine appropriate software settings for WES data the exemplar dataset, consisting of 120 

selected samples from the UKB cohort, were analysed using BAF segmentation with either low or 

high stringency settings. A total of 961 (Appendix Table B.2) and 3,075 (Appendix Table B.3) AI 

regions were identified using the high and low stringency settings respectively (Table 4.2) which, 

for both settings used, correspond to AI regions present in all samples. To select AI regions that 

are likely to represent real occurrences of aUPD and to bring these frequencies in-line with those 

expected from published studies (Jacobs et al., 2012; Laurie et al., 2012) the raw outputs were 

filtered to select regions that were greater than 5 Mb; to keep regions with 850 Kb per marker; to 

merge consecutive regions that were <4 Mb apart. Following the filtering of the raw outputs, a 

total of 212 and 61 AI regions were selected from the low and high stringency analysis 

respectively. BAF plots for these selected AI regions were visually inspected and manually 

annotated as samples with either likely aUPD (n=38) or negative (n=82) according to the criteria 

described in Section 4.2.8. The annotated results were cross-referenced against those from 

Dawoud et al. 2020 using bedtools to identify overlaps. Results from the previous study, which 

used corresponding SNP-arrays and an empirical score to select regions of mosaic chromosome 

abnormalities (mCA), were treated as true positives and negatives and used to determine the 

performance of the low and high stringency settings in terms of sensitivity and specificity which 

are displayed in a confusion matrix (Table 4.6). The low stringency settings offered much higher 

sensitivity (36.8% versus 28.9%) and only a slight reduction in specificity (91.5% versus 92.7%) 

compared with the high stringency settings.  

 

Following manual annotation of the BAF plots, seven samples with mBAF values ranging from 

0.81-0.87 were annotated as likely aUPD due to the presence of long runs of AI (5.4-35.4 Mb) 

which extended to the telomere and involved large numbers of informative SNPs (8-75 kb per 

SNP). For example, Figure 4.4 shows a region of likely aUPD following manual annotation involving 

chromosome 9 that, in the comparative SNP-array results, was below the empirically defined 

threshold of 9 and therefore was labelled as negative. 
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Figure 4.4 AI region detected after visual reassessment. 

The figure shows examples of BAF and mBAF plots of the same sample from the WES (A) and 
the SNP-array result (B). The AI region of 33.4 Mb is located on chromosome 9p and following 
the visual reassessment was annotated as likely aUPD due to its size and proximity to the 
telomere. Both panels show a telomeric AI region with high level of AI. 

 

Previous studies have shown that mBAF values are directly related to the proportion of cells with 

aUPD (Chase et al., 2015). The large mBAF values therefore suggest that these aUPD events have 

high frequency in the major clone. Furthermore, 5 out of 7 of these samples were shown to have 

a known somatic mutation (JAK2V617F) in the aUPD regions. This in combination with the 

properties of these regions lead to their reclassification as TP and recalculation of the specificity 

and sensitivity which showed an overall improvement for both the low (46.6% and 100% 

respectively) and high stringency settings (38.6% sensitivity and 100% specificity) (Table 4.7). 
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Table 4.6 
Perform

ance m
etrics for W

ES based detection of aUPD. 

  
Predicted aUPD status based on W

ES data 

  
Low

 stringency  
High stringency  

  
Likely aUPD 

No aUPD  
Perform

ance 
Likely aUPD 

No aUPD 
Perform

ance 
Positive  

14 (TP) 
7 (FP) 

Sensitivity = 36.8%
 

11 (TP) 
6 (FP) 

Sensitivity = 28.9%
 

Negative 
24 (FN

) 
75 (TN

) 
Specificity = 91.5%

 
27 (FN

) 
76 (TN

) 
Specificity = 92.7%

 

  
Precision = 66.6%

 
N

PV
 = 75.7%

 
A

ccuracy = 74.2%
 

Precision = 64.7%
 

N
PV

 = 73.8%
 

A
ccuracy = 72.5%

 
 TP: True positive; TN

: True negative; FP: False positive; FN
: False negative; N

PV: N
egative predictive value. Inform

ation displayed in the confusion m
atrix show

s that BAF segm
entation 

w
ith low

 stringency settings identified 21 sam
ples w

ith AI and only 7 sam
ples w

ere incorrectly labelled. O
n the other hand, high stringency identified 17 sam

ples w
ith AI regions and 6 of 

them
 w

ere not identified correctly. 
  Table 4.7 

Confusion m
atrix for the com

putational com
parison and visual reassessm

ent.  

  
Predicted aUPD status based on W

ES data and visual inspection 

  
Low

 stringency  
High stringency  

  
Likely aUPD 

No aUPD  
Perform

ance 
Likely aUPD 

No aUPD 
Perform

ance 

Positive  
 21 (TP) 

 0 (FP) 
Sensitivity = 46.6%

 
 17 (TP) 

 0 (FP) 
Sensitivity = 38.6%

 

Negative 
 24 (FN

) 
 75 (TN

) 
Specificity = 100%

 
 27 (FN

) 
 76 (TN

) 
Specificity = 100%

 

  
Precision = 100%

 
N

PV
 = 75.7%

 
A

ccuracy = 80%
 

Precision = 100%
 

N
PV

 = 73.8%
 

A
ccuracy = 80%

 

 TP: True positive; TN
: True negative; FP: False positive; FN

: False negative; N
PV: N

egative predictive value. A confusion m
atrix com

pares the results obtained from
 BAF segm

entation w
ith 

both low
 and high stringency settings after m

anual annotation. Inform
ation here displayed show

s that low
 stringency settings identified 21 sam

ples w
ith AI and none of them

 w
ere 

labelled incorrectly. O
n the other hand, high stringency identified 17 sam

ples w
ith AI regions and no FPs. 
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After the evaluation of sensitivity and specificity of BAF segmentation carried out in the UK 

Biobank subset of 120 samples, low stringency settings showed higher sensitivity and 100% 

specificity. Therefore, they were confirmed as the best parameters to use in any further analysis.  

4.3.2 Investigation of the FN results 

As part of these analyses, I also investigated the source behind the FN results, which have been 

identified in the array samples but not in the WES data. A box plot was used to investigate the size 

of the AI regions that were classified as TP and FN compared with the revised SNP-array based 

results (Figure 4.5). The TP calls (n=22) were larger in size (median=29.8 Mb) compared with the 

FN calls (median=2.9Mb) whose size is extracted from the SNP-array results (Dawoud et al., 2020). 

The boxplot shows that all 30 of the FN regions that were not detected across 24 samples (Table 

4.7) of the NGS exemplar cohort are, in term of size, all smaller than 9 Mb in size with a median 

span of 2.9 Mb. This suggests that small regions of aUPD are difficult to detect using WES data 

due to the lower density of variants compared with SNP arrays. It is important to note that 

following manual annotation of the BAF plots, evidence of aUPDs in the WES data was not 

identified for all 30 FNs. The minimum size of a TP region was 5.4 Mb and this knowledge was 

used to further refine the automated filtering of AI regions. The identification of TP and FN classes 

guided to establish 5 Mb as the threshold for the minimum AI size (Mb).  
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Figure 4.5 Boxplot of size (Mb) for AI regions labelled as FN and TP.  

The region’s sizes (Mb) across FN (grey) and TP (light blue) are summarized as boxplots where 
the middle black like is the median. The boxplots show that regions identified by BAF 
segmentation tent to be bigger in size when using WES data. 

4.3.3 Evaluate the effect of VQSR on the BAF results 

The UKB-WES50 data was generated by the UK Biobank using the GATK-based pipeline without 

applying VQSR. In general, the frequency of detectable AI events in healthy individuals is between 

0.23% and 1.91%, with a slightly higher frequency in cancer patients (Jacobs et al., 2012). 

Therefore, the subset of 120 UKB-WES50 samples was used to assess whether the exclusion of 

low quality variants detected through the VQSR filter could help to generate less noise in the BAF 

segmentation raw output file. The subset cohort without and with recalibration was run through 

BAF segmentation using low stringency settings, and results from the two groups were compared. 

The scatter plot in Figure 4.6 shows the comparison between the raw output from BAF 

segmentation of the UKB-WES50 data before and after VQSR is applied. The final results show 

that the main effect of VQSR is to reduce the number of AI regions called per sample which is 
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demonstrated by the right to left shift of samples in the scatter plot (Figure 4.6 A). VQSR has a 

more subtle effect on AI coverage resulting in a slight reduction in coverage and a downward shift 

on the scatter plot. 

 

Samples form 2 clusters with either high or low autosomal coverage, which did not appear to be 

related to the effect of VQSR. This clustering could be due to the low number of samples plotted, 

which reduces the chance of having a more uniform distribution of points and, therefore, 

separate clusters rather than a spread of samples. The clustering was investigated further (Figure 

4.6 B) by colouring samples according to their AI status, either positive or negative, and whether 

or not they had a JAK2V617F mutation. AI negative samples and samples without a JAK2V617F 

mutation were expected to have a lower percentage of autosomal AI. However, these four groups 

of samples were randomly distributed between the clusters and were therefore ruled out as the 

cause of this clustering. 

 

I did not identify the cause of this clustering, but it was not due to either AI status (either positive 

or negative based on manual review) or JAK2 carrier status. Additional factors that were not 

investigated but could be relevant include cancer status, age and sex. 
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Figure 4.6 Scatterplot comparing BAF results from WES data with and without VQSR.  

The scatterplots are produced using RStudio. A. The plotted points show the comparison of 
the BAF results obtained from WES data with (blue points) and without VQSR (black points). 
The two left-right clusters show that VQSR reduces number of AI regions and percentage of 
autosome covered by AI regions. B. The two up-down clusters were here investigated by 
grouping the samples in AI positive, AI negative and JAK2V617F positive. The three groups 
appear randomly distributed and thus ruled out as a cause for this clustering. 

4.3.4 Quality control of WES data 

The UKB-WES50 dataset contains a total of 49,996 samples distributed across 499 multi-sample 

VCF files (an average of 100 samples per multi-VCF). After extracting single samples, an average of 

n=377,054 variants were called per sample. After the QC steps were applied to each single-sample 

VCF, most variants were removed due to MAF<0.01. About 34,000 markers per sample were used 

to detect AI regions through BAF segmentation (Table 4.8). 
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A total of n=1,811,204 variants were called in the whole Schizo-WES02 multi-sample VCF file 

containing 12,380 samples. After processing the multi-sample VCF, the QC measures (4.2.7) are 

applied to each single-sample VCF. Following the data preparation, an average of 23,000 markers 

per sample were kept as input to BAF segmentation (Table 4.8). 
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Table 4.8 

Filters applied for variant exclusion in W
ES datasets. 

 
 

Total 
M

T 
M

issingness 
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AT/DP>10 
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AL>20 
FILTER=PASS 

M
AF>0.01 

M
ultiple entries 

HET FP 
U
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ES50 

m
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377053.8 
377053.8 
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35980.02 
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4.3.5 BAF segmentation and filtering strategy 

The input files generated in the previous step were run through BAF segmentation using low 

stringency settings (Table 4.2) which identified 615,401 (12,380 samples) and 1,281,943 (49,996 

samples) AI regions (Staaf et al., 2008) in the Schizo-WES02 and the UKB-WES50 respectively. In 

both the Swedish-WES02 and the UKB-WES50 cohorts, AI events were found in 100% of the 

samples, these unexpected pre-filtering results confirmed the need for data filtering. 

The first part of this work focussed on the UKB-WES50 samples carrying a JAK2V617F mutation 

which is the most frequent cause of 9p aUPD and is associated with haematological malignancies 

(Wang et al., 2016). In the UKB-WES50 cohort, 0.08% of the samples (n=40) are JAK2V617F positive 

and this group was used to determine the best threshold for bases per marker. Following manual 

review of the BAF segmentation plots for each of the 40 samples, 37.5%(n=15) of them have 

aUPD of chromosome 9p positive. These regions are all telomeric and have a size range between 

13Mb and 138Mb and thus more likely to be aUPD. No other aUPD events were detected in the 

remaining 25 JAK2V617F positive UKB-WES50 samples. 

 

Several features were used to select AI regions that are likely to be real aUPDs including the bases 

per marker parameter which was optimised before being applied. The best threshold was 

determined to be the minimum density that resulted in detection of all 15 JAK2V617F positive 

samples with 9p aUPD. Several cut-offs in Kb density (from 100 to 850) were investigated and 1 

SNP every 850 Kb was identified as the best threshold to apply to the WES data as it was the 

minimum density that identified 9p aUPD in the 15 JAK2V617F positive samples. 

 

The aim for the next step was the identification and removal of low quality samples in both UKB-

WES50 and Schizo-WES02. The raw output file from BAF segmentation was examined to identify 

any sample outliers in terms of the total number of AI regions per sample and the percentage of 

the autosome composed of AI regions in each sample. These metrics were determined and 

presented in a scatterplot (Figure 4.7). Following the visual inspection of the scatterplot, outlier 

samples were identified and removed. The majority of samples have less than 100 AI regions and 

less than 30% of the autosome covered by AI in both cohorts. Samples with more than 100 AI 

regions and/or greater than 30% of the autosome covered by aUPD were identified as outliers 

and removed. These per sample thresholds for hard filtering identified six samples with more than 

100 AI regions and 5,047 samples with autosomal AI coverage above 30% in the UKB-WES50 
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cohort. These samples, representing 10.1% of the total, were identified as outliers and removed 

from further analysis (Figure 4.7 A). Visual inspection of the plots did not identify any outlier 

sample in the Schizo-WES02 cohort. The Schizo-WES02 genotype data is of high-quality that 

before being submitted to dbGaP, underwent through QC check and curation by dbGaP (Figure 

4.7 B). 

 

 

Figure 4.7 Per sample metrics identify low quality samples. 

The scatterplots show the number of AI regions versus the percentage of autosomal AI both 

in the UKB-WES50 and in the Schizo-WES02 datasets. A. The UKB-WES50 cohort presents 

outliers samples (red ‘x’ markers) with either >30% of autosomal AI or >100 AI regions. B. The 

scatterplot shows the 12,380 samples of the Shizo-WES02 dataset forming a distinct cluster 

with <100 AI regions and <20% autosomal AI. 

 

A custom program, BRawO (see methods Section 4.2.7), was used to create the input files for BAF 

segmentation and to apply filters that are designed to remove FN regions and select AI regions 
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whose properties are more likely to be associated with real aUPD events. The filters applied are as 

follows: base per marker threshold of 850 Kb; 5 Mb as the minimum allowed AI size; maximum 

number of AI regions and autosomal AI percentage; 4 Mb as the maximum distance to allow 

merging between consecutive regions. 

4.3.6 Logistic regression model and feature selection 

The filtering strategy identified 63,088 potential AI regions in 33,535 samples in the UKB-WES50 

for further analysis. After visual inspection of the mBAF plots, a total of 3,800 regions (n=3,193 

telomeric, n=607 interstitial) were labelled as either FP (n=3,643) or likely aUPD (n=157). The 

labelled data were split into a training (70%, n=2,660) and test (30%, n=1,140) dataset (Table 4.9) 

and used to develop a logistic regression (LR) model for estimating the probability of aUPD for 

each AI region (Figure 4.3) which is hereafter referred to as the gg score (Appendix Table B.4). The 

LR model was optimized using the regularization parameter (C=23) which was found using 5-fold 

CV. 

 

The labelled data were first used to find the best variables to include in the model and to 

minimize the noise caused by non-informative features (Figure 4.3). SFS was used to fit a separate 

LR using L2 regularization and C=23 as optimal regularization parameter (Ferri et al., 1994). 

Initially, a backward SFS was applied by adding all ten features (Table 4.1 and Table 4.3) to the 

model (number of informative SNPs, total number of SNPs, mBAF, heterozygosity rate, original 

size, merged size, bases per marker, bases per informative marker, coverage and centromere 

overlap). Six of these features (number of informative SNPs, range: 4-2,320; total number of SNPs, 

range: 6-2,487; original size, range: 0.3 Kb-186.2 Mb; merged size, range: 5 Mb-186.2Mb; bases 

per marker, range:15.6-849,558; bases per informative marker, range: 23.3-2,217,937) were log 

transformed to stabilize the spread of large values (Keene, 1995). Original size and merged size 

were determined to be the two weakest features based on the feature ranking and were excluded 

from the LR model. 

 

In the next step the forward SFS was applied, the model was fit using one feature, then two 

features, and so forth. The selection was made by selecting the most predictive features until the 

performance of the model did not show further improvement. Figure 4.8 shows the four steps of 

the forward SFS up to the selection of six features (mBAF, bases per informative marker, coverage, 

centromere overlap, number of informative marker and bases per marker) that were ranked by 
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the model as the most important ones. The labelled data was then fit and tested using these 

selected features (Figure 4.9 A). 

 

 

Figure 4.8 Steps of the forward SFS. 

The figure describes the last four steps up to the selection of the most important features. X-

axis indicates the rank order for each parameter. The y-axis displays the AUC obtained when 

each parameter is added to the model. The curve reaches the plateau (D) when feature 5 and 

6 are added to the model and the AUC is stabilized. 

 

At each of the first three steps of the forward SFS (Figure 4.8 A, B and C), heterozygosity rate was 

ranked as the second best feature of this model as this together with the mBAF allowed the 

model to reach AUC just under 0.90. Thus, alongside the information aided by SFS, the model was 

trained by adding the heterozygosity rate to the six features previously selected. Finally, the fitted 

model was applied to the test data (Figure 4.9 B, Appendix Table B.4). 
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Figure 4.9 Comparison of the ROC curves for the AI regions classifier on the testing data. 

The ROC curves for the test set of the UKB-WES50 show some difference between the LR 

model trained with six features (A) and seven features (B). The LR model show the best 

results on the training data when seven features are added to the model. 

 

The two models described above were optimized using the ROC-AUC metric. The two curves were 

compared and the greatest AUC was observed when heterozygosity rate is added to the model 

(AUC=0.96). Thus, this was chosen as the best model to predict AI regions. As already mentioned 

in the methods (Section 4.2.9.2) it is important to reiterate that the annotated data present more 

negative regions (3,643) than likely aUPD (157) (Table 4.9). Therefore, it is possible that the 

classification problems highlighted by the recall metric, can be due to imbalanced data. The recall 

improves to 0.55 when seven features are used, meaning that 55% of the likely aUPD regions are 

correctly predicted (Table 4.10). This explains the high ROC-AUC (Figure 4.9) and that the model is 

better trained at identifying FP regions. Results from precision also indicated an overall 

improvement in the prediction accuracy. Specifically, when heterozygosity rate is included in the 

set of features the model is able to correctly classify 90% of the regions that are present in the 

test set (Table 4.10). These results represent just an example of the improvement that can be 

provided in a classification problem when different avenues are tested. 

 

Table 4.9 Confusion matrix for the logistic regression model using total and test data. 

Manual 
annotation 

Dataset Classification by gg score 
Total dataset Test dataset 

Total Training Test Correct Incorrect Correct Incorrect 
Likely UPD 157 110 47 84 (TP) 73 (FN) 26 (TP) 21 (FN) 

Negative 3643 2550 1093 3619 (TN) 24 (FP) 1090 (TN) 3 (FP) 
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Total 3800 2660 1140     

TP: True positive; TN: True negative; FP: False positive; FN: False negative 

 

Table 4.10 Performance of the two models. 

Evaluation metrics 6 features 6 features + het rate 
Number of correctly classified on test data 1106 1116 

Fraction of correctly classified on test data 0.97 0.98 

Precision on AI zones 0.76 0.9 

Recall on AI zones 0.4 0.55 

F1-score 0.52 0.68 

ROC AUC 0.95 0.96 

4.3.7 Score Validation 

The empirical score was calculated (Section 4.2.7) and applied to the results from the WES 

labelled data (n=3,800, Appendix Table B.4) (Dawoud et al., 2020). Then its distribution over likely 

aUPD regions (AI) and FP regions was compared with the gg score. The score distribution was 

plotted using histograms. Among the 3,800 labelled regions, 3,643 were classified as FP (n=24 

have gg score >0.5, n=3,266 have empirical score >9) and only 157 (n=84 have gg score >0.5, 

n=139 have empirical score >9) were likely aUPD. To make the difference between the two classes 

visible on the frequency plot, the AI regions were weighted up by a factor 23 (Figure 4.10). 

Dawoud’s AUC score with annotated data was 0.59 and the plot (Figure 4.10 A) shows that the 

bulk of AI events is superimposed to the bulk of the FP regions. About 40 (1000/23) AI events lie 

near score zero and FP events have a score ranging between 0 and 500, thus the two classes are 

less distinguishable. On the other hand, the gg score identified only four events with a score of 

zero. Distribution of FP events is right skewed, as expected, and most of them score <0.5 (Figure 

4.10 B). 

 

Figure 4.10 Distribution of scores with labelled data. 

The plots show the distribution of the two scores with AI (orange) and FP (light blue) regions. 

A. Distribution of the empirical score (Dawoud et al., 2020) with labelled data. B. Distribution 

of gg score with labelled data. 
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4.3.8 Apply the gg score system to Schizo-WES02 

After applying the filtering strategy described above (4.2.7), the Schizo-WES02 was left with 

14,619 potential AI regions in 8,871 samples. Thus, the filtered data was passed to the LR model 

and manual revision of the BAF plots was performed on the regions with a gg score >0.5 (n=172) 

to confirm those regions that have been correctly identified as real AI events. As a result of the 

manual annotation, 29 of the 172 regions were identified as likely aUPD (Table B.1). These were 

distributed across 26 samples which represents a tiny (0.21%) proportion of the whole set. These 

results show a fall in pickup rate from 53.3% (84/157) in the UKB-WES50 to 16.9% (29/172) in the 

Schizo-WES02. 

4.3.9 Identification of putative somatic mutations 

The 29 AI regions that were identified as likely aUPDs were plotted on an ideogram which shows 

their distribution across chromosomes and overlap between separate samples (Figure 4.11). 

Putative somatic mutations in known target genes were checked if the AI region were overlapping 

in two or more patients. Thus, chromosomes 1 (MPL), 4 (TET2), 7 (EZH2), 9 (JAK2) and 13 (FLT3) 

were examined. Four samples overlapped the region 14q, but these were not checked as this 

region target the imprinted MEG3-DLK1 locus at 14q32 (Chase et al., 2015). Results are shown in 

Table 4.11. 
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Table 4.11 
Variants identified in target genes of know

n aUPD. 
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The four samples with 1p aUPD (Figure 4.11) were screened and the analysis was focused on MPL 

W515 (rs121913615) a common change in myeloid phenotypes. However, no mutations were 

identified on codon 515 (Rumi et al., 2013), only one intronic variant (rs1760670) was present in 

two samples reported on ClinVar as benign. 

 

Samples with 4q (n=2) and 7q (n=2) aUPD did not harbour any mutations in TET2 and EZH2, 

respectively. 

 

 

Figure 4.11 Ideogram of the likely aUPD regions. 

The ideogram shows the physical position of likely aUPD across the autosomes. 

 

Five samples detected by gg score as UPD 9p-positive, harbour the JAK2V617F mutation. The events 

detected have a size range between 5.6 Mb and 42.2 Mb and are more likely to be aUPD. Also, in 

all five samples there is evidence of 3 known silent polymorphisms including the previously 

reported rs2230724, this is expected as the 46/1 haplotype is strongly associated with JAK2V617F
 

and particularly in association with aUPD (Jones et al., 2010). rs2230724 is also in strong LD 

(r
2
=0.83) with rs10974944 a germline SNP know to predispose to the development of JAK2V617F

-

positive MPN (Kilpivaara et al., 2009). To check whether the gg score identified all the 9p aUPD 

events we looked at the whole cohort and identified 0.14% of the samples (n=18) harbouring a 
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JAK2V617F
 mutation. Following a visual inspection of the BAF plot for all 18 samples, in the 

remaining 13 JAK2V617F
 positive Schizophrenia samples no AI events were detected by BAF 

segmentation, meaning that almost 1/3 of JAK2V617F
 positive have aUPD. The higher prevalence of 

the mutation compared to the UKB-WES50 (0.08%) is expected in an older cohort such as the 

Schizo-WES02 with a mean age of 65 (Genovese et al., 2014). 

 

Two UPD13q-positive samples were also analysed for the presence of FLT3 putative somatic 

mutations and a missense variant c.C680T:pT227M (rs1933437) predicted to be deleterious by in 

silico tools was present in both samples (Table 4.11). The same somatic variant has been 

previously reported in samples with myeloid phenotypes however UPD13q is generally associated 

with FLT3 internal tandem duplications which would be missed by WES. 

 

4.4 Discussion 

Somatically acquired UPDs (aUPD) are chromosomal abnormalities that have been associated 

with driver mutations in various cancers (Tuna et al., 2009). Identifying these regions has been 

established as a useful technique which has helped to identify novel cancer driver genes via 

targeted sequencing analysis of the aUPD regions (Tuna and Amos, 2010). For example, somatic 

mutations driving clonal proliferation have been identified in association with the most recurrent 

regions of aUPD in patients affected with myeloid malignancies (O’Keefe et al., 2010). Evidence 

from SNP array analysis of large cohorts has shown that aUPD occurs in apparently healthy 

individuals aged 65 or older and confers a tenfold increased risk of developing haematological 

malignancies. Furthermore, the regions of aUPD detected in the elderly are very similar to those 

identified in patients affected with myeloid malignancies (Genovese et al., 2014; Jacobs et al., 

2012; Laurie et al., 2012). In the last twenty years, the significant advance of molecular genetics 

and bioinformatics has allowed scientists to use powerful techniques, such as SNP arrays and 

NGS, to identify these regions (Makishima and Maciejewski, 2011; Tuna et al., 2009). Since the 

underlying genetic abnormalities in several regions of aUPD remain unidentified, large-scale 

sequencing data of individuals unselected for cancer represents a valuable resource to assess the 

possibility of identifying mutated genes in novel affected regions of aUPD driving CH. 

 

Therefore, this chapter focused on the development of an automated method aimed at the 

identification of likely aUPD regions from publicly available WES data. BAF segmentation, a tool 
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established in our lab to detect AI regions from whole-genome SNP arrays, was used and 

optimised (Section 4.2.4) to analyse sequencing data (Staaf et al., 2008). 

 

This study used WES data from the UK biobank (49,996 individuals) and dbGaP (12,380 

individuals). These cohorts are referred to as UKB-WES50 and Schizo-WES02, respectively, and 

were analysed to discover new aUPD regions and to search for associated target genes/mutations 

that may drive clonal proliferation and myeloid malignancies. To ensure the datasets were 

analysed in an unbiased manner, WES data were harmonised, and VQSR was applied to the UKB-

WES50 cohort. The GATK VQSR is a critical QC step that enables exclusion of potential false-

positive variants and selection of high-quality variants based on a single VQSLOD score. 

Subsequently, I developed a pipeline to filter and process the multi-sample VCFs and to generate 

one BAF segmentation input file per sample (Figure 4.1). To select BAF segmentation settings that 

were appropriate for WES data, an exemplar cohort consisting of 120 individuals from the UKB-

WES50 with matched SNP arrays were analysed using high and low stringency settings (Section 

4.2.5.1). Following computational cross-validation of the WES and matched array results, that 

were filtered using an empirical score (Dawoud et al., 2020), the low stringency settings were 

determined to improve sensitivity while not affecting specificity when applied to the WES data. 

 

Upon manual review, eight regions of likely aUPD (belonging to 7 samples) that were not 

shortlisted by the SNP array-based analysis and empirical score were reclassified as TP results 

(Figure 4.4) which further improved the sensitivity of the WES based analysis. The visual 

inspection and re-classification of these eight AI regions indicated that the empirical score 

appeared to overlook AI regions with high mBAF values (>0.8) that are indicative of either high 

mutation burden or possible germline inheritance. It is important to note that the rationale 

behind the empirical score developed by Dawoud et al. was to select for somatic events and 

exclude potential constitutional runs of homozygosity which is probably why the empirical scoring 

system was less discriminative when applied to WES data than the gg score (Section 4.3.7). 

However, visual inspection of these AI regions and their correlation with JAK2V617F
, a known 

somatic driver mutation, suggests that a proportion at least are indeed high level aUPDs. This 

observation led to the decision of using manual annotation of shortlisted BAF plots as the gold 

standard for aUPD detection. It is also important to consider what proportion of the AI regions 

that pass automated filtering and manual review might have germline origins which could be 
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determined by analysing another DNA source in parallel as a germline source (e.g. DNA extracted 

from fibroblasts or cultured T-cells). 

 

After analysing the entire UKB-WES50 and removing low quality samples, the frequency of AI 

positive samples was 67.1% which is much higher than expected (1-2%) (Genovese et al., 2014; 

Jacobs et al., 2012; Laurie et al., 2012). This highlighted the need to develop an automated 

filtering method for selecting putative AI regions that would align more closely with expectations. 

For this purpose, the AI regions were manually reviewed and categorised as either FP (n=3,643) or 

likely aUPD (n=157) (Table 4.9). The data were split into training (70%) and test (30%) sets that 

contained equal ratios of FP to likely aUPD regions (110/47) and logistic regression was used to 

develop a classifier, the gg score, which models the probability of aUPD. The highest ROC-AUC 

(96%) was obtained using a model consisting of seven features (mBAF, bases per informative 

marker, coverage, centromere overlap, number of informative markers, bases per marker and 

heterozygosity rate). Although the model performed well, this was largely due to the correct 

prediction of TN (3619/3643) which accounted for 90% of the observations in the test set that 

were correctly classified. On the other hand, only 55% of the likely aUPD regions were correctly 

predicted (84/157). These differences are thought to result from the unbalanced dataset which 

contained far more FP than likely aUPD observations.   

 

To validate the method, BAF segmentation, quality control and the gg score filter were applied to 

an independent case control cohort consisting of 12,380 samples (Schizo-WES02, Section 4.2.7). A 

total of 172 likely aUPD regions were identified with a gg score above 0.5. Of these, 29 regions in 

26 samples were confirmed as aUPD by visual inspection of the BAF plots. The frequency of CH in 

the Schizophrenia cohort was therefore determined to be 0.21% (26/12380) which, given the 

cohort’s mean age of 65 (Genovese et al., 2014), is significantly lower than the expected 

frequency of 2-3% in individuals over 50 years old and 10% in the elderly aged 65 and older 

(Genovese et al., 2014; Jacobs et al., 2012; Laurie et al., 2012). In the Schizophrenia cohort, WES 

identified an average of 22,926 variants per sample (Table 4.8) that were used to detect AI 

regions which is significantly lower than SNP arrays, which typically provide between 500K to 1 

million SNPs per sample. Furthermore, WES based estimates of per SNP BAF, which form the raw 

input for AI detection, are less accurately calculated than SNP arrays because they are determined 

by the sequencing depth which is limited and varies across the genome. This combination of low 

variant density and imprecise estimates of per SNP BAF is likely to make WES much less sensitive 

than arrays and might explain why this technique detected fewer regions of aUPD than expected. 

During the filtering steps of the VCF file, most variants were excluded due to MAF<0.01 and low 
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read depth (Table 4.8). Considering that the power to identify aUPD could be related to the 

number of variants these filters should be reassessed although there is likely to be a trade-off 

between SNPs density and high-quality variants with accurate VAF calculation. 

 

After identifying likely aUPD regions that overlapped in at least two samples, five genes (MPL, 

TET2, EZH2, JAK2, and FLT3) were screened for potential somatic driver mutations in the WES 

VCFs. The JAK2V617F mutation was identified in five out of five samples with UPD9p (Appendix 

Table B.1). A missense variant in FLT3, c.C680T:pT227M (rs1933437), which is predicted to be 

deleterious based on SIFT (Table 4.11), was identified in two samples with UPD13q-positive 

samples (Appendix Table B.1). However, somatic driver mutations in FLT3 seen in myeloid 

neoplasms such as internal tandem duplications and FLT3D835Y
 (Nguyen et al., 2017) are activating. 

It is therefore unlikely that the deleterious mutation (rs1933437) is the underlying cause of 

UPD13q seen in these samples. Despite the fact that target genes of the aUPD regions considered 

here are well known, driver mutations in most of the samples were not identified. The absence of 

detectable mutations in these regions might be due to several reasons such as genetic 

heterogeneity. For example, in an analysis of patients with myeloid neoplasia, only 7/12 cases 

with aUPD7q had discernible mutations of EZH2 (Ernst et al., 2010). Other studies have also 

described the absence of somatic driver mutations in apparently healthy individuals with CH, as 

determined by WGS. Despite the absence of driver mutations, CH was still a risk factor for the 

development of haematological malignancies and overall survival (Holstege et al., 2014; Zink et 

al., 2017). One possible explanation for these findings might be a proliferative advantage provided 

by clonally inherited epigenetic states, and it is possible that such states might also be related to 

regions aUPD.  

 

When this study was initially conceived it was hoped that large WES datasets would provide a 

useful resource to identify regions of aUPD and associated mutations. Following the development 

of this work and the opportunity of analysing over 60,000 exomes, it became apparent that much 

bigger samples sets would be required and I was able to estimate that we need at least 4-5 times 

the sample size to detect likely aUPD for a population of comparable age to UK Biobank (median 

age = 58 years at recruitment) or the Schizophrenia cohort (median age = 65 years).  
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Chapter 5 Conclusions and future work 

This study began with the design of a GWAS to identify germline predisposition to mastocytosis. 

The study was built on two observations. First, results from previous GWAS of MPN, which are a 

rare group of blood cancers that are loosely related to mastocytosis, indicated that inherited 

common variants can influence the risk of developing MPN (Hinds et al., 2016; Kilpivaara et al., 

2009; Tapper et al., 2015). Second, evidence in the literature showed some familial clustering of 

mastocytosis cases  (Broesby-Olsen et al., 2012; Hartmann et al., 2005; Molderings et al., 2013; 

Zanotti et al., 2013) which suggested a heritable component in this disorder. Given these lines of 

evidence, it was hypothesised that germline factors influence the risk of developing mastocytosis 

and that these factors would be identified by a GWAS. To this end, a two-stage case-control 

GWAS of mastocytosis was conducted in five European populations which consisted of 1,035 

patients with KITD816V
-positive disease and 17,960 healthy controls. This represents the first two-

stage mastocytosis GWAS and the largest cohort assessed to date. According to these sample 

sizes the study was estimated to have 80% power to detect common SNPs (MAF=0.4) with a 

relative risk of 1.56 and rare SNPs (MAF=0.1) with a relative risk of 1.82. 

 

The mastocytosis GWAS identified three genome-wide significant SNPs that replicated in 

independent cohorts without evidence of heterogeneity, thus providing strong evidence that 

inherited common genetic variants increase the risk (OR<1.52) of developing mastocytosis in 

European populations. To begin to understand how these SNP predispose to mastocytosis, a 

range of in silico analyses (functional and epigenomic annotation, eQTL and mQTL in blood) which 

identified TEX41, CEBPA and TBL1XR1 as the potential target genes involved. The involvement of 

these genes in mastocytosis was discussed in detail in Chapter 3. The association between 

reduced expression of CEBPA and rs4616402 is likely to promote a cellular environment that is 

more favourable to mast cell growth. Based on its known roles in normal and abnormal 

haematopoiesis, CEBPA is a very strong candidate that is ripe for evaluation in model systems in 

conjunction with mutant KIT. On the other hand, the potential role of TEX41 and TBL1XR1 in 

mastocytosis was less clear. A separate gene-based analysis of the stage 1 data identified VEGFC 

as an additional significant gene after correcting for multiple testing. A recent study has shown 

that VEGFC is significantly expressed in mastocytosis patients (Marcella et al., 2021), and the link 

between VEGFC and mastocytosis deserves further investigation. A small single-stage GWAS with 

only 234 cases has recently reported several genetic variants predisposing to systemic 

mastocytosis (Nedoszytko et al., 2020). Of these (Table 2.11), only one association was confirmed 
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in our GWAS (rs1800925, P-valueimputed=0.008). This observation supports the critical importance 

of robust replication to confirm the signals identified in the discovery stage. 

 

Despite producing novel findings, my GWAS had some limitations. The sample size for both the 

discovery and replication cohorts was small compared to most published studies in other 

conditions, but it is important to reiterate that mastocytosis is a rare disease (prevalence 1–

9/100,000). Given the constraint on the sample size, more effort with a larger sample size would 

be statistically more powerful and probably generated more significant results. In addition, it 

would have been highly desirable to have had cohorts with much more complete annotation to 

enable a more systematic comparison between associated SNPs and clinical features, outcomes 

and laboratory data. For some of the populations I studied this information was not available, 

either because it had not been collected or due to constraints with regard to patient consent. 

 

It is known that large-scale genomic studies, such as GWAS, have predominantly been performed 

in European (52%) and Asian populations (21%) (Sirugo et al., 2019). Some populations (e.g., 

African, Hispanic and other minority groups) are under-studied and under-represented in genomic 

databases (Popejoy and Fullerton, 2016). Several examples in the literature have demonstrated 

that novel risk variants can be identified through GWAS in ethnically diverse populations 

(Adeyemo et al., 2019; Bick et al., 2020; Kilpeläinen et al., 2019). For example, a GWAS performed 

to investigate inherited predisposition to T2D in Africans confirmed several known markers and 

identified a novel ZRANB3 locus predisposing to T2D (Adeyemo et al., 2019; Bick et al., 2020; 

Kilpeläinen et al., 2019). This variant is specific to Africans and would had not been discovered in 

studies performed only with persons of European ancestry. Such variants can be identified only in 

certain populations either because some variants have a higher frequency or are only present in 

those populations, or markers can have significant differences in LD across different ethnicities 

(Sirugo et al., 2019). One relevant study performed by Bick et al. identified three TET2 variants 

associated with CHIP status, and one specific locus (rs144418061) was specific to individuals of 

African ancestry. This SNP was presented in Chapter 2 (Table 2.10) when the stage 1 results were 

scrutinised to see if associations from the stage 1 data were seen with other SNPs that predispose 

to MPN or CHIP (Bao et al., 2020; Bick et al., 2020). 
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The under-representation of certain populations from genetic research will ultimately lead to 

persistent bias when discoveries are translated into clinical applications. For instance, the 

derivation of polygenic risk scores (PRS) from European-based studies may be inaccurate in 

under-studied populations. PRS is a common tool for predicting the genetic predisposition to a 

disease. The score represents a metric based on cumulative effect sizes of large numbers of 

common SNPs discovered by GWAS and it can be used to stratify population into individuals that 

have a higher or lower risk of developing the trait of interest (Lambert et al., 2019). It has been 

claimed that these tools can result in cumulative risks that are comparable to monogenic disease 

for some conditions and this emphasises their potential utility in clinical practice and the need for 

more focus on other populations (Khera et al., 2018; Peprah et al., 2015). My study was not 

sufficiently powered to identify a large number of associated SNPs that would be required for a 

mastocytosis PRS, but larger studies that include clinically annotated, ethnically diverse groups 

should be considered in future mastocytosis GWAS to facilitate the identification of new genetic 

variants associated with this rare blood cancer. 

 

In Chapter 2 the criteria for selection of SNPs to take forward in stage 2 were outlined (Section 

2.2.10). The most significant SNPs and less significant index SNPs mapping close to a list of 

functionally relevant genes (Appendix Table A.2) were selected for further analysis. This strategy 

aimed to maximise the selection of likely relevant SNPs whilst minimising the number that were 

selected for analysis at stage 2, both for reasons of cost but also statistical power taking into 

account the need to correct for multiple testing. However, this strategy may have overlooked 

important SNPs due to lack of relevant knowledge at the time. For example, a recent study on the 

immunoregulatory roles of members of the human leukocyte immunoglobin-like receptor (LILR) 

family identified LILRB3 as a novel myeloid checkpoint receptor with immunosuppressive 

functions (Yeboah et al., 2020). Members of the LILR family are categorised in activating subfamily 

A (LILRA1-6) or inhibitory subfamily B (LILRB1-5) (van der Touw et al., 2017). The stage 1 results of 

the mastocytosis GWAS identified an intergenic SNP rs422948 (P-value = 2.2×10
-4

) located on 

chromosome 19 between LILRA6 and LILRB5. LILRB3 could potentially be relevant to mastocytosis, 

and with this knowledge of functional relevance, rs422948 would have certainly been selected in 

our GWAS for replication and should be considered for future replication studies. 

 

Reproducibility has always been key in the scientific method, and replication in GWAS has been 

highlighted to improve the credibility of the study while controlling for biases and spurious 

associations (Kraft et al., 2009). The Manhattan plot of the stage 1 meta-analysis (Figure 2.8) 

showed consistent signals on chromosome 4 and 11, which serve as a good example to illustrate 
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why replication is so important. The most significant SNP on chromosome 11 and its backup SNP 

failed genotyping in stage 2 cases, but should be considered for inclusion in future studies. The 

most significant SNP on chromosome 4 (rs6820170, P-value=9.3×10
-7

) and its backup SNP 

(rs11131764, P-value=1.58×10
-6

) were both selected for replication. rs6820170 was successfully 

genotyped in all five stage 2 cohorts; however, it was not significant in any of them. It is possible 

that the variant is population-specific, which could explain the high heterogeneity identified 

between cohorts (I
2
=68.78) and the failure of replication. Alternatively, it is possible that the 

association seen at stage 1 was simply a random sampling effect which would also be consistent 

with the high heterogeneity between cohorts. This result from Chapter 2 makes it clear that the 

lack of replication can lead to false positive results and highlights the importance of confirming 

signals that have been identified at the discovery stage. It is strongly recommended to always 

include independent replication cohorts in GWAS. 

 

The statistical analysis outlined in Chapter 2 also identified an interesting suggestive association 

between mastocytosis and rs58124832 (P-valuemeta=9.03×10
-6

,
 
Appendix Table A.6), a SNP that our 

eQTL analysis showed to be associated with TPSAB1 and TPSB2 expression (Lloyd-Jones et al., 

2017; Võsa et al., 2018b) in blood. This association is also supported by the gene-based test 

analysis presented in Chapter 3, which identified TPSAB1 as the second most significant gene (P-

value=2.3×10
-4

, Table 3.5); however, it did not maintain significance following Bonferroni 

correction. The same SNP has also been associated with TPSAB1 duplication (Lyons et al., 2018), 

and importantly a study has recently linked TPSAB1 to mastocytosis (Greiner et al., 2021). Our 

current analysis does not include copy number analysis of TPSAB1 in mastocytosis patients, but 

these important findings have generated further questions on whether rs58124832 and TPSAB1 

copy number are correlated in KITD816V
-positive cases and what the mechanism behind it might be. 

As a result of this observation, further investigation is needed to explore the relationship between 

KITD816V
 and TPSAB1 duplications in mastocytosis patients. In the context of the gene-based test 

analysis, VEGFC was the only gene significantly associated with mastocytosis after adjusting for 

multiple corrections. It is important to reiterate that the test was performed using the stage 1 

summary statistics and to note that this association should be tested in an independent 

mastocytosis cohort.  

 

A set of new human cell lines called ROSA
KIT WT 

and ROSA
KIT D816V

 are cell lines of MC established 

from normal haematopoietic progenitors (Saleh et al., 2014). ROSA has been shown to be a 
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valuable tool in mastocytosis studies (Marcella et al., 2021) and its use would facilitate the 

investigation of genes selected in this study as well as responses to targeted drugs. The majority 

of mastocytosis patients (over 90%) carry the KITD816V 
mutation and only limited treatment options 

targeting this mutation are effective and available; midostaurin (Arock et al., 2015) and avapritinib 

(ClinicalTrials.gov Identifier: NCT03580655, DeAngelo et al., 2021). Further validation of the genes 

identified by the GWAS as well as more detailed studies to link genetic variation with specific 

clinical features will help to better understand the pathogenesis of this disease and might 

potentially aid the development of targeted therapies that could also be effective for KITD816V
-

negative patients. For example, my study linked TPSAB1 to mastocytosis, and tryptase encoded by 

TPSAB1 is a potential therapeutic target (Caughey, 2016). 

 

The second part of my study focused on the potential of large population-based genomic datasets 

to yield new information that is relevant to cancer. Regions of aUPD are known contributors to 

cancer since they are associated with driver gene mutations in both haematological malignancies 

and solid tumours (Score and Cross, 2012; Torabi et al., 2019; Tuna et al., 2012; Walsh et al., 

2008). The discovery of recurrent regions of UPD9p, for example, facilitated the identification of 

JAK2V617F
 mutation in MPN patients (Tiedt et al., 2005). The search for common regions of aUPD 

has been used as a research tool to identify many driver genes. However, the presumptive target 

gene or genes remains unidentified for many regions of aUPD. WES datasets were utilised to 

develop an effective method for detection of regions of AI (CNV and CNN-LOH), working under 

the hypothesis that uncovering novel and recurrent region of aUPD would facilitate the 

identification of novel drivers of myeloid neoplasms.  

 

Based on the results presented in Chapter 4, it can be concluded that using WES data, more than 

250,000 samples from older individuals are needed to identify novel recurrent regions of aUPD in 

association with CHIP and haematological malignancies. In my study, novel recurrent AI regions 

were not identified, and JAK2V617F
 was the only causing-disease mutation associated with aUPD 

identified in the Schizo-WES02 cohort. Regions of aUPD with unknown driver genes were only 

detected in single samples, which due to the size of AI regions makes it challenging to shortlist 

potential somatic mutations. 

 

In the effort to identify novel AI regions, some challenges were encountered. Specifically, 

following QC, most markers were removed due to MAF<0.01, leaving with an average marker 

density per sample of only 23,000 in the Schizo-WES02 cohort and 36,000 in UKB-WES50 (Table 
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4.8). This ultimately could explain what makes WES data much less sensitive than arrays and why 

AI regions could be identified in only 0.3% of samples. This frequency is much lower than 

expected. The rationale behind retaining only common SNP was to make the data available more 

similar to the SNP array data. However, it is known that the power to identify likely aUPD regions 

is dependent on the number of variants, and as a result of this observation, the MAF filter should 

be reassessed. A further investigation would be beneficial to avoid a drastically reduced number 

of markers and instead guaranteeing that only high-quality markers are kept. This would enable 

accurate calculation of VAF and calling of AI regions.  

 

The limitations observed in the analysis presented in Chapter 4 allow the opportunity to consider 

alternative approaches for identifying AI regions. The adoption of software developed specifically 

for WES data (e.g. ExomeAI and hapLOHseq) seems to be a plausible solution to explore whether 

a genomic resolution more similar to the SNP array could be reached (Nadaf et al., 2015; San 

Lucas et al., 2016). For instance, a tool initially developed for SNP array data (hapLOH) has also 

been implemented for the detection of AI from WES data (hapLOHseq) and it can discriminate 

between CNV-LOH and CNN-LOH (San Lucas et al., 2016; Vattathil and Scheet, 2013). The 

hapLOHseq algorithm identifies AI events of 10 Mb or more in 16% of samples using WES data 

with depth coverage of 80× (San Lucas et al., 2016) and has been used in some very recent studies 

to determine regions of AI (Lee et al., 2020; Semaan et al., 2021; Sivakumar et al., 2021). As 

described in the methods of Chapter 4 (Section 4.2.2), the Schizo-WES02 has a mean coverage of 

90× (Ganna et al., 2016). Thus, the sequencing depth would be sufficient to accurately detect AI 

regions in a greater number of samples. This approach might help in the future to overcome the 

limitations that were encountered with BAF segmentation. The use hapLOHseq and ExomeAI 

could also be an interesting opportunity to compare the performance of BAF segmentation versus 

other tools that have been developed for WES data. 

 

The gg score described in Chapter 4 has helped to identify with high confidence AI regions from 

the Schizo-WES02 and part of the UKB-WES50 datasets. However, regions identified in both 

datasets were not combined. To increase the power of the study to detect new somatic 

signatures in the genome, the gg score could be applied to the entire UKB-WES50 cohort and 

additional datasets from public databases. Furthermore, integrating the results from different 

sample sets will represent a valuable resource to detect other recurrent regions of AI to screen for 
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novel driver genes. Application of these tools to new, rapidly growing WGS datasets will provide 

much greater resolution and power to detect new abnormalities. 

 

In conclusion, this thesis presents different genetic approaches to better understand genetic 

factors associated with myeloid neoplasms. First, I presented the results of a GWAS investigating 

the inherited predisposition to mastocytosis. Following this analysis, novel genetic variants 

associated with mastocytosis were identified, and several genes that emerged from this work 

were nominated for further investigation. In the second part of my work, I took advantage of WES 

datasets to develop a method that could aid the identification of AI regions. I highlighted the 

limitations that were encountered in both studies and provided potential avenues for future 

research. This is an exciting time to be studying cancer genomics since the advancement of 

powerful genomic technologies and large population biobanks have enabled the scientific 

community to pave the way toward personalised medicine. 
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Appendix A Supplementary Data for Chapter 2 and 3 

 

Table A.1 Genome-wide significant results caused by AT/GC unresolved strand issues      

The table lists the extremely significant results obtained during the preliminary analysis, when the AT/GC 
strand check is not addressed. 
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Table A.2 
List of genes w

ith functional relevance 

 

G
ene 

selected 
Evidence for biological relevance 

BM
P2 

J. Cancer genetics and cytogenetics: Bone m
orphogenetic protein antagonist gene NO

G is involved in m
yeloproliferative disease associated w

ith 
m

yelofibrosis.  
CAM

K2D 
Reactom

e: RET signaling 

CCND1 
GO

: regulation of protein kinase activity; KEGG: Acute/Chronic m
yeloid leukaem

ia  

CCNG1 
GO

: regulation of cyclin-dependent protein serine/threonine kinase activity 

CDH5 
J. Cancer: Derivation of a new

 haem
atopoietic cell line w

ith endothelial features from
 a patient w

ith transform
ed m

yeloproliferative syndrom
e: a case 

report. 
CDK6 

KEGG: Chronic m
yeloid leukaem

ia 

CEBPA 

Civic: AM
L w

ith m
utated CEBPA' is a provisional entity in the W

HO
 classification of AM

L and is recom
m

ended to be tested for in patients w
ith AM

L. 
CEBPA m

utations are particularly associated w
ith cytogenetically norm

al AM
L (CN-AM

L). CEBPA m
utations are associated w

ith a favourable prognosis, 
how

ever, NPM
1 and FLT3 m

utations should also be assessed in CN-AM
L patients as concurrent m

utations m
ay have prognostic im

plications. HPO
: Acute 

m
yeloid leukaem

ia 

CLNK 

Entrez: M
IST is a m

em
ber of the SLP76 fam

ily of adaptors (see LCP2, M
IM

 601603; BLNK, M
IM

 604515). Sw
iss-Prot: M

IST plays a role in the regulation of 
im

m
unoreceptor signaling, including FC-epsilon R1 (see FCER1A, M

IM
 147140)-m

ediated M
C degranulation (Cao et al., 1999 [PubM

ed 10562326]; 
Goitsuka et al., 2000, 2001 [PubM

ed 10744659] [PubM
ed 11463797]).[supplied by O

M
IM

, M
ar 2008] 

DRD2 
Go: activation of protein kinase activity 

DUSP5 
Reactom

e: RET signaling 

EBPA 
Reactom

e: RET signaling 

EPHA4 
GO

: positive regulation of protein tyrosine kinase activity 

ERBB4 
Reactom

e:R-HSA-1433557, Signaling by SCF-KIT. Sw
iss Prot: Binding of a cognate ligand leads to dim

erisation and activation by autophosphorylation on 
tyrosine residues. In vitro kinase activity is increased by M

g(2+). Inhibited by PD153035, lapatinib, gefitinib (iressa, ZD1839), AG1478 and BIBX1382BS. 
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G
ene 

selected 
Evidence for biological relevance 

FYN 
Reactom

e: Regulation of KIT signaling 

FZD8 
GO

: positive regulation of JUN kinase activity 

GFRA1 
GO

: RET signaling 

HDAC9 

Entrez Gene: Histones play a critical role in transcriptional regulation, cell cycle progression, and developm
ental events. This encoded protein m

ay play 
a role in haem

atopoiesis. Journal Leukaem
ia &

 lym
phom

a: Increased gene expression of histone deacetylases in patients w
ith Philadelphia-negative 

chronic m
yeloproliferative neoplasm

s. 

HRH1 

Entrez Gene: Histam
ine is a ubiquitous m

essenger m
olecule released from

 M
Cs, enterochrom

affin-like cells, and neurons. Its various actions are m
ediated 

by histam
ine receptors H1, H2, H3 and H4. The protein encoded by this gene is an integral m

em
brane protein and belongs to the G protein-coupled 

receptor superfam
ily. M

ultiple alternatively spliced variants, encoding the sam
e protein, have been identified. [provided by RefSeq, Jan 2015] 

IBTK 

Entrez Gene: Bruton tyrosine kinase (BTK) is a protein tyrosine kinase that is expressed in B cells, m
acrophages, and neutrophils. The protein encoded 

by this gene binds to BTK and dow
nregulates BTK's kinase activity. This gene has a pseudogene on chrom

osom
e 18. Alternative splicing results in 

m
ultiple transcript variants encoding distinct isoform

s. [provided by RefSeq, Jul 2014]. Sw
iss Prot: Acts as an inhibitor of BTK tyrosine kinase activity, 

thereby playing a role in B-cell developm
ent. Dow

n-regulates BTK kinase activity, leading to interference w
ith BTK-m

ediated calcium
 m

obilisation and 
NF-kappa-B-driven transcription. 

JAG1 

Entrez Gene: The jagged 1 protein encoded by JAG1 is the hum
an hom

olog of the Drosophilia jagged protein. Jagged 1 signalling through notch 1 has also 
been show

n to play a role in haem
atopoiesis. [provided by RefSeq, Jul 2008]. Sw

iss Prot: Ligand for m
ultiple Notch receptors and involved in the m

ediation 
of Notch signaling. M

ay be involved in cell-fate decisions during haem
atopoiesis. 

KCNJ2 
DISEASES||HGM

D||GeneCards: chronic m
yeloproliferative disorder 

KIAA1804 
GO

: activation of JUN kinase activity 

LRRC4C 
GO

: negative regulation of protein kinase activity 

LRRK1 
Sw

iss Prot: Binding of GTP stim
ulates kinase activity. 

LRRTM
4 

GO
: negative regulation of protein kinase activity 

LTK 

UniProt: Receptor w
ith a tyrosine-protein kinase activity. The exact function of this protein is not know

n. Studies w
ith chim

eric proteins (replacing its 
extracellular region w

ith that of several know
n grow

th factor receptors) dem
onstrate its ability to prom

ote grow
th and cell survival. Signaling appears 

to involve the PI3 kinase pathw
ay. 
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G
ene 

selected 
Evidence for biological relevance 

M
M

P2 
J. Cancer research: The effect of CXCL12 processing on CD34+ cell m

igration in m
yeloproliferative neoplasm

s. 

NO
G 

J. Cancer genetics and cytogenetics: Bone m
orphogenetic protein antagonist gene NO

G is involved in m
yeloproliferative disease associated w

ith 
m

yelofibrosis.  
NRTN 

Reactom
e: RET signaling 

PAQ
R3 

Reactom
e: RET signaling; GO

: negative regulation of M
AP kinase activity 

PDGFRA 

Tocris: Platelet-derived grow
th factor receptors (PDGFRs) are catalytic receptors that have intracellular tyrosine kinase activity. They have roles in the 

regulation of m
any biological processes including em

bryonic developm
ent, angiogenesis, cell proliferation and differentiation; Reactom

e: RET signalling. 
HPO

: M
yeloproliferative disorder 

PDGFRB 

Entrez Gene: The protein encoded by this gene is a cell surface tyrosine kinase receptor for m
em

bers of the platelet-derived grow
th factor fam

ily. The 
identity of the grow

th factor bound to a receptor m
onom

er determ
ines w

hether the functional receptor is a hom
odim

er (PDGFB or PDGFD) or a 
heterodim

er (PDGFA and PDGFB). A translocation betw
een chrom

osom
es 5 and 12, that fuses this gene to that of the ETV6 gene, results in chronic 

m
yeloproliferative disorder w

ith eosinophilia. [provided by RefSeq, Aug 2017]; Reactom
e: RET signalling. HPO

: M
yeloproliferative disorder 

PLA2G4A 
BioSystem

s: Fc-epsilon receptor I signaling in m
ast cells 

PPEF2 
GO

: regulation of M
AP kinase activity 

PRKCE 

UniProt: Calcium
-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the 

regulation of m
ultiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, m

otility, m
igration and cell cycle, functions in neuron 

grow
th and ion channel regulation, and is involved in im

m
une response, cancer cell invasion and regulation of apoptosis. During cytokinesis, form

s a 
com

plex w
ith YW

HAB, w
hich is crucial for daughter cell separation, and facilitates abscission by a m

echanism
 w

hich m
ay im

plicate the regulation of RHO
A. 

In differentiating erythroid progenitors, is regulated by EPO
 and controls the protection against the TNFSF10/TRAIL-m

ediated apoptosis, via BCL2. 

RASGRP1 

UniProt: Functions as a calcium
- and diacylglycerol (DAG)-regulated nucleotide exchange factor specifically activating Ras through the exchange of 

bound GDP for GTP (PubM
ed:15899849, PubM

ed:23908768). Regulates T-cell/B-cell developm
ent, hom

eostasis and differentiation by coupling T-
lym

phocyte/B- lym
phocyte antigen receptors to Ras (PubM

ed:10807788, PubM
ed:12839994). Functions in M

C degranulation and cytokine secretion, 
regulating FcERI-evoked allergic responses (By sim

ilarity). M
ay also function in differentiation of other cell types (PubM

ed:12845332); Reactom
e: RET 

signaling 
RASSF2 

GO
: positive regulation of protein kinase activity 

RBBP6 
J. Blood: Germ

line RBBP6 m
utations in fam

ilial m
yeloproliferative neoplasm

s. 
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G
ene 

selected 
Evidence for biological relevance 

RGM
A 

DISEASES||HGM
D||GeneCards: Leukaem

ia, Acute M
yeloid 

SO
X9 

GeneCards||O
M

IM
||ClinVar||O

rphanet||Sw
iss-Prot||GeneTests||HGM

D||Novoseek||DISEASES: chronic m
yeloproliferative disorder  

SYT1 
HGM

D||GeneCards||DISEASES: M
ast-Cell Leukaem

ia 

TACC1 
J. Cancer genetics and cytogenetics: Com

bined translocation w
ith ZNF198-FGFR1 gene fusion and deletion of potential tum

or suppressors in a 
m

yeloproliferative disorder.  
TBL1XR1 

O
rphanet||DISEASES: Leukaem

ia, Acute Prom
yelocytic, Som

atic 

TLE1 
GeneCards: Core Binding Factor Acute M

yeloid Leukaem
ia 

TPSAB1 

Entrex gene: Tryptases com
prise a fam

ily of trypsin-like serine proteases, the peptidase fam
ily S1. Beta tryptases appear to be the m

ain isoenzym
es 

expressed in M
Cs; w

hereas in basophils, alpha tryptases predom
inate. [provided by RefSeq, Jul 2008]; HGM

D||GeneCards||Novoseek: 
System

ic/Cutaneous M
astocytosis and M

ast cell Disease. Sw
iss Prot: Tryptase is the m

ajor neutral protease present in M
Cs and is secreted upon 

the coupled activation-degranulation response of this cell type. 

TPSD1 
UniProt: Tryptase is the m

ajor neutral protease present in m
ast cells and is secreted upon the coupled activation-degranulation response of this cell 

type. 
TRIM

27 
GO

: negative regulation of protein kinase activity 

VEGFC 
GO

: positive regulation of m
ast cell chem

otaxis 

YSK4 
GO

: activation of protein kinase activity 

ZBTB20 
UniProt: M

ay be a transcription factor that m
ay be involved in haem

atopoiesis, oncogenesis, and im
m

une responses (PubM
ed:11352661).  
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Table A.3 
All regions of AI for one sam

ple ID:10138 

 Chr 
Start 

End 
StartSN

P 
EndSN

P 
m

BAF 
HetRate 

M
edian LRR 

BpSize 
N

brSN
PsM

BAF 
N

brSN
PsFull 

1 
1222596 

1305561 
exm

2135 
rs17160669 

0.81 
0.08 

-0.36 
82966 

12 
144 

1 
11850927 

11863057 
rs2274976 

rs2066470 
0.63 

0.21 
0.08 

12131 
8 

38 
1 

97743805 
98050656 

rs641805 
rs2811205 

0.63 
0.06 

-0.39 
306852 

16 
287 

1 
103165230 

103578334 
rs6684108 

rs7543626 
0.83 

0.03 
-0.56 

413105 
4 

119 
2 

116894086 
116905270 

rs7579948 
rs11903740 

0.7 
1 

-0.15 
11185 

4 
4 

5 
74798156 

75514986 
rs10055011 

rs11960832 
0.58 

0.12 
-0.06 

716831 
28 

237 
6 

29782470 
29789190 

exm
-rs1736959 

exm
-rs1610678 

0.62 
0.71 

0.3 
6721 

12 
17 

6 
32428285 

32652359 
exm

-rs6903608 
rs3021058 

0.6 
0.46 

0.01 
224075 

66 
143 

6 
42932200 

43013046 
exm

547609 
exm

548040 
0.67 

0.06 
0.2 

80847 
5 

90 
6 

57761561 
62673145 

rs4236163 
rs1192457 

0.88 
0.05 

-0.24 
4911585 

8 
151 

8 
144946092 

145003862 
exm

728897 
exm

729894 
0.77 

0.09 
-0.37 

57771 
12 

141 
9 

140093908 
140141794 

exm
802290 

rs11497277 
0.85 

0.07 
-0.07 

47887 
7 

106 
11 

1017085 
1018657 

exm
873676 

exm
873963 

0.87 
0.18 

0.22 
1573 

7 
39 

12 
80699475 

81074138 
exm

1023804 
rs11114567 

0.85 
0.09 

-0.53 
374664 

13 
140 

14 
48847571 

49140883 
rs1905824 

rs946626 
0.69 

0.06 
-0.34 

293313 
4 

68 
16 

825003 
855732 

exm
1199126 

exm
1199724 

0.84 
0.04 

-0.2 
30730 

4 
109 

16 
1538464 

1559399 
rs2745103 

rs3829558 
0.76 

0.13 
-0.33 

20936 
5 

38 
16 

3598190 
3763179 

exm
1211487 

rs129988 
0.81 

0.02 
-0.06 

164990 
4 

221 
17 

19648316 
21189598 

exm
1303404 

rs1466314 
0.85 

0.01 
-0.01 

1541283 
4 

285 
20 

8186186 
8206986 

rs6055645 
rs6133556 

0.74 
0.5 

-0.42 
20801 

4 
8 

22 
38065655 

38822300 
rs12628135 

rs196057 
0.58 

0.19 
0.05 

756646 
72 

387 
X 

2655180 
28817458 

rs11575897 
rs9786224 

0.64 
0.74 

-3.96 
26162279 

1028 
1389 
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 The w
hole file contains all the regions of AI for each sam

ple that w
as run through BAF segm

entation. Each row
 of the table contains inform

ation for each segm
ented region identified as 

AI. The inform
ation are reported in each colum

n as follow
s: Chr: chrom

osom
e; Start: start of the AI breakpoint; End: end of the AI breakpoint; StartSNP: SN

P nam
e w

here the breakpoint 
starts; EndSN

P: SN
P nam

e w
here the breakpoint ends; m

BAF: m
irrored BAF value; HetRate: heterozygosity rate per segm

ented region; M
edian LRR: m

edian Log R Ratio of the segm
ent; 

BpSize: length of the segm
ented region m

easured in base pair; N
brSN

PsM
BAF: num

ber of SN
Ps used to estim

ate the m
irrored BAF; N

brSN
PsFull: count of the total num

ber of SN
Ps that 

are present in the segm
ented region. 
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Table A.4 Per chromosome regions spanned by SNPs 

 

Chr From SNP To SNP From Location To Location Length 

1 rs4477212 rs12746903 82154 249218992 249136838 

2 rs10195681 rs12478296 18674 243048760 243030086 

3 rs13060385 rs10433653 61495 197838262 197776767 

4 rs13125929 rs3903261 71566 190963766 190892200 

5 rs9313223 rs876154 25328 180693127 180667799 

6 rs412135 rs12530134 108666 170919470 170810804 

7 rs7456436 rs1124425 44935 159119486 159074551 

8 rs11780869 rs6599566 164984 146293414 146128430 

9 rs10814410 rs9314655 46587 141066491 141019904 

10 rs11252127 rs11528930 98087 135477883 135379796 

11 exm869284 rs12294124 193146 134934063 134740917 

12 rs11063263 exm1054977 191619 133810935 133619316 

13 rs2762261 rs17067959 19058717 115103529 96044812 

14 rs28842485 rs10149476 19255726 107287663 88031937 

15 rs12905389 rs4098905 20071673 102461162 82389489 

16 rs2541696 rs13331261 88165 90274695 90186530 

17 rs2396789 rs9897769 8547 81060040 81051493 

18 rs12455984 rs12960632 13034 78015180 78002146 

19 rs8100066 rs10411093 260912 59097160 58836248 

20 rs6139074 rs10460610 63244 62934877 62871633 

21 rs28971224 rs10483083 10827533 48100155 37272622 

22 rs12157537 rs5771007 16114244 51195728 35081484 

Total 2792045802 

Chr: Chromosomes; From SNP: first SNP; To SNP: last SNPs; From location: start chromosomic location; To 
location: end chromosomic location; Lenght: length of the spanned region. The SNP highlighted in blue was 
withdrawn from the Reference SNP (rs) cluster on September 2016 due to mapping or clustering errors 
(Sherry, 2001). 
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Table A.5 Sample outliers excluded from BAF segmentation analysis 

 

SAMPLE No AI REGION SumBp/SAMPLE % AI REGION MAX Bp 

4008 32 2791706788 99.9879 249130276 

803 52 2791327191 99.9743 249136839 

4610 73 2791026971 99.9635 245610463 

1655 89 2790982747 99.9619 220384060 

9689 92 2790769031 99.9543 243025474 

9104 130 2790549932 99.9464 199752297 

4605 425 2790392927 99.9408 59506200 

10543 165 2789021333 99.8917 154390319 

MLL_10052 227 2789021961 99.8917 104837652 

11709 88 2788193664 99.862 174951592 

3075 33 2788155651 99.8607 243009823 

10780 56 2784558399 99.7318 197623770 

9632 372 2783314323 99.6873 98824831 

2889 861 2779204191 99.5401 58168924 

8396 2050 2767480533 99.1202 53250172 

11694 1793 2763726818 98.9857 33126930 

11345 1630 2762154763 98.9294 44259447 

1692 1594 2761290069 98.8985 42351605 

92 2226 2732432452 97.8649 65718106 

3717 2147 2701525209 96.7579 39967087 

12057 2100 2698551809 96.6514 36505632 

11309 4734 2503132860 89.6523 33243631 

6439 3630 1078610906 38.6316 7891910 

MLL_09977Ra 3369 784428638 28.0951 25068432 

Sample: sample IDs; No AI region: total number of AI regions per sample; SumBp/Sample: sum of the length 
of all AI regions per samples; % AI region: percentage of AI per sample; Max Bp: biggest AI region in each 
sample. The 19 sample IDs in black were already removed from the analysis because of more than 10% of 
missingness. The samples highlighted in blue were identified as outliers and removed from the BAF 
segmentation analysis. 
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Table A.6 GWAs results from stages 1 and 2 for all SNPs selected for replication 

 

Table A.7 Imputation and analysis of SNPs spanning TERT 

 

Table A.8 Functional annotation for GWAS significant SNPs and their proxies in high LD 

(r
2
≥0.8) 

 

Table A.9 Functional annotation for VEGFC lead SNPs and their proxies in high LD (r
2
 ≥0.8) 

Link to view/download the tables https://doi.org/10.5258/SOTON/D2266 
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 Table A.10 
M

ethylation quantitative trait loci (m
Q

TL) for rs13077541 in blood. 

 Trait 
CHR 

START 
END 

Effective_Allele 
Effect_Size 

Effect_Size_Desc 
SE 

PVAL 
FDR 

PM
ID 

Sam
ple_Size 

cg01132484 
(chr3:176916496) 

3 
176916496 

176916496 
NA 

-
0.2388288 

beta 
0.03152906 

1.03E-13 
0.00000104 

27036880 
771 

cg01132484 
(chr3:176916496) 

3 
176916496 

176916496 
NA 

-0.276544 
beta 

0.03328853 
4.41E-16 

2.67E-09 
27036880 

764 
cg01132484 
(chr3:176916496) 

3 
176916496 

176916496 
NA 

-
0.2825467 

beta 
NA 

2.62E-20 
2.07E-13 

27036880 
742 

cg01132484 
(chr3:176916496) 

3 
176916496 

176916496 
NA 

-
0.2996571 

beta 
NA 

1.87E-23 
1.89E-16 

27036880 
834 

cg01132484 
(chr3:176916496) 

3 
176916496 

176916496 
NA 

-
0.3387203 

beta 
NA 

2.67E-27 
2.96E-20 

27036880 
837 

  



Appendix B 

164 

Appendix B 
Supplem

entary Data for Chapter 4 

 Table B.1 
The 29 likely aU

PD events detected in the Schizo-W
ES02 cohort. 

chr 
start 

end 
m

BAF 
HetRate 

size 

No 
inform

at
ive SNPs 

No all 
SNPs 

Bases per 
m

arker 

Bases per 
inform

ati
ve m

arker 
No 
m

erged 
New

 size 
coverage 

Centrom
ere 
overlap 

ggscore 
Daw

ous's 
score 

annotation 
1 

69270 
17264920 

0.73 
0.36 

13211375 
229 

267 
18023.10 

20658.79 
5 

17195650 
0.77 

0 
0.63 

62.99 
1p 

1 
865738 

18807897 
0.69 

0.29 
17941597 

317 
355 

35874.13 
39664.99 

4 
17942159 

1.00 
0 

0.85 
90.34 

1p 
1 

1225959 
115258830 

0.81 
0.65 

110878099 
129 

199 
332297.89 

544926.43 
5 

114032871 
0.97 

0 
0.99 

81.53 
1p 

1 
12854021 

35350573 
0.69 

0.38 
18943245 

190 
210 

54538.36 
60735.73 

6 
22496552 

0.84 
0 

0.67 
60.00 

1p 
1 

144220850 
248814126 

0.69 
0.61 

102235986 
1078 

1177 
65572.98 

69149.21 
5 

104593276 
0.98 

0 
0.97 

644.87 
1q 

3 
118866376 

197574936 
0.66 

0.38 
78708561 

515 
553 

142330.13 
152832.16 

1 
78708560 

1.00 
0 

0.97 
195.70 

 3q 
4 

84230033 
190903688 

0.72 
0.45 

104876557 
326 

346 
157849.02 

167662.37 
2 

106673655 
0.98 

0 
0.98 

142.63 
 4q 

4 
106317429 

190903688 
0.76 

0.41 
84584272 

296 
321 

136508.27 
148078.71 

2 
84586259 

1.00 
0 

0.99 
121.36 

 4q 
7 

64023371 
158672619 

0.76 
0.54 

91867464 
357 

851 
103204.51 

149005.89 
5 

94649248 
0.97 

0 
0.99 

187.81 
 7q 

7 
73097654 

158851234 
0.82 

0.43 
83827430 

511 
572 

135647.98 
149913.77 

3 
85753580 

0.98 
0 

1.00 
214.79 

 7q 
9 

116800 
5732483 

0.74 
0.32 

5615684 
36 

40 
140392.10 

155991.22 
1 

5615683 
1.00 

0 
0.66 

11.52 
 9p 

9 
116800 

42368628 
0.73 

0.41 
42122921 

202 
215 

176519.29 
187985.18 

2 
42251828 

1.00 
0 

0.98 
82.57 

 9p 
9 

117877 
33798073 

0.81 
0.38 

33680197 
144 

156 
215898.70 

233890.26 
1 

33680196 
1.00 

0 
1.00 

54.72 
 9p 

9 
117934 

33676094 
0.77 

0.45 
33498291 

127 
134 

116536.23 
123717.30 

3 
33558160 

1.00 
0 

0.95 
57.47 

 9p 
9 

289557 
21350904 

0.73 
0.32 

21061348 
109 

115 
183142.16 

193223.38 
1 

21061347 
1.00 

0 
0.95 

34.88 
 9p 

9 
43875942 

95887320 
0.66 

0.33 
52011379 

125 
135 

385269.47 
416091.03 

1 
52011378 

1.00 
0.36 

0.53 
41.25 

 9q 
9 

71114312 
80932574 

0.68 
0.26 

9818263 
98 

101 
97210.52 

100186.36 
1 

9818262 
1.00 

0 
0.67 

25.48 
 9q 

11 
193096 

48347498 
0.75 

0.45 
45668557 

527 
577 

28505.71 
30815.50 

6 
48154402 

0.95 
0 

0.96 
225.74 

 11p 
11 

62933774 
134244123 

0.73 
0.42 

71310350 
554 

596 
119648.24 

128719.04 
1 

71310349 
1.00 

0 
0.99 

232.68 
 11q 

12 
119563325 

133778796 
0.71 

0.33 
14215472 

198 
215 

66118.47 
71795.31 

1 
14215471 

1.00 
0 

0.89 
65.34 

 12q 
13 

19751032 
115047496 

0.61 
0.48 

92699017 
343 

356 
197277.78 

203528.66 
2 

95296464 
0.97 

0 
0.76 

160.15 
 13q 

13 
28197436 

52971893 
0.66 

0.36 
24774458 

153 
167 

148350.05 
161924.56 

1 
24774457 

1.00 
0 

0.77 
55.08 

 13q 
14 

30066929 
107049080 

0.86 
0.31 

76982152 
323 

323 
238334.84 

238334.84 
1 

76982151 
1.00 

0 
1.00 

100.13 
 14q 

14 
31354296 

107283160 
0.72 

0.83 
75321232 

543 
543 

44380.05 
44380.05 

4 
75928864 

0.99 
0 

0.72 
448.43 

 14q 
14 

35872926 
107283160 

0.76 
0.78 

70983139 
578 

622 
79082.19 

82962.93 
8 

71410234 
0.99 

0 
0.97 

448.86 
 14q 

14 
91110582 

107113968 
0.77 

0.79 
15945703 

279 
279 

26823.58 
26823.58 

3 
16003386 

1.00 
0 

0.61 
218.69 

 14q 
17 

38634929 
81043039 

0.63 
0.37 

42408111 
644 

679 
62456.72 

65851.10 
1 

42408110 
1.00 

0 
0.87 

238.28 
 17q 

19 
41354606 

56520150 
0.73 

0.36 
15165545 

23 
33 

459561.97 
659371.52 

1 
15165544 

1.00 
0 

0.79 
8.28 

 19q 
20 

29623223 
49191228 

0.66 
0.37 

19568006 
186 

209 
93626.82 

105204.33 
1 

19568005 
1.00 

0 
0.71 

68.82 
 20q 
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Table B.2 High stringency settings: AI regions identified in the UK biobank exemplar dataset. 

 

Table B.3 Low stringency settings: AI regions identified in the UK biobank exemplar dataset. 

 

Table B.4 gg score system applied to the UKB-WES50 labelled data 

 

Table B.5 gg score system applied to the Schizo-WES02 data 

 

Link to view/download the tables https://doi.org/10.5258/SOTON/D2266 
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Summary

Mastocytosis is a rare myeloid neoplasm characterized by uncontrolled expansion of mast cells, driven in >80% of affected individuals

by acquisition of the KITD816Vmutation. To explore the hypothesis that inherited variation predisposes tomastocytosis, we performed

a two-stage genome-wide association study, analyzing 1,035 individuals with KIT D816V positive disease and 17,960 healthy control

individuals from five European populations. After quality control, we tested 592,007 SNPs at stage 1 and 75 SNPs at stage 2 for

association by using logistic regression and performed a fixed effects meta-analysis to combine evidence across the two stages. From

the meta-analysis, we identified three intergenic SNPs associated with mastocytosis that achieved genome-wide significance without

heterogeneity between cohorts: rs4616402 (pmeta ¼ 1.37 3 10"15, OR ¼ 1.52), rs4662380 (pmeta ¼ 2.11 3 10"12, OR ¼ 1.46), and

rs13077541 (pmeta ¼ 2.10 3 10"9, OR ¼ 1.33). Expression quantitative trait analyses demonstrated that rs4616402 is associated with

the expression of CEBPA (peQTL ¼ 2.3 3 10"14), a gene encoding a transcription factor known to play a critical role in myelopoiesis.

The role of the other two SNPs is less clear: rs4662380 is associated with expression of the long non-coding RNA gene TEX41 (peQTL

¼ 2.553 10"11), whereas rs13077541 is associated with the expression of TBL1XR1,which encodes transducin (b)-like 1 X-linked recep-

tor 1 (peQTL ¼ 5.70 3 10"8). In individuals with available data and non-advanced disease, rs4616402 was associated with age at presen-

tation (p¼ 0.009; beta¼ 4.41; n¼ 422). Additional focused analysis identified suggestive associations betweenmastocytosis and genetic

variation at TERT, TPSAB1/TPSB2, and IL13. These findings demonstrate that multiple germline variants predispose to KIT D816V pos-

itive mastocytosis and provide novel avenues for functional investigation.

Introduction

Mastocytosis (MIM: 154800) is an uncommon myeloid
neoplasm characterized by expansion and accumulation
of clonal mast cells in one or more organ systems,
including bonemarrow, skin, liver, spleen, and gastrointes-
tinal tract. The extent of organ infiltration and organ
damage serves as the basis for classification as cutaneous

mastocytosis (CM) or systemic mastocytosis (SM).1 CM is
typically found in children, while most adults with masto-
cytosis have SMwith involvement of the bone marrow. Six
main subtypes of SM are recognized: indolent SM (ISM)
and smoldering systemicmastocytosis (SMM) are relatively
benign forms that usually have a stable clinical course over
many years. In contrast, SM with an associated hematolog-
ic neoplasm (SM-AHN), aggressive SM (ASM), andmast cell
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leukemia (MCL), collectively known as advanced SM
(advSM), are associated with a poor prognosis.2 ISM is
the most common of the six subtypes, accounting for
80% of SM-affected individuals.3

Approximately 80%–90% of adult SM-affected individ-
uals across all subtypes test positive for the somatic muta-
tion KIT c.2447A>T (p.Asp816Val), usually referred to as
KIT D816V. Due to the nature of the disease, the mutant
allele frequency is often very low, particularly in peripheral
blood samples, and sensitive methods are needed for its
detection.4 KIT D816V mutation burden, serum tryptase,
and b2-microglobulin levels correlate with disease burden
and severity,5–8 and for advSM, additional somatic muta-
tions in SRSF2, ASXL1, and RUNX1 indicate an adverse
prognosis.9–11

Mastocytosis is usually a sporadic disorder, but familial
forms have been described, often in association with in-
herited, weakly activating KIT mutations.12,13 Very occa-
sionally, familial clustering of KIT D816V has been
observed, but in all affected individuals, this mutation is
somatically acquired14 and, as a strongly activating
variant, KIT D816V is believed to be incompatible with
normal embryonic development and thus not transmis-
sible through the germline. Other lines of evidence suggest
the possibility of a broader role for genetic variation in
mastocytosis. The presence of germline variants in genes
known to be somatically mutated in myeloid disorders
was one of several factors related to adverse clinical
outcome in SM.11 Studies of mast cell activation disease
(MCAD), a disorder that overlaps with SM, indicate a sub-
stantial excess of symptoms in first-degree relatives of
affected individuals, which might suggest a common ge-
netic susceptibility.15,16 Several constitutional genetic var-
iants have been associated with the development of
different mastocytosis phenotypes in relatively small
candidate gene studies17–21 and a recent single-stage
genome-wide association study (GWAS) of 234 affected in-
dividuals.22 Finally, it has been clearly established that
constitutional genetic variation at several loci predispose
to other myeloproliferative neoplasms (MPN).23,24

To determine whether common genetic variation plays
a role in predisposition to mastocytosis, we have per-
formed a robust two-stage GWAS focusing on affected in-
dividuals that tested positive for KIT D816V regardless of
clinical subtype to help ensure a genetically homoge-
neous cohort. We anticipate that the identification of
validated genetic markers associated with mastocytosis
will provide novel lines of investigation to understand
this complex disorder.

Material and methods

Discovery and replication cohorts
Prior to quality control (QC), the stage 1 discovery individuals

consisted of 479 KIT D816V positive mastocytosis-affected indi-

viduals recruited from the UK (n ¼ 329) and Germany (n ¼

150). These affected individuals were compared with healthy con-

trol individuals from the UK Wellcome Trust Case Control Con-

sortium (WTCCC2, n ¼ 5,200)25 and the German Cooperative

Health Research in the Region of Augsburg study (KORA, n ¼
4,397), respectively.26 At stage 2, 666 independent KITD816V pos-

itive replication individuals were recruited from Spain (n ¼ 399),

Denmark (n ¼ 185), and Italy (n ¼ 82) and compared to published

population controls from the Spanish National DNA Bank

(SNDNAB, n ¼ 1,062),27,28 a Danish study of ischemic heart dis-

ease (Inter99, n ¼ 6,184),29,30 and the Italian Invecchiare in

Chianti study (InCHIANTI, n ¼ 1,210).31,32 Participants provided

informed consent for sampling according to the Declaration of

Helsinki. The number of samples that were recruited and used

for analysis after QC in the discovery and replication stages is

shown in Table S1. An overview of the two-stage study

design and sample numbers is shown in Figure S1. All mastocyto-

sis-affected individuals were adults diagnosed via standard

procedures. Further details on the five cohorts are provided in

the Supplemental methods.2,4

Genotyping
DNA was extracted from peripheral blood or bone marrow. The

stage 1 affected individuals were genotyped for 960,919 SNPs

via Infinium OmniExpress exome chips (version 8_1.4_A1) and

the Genome Studio software (GSGT version 1.9.4) at the Clinical

Research Facility in Edinburgh. These data are available on

request from ArrayExpress (accession number E-MTAB-9358).

The stage-2 affected individuals were genotyped for 92 SNPs via

custom designed Kompetitive Allele Specific PCR (KASP) at

LGC.33 Genotypic data for the control cohorts were obtained

from published studies. In WTCCC2, genotypes were called

with Illumina 1.2M Duo chips and Illumina’s program to call

SNPs with a posterior probability >0.95.34 KORA control individ-

ualss were genotyped for 2,443,177 SNPs via the Illumina human

Omni chip (version 2.5-4v1_B) in KORA_A (a subset of follow-up

F3 of the population-based survey KORA S3) and 730,372 SNPs

with Illumina human Omni express chips (version 12v1_H) in

KORA_B (an independent subset of KORA S3/F3). Control indi-

viduals from SNDNAB, Inter99, and InCHIANTI were genotyped

with Illumina Global Screening arrays, Illumina HumanOmniEx-

press-24 (versions 1.0A and 1.1A), and Illumina Infinium Human-

Hap 550K SNP arrays, which include 18, 90, and 45 of the SNPs

selected for replication, respectively. Genotypes for the remaining

SNPs were determined by imputation.

Quality control
Standard GWAS QCmeasures35 were applied to the genotypic data

with Plink prior to analysis.36 These measures included genotype

missingness (per sample and per SNP), minor allele frequency

(MAF), Hardy Weinberg equilibrium (HWE), heterozygosity

(Figure S2), sex inference, cryptic relatedness, strand orientation,

and population stratification with multidimensional scaling

(MDS) (Figure S3). Since the affected individuals and control indi-

viduals were genotyped separately, SNPs were excluded if they had

modest deviation from HWE in control individuals (p value <

0.001) or extreme deviation in affected individuals (p value %

1 3 10"10), which most likely reflects poor genotyping rather

than disease association.37 The number of SNPs and samples

removed by these QC measures is shown in Table S1. QC and

imputation of the stage 2 control individuals has previously

been described.28–32 Full details regarding the QC and imputation

procedures are given in the Supplemental methods.

The American Journal of Human Genetics 108, 284–294, February 4, 2021 285



Imputation
Imputation of the discovery cohorts was used to increase SNP den-

sity and enable fine mapping around significant loci. SNPs were

imputed with the Sanger imputation server,38 which used EAGLE2

for pre-phasing into the Haplotype Reference Consortium (HRC

release 1.1) and positional Burrows-Wheeler transform (PBWT)

for imputation. Imputed genotypes were quality controlled by

exclusion of SNPs with info score <0.80, posterior genotype prob-

abilities less than 0.99, MAF less than 1%, greater than 10%

missing genotypes, or extreme deviation from HWE (p value %

1 3 10"10).

Statistical analysis
SNPs were tested for association via binary logistic regression in

Plink. We carried out a fixed effects inverse variance-weighted

meta-analysis by using Plink to combine evidence from the stage

1 cohorts (UK and Germany) and to determine the final effect sizes

and significance levels by combining evidence across stages 1 and

2. Heterogeneity between studies was estimated with the c2-based

Cochran’s Q statistic and the I2 statistic, which describes the per-

centage of variation across studies that is due to heterogeneity

rather than chance. To examine the effectiveness of the QC mea-

sures and assess evidence for any systematic biases, we used the

qqnorm and qqplot procedures in R to construct quantile-quantile

(QQ) plots for the stage 1 analysis of the UK and German cohorts

and the stage 1 meta-analysis (Figure S4). Samples with evidence

of non-Caucasian ancestry were excluded rather than adjusting

the association analysis for population stratification. To examine

the effect of this decision, we retained the ancestry outliers and

repeated the stage 1 analyses with adjustment for the first two prin-

cipal components from the MDS analysis (Figure S5 and Table S2).

We visualized and interpreted the results from the stage 1 meta-

analysis by using the qqman package39 in R to create a Manhattan

plot (Figure 1) and the FUMA software to generate regional plots.40

Results from the final meta-analysis of stages 1 and 2 were dis-

played in a forest plot with Stata (Figure 2).

The power to detect SNPs associatedwith SMwas estimatedwith

the genetic power calculator41 under a multiplicative genetic risk

model and a type 1 error rate of 5 3 10"8 (Figure S6). We used a

range of genotype relative risks (1.1–2.0) and risk allele frequencies

(MAF 0.05–0.4) to estimate power assuming a disease prevalence

of 1 in 100,00042 and unselected control individuals.

Selection of SNPs for replication
To minimize false positives and the potential for overlooking sig-

nals with compelling functional evidence but modest significance,

we used the following method to select SNPs for follow-up at stage

2. First, we used a clumping procedure in Plink to generate a short-

list of index SNPs (p < 0.001) with support from correlated SNPs

(SNPs r2 > 0.5, within 500 kb and p < 0.01) based on the stage 1

meta-analysis. From this shortlist, 92 index SNPs were selected

for replication, and priority, but not exclusivity, was given to

SNPs that were either located in or flanked by a gene with func-

tional relevance according to annotation fromGeneAlacart.43 Rele-

vant functions were signal transduction components, hematopoi-

esis, myeloid leukemia, and myeloproliferative or mast cell

conditions from GeneAlacart.43 A total of 44 SNPs were selected

with functional relevance. We then infilled the number of selected

SNPs to 82 by selecting themost significant remaining index SNPs.

We selected an additional 10 SNPs were selected as backups and to

add support to the most promising signals in terms of either their

biological relevance, individual significance, or level of support

from correlated SNPs.

Identification of chromosomal abnormalities
We identified regions of acquired uniparental disomy (aUPD) and

copy number gains or losses in the stage 1 SM-affected individuals

by using B allele frequency (BAF) segmentation44 followed by post

processing to select likely somatic events as described45 and

manual review of all BAF plots (Figure S7). See Supplemental

methods for further details.

Functional annotation of variants
We explored the biological relevance of regions containing

genome-wide significant SNPs by using HaploReg (version 4.1)46

to annotate the lead SNP and its proxies (r2 R 0.8) with respect

to histone modification, sequence conservation by using genomic

evolutionary rate profiling (GERP),47 estimated pathogenicity by

using combined annotation-dependent depletion (CADD)

Figure 1. Genome-wide association of KIT D816V positive mastocytosis
Manhattan plot showing results from the stage 1 meta-analysis of the UK and German cohorts for all 24 chromosomes. Results are
plotted for 592,007 SNPs tested as "log10 of the meta-analysis p values on the y axis against genomic location on the x axis. One
SNP was identified with genome-wide significance (p value < 53 10"8), indicated by the red line, and a further 18 SNPs were identified
with suggestive p values (<13 10"5), indicated by the blue line. SNPs selected for replication are highlighted in green, and the three SNPs
that reached genome-wide significance after meta-analysis of stages 1 and 2 are highlighted in purple.
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scores,48 predicted effect on protein binding by using Regulo-

meDB49 scores (SNPs scoring %3 are likely to affect binding),

and previous associations with clinical phenotypes by using the

NHGRI-EBI GWAS catalog.50 Additionally, candidate regions

were annotated against a 15-state chromatin model51 in primary

hematopoietic stem cells (E035) and a myeloid leukemia cell line

(K562). This model categorizes non-coding DNA into active or

repressed states that are respectively enriched and depleted for

phenotype-associated SNPs.52 To gain further functional insight,

we performed expression and methylation quantitative trait loci

(eQTL and mQTL, respectively) analyses on the lead SNP and its

proxies (r2 R 0.8) by using GTEx v853 and QTLbase.54 Finally,

we used LNCipedia55 and the Cancer LncRNA Census (CLC)56 to

investigate the function of long non-coding RNA (lncRNA).

Association with clinical features
Diagnostic and phenotypic variables for initial diagnosis

(advanced, ASM, SM-AHN, MCL; non-advanced, all other sub-

types), the presence or absence of skin lesions (yes or no), gender,

baseline serum tryptase (ng/mL), and age were available for most

of the Spanish (n ¼ 369) and Italian (n ¼ 81) individuals but not

for other cohorts. Three categorical variables (initial diagnosis,

skin lesions, and sex) were tested for association with allelic counts

for the three significant SNPs via Fisher’s exact test. Continuous

variables (tryptase and age) were tested via linear regression

following Kolmogorov-Smirnov checks for normal distribution

and normalization of tryptase levels via quantile transformation.

We used a fixed effects inverse variance-weighted meta-analysis

to combine evidence from the two cohorts.

Results

Discovery stage
After QC of the stage 1 data, 592,007 SNPs were tested for
association with KIT D816V positive mastocytosis via bi-

Figure 2. Forest plots and meta-analysis
for three SNPs reaching genome-wide sig-
nificance
Forest plots for each SNP associated with SM
at a genome-wide level of significance. Odds
ratios (OR ¼ ES) and 95% confidence inter-
vals (CIs) are displayed on the x axis. Results
are shown for each cohort (UK, German,
Spanish, Danish, and Italian) and the com-
bined analysis. The SNP subtotals and dia-
mond show the final OR and CI for a fixed
effects meta-analysis of all five cohorts and
uses I2 to assess heterogeneity in effect sizes
between cohorts.

nary logistic regression in the UK
(274 affected individuals versus 5,176
control individuals) and German co-
horts (140 affected individuals versus
4,328 control individuals) (Table S1).
Summary statistics from these ana-
lyses, which are available from Locus-
Zoom, were combined with a fixed
effects meta-analysis.57 The QQ plots
for each analysis and their low

genomic inflation factors (l % 1.038) demonstrate a close
agreement with the null hypothesis until the tail of the dis-
tribution where SNPs with p values less than 10"4 become
more significant than expected by chance alone
(Figure S4). Consequently, systematic biases such as the
separate genotyping of our affected individuals and con-
trol individuals, residual population stratification, or
clonal somatic changes are unlikely to account for the sig-
nificance of these SNPs. A Manhattan plot summarizing
the results of the stage 1meta-analysis is shown in Figure 1.
A total of 18 SNPs were identified with suggestive p values
(p % 1 3 10"5).

Replication and final meta-analysis
According to the number of samples that passed QC and
using a multiplicative disease model, we estimated the
stage 1 analysis to have 80% power to detect common
SNPs (MAF ¼ 0.4) with a relative risk (RR) of 1.56 and
rare SNPs (MAF ¼ 0.1) with an RR of 1.82 (Figure S6A).
Because of the potential to overlook SNPs with smaller ef-
fect sizes, we used a set of selection criteria rather than sig-
nificance alone (see Material and methods) to identify 92
SNPs for replication. These SNPs were selected to have
support from correlated SNPs and were either the most
significant (n ¼ 38), surpassed a moderate significance
threshold (p < 0.001) and were located in or flanked by
a functionally relevant gene (n ¼ 44), or were selected
as backups for the most promising signals (n ¼ 10). One
SNP, rs7884433, achieved genome-wide significance in
the stage 1 analysis, but it was not selected for replication
because it lacked support from any of the SNPs in strong
linkage disequilibrium (LD) and is thus likely to be a tech-
nical artifact.
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Of the 92 SNPs selected, 75 were successfully genotyped
in 666 KIT D816V mastocytosis-affected individuals from
Spain, Denmark, and Italy. Additional control individuals
(n¼ 8,456) from the same populations that had previously
been genotyped were used for comparison. After QC, 621
affected individuals and all the control individuals re-
mained for analysis. All SNPs passed QC in affected
individuals, although 19 were excluded from the Spanish
control individuals because of per SNP missingness
(R10%) following imputation. Samples were tested for as-
sociation with SM as three separate cohorts via binary lo-
gistic regression. We determined the final significance
levels and effect sizes by using a fixed effects inverse vari-
ance-weighted meta-analysis to combine evidence from
stages 1 and 2. This meta-analysis identified three inter-
genic SNPs with genome-wide significance: rs4616402
(pmeta ¼ 1.37 3 10"15), rs4662380 (pmeta ¼ 2.11 3 10"12),
and rs13077541 (pmeta ¼ 2.10 3 10"9) (Table 1). Results
for the three SNPs reaching genome-wide significance are
summarized in a forest plot that shows that each SNP is sig-
nificant in four of the five cohorts tested and that there is
evidence for the same trend in the remaining population
(Figure 2). Cochran’s Q test and I2 statistics showed that
for each SNP there was no evidence of heterogeneity be-
tween cohorts. Results from the meta-analysis of stages 1
and 2 for all SNPs tested are shown in Table S3.
To investigate the possibility of residual population strat-

ification, we repeated the stage 1 analyses without
removing 26 samples with evidence of outlying ancestry
(Table S1) and adjusting the association analysis by using
the first two principal components from MDS. The top
three SNPs retained genome-wide significance, and
rs4662380 and rs13077541 became slightly more signifi-
cant (Table S2), which suggests an absence of residual pop-
ulation stratification in the original analysis.

Functional annotation and candidate gene mapping
To explore the functional relevance of the regions associ-
ated with mastocytosis, we used HaploReg and Regulo-
meDB to determine whether the risk SNP or its proxies
(r2 R 0.8) were located in regions with potential regulatory
functions based on chromatin modification, DNA methyl-
ation, and alteration of transcription factor (TF)-binding
motifs (Table S4). To gain further functional insight, we
performed eQTL and mQTL analyses on the lead SNP
and its proxies by using GTEx v853 and QTLbase.54 Finally,
we repeated the stage 1 meta-analysis by using imputation

to enable fine mapping around the lead SNPs and to
generate association results for proxies, which had not
been directly genotyped.
The most significant SNP, rs4616402, confers a 1.52-fold

increased risk of developing mastocytosis and is situated in
an intergenic region on chromosome 19 between a solute
carrier gene (SLC7A10, 36.8 kb downstream) and a gene en-
coding a transcription factor (CEBPA, 37.2 kb downstream)
that coordinates proliferation and differentiation of
myeloid progenitor cells (Figure 3A). Using QTLbase, we
found that rs4616402 is strongly associated with the
expression of CEBPA in whole blood according to data
from three previous eQTL studies (peQTL ¼ 2.30 3 10"14;
peQTL ¼ 2.96 3 10"11; peQTL ¼ 9.20 3 10"9).58–60 There is
no evidence that SLC7A10 has a role in carcinogenesis,
including myeloid malignancies, and no additional SNPs
were identified in strong LD with rs4616402. However,
there is weak evidence that rs4616402may have functional
consequences according to the RegulomeDB score (score ¼
4). The chromatin surrounding rs4616402 is characterized
as an enhancer (7_Enh) in primary hematopoietic stem
cells because of an enrichment of the H3K4me1 signature.
Additionally, the risk allele is predicted to alter three TF-
binding motifs (Arnt_1, Gm397, and Hmx_1, Table S4).
The second most significant SNP, rs4662380, increases

the risk of developing mastocytosis by 1.46-fold and is
located in the first intron of a lincRNA gene (LINC01412)
(Figure 3B). Twelve additional SNPs in LINC01412 were
identified in strong LD with the lead. Three of these prox-
ies are located in chromatin enhancers (7_Enh: rs6722387,
rs16823865, and rs13413446) in primary hematopoietic
stem cells, and one is located in a flanking active transcrip-
tion start site (2_TssAFlnk: rs16823855) in K562 (Table S4).
The RegulomeDB scores indicate that two of the proxies,
rs4662227 (score ¼ 2c) and rs13413446 (score ¼ 3a), are
likely to affect TF binding, while the remaining SNPs are
estimated to have weak evidence for functional conse-
quences. However, using the GWAS catalog,50 we found
that one of the remaining proxies, rs16823866, was
strongly associated with white blood cell counts in two
previous studies (p ¼ 4 3 10"18 and p ¼ 6 3 10"11).62,63

Finally, using QTLbase, we found that the lead SNP (peQTL

¼ 2.55 3 10"11) and four proxies, including rs16823866
(peQTL ¼ 2.55 3 10"11), were strongly associated with the
expression of the nearby gene TEX41 in neutrophils.64

The final SNP, rs13077541, is associated with a 1.33-fold
increase in risk of developing mastocytosis and is located

Table 1. Summary of the most significant SNPs from meta-analysis of stages 1 and 2

SNP Chr Location (hg19) Alleles RAF Gene pmeta OR (CI) I2

rs4616402 19q13 33,753,555 A/G 0.240 SLC7A10-CEBPA 1.37 3 10"15 1.52 (1.37–1.68) 4.2

rs4662380 2q22 145,316,407 C/T 0.189 LINC01412 2.11 3 10"12 1.46 (1.32–1.63) 0

rs13077541 3q26 176,925,740 G/A 0.464 TBL1XR1-LINC00501 2.10 3 10"9 1.33 (1.21–1.45) 0

SNP, rs identifier from dbSNP; alleles, risk associated/non-risk associated allele; RAF, risk allele frequency in Europeans from 1000 genomes; pmeta, fixed effects
meta-analysis of stages 1 and 2; OR, odds ratio; CI, 95% confidence interval; I2, heterogeneity index (0–100).
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in an intergenic region of chromosome 3 between transdu-
cin (b)-like 1 X-linked receptor 1 (TBL1XR1, 10.6 kb up-
stream) and another lincRNA gene (LINC00501, 86.5 kb
upstream) (Figure 3C). Fifty-three additional SNPs were
identified in strong LDwith the lead, including 27 intronic
SNPs in TBL1XR1 (Table S4). Eleven of these proxies are
located in active chromatin regions, including three in
an active transcription start site (1_TssA: rs12493005,
rs12486557, and rs34302523) and two in a 50 transcribed
region (3_TxFlnk: rs35072945 and rs34311793) in K562.
The RegulomeDB scores indicate that five of the proxies
are likely to affect binding (score2a–c: rs6790639,
rs34302523, rs6772872, rs7616138, and rs1920131). Of
these, rs6790639 is particularly relevant because the PU.1
TF, which is encoded by the Spi-1 proto-oncogene (SPI1),
has been shown to bind to this region in K562 via ChIP
sequencing.65 PU.1, together with other TFs, regulates
the expression of genes involved myelopoiesis.66 Using
QTLbase, we found that the lead SNP (peQTL ¼ 5.70 3

10"8) and one of the proxies, rs16823866 (peQTL ¼
9.52 3 10"9), were strongly associated with the expression
of TBL1XR1 in CD4þ naive T cells.64

Association with clinical features
To determine whether variants that predispose to the
development of mastocytosis relate to particular clinical
features, we used Fisher’s exact tests and linear regression

to correlate allelic counts for the three significant SNPs
with clinical phenotypes in the Spanish and Italian co-
horts (Table 2), the only affected individuals for which
clinical information was available. A significant associa-
tion that remained significant after correction for multiple
testing was identified between rs4616402 and age at pre-
sentation (n ¼ 422; p ¼ 0.009; beta ¼ 4.41) in individuals
with non-advanced disease. No association with age was
seen in the much smaller group of individuals (n ¼ 26)
with advanced disease, a subgroup for which additional
mutations may be a confounding factor. In affected indi-
viduals, the age of onset was estimated to increase by
4.41 years per risk allele. No associations were seen with
baseline tryptase levels, gender, skin lesions, or disease
phenotype.

Association with TPSAB1 and TPSB2
Increased copy number variation at TPSAB1, the gene at
16p13 encoding a-tryptase, is associated with elevated
serum tryptase levels in hereditary a-tryptasemia.67 Our
analysis did not include direct copy number analysis of
this gene; however, a recent study linked TPSAB1 duplica-
tions with three SNPs, including rs58124832.68 This SNP
was genotyped at stage 1 and met our criteria for analysis
at stage 2, yielding a suggestive overall association with
SM (pmeta ¼ 9.03 3 10"6). The Cochran’s Q test and I2 sta-
tistics showed no evidence of heterogeneity between

Figure 3. Regional plots of the imputed stage 1 meta-analysis for SNPs reaching genome-wide significance in the final meta-analysis
(A–C) Results from the imputed stage 1meta-analysis in a region surrounding three SNPs (rs4616402 [A], rs4662380 [B], and rs13077541
[C]) that predispose to SM and reached genome-wide significance in the final meta-analysis. In each plot, the leading SNP is indicated by
a purple circle and the color of other SNPs represent the strength of linkage disequilibrium (r2) with the lead SNP. Protein-coding genes
and RNA genes are shown in the track below with arrows to indicate the direction of transcription and wider lines representing the loca-
tion of exons. The lower panel displays the 15-state chromatin track (chromHMM) in primary hematopoietic stem cells (E035) and K562
with data from the NIH Roadmap Epigenomics Consortium.61 Physical positions are relative to build 37 (hg19) of the human genome.
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cohorts; however, the association was significant in only
three cohorts (pGerman¼ 0.0058, pUK¼ 0.0042, and pSpanish

¼ 0.05). The eQTL analysis showed that rs58124832 is
strongly associated with the expression of TPSAB1 (peQTL

< 1.9 3 10"58) and TPSB2 (tryptase-b2; peQTL ¼ 1.96 3

10"75) in blood.

Association with TERT
Several TERT SNPs have been identified as risk factors for
the development of hematological malignancies,
including MPN, as well as some solid tumors. Our stage 1
analysis included rs2853677, which has been linked to
both MPN and JAK2 V617F associated clonal hematopoie-
sis.24 This SNP marginally failed to meet our criteria for
analysis at stage 2; however, the stage 1 meta-analysis for
directly genotyped UK and German affected individuals
showed pmeta ¼ 0.0011, suggesting the possibility of an as-
sociation. To examine this in more detail, we imputed ge-
notypes for 64 additional SNPs spanning TERT and tested
their association with SM. As shown in Table S5, seven
SNPs achieved p values < 0.001. The strongest of these
was for rs7726159 (pmeta ¼ 8 3 10"5), an established risk
SNP for multiple cancer types.69 We identified one second-
ary association at TERT for rs2853677, which remained sig-
nificant after conditioning on rs7726159 (pconditional ¼
0.035). No associations were seen with other SNPs that
predispose to MPN70 or clonal hematopoiesis of indetermi-
nate potential71 in our stage 1 data (Table S6).

Associations with other genetic factors
To the best of our knowledge, 14 SNPs have been associ-
ated with the development or phenotype of humanmasto-
cytosis in published studies.17–22 Of these, 11 were directly
genotyped or could be imputed from our stage 1 data (Ta-
ble S7), but only one of these was significant: rs1800925 in
the promoter region of IL13 at 5q31 (pimputed ¼ 0.008).
This SNP has been linked to the development of adult
SM and serum interleukin-13 levels18 and inflammatory
disorders such as chronic obstructive pulmonary dis-
ease.72

Discussion

Despite being characterized by a common somatic onco-
genic driver mutation, mastocytosis is a complex disorder
with a broad range of clinical phenotypes and outcomes.
In this study, we have identified constitutional genotype
as an additional factor contributing to the heterogeneity
of mastocytosis. The use of a molecular definition for
affected individuals rather than clinically defined subtypes
and careful ethnicity matching of affected individuals and
control individuals aimed to reduce the chance of hetero-
geneity both in the primary and replication cohorts.
Thus, with a relatively modest cohort size for a GWAS,
we were able to identify and validate three novel SNPs
that achieved genome-wide significance and additional
suggestive associations at TERT, TPSAB1/TPSB2, and IL13
that merit further investigation. Notably, apart from
rs1800925 (IL13), we did not confirm any of the previously
published associations derived from candidate gene
studies and a recent GWAS that did not include a replica-
tion cohort (Table S6). In addition, we found no evidence
that genetic variation at KIT is associated with acquisition
of KIT D816V, unlike the finding in MPN that the JAK2
haplotype strongly influences the probability of acquiring
JAK2 V617F.73

Theoretically, common genetic variation may influence
mastocytosis by distinct mechanisms, for example by pro-
moting or favoring the outgrowth of a KIT D816V positive
clone that arose by random mutation (fertile ground hy-
pothesis); by increasing the probability that a KIT D816V
mutation arises in a stem cell (hypermutability hypothe-
sis); or by promoting the development of signs or symp-
toms in an individual with a KIT D816V positive clone,
thus increasing the chance of clinical investigation
(phenotypic hypothesis). We considered the possibility
that clonal somatic changes might affect the analysis;
however, we found that mastocytosis genomes are rela-
tively simple in that only a small proportion of affected in-
dividuals showed likely somatic copy number changes or
acquired uniparental disomy (Figure S7). Furthermore,

Table 2. Association between the most significant SNPs and clinical phenotypes in the Spanish and Italian cohorts

Phenotype

Number of
affected
individuals

rs4662380 rs13077541 rs4616402

p value Effect size (CI) p value Effect size (CI) p value Effect size (CI)

Initial diagnosis
(indolent/advanced)

422/26 0.175 0.58 (0.26–1.27) 0.646 0.88 (0.50–1.54) 0.238 0.60 (0.25–1.40)

Sex (F/M) 235/214 0.266 1.18 (0.88–1.60) 0.384 1.12 (0.86–1.46) 0.904 1.03 (0.65–1.61)

Skin lesions (þ/") 275/122 0.638 1.08 (0.77–1.51) 0.151 0.81 (0.60–1.08) 0.406 1.23 (0.75–2.00)

Age at diagnosis 422 0.668 0.55 ("1.97–3.07) 0.625 0.67 ("2.02–3.35) 0.009 4.41 (1.09–7.73)

Tryptase 417 0.452 "0.08 ("0.29–0.13) 0.136 "0.17 ("0.39–0.05) 0.249 0.17 ("0.12–0.45)

Categorical phenotypes: initial diagnosis (422 indolent versus 26 advanced mastocytosis-affected individuals), sex (235 female versus 214 male
individuals), and skin lesions (275 individuals with skin phenotype versus 122 individuals without skin phenotype); p value, fixed effects meta-
analysis of Italian and Spanish Fisher’s exact test; effect size, odds ratio; CI, 95% confidence interval. Continuous phenotypes: age at diagnosis and
tryptase levels tested in individuals with non-advanced phenotype; p value, linear regression; effect size, regression coefficient beta; CI, 95% confidence
interval.
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apart from isolated affected individuals, the genomic re-
gions with somatic changes did not include the risk factors
we identified.
Of the three significant SNPs identified in this study,

the strongest association was seen for rs4616402 at
19q13. Interestingly, this SNP was significantly associated
with age of diagnosis in individuals with non-advanced
disease. This SNP is located in a candidate enhancer,
and the risk allele is linked to reduced expression of
CEBPA,60 located 37.3 kb upstream. Another 19q13 SNP,
rs78744187, has previously been linked to basophil
counts and shown to modulate the activity of a CEBPA
enhancer;74 however, this variant is not in LD with
rs4616402 (r2 ¼ 0.22). CEBPA is an intronless gene that
encodes a leucine zipper TF that binds to the CCAAT
motif in the promoter of its target genes. It is expressed
in myeloid progenitor cells, and several studies have
defined its critical role in myelopoiesis and malignant
transformation of myeloid cells.75 Of particular relevance,
high C/EBPa expression inhibits the production of mast
cells from mast/basophil common progenitors, whereas
low C/EBPa expression inhibits the production of baso-
phils.71 Although the consequence of reduced CEBPA
levels in the context of KIT D816V remains to be defined,
reduced CEBPA expression associated with rs4616402 may
be relevant to the fertile ground and phenotypic hypoth-
esis defined above by creating an environment that favors
the production of mast cells. It is striking that CEBPA or
its product, C/EBPa, is targeted by two other oncogenic
tyrosine kinases: BCR-ABL1 downregulates CEBPA by a
post-transcriptional mechanism76 and oncogenic FLT3
mutants disrupt C/EBPa function by ERK1/2-mediated
phosphorylation.77 Furthermore, low CEBPA expression
is commonly seen in acute myeloid leukemia, although
the underlying mechanism is unclear.75 Detailed func-
tional studies are needed to clarify the relationship be-
tween KIT D816V-driven clonal outgrowth and CEBPA
expression.
The secondmost significant SNP, rs4662380, is located at

2q22 within the lincRNA LINC01412 and associated with
higher expression of the nearby gene TEX41. Both are of
unknown function, but because of the possibility of long
range interactions between GWAS signals and target genes,
it is unclear whether either are directly relevant to SM.
ZEB2 is another nearby gene that has been linked to
both myeloid and lymphoid leukemias,78,79 but we found
no association between rs4662380 and ZEB2 expression.
Interestingly, rs16823866, a SNP strongly linked to
rs4662380, was associated with elevated white blood cells
and, specifically, basophils in three independent popula-
tion studies.62,63,80 Although the underlying mechanism
is unclear, this may be relevant to the phenotypic hypoth-
esis in that affected individuals with abnormal blood
counts may be more likely to be investigated clinically.
The final SNP, rs13077541, is linked to expression of
TBL1XR1. This gene has been reported as a fusion partner
of PDGFRB, ROS1, RARA, and RARB in myeloid malig-

nancies,81–83 but its significance in relation to SM remains
to be established.
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Wojdy1o, M., Ręba1a, K., qugowska-Umer, H., Niedoszytko, M.,
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