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Abstract

FACULTY OF MEDICINE
HUMAN DEVELOPMENT & HEALTH

Doctor of Philosophy

Identification of genetic factors associated with myeloid neoplasms
by

Gabriella Galata

Myeloid neoplasms are clonal haematopoietic disorders characterised by the abnormal
proliferation of specific myeloid cell types. The first part of this thesis focuses on mastocytosis, a
rare haematological neoplasm characterised by the uncontrolled proliferation of mast cells. To
test the hypothesis that germline variants can alter the risk of developing mastocytosis, a two-
stage case-control genome-wide association study was conducted in five European populations
with 1,035 KIT?V-positive cases and 17,960 controls. This analysis identified three genome-wide
significant SNPs: rs4616402 (Pmeta=1.37x10™", *=4.2), rs4662380 (Pmeta=2.11x10"2, /*=0) and
rs13077541 (Pmeta=2.10%107, °=0). Expression and methylation quantitative trait loci analysis
were used to identify candidate genes located near the SNPs, specifically CEBPA, TEX41 and
TBLIXR1. Statistical analysis with available clinical data, showed that rs4616402 was associated
with age at presentation (P = 0.009; beta = 4.41; n = 422) in patients with non-advanced disease.
Additional focused analysis identified suggestive associations between mastocytosis and genetic
variation at TERT, TPSAB1/TPSB2, and IL13. Finally, a gene-based analysis was performed using
the summary statistics of the stage 1 meta-analysis and multiple regression which suggested that
the VEGFC gene is also associated with mastocytosis. The findings described in this thesis
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demonstrate that multiple inherited common risk variants predispose to KIT?®¢V positive

mastocytosis and provide novel avenues for functional investigation.

In the second part of this thesis, the genetics of somatically acquired uniparental disomy (aUPD)
in myeloid malignancies was investigated. Several regions of recurrent aUPD have been identified
in patients affected with haematological neoplasms, many of which harbour somatic mutations
that drive clonal proliferation. Similar regions of aUPD have also been identified in apparently
healthy individuals, especially the elderly, which confer a tenfold increased risk of developing
haematological malignancies. Large-scale sequencing initiatives of individuals unselected for

cancer therefore represent a valuable resource to identify novel regions of aUPD and the



underlying somatic mutations which drive clonal haematopoiesis (CH). Whole-exome sequence
(WES) data for 49,996 individuals from the UK biobank (mean age = 56.5 years) was used to
develop an automated pipeline for identifying aUPD regions and a new scoring system (gg score)
to select aUPD regions with high confidence for manual review. Precision and recall were used to
evaluate the gg score. The recall (or sensitivity) showed that it correctly identifies 55% of the
predicted aUPD regions, although the model can also produce false negatives. On the other hand,
the score performed well in term of precision and indicated that 90% of the aUPD regions were
correctly classified. The methodology was then applied to WES data from a Swedish Case-Control
study of Schizophrenia consisting of 12,380 samples and with a mean age of 65. Genes targeting
the aUPD regions identified in the Swedish cohort are known (MPL, 1p; TET2, 4q; EZH2, 7q; JAK2,
9p; FLT3, 13q; MEG3-DLK1, 14q). Regions of aUPD were screened for somatic mutation if they
were overlapping in two or more samples. However, only JAK2V%"F was confirmed in all five
samples with UPD9p and new aUPD regions with unknown gene target were not identified. This
work showed that the frequency of sample with aUPD regions identified by WES data is lower
(0.2-0.3%) than expected (1-2%) and provides an estimate what is needed in term of sample size

to detect aUPD regions from WES data.
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Chapter 1 Introduction

1.1 Cancer overview

Cancers are a group of diseases that are characterised by uncontrolled cell division and decreased
cellular death, both of which are influenced by genetic and epigenetic control (Strachan and Read,
2011). Mechanisms have evolved, such as apoptosis and deoxyribonucleic acid (DNA) repair, in
part to protect the human body from malignancy, and these processes can be impaired by both
germline and somatic mutations (Strachan and Read, 2011; Stratton et al., 2009). Germline
mutations occur in sex cells and can therefore be passed onto offspring where they will be present
in every cell. Somatic mutations occur in non-germ tissue and are not inherited. They are clonal in
nature, so a clone of cells can be defined by a founding mutation and separated into subclones by
subsequent mutations. Somatic mutations can be further categorised into drivers and passengers
(Stratton et al., 2009). Driver mutations confer a growth advantage so they are positively selected
and give rise to the hallmarks of cancer such as cell proliferation, immortalisation, metastasis,
angiogenesis and evasion of growth suppressors (Hanahan and Weinberg, 2011). Passengers on
the other hand are selectively neutral and not required for the initiation or maintenance of
carcinogenesis. Most likely they simply happened to be present in a cell that acquired a driver
mutation. Distinguishing between driver and passenger mutations has become one of the
central goals of cancer genomics, although this is complicated by the observation that some
tumours can contain up to 100,000 passenger mutations and fewer than 20 driver mutations.
However, haematological malignancies are much simpler, and fewer driving mutations are
required to generate a tumour (Stratton et al., 2009). In general, the mutational rate across cancers is
highly heterogeneous: a study of 7,664 tumours across 29 cancer types showed that 1 to 10 driver

mutations are needed to convert a normal cell into a cancer cell (Martincorena et al., 2017).

1.1.1 Oncogenes, tumour suppressor genes and the two-hit hypothesis

Mutations target specific genes, traditionally known as oncogenes and tumour suppressor genes,
resulting in the conversion of a normal cell into a malignant tumour (Strachan and Read, 2011).
Proto-oncogenes are present in normal cells and generally encode for proteins promoting cell
proliferation, arresting cell death or inhibiting cell differentiation. Proto-oncogenes are usually
activated in somatic cells by dominant genetic changes such as point mutations, gene
amplifications and translocations (Figure 1.1) (Chial et al., 2008). Point mutations can be found

within a promoter or a gene. The human telomerase reverse transcriptase (TERT) gene, for
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example, has been implicated in a wide range of cancers, and single nucleotide substitution in the
promoter of this gene can enhance mRNA expression (Horn et al., 2013; Huang et al., 2013). Point
mutations within genes can instead produce normal protein with constitutive activity (e.g., KIT
and JAK2) or degrade protein function (Gnanasambandan et al., 2010; Laine et al., 2011). Gene
amplifications and overexpression of the amplified gene can lead to malignant transformation
both in solid cancers (e.g., HER2 mainly in breast cancer) and haematologic malignancies (e.g.,
MYC in lymphoid leukaemia) (L'’Abbate et al., 2018; Neve et al., 2001; Zakrzewski et al., 2019).
Proto-oncogenes activated by chromosomal translocations have been associated with gene
hyperactivation as a consequence of new super-enhancers (e.g., MYC in multiple myeloma) or
fusion genes (e.g., BCR-ABL1 in chronic myeloid leukaemia) (Hnisz et al., 2014; Lancho and
Herranz, 2018; Peiris et al., 2019). In particular, chromosomal translocations involved in
haematological cancer will be discussed in Section 1.2 of this thesis. Other mechanisms such as
hypomethylation of long interspersed nuclear element-1 (LINE-1) have been associated with the
activation of proto-oncogenes in various human cancers (Bae et al., 2012; Hur et al., 2014;
Roman-Gomez et al., 2005). Activated proto-oncogenes, called oncogenes, promote cell

proliferation and differentiation (Strachan and Read, 2011).

Tumour suppressor genes encode for proteins involved in several mechanisms such as the
inhibition of cell proliferation, apoptosis, replication and DNA repair. According to the two- hit
hypothesis proposed by Knudson in retinoblastoma (Rb), carcinogenesis in some cases can initiate
when the cell has mutations in both alleles of a tumour suppressor gene; i.e., they are recessive
(Knudson, 2001). If a tumour suppressor is inactivated, mechanisms that control the normal cell
cycle will be lost (Strachan and Read, 2011). Familial Rb (accounting for 25—35% of Rb cases) is an
autosomal dominant disease where one mutated allele is inherited (Jagadeesan et al., 2016). For
most tumour suppressor genes, however, inactivation of both alleles corresponds to somatic
events. Inactivation of tumour suppressor genes is often caused by whole-gene deletion of one
allele, mitotic recombination or duplication of the mutant allele, which may be detected by loss of

heterozygosity (LOH) of informative markers upon a comparison of tumour and normal tissue.
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Figure 1.1 Proto-oncogene activation mechanisms.

Proto-oncogenes are genes involved in the regulation of the cell cycle. Genetic changes such
as point mutations, gene amplification, chromosomal translocation and hypomethylation can
activate proto-oncogenes to become oncogenes.

As more mutated genes have been discovered in cancer it has become apparent that the model of
dominant oncogenes and recessive tumour repressor genes is rather simplistic with many genes
in fact having both dominant and recessive characteristics at the cellular level (Soussi and Wiman,

2015).

1.1.2 Clonal evolution in cancer

Cancers evolve by clonal evolution, a concept formulated in the 1970s by Nowell (Nowell, 1976).
He proposed that most neoplasms are the result of an evolutionary process initiated by a single,
previously normal cell. An initial event gives rise to a proliferative advantage and clonal

outgrowth. Acquisition of additional mutations, possibly in the context of genomic instability,
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gives rise to further subclones. This evolutionary process will lead to a selection of more aggressive
subclones which, due to their growth advantage over the normal cell, will begin to predominate
and, for solid tumours, metastasise and invade local tissue. The rate of acquired epigenetic
changes has been estimated to have a crucial role in genetic changes in clonal evolution
(Siegmund et al., 2009). Overall, both genetic and epigenetic changes and subclonal selection
processes result in advanced human malignancies characterised by uncontrolled proliferation
(Flavahan et al., 2017; Nowell, 1976). More recently, it has become apparent that cancer
evolution is not a simple linear process, but involves branched evolution and complex interactions
between subclones (Greaves and Maley, 2012). Data on acute lymphoblastic leukaemia (ALL) in
childhood revealed more dynamic clonal expansions, which occur without a preferential order. In
fact, dominance and the architecture of subclones change constantly before subclones begin to

dominate in early cancer development (Anderson et al., 2011).

1.13 Heterogeneity and hierarchical organisation in cancer

Cancer is characterised by genetic heterogeneity whereby different tumour cells have unique
mutation profiles that form a hierarchical organisation (Caldas, 2012). Mouse model experiments
gave, for the first time, evidence of heterogeneous subpopulations in a single tumour line. The
analysis of isolated sub-clones showed their different metastatic potential consistent with the
heterogeneity of cancer (Harris et al., 1982). This heterogeneity and hierarchy of tumour
subpopulations was also demonstrated in human acute myeloid leukaemia (AML) using non-
obese diabetic mice with severe combined immunodeficiency disease (NOD/SCID) transplanted
with human leukaemic cells (Bonnet and Dick, 1997). AML is composed of multiple distinct cell
types and maintained by slow-cycling leukaemic stem cells (Clevers, 2011). Dick and Bonnet
demonstrated in vivo the hierarchical organisation of a leukaemic clone by comparing the
organisation of the normal and the AML haematopoietic system in humans. In fact, theywere able
to detect a primitive leukaemic stem cell that produces clonogenic leukaemic progenitors (AML-

CFU) and leukaemic blasts (Bonnet and Dick, 1997).

1.14 Insight into clonal evolution

Geneticdiversity and epigenetic plasticity in cancer can lead to clonal evolution, drug resistant
subclones, therapeutic failure and tumour relapse (Greaves, 2015). Advanced technologies such as
single nucleotide polymorphism (SNP) microarrays and next-generation sequencing (NGS) have
been widely used to investigate clonal evolution and genetic heterogeneity, and have improved
our knowledge of the genotypic and phenotypic evolution of tumour cells (Ding et al., 2012;
Landau et al., 2014; McGranahan and Swanton, 2017). For example, SNP arrays were used for

genome-wide analysis of copy number variant (CNV) and LOH analysis on diagnostic and relapse

4
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bone marrow (BM) samples of 61 patients affected with ALL (Mullighan et al., 2008). The results
of the study showed no difference in CNVs betweenrelapse and diagnostic samples on 8% of the
patients, while 34% of the relapse samples showed clonal evolution of the diagnostic clone. This
study demonstrated how a common ancestral clone can give rise to major and minor clones that
are both present at diagnosis, and how the minor clone can acquire new genetic alterations and
generate a new clone that is positively selected and responsible for relapse. In an illustrative case,
two deletions at relapse were reported, one of which was present in a minor clone of the
diagnostic sample, whereas the second one was acquired during a different stage of the evolution
of the relapse clone (Mullighan et al., 2008). In patients with AML, clonal evolution can also be a
cause of death after tumour relapse. In a study performed with 8 patients from different French-
American-British subtypes of AML, the primary tumour, relapse, and matched normal skin samples
were sequenced using NGS, and new clonal mutational patterns in tumour relapse were identified
(Ding et al., 2012). In order to investigate the cytotoxic effect of the chemotherapy on the
evolution of the tumour, transversion (substitution of a purine for a pyrimidine or vice versa) and
transition (changes from purine/pyrimidine to another purine/pyrimidine) in the relapse-specific
tumour were compared with the changes identified in the primary tumour. The comparison
revealed an increase in transversions for relapse-specific mutations. Although the primary tumour
sub-clones were eradicated by therapy and therefore absent at relapse in 50% of the cases, this
study showed that the cytotoxicity of the therapeutic treatment alters the clonal structure of the
tumour and allows a more aggressive clone to dominate and contribute to drug resistance at
relapse (Ding et al., 2012). Overall, these results show that different classes of mutations can be
responsible for clonal evolution and need to be investigated in further studies. Furthermore,
targeting with future therapies needs to consider not only the primary clone but also its
subclones, and this should be one of the main foci of cancer research in order to minimise the

impact of relapse after treatment (Mullighan et al., 2008).

1.1.5 Cancer stem cell model

According to the cancer stem cell (CSC) concept, the growth of tumours is driven by a group of
slow-cycling CSC with pluripotency, self-renewal and chemo-resistance capabilities. The CSC
model presumes that the tumour is composed of two groups of cell; differentiated cells that have
lost their proliferative capability, and CSCs, which represent the tumourigenic part of the tumour.
Therefore, this feature contributes to relapse and supports the hypothesis of using CSCs as the
target for new strategies in cancer therapy (Clevers, 2011). Moreover, recent identification of
several markers and an understanding of signalling pathways associated with CSC proliferation,

apoptosis and differentiation have given insight into the development of drugs that used in
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combination with traditional treatment are under evaluation in preclinical and clinical studies

(Dragu et al., 2015).

1.1.6 Cancer classification

Based on the International Classification of Diseases for Oncology, Third Edition (ICD-O-3) (Fritz et
al., 2013), cancers can be named according to the type of tissue where they originate. The NIH

National Cancer Institute (https://training.seer.cancer.gov/disease/categories/classification.html)

lists approximately 200 types of cancers, which can be grouped into six main categories based on

histological type (NIH National Cancer Institute):

e carcinoma, cancer that originates in epithelial tissue;

e sarcoma, malignancies of connective tissue (bone, cartilage, smooth muscle, skeletal
muscle, blood vessels, adipose tissue, etc.);

e myeloma, a type of cancer that affects plasma cells. Plasma cells are leucocytes involved
in immunoglobulin secretion and originated from B-cell differentiation(Oracki et al.,
2010);

e leukaemia, liquid cancers usually affecting leucocytes. Red blood cells can also be
affected;

e lymphoma, solid cancers that originate in the lymphatic system. The main lymphomas are
Hodgkin’s disease and non-Hodgkin’s lymphoma;

e mixed types, containing different cell types.

Haematological malignancies (leukaemia, lymphoma, myeloma) can be defined as myeloid or
lymphoid depending on which cell lineage in haematopoiesis is affected, and acute or chronic
depending on the tempo of onset and degree of differentiation. The classification of lymphoid and
myeloid neoplasms was summarised in the fourth edition of the World Health Organization
(WHO) classification of tumours of haematopoietic and lymphoid tissues (Swerdlow et al., 2008).
In 2016, new clinical, prognostic, diagnostic and genetic findings derived from gene expression
and sequencing studies led to a further revision of the WHO classification. For instance, systemic
mastocytosis (SM) was reclassified and is no longer considered a subgroup of myeloproliferative
neoplasms (Arber et al., 2016a; Swerdlow et al., 2016). Details of the new classification for SM are

described on paragraph 1.2.5.1.
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1.2 Myeloid Neoplasms

Myeloid neoplasms are clonal haematopoietic disorders that are characterised by constitutive
activation of signal-transduction pathways and other changes which lead to transformation and
abnormal proliferation of haematopoietic stem cells (HSC), overproduction of one or more cell
types in the myeloid lineage in the BM, and an increase in specific myeloid cells in the peripheral
blood (Korn and Méndez-Ferrer, 2017). In the most recent WHO classification, these malignancies
are categorised into major subtypes which include myeloproliferative neoplasm (MPN),
myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN), myelodysplastic
syndromes (MDS) and AML (Arber et al., 2016b). Recently, progress has been made through the
identification of new driver mutations that can be used for diagnosis and to estimate the
prognosis of these disorders (Arber et al., 2016a; Patel et al., 2017). However, despite an updated
classification and increased understanding of their molecular pathogenesis, these are
heterogeneous disorders and some overlapping features remain. Myeloid malignancies are mainly
sporadic; however, a small group of cases associated with germline mutations have been reported
both in children and adults. Germline mutations associated with familial myeloid neoplasms will
be discussed in the following paragraphs together with the description of the disease subtypes
(Arber et al., 2016a; Baptista et al., 2017). A distinct group of myeloid neoplasms known as
therapy-related myeloid neoplasms (t-MNs) can arise in patients that follow chemotherapy or
radiotherapy for a primary tumour or an autoimmune disease (Arber et al., 2016b). Cytotoxic
treatments are known to play an important role in the pathogenesis of these diseases (Hasan et
al., 2008). However, data have shown that familial predisposition has also been found to be

involved in the development of t-MNs (Churpek et al., 2016).

1.2.1 Myeloproliferative neoplasms

MPNs are clonal haematological diseases that are characterised by an excess production of
several haematopoietic lineages (e.g., erythroid, megakaryocytic and granulocytic cells), BM
fibrosis and symptoms related to peripheral blood (PB) cell abnormalities (Kim et al., 2015).
According to the latest WHO classification, MPNs are grouped into seven main malignancies:
chronic myeloid leukaemia (CML), chronic neutrophilic leukaemia (CNL), polycythaemia vera (PV),
essential thrombocythaemia (ET), primary myelofibrosis (PMF), chronic eosinophilic leukaemia
(CEL) and MPN unclassifiable (MPN-U) (Arber et al., 2016a; Skoda et al., 2015). Evidence in the
literature demonstrates that genes encoding a protein with tyrosine kinase activity are mutated in
many haematologic malignancies and most MPN (Klampfl et al., 2013; Tefferi and Vardiman, 2008).

The defining molecular marker used for the diagnosis of CML is the fusion gene between the
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breakpoint cluster region gene (BCR) and ABL1 proto-oncogene 1 (BCR-ABL1) resulting from a
translocation between chromosomes 9 and 22. The derivative chromosome 22, called the
Philadelphia chromosome, is usually identified using molecular genetics techniques or by karyotype
investigation. MPN cases without BCR-ABL1 are known as BCR-ABL1 negative MPN and their
identification together with other factors have diagnostic and prognostic importance; CSF3R"*®!
or other CSF3R activating mutations together with other diagnostic criteria are strongly associated
with CML, and the presence of JAK2 (Janus kinase 2)V617F is usually associated with PV, ET or PMF.
Occasional PV cases have JAK2 exon 12 mutations, but the majority of JAK2V617F negative ET and
PMF cases are characterised by the presence of myeloproliferative leukaemia proto-oncogene
(MPL) or calreticulin (CALR) mutations. The small proportion of ET and PMF cases that test
negative for JAK2V67F, MPL and CALR mutations are referred to as triple-negative MPN (Arber et
al., 2016a; Kim et al., 2015). In recent studies, other disease-causing genes have been revealed to
be mutated in MPN and, as shown in Table 1.1, different mutations can affect signalling,

epigenetic abnormalities, splicing factors, DNA repair/tumour suppressor gene (Patel et al., 2017).

Many of these genes are also mutated in MDS/MPN, MDS and AML.

1.2.2 Myelodysplastic syndromes

MDS is a myeloid malignancy and one of the most frequent haematopoietic disorders, especially
in the elderly (Arber et al., 2016a). It is characterised by peripheral cytopenia, impaired
haematopoiesis, dysplasia of haematopoietic cells and elevated risk of developing AML. Cytopenia
is an essential diagnostic feature and according the WHO it is defined by specific thresholds of
haemoglobin, platelet and neutrophil counts. According to the WHO classification, the degree of
dysplasia and blast percentage also need to be considered in order to define specific MDS
subtypes. The threshold of dysplastic cells is 10% in MDS; however, some individuals may have
levels of dysplasia greater than 10%, so alternative causes of dysplasia need to be taken into
account before a definite diagnosis can be made. Recurrent acquired mutations in SF3B1, TET2,
SRSF2, ASXL1, DNMT3A, RUNX1, U2AF1, TP53, EZH2 and many other genes have been identified in
patients affected with MDS (Haferlach et al., 2014; Papaemmanuil et al., 2013). Some mutations can be
useful for prognosis. For example, TP53 mutation if present in patients with del(5q) is a predictive
factor of poor response if the patients undergo specific treatment such as lenalidomide (Mallo et

al., 2013).
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Table 1.1  Disease-causing genes/mutations in MPN.
GENE MUTATION GENOMIC LOCATION  ESTIMATED FREQUENCY (%)
PV ET PMF
Signal Transduction
JAK2 V617F 9p24 95-97 50-60 55-60
JAK2 Exon 12; missense, indels 9p24 2 Rare Rare
MPL Exon 10; missense 1p24.2 <1 3-5 5-10
CALR Exon 9; indels 19p13.13 <1 20-25 25-30
SH2B3 Exon 2; missense, deletion 12qg24 Rare Rare Rare
CBL Exon 8-9; missense in codons 366-420 11923 Rare 0-2 5-10
Epigenetic Modification
TET2 All exons; indels, nonsense and missense 4q24 10-20 5 10-20
IDH1 IDH1:missense R132; 2933/ ~2 <1 3-5
IDH2 IDH2:missense R140Q;R172 15026
DNMT3A Exon 7-23; missense R882; nonsense, frameshift or splice site 2p23 5-10 1-5 5-12
ASXL1 Exon 13; frameshift or nonsense 20q11 2-7 5-10 15-35
EZH2 All exons; nonsense or frameshift 7935-936 ~2 ~2 5-10
Splicing Factors
SF3B1 Exon 12-16; missense in codons 622-781 2933 ~1 ~1 5-10
SRSF2 Exon 1; missense 17925 Rare Rare Rare
U2AF1 Exon 2-7; missense 2122 <1 <1 5-16
DNA Repair/Tumour Suppressor
TP53 Exons 4-9; nonsense, frameshift, splice site, missense 17p13.1 <1 <1 2-4

Common somatic mutations in MPN, the genomic locations of the genes and estimated frequency in disease subtypes (PV, ET, PMF). The mutated genes are grouped by function. Genes
regulating signalling, epigenetic modification, splicing and DNA repair mechanisms are most frequently affected (Patel et al., 2017).
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1.23 Myelodysplastic/myeloproliferative neoplasms

MDS/MPN is a group of diseases with clinical, laboratory and morphological features of both MPN
and MDS. The karyotype may present the same abnormalities as seen in MDS (Arber et al., 2016a).
Targeted sequencing of genes often mutated in myeloid disorders identifies variants in 80% of
patients affected with chronic myelomonocytic leukaemia (CMML), the most common MDS/MPN
subtype. The most commonly affected genes are SRSF2, TET2 and ASXL1, while mutations in
SETBP1, NRAS/KRAS, RUNX1, CBL and EZH2 are identified at a lower rate. All these genes are
mutated in other MDS/MPN subtypes, with broadly different mutational patterns associated with
four specific entities being highly relevant for their diagnosis (Meggendorfer et al., 2018). For
example, atypical CML (aCML) is a rare MDS/MPN subtype that, similarly to CNL, is characterised
by neutrophilia, but it is associated with SETBP1 and ETNK1 mutations. In most cases, JAK2, CALR,
MPL are generally not present in this MDS/MPN subtype but CSF3R mutations are seen in 10% of
aCML cases (Arber et al., 2016a; Wang et al., 2014a). Juvenile myelomonocytic leukaemia (JMML)
is another MDS/MPN subtype initiated by RAS-activating mutations and characterised by
overproduction of monocytes and granulocytes (Chang et al., 2014). JMML occurs in children,
and almost 90% of the patients have somatic and sometimes germline changes in PTPN11, KRAS,
NRAS, CBL and NF1 (Arber et al., 2016a). MDS/MPN with ring sideroblasts and thrombocytosis
(MDS/MPN-RS-T) and MDS/MPN-Unclassifiable (MDS/MPN-U) are other MDS/MPN subtypes
under the 2016 WHO classification. MDS/MPN-RS-T in most cases (70%—90%) is strongly
associated with mutations in the spliceosome gene SF3B1 co-existing with an MPN driver
mutation, such as JAK2V617F (50%-65%), CALR or MPL mutations (<10%) (Arber et al., 2016a; Reinig
and He, 2017). MDS/MPN-U is a very rare, heterogeneous neoplasm that comprises less than 5%
of MDS/MPN. It can sometimes not be distinguished from aCML and not much is known about the

disease (Chaudhury et al., 2015).

1.24 Myeloid neoplasms with germline predisposition

A small group of familial myeloid neoplasms associated with germline mutations have been
reported and a common finding is that genes mutated in sporadic cases are also found to be
mutated in familial cases. For instance, 10—15% of sporadic AML have normal karyotype and
somatic mutations in the CEBPA gene, which is also mutated in familial AML, an autosomal
dominant condition with nearly complete penetrance (Baptista et al., 2017). For example,
sequence analysis of the germline DNA in three family members (two siblings and their father)
affected with AML revealed c.212delC mutation (Smith et al., 2004). Mutational analysis in 3

families with a familial platelet disorder (FPD/AML) revealed heterozygous RUNX1 missense
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mutations which segregate with the disorder in all of the family members tested (Michaud et al.,
2002). Subsequently many other germline mutations predisposing to MDS/AML have also been
reported throughout the RUNX1 gene, including missense, nonsense, frameshift and indel
mutations (Baptista et al., 2017). Inherited GATA2 mutations associated with familial MDS/AML
have also been reported in several studies (Gao et al., 2014; Hahn et al., 2011) and the growing list
of predisposition genes associated with myeloid neoplasms also includes DDX41, ANKRD26 and
ETV6 (Obrochta and Godley, 2018).

1.2.5 Mastocytosis

Mast cells (MCs) originate from the multipotent HSC that, after leaving the haematopoietic tissue
as mast cell progenitors (MCPs), migrate through the peripheral blood to the connective or
mucosal tissue, and then proliferate and differentiate into MCs (Kitamura et al., 1979). Once
differentiated, MCs maintain high expression of the KIT receptor, also known as CD117 (Chen and
George, 2018). MC granules mainly store mature tryptase, a tetrameric serine protease, and
activation of MCs can lead to an elevated basal serum tryptase level, which has been established
to be clinically significant in mastocytosis as well as other myeloid neoplasms (Arber et al., 2016a;
Khoury and Lyons, 2019; Payne and Kam, 2004). Mastocytosis is a heterogeneous neoplasm that
is characterised by abnormal growth and accumulation of clonal MCs in the BM and/or other
tissues/organs. Mastocytosis can occur during childhood or adulthood. In most childhood cases,
mastocytosis is limited to the skin, whereas in adults a systemic condition is more common with
less than 5% of cutaneous forms in adults. The disease will present itself in males and females in
equal ratios, although affected males are more predominant during childhood and female
predominance is more likely to happen in adulthood

(https://rarediseases.info.nih.gov/diseases/6987/mastocytosistiref 8371).

Classification and diagnostic criteria of mastocytosis were revised in 2016 by the WHO (Arber et
al., 2016a). Mastocytosis represents a specific disease category, and due to its peculiar features is
no longer considered a subgroup of MPNs, although it is clearly related to these disorders (Arber
et al., 2016a). Mastocytosis is currently subclassified into three groups; cutaneous mastocytosis
(CM), SM and mast cell leukaemia (MCL). CM occurs more frequently during childhood and is
considered a skin disease. In contrast, SM occurs with a higher incidence in adults and the
neoplastic MCs form focal and/or diffuse infiltrates in several tissues/organs such as bone marrow
(BM), liver and spleen, leading to their functional impairment (Kristensen et al., 2011). The
research described in the following two chapters focuses on SM, and in the following paragraph |

will give more insights into this disease.
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1.2.5.1 Systemic mastocytosis

SM is a rare disease with a worldwide prevalence estimated to be between 1/20,000 and

1/40,000 (https://www.orpha.net/). According to the WHO diagnostic criteria, a biopsy of the BM

or sections of other extracutaneous organs is needed to detect aggregates of MCs, where an
aggregate contains at least 15 MCs. This represents the major diagnostic criteria for SM.
Depending on which organ is primarily affected by MC accumulation, five different SM subtypes
have been identified. Indolent systemic mastocytosis (ISM) is the most common phenotype and is
associated with a normal life expectancy. ISM only rarely develops into a more advanced
phenotype. Smouldering systemic mastocytosis (SSM) also has a relatively benign phenotype but
it can transform into an advanced subtype. The remaining SM subtypes are associated with a
shorter life expectancy; systemic mastocytosis with an associated haematological neoplasm (SM-
AHN), aggressive systemic mastocytosis (ASM), and mast cell leukaemia (MCL) (Arber et al.,
2016a). Sometimes, the major criteria may not be sufficient for the final diagnosis and therefore
the following minor diagnostic criteria have been established for SM: biopsy sections of BM or
extracutaneous organs showing more than 25% MCs with atypical or spindle-shaped morphology;
detection of a KIT point mutation at codon 816 in the BM or another extracutaneous organ; MCs
in BM, blood or other extracutaneous organ expressing CD2 and/or CD25 which are not expressed
under healthy physiological conditions; baseline serum tryptase (BST) level greater than 20 ng/mL
(assuming the absence of an unrelated myeloid neoplasm). Based on WHO 2016 guidelines, the
diagnosis of SM is established following the detection of the major criteria and one minor
criterion, or at least three minor criteria (Arber et al., 2016b; Chen and George, 2018; Valent et

al., 2017a).

1.2.5.2 The KIT gene and driver mutations that activate the KIT receptor

The KIT gene encodes the receptor tyrosine kinase KIT. The extracellular domain of KIT contains
five Ig-like modules that bind stem cell factor (SCF), a cytoplasmic region containing a regulatory
juxtamembrane domain (JMD) and a tyrosine kinase domain (TKD). The extra and intracellular
domains are connected by a hydrophobic transmembrane domain (TMD). KIT is expressed
throughout the entire development of MCs and is essential for their survival (Kitamura et al.,
2007). KIT is normally activated by stem cell factor (SCF) binding, which induces dimerisation of
the receptor and upregulation of the tyrosine kinase activity and subsequent downstream

signalling pathways (Figure 1.2).

Gain-of-function mutations in the KIT gene constitutively activate the KIT receptor, causing

continuous growth and survival of MCs in the absence of SCF (Kitamura et al., 2007). Approximately
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90% (Table 1.2) of adult SM patients have a specific somatic driver mutation (c.71763A>T
p.D816V, substitution of an aspartate with a valine) in KIT which is significant for both diagnosis of
mastocytosis and therapeutic decision-making (Baird and Gotlib, 2018). Other rare somatic KIT
mutations (e.g. D815K, D816Y, D816F, D816H, D820G, V560G, A502_Y503dup) have been detected
in less than 5% of patients (Table 1.2) (Conde-Fernandes et al., 2017; Manthri et al., 2020; Mital et
al., 2011; Ustun et al., 2016). Somatic mutations have been identified in other genes in advanced
SM patients (e.g. TET2, SRSF2, ASXL1, CBL, RUNX1, RAS, EZH2 and JAK2V®'7F) and some of these
additional mutations confer a poor prognosis, notably SRSF2, ASXL1 and RUNX1 (Jawhar et al.,
2015; Manthri et al., 2020; Valent et al., 2017b). Although the KIT receptor is considered a target
of the tyrosine kinase inhibitor (TKI) imatinib, this compound is ineffective against D816V, as this
mutation locks the receptor into an active conformation that imatinib is unable to access (Frost et
al., 2002). Other KIT mutations, however, may be responsive to imatinib (Manthri et al., 2020;
Mital et al., 2011) and encouraging clinical results have been obtained in mastocytosis using the
alternative KIT inhibitor midostaurin (Gotlib et al., 2016), and more recently avapritinib (Gilreath
et al., 2019). Cladribine is a non TKI-based chemotherapy, and although it has been effective for
mastocytosis patients, its use has declined with the advent of TKls targeting KIT; however, it still
remains a safe drug to consider during pregnancy (Gilreath et al., 2019). KIT mutations are not
only seen in mastocytosis but also characterise gastrointestinal stromal tumours (GST) and are
often seen in AML with core binding factor fusion genes RUNX1-RUNX1T1 and CBFB-MYH11
(Faiyaz-Ul-Haque et al., 2018; Hirota et al., 1998; Ishikawa et al., 2020; Liu et al., 2020). In GSTs,
the most common mutations are localised on exon 11 (70% of cases); these mutations have also
been reported to be involved in the development of liver metastasis (Liu et al., 2020; Tanaka et
al., 2010). However, other KIT mutations in GST patients are found on exon 9 (5-10%),13 (1-3%)
and 17 (<1-3%) as well as a novel cyclin Y like 1 (CCNYL1)-BRAF gene fusion (Liu et al., 2020).
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Figure 1.2
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Schematic of KIT receptor and localisation of main somatic and germline mutations

observed in the sequence of the KIT gene in association with SM.

14

The figure shows the KIT receptor tyrosine kinase in its monomeric form. KIT is a proto-
oncogene of 21 exons, located on chromosome 4, that encodes the KIT transmembrane
receptor comprised of 976 amino acids. The receptor is composed of an extracellular domain
(ECD) (in light grey), a TMD (in purple) and an intracellular domain. The ECD contains five Ig-like
modules which are crucial for positioning KIT dimers in the correct orientation during the
dimerisation of the receptor. The cytoplasmic region contains a JMD (in magenta) and a TKD (in
yellow) composed of TKD1 and TKD2, and linked by a kinase insert domain (KID). The most
common activating mutation (D816V) highlighted in bold, occurs in TKD2 and affects the
cytoplasmic phosphotransferase domain’s (PTD) activation loop (A-loop). The ligand binding
site and dimerisation site are in the ECD. In the figure, the exon numbers are shown in boxes
and the main somatic (in black) and germline (in red) mutations identified in SM are indicated in
the corresponding exonic regions (Baird and Gotlib, 2018; Ustun et al., 2016). Mutations
marked as germline may also be acquired somatically.
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Familial cases of CM and SM have also been reported (Hartmann et al., 2005; Wasag et al., 2011),
with some families testing positive for inherited KIT mutations. A case study reported a father and
two children affected with CM and harbouring a KIT p.N822I missense mutation. It was shown
that this mutation constitutively activated the KIT receptor and also that N822lI is resistant to
imatinib but sensitive to dasatinib (Wasag et al., 2011). A study described a novel KIT germline
mutationin exon 8 (del419) in a German family affected with gastrointestinal stromal tumour and
mastocytosis. This mutation is a deletion affecting the extracellular domain of the receptor and
was previously reported in one case of AML as well as childhood CM. In vitro experiments
demonstrated that the constitutive phosphorylation of KIT was inhibited by imatinib (Hartmann et
al., 2005). Another interesting study reported a K5091 mutation associated with familial SM. A
woman and her daughter harboured thesame mutation and after sequencing both parents of the
woman, the mutation was identified as an acquired de novo mutation, which was transmitted to
the daughter. In vitro experiments showed that imatinib was able to induce apoptosis of MCs
harbouring the KIT K5091 mutation. The clinical condition of both patients improved remarkably

after three months of treatment with imatinib (de Melo Campos et al., 2014).

Mastocytosis is considered clinically to be part of a wider range of mast cell activation disorders
(MCAD), including mast cell activation syndrome (MCAS). MCAS is a poorly understood
immunological condition in which mast cells inappropriately and excessively release chemical
mediators, resulting in a range of chronic symptoms, including anaphylaxis. Thus far no clearly
recurrent genetic abnormalities have been described in MCAS; however, a review of familial cases
showed that approximately 75% of mast cell activation disease (MCAD) patients had at least one
first-degree relative with MCAD, which indicates a significant germline contribution (Molderings et

al., 2013).
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Table 1.2  Mutations in the KIT gene sequence in patients with mastocytosis.

DOMAIN MUTATION LOCATION FREQUENCY FREQUENCY
(ADULTS) (CHILDREN)
Extracellular domain Missense, indels Exon 8 5% 20%
. Missense, Exon 9 <5% 25%
Ig-like module 5 .
duplication
Transmembrane Missense Exon 10 rare rare
domain
. Missense, Exon 11 <5% <5%
Intracellular domain .
deletions
Tvrosine kinase D816V Exon 17 80-90% 40%
yr j(')”mai'n” > D816 other Exon 17 <5% 5%
missense Exon 18 <5% rare

1.3 Clonal haematopoiesis in healthy people

Clonal haematopoiesis (CH) refers to the clonal expansion of any haematopoietic cells which have
acquired somatic mutations or chromosomal abnormalities over time (Jaiswal and Ebert, 2019).
Several studies have shown that the expansion of haematopoietic cell clones in the general
population, termed age-related clonal haematopoiesis (ARCH)/clonal haematopoiesis of
indeterminate potential (CHIP), is common in healthy elderly individuals and is associated with an
increased risk of developing haematologic cancer as well as other cancers, cardiovascular disease
and other age-related diseases (Bick et al., 2020; Busque et al., 2012; Genovese et al., 2014;
Jacobs et al., 2012; Jaiswal et al., 2014, 2017; Laurie et al., 2012; Xie et al., 2014). For the purpose
of this thesis, | will focus on the association between CHIP and haematological malignancies. A
study performed on blood-derived DNA from a Swedish cohort identified genes that are most
frequently mutated in association with clonality and observed CH with somatic mutations in 10%
of individuals aged 65 or older. The 12,380 samples were unselected for blood cancer and their
health condition was followed for up to 7 years after sample collection. Interestingly, 42% of
participants who developed haematological malignancy during the study period had CH at study
entry (Genovese et al., 2014). These results were confirmed by a second study of 17,182 samples
coming from five different populations (African-American, East Asian, European, Hispanic, South
Asian) (Jaiswal et al., 2014). Although individuals with CH are clearly at risk of developing a

haematological malignancy, the rate of progression was only about 1% per annum.

1.3.1 CHIP/ARCH and associated mutations

DNMT3A, ASXL1 and TET2 are frequently mutated in patients with AML and MDS, and are also the
most frequently mutated genes in apparently healthy individuals with CH (Busque et al., 2012;
Genovese et al., 2014; Jaiswal et al., 2014). Findings from another study suggested that DNMT3A
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R882H is particularly common in driving clonal events. They also demonstrated that CHIP is far
more frequent, as they observed CH with DNMT3A and TET2 mutation in 95% of the healthy
samples aged 50—-60 (Young et al., 2016). Other frequently mutated genes are PPM1D, JAK2,
TP53, GNAS, BCORL1 and SF3B1 (Genovese et al. 2014; Jaiswal et al. 2014; Xie et al. 2014). These
genes can be used as a marker for early detection of CH in individuals that have not developed

clinical symptoms for haematologic cancers (Genovese et al., 2014).

1.4 Chromosomal abnormalities in myeloid neoplasms

Genome instability and mutations are one of the hallmarks of cancer (Hanahan and Weinberg,
2011). Chromosomal abnormalities in cancer were first described between 1890 and 1914 by
Hansemann and Boveri who were performing microscopic analysis of cancer cells (Calkins et al.,
1914; Hansemann, 1890). Both chromosomal and molecular abnormalities can be responsible for
the initiation of a malignant event and they can also be identified as clonal markers (Nowell,
1976). Not all the cells in the malignant tissue acquire genomic anomalies and some cells do not
acquire proliferative advantage (Heim and Mitelman, 2015). A study conducted on 50K samples
from the general population using SNP microarray data showed that detected mosaic
chromosomal anomalies associated with CH tend to overlap with the same regions of copy-
number variants or copy-number neutral events as those that are seen in haematological
malignancies (Laurie et al., 2012). The investigation of chromosomal abnormalities in the genome
is particularly important for the genetic diagnostic and clinical management of haematological

malignancies (Arber et al., 2016a; Swerdlow et al., 2016).

14.1 Chromosomal abnormalities

Balanced chromosomal translocations are key abnormalities in the diagnosis of leukaemia and
lymphoma and for understanding the pathogenesis of these diseases. Translocations may
generate dominantly acting fusion genes that act as primary drivers of the disease process, or may
result in aberrant expression of neighbouring genes. The prime example of a reciprocal
translocation giving rise to a fusion gene is the Philadelphia chromosome, the smaller derivative
of a translocation event between chromosome 9 and chromosome 22. The BCR-ABL1 fusion gene
resulting from this rearrangement encodes a deregulated tyrosine kinase protein and is
associated with the development of CML, as well as up to 50% of ALL and 1% of AML (Johansson
and Harrison 2015; Kang et al. 2016).
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1.4.2 Loss of heterozygosity

LOH is a common genetic event occurring in cancer (Ryland et al., 2015). It involves the
conversion of heterozygous loci to a homozygous state by a variety of mechanisms. LOH can cause
the loss of normal function of one allele in a tumour suppressor gene or oncogene in which the
other allele was already inactivated. Alternatively, LOH can convert a heterozygous driver mutation
to homozygosity, which may provide an additional clonal advantage. Regions of LOH may span
entire chromosomes or short sections of DNA, and they can occur due to copy number losses
(CNV-LOH) or they can be copy number neutral (CNN-LOH), associated with acquired uniparental
disomy (UPD) (O’Keefe et al., 2010; Ryland et al., 2015).

143 Acquired uniparental disomy

UPD is a type of LOH event whereby both copies of a chromosome pair or parts of chromosomes
have originated from one parent (Engel, 1980). Inherited UPD, where both chromosome copies are
inherited from one parent, occurs due to errors in meiosis and is associated with developmental
disorders resulting from abnormal expression of imprinted genes (Robinson, 2000). In contrast,
somatically acquired UPD (aUPD) occurs in cancer as a result of mitotic errors, either non-
disjunction resulting in aUPD of a whole chromosome, or more commonly recombination
involving a whole chromosome arm or terminal segments followed by disjunction and DNA

replication resulting in aUPD/LOH in the recombined region (Tuna et al., 2009) (Figure 1.3).

144 Regions of aUPD in healthy people

Regions of aUPD in healthy individuals represent another form of CHIP/ARCH. Only 0.5% of people
under the age of 50 are affected but this rises to 2—-3% of individuals over 50 and 10% of elderly
individuals aged 65 and older. Importantly, the chromosomal regions affected are almost identical
to those seen in patients with haematological malignancies and involve the same mutant genes
(Genovese et al., 2014; Jacobs et al., 2012; Laurie et al., 2012). The finding of aUPD in an
otherwise haematologically normal individual is associated with a tenfold increased risk of
subsequently developing haematological neoplasia (Jaiswal et al., 2014; Laurie et al., 2012). This
observation suggests that large genomic datasets accumulated in the study of benign conditions
could be used to facilitate the detection of rare abnormalities associated with haematological

neoplasms.
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1.4.5 Detection of aUPD

Regions of aUPD cannot be detected by conventional chromosome analysis but can be detected
using SNP arrays or NGS to examine the status of polymorphisms (Afyounian et al., 2017; Score
and Cross, 2012). Several bioinformatics tools, such as B allele frequency (BAF) segmentation
(Figure 1.4), ExomeAl and Segmentum, have been developed for identifying regions of allelic
imbalance (Al) in cancer cells from both SNP array and NGS data (Afyounian et al., 2017; Nadaf et
al., 2015; Staaf et al., 2008).
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Figure 1.3 Mechanism of acquired UPD.

Mechanisms leading to segmental and numerical aUPD. Segmental aUPD can be either
telomeric or interstitial. Telomeric aUPD can occur following a single mitotic recombination
event leading to exchange of chromatids (a). This mechanism can also generate interstitial
aUPD although two consecutive or simultaneous homologous recombination steps are
required (Makishima and Maciejewski, 2011). Numerical aUPD can also be a result of mitotic
errors, such as chromosomal non-disjunction, in which cohesin complexes holding the
chromatids fail to be removed and sister chromatids are incorporated into the same daughter
cell (b). Another mechanism causing numerical aUPD is anaphase lag if during the anaphase a
chromosome is delayed in its movement and fails to be incorporated into one of the two
daughter nuclei. Anaphase lag can be followed by degradation of the chromosome not
entering the nucleus and replication of the remaining chromosome (Strachan and Read, 2011).

To generate SNP array data, fragmented single-stranded sample DNA is hybridised to the array,
which consists of up to one million or more nucleotide probe sequences using modern platforms.
SNP array genotyping generates two intensity values, one for each allele, for each SNP on the
array. After hybridisation, the signal intensity, which is associated with the quantity of target DNA
in the sample, is measured. The intensity values are transformed to give normalised intensity
values (R) and allelic intensity ratios (8) which are used to calculate BAF and log R ratio (LRR) for

identifying structural chromosomal variation. The BAF reflects the probe intensity for a SNP
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relative to the expected probe intensity for AA, AB and BB genotypes. The BAF plot is the amount
of B allele observed in a probe that should concentrate at zero for zero copy (genotype AA), at 0.5
for one copy (genotype AB) and at 1 for two copies (genotype BB). BAF values of 1 or 0 are
therefore expected in LOH regions. However, in a tumour sample with LOH the BAF values may
not reach 0 or 1 because of mosaicism; i.e., the tumour consists of a mixed population of cells
with and without LOH. In these cases, the BAF values need to be significantly different from 0.5 in

order to identify LOH regions.

LRR is the ratio between observed normalised intensity of the experimental sample versus the
expected intensity. In a LRR plot, copy number gains and losses are indicated by values that are
significantly greatly or lower than zero respectively (lllumina, 2010; Staaf et al., 2008). In NGS data
from paired tumour/normal samples, the BAF and LRRs are calculated using read depth for
reference and alternate alleles, which is extracted from the binary alignment/map (BAM) file.
Different algorithms are then used to calculate the BAF and LRR based on the read depth data
(Afyounian et al., 2017; Nadaf et al., 2015). Regions of aUPD are identified as regions with BAF
that are significantly different from 0.5 and that have two copies (copy number neutral) and

therefore look normal in the LRR plots (lllumina, 2010) (Figure 1.4).
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Figure 1.4 BAF, mBAF and LRR plots obtained with BAF segmentation.

Panel A represents the BAF plot for chromosome 4. Panel B shows the transformation of BAF
values, which are reflected along the 0.5 axis to give mirrored BAF (mBAF). Regions of Al are
identified where the segmented mBAF is > 0.56 (red dashed line) and highlighted by a red
rectangle. The green line shows the circular binary segmentation (CBS) profile applied to the
mMBAF values to identify regions of similar allelic proportions. The plot in panel Cis the copy
number profile with CBS in green used to merge regions with similar level of LRR.

1.4.6 Identification of genes underlying aUPD in haematological neoplasms

The identification of regions of recurrent aUPD has led to the discovery of both novel driver genes
and imprinted loci associated with haematological neoplasms (Chase et al., 2015; O’Keefe et al.,
2010). For example, SNP array profiling revealed a minimal recurrent region of aUPD on
chromosome 11qin 58 patients with aCML, JAK2 mutation-negative myelofibrosis or JAK2
mutation-negative PV. Subsequently, the CBL gene on 11¢23.3 was identified as a candidate gene
and sequenced in patients with 11q aUPD and a bigger cohort of MPN patients. These sequencing
studies identified a causal somatic CBL mutation in 3 of the 11q aUPD patients and in 26 patients
from the wider MPN cohort (Grand et al., 2009). Similarly recurrent regions of aUPD and mutation
screening have been used to identify TET2 on chromosome 4q24 in MDS patients (Langemeijer et
al., 2009; Massé et al., 2009; Mohamedali et al., 2009), EZH2 on 7936.1 (Ernst et al., 2010;
Nikoloski et al., 2010), JAK2 on 9p (Kralovics et al., 2002; Tiedt et al., 2005), MPL on 1p and FLT3
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on 13q (Kralovics et al., 2002; Raghavan et al., 2008; Score and Cross, 2012). In contrast, the
imprinted MEG3-DLK1 locus was identified as a target of 14q aUPD after demonstrating the
consistent loss of maternal chromosome 14 and gain of paternal chromosome 14 (Chase et al.,

2015).

1.5 Genome-wide association studies

Genome-wide association studies (GWAS) have given much insight into the genetic basis of
complex and multifactorial diseases and have generated many scientific discoveries over the last
15 or more years (Ferrari et al., 2014; Ku et al., 2010; Tapper et al., 2015; Visscher et al., 2012).
The aim of a GWAS is to identify genes which predispose to a trait of interest. The method
involves genotyping approximately 1 million SNPs spread across the genome in as many unrelated
cases and controls as possible. The SNPs are then tested for association with the trait of interest
by comparing their allele frequencies in cases and controls. SNPs with significantly different allele
frequencies can then be used to pinpoint the causal gene(s) (Visscher et al., 2017). In contrast to
rare variants related to Mendelian disease, which can be identified using linkage and sequencing
technologies (Boycott et al., 2013), GWAS are more suited to detecting common variants
underlying polygenic disorders (Smith and Newton-Cheh, 2009). One of the strengths of this
technique is that no prior hypothesis of likely candidate genes or disease pathogenesis is needed.
Therefore, GWAS may discover novel pathways and genes that would not have been considered

based on their function.

To date a one stage GWAS of mastocytosis (Nedoszytko et al., 2020) and two GWAS of MPN have
been reported (Hinds et al., 2016; Tapper et al., 2015). Tapper et al. demonstrated that genetic
variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to JAK2-unmutated MPN and that
HBS1L-MYB and the JAK2 46/1 haplotype influences whether JAK2V®17F mutated cases presented
with PV or ET. They also showed that SNPs in TERT are associated with MPN and that additional
SNPs in SH2B2, ATM, CHEK2, GFI1B, and PINT predispose to JAK2V61"F-positive MPNs (Tapper et
al., 2015). A second GWAS was performed to identify germline alleles predisposing to Philadelphia
chromosome-negative MPNs and JAK2V617F CH in the general population. As a result, inherited
genome-wide significant loci were found in or near TERT, SH2B3 and TET2. The joint analysis of
the stage 1 and replication results identified additional germline risk factors associated with age-
related JAK2V67F CH as well as JAK2V617F-negative MPN (Hinds et al., 2016). These studies have

recently been extended with the identification of new risk loci for MPN, and functional data
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indicating that selected risk loci modulate the function of HSCs (Bao et al., 2020). GWAS have also
been very successful in lymphoid disorders with the identification of multiple loci predisposing to
ALL, chronic lymphocytic leukaemia and myeloma (Di Bernardo et al., 2008; Chubb et al., 2013;

Crowther-Swanepoel et al., 2010; Papaemmanuil et al., 2009).

GWAS of rare diseases with a non-Mendelian pattern of inheritance have also been very
successful, especially among neurodegenerative disease (e.g., amyotrophic lateral sclerosis,
frontotemporal dementia and corticobasal degeneration) and cancer (Campa et al., 2020; Chio et
al., 2009; Ferrari et al., 2014; Kouri et al., 2015). For example, a recent study conducted on
European individuals affected with a rare malignant tumour of the eye identified a risk allele in a

region associated with overexpression of the CLPTM1L gene (Mobuchon et al., 2017).

1.5.1 Study design and population structure

Study design and population structure need to be considered before sampling and genotyping
based on the disease prevalence and how the disease segregates in the family. The main study
designs are population-based or family-based. Population-based studies include case-control
studies of unrelated people, cross-sectional studies, prospective and retrospective cohort studies

and studies in population isolates.

Case-control studies are sensitive to population stratification; for this reason both cases and
controls should be selected from a homogeneous population (Lieb, 2013; Smith and Newton-
Cheh, 2009). In a population study design, even though population stratification can be adjusted
during the analysis, it is more opportune to minimise these types of errors during the study design
by sampling cases and controls from the same population (Zondervan and Cardon, 2007). In
contrast, family-based studies are performed within the family and will not present problems due
to population stratification (Hong and Park, 2012). However, it can be difficult to accumulate a
large number of affected pedigrees. Family studies may therefore lack power to detect genetic
effects due to their small sample size. However, studies have shown that case-control and family-

based designs give relatively similar estimates of association (Evangelou et al., 2006).

Successful GWAS requires sufficient statistical power and appropriate sample size in order to

reduce spurious results (Jones, 2003). The power of a genetic study measures the probability of
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detecting the hypothesised association between a SNP and the disease. A large number of
samples are more informative and give more strength to the study. In some case-control studies,
the number of cases is limited because the disease is rare. In this situation, study power can be
increased by increasing the number of controls (Mobuchon et al., 2017; Smith and Newton-Cheh,

2009).

1.5.2 Single nucleotide polymorphisms

GWAS uses high-density arrays to genotype approximately 1,000,000 SNPs in a single reaction,
screening many patients on a genome-wide scale (LaFramboise, 2009; Manolio et al., 2009). SNPs
are the most common genetic variation in the genomic DNA, and are selected to have a frequency
greater than 1% in the entire population (LaFramboise, 2009). SNPs consist of single base-pair
(bp) change in certain genome positions and, on average, they occur once in every 300 base pairs of
the human genome (Strachan and Read, 2011). SNPs are bi-allelic, and the less common allele is
known as the minor allele (Bush and Moore, 2012). The SNP database (dbSNP), has catalogued a
total of 364,060,923 human SNPs for build 151, which are identified with an unique “reference
SNP” (rs) number
(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+summary&

build_id=151).

1.5.3 Data quality control

Assessment of data quality is an important step during GWAS. Quality control (QC) can be
considered under two different aspects. The first is related to technical quality; e.g., missing SNPs
data due to intensity measurement issues when performing genotype calls. The other aspect is
downstream QC, aimed at evaluating the different sources of error. Genotype QC is performed by
analysing raw intensity data using specific genotype-calling algorithms that estimate the
probability for AA, AB or BB genotypes. Only the genotypes whose probability is over a set
threshold are selected as ‘called’, whereas the remaining genotypes are indicated as ‘missing’. It is
important to apply the correct threshold depending on the study. For instance, in GWAS a high
calling threshold could generate a high rate of missing genotypes and reduce genomic coverage
and genetic power, which are important factors for detecting association. Genotype quality can
be manually inspected using cluster plots, and it is recommended that after association testing

these plots are checked for all SNPs taken forward for replication (Anderson et al., 2010).

Downstream QC is applied after the genotypes have been called. The main purpose of QC is to

remove samples and SNPs with poor genotyping that can lead to false positive associations.
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Usually, up to one million markers are tested for GWAS; therefore, even a low rate of poor
genotypes can lead to numerous false positives that should not be selected for replication. These
downstream steps analyse data from samples (subject-based quality measures aimed at assessing
genotyping errors such as contamination, duplication or poor DNA quality) and SNPs (variant-

based quality measures) and those poorly genotyped will be removed (Anderson et al., 2010).

154 Linkage disequilibrium

Linkage disequilibrium (LD) describes the non-random association between alleles at two or more
linked loci on a contiguous stretch of genomic sequence. The term was coined to describe the
correlation between genetic variation in a population over time. Considering a haplotype block as a
genomic region with linked sets of alleles, LD describes also the low probability of altering the
haplotype structure through recombination events (Andrew, 2007). LD patterns are a result of
population size, natural selection, genetic distance, rate of recombination and mutation events

over many generations.

As aresult of LD, the frequencies of two alleles observed in the same haplotype compared to the
frequency expected if the alleles are independent may show positive or negative LD (Goode,
2011). Based on their allele frequencies, positive LD occur when two alleles exist on the same
haplotype more often than expected, whereas a negative LD means that alleles can occur
together less frequently than expected (Earp and Goode, 2017). The difference between the
observed and the expected frequencies can be measured by different LD metrics. D’ and r?
represent the most commonly used measures of LD (Devlin and Risch, 1995). The covariance (D)
represents the difference between expected and observed haplotype frequencies and, since it is
sensitive to allelic frequencies, it is not calculated at the extreme values of 0 or 1 (Goode, 2011).
In order to reduce frequency dependence, Lewontin used the measure D’, which is a normalised D
ranging from O to 1 that can represent complete linkage equilibrium or no recombination between
the two markers respectively. LD betweengenetic variants is more often measured using the
Pearson correlation coefficient, also termed squared correlation coefficient (r?), which is also
scaled from 0 to 1 for completely independent and dependent (co-inherited) polymorphismes,
respectively (Bush and Moore, 2012; Lewontin, 1964). LD r? is dependent on allele frequencies, so
in order to increase the likelihood of detecting disease association, it is important to take into
account the maximum difference in allele frequencies between two loci when selecting candidate

SNPs (Wray, 2005). LD measures represent an essential tool in several steps of a GWAS, such as
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imputation, detection of strand issues, selection of independent SNPs and clumps of correlated

SNPs, and defining regions of interest.

1.5.5 Association tests

In GWAS, the association between genotype and phenotype is performed for each SNP using
contingency tables or regression to assess differences in the distribution of alleles or genotypes
(Bush and Moore, 2012). The null hypothesis of no association with the disease is true when no

significant difference is detected in allelic or genotypic frequencies between cases and controls.

In a case-control study, genotypic tests use a 2x3 contingency table of genotypic counts which has 2
degrees of freedom (df). These tables can be collapsed to test for both dominant and recessive
models. Allelic tests may also be applied, which use a 2x2 contingency table with one df. Allelic
tests are considered to be most powerful statistic for testing a multiplicative model of

penetrance.

In some studies, the association test needs to account for the effects of population,
epidemiological risk factor (e.g., gender, diet or geographic location) and clinical variables (e.g.,
treatment, body mass index). In these situations the factors can be treated as covariates, using
linear regression for quantitative traits and logistic regression for binary traits such as case or
control status (Clarke et al., 2011). For instance, spurious association signals can occur if there are
differences in ethnicity between cases and controls since allele frequencies may vary as a result of
ethnicity rather than association with disease risk. To minimise spurious association due to ethnic
differences, principal component analysis (PCA) or multidimensional scaling can be used to either
identify and remove outliers or to generate principal components that can be used as covariates
in the statistical association tests that account for difference due to population stratification

(Anderson et al., 2010).

The statistical analysis involves multiple independent tests, a fraction of which may produce false
positive association signals (type 1 errors). For instance, if a total of 10® alleles need to be tested
in a GWAS, a strict control for type 1 error is required (Dudbridge and Gusnanto, 2008; Pe’er et
al., 2008). This is generally accounted for by adjusting the threshold needed in a single test for the
null hypothesis to be rejected. The Bonferroni correction represents a widely accepted approach

to adjusting the P-value threshold for genome-wide significance and to minimise the number of
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spurious positive results due to multiple comparisons. This corresponds to dividing the P-value
threshold (0.05) by the total number of markers (N) used before testing the association, and the
resulting conventional threshold for genome-wide significance is 5 x 107 (=0.05/1 million) (Khoury

and Yang, 1998).

1.5.6 Follow-up of results: Replication studies

Because of possible errors (e.g., systematic genotyping errors, statistical errors) that may arise
during GWAS, replication studies in independent samples are required to validate the association
observed at stage 1 (Chanock et al., 2007). It is important that the replication study has sufficient
power to confirm or refute findings. Sample size and genetic power therefore need to be
considered during the replication and discovery stages (Jones, 2003; Smith and Newton-Cheh,
2009). In order to confirm that observed association is not due to genotyping artefacts, in stage 2
SNPs should ideally be genotyped on a different platform and reanalysed. The selected SNPs could
be highly correlated with the phenotype in one cohort used in stage 1 of the analysis, but the
same SNPs could be poorly correlated in a different ancestry group (Smith and Newton-Cheh,
2009). This can be determined using the tool Tagger implemented within the program Haploview;

this is a SNP haplotype-tagging method based on HapMap samples (de Bakker et al., 2005).

1.5.7 Meta-analysis

To increase power and give new insight into the aetiology of diseases, meta-analysis can be used
to combine evidence from separate GWAS. Because of the larger sample size and independent
cohorts, this approach can reduce the number of false positives and increase the significance of
true positives (Smith and Newton-Cheh, 2009). Recent studies have demonstrated that meta-
analysis of GWAS data can identify new susceptibility loci involved in complex diseases (Nalls et
al., 2014; Pharoah et al., 2013). Before performing the meta-analysis, any kind of heterogeneity
(e.g., sample structure, individual ancestry, population structure, results) between studies must
be considered. Heterogeneity of results can be examined using forest plots and statistics such as
the x?-based Cochran’s Q test and I? (Smith and Newton-Cheh, 2009). The former is used to detect
whether there is a statistically significant heterogeneity between the combined studies (Zeggini
and loannidis, 2009). The I? test is able to analyse whether the percentage of variation is
attributed to heterogeneity or to chance (Higgins et al., 2003; Zeggini and loannidis, 2009). Once
the statistical variation has been detected and the results from each study have been weighted,
the data can be jointly analysed. In meta-analysis, a model termed random-effect allows the

effect size to be different between cohorts and can be used if the variationis due to heterogeneity.
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Onthe other hand, if the between-studies variation occurs by chance, a fixed-effect model is most

appropriate, as it assumes that the variant has one true effect size (Smith and Newton-Cheh,

2009).

1.5.8 Data imputation and the HapMap project

The choice of markers that are representative of the LD pattern of the genome is an important
part in the design of GWAS, with a key parameter being the proportion of common variation that
is tagged by the subset of genotyped SNPs. Markers that are not directly genotyped but are in
high LD with the genotyped markers can be recovered through imputation. In this way, the causal
allele could still be detected through its correlation with marker loci genotyped in the assay and
associated with the disease. Imputation can be used to improve the resolution of GWAS by
estimating what the genotype should be for SNPs with missing genotypes and for SNPs that were
not genotyped on the array (Chanock et al., 2007; Sherry, 2001). Genotypes are estimated using
the LD pattern in sequenced reference datasets (e.g. HapMap) and known genotypes from the

study. The International HapMap Project is the main source for LD information and has produced a

map of common human DNA variants that cluster together to form haplotype blocks. The HapMap
Consortium used data from healthy individual including African ancestry from Nigeria (Yoruban in
Ibadan, YRI), Chinese (Han Chinese from Beijing, CHB), Japanese (Japanese in Tokyo, JPT) and
European (Utah residents with ancestry from northern and western Europe, CEU) ancestry to
catalogue population-specific differences in genetic variation. The project was completed in 2009,
having genotyped 3,000,000 SNPs from 1,301 individuals from 11 human populations (Altshuler et
al., 2010b). Another resource in use for genotype imputation is the Human Reference Consortium
(HRC), a large reference panel mainly of European ancestry of 64,976 human haplotypes with
39,235,157 SNPs derived from whole exome sequencing (WES) data. A total of 20 studies have
been added in the panel and these also include the 1000 Genomes Project Phase 3 cohort. The
increased number of SNPs, haplotypes and populations coming from the HRC has enabled an
increase of marker density in GWAS samples and therefore the accuracy to infer initially

unobserved genotypes (Iglesias et al., 2017; McCarthy et al., 2016).

1.5.9 Strength and weaknesses of GWAS

GWAS have been very successful, having identified nearly 157,000 robust associations involved in
a wide range of complex disorders, which are highly replicable within and between populations
(MacArthur et al., 2017). However, despite these successes, the GWAS approach has some
limitations that need to be considered along with their design and analysis. The detection of false
positives is one of the main weaknesses of GWAS. For this reason, study design, QC, correction for

multiple testing and replication are all critical steps to optimise the chance of detecting true

28



Chapter 1
positive association whilst maintaining the power of the study (Pearson and Manolio, 2008).
Applying stringent significance thresholds is one way of minimising false positives, but multi-stage
studies performed on breast cancer and multiple sclerosis have showed that the most robust
findings are not necessarily the most significant signals in the discovery stage (Hunter et al., 2007,

Strachan and Read, 2011; Verma, 2012).

Since the development of high-throughput SNP arrays approximately twenty years ago, the costs
have fallen and the number of SNPs in the arrays have increased. It is now possible to genotype
between 200,000 to 2,000,000 SNPs in a single array (Chee et al., 1996; Visscher et al., 2017).
These improvements have helped to reduce false negatives through increased SNP coverage and

by making genotyping of more samples affordable.

Typically, SNPs identified by GWAS are not causal but in LD with the causal variant(s).
Furthermore, risk SNPs are typically located in intronic or intergenic regions. As a result, the
biological and functional role of associated SNPs is often unclear and further studies involving fine
mapping and functional analyses are required to identify the causal mutation and gene involved, a

task that is often very difficult.

When GWAS started there were high expectations of discovering the genetic factors accounting
for the heritability of complex traits (Visscher et al., 2008). However, despite huge GWAS for adult
height involving 253,288 individuals, which identified 697 variants with genome-wide significance,
their combined effect could only explain 20% of the heritability (Genovese et al., 2014). The so-
called “hidden heritability problem” can be explained by at least three factors. The first is that the
susceptibility in the great majority of complex traits is attributed to a large number of variants
with subtle effects that will require enormous sample sizes to detect (Strachan and Read, 2011).
Indeed, by considering all common variants the majority (60%) of heritability in adult height could

be explained (Visscher et al., 2017).

Second, disease susceptibility may be due to a highly heterogeneous collection of rare variants
that display Mendelian inheritance and play a major role in the development of the disease

(Strachan and Read, 2011). This is the case of atopic dermatitis or eczema, a common and
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complex trait caused by common variants that, in contrast to polymorphisms, cause complete loss
of function of the filaggrin gene (FLG). Almost 10% of the European population carries one of the
five specific FLG variants. Different sets of variants are common within different populations
(Irvine and McLean, 2006). Other approaches should be considered, such as WES or whole
genome sequencing (WGS), to discover gene variants that cause susceptibility to complex disease
with monogenic Mendelian inheritance patterns (Strachan and Read, 2011). In other cases, rare
forms of common diseases with Mendelian patterns can be caused by highly penetrant variants
with low (0.5%<MAF<5%) or rare minor allele frequency (MAF<0.5%) which could explain part of
the missing heritability (Gibson, 2012). Since these variants are not covered by conventional
genome-wide genotyping arrays, new methodologies such as a rare variant association study
(RVAS) can be adopted to identify rare variants associated with phenotypic variation (Auer and

Lettre, 2015).

The third factor that may account for part of missing heritability in GWAS is represented by
additive epigenetic changes (e.g., histone modifications, DNA methylations) transmitted for more
generations and that are not taken into account by GWAS (Strachan and Read, 2011; Trerotola et

al., 2015).

Finally, some have considered that another weakness of GWAS is that the identified variants tend
to have small effect sizes which limit or prevent clinical utility. However clinical utility is only one
consideration, and even small effect sizes may provide important new biological insights into

disease pathology.
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1.6 Aims of study

As reviewed above, genome-wide genetic studies have revealed the importance of germline
variation and somatic mutations in the pathogenesis of haematological malignancies.
Furthermore, ongoing WES and WGS sequencing projects targeted at specific disorders or
conducted at a population level are generating increasingly large datasets of sequence variation. |
hypothesise that further insights into the pathogenesis of myeloid neoplasms may be obtained by
focusing on genetic predisposition to specific, genetically-defined subtypes of disease. In addition,
| hypothesise that large sequence datasets from individuals unselected for a malignant phenotype
can be mined to gain new insights into blood cell clonality as a precursor to haematological

malignancies. In this context | aim to:

(i) Identify genetic predisposition to mastocytosis using the GWAS approach, and using the

somatically acquired KIT?®'®V marker to help to ensure homogeneity of cases, and

(ii) Utilise WES datasets to identify regions of Al and aUPD, and explore the potential of this

approach to identify novel driver mutations associated with CH and myeloid neoplasm:s.
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Chapter 2 A Genome-Wide Association Study of

Systemic Mastocytosis

2.1 Introduction

Most occurrences of SM are sporadic and over 80% of SM patients have a somatic K/T°816V
mutation. Familial cases of SM are rare and little is known about the contribution of germline
predisposition. However, several familial cases have been reported involving rare highly penetrant
germline mutations in the KIT gene (Hartmann et al., 2005) or acquisition of somatic KIT
mutations including D816V (Broesby-Olsen et al., 2012; Zanotti et al., 2013), S8491 and M835K
(Molderings et al., 2013) by multiple family members. The simultaneous occurrence of these
somatic mutations, which includes one pair of monozygotic twins, is unlikely to occur by chance and
suggests the involvement of inherited predisposition to acquired somatic KIT mutations similar to
those seen in MPN involving the somatic mutation JAK2V¢F (Broesby-Olsen et al., 2012; Jones et
al., 2009). Further evidence from family-based studies has suggested that SM has a heritable
component following the observation that 74% of patients with systemic MCAD (n=62/84) had at
least one first degree relative with suspected MCAD based on a self-reported questionnaire
(Molderings et al., 2013). Furthermore, several constitutional genetic variants have been
associated with the development of different mastocytosis phenotypes in relatively small
candidate gene studies (Daley et al., 2001; Lange et al., 2017; Nedoszytko et al., 2009, 2018; Rausz
et al.,, 2013).

When this study was started, no GWAS had been undertaken to test for germline predisposition to
SM. However, other GWAS had demonstrated that germline variation at several loci is associated
with the risk of developing MPN and can influence whether MPN patients develop ET or PV
(Tapper et al., 2015). Our hypothesis is that inherited genetic factors also predispose to SM. To
test this hypothesis, | conducted a two-stage GWAS of SM. To limit genetic heterogeneity and
increase power, the GWAS focused on SM patients with somatic KIT°816Y mutations only. The
identification of genetic markers associated with SM may have a clinical impact and will provide
insights into understanding whether inherited markers are key factors for predisposing to or

protecting from the development of the disease. At stage 1, 479 K/T P816V.

positive SM patients
were recruited from the United Kingdom and Germany. For comparison, publicly available control
cohorts were obtained, consisting of 9,597 healthy controls from the Wellcome Trust Case Control

Consortium 2 (WTCCC2) and the Cooperative Health Research in the Region Augsburg (KORA)
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study (Burton et al., 2007; Holle et al., 2005). A replication cohort of 666 Spanish, Danish and
Italian SM cases with KIT°818Y mutations were recruited and compared against matching controls

to replicate selected SNPs from stage 1.

2.2 Materials and Methods

221 Discovery and replication cohorts

Careful ethnicity matching of cases and controls at the design stage of the GWAS was aimed at
reducing the chance of heterogeneity both in the primary and in the replication study. Prior to
quality control (QC), the stage 1 discovery cases consisted of 479 SM cases (hereafter referred to
as SM-1). All of these patients had a somatic KIT°8¢V mutation and were recruited from the UK
(n=329) and Germany (n=150). At stage 2, 666 independent KIT°21®V replication patients were
recruited from Spain (n=399), Denmark (n=185) and Italy (n=82). Participants provided informed
consent for sampling according to the Declaration of Helsinki. All mastocytosis cases were adults
diagnosed using standard procedures. The stage 1 discovery cohorts were recruited from two
diagnostic laboratories (Wessex Regional Genetics Laboratory, UK and Munich Leukaemia
Laboratory, Germany) based on (i) referral for investigation of mastocytosis and (ii) testing
positive for KIT?81¢V, A detailed breakdown of WHO-defined clinical subtypes and other clinical
information was not available for these cases, but <10% were known to have advanced SM.
Clinical subtypes were available for stage 2 cases whose diagnosis was simplified into two main
disease groups, non-advanced and advanced. Non-advanced cases (MCAS=mast cell activation
syndrome, CM=cutaneous mastocytosis, ISM=indolent systemic mastocytosis, SSM=smouldering
systemic mastocytosis) have a good life expectancy and very few of them are likely to develop
advanced disease. The advanced disease group is characterised by shorter life expectancy and a
more severe phenotype. As described by the WHO classification, only three subtypes
(ASM=aggressive systemic mastocytosis, SM-AHN= SM with an associated haematologic neoplasm
and MCL=mast cell leukaemia) are included in the advanced disease group (Arber et al., 2016b). A
breakdown by subtype for stage 2 cases is given in Table 2.1. Additional diagnostic and clinical
variables were only available for the Spanish and Italian cohorts due to ethical limitations
regarding consent. The study was approved by UK NRES Committee South West reference
10/H0102/61; Germany: MLL cohort, BLAEK ethics commission, reference 05117; Spain: ethics

committee of the University Hospital of Salamanca reference 2016/P116/00642; Italy: local Ethics
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Committee, March 12, 2019, protocol number 14560_0SS. The Danish SM study was performed

in accordance with the Danish National Committee on Health Ethics.

Table 2.1  Breakdown of stage 2 patients cohorts by disease subtype.

Non-advanced Advanced
Cohort n MCAS | CM ISM | SSM | ASM SM-AHN MCL N/A
Spain 399 |6 4 368 |3 9 8 1 0
Denmark | 185 |0 13 152 |5 0 12 0 3
Italy 82 2 0 64 4 8 1 1 2

MCAS: mast cell activation syndrome; CM: cutaneous mastocytosis; ISM: indolent SM; SSM: smouldering
SM; ASM: aggressive SM; SM-AHD: SM with associated haematologic neoplasm; MCL: mast cell leukaemia;
N/A: Data not available

2.2.2 Description of control cohorts

For comparison, 5,200 UK controls from WTCCC2 and 4,397 German controls from KORA were
used (Table 2.1). Both WTCC2 and KORA control cohorts comprised two separate studies. The
WTCCC2 cohort consisted of participants from the 1958 British birth cohort (BBC, n=2,699) and
participants from the National Blood Service (NBS, n=2,501) (Burton et al., 2007), while the KORA
controls were KORA_A (n=1,938), representing a subset of follow-up F3 of the population-based
survey KORA S3, and KORA_B (n=2,459) (Holle et al., 2005), representing an independent subset
of KORA S3/F3.

The stage 2 replication controls were obtained in collaboration with the Spanish National DNA
Bank Carlos Ill (SNDNAB, n=1,062) (Bosch, 2004; Julia et al., 2013), a Danish study of ischaemic
heart disease (Inter99, n=6,184) (Jgrgensen et al., 2003; Pisinger et al., 2005) and the Italian
Invecchiare in Chianti study (INCHIANTI, n=1,210) (Ferrucci et al., 2000; Tanaka et al., 2009).

The Spanish individuals were all adults, gave informed consent and were determined to be
healthy based on self-reported health status obtained from personal interviews. See

http://www.bancoadn.org for further details.

The Inter99 study is a randomised, non-pharmacological intervention study for the prevention of
ischaemic heart disease (Husemoen et al., 2003; Jgrgensen et al., 2003). In brief, more than
13,000 individuals between 30 and 60 years of age and from 11 municipalities in the south-
western part of Copenhagen were randomly selected from the Danish Civil Registration System.
Overall, baseline examinations were attended by 6,784 (52%) individuals and genotype
information was available for 6,184 individuals. The Inter99 study was approved by the Scientific

Ethics Committee of the Capital Region of Denmark (KA98155) and registered as a clinical trial
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(ClinicalTrials.gov; ID-no: NCT00289237). The study protocols were in accordance with the

Helsinki declaration and approved by the local ethical committees.

The InCHIANTI study is a population-based epidemiological study aimed at evaluating the factors
that influence mobility in the older population living in the Chianti region in Tuscany, Italy. The
details of the study have been previously reported (Ferrucci et al., 2000). Briefly, 1616 residents
were selected from the population registry of Greve in Chianti (a rural area: 11,709 residents with
19.3% of the population greater than 65 years of age), and Bagno a Ripoli (Antella village near
Florence; 4,704 inhabitants, with 20.3% greater than 65 years of age). The participation rate was
90% (n=1453), and the subjects ranged between 21-102 years of age. The study protocol was
approved by the Italian National Institute of Research and Care of Aging Institutional Review, the
internal Review Board of the National Institute for Environmental Health Sciences (NIEHS) and by

the Medstar Research Institute (Baltimore, MD).

The number of samples that were recruited and used for analysis after QC (see 2.2.5 and 2.2.7) in
the discovery and replication stages is shown in Table 2.3 and Table 2.6 respectively. An overview

of the two-stage study design and sample numbers is shown in Figure 2.1.

Discovery stage

UK cohort German cohort
328 cases 150 cases
5,200 controls 4,397 controls

K} Meta-analysis J
478 cases

9,597 controls

v

I Final Meta-analysis |

Replication stage f

Meta-analysis
666 cases
8,456 controls

%

Spanish cohort Danish cohort Italian cohort
399 cases 185 cases 82 cases
1,062 controls 6,184 controls 1,210 controls

Figure 2.1 Two-stage study design.

An overview of the two-stage case control study design and sample numbers, before QC, that
were used to investigate inherited predisposition to SM. In the discovery stage, SM patients
and healthy controls from the UK and Germany were tested for association using binary
logistic regression. Evidence from these separate cohorts was combined using a fixed-effect
meta-analysis. SNPs selected for replication were tested in three European cohorts (Spanish,
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Danish and Italian) using binary logistic regression. Another fixed-effects meta-analysis was
used to determine the final effect size and significance levels by combining evidence from the
discovery (stage 1) and replication stage (stage 2).

2.23 Genotyping

DNA was extracted from peripheral blood or bone marrow. The stage 1 cases were genotyped for
960,919 SNPs using Infinium OmniExpress exome chips (version 8_1.4_A1l) and the Genome
Studio software (GSGT Version 1.9.4) at the Clinical Research Facility in Edinburgh. These data are
available on request from ArrayExpress (accession number E-MTAB-9358). The stage 2 cases
(n=666) were genotyped for 92 SNPs, selected from the stage 1 analysis, using custom designed
Kompetitive Allele Specific PCR (KASP) at LGC Genomics Limited (Hertfordshire, UK) (He et al.,
2014). Briefly, KASP is a fluorescence resonant energy transfer (FRET) PCR based assay. Genotypic
data for the control cohorts were obtained from published studies (Bosch, 2004; Ferrucci et al.,

2000; Jgrgensen et al., 2003; Julia et al., 2013; Pisinger et al., 2005; Tanaka et al., 2009).

For the WTCCC2 stage 1 controls, the NBS and BBC subsets were separately genotyped using the
[llumina 1.2M Duo chips platform and lllumina’s programme was used to call SNPs with a
posterior probability >0.95 (Teo et al., 2007). The German controls from KORA_A (a subset of
follow-up F3 of the population based survey KORA S3) were genotyped using lllumina human
Omni chip (version 2.5-4v1_B) for 2,443,177. KORA_B controls (an independent subset of KORA
S3/F3) were genotyped for 730,372 SNPs using Illumina human Omni express chips (version

12v1_H) (Holle et al., 2005).

Controls from SNDNAB, Inter99 and INCHIANTI were genotyped using Illumina Global Screening
arrays, lllumina HumanOmniExpress-24 (versions 1.0A and 1.1A) and Illumina Infinium HumanHap
550K SNP arrays which include 18, 90 and 45 of the SNPs selected for replication respectively.

Genotypes for the remaining SNPs were determined by imputation (Appendix Table A.6).

224 Imputation

Imputation of the discovery cohorts was used to increase SNP density and enable fine mapping
around significant loci. SNPs were imputed using the Sanger imputation server (McCarthy et al.,
2016) which used EAGLE2 for pre-phasing into the Haplotype Reference Consortium (HRC release
1.1), and positional Burrows-Wheeler transform (PBWT) for imputation. Imputed genotypes were

quality controlled by excluding SNPs with info score <0.80, posterior genotype probabilities less
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than 0.99, minor allele frequency less than 1%, greater than 10% missing genotypes or extreme

deviation from HWE (P-value < 1x1019).

In the stage 2 control cohorts, genotypes for the remaining SNPs were determined by imputation.
In brief, SNPs and/or samples were removed from SNDNAB due to a low call rate (<98%),
significant deviation from HWE (P-value <0.0001), extreme heterozygosity (| F|>0.10) or evidence
of second-degree relatedness (IBD>0.25). Genotypes for additional SNPs were obtained by
imputation, which involved a two-step process. In the first step, the observed data were phased
using SHAPEIT (version 2.r837). In the second step, the phased data were imputed using IMPUTE2
(version 2.3.0) with default settings, an effective population size (-Ne) of 20,000 which is
recommended for achieving high accuracy across all population groups and reference haplotypes
from phase 3 of the 1,000 Genomes Project (Auton et al., 2015). Imputation was performed in
5Mb chunks, as recommended, and then joined (Howie et al., 2009). Genotypes with an
uncertainty greater than 0.1 were set to missing and the remainder were used as hard calls. SNPs

with low imputation quality were excluded (INFO score < 0.6).

Genotyping and QC of the INCHIANTI study has previously been described (Tanaka et al., 2009). In
brief, SNPs and/or samples were removed due to low call rate (<97%), HWE (P-value <10%),
heterozygosity (> 0.3), MAF (<1%) and sex mismatches, leaving 1,210 samples and 495,343
autosomal SNPs that passed quality control. SNPs were imputed using the Michigan Imputation
Server, HRC haplotype reference panel (HRCr1.1 2016) and SNPs with low quality score were
removed (INFO <0.7).

Genotyping and QC of the Inter99 study have previously been described (Graae et al., 2018).
Individuals were genotyped using the lllumina HumanOmniExpress-24 SNP arrays (versions
v1.0_A and v1.1_A) and the GenomeStudio software. QC filtering was applied before imputation,
which involved selection of non-monomorphic SNPs, samples with a call rate 298%, and SNPs in
HWE (P-value > 10). Additional SNP genotypes were imputed using Eagle for pre-phasing
autosomal SNPs and imputed to the Haplotype Reference Consortia panel (HRC version r1.1) by
following the standard protocol on the Michigan imputation server
(https://imputationserver.sph.umich.edu/index.html) (Das et al., 2016). All variants included in

this study were in HWE (p > 0.05) and had high imputation quality scores (INFO=0.9).
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2.25 Quality control of the stage 1 data

Prior to analysis, the quality of the genotypic data was assessed and cleaned using standard QC
procedures for GWAS (Anderson et al., 2010). Plink v1.90p was used to check genotype
missingness (per sample and per SNP), MAF, HWE, sex mismatches, heterozygosity (Figure 2.3),
cryptic relatedness, strand orientation and ancestry as detailed below (Chang et al., 2015).
Duplicate markers are deliberately included in raw genotyping data to access the concordance
rate of genotype calls for a specific array. Therefore, as an additional QC step, these duplicate
SNPs were identified and removed prior to testing for association (Gogarten et al., 2012). Plink
was used to merge datasets together and to flip those SNPs detected as not bi-allelic; this step
ensures that strand orientation is concordant in each dataset. Strand assignment for palindromic
SNPs (A/T-G/C) were checked and when necessary assigned to the correct strand using Genotype
Harmonizer (GH) (Deelen et al., 2014). A manifest file for the Omni express exome chip (version

8 1.4 A1), developed by Will Rayner (Wellcome Centre for Human Genetics, University of
Oxford), was used to update strand orientation, genomic location, SNP name and chromosome in
the SM-1 dataset (Rayner and Mccarthy, 2011). In the KORA datasets, the SNP name was updated
using the lllumina rsID-conversion file which is specific for each genotyping platform (KORA_A rsID
Conversion File; KORA_B rsID Conversion File). The number of SNPs and samples removed by

these QC measures in the stage 1 data is shown in Table 2.3 and Table 2.4.

2.25.1 Per-individual missingness

QC of the stage 1 genotypes involved the removal of samples with a large proportion of missing
genotypes, which indicates poorly genotyped samples possible due to low quality DNA. Since
GWAS aims to associate SNPs with disease, removing one marker might have a greater effect on
the study than removing one individual (Smith and Newton-Cheh, 2009). This approach maximises
the number of SNPs in the study and avoids removal of markers due to a subset of poorly
genotyped individuals. For this reason, the QC on individual missingness was performed before
the per-marker QC. Individuals with missing genotypes for 10% or more SNPs were excluded from
the analysis. The proportion of missing genotypes per individual was determined using Plink and
plotted in R Studio to visualise the distribution. For the unimputed KORA dataset per individual call
rate 297% was applied by the KORA-study Group (Holle et al., 2005).

2.25.2 Per-SNP missingness

SNP-specific missingness rate is used to detect and exclude poorly genotyped SNPs, which could
reduce the possibility of identifying a real association with the disease phenotype (Anderson et
al., 2010). After poorly genotyped individuals were removed, the per-marker missingness QC were

carried out, and SNPs with missing genotypes greater than 10% were detected and removed using
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Plink (Chang et al., 2015). For the unimputed KORA dataset per SNP call rate 298% was applied by
the KORA-study Group (Holle et al., 2005).

2.2.5.3 SNP minor allele frequency

Rare SNPs (MAF < 5%) can frequently produce false positive results due to small sample size and
sampling errors. In general, for case-control GWAS with modest sample size a MAF threshold of
1-2% or higher in studies with smaller sample size is recommended (Anderson et al., 2010). In this

step, SNPs with a MAF less than 5% were excluded both from cases and controls.

2.2.5.4 Hardy—Weinberg equilibrium

HWE states that there is a predictable relationship between allele and genotype frequencies
under the assumptions of no mutation, random mating, no gene flow, infinite population size, and
no selection. When these assumptions are met and case/control cohorts have been genotyped at
the same time using the same genotyping array, SNPs with significant deviation from HWE (exact
test P-value £0.001) in controls are indicative of genotyping error and should be removed from
both cases and controls (Wigginton et al., 2005). However, since our cases and controls were
genotyped separately, HWE was assessed separately in cases and controls. SNPs were excluded if
they had modest deviation from HWE in controls (P-value <0.001) or extreme deviation in cases (P-
value £1x107%%) which most likely reflects poor genotyping rather than disease association
(Marees et al., 2018; Turner et al., 2011). A higher P-value threshold was used in cases because
modest deviations from HWE might occur due to association with the disease while extreme
deviations are most likely due to genotyping error (Affymetrix, 2011; Hammerschlag et al., 2017,
Tapper et al., 2015). For the unimputed KORA dataset, HWE P-value < 1x1071% filter was initially
applied by the KORA-study Group (Holle et al., 2005).

2.2.5.5 Sex check

As a crude check of sample provenance and quality, and to avoid sex inconsistencies that could
arise from data handling issues, the genotypic data was used to infer sex. Samples were removed if
the inferred and reported sex were discordant. To infer sex the X chromosome homozygosity rate
was calculated for each individual using Plink and plotted in R Studio to visualise the distribution
(Chang et al., 2015). Male calls were made if the X-chromosome homozygosity was greater than
0.8 and female calls were made if it was below 0.2 (Figure 2.4). Individuals with discordant
reported and inferred sex were removed (Anderson et al., 2010). Although males have one copy
of the X chromosome they are not expected to have 100% homozygosity due to the

pseudoautosomal regions (PARs). PARs are terminal regions of homology between chromosomes X
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and Y which act like autosomes in the sense that they can recombine and contain both

heterozygous and homozygous variants (Strachan and Read, 2011).

2.2.5.6 Sample heterozygosity

Another important QC step is to assess the evidence for DNA sample contamination or potential
consanguinity using per sample heterozygosity. Excess heterozygosity is suggestive of DNA
contamination or recent admixture, whereas deficiencies may indicate failed hybridisation, large
chromosomal deletions or inbreeding. To identify samples with outlying levels of heterozygosity
the autosomal heterozygosity rate (het_rate) per sample was calculated using the following
formulae in Plink: het_rate=[N_HOM-N_NM]/N_NM), where N_HOM is the number of
homozygous genotypes and N_NM is the total number of non-missing genotypes per sample. The
heterozygosity rate for all samples versus the proportion of missing genotypes was plotted in R
studio to visualise the distribution, and samples with mean heterozygosity values £3 standard

deviations (SD) from the mean were excluded (Figure 2.3).

2.2.5.7 Approaches for data merging and strand orientation check

To carry out further QC, the case control datasets were merged despite significant challenges due
to them being genotyped by different facilities using different SNP arrays. The issues involved in
merging such datasets were highlighted by the electronic Medical Records and Genomics
(eMERGE-I) Research Network which include: mismatched genotyping (strand forward or reverse
orientation), the use of different SNP names and locations and errors introduced by the merging
procedure, which have the potential of creating significant array or batch effects (Zuvich et al., 2011).
Additional QC checkpoints were therefore used to address these issues. Firstly, SNP names and
locations were updated in the SM-1 cohort using curated strand files for the respective SNP arrays
that were downloaded from the McCarthy Group (Rayner and Mccarthy, 2011). To update the
SNP name in KORA controls, an rsID-conversion file was downloaded from the lllumina website
and used to convert the lllumina identifiers (kgp) to the corresponding rsID (KORA_A rsID
Conversion File; KORA_B rsID Conversion File). After updating the SNP names and location, the
case and controls datasets were merged using Plink and any mismatched strands for non AT/GC
were detected as triallelic SNPs. The genotyping strand for these SNPs were corrected using the
flip option in Plink or removed if unresolved (Chang et al., 2015). Despite these updates, SNPs
with the same location but different names may still be identified when merging. To correct these
‘same position” warnings, SNPs with the same location and alleles were combined using the ‘--

merge-equal-pos’ option in Plink.
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2.2.5.8 Relatedness

Bias could be introduced if duplicates or related individuals are tested for association, as their
genotype may be over-represented and the allele frequencies would not reflect the real
population frequencies. If during recruitment of cases and controls some related individuals were
inadvertently collected, checking for evidence of relatedness between samples is a standard QC
procedure to ensure that duplicates, sample mix-ups, and related samples (first and second-
degree relatives) are removed from the analysis. Pairwise values of genome-wide average identity
by state (IBS), which describe the number of shared alleles between a pair of individuals, were
therefore used to check for evidence of relatedness. To calculate IBS a set of autosomal SNPs in LD
were selected using LD-based SNP pruning in Plink (Figure 2.2). SNPs in LD were selected using a
maximum pairwise genotypic correlation (r? <0.5) within a window size of 50kb that was shifted in
steps of 5 SNPs across the genome (Chang et al., 2015). SNPs in linkage equilibrium with a
maximum pairwise genotypic correlation (r? threshold <0.5) were selected. SNPs selected after
pruning were used to calculate genome-wide average IBS between each pairof individuals that
passed QC. For sample pairs with evidence of relatedness (IBS >=0.86) the sample with the lowest

genotyping rate for all SNPs passing QC was excluded (Burton et al., 2007).
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List of autosomal SNPs shared in each dataset

Extract the list of SNPs from each dataset

Combine all datasets

Remove AT/GC SNPs

Perform the LD-based SNP pruning

Select autosomal SNPs in linkage equilibrium

Calculate pairwise IBS metrics

Figure 2.2 Method to select independent SNPs for IBS metrics and multidimensional scaling.

The flow diagram outlines all the steps performed to select autosomal SNPs in linkage
equilibrium. The list of SNPs that are shared between all the datasets are listed and extracted
in all datasets. The autosomal markers remaining after one round of LD-based SNP pruning (--
indep-pairwise 50 5 0.5) were extracted from the merged dataset and used to calculate the
pairwise IBS. Palindromic A/T and G/C SNPs were removed from the Hapmap data to facilitate
combining these samples with the cases and controls.

2.2.5.9 Population stratification

In order to examine population stratification, infer ancestry and to check if the cases and controls
form a homogeneous population, a multi-dimensional scaling analysis was performed using Plink.
All merged datasets were combined with genotype data from the HapMap study that had already
been quality controlled. The HapMap samples are from three reference populations consisting of
55 samples with ancestry from northern and western Europe (CEU) from the Centre d’Etude du
Polymorphisme Humain (CEPH), 43 Han Chinese samples from Beijing, China (CHB) and 55
Yoruban samples from lbadan, Nigeria (YRI). For analysis, a subset of uncorrelated markers (SNPs
not in LD) were selected by LD pruning (Figure 2.2) and used to calculate a matrix of IBS values
between all pairs of individuals. These pairwise IBS values were used as the input for multi-
dimensional scaling analysis which generated five principal components. To examine the results

and infer ethnicity, R Studio was used to make a scatter plot from the first two principal
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components (C1 and C2; Figure 2.5). Samples with outlying values for C1 (+3 SD from the mean for
stage 1 cases and controls and HapMap CEU) were considered ancestry outliers and excluded

from further analysis.

2.2.6 Preliminary analysis of the stage 1 data

At this point of the QC, a preliminary case versus control analysis of the stage 1 data was
performed and summarised using a quantile-quantile plot to determine if the test statistic was
inflated and whether this could be related to problems with the merging process such as
unresolved strand issues at AT/GC SNPs. After this test, the GH software was used to detect
strand issues at AT/GC SNPs in the pre-merged controls based on differential LD patterns in
comparison with the cases (Deelen et al., 2014). Strand mismatches were called by GH when the
number of negative SNP correlations exceeded positive ones and these SNPs were then flipped in
the control dataset using Plink. SNPs failing alignment were removed. Unknown strand
assignment can also be addressed by comparing the MAF between datasets (Deelen et al., 2014).
For further evaluation, the MAF difference between cases and controls was checked for AT/GC
SNPs and SNPs with MAF difference greater than 0.34 were removed (Table 2.5). After correcting
these mismatched AT/GC SNPs, the merging and preliminary case controls analysis were

repeated.

2.2.7 Quality control of the stage 2 data

The same QC measures described in stage 1 were applied to the stage 2 cases, with the
exceptions that per sample QC measures for heterozygosity, sex-mismatch, cryptic relatedness
and non-Caucasian ancestry were not performed due to the small number of SNPs genotyped. In
cases, QC was performed at the marker level only using per locus missingness whereby SNPs with
greater than 10% missing genotypes were excluded (see 2.2.5.2) and SNPs with extreme deviation
from HWE (p<1x107%) were excluded (see 2.2.5.4). QC and imputation of the stage 2 controls has
previously been described (Ferrucci et al., 2000; Jgrgensen et al., 2003; Julia et al., 2013; Pisinger
et al., 2005; Tanaka et al., 2009). The control datasets were obtained from a previous GWAS in
collaboration with the SNDNAB, INCHIANTI and the University of Copenhagen who had performed
their own QC and imputation (see 2.2.4). These data were further scrutinised using per locus
missingness and HWE, and the number of samples and SNPs removed from the stage 2 data by

these QC measures are shown in Table 2.6 and Table 2.7.
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2.2.8 Statistical analysis

2.2.8.1 Genetic power calculation

The power to detect SNPs associated with SM was estimated using the Genetic Power Calculator
(GPC) (Purcell et al., 2003) with the following parameters and assumptions. The sample size was
determined by the number of cases and controls that passed QC both in stage 1 and stage 2.
Although the incidence of SM is estimated to be approximately 1-9 in 100,000 (Coltoff and
Mascarenhas, 2019) a minimum value of 1 in 10,000 had to be used. The controls were labelled as
unselected as they had not been screened to confirm the absence of disease. To account for
possibility of misclassified controls the power calculation assumed that a proportion of controls
equal to the incidence may be misclassified. The genotyped SNPs were assumed to act via a
multiplicative disease model and to be in linkage disequilibrium (D’= 1) with the causal variant. A
range of minor allele frequencies (0.05, 0.1, 0.2, 0.3, 0.4) and effect sizes (1.1<OR<2in0.1
increments) were then used to estimate the power to detect genetic effects at a genome-wide

level of significance (P-value <5x10%) (Figure 2.14).

2.2.8.2 Logistic regression model of association

After QC, the stage 1 data were tested for disease trait SNP association using binary logistic
regression in Plink. Samples from the UK and Germany were tested as two separate populations,
and samples with evidence of non-Caucasian ancestry were excluded rather than adjusting the
association analysis for population stratification. A fixed-effects inverse variance-weighted meta-
analysis was then used in Plink to combine evidence from the stage 1 cohorts (UK and Germany)
and to determine the final effect sizes and significance levels by combining evidence across stages
1 and 2. To examine the effect of this decision, the ancestry outliers were retained, and the stage
1 analyses were repeated. In this second analysis, the first two principal components from the
multi-dimensional scaling analysis were used as covariates in the logistic regression to account for

the effect of population stratification (see 2.2.5.9, Figure 2.13 and Table 2.9).

To ensure that the separate and pooled analyses generated results that relate to the same risk
allele, a file containing the minor allele in the pooled data was used to specify the risk allele in
both the pooled and separate analyses. Results for SNPs that were only genotyped in one control
population were obtained from the initial analysis, as a minimum of two cohorts are needed for
meta-analysis. To examine the effectiveness of the QC measures and assess evidence for any
systematic biases, the GWAS results from the stage 1 analysis of the UK and German cohorts and
the stage 1 meta-analysis were visualised and interpreted using quantile-quantile plots (QQ plots)
(Figure 2.7) and a Manhattan plot (Figure 2.8). The QQ plots were generated using a custom R

script, and the ggman R Studio package was used to construct the Manhattan plot (Turner, 2018).
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Results from the final meta-analysis of stages 1 and 2 were displayed in a forest plot using Stata
(Figure 2.12). The FUMA software was used to generate regional plots of the stage 1 association
results obtained with the imputed data (Watanabe et al., 2017). Heterogeneity of results in the
meta-analysis was examined through the y-based Cochrane’s Q and I? statistics, which describe

the percentage of variation across studies that is due to heterogeneity rather than chance.

2.2.8.3 Conditional analysis

Several TERT SNPs have been identified as risk factors for the development of haematological
malignancies, including MPN (Tapper et al., 2015), as well as some solid tumours (Hung et al.,
2019; Rafnar et al., 2009). Putative secondary signals were evaluated in Plink by performing

conditional analysis on the index variant in the TERT locus. (Chang et al., 2015).

2.2.9 Clumping

To minimise false positives and the potential for overlooking signals with compelling functional
evidence but modest significance, the following method was used to select SNPs for follow-up at
stage 2. A clumping procedure was used to shortlist SNPs for follow-up at stage 2 using Plink
software (Chang et al., 2015). For this analysis, results from the meta-analysis were used unless
the SNP had been tested in one population only. Meta-analysis was prioritised since it favours
SNPs that are significant in both populations, which reduces potential false positives and increases
the likelihood of replication. The clumping procedure was used to identify clusters of correlated
SNPs that contained at least one SNP with a P-value < 0.001 (P1). The most significant SNP within
a clump is hereafter referred to as an index SNP. Clumps were formed by identifying all other
SNPs in LD (r?20.5) and within 500kb from an index SNP. A greedy algorithm was used to construct
these clumps so that each SNP could only appear in a single clump. Finally, index SNPs were only
shortlisted for follow-up if the clump included at least one other correlated SNP with a P-value
less than 0.01 (P2). This procedure ensured that only the most significant independent loci (index
SNP with P<0.001) with supporting evidence from at least one correlated SNP (r2>0.5, kb <500kb
and P<0.01) were considered for follow-up at stage 2. This strategy and the parameters used are
similar to those applied by previous studies (Chang et al., 2015; Tapper et al., 2015) and the
default settings were used in Plink (Table 2.2). In relation to the default values, the P-value for
selecting index SNPs was raised to 0.001 to account for the fairly modest sample sizes at stage 1,
which limit study power. The distance between correlated SNPs was increased to 500 kb to
accommodate long range LD and limit the number of shortlisted SNPs in close proximity to each

other.
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Table 2.2  Clumping parameters in Plink.

P1 P2 r? Kb
Default parameters 0.0001 0.01 0.5 250
Applied parameters 0.001 Default Default 500

The table shows the parameters used to determine the level of clumping: P1 = P-value threshold for the
index SNPs; P2 = P-value threshold for the SNPs in the clumps; r? = LD threshold for clumping; Kb is the
physical distance in kilobases from the index SNP for clumping. The first row shows the parameters applied
in Plink by default, the second row shows the parameters applied to determine clumps for the GWAS
analysis.

2.2.10 Functional annotation and criteria for SNP selection

Following the clumping procedure, gene-based annotation of all the index SNPs eligible for
replication was performed using ANNOVAR (Wang et al., 2010). The list of the nearest genes was
submitted to GeneAlaCart, a tool that extracts information from the GeneCards database to
generate a spreadsheet containing all the functional annotations associated with the list of genes
(Stelzer et al., 2011). Genes were retained if their biological function from GeneAlacart was
related to kinase activity (Receptor Tyrosine Kinase (RTK) or KIT), haematopoiesis, myeloid
leukaemia, or myeloproliferative or MC conditions such as mastocytosis (Appendix Table A.2). To
minimise false positives and the potential for overlooking signals with compelling functional
evidence but modest significance, the following method was used to select 92 index SNPs for
follow-up at stage 2. First index SNPs that according to annotation from GeneAlacart (Stelzer et
al., 2011) were located within or adjacent to a gene with functional relevance were given priority.
The number of selected SNPs was then infilled to 82 by selecting the remaining most significant
index SNPs. To add support and to guard against failed or problematic genotyping, additional
SNPs were selected as backups for each of the most promising index SNPs in terms of either their

biological relevance, individual significance or level of support from correlated SNPs.

2.2.11 Identification of clonal mosaicism using BAF segmentation

DNA from SM patients was extracted from peripheral blood leukocytes, which are expected to
consist of a mixture of clonal and non-clonal cells. To assess the frequency of somatic changes,
which could affect the association analysis, BAF segmentation was therefore used to analyse all of
the stage 1 cases and to identify genomic regions of Al that were subsequently categorised as
either aUPD, copy number gains or losses using a separate script. Since this analysis requires
genome-wide data, BAF segmentation was only applied to the SM patients from stage 1 (n=479)

(Staaf et al., 2008).
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Briefly, to identify Al regions using BAF segmentation, non-informative markers with BAF less than
0.1 or greater than 0.9 were excluded and the remaining BAF values were mirrored at 0.5 to give
mirrored BAF values (mBAF). The data were further cleaned using triplet filtering to remove SNPs
where the absolute difference between preceding or succeeding SNPs was greater than 0.6.
Finally, circular binary segmentation (CBS) was used to identify regions with similar mBAF values

that were classified as a region of Al if the mean mBAF value was greater than 0.56.

A custom script was then used to categorise the Al regions as likely aUPD if the region was greater
than 2Mb in length, extended to the telomere and had a neutral copy number (LRR between
-0.15 to 0.065) (68). Al regions greater than 2Mb were classified as a copy number gains if LRR
was greater than 0.073 or loss if LRR was less than -0.14 (Staaf et al., 2008). An automated
method was used to extract regions of Al involving KIT (hg19 chr4:55,524,095 — 55,606,881).
Acquired UPDs tend to be greater than 1Mb in size and extend to the telomere, and we used a
custom program to identify telomeric Al regions. There are numerous interstitial regions of Al
which may be interesting if they overlap in multiple samples. Furthermore, these regions may
help to narrow down large candidate regions of aUPD that extend to the telomere. After
identifying telomeric Al regions, an automated method was used to detect internal Al regions
greater than 3Mb from regions that passed QC. To identify minimal recurrent regions, internal Al
regions were converted to bed files and intersected using bedtools. Al regions overlapping in 3 or
more samples were selected and added to the ideogram used to examine and visualise the
regions of Al. In the scatterplot (Figure 2.9), per sample metrics for the total number of Al regions
and percentage of the autosome consisting of Al regions were used to make a scatter plot and to
identify any sample outliers. To calculate the autosomal Al percentage, the length of the
autosome was defined by the Illumina Infinium OmniExpress exome chip that was used to
genotype the SM cases which came to 2.792GB (Appendix Table A.4). In the ideogram (Figure

2.11), regions of aUPD were plotted on a chromosome ideogram to identify recurrent regions.

2.2.12 Replication and final meta-analysis

The replication data included 666 SM patients from Spain, Denmark and Italy and 8,456 controls
(Figure 2.1). Logistic regression, as described in Section 2.2.8.2, was used to test the SNPs that
were selected for replication and passed QC. To determine the final significance and effect size, a

fixed effects meta-analysis was used to combine the evidence from stages 1 and 2. Regional plots
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of the stage 1 imputed data were generated using FUMA (Watanabe et al., 2017) to investigate

the candidate region surrounding SNPs that reached genome-wide significance in the final meta-

analysis.
2.3 Results
23.1 Quality control of cases at stage 1

Following QC, a total of 39 patients (Table 2.3) were removed from the SM-1 cohort due to these
samples having either more than 10% missing genotypes (n=19, Figure 2.3), mismatches between
inferred and reported gender (n=2, Figure 2.4), autosomal heterozygosity exceeding +/- 3SD from
the mean (n=9, Figure 2.3) or evidence of cryptic relatedness (IBS>=0.86, n=9 UK). Before
performing the heterozygosity check, 1,699 non-autosomes (X, Y, mitochondrial chromosomes
and pseudo-autosomal region of X) were removed. Both mean (0.29) and SD (0.0056) calculations
were based on 743,882 autosomal variants scanned in Plink. Sex was inferred using X-
chromosome homozygosity and two samples with a mismatch between the inferred and reported sex
were removed. For subsequent analyses, inferred sex was used for samples where the reported sex

was unknown (n=9).

At the marker level, a total of 368,912 SNPs were removed from the SM-1 dataset during QC (Table
2.4). These SNPs include those with more than 10% missing genotypes (n=1,725); MAF less than
0.05 (n=340,313), extreme deviation from HWE (p<1x107°, n=240), duplicate markers (n=14,939),
not bi-allelic SNPs (n=4) and SNPs failing genotyping (n=3). After these QC measures were applied,
592,007 SNPs (449,874 in the UK and 583,528 in the German cohort) and 414 cases remained for
further analysis (Table 2.3).
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Figure 2.3 Quality control for autosomal heterozygosity and per sample missingness.

Horizontal dashed lines indicate the thresholds used to identify samples with outlying levels
of heterozygosity in the stage 1 SM patients (+3 SD from the mean). Vertical dashed lines
show the threshold used to remove samples with more than 10% missing genotypes. A. SM-1
patients from the UK and German cohorts. The upper dashed line corresponds to 0.30 (het
mean +3SD), the lower one corresponds to 0.27 (het mean -3SD). B. Healthy controls from
the WTCCC2 cohort. The upper dashed line corresponds to 0.34 (het mean +3SD), the lower
red line corresponds to 0.33 (het mean -3SD). C. Healthy controls from the KORA_A cohort.
The upper dashed line corresponds to 0.24 (het mean +3SD), the lower red line corresponds
to 0.23 (het mean -3SD). D. Healthy controls from the KORA_B cohort. The upper dashed line
corresponds to 0.24 (het mean +3SD), the lower red line corresponds to 0.23 (het mean
-3SD).
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Figure 2.4 Sex inference based on X chromosome homozygosity.

The expected homozygous rates are greater than 0.8 for males and less than 0.2 for females
(Anderson et al., 2010). Samples highlighted in light blue were removed because the inferred
and reported sex were not concordant. A. In the SM-1 cohort 2 samples were removed.

B. No discordance between reported and inferred sex was identified in the healthy controls
from the WTCCC2 cohort. C. KORA_A: Two samples with X chromosome homozygosity rate
between 0.8 and 0.2 were removed; D. KORA_B: Sex inconsistency was identified in two
samples and these were removed.

2.3.2 Quality control in control datasets at stage 1

Although QC had already been applied to the genotypic data for controls from the WTCCC2 and
KORA cohorts, they were tested again using our own QC thresholds. The second round of QC
removed 84 individuals (Table 2.3) due to autosomal heterozygosity exceeding +/- 35D from the
mean (n=23 WTCCC2, n=17 KORA_A, n=38 KORA_B; Figure 2.3), evidence of relatedness
(IBS>=0.86, n=1 WTCCC2, n=1 KORA_A) or mismatches between inferred and reported gender
(n=2 KORA_A, n=2 KORA_B; Figure 2.4). To perform the heterozygosity check, non-autosome SNPs
(X chromosome, Y chromosome, pseudo-autosomal region of X, mitochondrial chromosome)
were removed (WTCCC2=40,355, KORA_A=49,888, KORA_B=16,833). Both mean (WTCC2=0.33,
KORA_A=0.23, KORA_B=0.31) and SD (WTCCC2=0.0021, KORA_A=0.0015, KORA_B=0.0022)
calculations were based on autosomal variants (WTCCC2=887,903, KORA_A=1,846,164,
KORA_B=656,562) scanned in Plink.
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At the marker level, a total of 504,270 SNPs were removed from WTCCC, 1,813,477 in KORA_A

and 155,872 in KORA_B following specific exclusion filters (Table 2.4).

Table 2.3

Sample sizes before and after quality control in stage 1.

Stage 1 cases

Stage 1 controls

Quality control measure UK Germany | WTCCC | KORA A KORA B
Total samples pre-QC 329 | 150 5200 1938 2459
>10% missing genotypes 18 0 0 0
Patients with outlying heterozygosity 3SD 5 4 23 17 38
Patients with gender mismatch 2 0 0 2 2
Patients with relatedness 9 0 1 1 0
Ancestry outliers 21 5 0 5 4
Samples remaining 274 | 140 5176 4328

After sample QC, 414 cases remained at stage 1. The 26 ancestry outliers were retained when the stage 1
analyses were repeated with adjustment for population stratification. QC: quality control, SD: standard

deviation.
Table 2.4  SNP number before and after quality control in stage 1.
Stage 1 cases Stage 1 controls

Quality control measure UK | Germany | WTCCC KORA A KORA B
Total observed SNPs pre-QC 960919 954144 2380310 | 721694
SNPs failed genotyping 3 0 0 0
SNPs with 210% missing genotypes 1725 24263 29469 19016
SNPs with MAF < 5% 340313 71631 1085092 | 120853
SNPs failing HWE" 240 3598 2376 1250
Not bi-allelic SNPs 4 3 4 0
Unknown strand 0 372 439 291
Duplicates/triplicates 14939 2 4378 1
MAF difference >0.34 0 7 1 1
Not in cases and controls 153821 20167 404394 691718 14460
Total observed SNPs passing QC 449874 583528 449874 583528
Imputed SNPs with info score >0.8 and 7397922 | 7253056 7397922 | 7253056
MAF>0.01
HWE® 200212 195134 200212 195134
Duplicates 5816 5396 5816 5396
Total imputed and observed SNP 7191894 | 7052526 | 7191894 | 7052526
remaining

In total 592,007 SNPs were tested at stage 1. Of these, 441,395 were tested in both the UK and Germany
cohorts, 8,479 were tested in the UK only, and 142,133 were tested in the German cohort only. QC: quality
control, MAF: minor allele frequency, HWE: Hardy-Weinberg equilibrium. *HWE P-value <1x10-10 in cases,

P-value <0.001 in controls.
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233 Merging of cases and controls

To aid merging a strand file for the lllumina Infinium OmniExpress exome chip was downloaded

from Will Rayner’s website (https://www.well.ox.ac.uk/~wrayner/strand/) and used to update the

chromosome and genomic locations for 603,592 SNPs and to flip the genotyping strand for
301,568 SNPs. An rsID conversion file was also downloaded and used to update 603,319 SNP
names. Following these measures, the cases and controls were merged and any non AT-GC SNPs
that generated two or more alleles were detected and flipped (n=707 in WTCCC2, n=163 in
KORA_A, n=171 in KORA_B). During merging, SNPs with ‘same position’ warnings were detected
in KORA_A (n=1,273) and KORA_B (n=10) and resolved using the ‘--merge-equal-pos’ option in
Plink.

234 Relatedness and population stratification

Multidimensional scaling analysis was performed to assess the evidence for population
substructure, which can generate false positive and false negative results. For this analysis the 440
stage 1 patients, 9,513 controls (n=5,176 WTCCC2, n=4337 KORA) that passed QC were used, and
153 individuals from HapMap (n=55 CEU, n=43 CHB, n=55 YRI). Atotal of 331,793 SNPs present in
each dataset were extracted from the merged dataset, and 150,381 variants were removed using
LD-based SNP pruning (Figure 2.2). Pairwise measures of IBS were then determined using 181,411
autosomal SNPs in linkage equilibrium. Based on these IBS measures, during QC we removed 11
samples (cases=9, controls=2) with evidence for cryptic relatedness (IBS>0.86) (Table 2.3). A
multidimensional scaling analysis was also performed using the pairwise measures of IBS. When
plotting the first and second components from multidimensional scaling, most cases and controls
formed a single cluster overlapping with the Caucasian reference population from HapMap
(Figure 2.5 A). The close ancestral relationship between most cases and controls suggests they
have European ancestry and are suitable for comparison. However, there was evidence of non-
Caucasian ancestry in 26 cases (21 UK, 5 German) and 9 KORA controls. The mean of the C1 values
of the European groups (WTCCC2, KORA, SM-1, CEU) was calculated and samples with £3 SD

(0.0023) or more from the mean (0.0013) were considered ancestry outliers in further analysis.
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Figure 2.5 Multidimensional scaling plots.

Multidimensional scaling plot generated by plotting the first two components (C1 and C2).

A. SM patients from the UK (pink circles) and Germany (dark blue circles), KORA controls
(KORA_A turquoise, KORA_B brown) and WTCCC2 controls (orange), reference populations
from HapMap for Utah residents with Northern and Western European ancestry (CEU, red
circles), Yoruban individuals from lbadan, Nigeria (YRI, blue circles), Han Chinese in Beijing,
China (dark green circles). Samples with outlying values for C1 (3 SD from the mean for stage
1 cases and controls and HapMap CEU) were considered ancestry outliers and excluded from
further analysis (light green circles). B. The MDS plot is showing C1 and C2 components for
patients (pink and dark blue circles) and controls (turquoise, brown and orange circles).
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Multidimensional scaling analysis was again performed on the study cohorts only (stage-1
cases=440, controls=9,513) to assess substructure of Caucasian population, the reference
populations from HapMap were excluded from the analysis. A total of 151,907 SNPs were
removed after LD-based SNP pruning and the remaining genotype data (n=180,332 SNPs) were
used to calculate a genome-wide pairwise IBS distance matrix and to perform the
multidimensional scaling analysis. As shown in Figure 2.5 B, one major cluster was identified. This
shows that the small population substructure in this study should not have appreciable effect on
the final results. It is worth noting that WTCCC2 controls are shifted slightly to the right with
limited overlap with the UK cases; also, the overlap between German cases and controls suggests
some point of difference between UK cases and controls, which can be due to several factors,

such as residual QC issue or different genotyping chips.

235 Preliminary analysis of the stage 1 data

To assess the merging process, a preliminary analysis of the stage 1 data was performed as a
pooled analysis that tested the UK and German cohorts as a single European cohort. Logistic
regression was used to compare the pooled set of cases (n=440) and controls (n=9,513) for all the
SNPs that passed the initial QC. For this analysis, the ancestry outliers were retained and the first
five principal components from the multi-dimensional scaling were used to correct for population
stratification, and a QQ plot was used to inspect the results. Although the QQ plot showed no
evidence for systematic biases between the cases and controls (genomic inflation factor A=0.96)
there were 174 SNPs (Appendix Table A.1) that reached genome-wide significance (P-value <
5x10®), which is more than expected given the modest sample size and estimated study power
(Figure 2.14). To investigate further, these significant SNPs were stratified by their alleles, which
showed that 77% had palindromic alleles, either AT/TA (20.1%) or GC/CG (56.9%). This is more
than expected given the proportion of AT/GC SNPs that were tested (Figure 2.6), and suggests

that unresolved strand issues at palindromic SNPs may account for the excess of significant SNPs.

Following this observation, the GH program was used to assess the evidence for strand
mismatches at AT/GC SNPs by comparing the LD pattern between cases and controls (Deelen et
al., 2014). This analysis identified 853 palindromic AT/GC SNPs with potential strand issues (n=687
in WTCCC2, n=159 in KORA_A, n=7 in KORA_B) that were flipped using Plink (Table 2.4). Strand
assignments could not be resolved for 1,102 AT/GC SNPs (n=372 in WTCCC2, n=439 in KORA_A,
n=291 in KORA_B) because of a lack of SNPs that are in LD in the surrounding area, and so these

ambiguous SNPs were removed (Table 2.4). AT/GC SNPs were evaluated further, SNPs with MAF
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difference > 0.34 between cases versus controls were identified as outliers and removed from

further analysis (Table 2.4 and Table 2.5).

Table 2.5 SNPs with highest MAF differences between case and control datasets.
CHR | SNP BP ’ MAF_A ’ MAF_U ’ MAF difference ’ Al ’ A2 ’ Ctrl Dataset

6 rs6553229 153316274 0.1036 0.8934 0.7898 G C  WTCCC2

6 rs6553229 153316274 0.1036  0.9049 0.8013 G C KORA_A

6 rs6553229 153316274 0.1036 0.90257 0.79897 G C KORA_B
13 rs10507391 31312097 0.3244 0.674 03496 A T  WTCCC2
23 rs28861531 1374728 0.1127 0.8682 0.7555 G C  WTCCC2
23 rs17881232 1464821 0.255 0.7248 04698 C G WTCCC2
23 rs17808080 2591888 0.1824 0.7715 05891 T A WTCCC2
23 rs731477 155228954 0.1167 0.8792 0.7625 G C  WTCCC2
23 rs731478 155229100 0.1183 0.8789 07606 G C WTCCC2

CHR: chromosome; SNP: SNP identifier; BP: base pair; MAF_A: minor allele frequency in affected

individuals; MAF_U: minor allele frequency in unaffected individuals; Al: alternative or minor allele; A2:

reference allele.

After processing the AT/GC SNPs, the preliminary analysis was repeated and resulted in only one

SNP with genome-wide significance. The significance threshold was therefore reduced to P-value

<10 and the SNPs reaching this level of significance were stratified by their alleles. This showed

that the proportion of significant SNPs by allele were similar to those in the total tested,

suggesting that the strand issues have been resolved.
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Figure 2.6

Chapter 2
Effect of the strand orientation QC on the association analysis results.

This figure shows the effect of the strand orientation QC for reducing type 1 errors when testing for association. In the preliminary analysis (top of the figure), the allelic
proportion of significant SNPs (B) was highly different from the allelic proportion of total tested SNPs (A) and when strand orientation QC for palindromic SNPs was not
applied, the QQ-plot (C) show an early and abrupt deviation of the test statistics from the null hypothesis. In comparison, in the final analysis (bottom of the figure)
performed after addressing the additional strand orientation QC for palindromic SNPs, the allelic proportion was very similar between significant SNPs (B) and total number
of tested SNPs (A); as a result, the QQ-plot (C) shows instead good agreement between observed and expected P-values until SNPs with P-values <10 beginning to show
modest deviation from the null distribution.
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2.3.6 Logistic Regression

In the preliminary analysis, logistic regression was used to compare all of the cases (n=440) and
controls (n=9,513) and test all the SNPs that passed QC. In this analysis the first five principal
components from the multidimensional scaling analysis were used as covariates to correct for

population stratification.

After quality control of the stage 1 data and after resolving the residual strand issues for AT/GC
SNPs, binary logistic regression was used to test the stage 1 data as two separate populations
from the UK and Germany. In this analysis, 35 ancestry outliers were removed (UK = 21, German =
5, KORA = 9) before testing the UK (274 cases versus 5176 controls) and German (140 cases versus
4328) populations (Table 2.3). A fixed effects meta-analysis was then used to combine summary
statistics from the separate analyses of the UK and German cohorts. Results from the meta-

analysis are available at LocusZoom (http://locuszoom.org/) under “Mastocytosis GWAS” (Pruim

etal.,, 2011).

At stage 1, a total of 592,007 SNPs were tested for association with KIT?81®V positive mastocytosis.
Of these, 441,395 were tested in both the UK and Germany. An additional 150,703 SNPs were not
genotyped in both control populations and could not be combined by the meta-analysis, which
needs a minimum of two cohorts. Of these SNPs 8,479 were tested in the UK only, and 142,133
were tested in the German cohort only (Table 2.4). The quantile-quantile (QQ) plots for each
analysis and their low genomic inflation factors (A <1.038) demonstrate a close agreement with
the null hypothesis up to the tail of the distribution, where SNPs with P-values less than 10

become more significant than expected by chance alone (Figure 2.7).
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Figure 2.7 QQ plots of P-values from the stage 1 analyses.

The QQ plots of the observed versus expected P-values when testing the association with SM
at stage 1 for separate analysis of the UK (A) and German (B) cohorts and meta-analysis (C).
The black diagonal indicates expected QQ plot under null hypothesis when no SNPs are
associated with SM. The area between the curved lines represents the 95% confidence interval
(Cl) of the expected P-values on the plot. The -log P-values are mostly within the 95% CI until
SNPs with P-values <10 start deviating from the levels of significance that are expected by
chance alone (C). The -log P-values of UK (A) and German (B) analysis are mostly within the
95% Cl.

A Manhattan plot summarising the results of the stage 1 meta-analysis is shown in Figure 2.8. A
total of 18 SNPs were identified with the less stringent threshold of suggestive significance (P-
value < 1x107). The Manhattan plots showed that there were several peaks of significant SNPs
with support from nearby SNPs, most notably on chromosomes 2, 3, 4 and 11. However, only one

SNP, on chromosome X, surpassed the genome-wide level of significance.
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Figure 2.8 Manhattan plot.

Manhattan plots representing results of stage 1 meta-analysis GWAS for all 24 chromosomes. In total 592,007 SNPs are plotted, and each typed SNP is shown in alternate
blue and grey. Results are plotted as -log10 of the meta-analysis P-values on the y-axis against their physical chromosomal position on the x-axis. Horizontal lines were
added to indicate the threshold for genome-wide significance (P-value <5x10%, red line) and a suggestive level of significance (P-value <1x10°, blue line). All the 92 SNPs
selected for follow-up are highlighted in green and the three SNPs that reached genome-wide significance after meta-analysis of stages one and two are highlighted in
purple. One SNP meets the genome-wide significance level and a further 18 SNPs were identified with suggestive P-values. Consistent signals are shown on chromosomes 2,
3,4 and 11.
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2.3.7 Clumping

A clumping procedure was used to select the most promising SNPs for replication analysis at stage
2. Results for 441,395 SNPs obtained from the meta-analysis were used, as they will help to select
SNPs with a similar trend in both the UK and German cohorts that are more likely to be replicated.
A limited number of index SNPs (n=79) were identified using the default parameters in Plink
(Chang et al., 2015). For this reason, less stringent parameters were used, and identified a total
of 441 index SNPs with a P-value less than 0.001 and support from at least one correlated SNP
(r’<0.5) with a P-value less than 0.01 and within 500 Kb of the index SNP.

2.3.8 Functional annotation and selection of SNPs for replication

A gene-based annotation of the 441 index SNPs was submitted to ANNOVAR and a list of 560
genes was generated (Wang et al., 2010). The list of genes was submitted to GeneAlaCart and
reduced to 50 genes with biological relevance, which include kinase activity (receptor tyrosine
kinase (RET) or KIT), haematopoiesis, myeloid leukaemia, myeloproliferative or MC conditions
such as mastocytosis (Appendix Table A.2) (Stelzer et al., 2011). It is plausible to speculate that
the strategy applied to a shortlist of only 50 genes, may have overlooked some interesting signals.
As discussed in Chapter 5, this can be due to missing knowledge at the time the analysis was
performed. The following criteria were then used to select SNPs for replication at stage 2. First, 44
index SNPs were selected located in or flanked by a functionally relevant gene, with a moderate
significance threshold (P<0.001) and supported from correlated SNPs (Appendix Table A.6). The
list of selected SNPs was then infilled to 82 by selecting the 38 most significant index SNPs and
with support from correlated SNPs (Appendix Table A.6). To add support and to guard against
failed or problematic genotyping, 10 additional SNPs were selected as backups for each of the
most promising index SNPs in terms of either their biological relevance, individual significance, or
level of support from correlated SNPs (Appendix Table A.6). After these selection criteria were
applied, a total of 92 SNPs were selected for replication. To ensure that no interesting association
signals were overlooked, the shortlisted SNPs were highlighted in a final Manhattan plot (Figure
2.8). One SNP achieved genome-wide significance in the stage 1 analysis, rs7884433, but it was
not selected for replication because it lacked support from any of the SNPs in strong LD (r*>0.8)

and is thus likely to be a technical artefact.
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2.3.9 Identification of clonal mosaicism using BAF segmentation

To assess the frequency of somatic changes, which could affect the association analysis, BAF
segmentation (Staaf et al., 2008) was used to analyse all of the stage 1 cases (n=478) and to
identify genomic regions of Al. The raw output from this analysis includes a text file that lists all
the Al regions that were detected in each sample (Appendix Table A.3). To examine the raw
output from BAF segmentation and to identify any sample outliers, the total number of Al regions
and the percentage of autosomal Al regions in each sample was determined and plotted (Figure
2.9). Visual inspection of the plot identified 24 outlying samples that had either 95% or more of
their autosome being called as regions of Al (n=21) or more than 3,000 separate regions of Al (n=3).
During the QC steps, 19 of these outliers were found to have more than 10% missing genotype.
Therefore, of the 414 individuals tested for association with mastocytosis, five other samples

were excluded for the BAF segmentation analysis (Appendix Table A.5).
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Figure 2.9 Scatter plot showing the percentage of Al coverage versus the number of Al regions

The scatter plot of the number of Al regions versus the percentage of autosomal Al shows
that samples with either > 95% of autosomal Al or > 3,000 Al regions are outliers due to noisy
array results. The 24 outliers are displayed in red.

The BAF plots for each of these samples were examined, which showed that the SNPs in these
samples had a wide range of BAF values and did not form the expected genotypic clusters (Figure

2.10 B).
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Figure 2.10 BAF, mBAF and LRR plots of two samples for chromosome 4.

The 4q region represent a region of aUPD. This is detected by the clear shift away from the

heterozygous BAF value of 0.5 compared to the p arm that shows a normal 4p region. B. In

A.

the plotted data show a messy array for each chromosome of the same

’

noisy samples

sample.
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After removing the samples with noisy arrays, a custom script was used to categorise the
remaining Al regions as either copy number neutral regions of aUPD (LRR between -0.15 and
0.065) if they were greater than 2Mb in length and extended to the telomere, copy number gains
if the LRR was greater than 0.073 or copy number losses if the LRR was less than —0.14 (Staaf et
al., 2008). This analysis showed that SM genomes are relatively simple with only 51 cases showing
likely somatic copy number changes or aUPD (Figure 2.11). Large regions of aUPD and copy
number alterations were rare, occurring with a similar frequency to that observed in MPN (Geyer,
2019; Tapper et al., 2015). Since these abnormalities are rare and do not overlap in a large
proportion of patients it is unlikely that they will affect the association tests in the GWAS.
Furthermore, apart from isolated cases the genomic regions with somatic changes did not include
the risk factors that were identified and none of these regions were excluded from further

analysis.
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Figure 2.11 Copy number changes and regions of acquired uniparental disomy in the 409 stage 1 cases.

The ideogram shows CNV and aUPD regions detected by lllumina Infinium OmniExpress array in the mastocytosis cases and mapped by chromosome. On the right: the blue
bars depict regions of aUPD, gain regions are in green; on the left: the red bars indicate deletions. The horizontal yellow bars depict the location of the three genome-wide
significant SNPs in the chromosome. The horizontal black bars indicate the location of recurrent aUPD regions targeting driver genes and an imprinted locus (MEG3-DLK1 on
chromosome 14) associated with myeloid neoplasms.
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2.3.10 Replication in mastocytosis GWAS

Of the 92 SNPs selected, 75 were successfully genotyped in 666 KIT?81¢V mastocytosis cases from
Spain, Denmark and Italy. Additional controls (n=8,456) from the same populations that had
previously been genotyped were used for comparison. After QC, 621 cases and all the controls
remained for analysis (Table 2.6). All SNPs passed QC in cases although 19 were excluded from the

Spanish controls due to per SNP missingness (210%) following imputation (Table 2.7).

Table 2.6  Sample sizes before and after quality control in stage 2.

Stage 2 cases Stage 2 controls

Quality control measure Spanish | Danish | Italian | SNDNAB | Inter99 | INCHIANTI
Total samples pre-QC 399 185 82 1062 6184 1210
>10% missing genotypes 30 14 1 0 0 0
e o o o o o o
Patients with gender mismatch | 0 0 0 0 0 0

Patients with relatedness 0 0 0 0 0 0
Ancestry outliers 0 0 0 0 0 0

Samples remaining 369 171 81 1062 6184 1210

Table 2.7  SNP number before and after quality control in stage 2.

Stage 2 cases Stage 2 controls
Quality control measure Spanish | Danish | Italian | SNDNAB | Inter99 | InCHIANTI
Total observed SNPs pre-QC 92 92 92 92
SNPs failed genotyping 17 0 0 0
L 109 micci
zl::;t\\/\//:;_loﬁ missing 0 19 0 0
SNPs with MAF < 5% 0 0 0 0
SNPs failing HWE" 0 0 0 0
Not bi-allelic SNPs 0 0 0 0
Unknown strand 0 0 0 0
Duplicates/Triplicates 0 0 0 0
MAF difference >0.34 0 0 0 0
Not in cases and controls 0 0 0 0
'(I'lc::tal observed SNPs passing 75 73 92 92

QC: quality control, MAF: minor allele frequency, HWE: Hardy-Weinberg equilibrium.
*HWE P-value < 1x107° in cases, P-value <0.001 in controls
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Samples were tested for association with SM as three separate cohorts using binary logistic
regression. The final significance levels and effect sizes were determined using a fixed effects
inverse variance-weighted meta-analysis to combine evidence from stages 1 and 2. This meta-
analysis identified three intergenic SNPs with genome-wide significance, rs4616402

(Pmeta=1.37%10"), rs4662380 (Pmeta=2.11x10"2) and rs13077541 (Pmeta=2.10x10°) (Table 2.8).

Table 2.8  Summary of the most significant SNPs from meta-analysis of stages 1 and 2.

SNP Chr Location | Alleles | RAF Gene Puiera OR (CI) P

(hg19)

rs4616402 | 19913 | 33,753,555 A/G 0.240 | SLC7A10-CEBPA | 1.37x10%° 1.52 4.2
(1.37-1.68)

rs4662380 2¢22 | 145,316,407 c/T 0.189 LINCO1412 2.11x10%? 1.46 0
(1.32-1.63)

rs13077541 | 3926 | 176,925,740 G/A 0.464 TBL1IXR1- 2.10x107° 1.33 0
LINC00501 (1.21-1.45)

SNP, rs identifier from dbSNP; Alleles, risk associated/non-risk associated allele; RAF, risk allele frequency in
Europeans from 1000 genomes; Pvera, fixed effects meta-analysis of stages 1 and 2; OR, odds ratio; Cl, 95%
confidence interval; I, heterogeneity index (0-100).

Results for the three SNPs reaching genome-wide significance are summarised in a forest plot
which shows that each SNP is significant in four of the five cohorts tested and that there is
evidence for the same trend in the remaining population (Figure 2.12). I? statistics showed that for
each SNP there was no evidence of heterogeneity between cohorts (Table 2.8). Results from the

meta-analysis of stages 1 and 2 for all SNPs tested are shown in Appendix Table A.6.

68



Chapter 2
Cohort  Cases/controls ES (95% Cl) P-value

rs4616402

UK 274/5176
Germany 140/4328 —
Spanish  369/1062

Danish 171/6184

Italian 81/1210

Subtotal (I-squared = 4.2%, p = 0.383)

1.60 (1.33,1.92) 6.95x107
1.19(0.91,1.56) 0.2126
166 (1.36,2.01) 3.76x107
1.47 (1.17,1.86)  0.0010
152 (1.06,2.18) 0.0234
152 (1.37,1.68) 1.37x10°

—_——
-
—_—
——
rs4662380

UK 274/5176 — 1.39 (1.14,1.69)  0.0011
Germany 140/4328 — 1.59 (1.20,2.09) 0.0010
Spanish  369/1062 — 1.44 (1.19,1.74)  0.0002
Danish  171/6184 —_—— 1.55(1.21,1.99) 0.0006
Italian 81/1210 - 1.44 (0.97,2.12) 0.0679
Subtotal (I-squared = 0.0%, p = 0.929) L i 1.46 (1.32,1.63) 2.11x1072
—_——
—
—_—
—_———

rs13077541
UK 274/5176
Germany 140/4328

1.36 (1.15,1.62)  0.0004
1.32 (1.04,1.68) 0.0209
Spanish  369/1062 1.40 (1.19,1.66) 6.73x10°
Danish  171/6184 1.28 (1.02,1.59) 0.0293
Italian 81/1210 - 1.06 (0.77, 1.45) 0.7385
Subtotal (I-squared = 0.0%, p = 0.620) i 1.33(1.21,1.45) 2.10x10°

-
-

6 8 1 12 141618 222
Odds ratio (95% confidence interval)

Figure 2.12 Forest plots and meta-analysis for three SNPs reaching genome-wide significance.

Forest plots for each SNP associated with SM at a genome-wide level of significance. Odds
ratios (OR = ES) and 95% confidence intervals (Cl) are displayed on the x-axis. Results are
shown for each cohort (UK, German, Spanish, Danish and Italian) and the combined analysis.
The SNP subtotals and diamond show the final OR and Cl for a fixed effects meta-analysis of
all five cohorts and uses I-squared to assess heterogeneity in effect sizes between cohorts.

2.3.11 Comparison of the stage 1 analyses

To investigate the possibility of residual population stratification, the stage 1 analyses were
repeated without removing 26 samples with evidence of outlying ancestry (Table 2.3) and
adjusting the association analysis using the first two principal components from MDS. The top
three SNPs retained genome-wide significance, with rs4662380 and rs13077541 becoming slightly
more significant (Table 2.9), which suggests an absence of residual population stratification in the
original analysis. The results for all SNP tested in both stage 1 analyses were viewed side-by-side
in QQ plots (Figure 2.13). Their genomic inflation factors (A £1.02) showed that both analyses

generated similar significance profiles and demonstrated a close agreement between the
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observed and expected P-values up to the tail of the distribution, where SNPs with P-values less
than 10 began to deviate from the null distribution. Consequently, systematic biases such as
separate genotyping of cases and controls, population stratification, or clonal somatic changes in

the SM cases are therefore considered to be unlikely to contribute to the significance of these

SNPs.
P values Inflation factor (A)
Correction for Population stratification 1.013
© No Ancestry outliers 1.02

Observed (-logP)
[0}
|

0 T T T I I
0 1 2 3 4 5 6

Expected (-logP)

Figure 2.13 QQ plot of the stage 1 meta-analysis with and without correction for population
stratification.

The analysis without correction excluded 26 ancestry outliers. These samples were included in
the analysis, which corrected for population stratification using the first two principal
components from the MDS analysis.

Table 2.9  Summary of the most significant SNPs from meta-analysis with adjustment for

population stratification.

SNP Chr Location | Alleles | RAF Gene Puiera OR (Cl) P
(hg19)

rs4616402 | 19913 | 33,753,555 A/G 0.240 SLC7A10- 5.26x10% 1.5 6.68
CEBPA (1.36-1.66)

rs4662380 2¢22 | 145,316,407 c/T 0.189 LINCO1412 7.17x1013 1.47 0
(1.32-1.64)

rs13077541 | 3926 | 176,925,740 G/A 0.464 TBL1XR1- 5.32x10%0 1.34 0
LINC0O0501 (1.22-1.47)

SNP, rs identifier from dbSNP; Alleles, risk associated/non-risk associated allele; RAF, risk allele frequency in
Europeans from 1000 genomes; Puera, fixed effects meta analysis of stages 1 and 2; OR, odds ratio; Cl, 95%
confidence interval; /%, heterogeneity index (0-100).
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2.3.12 Genetic power calculation

Following QC, the stage 1 and stage 2 analyses involved 1,035 mastocytosis cases and 17,960
controls. According to these sample sizes and using a multiplicative disease model, this study is
estimated to have 80% power to detect rare SNPs (MAF=0.1) with a relative risk of 1.82, and
common SNPs (MAF=0.4) with a relative risk of 1.56 (Figure 2.14). Although these power
estimates are encouraging, only one SNP with genome-wide significance was identified by the
stage 1 analysis. The lack of genome-wide significant SNPs is most likely due to the relatively small
number of cases and the power estimates being somewhat inflated by the comparatively large
number of controls. Despite the small number of SNPs reaching genome-wide significance in stage
1 there were 18 SNPs with suggestive levels of significance and several of these formed well
supported peaks on the Manhattan plots. Furthermore, three genome-wide significant SNP were
replicated at stage 2. Due to the potential to overlook SNPs with smaller effect sizes, we used a
set of selection criteria rather than significance alone (see 2.2.10) to identify 92 SNPs for

replication.

2.3.13 Association with TERT

The stage 1 analysis included rs2853677, which has been linked to both MPN and JAK2"6'7F
associated CH (Hinds et al., 2016). This SNP is within TERT at 5p15 and marginally failed to meet
the criteria for analysis at stage 2; however, the stage 1 meta-analysis for directly genotyped UK
and German cases showed Pmeto=0.0011, suggesting the possibility of an association. To examine
this in more detail genotypes for 64 additional SNPs spanning TERT were imputed and tested for
association with mastocytosis. As shown in Appendix Table A.7, 7 SNPs achieved P values of
<0.001. The strongest of these was for rs7726159 (Pmeta=8x107), an established risk SNP for
multiple cancer types (Wang et al., 2014b). One secondary association at TERT was identified for
rs2853677, which remained significant after conditioning on rs7726159 (Pconditiona= 0.035). No
associations were seen with other SNPs that predispose to other MPN (Bao et al., 2020) or CHIP
(Bick et al., 2020) in the stage 1 data (Table 2.10).
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Figure 2.14 Estimation of power to detect genetic effects in association with mastocytosis.
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Table 2.10 Recent published genetic associations with MPN and CHIP.

Chapter 2

Our stage 1 meta-analysis Published associations
Candidate Published
CHR | SNP BP (hg19) Al | A2 | gene Observed P | Imputed P | OR 12 P value OR | Disorder Publication
3 | rs74676712 160284736 | C T KPNA4 0.6253 | 1.0591 0 2.64E-11 1.3 | MPN Bao et al. (2020)
3 | rs9847631 168832107 | T G MECOM 0.07679 1.1356 | 36.49 4.89E-10 | 1.17 | MPN Bao et al. (2020)
3 | rs9864772 128316939 | A G GATA2 0.6957 0.9719 0 2.64E-08 | 1.15 | MPN Bao et al. (2020)
3 | rs77249081 159633461 | C G SCHIP1 9.53E-07 3.7 | MPN Bao et al. (2020)
KPNA4-
3 | rs1210060191 160180516 | GT | G TRIM59 5.30E-10 | 1.16 | CHIP Bick et al. (2020)
4| rs62329718 105758059 | A T TET2 0.4067 | 1.1656 0 2.72E-34 | 2.11 | MPN Bao et al. (2020)
4 | rs144418061* 105728982 | G A TET2 NA NA NA NA 4.00E-09 2.4 | CHIP Bick et al. (2020)
6 | rs116466979 34235378 | T C NUDT3 0.07999 | 1.3258 0 2.31E-12 1.5 | MPN Bao et al. (2020)
7 | rs62471615 130746955 | A C MKLN1 2.31E-17 1.3 | MPN Bao et al. (2020)
9 | rs1327494 4999303 | G A JAK2 0.5219 | 1.0523 | 27.89 1.11E-170 2 | MPN Bao et al. (2020)
9 | rs1633768 135879138 | T C GFI1B 0.06677 | 1.1522 0 2.15E-12 1.2 | MPN Bao et al. (2020)
11 | rs1800057 108143456 | C G ATM 0.3938 | 1.1979 | 69.28 7.27E-10 | 1.65 | MPN Bao et al. (2020)
12 | rs7310615 111865049 | G C SH2B3 0.6168 | 1.0363 0 2.91E-21 | 1.27 | MPN Bao et al. (2020)
13 | rs8002412 41331497 | C T MRPS31 0.5268 | 1.0592 0 5.23E-10 1.2 | MPN Bao et al. (2020)
DNMT3A
14 | rs2887399 96180695 | G T TCL1A 0.06372 0.8413 | 22.48 3.90E-09 | 1.23 | /TET2 CHIP | Bick et al. (2020)
18 | rs9946154 22810619 | T C ZNF521 0.9973 | 0.9998 0 1.50E-08 | 1.15 | MPN Bao et al. (2020)
21 | rs55857134 36347627 | T C RUNX1 0.7773 | 0.9789 0 1.05E-09 | 1.17 | MPN Bao et al. (2020)
22 | rs17879961 29121087 | A G CHEK?2 5.22E-06 | 2.23 | MPN Bao et al. (2020)

*This variant is not present in non-African ancestry
See Appendix Table A.7 for details on SNPs spanning TERT
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2.3.14 Association with TPSAB1 and TPSB2

Copy number variation at TPSAB1, the gene at 16p13 encoding a-tryptase, is associated with
elevated serum tryptase levels in hereditary a-tryptasaemia (Lyons et al., 2016). My analysis did
not include direct copy number analysis of this gene; however, a recent study linked TPSAB1
duplications with three SNPs including rs58124832 (Lyons et al., 2018). This SNP was genotyped at
stage 1 and met our criteria for analysis at stage 2, yielding a suggestive overall association with
mastocytosis (Pmeta=9.03%10®). The Cochran’s Q test and I? statistics showed no evidence of
heterogeneity between cohorts; however, the association was significant in only two cohorts

(Pgerman=0.0058, Pyx=0.0042) and borderline in a third cohort (Pspanisn=0.05; Appendix Table A.6).

2.3.15 Associations with other genetic factors

A thorough search of the relevant literature yielded 14 SNPs that have been associated with the
development of or phenotype of human mastocytosis (Daley et al., 2001; Lange et al., 2017;
Nedoszytko et al., 2009, 2018, 2020; Rausz et al., 2013). Of these, 11 were directly genotyped or
could be imputed from the stage 1 data (Table 2.11) but only one of these was significant;
rs1800925 in the promoter region of /L13 at 5931 (Pimputea = 0.008). This SNP has been linked to
the development of adult SM and serum interleukin-13 levels (Nedoszytko et al., 2009) and

inflammatory disorders such as chronic obstructive pulmonary disease (Ahmadi et al., 2019).
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Table 2.11 Published genetic associations with mastocytosis.

Chapter 2

Our stage 1 meta-analysis Published associations
CHR | SNP BP (hg19) Al | A2 | Candidate gene Observed P | Imputed P | OR 12 Published P value | OR Publication
11 | rs10838094 5443893 | A | G | OR51Q1 0.6678 0.8636 | 1.0124 | 11.23 [ 2.21 x 107 0.2071 | Nedoszytko et al. (2020)
9 | rs80138802 | 139915940 | C | A | ABCA2 . . 1.98 x 107/ 5.739 | Nedoszytko et al. (2020)
14 | rs11845537 57446273 | A G OTX2-AS1 0.7306 | 0.9442 | 54.16 | 1.60 x 107*® 5.625 | Nedoszytko et al. (2020)
3 | rs9828758 73718136 | T C Near RP11 0.126 0.08278 | 0.8713 | 70.62 | 2.94 x 10’ 0.1467 | Nedoszytko et al. (2020)
19 | rs2279343 41515263 |G | A CYP2B6 0.2459 | 0.9069 0(232x101 0.2795 | Nedoszytko et al. (2020)
6 | rs1611207 29759876 | A G | HLA-V 0.3148 | 0.9277 | 70.08 | 7.25 x 1078 2.105 | Nedoszytko et al. (2020)
1| rs76015112 152129094 | G | A | RPTN 0.7584 | 1.0288 0| 294x%x107 0.2965 | Nedoszytko et al. (2020)
1| rs1778155 144874815 | T C PDE4DIP . 3.26 x10°° 2.032 | Nedoszytko et al. (2020)
21 | rs61735841 47558552 | A G | FTCD 0.05358 | 1.2361 | 71.2 | 4.34x 107 0.02573 | Nedoszytko et al. (2020)
16 | rs1801275 27374400 | G | A | IL-4RA 0.7497 0.9594 | 1.0045 | 88.6]. Daley et al. (2001)
5 | rs1800925 131992809 | T | C | /L-13 0.008089 0.77 0 | 0.0001 Nedoszytko et al. (2009)
1| rs2228145 154426970 | C A | IL-6R 0.5606 0.6291 | 1.0355 | 69.35 | 0.0088 2.488 | Rausz et al. (2012)
4 | rs5743708 154626317 | A | G TLR-2 0.01 4.22 | Nedoszytko et al. (2018)
12 | rs6489188 122660776 | A | G | IL-31 0.7115 | 0.9721 | 89.92 | 0.045 4.04 | Lange et al. (2016)

75




Chapter 2

2.4 Discussion

This study represents the first two-stage case-control GWAS of mastocytosis. Although the
disease is defined in most cases by the presence of a somatic KIT?'¢V driver mutation,
mastocytosis is in fact a complex disorder with diverse clinical phenotypes and outcomes. In this
study, constitutional genotype has been identified as an additional factor that predisposes to
mastocytosis. The use of molecular criteria to define cases in this study, rather than clinically-
defined subtypes, plus careful matching of cases and controls with regard to ethnicity aimed to
reduce the chance of heterogeneity in both the discovery and replication cohorts. Matching of
cases and controls, despite the use of small sample sizes, has been successful in other GWAS
investigating genetic predisposition of rare diseases in European ancestry (Mobuchon et al.,
2017). Thus, with a relatively modest cohort size by current GWAS standards, it was possible to
identify and validate 3 SNPs that achieved genome-wide significance, and identify further SNPs
with suggestive associations at TERT, /L3 and TPSAB1/TPSB2. Importantly, except for rs1800925
(/IL13), none of the previously published associations were confirmed (Table 2.11). These
publications included several candidate gene studies plus a recent GWAS that did not include a
replication cohort (Nedoszytko et al., 2020). Both these approaches are highly prone to false
positive results, although it is also possible that differences in genetic predisposition between
populations may account for the lack of replication. An example of failure to replicate, due to
difference in allele frequencies and reduced genetic power, was seen in GWAS of major

depressive disorder when comparing populations from Europe and Asia (Cai et al., 2015).

The genomic DNA used in my study was extracted from peripheral blood leukocytes, which can
potentially have both clonal and non-clonal origin. The possibility that clonal somatic changes
might affect the GWAS analysis was considered. For example, recurrent somatic chromosomal
changes or small copy number variants at high levels of clonality would lead to systematic errors
in the assignment of constitutional genotypes in the affected regions. To exclude any spurious
association due to somatic changes in the clonal lineage, an analysis of aUPD and copy number was
performed on the discovery cohort, which showed that genomes of mastocytosis cases are
relatively simple with only 51 cases having somatic copy number changes or aUPD (Figure 2.11).
This is not unexpected since the size of the neoplastic clone in mastocytosis is often very small,
and expected to be well below the resolution of SNP arrays (Arock et al., 2015). Chromosome 4q
was the most frequent region of aUPD, although this was only present in 2.2% (9/414) of patients
(Figure 2.11). In addition, no recurrent copy number changes or regions of aUPD were seen at the

same location as the genome-wide significant SNPs identified in this study. The low incidence
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overall of recurrent aUPD and copy number changes suggests that they are unlikely to have
influenced the GWAS. Of interest, there was no evidence that genetic variation at KIT was
associated with KIT°®®V-positive mastocytosis, in contrast to MPN in which the somatic JAK2V®'7F

mutation is more likely to arise on certain JAK2 haplotypes (46 and 1) (Jones et al., 2009).

Lastly, the genotyping data were thoroughly quality-controlled and the QQ plots and their low
genomic inflation factors from the stage 1 analyses showed no evidence for systematic biases
between cases and controls such as recurrent somatic changes or population substructure (A <
1.02; Figure 2.7). Consequently, clonal somatic changes are unlikely to account for the significant

GWAS findings.

At stage 1 after the logistic regression analysis, 92 SNPs were selected for follow-up using the
clumping procedure (Table 2.2). A stage 2 analysis was performed on the discovery cohort
comprising of 666 cases and 8456 controls. Following the meta-analysis of five mastocytosis
KITP818V_positive cohorts from stage 1 and stage 2, three SNPs with genome-wide significance

were identified (rs4616402, rs4662380 and rs13077541).

rs4616402 (P-value = 1.37x10%) was the most significant marker, associated with a 1.52-fold
increased risk of development of KIT?!®V-positive mastocytosis. This singleton SNP at 19q13 was
tested in all 5 populations (Figure 2.12). It is located 36.8 kb downstream of solute carrier family 7
member 10 (SLC7A10) and 37.3 kb upstream of CCAAT enhancer binding protein alpha (CEBPA)
(Figure 3.1 A). CEBPA is a single exon gene that encodes a leucine zipper transcription factor
(C/EBPa) that binds CCAAT motifs in the promoter region of target genes
(www.ncbi.nlm.nih.gove/gene). It is expressed in myeloid progenitor cells and involved in the
proliferation arrest and differentiation of several types of cell lines including the myeloid lineage
(Boyd and Arber, 2011). Several studies have defined a critical role for C/EBPa in myeloid
development as well as malignant transformation of myeloid cells (Avellino and Delwel, 2017).
CEBPA mutations have been shown to play an important role in inhibition of the wild-type C/EBPa
tumour suppressor protein. About 13% of adults and 20% of children affected with AML harbour
mutations in the CEBPA gene, usually in cases with a normal karyotype (Naeim et al., 2018). Cases
with biallelic CEBPA mutations have a favourable outcome and, therefore, CEBPA testing is

recommended in AML patients with normal karyotype (Griffith et al., 2017). Familial AML with
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germline CEBPA mutations have been identified and are characterised by an autosomal dominant
inheritance and 10-year-survival rate of 67% (Geyer, 2019). Interestingly, CEBPA was also a target
of somatic mutations in an adult patient diagnosed with SM with associated CH non-mast cell
lineage disease (SM-AHNMD) (Jayakumar and Xie, 2018) suggesting that CEBPA mutations might
co-operate with KIT?! in disease progression. Of interest, two other deregulated tyrosine
kinases in haematological malignancies are known to interact with CEBPA or C/EBPa: the BCR-
ABL1 fusion protein downregulates CEBPA by a post-transcriptional mechanism (Perrotti et al.,
2002) and oncogenic FLT3 mutants disrupt C/EBPa function by ERK1/2-mediated phosphorylation
(Radomska et al., 2006). CEBPA is thus a strong candidate gene associated with the signal at
rs4616402. The right gene SLC7A10 flanking rs4616402 is a protein-coding gene and to date has

not been related to myeloid malignancies or relevant biological process.

The second most significant SNP, rs4662380, is located at chromosome 222 within LINC01412
and 109 kb upstream of testis expressed 41 (TEX41). Both of these genes are long non-coding
RNAs (IncRNA) of unknown function, but due to the possibility of long-range interactions between
GWAS signals and target genes it is unclear if either is directly relevant to SM. The competing
endogenous RNA (ceRNA) hypothesis was outlined in 2011 to explain how a large proportion of
RNAs from the transcriptome (protein coding genes, pseudogenes and IncRNAs) can communicate
with each other via microRNAs, which may be considered as letters of a new RNA language (Qi et
al., 2015; Salmena et al., 2011). IncRNAs are known to play an important role in cancer
progression by modulating the expression of miRNAs or target proteins (Rathinasamy and
Velmurugan, 2018) and additional studies have revealed their important role in proliferation,
apoptosis and differentiation of leukaemia cells (Liu et al., 2019). Notably, a study conducted to
investigate the role of COMMDG6 in tumourigenesis and malignant progression led to the proposal
of ceRNAs networks on the basis of differentially expressed transcriptome from the cancer
genome atlas database. In addition, a TEX41-miR-340-COMMD6 ceRNA network in head and neck
squamous cell carcinoma (HNSC) identified a potential tumour-promoting role for TEX41 and
COMMDS6 (Yang et al., 2019). The same role for TEX41 in promoting tumour progression was also
identified in cervical cancer (Li et al., 2018), confirming it as a potential gene involved in molecular

mechanisms in several human tumours.

Zinc finger enhancer-box (E-box) homeobox 2 (ZEB2) and ZEB2 antisense RNA 1 (ZEB2-AS1) are
other genes near rs4662380. ZEB2 is a gene encoding for a transcription factor with a zinc finger
motif of about 23 amino acids that binds E-box-like sequences (CANNTG, where N is not a specific

nucleotide) in the promoters of target genes (Strachan and Read, 2011). This protein is a complex
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transcription factor with several functional domains that can also interact with other proteins to
form a transcriptional complex that can activate or repress transcription of target genes (Remacle
et al., 1999). ZEB2 has been linked to both myeloid and lymphoid leukaemias (Bolouri et al., 2018;
Goossens et al., 2019) and plays a critical oncogenic role in the malignant transformation of
several tumours such as breast cancer (Duan et al., 2019) and glioblastoma (Safaee et al., 2021).
In a recent study of a subgroup of immature acute leukaemias, four types of translocation
involving BCL11B were identified with ZEB2-BCL11B being the only rearrangement producing a
fusion gene (Di Giacomo et al., 2021). Also, ZEB2-AS1 is another IncRNA that promotes the cell
proliferation and invasion of several types of cancers (Gao et al., 2018; Guo et al., 2018; Wu et al.,
2017; Xu et al., 2019; Zhang et al., 2019). The overexpression of ZEB2-AS1 was demonstrated to
be highly associated with poor clinical outcomes in patients affected with AML, particularly a
shorter overall survival rate (Shi et al., 2019). In addition, a recent study showed both in vitro and
in vivo using a mouse model, that cell proliferation was suppressed and apoptosis of AML cells
increased when silencing ZEB-AS1. They were able to identify a regulatory role for ZEB-AS1 in the
proliferation of AML cells through the ZEB2-AS1/miR-122-5p/PLK1 ceRNA network (Guan et al.,
2020; Salmena et al., 2011). Thus, there are a number of possible candidate functional

mechanisms to explain my GWAS findings at rs4662380 that merit further investigation.

The final significant SNP rs13077541 (P-value = 1.224 x 10®) is located on chromosome 3 (Figure
3.1 C). The association signal is located 10,692 bp downstream of transducin beta like 1 X-linked
receptor 1 (TBLIXR1) and 234 kb upstream of IncRNA 501 (LINCO0501). TBL1XR1 is a member of
the WD repeat-containing gene family and encodes a protein required for transcriptional
activation. It shares sequence similarity with TBL1X, a component of both histone deacetylase 3
and nuclear receptor corepressor complexes that are required for transcriptional activation by a
variety of transcription factors. TBL1XR1 is also involved in rare translocation events such as the
TBLIXR1-PIK3CA fusion in breast cancer and prostate cancer where the TBL1XR1 sequence
contributes only the 5’ untranslated region, which drives the overexpression of its partner
(Stransky et al., 2014). A TBL1XR1-PDGFRB fusion was also identified in association with myeloid
malignancies and marked eosinophilia. The pathogenic fusion results in an in-frame
rearrangement containing the tyrosine kinase domain of PDGFRB and the N-terminal of TBL1XR1,
which promotes protein dimerisation (Campregher et al., 2017). Interestingly, several other
fusions involving the receptor tyrosine kinase PDGFRB have been found in association with MPN,
including another WD repeat family member, suggesting a strong association between these gene

fusions and myeloid cancers (Hidalgo-Curtis et al., 2010).
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GWAS have been very successful in identifying genome-wide significant associations (Tam et al.,
2019). Up to January 2019 3,730 GWAS have been published and have successfully identified risk
loci for several traits including rare diseases and cancer (Chio et al., 2009; Ferrari et al., 2014;
Kouri et al., 2015; Mobuchon et al., 2017). However, GWAS often require large sample sizes and it
can be difficult to acquire sufficient numbers of cases when dealing with rare diseases such as SM
(estimated prevalence only 1-9/100,000). In fact, only relatively small case cohorts were available
for the study and thus the power to detect SNPs with small effect sizes (OR<1.82) was limited
(Figure 2.14). In this study controls are unselected, meaning that they are randomly selected from
the population, and they have not been screened for disease. In this case, the power calculation
will assume that a proportion of controls in relation to the disease prevalence will develop the
disease, so the statistical power will be reduced. The higher the disease prevalence, the lower will
be the power of detecting genetic effect. However, we are investigating a rare disease and this
reduction in power is expected to be very limited since there is an increase in power in relation to
the prevalence of the disease when using unselected controls. In my study, cases from multiple
populations were used to accrue a sufficient sample size. However, the presence of multiple
populations could also introduce some limitations such as reducing the genetic similarities
between individuals and therefore introducing genetic heterogeneity. To minimise heterogeneity,
we only selected KIT?®%V-positive cases both in stage 1 and stage 2 of this study and performed
case—control comparisons in separate populations followed by meta-analysis. Another limitation
of the study is the use of many control cohorts that had been genotyped by different facilities
using different genotyping arrays. Strand inconsistency, and different locations and SNP names
are some of the issues that can make the analysis very challenging if additional QC checkpoints
are not addressed before the data are merged. The use of independent cohorts coming from 5
different populations could potentially make the replication of the selected SNPs more difficult.
However, all the cohorts chosen for this study belong to the Caucasian population, therefore they
are not dramatically different. According to previously published GWAS findings, it was expected
that a reasonable percentage (1-3%) of the selected SNPs should replicate with adjusted P-value
<0.05 (accounting for the number of SNPs tested at stage 2). In my study, three genome-wide
significant SNPs from the 75 that were successfully genotyped at stage 2 were tested in all five
populations and significant in 2/3 of the replication cohorts (Figure 2.12), providing compelling

evidence for real effects.

Variants passing the threshold of genome-wide significance (P-value < 5 x 10°) were investigated

further to assess their association with mastocytosis. In the following chapter, in silico functional
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follow-up such as expression quantitative trait loci (eQTL) will be presented and discussed. This
analysis is very important for identifying potential target genes and investigating the effect of
genotype on gene expression levels that are likely to affect the disease phenotype (Nica and

Dermitzakis, 2013; Spain and Barrett, 2015).

To conclude, this chapter describes the background of the two-stage GWAS of mastocytosis, as
well as the methods, results obtained from the stage 1 and stage 2 analysis, and a discussion of
the limitations of the study. Consideration of the three signals has identified three strong
candidate genes, CEBPA, TEX41 and ZEB2, plus other genes of potential interest. Translating the
new findings into causal variants and providing proof for target genes is the most challenging step
in a GWAS, especially for those SNPs in intronic or intergenic regions of the genome with
unknown function. For the SM-GWAS, additional analysis in other independent cohorts will help
to confirm these findings, and detailed functional and genetic studies will be needed to provide
insights into their biological significance, to localise candidate causal variants and to analyse

gene—gene or protein—protein interactions.
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Chapter 3 Post-GWAS analysis

3.1 Introduction

Genome-wide association studies have been very successful in identifying thousands of unique
common variants that influence individuals’ predisposition to complex traits (Buniello et al.,
2019). In most instances, understanding the underlying mechanism by which these variants
impact the associated phenotype is still limited, because most of these variants are located in
non-coding regions of the genome and are more likely to have regulatory functions rather than
disrupting the reading frame for a protein. Although the variant-to-function translation remains
challenging, many research groups have made further steps in identifying key genes in biological
processes, diseases underlying causal variants, and biological pathways associated with altering
the risk of developing the respective disease (Gallagher and Chen-Plotkin, 2018). The
identification of target genes represents the first step in tackling the link between a genetic

association and the biological function.

For example, the first GWAS looking at the association between blood disorders (B-thalassemia
and sickle cell disease) and fetal haemoglobin (Hbf), (tetramer of two adult a-globin and two fetal
v-globin subunits; after birth two B-globins will replace the fetal ones), identified a strong
association (rs11886868) with the BCL11A gene on chromosome 2 in disparate population studies
(Lettre et al., 2008; Uda et al., 2008). B-thalassemia samples with mild phenotype and carrying the
risk allele were found to have elevated Hbf levels compared with those with a severe form of the
disease (Uda et al., 2008). Follow-up studies examining the role of BCL11A in modulating Hbf
levels found that this gene serves as a key regulator of haemoglobin production. By examining the
expression of BCL11A in adult erythroid cells, they saw that cells carrying two risk alleles
(associated with high Hbf) showed a reduced expression of this gene compared to those
homozygous for the non-risk allele (low Hbf). Knockdown of BCL11A in differentiated erythroid
precursors showed an increase in y-globin levels showing a clear molecular function of BCL11A in
silencing the y-globin genes (Sankaran et al., 2008). This information has provided biological
insights for better understanding of haematopoiesis and has led to the identification of two major
transcriptional repressors, BCL11A and ZBTB7A, regulating y-globin genes and haemoglobin
switching (Martyn et al., 2018; Sankaran et al., 2009). Decades of research have ultimately led to
ongoing clinical trials to suppress BCL11A and reactivate the developmentally silenced y-globin
genes to increase the amount of Hbf in patients affected with sickle cell disease (e.g.

ClinicalTrials.gov Identifier: NCT03282656).
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Following the identification of a large spectrum of variants associated with MPN (Bao et al., 2020;
Bick et al., 2020; Hinds et al., 2016; Jones et al., 2009; Kilpivaara et al., 2009; Olcaydu et al., 2009;
Tapper et al., 2015), potential target genes were also identified using a variety of approaches such
as genetic fine-mapping and targeted variant-to-function assay (Bao et al., 2020; Ulirsch et al.,
2019). Functional investigation of CHEK2, for example, showed that loss-of-function variants
within this gene are associated with increased risk of CH. In addition, researchers proved the
involvement of CHEK2 in stem cell expansion, as they showed that suppression of this gene

allowed increased expansion of human haematopoietic progenitor cells (Bao et al., 2020).

An important step for understanding the role played by the identified loci is also the identification
of the key cellular type and tissue for mediating disease risk (Cano-Gamez and Trynka, 2020;
Nandakumar et al., 2020). For instance, following the identification of over 400 independent risk
factors associated with type 2 diabetes (T2D), the Human Islet Biobank was established as part of
a collaborative effort (Fuchsberger et al., 2016; Thurner et al., 2018). This allowed a detailed
characterisation of the tissue to be performed and consequent understanding of the human
pancreatic islets and regulatory mechanisms using different omics data (van de Bunt et al., 2015;
Gaulton et al., 2010; Vifiuela et al., 2020). To facilitate identification of the most specific tissue for
each identified association, a tool named TACTICAL (Tissue of ACTion scores for Investigating
Complex trait-Associated Loci) has recently been developed to obtain what are called tissue of
action (TOA) scores and select key tissues in the pathogenesis of complex phenotypes (Torres et

al., 2020).

The GWAS described in Chapter 2 has led to the identification of three genome-wide significant
SNPs associated with increased risk of developing KIT?!®V-positive mastocytosis. The aim of the
post-analytical interrogation was to take advantage of this variation to better understand
mastocytosis. The majority of variants reported by GWAS are in noncoding regions of the
genome; these lead variants may not be causal but might be in high LD (r>>0.8) with the casual
variant. This chapter will describe the in silico approaches that were used to explore the
relationship between the regions containing genome-wide significant SNPs and mastocytosis, and
to nominate a number of target genes that are potentially impacting key mechanisms in patients
(Boyle et al., 2012; Ward and Kellis, 2016; Watanabe et al., 2017). Additionally, this chapter
describes a gene-based analysis of the stage 1 data which used multiple SNPs to generate P-values

for individual genes.
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3.2 Materials and Methods

3.2.1 Post-analytical interrogation of SNPs

3.2.11 Functional annotation using HaploReg

SNPs in LD are inherited together in the population and can be used to define causal regions. The
genome-wide significant associations were therefore investigated to see if SNPs in LD are also
associated with mastocytosis. Lead SNPs and variants in high LD (r? >0.8) with the lead SNPs were
identified and annotated to determine their biological relevance using HaploReg (version 4.1)
(Ward and Kellis, 2016). This tool integrates a range of databases (e.g. ENCODE Project, Roadmap
Epigenomics Project, dbSNP, EBI-NHGRI GWAS Catalog) and uses data from the 1000 Genomes
Project Phase 1 release to calculate LD for four ancestral populations, including Europeans
(Altshuler et al., 2012; Buniello et al., 2019; Kheradpour and Kellis, 2014; Kundaje et al., 2015;
Sherry, 2001). The SNPs were listed and annotated with respect to genomic features, such as
mammalian evolutionary sequence conservation elements, using SiPhy and GERP statistics and
epigenomic features. These are described in the following paragraph (Davydov et al., 2010;
Lindblad-Toh et al., 2011). HaploReg v4.1 is updated to November 2015, and annotations with
respect to previously identified GWAS associations are only available up to this date (Ward and
Kellis, 2016). Many other SNPs associated with various blood traits and MPN have been identified
in more recent studies (Bao et al., 2020; Bick et al., 2020), Therefore, for a more accurate
annotation, the EBI-NHGRI GWAS Catalog was also explored using FUMA GWAS (Watanabe et al.,
2017).

3.2.1.2 HaploReg approach for epigenomic annotation

The DNA inside the nucleus is associated with proteins to form chromatin, a complex, dynamic
molecular structure (Van Steensel, 2011). When scientists first started to look at these structures,
microscopic analysis revealed only two chromatin states (Baker, 2011). Heterochromatin or
‘closed’ chromatin is a highly condensed state, within which genes are not accessible to the
transcriptional machinery. On the other end, chromatin can have an extended state known as
euchromatin or ‘open’ chromatin, which enables active transcription (Strachan and Read, 2011).
Following the application of computational analyses, researchers used a set of five histone
modification marks (Table 3.1) and recurrent ones have been grouped into several different
conformations or chromatin states that have mapped several regulatory elements as the critical
elements in gene expression (Baker, 2011). To interpret GWAS results and to investigate whether
the SNPs identified in this study are in regulatory elements of the genome, the 15-state chromatin

model was used in this study, which is based on a multivariate hidden Markov model and captures
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all the key interaction that occur between the chromatin marks (Ernst and Kellis, 2017; Ward and

Kellis, 2016).
Table 3.1  Histone modification marks.
Marks Abbreviation Function
Histone H3 lysine 4 trimethylation H3K4me3 Associated with promoter regions
Histone H3 lysine 4 monomethylation H3K4mel Associated with enhancer regions
Histone H3 lysine 36 trimethylation H3K36me3 Associated with transcribed regions
Histone H3 lysine 27 trimethylation H3K27me3 Associated with Polycomb repression
(gene silencing)
Histone H3 lysine 9 trimethylation H3K9me3 Associated with heterochromatin regions
(gene silencing)

H3K4me3 and H3K4me1l (Heintzman et al., 2007; Igolkina et al., 2019); H3K36me3 and H3K27me3 (Bonasio
et al., 2010; Li et al., 2007); H3K9me3 (Li et al., 2007; Peters et al., 2003).

The 15-state model consists of 8 active states associated with gene transcription (states 1-8 in

Table 3.2) and 7 repressed states (states 9—15 in Table 3.2) that take into account DNA

methylation, transcription factors binding, evolutionary conservation and DNA accessibility

(Kundaje et al., 2015).

Table 3.2 15 Chromatin states.
State No Chromatin state Abbreviation

1 | Active transcription start site (TSS) TssA
2 | Flanking active TSS TssAFInk
3 | Transcription at gene 5’ and 3’ TxFInk
4 | Strong transcription TX
5 | Weak transcription TxWk
6 | Genic enhancers EnhG
7 | Enhancers Enh
8 | Zinc finger protein genes and repeats ZNF/Rpts
9 | Heterochromatin Het

10 | Bivalent/poised TSS TssBiv

11 | Flanking bivalent TSS/Enhancers BivFInk

12 | Bivalent enhancer EnhBiv

13 | Repressed Polycomb ReprPC

14 | Weak repressed Polycomb ReprPCWk

15 | Quiescent/low Quies

The 15 different states are available for 147 cell or tissue types on the basis of the epigenomic

information generated from the 111 reference human epigenomes of the NIH Roadmap
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Epigenomics Consortium and the 16 additional epigenomes from the Encyclopedia of DNA
Elements (ENCODE) (Dunham et al., 2012; Javierre et al., 2016; Kundaje et al., 2015; Ward and
Kellis, 2016). For the post-GWAS analysis, chromatin accessibility was interrogated in two cell
lines relevant to mastocytosis, the blood cell lines E035 (primary haematopoietic stem cell) and
E123 (K562 chronic myeloid leukaemia cell line), using the HaploReg tool (version 4.1) (Figure 3.1)
(Ward and Kellis, 2016).

3.2.13 RegulomeDB for interpretation of regulatory variants

Most GWAS associations are located in non-coding regions of the genome and are more likely to
have regulatory functions (Gallagher and Chen-Plotkin, 2018). RegulomeDB was used to interpret
the functional effect that variants mapping to regulatory regions may have on protein binding
(Boyle et al., 2012). RegulomeDB is a database that combines 962 experimental datasets from
several sources including ENCODE and across more than 100 tissues and cell lines. Briefly,
ENCODE transcription factors (TF) for chromatin Immunoprecipitation sequencing (ChIP-seq) and
the modified version ChIP-exo, histone ChIP-seq, formaldehyde-assisted isolation of regulatory
elements (FAIRE), DNase | hypersensitive site data and a collection of eQTL and dsQTL data were
all included. These data are integrated together into a tool that assigns a RegulomeDB score to
each variant in order to estimate their potential regulatory effect and identify functional variants.
According to this heuristic scoring system (Table 3.3) the lower scores represent higher
confidence for a variant to be located in a region of the genome with functional relevance.
Variants with lower scores show increased confidence for their functional relevance. Variants
scoring 1 have been associated with expression of target genes and are likely to affect binding;
variants scoring 2 are likely to affect binding; variants scoring 3 are less likely to affect binding;

variants scoring 4, 5 and 6 have minimal binding evidence.

Table 3.3  RegulomeDB scoring system.

Category Subcategory Description of the score
1 A eQTL + TF binding + matched TF motif + matched DNase footprint +
DNase peak
B eQTL + TF binding + any motif + DNase footprint + DNase peak
C eQTL + TF binding + matched TF motif + DNase peak
D eQTL + TF binding + any motif + DNase peak
E eQTL + TF binding + matched TF motif
F eQTL + TF binding/DNase peak
2 A TF binding + matched TF motif + matched DNase footprint + DNase peak
B TF binding + any motif + DNase footprint + DNase peak
C TF binding + matched TF motif + DNase peak
3 A TF binding + any motif + DNase peak
B TF binding + matched TF motif
4 NA TF binding + DNase peak
5 NA TF binding or DNase peak
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Category Subcategory Description of the score

6 NA Motif hit

eQTL: expression quantitative trait loci; TF: transcription factor; DNase: enzyme deoxyribonuclease.
Adapted from Boyle et al., 2012.

3.214 Long non-coding RNA investigation

Long noncoding RNA (IncRNA) are known to promote the proliferation of several types of cancer
(Huarte, 2015). This large class contains non-coding RNA genes longer than 200 nucleotides that
have known regulatory functions, and studies have suggested that they can regulate expression of
nearby genes (Marchese et al., 2017). For instance, the overexpression of ZEB2-AS1 is associated
with poor clinical outcomes in patients affected with lung cancer, AML and breast cancer
(Gourvest et al., 2019; Guo et al., 2018; Zhang et al., 2019). To annotate and investigate causally
relevant IncRNAs, the fifth release of LNCipedia (Volders et al., 2019) and version 1 of the Cancer
LncRNA Census (CLC) (Carlevaro-Fita et al., 2020) were used. LncRNAs located in proximity to our
genome-wide significant SNPs were queried by their names using the publicly available LNCipedia
resource built with a web-interface and containing 21,488 unique transcripts. In contrast to the
other databases, the CLC has the advantage of including only high confidence genes that have

strong genetic and functional causal roles in cancer.

3.2.1.5 Pleiotropy/GWAS catalog

Pleiotropy is association between the same variants with multiple traits (Gratten and Visscher,
2016; Solovieff et al., 2013). Genomic research has shown that this phenomenon is common for
many complex traits, including cancer (Wu et al., 2018). The NHGRI-EBI GWAS Catalog was used
to examine whether the annotated lead variants or their proxies also influence blood counts or
apparently unrelated phenotypic traits. The GWAS Catalog, a publicly available resource of SNP-
trait association and summary statistics from early July 2019 contains more than 150,000 unique

SNP associations for 17 trait categories and over 4,000 publications (Buniello et al., 2019).

3.2.1.6 Quantitative trait locus analysis (QTL)

To test for association between genetic variation and transcript level of a gene, expression
quantitative trait loci (eQTL) analysis of the lead SNPs and their proxies (r? >0.8) was performed in

blood using GTEx v8 and QTLbase (Carithers and Moore, 2015; Zheng et al., 2020).
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To gain further functional insights, methylation quantitative trait loci (mQTL) analysis was
performed with QTLbase to study the association between the annotated SNPs and epigenetic
regulation in non-diseased human whole blood (Zheng et al., 2020). Most of the QTL results that
are displayed in QTLbase come from studies conducted within European populations, however in
some instances results derive from groups of combined ethnicity, which are indicated as mixed
populations (Zheng et al., 2020). The results from the eQTL contain important statistical values,
including P-value, effect size and tested allele. If the tested allele is not specified, as in GTEx, the
result reported refers to the expression of the alternative or minor allele compared with the
reference. The effect size is normalised according to the statistical method applied, beta in GTEX
and normalised effect size (NES) in QTLbase, where magnitude has no direct biological
interpretation. Negative NES/beta indicates that the tested allele is associated with a reduction in

gene expression, whereas a positive NES/beta indicates increased gene expression.

3.2.1.7 CADD score

Combined annotation-dependent depletion (CADD) is a score used to estimate deleteriousness of
SNVs and indels in any location of the human genome. This is a machine learning method freely
available to give an estimate of pathogenicity. CADD scores were used because they were shown
to have greater predictive accuracy (AUC) when compared with other metrics used for prediction
of pathogenic mutations that are reported in the ClinVar database (Landrum et al., 2020). The
CADD score takes into account many different features such as sequence conservation across
species, structural and biochemical features of the protein (Kircher et al., 2014). The higher the
score, the more deleterious the predicted consequences of the SNP is, and 12.37 represents the
suggestive threshold for estimating whether a SNP should be considered deleterious or not
(Kircher et al., 2014). The score for the lead SNPs and their proxies was generated using the most

recent version v1.4 for the human genome build GRCh37 (https://cadd.gs.washington.edu).

3.2.2 Data analysis

3.2.21 Description of clinical features in the Spanish and Italian cohort

Diagnostic and phenotype variables at initial diagnosis (advanced disease = ASM, SM-AHN, MCL;
non-advanced disease = all other subtypes, Table 2.1), the presence or absence of skin lesions
(yes/no), sex, BST (ng/mL) and age were available for the majority of the Spanish (n=369) and
Italian (n=81) cohorts, but not other cohorts. Bone marrow involvement and D816V mutation

burden were only available for some of the Spanish cases.
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3.2.2.2 Association with clinical features

Statistical analysis was performed on a cohort of 450 individuals (n=81 from Italy, n=369 from
Spain) after removing those individuals with more than 10% missing genotypes (n=31). Three
categorical variables (initial diagnosis, skin lesions and sex) were tested for association with allelic
counts of the three significant SNPs using Fisher’s exact test. A fixed-effect inverse variance-
weighted meta-analysis was used to combine evidence from the two cohorts. Normal distribution
of continuous variables (tryptase, age and D816V mutation burden) was checked using
Kolmogorov-Smirnov and tryptase levels were normalised using quantile transformation.
Following normalisation, continuous variables were tested using linear regression following
Kolmogorov-Smirnov checks for normal distribution and normalisation of tryptase levels using

quantile transformation.

3.2.2.3 Gene-based test

Gene-based analysis as well as the single-marker association test represent valuable approaches
when investigating complex traits. The gene-based approach allows the joint effect of weakly-
associated markers seen by single-SNP analysis to be considered collectively (de Leeuw et al.,
2015). The summary statistics from the stage 1 meta-analysis (Ncases=414; Ncontrots=9,504;) were
used as input in FUMA to perform a gene-based analysis of association with SM which uses
MAGMA (version 1.08) to apply multiple linear regression and obtain gene-based P-values. For
the gene-based test, the P-value is computed for each gene using all the SNPs located within
genes and including SNPs in a 10kb window in both directions around genes. MAGMA takes into
account gene size, number of SNPs in a gene, and from the reference data with similar ancestry,
corrects for LD between markers. The 1000 genomes phase 3 data of European ancestry was used
as the reference to account for LD between SNPs (Altshuler et al., 2010a). The default settings in
FUMA were used to determine the number of independent loci from the meta-analysis
(Watanabe et al., 2017). The sample size was specified for each SNP as n=9,918 if the SNP was
tested in both populations, n=4,468 if the SNP was only tested in the German population or
n=5,450 if the SNP was tested in the UK population only. This analysis maps all the input SNPs
against all the protein coding genes across the genome, and to identify significant genes, a

Bonferroni-adjusted P-value was used to correct for multiple testing.
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3.3 Results

3.3.1 Functional annotation and candidate gene mapping

The functional relevance of the three regions associated with mastocytosis were explored using
RegulomeDB and HaploReg to see if the risk SNP or their proxies (r* >0.8) were located in regions
that might have regulatory functions based on alteration of transcription factor (TF) binding
motifs, chromatin modification or DNA methylation profiles (Appendix Table A.8). Additional
functional insights were gained by performing eQTL and mQTL analysis on the lead SNP and
proxies using GTEx v8 and QTLbase (Carithers and Moore, 2015; Zheng et al., 2020). Lastly, SNPs
were imputed and the stage 1 meta-analysis was repeated to fine map around the lead SNPs and

generate association results for SNPs in high LD which had not been directly genotyped.

The most significant SNP, rs4616402, is located in an intergenic region at chromosome 19q13.11
between SLC7A10 (36.8Kb downstream), a solute carrier gene, and CEBPA (37.2kb downstream), a
gene encoding a transcription factor that co-ordinates differentiation and proliferation of myeloid
progenitor cells (Figure 3.1A). QTLbase analysis showed that that rs4616402 is strongly associated
with CEBPA expression in blood cells in three independent eQTL studies (Peqri=2.30x10"%; Peqr=
2.96x10%; Peqri= 9.20x10°) (Lloyd-Jones et al., 2017; Vdsa et al., 2018a; Westra et al., 2013). No
additional SNPs were identified in high LD with rs4616402, but the RegulomeDB score for this SNP
was 4, suggesting the possibility that it might have functional consequences. Specifically, the risk
allele is predicted to alter three TF binding motifs (Arnt_1, Gm397 and Hmx_1, Appendix Table
A.8). The chromatin structure surrounding rs4616402 shows an enrichment of H3K4me1l in
primary haematopoietic stem cells, a histone mark (7_Enh) that is often associated with primed
enhancers (Yao et al., 2020). No association between rs4616402 and expression of SLC7A10 was
found and there is no published evidence to suggest that SLC7A10 has a role in the development

or pathogenesis of cancer, including leukaemia.

The second most significant SNP, rs4662380, is located in the first intron of LINC01412, a lincRNA
gene (Figure 3.1B) at chromosome 2g22.3. This SNP increases the risk of developing mastocytosis
by 1.46. Twelve other SNPs in LINC01412 were found to be in strong LD (r>>0.8) with rs4662380
and were thus considered as proxies. Three of these are located in candidate enhancers (7_Enh:
rs13413446, rs6722387, rs16823865) in primary haematopoietic stem cells and one (rs16823855)
is located in the flanking region of an active transcription start site (2_TssAFInk) in K562 cells

(Table 3.3). The RegulomeDB scores suggest that two proxies affect binding of TFs; rs4662227
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(score=2c) and rs13413446 (score=3a). The remaining proxy SNPs only had weak or no evidence
for functional consequences. However, the GWAS catalog (Buniello et al., 2019) indicates that one
of the proxies, rs16823866, has been strongly associated with white blood cell counts in two
previous studies (P=4x10"® and P=6x10"!) (Astle et al., 2016; Chen et al., 2020; Kanai et al., 2018).
Lastly, QTLbase analysis indicated that the lead SNP rs4662380 (P.qr=2.55%10*!) and four proxies
including rs16823866 (P.qn=2.55%10!!) were strongly associated with expression of a closely

located gene, TEX41, in neutrophils (Chen et al., 2016).

The third SNP, rs13077541, is located at chromosome 3¢26.32 in an intergenic region between
transducin beta like 1 X-linked receptor 1 (TBL1XR1, 10.6kb upstream) and another IncRNA gene
(LINC0O0501, 86.5kb upstream) (Figure 3.1C). This SNP is associated with a 1.33-fold increase in the
risk of developing mastocytosis. Fifty-three additional proxy SNPs were identified to be in strong
LD (r’>>0.8) with rs13077541, a number that includes 27 TBL1XR1 intronic SNPs (Appendix Table
A.8). Eleven of these proxies are located in active region of chromatin, including three in
transcription start sites (1_TssA: rs34302523, rs12493005, rs12486557) and two in the 5’
transcribed region (3_TxFInk: rs34311793, rs35072945) in K562 cells. The RegulomeDB scores
identified five proxies that are likely to affect TF binding (score2a-c: rs7616138, rs1920131,
rs6790639, rs34302523 and rs6772872). Of these 5 SNPs, rs6790639 is particularly interesting, as
the PU.1 TF, encoded by the Spi-1 proto-oncogene (SPI1), has been shown to bind to this region in
K562 cells using chromatin immunoprecipitation analysis (Dunham et al., 2012). PU.1, together
with other TFs, in known to regulate the expression of genes that are critical to myelopoiesis (Van
Riel and Rosenbauer, 2014). Using QTLbase, the lead SNP (P.qr=5.70x10®) and one of the proxies,
rs16823866 (P.qri=9.52x107°), were found to be strongly associated with TBLIXR1 expression in
CD4+ naive T cells (Chen et al., 2016). In addition, there is evidence for the lead SNP being an
mMQTL, supported by results from a study conducted on five independent European populations
(Gaunt et al., 2016a), showing that rs13077541 is associated (p<1.03x10%) with a specific CpG
site (cg001132484, chr3:176916496, rs1025797382) in blood (Appendix Table A.10). cg001132484
is located at the TBL1XR1 promoter, 2KB upstream TBL1XR1 and according to K562 methylation
450K Bead Array data from the ENCODE project, this is a partially methylated (200 < methylation
score < 600) CpG site (UCSC). LINC0O0501 has not been functionally described on LNCipedia

database or CLC.
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A SNP, rs58124832, yielding a suggestive association with mastocytosis was also investigated and
the eQTL analysis indicated it to be strongly associated with the expression of both TPSABI
(Peqri<1.9x1078) and TPSB2 (tryptase-B2; Peqri=1.96x107°) in blood (Lloyd-Jones et al., 2017; V&sa
et al., 2018b).

3.3.2 Association with clinical features

To determine whether the three significant SNPs associated with mastocytosis are also associated
with particular clinical features, Fisher's exact tests and linear regression were used to correlate
allelic counts with clinical phenotypes in the Spanish and Italian cohorts (Table 3.4). These were the
only cases with available clinical information. A significant association was found between
rs4616402 and age at presentation (n=422; P=0.009; beta=4.41) in patients with non-advanced
disease (Table 2.1) that remained significant after correction for multiple testing. No association
with age was seen in the much smaller group of cases (n=26) with advanced disease, and it is
important to note that this a subgroup for which additional mutations may be a confounding factor.
In cases with non-advanced disease, the age of onset was estimated to increase by 4.41 years per
risk allele. No associations were found by comparing allelic counts with gender, skin lesions,

baseline tryptase levels, or disease phenotype.
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Figure 3.1

94

Regional plots of the imputed stage 1 meta-analysis for SNPs reaching genome-wide significance in the final meta-analysis.

Results from stage 1 meta-analysis using imputed SNPs in regions surrounding three lead SNPs (A, rs4616402; B, rs4662380 and C, rs13077541). In each plot, the lead SNP is
indicated by a purple circle and the colours of other SNPs represent the strength of LD strength (r?) with the lead SNP as indicated by the key. Protein coding genes and RNA
genes are shown in the lower track with arrows to indicate the direction of transcription, and thick lines represent the location of exons. The lower part of the panel shows

the 15 state chromatin track (chromHMM) in primary haematopoietic stem cells (E035) and K562 cells using data from the NIH Roadmap Epigenomics Consortium (Kundaje
et al., 2015). Physical positions relate to build 37 (hg19) of the human genome. At the bottom right of the figure the colour of each candidate-state is indicated, followed by

a chromatin state description.
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Table 3.4  Association between the most significant SNPs and clinical phenotypes in the Spanish and Italian cohorts.
rs4662380 rs13077541 rs4616402

Phenotype No Cases P value Effect size (Cl) P value Effect size (Cl) P value Effect size (Cl)
Initial diagnosis (indolent/advanced) 422/26 0.175 0.58 (0.26-1.27) 0.646 0.88 (0.50-1.54) 0.238 0.60 (0.25-1.40)
Sex (F/M) 235/214 0.266 1.18 (0.88-1.60) 0.384 1.12 (0.86-1.46) 0.904 1.03 (0.65-1.61)
Skin lesions (+/-) 275/122 0.638 1.08 (0.77-1.51) 0.151 0.81 (0.60-1.08) 0.406 1.23 (0.75-2.00)
Age at diagnosis 422 0.668 0.55 (-1.97-3.07) 0.625 0.67 (-2.02-3.35) 0.009 4.41 (1.09-7.73)
Tryptase 417 0.452 -0.08 (-0.29-0.13) 0.136 -0.17 (-0.39-0.05) 0.249 0.17 (-0.12-0.45)
KITP818V Mutation burden 109 0.946 -0.16 (-4.96-4.63) 0.163 3.43 (-1.41-8.28) 0.648 -1.47 (-7.88-4.93)

Categorical phenotypes: Initial diagnosis (422 indolent vs 26 advanced mastocytosis cases), sex (235 female vs 214 male cases) and skin lesions (275 cases with skin phenotype vs 122
cases without skin phenotype); P value, fixed effects meta-analysis of Italian and Spanish Fisher’s exact test; effect size, odds ratio; Cl, 95% confidence interval. Continuous phenotypes:
Age at diagnosis, tryptase levels and mutation burden tested in cases with non-advanced phenotype; P value, linear regression; effect size, regression coefficient beta; Cl, 95% confidence

interval.
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3.3.3 Gene-based test

The gene-based analysis identified the vascular endothelial-derived growth factor C (VEGFC) gene
as significantly (P-value=2.34 x 10°®) associated with mastocytosis (Figure 3.2). A further 8 genes
were found with P-value < 0.001, with the most significant one being TPSAB1. In Table 3.5 the
results are shown for the 20 most significant genes. Input SNPs were mapped to 19,540 protein
coding genes. The Bonferroni adjusted P-value of 2.559 x 10°® was used after correcting for
multiple testing; i.e. only VEGFC was significant after the multiple testing correction. At stage 1,
the most significant SNP mapping to VEGFC is rs6820170 (P-value = 9.3x107, P-valuemeta= 1.69%x10"
4. Appendix Table A.6), which is located in an intronic region (Figure 3.3). This signal is supported
by 10 other SNPs in the clump (P <0.001). rs6820170 was tested at stage 2 but failed to replicate
in the Spanish (P-value=0.65), Danish (P-value=0.44) and Italian cohorts (P-value=0.15). The
second most significant SNP in the clump (P-value = 1.58x10°%), rs11131764, is intergenic and was
selected as a backup signal, however it failed genotyping at stage 2. Sixty three additional proxy
SNPs were in strong LD (r?>0.8) with rs6820170 (Appendix Table A.9). Of these, ten proxies had a
RegulomeDB score of 2b (rs4146612, rs13132761) and 3a (rs3822038, rs1692787, rs1471813,
rs1995083, rs2877967, rs7694268, rs2333530, rs3755972), suggesting that they could affect
protein binding (Table 3.3). The lead SNP is predicted to alter two TF binding motifs (Hbp1;
PRDM1_known1). The chromatin structure surrounding rs3755972, one of the SNPs in strong LD
(r=0.89), shows an enrichment of H3K4me3 in primary haematopoietic stem cells, a mark which
is often associated with promoter regions (Heintzman et al., 2007; Igolkina et al., 2019), and a
bivalent enhancer (Table 3.2) characterised by two histone marks that can be associated with
both activation or repression of transcriptional events, both of which are crucial during cell
differentiation (Blanco et al., 2020). One SNP rs13122901 is in strong LD (r?=0.91) with the lead
SNP, and in the stage 1 meta-analysis of the imputed data it surpassed the genome-wide
significance (P-value = 1.37 x 10'*?). QTLbase analysis showed that the lead SNP is strongly
associated with chr4:177628507-177628507 methylation in blood (P-valuemqr=3.1x10°) (McClay
et al., 2015). An association between rs6820170 and VEGFC expression is only detected in the
thyroid (GTEx2015_v6).
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Table 3.5 Results for gene-based association with mastocytosis.
CHR  START STOP NSNPS NPARAM N P GENE
4 177594689 177723881 15 3 8959 2.34x10° VEGFC
16 1280697 1302555 3 2 8101 0.00023405 TPSAB1
12 21907889 21938515 1 9918 0.0004032 KCNJ8
6 111398781 111562397 15 3 9555 0.00047077 SLC16A10
79798281 79870592 2 1 9918 0.00073203 PAQR3
5 179068298 179089445 1 4468 0.0007667 AC136604.1
19 4219495 4247528 4 1 9918 0.00084005 EBI3
19 35605417 35643355 12 3 9918 0.00094844 LGI4
5 133474633 133522729 5 3 8828 0.00097557 SKP1
20 5272317 5307378 20 4 9373 0.0010449 PROKR2
5 1307859 1355214 11 2 9016 0.0010621 CLPTMIL
23 135034229 135066222 6 1 9918 0.0011011 MMGT1
31689382 32129072 128 42 8613 0.0011201 0OSBPL10
140362953 140406061 2 9918 0.001205 ADCK2
111570551 111602370 2 9918 0.0012344 KIAA1919
182859000 182932660 2 7934 0.0013396 SHCBPI1L
11 93201638 93286674 28 8 7972 0.0016447 SMCO4
14 23379720 23408794 5 1 9918 0.0018362 PRMT5
19 45302328 45334673 8 4 9918 0.0019452 BCAM
14 23430383 23461851 4 2 9918 0.0020915 AJUBA

CHR: Chromosome; START/STOP: Gene boundaries annotated on build hg19; N SNPS: Number of SNPs

mapping the gene including SNPs that are in 10Kb window both directions; N PARAM: Number of relevant
parameters used in the model; N: Sample size used for analysing the gene; P: The gene P-value computed
using MAGMA; GENE: Gene name.
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Results of the gene-based associations of KIT?8%V-positive mastocytosis.

Manhattan plot showing results of the gene-based test as computed by MAGMA and based on the summary statistics of the stage 1 meta-analysis for all 24 chromosomes.
Genome-wide significance (red line in the plot) was defined at an adjusted P-value of 2.6 x 10°®. Results for 19,540 genes are plotted as -log10 of the meta-analysis P-values
on the y-axis against genomic location on the x-axis. VEGFC gene, highlighted by the green circle, was identified with genome-wide significance (P-value <2.6x10°%). As
shown in Table 3.5, a further 8 genes were identified with P-value <1x107 and the top genes per chromosome that exceed this threshold are labelled in black.
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Figure 3.3 Regional plot of the imputed stage 1 meta-analysis for VEGFC SNPs selected for

stage 2.

Results from stage 1 meta-analysis using imputed SNPs in regions surrounding the VEGFC
signals. The lead SNP (rs6820170) is identified by a red circle and the purple circle indicates
the backup SNP (rs13122901). The colours of other SNPs represent the strength of LD (r?) with
the lead SNP as indicated by the key. The most significant SNP is also labelled rs11131764 and
the colour shows that it is in strong LD (r2>0.8) with the index SNP. Protein coding genes and
non-coding genes are shown in the lower track with arrows to indicate the direction of
transcription, and thick lines represent the location of exons. The bottom of the panel shows
the 15 state chromatin track (chromHMM) in primary haematopoietic stem cells (E035) and
K562 cells using data from the NIH Roadmap Epigenomics Consortium (Kundaje et al., 2015).
Physical positions relate to build 37 (hg19) of the human genome. At the bottom left of the
figure the colour of each candidate state is indicated, followed by a chromatin state
description.
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3.4 Discussion

In theory, common inherited genetic variation might influence the development and diagnosis of
mastocytosis by a number of different mechanisms. First, genetic variation could promote or
favour the outgrowth of a KIT?®V-positive clone that arose by random mutation in a
haematopoietic stem cell (fertile ground hypothesis). Second, it might increase the probability of
a KIT?®1%V mutation arising in a stem cell, possibly as a consequence of a generally increased
mutation rate (hypermutability hypothesis). Third, it might promote or exacerbate the
development of clinical symptoms such as rash, itching or abnormal blood counts in a patient with
a KITP®%_positive clone, thereby increasing the chance that the patient might seek medical help

(phenotypic hypothesis). These potential mechanisms are considered below for each association.

Focusing on the three significant SNPs identified associated with mastocytosis, the strongest
association was found for rs4616402 at chromosome 19g13. Interestingly, this SNP was
associated with age at diagnosis for patients with non-advanced disease. rs4616402 is located in a
predicted enhancer, and the risk allele is associated with lower expression of CEBPA (Lloyd-Jones
et al., 2017), which is located 37.3kb upstream. Another SNP at 19913, rs78744187, has been
linked to basophil counts in a previous study and also been shown to affect the activity of another
CEBPA enhancer (Guo et al., 2017), but this variant is in weak LD (r?= 0.22) with rs4616402
(Arnold et al., 2015) and therefore cannot account for the association observed in this study. Of
potential relevance, high C/EBPa expression is known to inhibit the generation of mast cells from
mast/basophil common progenitors, while low C/EBPa expression inhibits the generation of
basophils (Bick et al., 2020). Although the consequence of different expression levels of C/EBPa in
the presence of KIT?®'®Y remains to be defined experimentally, it is plausible that reduced CEBPA
expression linked to the rs4616402 risk allele may be relevant to both the fertile ground and
phenotypic hypotheses defined above by promoting a cellular environment that favours mast cell
production. Low CEBPA expression is a common feature of AML, although the underlying
mechanism is unclear (Avellino and Delwel, 2017). Potentially, rs4616402 might be relevant to
this observation and it would be interesting to genotype this SNP in AML and relate the findings to
CEBPA expression. Overall, it is clear that detailed functional studies are required to understand

the relationship between KIT?®'®V-driven mastocytosis and CEBPA expression.

The second most significant SNP, rs4662380, at chromosome 2q22.3, is associated with elevated

expression of the nearby IncRNA TEX41. The role of TEX41 in promoting tumour progression has
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been described in other human cancers (Li et al., 2018; Yang et al., 2019) although the mechanism
is not understood. For the first time, we have associated TEX41 with myeloid cancer, however the

functional involvement of TEX41 in mastocytosis is not clear and needs to be investigated.

ZEB2 is another nearby gene but no association was found between rs4662380 and ZEB2
expression. It is important to note that mRNA expression does not always reflect protein
abundance. Identifying pQTLs also becomes necessary for understanding the direct effect of
genetic variants on protein abundance (Robins et al., 2021). In fact, Robins et al., after comparing
eQTLs and pQTLs in the brain, identified an overlap between pQTLs and eQTLs but not vice versa.
Interestingly, similar results were also reported in human blood, making this evidence more

generalisable to other tissues and cell types (Emilsson et al., 2018; Sun et al., 2018).

In another study, rs16823866, a SNP in LD with rs4662380 (r*= 0.99), was associated with
elevated white blood cells and specifically with elevated basophil counts in three independent
population-based studies (Astle et al., 2016; Kanai et al., 2018; Vuckovic et al., 2020). Mast cells
and basophils are highly related, with basophils being found mainly in the peripheral blood
whereas mast cells are resident within tissues. Although the mechanism underlying this
association is unclear, this finding suggests that an association between rs4662380 and
mastocytosis may be relevant to the phenotypic hypothesis, since individuals with abnormal

blood counts may be more likely to be investigated clinically.

The risk allele for the third SNP, rs13077541, at chromosome 3¢26.32, is linked to reduced
expression of TBL1XR1 (Chen et al., 2016). The same SNP is also significantly related to the
methylation level of a specific CpG site (cg001132484, chr3:176916496, rs1025797382) located at
the TBL1IXR1 promoter (Gaunt et al., 2016b), suggesting that change in gene expression could be
affected by methylation of this site. This gene fuses to PDGFRB, ROS1, RARA and RARB as a
consequence of rare chromosomal translocations in myeloid malignancies (Campregher et al.,
2017; Murakami et al., 2018; Osumi et al., 2018) but the significance of altered expression in

relation to mastocytosis remains to be established.
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MAGMA, a gene-based association method widely used with GWAS summary statistics (Marioni
et al., 2018), was applied to the stage 1 mastocytosis GWAS to combine stage 1 association
statistics from all SNPs within a gene (de Leeuw et al., 2015). Following this statistical analysis,
VEGFC was the only significant gene after Bonferroni correction (P-value of 2.6 x 10°®). Two SNPs
mapping VEGFC were selected for replication. The most significant SNP in VEGFC (P-value =
9.3x107, P-valuemeta= 1.69x10*; Appendix Table A.6), rs6820170, was tested at stage 2 but failed
to replicate in the Spanish (P-value = 0.65), Danish (P-value = 0.44) and Italian (P-value = 0.15)
cohorts. This could be due to a number of reasons such as a lack of power at stage 2, or
heterogeneity between cohorts. Therefore, it does not rule out the stage 1 result and this signal

should be tested in other independent cohorts.

VEGFs are members of a family of proteins (e.g. VEGFA, VEGFB, VEGFC, VEGFD, VEGFE) that are
very important in vasculogenesis and angiogenesis; VEGFC and VEGFD are known to be mainly
involved in lymphangiogenesis in hyperplasia of the skin (Apte et al., 2019; Jeltsch et al., 1997). In
the last 20 years, the role of VEGFs in the pathogenesis of cancer and non-malignant disorders
such as ophthalmic diseases has become clear, since the continuous growth of blood vessels
carrying nutrients is crucial to maintain homeostasis within the tissue environment (Apte et al.,
2019). Interestingly, a study conducted with 64 mastocytosis cases and 64 healthy controls
evaluated the serum concentration of three VEGFs and identified that both VEGFA and VEGFC
levels were significantly higher in mastocytosis patients. VEGFD did not show the same pattern
(Marcella et al., 2021). Whether elevated VEGF levels are a cause or consequence of mastocytosis,
and whether SNP genotype within VEGFC is linked to expression levels in serum should be

investigated further.

Mast cell activation followed by degranulation leads to the release of several bioactive molecules,
including histamine, tryptase and proinflammatory cytokines (Frenzel and Hermine, 2013). A
GWAS was performed in relation to levels of circulating cytokines and growth factors to gain
insight into inflammatory diseases that might share common causal pathways and underlying
pathology. Ahola-Olli et al. identified a SNP, rs6921438, in the VEGFA locus associated with
concentration of five cytokines (VEGF, IL-7, IL-12p70, IL-10 and IL-13) (Ahola-Olli et al., 2017).
Another GWAS in a European population also identified the same lead SNP, rs6921438 (P-
value=6.11x10°%), associated with circulating VEGF levels (Debette et al., 2011). Conditional
analysis on rs6921438 identified another SNP in the same locus, rs12214617, located in the
promoter flanking region of VEGFA, which suggests a potential role in regulation of transcription.

The role of VEGF as an upstream regulator has been supported by Mendelian randomisation
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performed using both SNPs (Ahola-Olli et al., 2017). Particularly interesting in relation to
mastocytosis is the association identified between IL-13 and VEGFA and the role that IL-13 could
play in the pathogenesis of mastocytosis. As described in Chapter 2 (see 2.3.15), rs1800925 at IL-
13 was linked to mastocytosis in a previous study and this link was supported by my stage 1

analysis (Table 2.11).

The statistical analyses conducted with mastocytosis patients identified significant associations
with tryptase alpha/beta-1 (TPSAB1) and tryptase beta-2 (TPSB2), two genes located at 16p13.3, a
region known as the human tryptase locus. The GWAS identified a suggestive association between
rs58124832 and mastocytosis. The eQTL analysis revealed this locus to be associated with the
gene expression level for TPSAB1 and TPSB2. The association between TPSAB1 and mastocytosis
was also revealed from the gene-based analysis. TPSAB1 and TPSB2 encode serine protease
produced largely by mast cells. While TPSAB1 only encodes the a-tryptase, both TPSAB1 and
TPSB2 encode the B—tryptase (Schwartz et al., 1981). Levels of BST >20 ng/mL represent one of
the minor diagnostic criteria for SM that were confirmed by the WHO in 2008 and updated in
2016 (Valent et al., 2017a). However, this is not always the case. Elevated BST level in association
with clinical features (e.g., gastrointestinal and cutaneous symptoms) are seen in 4-6% of the
general population with no mastocytosis or mast cell activation. A study performed in 35 families
linked TPSAB1 duplication and triplication to a significant increase in BST level. The correlation
between phenotype and gene dose, an inherited phenotype known as hereditary
a—tryptasaemia, was demonstrated by designing a digital droplet polymerase chain reaction
(ddPCR) genotyping assay to identify duplication or triplication of a—tryptase (Lyons et al., 2018).
In mastocytosis, an increased BST level reflects the increased mast cell burden in mastocytosis
patients (Schwartz et al., 1995). Another study, consistent with Lyons et al., used the ddPCR assay
to assess the TPSAB1 CNV and compare with tryptase levels in mastocytosis patients. They
showed that the prevalence of hereditary o—tryptasaemia and associated BST levels were
significantly higher in mastocytosis cases compared to control cohorts. After demonstrating the
correlation between TPSAB1 CNV and mastocytosis, TPSAB1 CNV was proposed as a novel genetic
biomarker to predict the risk of severe anaphylaxis in patients with mastocytosis (Greiner et al.,

2021).

In my analysis, a SNP located in the exonic region of CACNA1H, rs58124832, reached a suggestive

level of significance after meta-analysis. This SNP is part of a haplotype that co-segregates with
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the TPSAB1 CNV in Caucasian families (Lyons et al., 2018) and is strongly associated with higher
expression of both TPSAB1 and TPSB2 (Lloyd-Jones et al., 2017; VO3sa et al., 2018b). Interestingly,
TPSABI1 is also the second most significant gene (P-value=2.3x10") identified from my gene-based
test analysis. However, it did not retain significance after correcting for multiple testing, and thus
this result must be confirmed in an independent cohort with genome-wide genotyping. These
results need to be investigated further to understand the functional involvement of TPSAB1 in
modulating disease severity in mastocytosis, and potentially to identify therapeutic approaches to
modulate the a-tryptase-dependent response. Although the TPSAB1 CNV is associated with
disease severity in mastocytosis (Greiner et al., 2021), it seems likely that elevated BST levels
associated with the CNV are also related to the phenotypic hypothesis since patients with high

BST may be more likely to be investigated for KIT?!®Y and/or be diagnosed with mastocytosis.
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Chapter 4 Identification of genetic targets of acquired

uniparental disomy

4.1 Introduction

Uniparental disomy (UPD), described in 1980 by Engel, is usually associated with congenital
abnormalities and arises when two copies of a chromosome or part of a chromosome are
inherited from one parent (Engel, 1980). However, UPD can be somatically acquired (aUPD)
through mitotic recombination or non-disjunction errors (Figure 1.3) and is strongly associated
with the presence of cancer driver mutations in the affected region (Tuna et al., 2009). It is
believed that an initial somatically acquired driver mutation promotes clonal expansion, but
subsequent aUPD converts this mutation to a homozygous state which then confers an additional
clonal advantage. Array based studies have indicated that aUPD is widespread in cancer, including
up to 30% of cases of myeloid malignancy. Specific gene targets have been identified for the most
common recurrent regions, for example JAK2 mutations are associated with aUPD of the short
arm of chromosome 9 (9p), TET2 mutations with aUPD 4q, EZH2 mutations with aUPD7q, CBL
mutations with aUPD 11qg and several others (Chase et al., 2015; Ernst et al., 2010; Grand et al.,
2009; Kralovics et al., 2002; Langemeijer et al., 2009; Massé et al., 2009; Mohamedali et al., 2009;
Nikoloski et al., 2010; O’Keefe et al., 2010; Raghavan et al., 2008; Score and Cross, 2012; Tiedt et
al., 2005; Wang et al., 2016). However, there are other regions for which the genetic targets have
not been identified. Thus, | hypothesise that better definition of recurrent aUPD in myeloid

disorders will help to identify regions of the genome that harbour novel cancer driver genes.

Myeloid neoplasms are relatively uncommon and SNP array analysis of large numbers of
individuals is expensive. However SNP microarray data from diverse GWAS using DNA extracted
from blood cells have identified mosaic abnormalities such as aUPD in individuals unselected for
haematological malignancies (Jacobs et al., 2012; Laurie et al., 2012). These studies were
extended by WES analysis of 29,562 individuals with the finding that somatically acquired myeloid
driver mutations (particularly DNMT3A, TET2 and ASXL1) are unexpectedly common in the
population at large (Genovese et al., 2014; Jaiswal et al., 2014). Although aUPD occurs at a lower
frequency in these individuals it has been shown to increase with age (only 1% in individuals less
than 50 years, 2-3% in individuals over 50 years old and 10% in the elderly aged 65 and older)

(Genovese et al., 2014, Jacobs et al., 2012; Laurie et al., 2012). Furthermore, clonal mosaicism in
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the elderly is associated with a tenfold increased risk of developing haematological cancer and
these regions of aUPD and the underlying somatic mutation are the same as those identified in
both mature B-cell neoplasms and myeloid malignancies (Laurie et al., 2012). Owing to these
features, aUPD in apparently healthy individuals is now recognized as a specific condition which is
termed CHIP or ARCH (Genovese et al., 2014; Jacobs et al., 2012; Laurie et al., 2012). Increasingly
large publicly available datasets of WES and WGS data derived from blood cells are also being
accumulated which can be interrogated directly for aUPD and mutations. | propose to exploit such

datasets to identify regions of aUPD and associated genetic targets.

As a proof of principle, the Cross/Tapper research group identified five cases with aUPD22q, of
which three cases had a known myeloid malignancy and two were identified from a Swedish
population-based study of elderly men. WES analysis identified a novel gene, PRR14L, as the target
of aUPD22q. Although the function of PRR14L is still unknown, functional studies suggested its

involvement in cell division (Chase et al., 2019).

Although aUPD is predominantly associated with somatic mutations in specific genes, other
mechanisms have been described. The Cross/Tapper research group identified a minimal
recurrent region of aUPD involving 11.2 Mb on chromosome 14q which contained an imprinted
region (DLK1-MEG3). WES failed to identify any recurrently mutated genes in affected individuals
but testing the DLK1-MEG3 methylation status in cases with aUPD14q in blood cells showed an
increase in methylation, which is associated with the gain of the paternal chromosome, and
demonstrated for the first time that aUPD14q can target an imprinted locus and can promote clonal
haemopoiesis either as an initiating event or as a secondary change (Chase et al., 2015). This
represents the first imprinted locus targeted by both somatically acquired UPD as well as
constitutional UPD in association with the developmental disorders Temple syndrome and

Kagami-Ogata syndrome.

Another study has demonstrated that aUPD may be associated with the loss of a deleterious
germline variant. Specifically, two families with cytopenia and predisposition to MDS showed the
coexistence of rare (0.00003% of frequency reported in the Genome Aggregation database
(gnomAD)) inherited mutations and aUPD. Germ line gain-of-function heterozygous mutations
were identified on SAMDIL a tumour suppressor gene located at chromosome 7q. Mutated

SAMDLY is associated with impaired haemopoiesis; UPD7q in this context leads to clonal
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restoration of homozygous wild type SAMDL9 with a selective advantage over the mutant

background (Tesi et al., 2017).

To test the hypothesis that large population cohorts which are unselected for haematological
malignancies can be used to identify recurrent regions of aUPD and associated mutations, | have
focused on WES data obtained from the UK Biobank (Van Hout et al., 2020) and a Swedish case
control study of Schizophrenia (Purcell et al., 2014) consisting of 49,996 and 12,380 individuals
respectively. The UK Biobank dataset was used to develop a step-wise method for identifying
aUPD from WES data based on extended regions of Al that were detected using B allele frequency
(BAF) segmentation (Staaf et al., 2008). The Biobank data are ideal for method development due
to the availability of both WES and array based genotype data, which are optimal for BAF
segmentation and have previously been used to identify aUPD (Dawoud et al., 2020). These array-
based aUPD calls were used for comparison. The Schizophrenia data were used for further
validation of the method and were selected as an exemplar WES cohort as (i) the study group was
unselected for haematological disorders, (ii) DNA from peripheral blood cells was used for
analysis, and (iii) the median age of the study was relatively old at 65 years and this would be
expected to be enriched in clonal abnormalities compared to younger populations. The specific
aims of this work are to develop a method for identifying regions of likely aUPD using WES data
and identify candidate mutated genes in the affected regions that could be responsible for the
development of myeloid malignancies and associated with clonal proliferation. The final analysis
was focused on known genes with relatively frequent mutations, specifically MPL, TET2, EZH2,
JAK2 and FLT3 mutations as well as exploring the possibility of discovering new aUPD regions

overlapping in multiple samples.

4.2 Materials and Methods

421 The data sample

The large-scale cohort used for the analysis of aUPD regions comes from the Sweden-
Schizophrenia Population-Based Case-Control Exome Sequencing study (dbGaP Study Accession:
phs000473.v2.p2). The dataset is publicly available through the Database of Genotypes and
Phenotypes (dbGaP, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000473.v2.p2) distributing genotype datasets from studies which
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investigate the interaction between genotypes and phenotypes (Mailman et al., 2007) and
developed by the National Center for Biotechnology Information (NCBI,
https://www.ncbi.nlm.nih.gov/). The second version of Sweden- Schizophrenia Population-Based
Case-Control cohort used for this study was released in October 2016 and in this report, | will
refer to this cohort as Schizo-WES02. Details of the schizophrenia data had been described
previously and a brief description is here provided (Ganna et al., 2016; Purcell et al., 2014; Ripke et
al., 2013). The peripheral blood (PB) sampling of 12,380 subjects (6,135 cases and 6,245 controls)
aged between 19 and93 years old (mean age 65) took place between 2005 and 2013 (Genovese et
al., 2014) and were selected either from the Swedish National Hospital Discharge Register or from

Swedish population registers.

The UK Biobank (UKB) is an open access resource available to the scientific community that wish
to conduct health-related research studies for a wide range of diseases and without establishing
collaborations. This large population-based prospective study combines baseline, genotypic and
phenotypic data from 500,000 participants aged between 40-69 (mean age 56.5), recruited
between 2006 and 2010 and assessed in 22 centres in the UK (Sudlow et al., 2015). The UKB
contains different sources of genetic data: 1) genome-wide array based genotyping performed on
all UKB participant and in coordinates relative to GRCh37, this data has allowed novel discoveries
though population genetic analyses (Bycroft et al., 2018); 2) whole exome sequencing (WES) is
performed on 49,997 participants and in coordinates relative to GRCh38. These participants are
prioritized because of more complete phenotype data and are available since March 2019. One
sample was removed because it did not have enough DNA for sequencing. Data for an additional
150,000 participants was made available in October 2020, after starting this analysis. For this
reason, WES data of the first released 50,000 samples were used for this research project and in

this thesis this cohort will be referred to as UKB-WES50.

Initially, an exemplar dataset consisting of 120 samples from the UKB-WES50 were selected for
method development. According to the matched array data these samples included 17 with aUPD
(chr2=1; chr6=4; chr9=9; chr13=2; chr17=1) and 40 with the somatic JAK2"5"F mutation, which are
more likely to have 9p aUPD. Most of the exemplar samples were free from all types of cancer
(n=64) while 35 were diagnosed with a haematological malignancy and 21 were diagnosed with

other types of cancer.
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4.2.2 Whole-Exome Sequencing

Whole-Exome Sequencing is a NGS technique to capture the whole exonic sequences in the
genome that are involved in coding for proteins. Following the drop of sequencing costs, WES
data have been produced in numerous genetic studies, for which array-based genotyping were
previously available. In the context of aUPD analysis, WES data is expected to be more useful than
SNP array data because it should enable researchers to investigate somatic mutations in specific

genes associated with regions of aUPD.

Sequencing, alignment and variant calling of the Swedish-WES02 cohort were all performed at the
Broad Institute. The samples were sequenced using either the Agilent SureSelect Human All Exon
Kit targeting 29 Mb of the human genome or the Agilent SureSelect Human All Exon v.2 Kit
targeting 33 Mb of the human genome. Sequencing was performed on IlluminaGAll, lllumina
HiSeq2000 or lllumina HiSeq X Ten instruments, with pair ended sequencing reads of 75 base pairs
and mean target coverage of 90x (Ganna et al., 2016). After completing the sequencing step, the
Picard/Burrows-Wheeler Aligner (BWA)/ Genome Analysis Toolkit (GATK) pipeline was used to
analyse the raw read data (BAM file). During alignment, a bioinformatic tool called Picard
(http://broadinstitute.github.io/picard/) was used to perform data pre-processing and
intermediate analyses (manipulation of FASTQ and SAM files, marking duplicate reads, filtering,
sorting). BWA is another bioinformatic tool used during the alignment to map reads against the
reference human genome (version GRCh37) and generate outputs in the Sequence Alignment
Map (SAM) format (Li and Durbin, 2009; Teo et al., 2007). For the downstream analysis, GATK tool
was used to process the SAM files and calling variants (Depristo et al., 2011) in the Variant Call File
(VCF) format (Danecek et al., 2011). Variant calls were made on the entire sample creating a
single multi-sample VCF that, following relevant approvals, was downloaded from the online

dbGaP through Aspera Connect v3.6.2 and NCBI SRA Toolkit.

The UKB-WES50 VCFs were released in March 2019, and were pre-processed by Regeneron
Genetics Center and GlaxoSmithKline using two protocols, Functional Equivalence (FE) (Regier et
al., 2018) and Regeneron Seal Point Balinese (SPB) (Van Hout et al., 2020). In August 2019, the
UKB reported an issue in marking duplicate reads, this was only limited to the exome data
processed with the SPB pipeline. Therefore, for this analysis that started in November 2019, only

the data produced using the FE pipeline was used (http://www.ukbiobank.ac.uk/wp-
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content/uploads/2019/08/UKB-50k-Exome-Sequencing-Data-Release-July-2019-FAQs.pdf).
Genomic DNA samples were transferred from the UKB to the Regeneron Genetics Center and
stored at -80 C prior to sample preparation. Exome capture was performed using a fully-
automated approach developed at the Regeneron Genetics Center. A slightly modified version of
IDT’s xGen probe library was used and supplemental probes were added to capture regions of the
genome poorly covered by the standard xGen probes. In total, 39 Mbp of the human genome
(19,396 genes) were included in the targeted regions. The multiplexed samples were sequenced
using 75 bp paired-end reads with two 10 bp index reads on the Illumina NovaSeq 6000 platform
using S2 flow cells. Complete sequencing protocols are described in detail by the summary
manuscript (Van Hout et al., 2020). Following the completion of sequencing, raw data were
converted into FASTQ files using the DNAnexus platform. During the alignment, BWA-mem was
used to align the FASTQ-formatted reads to the GRCh38 reference human genome in the BAM file
(Li and Durbin, 2009), Picard MarkDuplicates tool was used to flag duplicate reads. GATK 3.0 was
used for the variant calling and a gVCF was generated for each sample. Then files were subject to
hard filtering of variants with inbreeding coefficient<-0.03 or without at least one variant
genotype of DP>10, GQ>20 and, if heterozygous, AB>0.20
(http://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170).

4.2.3 Variant Quality Score Recalibration

Variant Quality Score Recalibration (VQSR) was used to improve the accuracy of the confidence
score for each variant in the WES VCFs. An automated pipeline was developed to prepare the
UKB-WES50 data and apply VQSR. Initially the gVCFs were indexed using IndexFeatureFile
(McKenna et al., 2010). The single sample gVCFs were loaded into a datastore using
GenomicDBImport, then GenotypeGVCFs was used to generate multi-sample VCFs in which all
samples have been jointly genotyped (Auwera et al., 2014). The process of merging generated
batches of 100 samples, except for the last batches which contained 174 and 122 samples. A total
of 499 multi-sample VCF files were generated. The VQSR was performed separately for SNPs and
indels. The recalibrated scores were then used to exclude low quality variants by applying a
minimum threshold of phred>=20 for both SNPs and indels which is equivalent to 1% chance of
error. These settings are in-line with the GATK best practice guidelines which recommended
applying VQSR on at least 30 WES samples so that there are enough variant sites to apply the

Gaussian mixture model.

To efficiently manage file preparation and VQSR on such a large number of VCFs, job arrays and

dependencies were used to submit a maximum of 64 simultaneous jobs to the university’s high
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performance computer (HPC, IRIDIS4). To avoid interference between the parallel jobs, an empty
directory with a unique name was generated for each job that was used as the workspace for

GenomicsDBImport.

424 WES data processing

Having created multi-sample VCFs and performed VQSR, the next steps were to extract the data
into single-sample VCFs, perform QC filtering and to generate the input files for BAF segmentation
software (Staaf et al., 2008) that was used to identify regions of Al. BCFtools (Danecek et al.,
2021) was used to extract single sample VCFs, to annotate variants’ name based on the
information from dbSNP build 151 (available from https://ftp.ncbi.nim.nih.gov/snp/organisms/)
and to apply the QC measures aimed at excluding variants that were: mitochondrial, had missing
genotypes, had a mean depth (DP) less than 10, quality score (Qual) less than 20, arecalibrated
quality score less than 20, minor allele frequency less than 1%. Filtered VCFs were compressed
using BGZip and indexed with Tabix, which is a standard way to store VCFs to aid efficient
manipulation (Li, 2011). Finally, input files for BAF segmentation were generated using VCFtools
(Danecek et al., 2011) to extract the allelic depth (AD), genotype (GT) and rsID for each variant in
the filtered VCFs. Variants without an rsID were named according to their genomic location
(chr:position) using a custom python script (mkVAF.py). It is widely reported in the literature that
genotypes generated in WES data can be prone to higher level of genotyping errors compared to
array-based technologies (Carson et al., 2014; Koboldt et al., 2010; Ledergerber and Dessimoz,
2011; Nielsen et al., 2011). Studies have also demonstrated that variants with these type of errors
may remain after applying GATK’s VQSR filter (Van der Auwera and O’Connor, 2020; O’Rawe et
al., 2013). To address this issue the mkVAF.py script was used to check the AD and GT variables
and remove false positives that were incorrectly called as heterozygous (0/1 and 1/2) or
homozygous (0/0 and 1/1) in the absence of reads supporting either the reference or alternate
alleles. Variants were removed if their genotype information was discordant with the AD number
supporting either the reference or alternate allele. Furthermore, the python script checks for
multiple entries at the same location and excludes duplicate variants. As shown at the bottom of
Figure 4.1, the generated input file contains four columns: marker name, chromosome, base pair
location and variant allele frequency (VAF=A/D, where A is the number of reads with the alternate
allele and D is the total depth). The input for BAF segmentation usually contains a measure of
copy number for each variant which can be used to categorise Al regions as either copy number
gain, loss or copy number neutral (QUPD). In SNP-array data, copy number is measured by the log
R ratio (LRR) which compares observed and reference probe intensities [log,(observed

intensity/reference intensity)]. The same calculation of LRR is not possible for unpaired sequence
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data although copy number could be determined in these samples by comparing sequencing depth
from the Binary Alignment/Map (BAM) file with reference regions from elsewhere in the exome
(Straver et al., 2017). However, at this stage of the study, alignment file in BAM format were not

available for CNV classification.

50K UKB-WES50 12,3K SCHIZO-WES02
Single sample gVCFs Multisample VCF

gVCFs index
(IndexFeatureFile)
Store gVCFs in a datastore
(GenomicDBImport)

Joint-genotype and
499 Multisample VCFs
(GenotypeGVCFs)

Apply VQSR to multi-VCFs
(VariantRecalibrator)

Extract single-sample VCF
(BCFtools)
Annotated Filtered VCF
VCF

Allelic depth (AD) SNP tag
mkVAF
(python)

Chr Position  VAF
1 931131 0.

2 189450079 O.
3 42203464 0.
3753466 0.
1345291 O.!

Figure 4.1 Automated pipeline to process WES data.The flowchart outlines all the steps performed
to process the WES data and generate input files for BAF segmentation: data collection; if VQSR method has
not been applied to the data, the variant recalibration procedure was applied to produce recalibrated files
in multi-VCF format; the extraction of the single sample VCF for each individual of the study; the SNP tag
annotation was added to the VCF file; the filtering of the VCF; the extraction of SNP tag and AD from the
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VCF file; VCF file info are then used from the python program (mkVAF.py) to generate the input file for BAF
segmentation where each row contains information for different variants.

4.2.5 Run BAF segmentation using WES data

BAF segmentation (Staaf et al., 2008), a method for identifying regions of Al from B allele
frequencies (BAF) obtained from SNP array genotyping, was used and described in chapter 2
(Section 2.2.11). However, for this work WES datasets were used to extract and store the B allele
frequencies (referred to as VAF) in files generated from the automated pipeline (Figure 4.1).
These input files were run through the BAF segmentation program to identify Al regions in the
WES data. The raw outputs are saved in a text file which uses five features to define the

segmented Al regions detected, these features are described in Table 4.1.

Table 4.1  Features to define a segmented Al region.

Feature by BAF seg Description

No. of informative SNPs | The number of SNPs with an mBAF value < 0.9 and > mBAF
threshold

Total No. of SNPs Total number of SNPs after triplet filter is applied and non-
informative SNPs are removed

mBAF Mirrored BAF data along the 0.5 axis

Heterozygosity rate The heterozygosity rate for each Al region

Size Size of the Al region in bp

The table lists five Al-characterizing features and their description. The number of informative SNPs can be
the same as or a fraction of the total number of SNPs. Therefore, during the data processing was checked
that the number of informative SNPs was less than or equal to the total number of SNPs.

4.25.1 High and low stringency settings

BAF segmentation provides several parameters that can be used to alter the stringency of quality
control and sensitivity of Al detection. To optimise this tool for application to sequencing data,
the exemplar UK Biobank data (n=120) were analysed using high and low stringency settings

(Table 4.2).

Table 4.2  BAF segmentation settings.

BAF segmentation Description of the parameters Low stringency | High stringency
parameters used/default settings settings
value
--ai_threshold/0.56 mMBAF threshold for calling 0.6 0.65
regions of Al based on segmented
mMBAF values.
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BAF segmentation Description of the parameters Low stringency | High stringency
parameters used/default settings settings
value
--non_informative/0.97 mMBAF threshold for removing 0.9 0.9
putatively non-informative
homozygous SNPs.
--triplet/0.8 Threshold for triplet filtering used | 0.6 0.6

to improve removal of putatively
non-informative homozygous
SNP.

--ai_size/4 Minimal number of SNPs a 4 (Default) 10
segmented region should contain
in order to be called as Al.
Segments with less numbers of
SNPs are removed from further
analysis.

BAF segmentation parameters applied to the WES data and their description. The two columns on the right
show the low and high stringency settings used in this work.

To evaluate sensitivity and specificity of the proposed settings, the results obtained with BAF
segmentation were cross-validated against the array results for the same 120 samples. The BAF
segmentation results obtained from the genome-wide array data on the UK Biobank participants
are publicly available (Dawoud et al., 2020), and were used for this project to understand how
well results from the exome analysis agree with the SNP-array results. Overlaps between the WES
and SNP array results were identified using bedtools intersect (Quinlan and Hall, 2010) and
samples with Al regions that overlapped by at least 2 Mb where classified as true positive (TP).
Samples with Al regions identified only by SNP array were classified as false negative (FN),
whereas samples with no Al regions were identified as true negative (TN) if there was
concordance by both genotyping methods. False positive (FP) were present if samples with Al
regions were not identified by Dawoud and colleagues. A confusion matrix, with rows
representing true class and columns representing the predicted class, was used to display this
information (James et al., 2013). Sensitivity (TP/[TP+FN]) and specificity (TN/[TN+FP]) were
calculated considering the array results as a truth dataset which is the preferred method to
identify Al regions and were used to determine which BAF segmentation settings performed best

(Table 4.6).

Following manual review of the BAF plots, a number of compelling Al regions were identified that
had not been shortlisted in the comparative array-based analysis (Dawoud et al., 2020). These

regions were large (> 5.4 Mb), extended to the telomere, had high mBAF scores (> 0.81) and were
therefore considered to be likely regions of high level aUPD. As a result, these regions were added

to the list of true positives and the sensitivity/specificity values were recalculated (Table 4.7). The
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BAF segmentation parameters, either high or low stringency setting, with the highest sensitivity
and specificity were identified and applied in a further analysis of the complete UKB-WES50 and
Schizo-WESO02 datasets.

4.2.5.2 Assessment of VQSR filter

VQSR assigns an accurate confidence score to each putative variant call and was applied to the
UKB-WES50 data as part of the QC process (Section 4.2.4). The Swedish data were downloaded
after VQSR had been applied so this step was not repeated (Figure 4.1). To investigate the effect
of VQSR, the exemplar UKB-WES50 subset of 120 samples were analysed with and without
recalibration using BAF segmentation and the low stringency settings. The raw results were
compared using a scatter plot to observe the relationship between the total number of Al regions

per sample and the percentage of the autosome covered by regions of Al per sample.

4253 Processing UKB-WES50 and Schizo-WES02

Following the VQSR assessment and the evaluation of best parameters for BAF segmentation,
both UKB-WES50 and Schizo-WESO02 datasets were run through BAF segmentation using low

stringency settings.

4.2.6 Identify and remove low quality samples

A scatterplot was made to examine the raw output from BAF segmentation and to identify and
exclude low quality samples. Per sample metrics for the total number of Al regions and
percentage of the autosome covered by Al regions were used to make the scatterplot and to
identify any sample outliers in both the Swedish-WES02 and UKB-WES50 cohorts. To calculate the
autosomal Al percentage, the total length of the 23 chromosomes was defined using python
dictionaries which store the chromosome length for both hg19 (2.881 GB) and hg38 (2.875 GB).
Outlying samples with an excessive number of Al regions and/or large proportion of the genome

composed of Al were considered to be indicative of low sample quality and were removed.

4.2.7 Filtering strategy and data preparation

The frequency of Al events detected by BAF segmentation were higher than expected based on
published studies (Jacobs et al., 2012; Laurie et al., 2012). To bring the frequency of Al events in-
line with these expectations, a stepwise method was developed to select Al regions with strong
supporting evidence and properties associated with aUPD events. Dawoud et al. developed a

custom script to exclude FP regions identified by BAF segmentation in SNP array data. The filtering

115



Chapter 4

method, applied to array data only involved the following steps: merge regions <2Mb apart; drop
regions with a size <2Mb; keep regions with a density of at least one marker per 20 Kb. This
strategy was adapted by applying thresholds that were more appropriate for WES data, adding
new features for filtering (listed in Table 4.3 and in italics in the text) and supplementing the
output file to aid the removal of FP regions and enable statistical analysis. First of all, consecutive
Al regions were merged using bedtools (Quinlan and Hall, 2010) when the distance between them
was less than 4 Mb. The distance between two regions was increased because of the low density
marker that are used with WES compared to array data. As a result of this step, the values for
MBAF, heterozygosity rate, physical size of Al region, number of informative SNPs and total
number of SNPs were recalculated and saved in the output file. Second, TP and FN calls that were
identified during the cross-validation process (4.2.5.1) were used to investigate potential causes
of the FN results and to establish the minimum size of Al regions (>=5 Mb). Merged regions that

were smaller than this were removed.

Samples from the exemplar dataset that carried the JAK2®'F mutation, a somatic mutation
known to be associated with 9p chromosomal abnormalities, were used to determine the best
SNP density threshold (bases per marker) (Table 4.3). Several cut-offs were used (100, 250, 400,
550, 700, 850 Kb) and the minimum value that resulted in detection of all 9p aUPD positive

samples was defined as the best threshold for this filter.

Three more features were added to the output file: Bases per informative marker, which defines
the rate of Kb per informative marker; coverage of the merged region; centromere overlap, which
represents the percentage of each Al region overlapping the centromere (Table 4.3). Annotation
files, downloaded from the Genome Reference Consortium
(https://www.ncbi.nlm.nih.gov/grc/human), were used to extract centromere locations and
chromosome lengths for both hg19 (Church et al., 2011) and hg38 (Schneider et al., 2017). The
new features generated at this stage were used for the subsequent logistic regression (LR) model

that was developed for prediction of Al regions (4.2.9).

Table 4.3  New features generated to aid the filtering of FP calls.

New Features Description Threshold value
new_size The new size of an Al event following the 5 Mb
merging of consecutive regions
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New Features Description Threshold value
Bases per marker Define the rate of kb per marker (size/Total No 850 Kb
of SNPs)
Bases per informative Define the rate of kb per informative marker NA
marker* (size/No of informative SNPs)
Coverage* (size of individual events/new size) NA
Centromere overlap* Al region percentage overlapping the NA
centromeric region

NA: Not applicable; *These features were used to build the LR model (Section 4.2.9) and not for filtering.

This work has given the opportunity to analyse over 60,000 WES genomes. The size of the Al
regions and FP calls presented the need to handle computationally the stepwise method
described above. Therefore, a user-friendly tool, BRawO (BAF Raw Output), was developed to
manipulate the output file, to generate new features (Table 4.3), to calculate the empirical score
(heterozygosity rate x number of informative SNPs x coverage) (Dawoud et al., 2020) and to apply
a number of filters to the BAF raw output file from BAF segmentation. BRawO facilitated the
stepwise approach in a number of ways: by selecting the genome build (hg19 or hg38) of the
dataset; by removing noisier samples with too many Al regions and/or a large proportion of Als in
their genome; by defining a maximum distance (Mb) to allow the merging of consecutive regions;
by filtering regions according to their size (Mb); by removing Al regions with low marker density;
by selecting only telomeric regions that falls within a defined distance (Mb) from the end of the
chromosome. Positional and optional arguments of this tool are descried in Table 4.4 and Table

4.5.

Table 4.4  Positional argument of BRawO.

Positional arguments Description
ai_regions_file The file containing the Al data to be analyzed.
The file must be tab delimited.
hg_ref The Human Genome (hg) reference to be used.
You can choose one among "hgl9" and "hg38"

Table 4.5 Optional argument of BRawO.

Optional arguments Description
—-max-perc-AI-regions-per- Max allowed percentage of Al regions per sample.
sample Samples with more percentage of Al regions than
this threshold are filtered out
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Optional arguments Description

——max-AI-regions-per-sample Max allowed number of Al regions per sample.
Samples with more Al regions than this threshold
are filtered out

—--region-merge-distance-Mb The maximum distance in Mb between two
regions for them to be merged by bedtools
——-min-ai-region-size-Mb Minimum size, in mega bases units, of the merged

Al regions that will be selected. Smaller regions
are filtered out.

—--max-bases-per-marker—kb Max bases, in kilo-bases units, per marker. Regions
with more bases per marker are filtered out.
——telomeric-keep-width-Mb Width in mega bases of the telomeric regions to

be kept. All events falling outside this width after
the chromosome starts or before the
chromosome ends are dropped.

-h, —-help Show the help message and exit

4.2.8 Visual inspection of selected Al regions

BAF segmentation generates, for each sample, a file with two plots per chromosome, a BAF plot
representing the BAF values and a mBAF plot with the mBAF values reflected along the 0.5 axis.
(Figure 4.2). After running BAF segmentation and filtering the raw output, a visual inspection of
the segmented regions was carried out to annotate them as likely aUPD, false positives or
negatives independently of the published array based results (Dawoud et al., 2020). Al regions
were annotated as false positives when the markers on the plot were not clearly and consistently
separated over the entire region or when they were identified by a small number of SNPs with
low density and large gaps in coverage that were frequently associated with centromeric regions
(Figure 4.2 A). Regions were annotated as likely aUPD when the markers in the BAF plot showed a
clear and consistent shift away from the expected heterozygous BAF value of 0.5, indicating a
clonal LOH which can be more or less pronounced (Figure 4.2 B). The level of clonality can be
inferred by the average mBAF value of the Al region where subclonal events have a more subtle

shift away from 0.5 and mBAF values that are closer to 0.5.
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A. False positive B. Likely aUPD
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Figure 4.2 BAF segmentation plots.
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120

BAF and mBAF plots for four samples with Al regions that are classified as either FP (n=3) or TP (n=2) after manual review. BAF plots show the BAF and mBAF plots are the
transformation of BAF values along the 0.5 axis. Circular binary segmentation is applied to mBAF values to identify regions of similar allelic proportions (green profile).
Regions of Al are identified where the segmented mBAF is > 0.6 (red dashed line) and are highlighted by a red rectangle. A. The mBAF plot displays three FP regions on
chromosome 9: the centromeric region is characterised by low marker density; the two small regions did not pass the size filter. The lower panel shows two telomeric Al
regions on chromosome 3 that were classified as FP because the supporting markers do not split clearly from the 0.5 axis and all markers on the chromosome have a broad
spread of BAF values. B. Both panels show Al regions that were categorised as TP (aUPD) due to the clear shift in mBAF values compared to background markers, their size
and proximity to the telomere. The high mBAF value of the Al region in the top panel (mBAF=0.82) is suggestive of a high mutation burden.
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429 Logistic regression model for predicting likely aUPD

Both Schizo-WES02 and UK-WES50 were run through BAF segmentation and the stepwise method
was applied to remove low quality samples and FP calls. Following visual inspection of the mBAF
plots, filtered Al regions from the UK-WES50 data were labelled as likely aUPDs or false positives.
The labelled data were split into a training (70%) and test dataset (30%) with the same ratio of
UPD classes (real to FP) to reduce sampling error and to maintain heterogeneity of both sets. The
heterogeneity is a fundamental feature to train the model on a balanced dataset. The training set
was used to fit the logistic regression (LR) model to implement a scoring system, subsequently
referred to as the gg score, that estimates the probability of each Al region being a real UPDs and
is used to rank all of the Al regions. The LR model was optimized using an L2 regularization also
known as ridge regression, to improve numerical stability and to prevent overfitting. The optimal
regularization parameter C used in the L2 regularization was found using cross-validation (CV).
The k-fold CV was used to split the train set into k smaller sets and at each computed loop, one
part of them was used as “validation set” so that the final optimal value is the mean of the values
computed at each loop. The 5-fold CV thus optimizes the use of the available data, with respect to
a classical train-test split. The final and unbiased evaluation of the predictive performance of the
LR model was obtained by applying the fitted LR model to the test set. A flow chart describing the
design of this study is shown in Figure 4.3. The LR model was built from the logistic function

included in python (Baranwal et al., 2011).

4.29.1 Sequential feature selection

Feature selection consists in finding the set of features that produces the best-performing
predictive model. Sequential Feature Selection (SFS) can be used to perform a forward selection
or a backward selection which, respectively, iteratively adds the best features or removes the
worst ones, on the basis of the CV score of the estimator (Ferri et al., 1994). In both cases, n-1
features were ranked based on the average score obtained on a 5-fold CV splitting of the data. In
a first step, backward SFS was used to remove the pair of features that affected the performance
the least. Then, forward selection was applied to the remaining features, by adding the predictors
one by one, until the CV score stopped improving significantly. After performing forward SFS, a
further manual check was conducted, which resulted in adding one more feature to the final set,
that was deemed to bring relevant improvement to the performance. Further details are

explained in Section 4.3.6 (Results).
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Logistic regression model

Features UK-WESS50 data
l Labelled Unlabelled
SFS ‘
Best features Training data ‘ Test data

Schizo-WES02 data —+ Trained LR Algorithm ‘

l

‘ gg score to predicted Al regions ‘

Figure 4.3 Flow chart of the logistic regression model.

Schematic representation of the procedure and data used for training the logistic regression
model that generates the gg score. Feature selection (purple) and model training and
application (green). The blue box indicates the WES data processed through the LR algorithm.
The black box indicates the entire UK-WES50 data that was annotated only in part.

4.2.9.2 Evaluation metrics

Commonly used metrics such as area under the receiver operating characteristic curve (AUC),
precision, recall and F1-score were calculated on the test set and used to determine the

performance of the LR model.

The Receiving Operating Characteristics (ROC) curve is a graphic that shows the benefit of
applying a certain statistical test. It simultaneously traces out the two types of errors for every
possible threshold as these vary from 0 to 1. The true positive rate or sensitivity on the y-axis
represents the fraction of Al regions that are correctly identified. The x-axis shows the false
positive rate, which represents here the fraction of false positive calls that are incorrectly
classified as Al regions. The ideal ROC curve hugs the top left corner of the graph, indicating a high
true positive rate and a low false positive rate (James et al., 2013). The performance of the model
is given by the AUC, which ideally indicates excellent and good predictions for values >0.9 and
>0.8 respectively. An AUC=0.5 indicates that the model is not discriminative and its performance

can be attributed to chance alone (Swets, 1988).
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Precision measures how many of the predicted positive cases are correctly classified. On the other
hand, recall (or sensitivity) measures the proportion of true positive instances that are correctly
predicted, which in this case is the primary aim of the model. Models can be optimized using a
measure called F1-score which is a weighted average of both precision and recall. In the optimal
scenario, with perfect precision and recall, the highest F1-score is 1, whereas if either precision or
recall is zero, it can reach its lowest value, zero (Powers, 2007). Due to the pronounced imbalance
between the positive and negative classes, | chose to optimize the model using the ROC-AUC

metric.

4.29.3 Validation of the gg score

To validate the gg score, | compared its performance to an existing scoring system that was
developed using SNP-array and BAF segmentation (Dawoud et al., 2020). This score is defined as
the product of bases per marker, heterozygosity rate and coverage and empirical threshold of 29
was used to select likely somatic events. Having applied this scoring system to the labelled UKB-
WESS50 data set | examined the distribution of scores across false positives and likely aUPD events
and compared these results with the distribution of the gg scoring system. The python plt.hist()
function was used to plot the histograms of both scores and compare their distribution for false

positive and likely aUPD.

4.2.10 Identification of candidate somatic driver variants from WES data

Finally, the gg scoring system was applied to the Schizo-WES02 data and a score greater than 0.5
was used to identify Al regions that were likely to be real UPDs. If we assume that the logistic
regression output is the probability that the example belongs to class 1, the 0.5 threshold
corresponds to choosing the class (0 or 1) with the highest probability in the binary classification.
Ideograms were generated with karyoploteR to visualize the likely aUPDs (Gel and Serra, 2017)
and if these were overlapping in two or more samples, the single sample VCF was extracted and
searched for novel and/or known somatic mutations in the target genes. First of all,
SAMtools/Bcftools was used to filter the VCF file to remove variants that did not pass the VQSR
filter and with low read depth (DP<10) (Danecek et al., 2021). Then, SnpSift was used to extract
variants that intersect a specific gene known to be the target of aUPD and the file was annotated
using WANNOVAR (Cingolani et al., 2012; Yang and Wang, 2015). Putative somatic mutations were
screened for in five genes known to be aUPD targets: MPL (aUPD1p), TET2 (aUPD4q), EZH2
(aUPD7q), JAK2 (aUPD9p) and FLT3 (aUPD13q).
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4.3 Results

43.1 BAF segmentation parameters for WES data

To determine appropriate software settings for WES data the exemplar dataset, consisting of 120
selected samples from the UKB cohort, were analysed using BAF segmentation with either low or
high stringency settings. A total of 961 (Appendix Table B.2) and 3,075 (Appendix Table B.3) Al
regions were identified using the high and low stringency settings respectively (Table 4.2) which,
for both settings used, correspond to Al regions present in all samples. To select Al regions that
are likely to represent real occurrences of aUPD and to bring these frequencies in-line with those
expected from published studies (Jacobs et al., 2012; Laurie et al., 2012) the raw outputs were
filtered to select regions that were greater than 5 Mb; to keep regions with 850 Kb per marker; to
merge consecutive regions that were <4 Mb apart. Following the filtering of the raw outputs, a
total of 212 and 61 Al regions were selected from the low and high stringency analysis
respectively. BAF plots for these selected Al regions were visually inspected and manually
annotated as samples with either likely aUPD (n=38) or negative (n=82) according to the criteria
described in Section 4.2.8. The annotated results were cross-referenced against those from
Dawoud et al. 2020 using bedtools to identify overlaps. Results from the previous study, which
used corresponding SNP-arrays and an empirical score to select regions of mosaic chromosome
abnormalities (mCA), were treated as true positives and negatives and used to determine the
performance of the low and high stringency settings in terms of sensitivity and specificity which
are displayed in a confusion matrix (Table 4.6). The low stringency settings offered much higher
sensitivity (36.8% versus 28.9%) and only a slight reduction in specificity (91.5% versus 92.7%)

compared with the high stringency settings.

Following manual annotation of the BAF plots, seven samples with mBAF values ranging from
0.81-0.87 were annotated as likely aUPD due to the presence of long runs of Al (5.4-35.4 Mb)
which extended to the telomere and involved large numbers of informative SNPs (8-75 kb per
SNP). For example, Figure 4.4 shows a region of likely aUPD following manual annotation involving
chromosome 9 that, in the comparative SNP-array results, was below the empirically defined

threshold of 9 and therefore was labelled as negative.
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Figure 4.4 Al region detected after visual reassessment.

The figure shows examples of BAF and mBAF plots of the same sample from the WES (A) and
the SNP-array result (B). The Al region of 33.4 Mb is located on chromosome 9p and following
the visual reassessment was annotated as likely aUPD due to its size and proximity to the
telomere. Both panels show a telomeric Al region with high level of Al.

Previous studies have shown that mBAF values are directly related to the proportion of cells with
aUPD (Chase et al., 2015). The large mBAF values therefore suggest that these aUPD events have
high frequency in the major clone. Furthermore, 5 out of 7 of these samples were shown to have
a known somatic mutation (JAK2'6’F) in the aUPD regions. This in combination with the
properties of these regions lead to their reclassification as TP and recalculation of the specificity
and sensitivity which showed an overall improvement for both the low (46.6% and 100%

respectively) and high stringency settings (38.6% sensitivity and 100% specificity) (Table 4.7).
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Table 4.6 Performance metrics for WES based detection of aUPD.
Predicted aUPD status based on WES data
Low stringency High stringency
Likely aUPD No aUPD Performance Likely aUPD No aUPD Performance
Positive 14 (TP) 7 (FP) Sensitivity = 36.8% 11 (TP) 6 (FP) Sensitivity = 28.9%
Negative 24 (FN) 75 (TN) Specificity =91.5% 27 (FN) 76 (TN) Specificity =92.7%
Precision = 66.6% NPV =75.7% Accuracy = 74.2% Precision = 64.7% NPV =73.8% Accuracy = 72.5%

TP: True positive; TN: True negative; FP: False positive; FN: False negative; NPV: Negative predictive value. Information displayed in the confusion matrix shows that BAF segmentation
with low stringency settings identified 21 samples with Al and only 7 samples were incorrectly labelled. On the other hand, high stringency identified 17 samples with Al regions and 6 of
them were not identified correctly.

Table 4.7  Confusion matrix for the computational comparison and visual reassessment.
Predicted aUPD status based on WES data and visual inspection
Low stringency High stringency
Likely aUPD No aUPD Performance Likely aUPD No aUPD Performance
Positive 21 (TP) 0 (FP) Sensitivity = 46.6% 17 (TP) 0 (FP) Sensitivity = 38.6%
Negative 24 (FN) 75 (TN) Specificity = 100% 27 (FN) 76 (TN) Specificity = 100%
Precision = 100% NPV =75.7% Accuracy = 80% Precision = 100% NPV =73.8% Accuracy = 80%

TP: True positive;
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labelled incorrectly. On the other hand, high stringency identified 17 samples with Al regions and no FPs.
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After the evaluation of sensitivity and specificity of BAF segmentation carried out in the UK
Biobank subset of 120 samples, low stringency settings showed higher sensitivity and 100%

specificity. Therefore, they were confirmed as the best parameters to use in any further analysis.

4.3.2 Investigation of the FN results

As part of these analyses, | also investigated the source behind the FN results, which have been
identified in the array samples but not in the WES data. A box plot was used to investigate the size
of the Al regions that were classified as TP and FN compared with the revised SNP-array based
results (Figure 4.5). The TP calls (n=22) were larger in size (median=29.8 Mb) compared with the
FN calls (median=2.9Mb) whose size is extracted from the SNP-array results (Dawoud et al., 2020).
The boxplot shows that all 30 of the FN regions that were not detected across 24 samples (Table
4.7) of the NGS exemplar cohort are, in term of size, all smaller than 9 Mb in size with a median
span of 2.9 Mb. This suggests that small regions of aUPD are difficult to detect using WES data
due to the lower density of variants compared with SNP arrays. It is important to note that
following manual annotation of the BAF plots, evidence of aUPDs in the WES data was not
identified for all 30 FNs. The minimum size of a TP region was 5.4 Mb and this knowledge was
used to further refine the automated filtering of Al regions. The identification of TP and FN classes

guided to establish 5 Mb as the threshold for the minimum Al size (Mb).
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Figure 4.5 Boxplot of size (Mb) for Al regions labelled as FN and TP.

The region’s sizes (Mb) across FN (grey) and TP (light blue) are summarized as boxplots where
the middle black like is the median. The boxplots show that regions identified by BAF
segmentation tent to be bigger in size when using WES data.

4.3.3 Evaluate the effect of VQSR on the BAF results

The UKB-WESS50 data was generated by the UK Biobank using the GATK-based pipeline without
applying VQSR. In general, the frequency of detectable Al events in healthy individuals is between
0.23% and 1.91%, with a slightly higher frequency in cancer patients (Jacobs et al., 2012).
Therefore, the subset of 120 UKB-WES50 samples was used to assess whether the exclusion of
low quality variants detected through the VQSR filter could help to generate less noise in the BAF
segmentation raw output file. The subset cohort without and with recalibration was run through
BAF segmentation using low stringency settings, and results from the two groups were compared.
The scatter plot in Figure 4.6 shows the comparison between the raw output from BAF
segmentation of the UKB-WES50 data before and after VQSR is applied. The final results show

that the main effect of VQSR is to reduce the number of Al regions called per sample which is
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demonstrated by the right to left shift of samples in the scatter plot (Figure 4.6 A). VQSR has a
more subtle effect on Al coverage resulting in a slight reduction in coverage and a downward shift

on the scatter plot.

Samples form 2 clusters with either high or low autosomal coverage, which did not appear to be
related to the effect of VQSR. This clustering could be due to the low number of samples plotted,
which reduces the chance of having a more uniform distribution of points and, therefore,
separate clusters rather than a spread of samples. The clustering was investigated further (Figure
4.6 B) by colouring samples according to their Al status, either positive or negative, and whether
or not they had a JAK2'%"F mutation. Al negative samples and samples without a JAK2V617F
mutation were expected to have a lower percentage of autosomal Al. However, these four groups

of samples were randomly distributed between the clusters and were therefore ruled out as the

cause of this clustering.

| did not identify the cause of this clustering, but it was not due to either Al status (either positive
or negative based on manual review) or JAK2 carrier status. Additional factors that were not

investigated but could be relevant include cancer status, age and sex.
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Figure 4.6 Scatterplot comparing BAF results from WES data with and without VQSR.

The scatterplots are produced using RStudio. A. The plotted points show the comparison of
the BAF results obtained from WES data with (blue points) and without VQSR (black points).
The two left-right clusters show that VQSR reduces number of Al regions and percentage of
autosome covered by Al regions. B. The two up-down clusters were here investigated by
grouping the samples in Al positive, Al negative and JAK2V®'7F positive. The three groups
appear randomly distributed and thus ruled out as a cause for this clustering.

434 Quality control of WES data

The UKB-WESS50 dataset contains a total of 49,996 samples distributed across 499 multi-sample

VCF files (an average of 100 samples per multi-VCF). After extracting single samples, an average of
n=377,054 variants were called per sample. After the QC steps were applied to each single-sample
VCF, most variants were removed due to MAF<0.01. About 34,000 markers per sample were used

to detect Al regions through BAF segmentation (Table 4.8).
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A total of n=1,811,204 variants were called in the whole Schizo-WES02 multi-sample VCF file

containing 12,380 samples. After processing the multi-sample VCF, the QC measures (4.2.7) are
applied to each single-sample VCF. Following the data preparation, an average of 23,000 markers

per sample were kept as input to BAF segmentation (Table 4.8).
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Table 4.8  Filters applied for variant exclusion in WES datasets.
Total MT Missingness FORMAT/DP>10 7 QUAL>20 FILTER=PASS MAF>0.01 Multiple entries HET FP

UKB-WES50 | mean | 3770538  377053.8 372702.92 284214.30 284208.91 260206.03 35980.02 35976.23 35968.49
std 18522.02  18522.02 18486.85 28321.02 28304.21 26851.52 3291.94 3291.20 3289.37

min 336925 336925 302417 184734 184734 169266 20660 20658 20653

max 482074 482074 480058 473383 469264 433488 87726 87697 87688

Schizo-WES02 | mean | 1811204 1809746 1771659.92 1572462.02 1572462.02 1483445.48 22945.30 NaN 22926.57
std 0 0 22056.35 66677.52 66677.52 62410.58 939.30 NaN 937.61

min 1811204 1809746 1515157 720238 720238 676115 13664 NaN 13660

max 1811204 1809746 1791810 1760612 1760612 1659244 32897 NaN 32882

MT: Mitochondrial variants; DP: Read depth in the format field of the VCF file; QUAL: Quality score; FILTER=PASS: A flag indicating that the variant has passed all set of filters; MAF: Minor
allele frequency; HET FP: False positive heterozygosity; NaN: No multiple entries at the same location were identified in the Schizo-WES02 data. Sample count: 49,996 UKB-WES50 and
12,380 Schizo-WES02.
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435 BAF segmentation and filtering strategy

The input files generated in the previous step were run through BAF segmentation using low
stringency settings (Table 4.2) which identified 615,401 (12,380 samples) and 1,281,943 (49,996
samples) Al regions (Staaf et al., 2008) in the Schizo-WES02 and the UKB-WES50 respectively. In
both the Swedish-WES02 and the UKB-WES50 cohorts, Al events were found in 100% of the

samples, these unexpected pre-filtering results confirmed the need for data filtering.

The first part of this work focussed on the UKB-WES50 samples carrying a JAK2V'F mutation
which is the most frequent cause of 9p aUPD and is associated with haematological malignancies
(Wang et al., 2016). In the UKB-WES50 cohort, 0.08% of the samples (n=40) are JAK2''"F positive
and this group was used to determine the best threshold for bases per marker. Following manual
review of the BAF segmentation plots for each of the 40 samples, 37.5%(n=15) of them have
aUPD of chromosome 9p positive. These regions are all telomeric and have a size range between
13Mb and 138Mb and thus more likely to be aUPD. No other aUPD events were detected in the
remaining 25 JAK2V¢*F positive UKB-WES50 samples.

Several features were used to select Al regions that are likely to be real aUPDs including the bases
per marker parameter which was optimised before being applied. The best threshold was
determined to be the minimum density that resulted in detection of all 15 JAK2'"F positive
samples with 9p aUPD. Several cut-offs in Kb density (from 100 to 850) were investigated and 1
SNP every 850 Kb was identified as the best threshold to apply to the WES data as it was the

minimum density that identified 9p aUPD in the 15 JAK2V®*"F positive samples.

The aim for the next step was the identification and removal of low quality samples in both UKB-
WESS50 and Schizo-WES02. The raw output file from BAF segmentation was examined to identify
any sample outliers in terms of the total number of Al regions per sample and the percentage of
the autosome composed of Al regions in each sample. These metrics were determined and
presented in a scatterplot (Figure 4.7). Following the visual inspection of the scatterplot, outlier
samples were identified and removed. The majority of samples have less than 100 Al regions and
less than 30% of the autosome covered by Al in both cohorts. Samples with more than 100 Al
regions and/or greater than 30% of the autosome covered by aUPD were identified as outliers
and removed. These per sample thresholds for hard filtering identified six samples with more than

100 Al regions and 5,047 samples with autosomal Al coverage above 30% in the UKB-WES50
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cohort. These samples, representing 10.1% of the total, were identified as outliers and removed
from further analysis (Figure 4.7 A). Visual inspection of the plots did not identify any outlier
sample in the Schizo-WES02 cohort. The Schizo-WES02 genotype data is of high-quality that

before being submitted to dbGaP, underwent through QC check and curation by dbGaP (Figure
4.7 B).
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Figure 4.7 Per sample metrics identify low quality samples.

The scatterplots show the number of Al regions versus the percentage of autosomal Al both
in the UKB-WES50 and in the Schizo-WESO02 datasets. A. The UKB-WES50 cohort presents
outliers samples (red ‘x’” markers) with either >30% of autosomal Al or >100 Al regions. B. The
scatterplot shows the 12,380 samples of the Shizo-WES02 dataset forming a distinct cluster
with <100 Al regions and <20% autosomal Al.

A custom program, BRawO (see methods Section 4.2.7), was used to create the input files for BAF

segmentation and to apply filters that are designed to remove FN regions and select Al regions
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whose properties are more likely to be associated with real aUPD events. The filters applied are as
follows: base per marker threshold of 850 Kb; 5 Mb as the minimum allowed Al size; maximum
number of Al regions and autosomal Al percentage; 4 Mb as the maximum distance to allow

merging between consecutive regions.

4.3.6 Logistic regression model and feature selection

The filtering strategy identified 63,088 potential Al regions in 33,535 samples in the UKB-WES50
for further analysis. After visual inspection of the mBAF plots, a total of 3,800 regions (n=3,193
telomeric, n=607 interstitial) were labelled as either FP (n=3,643) or likely aUPD (n=157). The
labelled data were split into a training (70%, n=2,660) and test (30%, n=1,140) dataset (Table 4.9)
and used to develop a logistic regression (LR) model for estimating the probability of aUPD for
each Al region (Figure 4.3) which is hereafter referred to as the gg score (Appendix Table B.4). The
LR model was optimized using the regularization parameter (C=23) which was found using 5-fold

Cv.

The labelled data were first used to find the best variables to include in the model and to
minimize the noise caused by non-informative features (Figure 4.3). SFS was used to fit a separate
LR using L2 regularization and C=23 as optimal regularization parameter (Ferri et al., 1994).
Initially, a backward SFS was applied by adding all ten features (Table 4.1 and Table 4.3) to the
model (number of informative SNPs, total number of SNPs, mBAF, heterozygosity rate, original
size, merged size, bases per marker, bases per informative marker, coverage and centromere
overlap). Six of these features (number of informative SNPs, range: 4-2,320; total number of SNPs,
range: 6-2,487; original size, range: 0.3 Kb-186.2 Mb; merged size, range: 5 Mb-186.2Mb; bases
per marker, range:15.6-849,558; bases per informative marker, range: 23.3-2,217,937) were log
transformed to stabilize the spread of large values (Keene, 1995). Original size and merged size
were determined to be the two weakest features based on the feature ranking and were excluded

from the LR model.

In the next step the forward SFS was applied, the model was fit using one feature, then two
features, and so forth. The selection was made by selecting the most predictive features until the
performance of the model did not show further improvement. Figure 4.8 shows the four steps of
the forward SFS up to the selection of six features (mBAF, bases per informative marker, coverage,

centromere overlap, number of informative marker and bases per marker) that were ranked by
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the model as the most important ones. The labelled data was then fit and tested using these

selected features (Figure 4.9 A).
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Figure 4.8 Steps of the forward SFS.
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The figure describes the last four steps up to the selection of the most important features. X-
axis indicates the rank order for each parameter. The y-axis displays the AUC obtained when
each parameter is added to the model. The curve reaches the plateau (D) when feature 5 and

6 are added to the model and the AUC is stabilized.

At each of the first three steps of the forward SFS (Figure 4.8 A, B and C), heterozygosity rate was

ranked as the second best feature of this model as this together with the mBAF allowed the

model to reach AUC just under 0.90. Thus, alongside the information aided by SFS, the model was

trained by adding the heterozygosity rate to the six features previously selected. Finally, the fitted

model was applied to the test data (Figure 4.9 B, Appendix Table B.4).
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Figure 4.9 Comparison of the ROC curves for the Al regions classifier on the testing data.

The ROC curves for the test set of the UKB-WES50 show some difference between the LR
model trained with six features (A) and seven features (B). The LR model show the best
results on the training data when seven features are added to the model.

The two models described above were optimized using the ROC-AUC metric. The two curves were
compared and the greatest AUC was observed when heterozygosity rate is added to the model
(AUC=0.96). Thus, this was chosen as the best model to predict Al regions. As already mentioned
in the methods (Section 4.2.9.2) it is important to reiterate that the annotated data present more
negative regions (3,643) than likely aUPD (157) (Table 4.9). Therefore, it is possible that the
classification problems highlighted by the recall metric, can be due to imbalanced data. The recall
improves to 0.55 when seven features are used, meaning that 55% of the likely aUPD regions are
correctly predicted (Table 4.10). This explains the high ROC-AUC (Figure 4.9) and that the model is
better trained at identifying FP regions. Results from precision also indicated an overall
improvement in the prediction accuracy. Specifically, when heterozygosity rate is included in the
set of features the model is able to correctly classify 90% of the regions that are present in the
test set (Table 4.10). These results represent just an example of the improvement that can be

provided in a classification problem when different avenues are tested.

Table 4.9  Confusion matrix for the logistic regression model using total and test data.

Manual Dataset Classification by gg score

annotation Total dataset Test dataset
Total Training Test Correct Incorrect Correct Incorrect

Likely UPD 157 110 47 | 84 (TP) 73 (FN) 26 (TP) 21 (FN)

Negative 3643 2550 1093 | 3619 (TN) 24 (FP) 1090 (TN) 3 (FP)
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Total 3800 2660 1140
TP: True positive; TN: True negative; FP: False positive; FN: False negative

Table 4.10 Performance of the two models.

Evaluation metrics 6 features 6 features + het rate
Number of correctly classified on test data 1106 1116
Fraction of correctly classified on test data 0.97 0.98
Precision on Al zones 0.76 0.9
Recall on Al zones 0.4 0.55
F1-score 0.52 0.68
ROC AUC 0.95 0.96

4.3.7 Score Validation

The empirical score was calculated (Section 4.2.7) and applied to the results from the WES
labelled data (n=3,800, Appendix Table B.4) (Dawoud et al., 2020). Then its distribution over likely
aUPD regions (Al) and FP regions was compared with the gg score. The score distribution was
plotted using histograms. Among the 3,800 labelled regions, 3,643 were classified as FP (n=24
have gg score >0.5, n=3,266 have empirical score >9) and only 157 (n=84 have gg score >0.5,
n=139 have empirical score >9) were likely aUPD. To make the difference between the two classes
visible on the frequency plot, the Al regions were weighted up by a factor 23 (Figure 4.10).
Dawoud’s AUC score with annotated data was 0.59 and the plot (Figure 4.10 A) shows that the
bulk of Al events is superimposed to the bulk of the FP regions. About 40 (1000/23) Al events lie
near score zero and FP events have a score ranging between 0 and 500, thus the two classes are
less distinguishable. On the other hand, the gg score identified only four events with a score of

zero. Distribution of FP events is right skewed, as expected, and most of them score <0.5 (Figure

4.10 B).
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Figure 4.10 Distribution of scores with labelled data.

The plots show the distribution of the two scores with Al (orange) and FP (light blue) regions.
A. Distribution of the empirical score (Dawoud et al., 2020) with labelled data. B. Distribution
of gg score with labelled data.
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4.3.8 Apply the gg score system to Schizo-WES02

After applying the filtering strategy described above (4.2.7), the Schizo-WES02 was left with
14,619 potential Al regions in 8,871 samples. Thus, the filtered data was passed to the LR model
and manual revision of the BAF plots was performed on the regions with a gg score >0.5 (n=172)
to confirm those regions that have been correctly identified as real Al events. As a result of the
manual annotation, 29 of the 172 regions were identified as likely aUPD (Table B.1). These were
distributed across 26 samples which represents a tiny (0.21%) proportion of the whole set. These

results show a fall in pickup rate from 53.3% (84/157) in the UKB-WES50 to 16.9% (29/172) in the
Schizo-WESO02.

439 Identification of putative somatic mutations

The 29 Al regions that were identified as likely aUPDs were plotted on an ideogram which shows
their distribution across chromosomes and overlap between separate samples (Figure 4.11).
Putative somatic mutations in known target genes were checked if the Al region were overlapping
in two or more patients. Thus, chromosomes 1 (MPL), 4 (TET2), 7 (EZH2), 9 (JAK2) and 13 (FLT3)
were examined. Four samples overlapped the region 14q, but these were not checked as this
region target the imprinted MEG3-DLK1 locus at 14932 (Chase et al., 2015). Results are shown in
Table 4.11.
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Table 4.11 Variants identified in target genes of known aUPD.

No.
Al | Func.ref CADD | Samples
Chr | Start End Ref |t Gene Gene.refGene | ExonicFunc.refGene GT:0/1 GT:1/1 dbSNP ClinVar SIG SIFT pred phred | with Al
1 43812075 43812075 G A intronic  MPL 1 1 rs1760670 Benign 4
7 148504717 148504717 G - UTR3 EZH2 0 1 rs397889421 Benign|Benign 2
7 148504717 148504717 - G UTR3 EZH2 0 1 2
7 148507534 148507534 - T intronic  EZH2 1 0 rs146223228 2
7 148507534 148507534 C A intronic  EZH2 1 0 rs73469687 2
7 148543525 148543525 A G intronic  EZH2 1 1 rs10274535 2
7 148543694 148543695 AA - intronic  EZH2 1 1 rs745733123 Likely benign 2
7 148543695 148543695 A - intronic  EZH2 1 1 2
7 148543695 148543695 - A intronic  EZH2 1 1 2
9 5073770 5073770 G T exonic JAK2 nonsynonymous SNV 5 0 rs77375493 Pathogenic D 33 5
9 5050706 5050706 C T exonic JAK2 synonymous SNV 4 1 rs2230722 Benign|Benign 5
9 5081780 5081780 G A exonic JAK2 synonymous SNV 3 2 rs2230724 Benign|Benign 5
9 5090934 5090934 A T intronic ~ JAK2 4 1 rs2274649 5
13 28624294 28624294 G A exonic FLT3 nonsynonymous SNV 1 1 rs1933437 not provided Deleterious 23.8 2
13 28636084 28636084 G A exonic FLT3 synonymous SNV 1 1 rs7338903 2
13 28589267 28589267 C T intronic ~ FLT3 0 2 rs4073630 2
13 28592546 28592546 T C intronic ~ FLT3 1 0 rs17086226 2
13 28607989 28607989 T G intronic ~ FLT3 1 1 rs2491223 2
13 28609825 28609825 A G intronic ~ FLT3 1 1 rs2491227 2
13 28609846 28609846 A T intronic ~ FLT3 1 1 rs2491228 2
13 28610183 28610183 A G intronic ~ FLT3 1 1 rs2491231 2
13 28623699 28623699 G T intronic ~ FLT3 1 0 rs9507985 2
13 28623938 28623938 - A intronic ~ FLT3 1 0 rs869135449 2
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The four samples with 1p aUPD (Figure 4.11) were screened and the analysis was focused on MPL
W515 (rs121913615) a common change in myeloid phenotypes. However, no mutations were
identified on codon 515 (Rumi et al., 2013), only one intronic variant (rs1760670) was present in

two samples reported on ClinVar as benign.

Samples with 4q (n=2) and 7q (n=2) aUPD did not harbour any mutations in TET2 and EZH2,

respectively.

chrt (T T T T T T T T T T T T T I T T T T chr12 [T T W T T T [T [T [T [ W W D[ [0 [T ]

MPL
chr3 [T T MO T IO TTTT [T T S T T T T T I T T T T chr13 [ TN TT{ TTI [T T O D (T T
FLT3

; chri4 m"n—\

chra DDZI]Z-IEIZ-ZIIDDIIEE+IDI-]:I]IIIIIIZD |
EG3-DLK1
TET2 MEG3-DLK
l chri7 [T N W [ 11 [T [Ty 1 ]
chr7
EZH2

chrg DleI-:-IIHI HkII INENIINEE  EEE EEEi chrto T TT [ W [ T T[T [11]

JAK2

chr11

chr20 [T T T T T T TITT ]

Figure 4.11 Ideogram of the likely aUPD regions.

The ideogram shows the physical position of likely aUPD across the autosomes.

Five samples detected by gg score as UPD 9p-positive, harbour the JAK2V6YF mutation. The events
detected have a size range between 5.6 Mb and 42.2 Mb and are more likely to be aUPD. Also, in
all five samples there is evidence of 3 known silent polymorphisms including the previously
reported rs2230724, this is expected as the 46/1 haplotype is strongly associated with JAK2V617F
and particularly in association with aUPD (Jones et al., 2010). rs2230724 is also in strong LD
(r=0.83) with rs10974944 a germline SNP know to predispose to the development of JAK2V67F-
positive MPN (Kilpivaara et al., 2009). To check whether the gg score identified all the 9p aUPD

events we looked at the whole cohort and identified 0.14% of the samples (n=18) harbouring a
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JAK2V®'F mutation. Following a visual inspection of the BAF plot for all 18 samples, in the
remaining 13 JAK2V¢F positive Schizophrenia samples no Al events were detected by BAF
segmentation, meaning that almost 1/3 of JAK2'5'’F positive have aUPD. The higher prevalence of
the mutation compared to the UKB-WES50 (0.08%) is expected in an older cohort such as the

Schizo-WES02 with a mean age of 65 (Genovese et al., 2014).

Two UPD13g-positive samples were also analysed for the presence of FLT3 putative somatic
mutations and a missense variant c.C680T:pT227M (rs1933437) predicted to be deleterious by in
silico tools was present in both samples (Table 4.11). The same somatic variant has been
previously reported in samples with myeloid phenotypes however UPD13q is generally associated

with FLT3 internal tandem duplications which would be missed by WES.

4.4 Discussion

Somatically acquired UPDs (aUPD) are chromosomal abnormalities that have been associated
with driver mutations in various cancers (Tuna et al., 2009). Identifying these regions has been
established as a useful technique which has helped to identify novel cancer driver genes via
targeted sequencing analysis of the aUPD regions (Tuna and Amos, 2010). For example, somatic
mutations driving clonal proliferation have been identified in association with the most recurrent
regions of aUPD in patients affected with myeloid malignancies (O’Keefe et al., 2010). Evidence
from SNP array analysis of large cohorts has shown that aUPD occurs in apparently healthy
individuals aged 65 or older and confers a tenfold increased risk of developing haematological
malignancies. Furthermore, the regions of aUPD detected in the elderly are very similar to those
identified in patients affected with myeloid malignancies (Genovese et al., 2014; Jacobs et al.,
2012; Laurie et al., 2012). In the last twenty years, the significant advance of molecular genetics
and bioinformatics has allowed scientists to use powerful techniques, such as SNP arrays and
NGS, to identify these regions (Makishima and Maciejewski, 2011; Tuna et al., 2009). Since the
underlying genetic abnormalities in several regions of aUPD remain unidentified, large-scale
sequencing data of individuals unselected for cancer represents a valuable resource to assess the

possibility of identifying mutated genes in novel affected regions of aUPD driving CH.

Therefore, this chapter focused on the development of an automated method aimed at the

identification of likely aUPD regions from publicly available WES data. BAF segmentation, a tool
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established in our lab to detect Al regions from whole-genome SNP arrays, was used and

optimised (Section 4.2.4) to analyse sequencing data (Staaf et al., 2008).

This study used WES data from the UK biobank (49,996 individuals) and dbGaP (12,380
individuals). These cohorts are referred to as UKB-WES50 and Schizo-WES02, respectively, and
were analysed to discover new aUPD regions and to search for associated target genes/mutations
that may drive clonal proliferation and myeloid malignancies. To ensure the datasets were
analysed in an unbiased manner, WES data were harmonised, and VQSR was applied to the UKB-
WESS50 cohort. The GATK VQSR is a critical QC step that enables exclusion of potential false-
positive variants and selection of high-quality variants based on a single VQSLOD score.
Subsequently, | developed a pipeline to filter and process the multi-sample VCFs and to generate
one BAF segmentation input file per sample (Figure 4.1). To select BAF segmentation settings that
were appropriate for WES data, an exemplar cohort consisting of 120 individuals from the UKB-
WESS50 with matched SNP arrays were analysed using high and low stringency settings (Section
4.2.5.1). Following computational cross-validation of the WES and matched array results, that
were filtered using an empirical score (Dawoud et al., 2020), the low stringency settings were

determined to improve sensitivity while not affecting specificity when applied to the WES data.

Upon manual review, eight regions of likely aUPD (belonging to 7 samples) that were not
shortlisted by the SNP array-based analysis and empirical score were reclassified as TP results
(Figure 4.4) which further improved the sensitivity of the WES based analysis. The visual
inspection and re-classification of these eight Al regions indicated that the empirical score
appeared to overlook Al regions with high mBAF values (>0.8) that are indicative of either high
mutation burden or possible germline inheritance. It is important to note that the rationale
behind the empirical score developed by Dawoud et al. was to select for somatic events and
exclude potential constitutional runs of homozygosity which is probably why the empirical scoring
system was less discriminative when applied to WES data than the gg score (Section 4.3.7).
However, visual inspection of these Al regions and their correlation with JAK2'%'’F, a known
somatic driver mutation, suggests that a proportion at least are indeed high level aUPDs. This
observation led to the decision of using manual annotation of shortlisted BAF plots as the gold
standard for aUPD detection. It is also important to consider what proportion of the Al regions

that pass automated filtering and manual review might have germline origins which could be
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determined by analysing another DNA source in parallel as a germline source (e.g. DNA extracted

from fibroblasts or cultured T-cells).

After analysing the entire UKB-WES50 and removing low quality samples, the frequency of Al
positive samples was 67.1% which is much higher than expected (1-2%) (Genovese et al., 2014;
Jacobs et al., 2012; Laurie et al., 2012). This highlighted the need to develop an automated
filtering method for selecting putative Al regions that would align more closely with expectations.
For this purpose, the Al regions were manually reviewed and categorised as either FP (n=3,643) or
likely aUPD (n=157) (Table 4.9). The data were split into training (70%) and test (30%) sets that
contained equal ratios of FP to likely aUPD regions (110/47) and logistic regression was used to
develop a classifier, the gg score, which models the probability of aUPD. The highest ROC-AUC
(96%) was obtained using a model consisting of seven features (mBAF, bases per informative
marker, coverage, centromere overlap, number of informative markers, bases per marker and
heterozygosity rate). Although the model performed well, this was largely due to the correct
prediction of TN (3619/3643) which accounted for 90% of the observations in the test set that
were correctly classified. On the other hand, only 55% of the likely aUPD regions were correctly
predicted (84/157). These differences are thought to result from the unbalanced dataset which

contained far more FP than likely aUPD observations.

To validate the method, BAF segmentation, quality control and the gg score filter were applied to
an independent case control cohort consisting of 12,380 samples (Schizo-WESQ2, Section 4.2.7). A
total of 172 likely aUPD regions were identified with a gg score above 0.5. Of these, 29 regions in
26 samples were confirmed as aUPD by visual inspection of the BAF plots. The frequency of CH in
the Schizophrenia cohort was therefore determined to be 0.21% (26/12380) which, given the
cohort’s mean age of 65 (Genovese et al., 2014), is significantly lower than the expected
frequency of 2-3% in individuals over 50 years old and 10% in the elderly aged 65 and older
(Genovese et al., 2014; Jacobs et al., 2012; Laurie et al., 2012). In the Schizophrenia cohort, WES
identified an average of 22,926 variants per sample (Table 4.8) that were used to detect Al
regions which is significantly lower than SNP arrays, which typically provide between 500K to 1
million SNPs per sample. Furthermore, WES based estimates of per SNP BAF, which form the raw
input for Al detection, are less accurately calculated than SNP arrays because they are determined
by the sequencing depth which is limited and varies across the genome. This combination of low
variant density and imprecise estimates of per SNP BAF is likely to make WES much less sensitive
than arrays and might explain why this technique detected fewer regions of aUPD than expected.

During the filtering steps of the VCF file, most variants were excluded due to MAF<0.01 and low
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read depth (Table 4.8). Considering that the power to identify aUPD could be related to the
number of variants these filters should be reassessed although there is likely to be a trade-off

between SNPs density and high-quality variants with accurate VAF calculation.

After identifying likely aUPD regions that overlapped in at least two samples, five genes (MPL,
TET2, EZH2, JAK2, and FLT3) were screened for potential somatic driver mutations in the WES
VCFs. The JAK2V8Y"F mutation was identified in five out of five samples with UPD9p (Appendix
Table B.1). A missense variant in FLT3, ¢.C680T:pT227M (rs1933437), which is predicted to be
deleterious based on SIFT (Table 4.11), was identified in two samples with UPD13qg-positive
samples (Appendix Table B.1). However, somatic driver mutations in FLT3 seen in myeloid
neoplasms such as internal tandem duplications and FLT3%83Y (Nguyen et al., 2017) are activating.
It is therefore unlikely that the deleterious mutation (rs1933437) is the underlying cause of
UPD13q seen in these samples. Despite the fact that target genes of the aUPD regions considered
here are well known, driver mutations in most of the samples were not identified. The absence of
detectable mutations in these regions might be due to several reasons such as genetic
heterogeneity. For example, in an analysis of patients with myeloid neoplasia, only 7/12 cases
with aUPD7q had discernible mutations of EZH2 (Ernst et al., 2010). Other studies have also
described the absence of somatic driver mutations in apparently healthy individuals with CH, as
determined by WGS. Despite the absence of driver mutations, CH was still a risk factor for the
development of haematological malignancies and overall survival (Holstege et al., 2014; Zink et
al., 2017). One possible explanation for these findings might be a proliferative advantage provided
by clonally inherited epigenetic states, and it is possible that such states might also be related to

regions aUPD.

When this study was initially conceived it was hoped that large WES datasets would provide a
useful resource to identify regions of aUPD and associated mutations. Following the development
of this work and the opportunity of analysing over 60,000 exomes, it became apparent that much
bigger samples sets would be required and | was able to estimate that we need at least 4-5 times
the sample size to detect likely aUPD for a population of comparable age to UK Biobank (median

age = 58 years at recruitment) or the Schizophrenia cohort (median age = 65 years).
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Chapter 5 Conclusions and future work

This study began with the design of a GWAS to identify germline predisposition to mastocytosis.
The study was built on two observations. First, results from previous GWAS of MPN, which are a
rare group of blood cancers that are loosely related to mastocytosis, indicated that inherited
common variants can influence the risk of developing MPN (Hinds et al., 2016; Kilpivaara et al.,
2009; Tapper et al., 2015). Second, evidence in the literature showed some familial clustering of
mastocytosis cases (Broesby-Olsen et al., 2012; Hartmann et al., 2005; Molderings et al., 2013;
Zanotti et al., 2013) which suggested a heritable component in this disorder. Given these lines of
evidence, it was hypothesised that germline factors influence the risk of developing mastocytosis
and that these factors would be identified by a GWAS. To this end, a two-stage case-control
GWAS of mastocytosis was conducted in five European populations which consisted of 1,035
patients with KIT?®1%V-positive disease and 17,960 healthy controls. This represents the first two-
stage mastocytosis GWAS and the largest cohort assessed to date. According to these sample
sizes the study was estimated to have 80% power to detect common SNPs (MAF=0.4) with a

relative risk of 1.56 and rare SNPs (MAF=0.1) with a relative risk of 1.82.

The mastocytosis GWAS identified three genome-wide significant SNPs that replicated in
independent cohorts without evidence of heterogeneity, thus providing strong evidence that
inherited common genetic variants increase the risk (OR<1.52) of developing mastocytosis in
European populations. To begin to understand how these SNP predispose to mastocytosis, a
range of in silico analyses (functional and epigenomic annotation, eQTL and mQTL in blood) which
identified TEX41, CEBPA and TBL1XR1 as the potential target genes involved. The involvement of
these genes in mastocytosis was discussed in detail in Chapter 3. The association between
reduced expression of CEBPA and rs4616402 is likely to promote a cellular environment that is
more favourable to mast cell growth. Based on its known roles in normal and abnormal
haematopoiesis, CEBPA is a very strong candidate that is ripe for evaluation in model systems in
conjunction with mutant KIT. On the other hand, the potential role of TEX41 and TBL1XR1 in
mastocytosis was less clear. A separate gene-based analysis of the stage 1 data identified VEGFC
as an additional significant gene after correcting for multiple testing. A recent study has shown
that VEGFC is significantly expressed in mastocytosis patients (Marcella et al., 2021), and the link
between VEGFC and mastocytosis deserves further investigation. A small single-stage GWAS with
only 234 cases has recently reported several genetic variants predisposing to systemic

mastocytosis (Nedoszytko et al., 2020). Of these (Table 2.11), only one association was confirmed
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in our GWAS (rs1800925, P-valu€imputea=0.008). This observation supports the critical importance

of robust replication to confirm the signals identified in the discovery stage.

Despite producing novel findings, my GWAS had some limitations. The sample size for both the
discovery and replication cohorts was small compared to most published studies in other
conditions, but it is important to reiterate that mastocytosis is a rare disease (prevalence 1-
9/100,000). Given the constraint on the sample size, more effort with a larger sample size would
be statistically more powerful and probably generated more significant results. In addition, it
would have been highly desirable to have had cohorts with much more complete annotation to
enable a more systematic comparison between associated SNPs and clinical features, outcomes
and laboratory data. For some of the populations | studied this information was not available,

either because it had not been collected or due to constraints with regard to patient consent.

It is known that large-scale genomic studies, such as GWAS, have predominantly been performed
in European (52%) and Asian populations (21%) (Sirugo et al., 2019). Some populations (e.g.,
African, Hispanic and other minority groups) are under-studied and under-represented in genomic
databases (Popejoy and Fullerton, 2016). Several examples in the literature have demonstrated
that novel risk variants can be identified through GWAS in ethnically diverse populations
(Adeyemo et al., 2019; Bick et al., 2020; Kilpeldinen et al., 2019). For example, a GWAS performed
to investigate inherited predisposition to T2D in Africans confirmed several known markers and
identified a novel ZRANB3 locus predisposing to T2D (Adeyemo et al., 2019; Bick et al., 2020;
Kilpeldinen et al., 2019). This variant is specific to Africans and would had not been discovered in
studies performed only with persons of European ancestry. Such variants can be identified only in
certain populations either because some variants have a higher frequency or are only present in
those populations, or markers can have significant differences in LD across different ethnicities
(Sirugo et al., 2019). One relevant study performed by Bick et al. identified three TET2 variants
associated with CHIP status, and one specific locus (rs144418061) was specific to individuals of
African ancestry. This SNP was presented in Chapter 2 (Table 2.10) when the stage 1 results were
scrutinised to see if associations from the stage 1 data were seen with other SNPs that predispose

to MPN or CHIP (Bao et al., 2020; Bick et al., 2020).
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The under-representation of certain populations from genetic research will ultimately lead to
persistent bias when discoveries are translated into clinical applications. For instance, the
derivation of polygenic risk scores (PRS) from European-based studies may be inaccurate in
under-studied populations. PRS is a common tool for predicting the genetic predisposition to a
disease. The score represents a metric based on cumulative effect sizes of large numbers of
common SNPs discovered by GWAS and it can be used to stratify population into individuals that
have a higher or lower risk of developing the trait of interest (Lambert et al., 2019). It has been
claimed that these tools can result in cumulative risks that are comparable to monogenic disease
for some conditions and this emphasises their potential utility in clinical practice and the need for
more focus on other populations (Khera et al., 2018; Peprah et al., 2015). My study was not
sufficiently powered to identify a large number of associated SNPs that would be required for a
mastocytosis PRS, but larger studies that include clinically annotated, ethnically diverse groups
should be considered in future mastocytosis GWAS to facilitate the identification of new genetic

variants associated with this rare blood cancer.

In Chapter 2 the criteria for selection of SNPs to take forward in stage 2 were outlined (Section
2.2.10). The most significant SNPs and less significant index SNPs mapping close to a list of
functionally relevant genes (Appendix Table A.2) were selected for further analysis. This strategy
aimed to maximise the selection of likely relevant SNPs whilst minimising the number that were
selected for analysis at stage 2, both for reasons of cost but also statistical power taking into
account the need to correct for multiple testing. However, this strategy may have overlooked
important SNPs due to lack of relevant knowledge at the time. For example, a recent study on the
immunoregulatory roles of members of the human leukocyte immunoglobin-like receptor (LILR)
family identified LILRB3 as a novel myeloid checkpoint receptor with immunosuppressive
functions (Yeboah et al., 2020). Members of the LILR family are categorised in activating subfamily
A (LILRA1-6) or inhibitory subfamily B (LILRB1-5) (van der Touw et al., 2017). The stage 1 results of
the mastocytosis GWAS identified an intergenic SNP rs422948 (P-value = 2.2x10*) located on
chromosome 19 between LILRA6 and LILRB5. LILRB3 could potentially be relevant to mastocytosis,
and with this knowledge of functional relevance, rs422948 would have certainly been selected in

our GWAS for replication and should be considered for future replication studies.

Reproducibility has always been key in the scientific method, and replication in GWAS has been
highlighted to improve the credibility of the study while controlling for biases and spurious
associations (Kraft et al., 2009). The Manhattan plot of the stage 1 meta-analysis (Figure 2.8)

showed consistent signals on chromosome 4 and 11, which serve as a good example to illustrate
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why replication is so important. The most significant SNP on chromosome 11 and its backup SNP
failed genotyping in stage 2 cases, but should be considered for inclusion in future studies. The
most significant SNP on chromosome 4 (rs6820170, P-value=9.3x107) and its backup SNP
(rs11131764, P-value=1.58x10) were both selected for replication. rs6820170 was successfully
genotyped in all five stage 2 cohorts; however, it was not significant in any of them. It is possible
that the variant is population-specific, which could explain the high heterogeneity identified
between cohorts (1°=68.78) and the failure of replication. Alternatively, it is possible that the
association seen at stage 1 was simply a random sampling effect which would also be consistent
with the high heterogeneity between cohorts. This result from Chapter 2 makes it clear that the
lack of replication can lead to false positive results and highlights the importance of confirming
signals that have been identified at the discovery stage. It is strongly recommended to always

include independent replication cohorts in GWAS.

The statistical analysis outlined in Chapter 2 also identified an interesting suggestive association
between mastocytosis and rs58124832 (P-valuemes=9.03x10°, Appendix Table A.6), a SNP that our
eQTL analysis showed to be associated with TPSAB1 and TPSB2 expression (Lloyd-Jones et al.,
2017; VGsa et al., 2018b) in blood. This association is also supported by the gene-based test
analysis presented in Chapter 3, which identified TPSAB1 as the second most significant gene (P-
value=2.3x10", Table 3.5); however, it did not maintain significance following Bonferroni
correction. The same SNP has also been associated with TPSAB1 duplication (Lyons et al., 2018),
and importantly a study has recently linked TPSAB1 to mastocytosis (Greiner et al., 2021). Our
current analysis does not include copy number analysis of TPSAB1 in mastocytosis patients, but
these important findings have generated further questions on whether rs58124832 and TPSAB1
copy number are correlated in KIT?®-positive cases and what the mechanism behind it might be.
As a result of this observation, further investigation is needed to explore the relationship between
KITP®®Y and TPSAB1 duplications in mastocytosis patients. In the context of the gene-based test
analysis, VEGFC was the only gene significantly associated with mastocytosis after adjusting for
multiple corrections. It is important to reiterate that the test was performed using the stage 1
summary statistics and to note that this association should be tested in an independent

mastocytosis cohort.

A set of new human cell lines called ROSA*TWTand ROSANTP818V gre cell lines of MC established

from normal haematopoietic progenitors (Saleh et al., 2014). ROSA has been shown to be a
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valuable tool in mastocytosis studies (Marcella et al., 2021) and its use would facilitate the
investigation of genes selected in this study as well as responses to targeted drugs. The majority
of mastocytosis patients (over 90%) carry the KIT?®1V mutation and only limited treatment options
targeting this mutation are effective and available; midostaurin (Arock et al., 2015) and avapritinib
(ClinicalTrials.gov Identifier: NCT03580655, DeAngelo et al., 2021). Further validation of the genes
identified by the GWAS as well as more detailed studies to link genetic variation with specific
clinical features will help to better understand the pathogenesis of this disease and might
potentially aid the development of targeted therapies that could also be effective for KIT°86V-
negative patients. For example, my study linked TPSAB1 to mastocytosis, and tryptase encoded by
TPSABI1 is a potential therapeutic target (Caughey, 2016).

The second part of my study focused on the potential of large population-based genomic datasets
to yield new information that is relevant to cancer. Regions of aUPD are known contributors to
cancer since they are associated with driver gene mutations in both haematological malignancies
and solid tumours (Score and Cross, 2012; Torabi et al., 2019; Tuna et al., 2012; Walsh et al.,
2008). The discovery of recurrent regions of UPD9p, for example, facilitated the identification of
JAK2V®1F mutation in MPN patients (Tiedt et al., 2005). The search for common regions of aUPD
has been used as a research tool to identify many driver genes. However, the presumptive target
gene or genes remains unidentified for many regions of aUPD. WES datasets were utilised to
develop an effective method for detection of regions of Al (CNV and CNN-LOH), working under
the hypothesis that uncovering novel and recurrent region of aUPD would facilitate the

identification of novel drivers of myeloid neoplasms.

Based on the results presented in Chapter 4, it can be concluded that using WES data, more than
250,000 samples from older individuals are needed to identify novel recurrent regions of aUPD in
association with CHIP and haematological malignancies. In my study, novel recurrent Al regions
were not identified, and JAK2'%'’F was the only causing-disease mutation associated with aUPD
identified in the Schizo-WESO02 cohort. Regions of aUPD with unknown driver genes were only
detected in single samples, which due to the size of Al regions makes it challenging to shortlist

potential somatic mutations.

In the effort to identify novel Al regions, some challenges were encountered. Specifically,
following QC, most markers were removed due to MAF<0.01, leaving with an average marker

density per sample of only 23,000 in the Schizo-WES02 cohort and 36,000 in UKB-WES50 (Table
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4.8). This ultimately could explain what makes WES data much less sensitive than arrays and why
Al regions could be identified in only 0.3% of samples. This frequency is much lower than
expected. The rationale behind retaining only common SNP was to make the data available more
similar to the SNP array data. However, it is known that the power to identify likely aUPD regions
is dependent on the number of variants, and as a result of this observation, the MAF filter should
be reassessed. A further investigation would be beneficial to avoid a drastically reduced number
of markers and instead guaranteeing that only high-quality markers are kept. This would enable

accurate calculation of VAF and calling of Al regions.

The limitations observed in the analysis presented in Chapter 4 allow the opportunity to consider
alternative approaches for identifying Al regions. The adoption of software developed specifically
for WES data (e.g. ExomeAl and hapLOHseq) seems to be a plausible solution to explore whether
a genomic resolution more similar to the SNP array could be reached (Nadaf et al., 2015; San
Lucas et al., 2016). For instance, a tool initially developed for SNP array data (hapLOH) has also
been implemented for the detection of Al from WES data (hapLOHseq) and it can discriminate
between CNV-LOH and CNN-LOH (San Lucas et al., 2016; Vattathil and Scheet, 2013). The
hapLOHseq algorithm identifies Al events of 10 Mb or more in 16% of samples using WES data
with depth coverage of 80x (San Lucas et al., 2016) and has been used in some very recent studies
to determine regions of Al (Lee et al., 2020; Semaan et al., 2021; Sivakumar et al., 2021). As
described in the methods of Chapter 4 (Section 4.2.2), the Schizo-WES02 has a mean coverage of
90x (Ganna et al., 2016). Thus, the sequencing depth would be sufficient to accurately detect Al
regions in a greater number of samples. This approach might help in the future to overcome the
limitations that were encountered with BAF segmentation. The use hapLOHseq and ExomeAl
could also be an interesting opportunity to compare the performance of BAF segmentation versus

other tools that have been developed for WES data.

The gg score described in Chapter 4 has helped to identify with high confidence Al regions from
the Schizo-WESO02 and part of the UKB-WES50 datasets. However, regions identified in both
datasets were not combined. To increase the power of the study to detect new somatic
signatures in the genome, the gg score could be applied to the entire UKB-WES50 cohort and
additional datasets from public databases. Furthermore, integrating the results from different

sample sets will represent a valuable resource to detect other recurrent regions of Al to screen for
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novel driver genes. Application of these tools to new, rapidly growing WGS datasets will provide

much greater resolution and power to detect new abnormalities.

In conclusion, this thesis presents different genetic approaches to better understand genetic
factors associated with myeloid neoplasms. First, | presented the results of a GWAS investigating
the inherited predisposition to mastocytosis. Following this analysis, novel genetic variants
associated with mastocytosis were identified, and several genes that emerged from this work
were nominated for further investigation. In the second part of my work, | took advantage of WES
datasets to develop a method that could aid the identification of Al regions. | highlighted the
limitations that were encountered in both studies and provided potential avenues for future
research. This is an exciting time to be studying cancer genomics since the advancement of
powerful genomic technologies and large population biobanks have enabled the scientific

community to pave the way toward personalised medicine.
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Appendix A  Supplementary Data for Chapter 2 and 3

Table A.1 Genome-wide significant results caused by AT/GC unresolved strand issues

CHR BP SNP Al A2 P CHR BP SNP Al A2 P CHR BP SNP Al A2 P
6 153316274 rs6553229 C G 2.526-189| 16 48204078 rs61739606 T A 1.146-65| 11 59132798 rs7941190 C G  3.19E-44
13 95903610 rs7335275 T C  3.136-122] 1 54681920 rs13571 cC G 2.60E-65] 3 39373902 rs2853699 C G  1.53E-43
5 3266396 rs1661068 T C  3.00E-118] 17 29159404 rs999796 G C 8.416-65| 15 89169703 rs8026929 C G  1.84E-43
1 159969008 rs6676862 C T  6.00E-118] 4 100274157 rs4147541 G C 3.826-64| 1 119575818 rs3790549 C G  1.55E-38
2 104115536 rs6736012 T C 3916-96] 9 90501514 rs4076794 C G 4196-64] 8 6464034 rs2454518 C T  3.21E-38
6 107929025 rs9373956 G A 2.746-95] 1 26608896 rs757886085 C G 459E-64| 5 113279595 rs6894635 A G  3.30E-38
11 16300057 rs16932876 T C 5.316-89| 6 152647681 rs2306916 T A 5.56E-64| 19 44833851 rs4280359 C G  1.03E-37
1 29475394 rs2230677 G C 1.80E-86| 12 96292170 rs75959092 C G 7.436-64| 8 133733145 1510216529 A G  2.97€-37
5 66139238 rs2441109 A G 3.346-86| 19 19823270 rs12973901 T A 1.266-63] 16 88781614 rs1058158 G C  6.68E-37
5 71331087 rs7711863 A C 1.266-79] 11 55563336 rs76383258 A T 2.946-63| 19 34584137 rs574004 A G  5.30E-36
14 39556185 rs8018720 C G 3686-77] 8 6118677 rs7834259 A G 5.776-63] 1 236700807 rs1126407 A T  2.05€-35
4 7802227 rs28406288 G C 6.09€-77| 11 56237722 rs605734 T A 9.636-63| 19 37677748 rs45626541 T A  1.30E-34
3 102157365 rs6784362 A T 886E-77] 5 53815240 rs61739378 G C 1.666-62| 15 40655845 rs1898883 G C  5.54E-34
2 128379563 rs61744148 C G 1.086-76| 7 102574920 rs1057066 G C 2.336-62] 1 153390542 rs3006412 G C  1.50E-33
7 21628242 rs62441683 C G 493E-76] 14 55448409 rs61741224 G C 2656-62] 5 9021310 rs1598826 C T  1.24E-31
17 48595988 rs8064455 G C 5.026-76] 11 55999950 rs12221615 G C 2.686-62| 7 130413311 153909552 C T  1.68E-31
5 129040056 rs11749126 A T 1.276-75| 12 32137512 153759299 C G 2.896-62| 11 34378381 rs1925368 G C  2.01E-31
5 122685727 rs1047437 C G 1.336-75| 9 100823135 rs1058446 G C 2936-62| 18 28611061 rs276937 A T  8.24E-31
19 36303664 rs3848666 G C 1.796-75| 6 29589666 rs29220 cC G 1.836-61] 2 225588620 rs388591 A G  2.35€-30
6 36446975 rs2239808 G C 2.246-75| 11 5021055 rs61734126 C G 2.76E-61| 1 179562740 rs61310274 G C  1.15E-29
14 39722023 rs10134365 G C 2.386-75| 15 75498744 rs1873379 G C 3936-61| 6 32636866 rs3134996 T A 2.73E-29
3 38633923 rs11708996 G C 3.526-75| 7 150935430 rs3748098 G C 3.166-59| 2 165476253 rs61748245 T A 5.33E-29
20 43836173 rs2301366 T A 4.796-75| 3 124731689 rs78680419 T A 5.676-59| 3 195515617 rs2641776 C G  3.47E-28
8 130572110 rs10956483 G C 8376-75| 5 75591710 rs2270927 C G 5.936-59| 11 124440362 rs55861866 C G  5.56E-28
19 58213773 rs2188736 G C 1.01E-74] 19 38378539 rs10422056 C G 2.586-58| 9 112398754 rs1358917 G A 1.70E-27
9 133936571 rs3739510 G C 1.176-74] 17 649505 rs4968104 T A 2.946-58| 22 25601196 rs9608378 G C  2.82E-26
6 4087934 rs619483 G C 1.596-74] 19 57839567 rs1968090 A T 3.606-58] 4 100516022 rs2306985 C G  4.95E-26
19 5778517 rs2305925 A T 1.69E-74] 16 64453857 rs9673844 C T 1.456-57] 11 34483894 rs554576 A T 7.16€-24
12 53189696 rs28721426 C G 4236-74] 6 96053922 rs35772543 T A 1.866-56| 15 42371752 rs4924618 A T  3.64E-23
5 151775064 rs4958535 C G 5.83E-74] 6 32680640 rs7764856 T A 7.716-56| 5 66538400 rs11951571 A G 5.74E-23
17 35743010 rs1714987 C G 6.356-74| 14 21993638 rs2242527 G C 7.74E-56] 1 206231264 rs33985287 A G 7.13E-23
11 20648364 rs3740870 G C 6.426-74] 7 135082953 rs77841106 G C 7.866-56| 16 4790204 rs61731839 C G  1.77€-22
6 31842598 rs12661281 T A 8.94€-74| 5 134364518 rs479632 C G 1.21E-55 1 19565344 rs709683 C G 231E-22
7 139138950 rs17160911 C G 8.96E-74| 11 124789828 rs78859654 A T 1.576-55| 7 158117269 rs10949716 A G  4.42E-20
11 5510598 rs7950082 A T 9.056-74] 17 4689313 rs2279961 G C 8.396-55| 12 11339020 rs35969491 A T  6.56E-20
5 145894896 rs7709485 G C 1.196-73| 20 47246077 rs3936192 C G 3.736-54] 14 93005721 rs10498634 A G  9.08€-19
7 105615426 rs34426483 G C 1.266-73| 3 14174427 154685076 A T 4.77€-54] 16 5294643 rs2333764 T C  6.53E-18
7 89938588 rs7803620 G C 1.76E-73] 20 746197 rs35655964 G C 4.226-53| 20 57538175 rs16982339 G A  2.32E-17
11 56000403 rs10791893 G C 4.426-73] 6 37990758 rs259678 G A 3.24€-52] 9 136494425 rs2519765 T C  2.55€-17
8 101648164 rs2187016 C G 5.40E-73] 12 9346792 rs12230214 G C 7.426-52] 13 106477029 rs7981276 T C  6.42€-17
21 48063476 rs10854485 G C 9.046-73] 11 993907 rs11538725 C G 8.26€-52| 17 61901197 rs2727288 A T 9.97€-17
7 139415775 rs7456421 G C 1.256-72| 22 31535872 rs2074735 G C 1.226-51| 2 98844674 rs7601049 G C  4.65E-16
11 62911079 rs1939748 C G 2.726-72| 9 116132092 rs818711 G C 1.236-51| 1 223949314 rs28370127 C G 8.12E-16
17 42164885 15228757 C G 1.506-71] 9 131588888 rs6478854 G C 3.126-50] 7 141673345 rs713598 C G 8.61E-16
17 7606722 rs7640 cC G 2.44€-71| 17 71197323 1562621249 G C 6.386-50] 4 40722850 rs2200061 A G 2.12€-15
9 1056959 rs17641078 G C 2.956-71| 19 12154799 1567102109 G C 3.33g-49] 7 129979092 rs7797072 T C  1.31E-14
11 108044091 rs4144901 T A 1.976-70] 3 107417178 rs11918431 A T 1.50€-48| 15 37163043 rs1450421 A G 2.94E-14
19 8160897 rs12150963 G C 2016-70| 12 122689181 rs7136356 C G 1556-48] 6 52112717 rs608137 T C 1.23E-13
4 110914427 rs4698803 T A 4.06€-70] 20 62492922 rs2281534 T A 2.836-48| 12 127402542 151683733 A G 3.41E-13
19 7606908 rs17854645 G C 4.346-70| 16 71509796 rs8050871 G C 3.336-48| 17 60810875 rs35432569 C T  1.26E-12
16 57738810 rs58373934 T A 5.376-70| 2 238247734 rs36104025 C G 8.09€-48| 11 21240934 rs1791869 C T 4.67E-12
20 40805278 rs733976 G A 2.406-69] 8 68421768 1517853192 G C 1.806-47| 13 75339229 rs2094437 T C 201E-11
6 6728616 rs9504905 A G 5.396-69| 6 38953292 rs4380739 G A 2.396-47| 11 19189086 rs10833066 G T  3.58E-11
17 4574751 rs9436 T A 3.016-68| 10 81697868 rs3088308 A T 5.796-47| 11 8947283 rs3751066 C G  4.33E-10
7 7545691 rs10486176 G C 7.036-68] 1 161161284 rs41270041 G C 1.69€-46] 14 96777468 rs3759601 G C  3.25€-08
2 238243464 rs2270669 G C 4.98E-67] 12 121615131 52230911 C G 2.376-46| 22 41726053 rs4822021 A G 4.19E-08
3 169539812 rs61738871 C G 5.31E-67| 21 45945648 rs35028190 G C 1.53€-45
11 94326765 rs57607909 G C 7.766-67| 11 6644427 rs35599968 C G 3.41€-45
14 75248652 rs45617140 C G 5.506-66| 1 214818223 rs3748693 T A 5.20E-45

The table lists the extremely significant results obtained during the preliminary analysis, when the AT/GC
strand check is not addressed.
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Table A.2 List of genes with functional relevance
Gene Evidence for biological relevance
selected
BMP2 J. Cancer genetics and cytogenetics: Bone morphogenetic protein antagonist gene NOG is involved in myeloproliferative disease associated with
myelofibrosis.
CAMK2D Reactome: RET signaling
CCND1 GO: regulation of protein kinase activity; KEGG: Acute/Chronic myeloid leukaemia
CCNG1 GO: regulation of cyclin-dependent protein serine/threonine kinase activity
CDH5 J. Cancer: Derivation of a new haematopoietic cell line with endothelial features from a patient with transformed myeloproliferative syndrome: a case
report.
CDK6 KEGG: Chronic myeloid leukaemia
Civic: AML with mutated CEBPA' is a provisional entity in the WHO classification of AML and is recommended to be tested for in patients with AML.
CEBPA mutations are particularly associated with cytogenetically normal AML (CN-AML). CEBPA mutations are associated with a favourable prognosis,
CEBPA however, NPM1 and FLT3 mutations should also be assessed in CN-AML patients as concurrent mutations may have prognostic implications. HPO: Acute
myeloid leukaemia
Entrez: MIST is a member of the SLP76 family of adaptors (see LCP2, MIM 601603; BLNK, MIM 604515). Swiss-Prot: MIST plays a role in the regulation of
CLNK immunoreceptor signaling, including FC-epsilon R1 (see FCER1A, MIM 147140)-mediated MC degranulation (Cao et al., 1999 [PubMed 10562326];
Goitsuka et al., 2000, 2001 [PubMed 10744659] [PubMed 11463797]).[supplied by OMIM, Mar 2008]
DRD2 Go: activation of protein kinase activity
DUSP5 Reactome: RET signaling
EBPA Reactome: RET signaling
EPHA4 GO: positive regulation of protein tyrosine kinase activity
ERBBA4 Reactome:R-HSA-1433557, Signaling by SCF-KIT. Swiss Prot: Binding of a cognate ligand leads to dimerisation and activation by autophosphorylation on
tyrosine residues. In vitro kinase activity is increased by Mg(2+). Inhibited by PD153035, lapatinib, gefitinib (iressa, ZD1839), AG1478 and BIBX1382BS.
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Gene Evidence for biological relevance
selected
FYN Reactome: Regulation of KIT signaling
FZD8 GO: positive regulation of JUN kinase activity
GFRA1 GO: RET signaling
Entrez Gene: Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. This encoded protein may play
HDACY a role in haematopoiesis. Journal Leukaemia & lymphoma: Increased gene expression of histone deacetylases in patients with Philadelphia-negative
chronic myeloproliferative neoplasms.
Entrez Gene: Histamine is a ubiquitous messenger molecule released from MCs, enterochromaffin-like cells, and neurons. Its various actions are mediated
HRH1 by histamine receptors H1, H2, H3 and H4. The protein encoded by this gene is an integral membrane protein and belongs to the G protein-coupled
receptor superfamily. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jan 2015]
Entrez Gene: Bruton tyrosine kinase (BTK) is a protein tyrosine kinase that is expressed in B cells, macrophages, and neutrophils. The protein encoded
by this gene binds to BTK and downregulates BTK's kinase activity. This gene has a pseudogene on chromosome 18. Alternative splicing results in
multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2014]. Swiss Prot: Acts as an inhibitor of BTK tyrosine kinase activity,
IBTK thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilisation and
NF-kappa-B-driven transcription.
Entrez Gene: The jagged 1 protein encoded by JAG1 is the human homolog of the Drosophilia jagged protein. Jagged 1 signalling through notch 1 has also
JAGI been shown to play a role in haematopoiesis. [provided by RefSeq, Jul 2008]. Swiss Prot: Ligand for multiple Notch receptors and involved in the mediation
of Notch signaling. May be involved in cell-fate decisions during haematopoiesis.
KCNJ2 DISEASES| |[HGMD | | GeneCards: chronic myeloproliferative disorder
KIAA1804 GO: activation of JUN kinase activity
LRRC4C GO: negative regulation of protein kinase activity
LRRK1 Swiss Prot: Binding of GTP stimulates kinase activity.
LRRTM4 GO: negative regulation of protein kinase activity
UniProt: Receptor with a tyrosine-protein kinase activity. The exact function of this protein is not known. Studies with chimeric proteins (replacing its
1Tk extracellular region with that of several known growth factor receptors) demonstrate its ability to promote growth and cell survival. Signaling appears

to involve the PI3 kinase pathway.
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Gene Evidence for biological relevance
selected
MMP2 J. Cancer research: The effect of CXCL12 processing on CD34+ cell migration in myeloproliferative neoplasms.
NOG J. Cancer genetics and cytogenetics: Bone morphogenetic protein antagonist gene NOG is involved in myeloproliferative disease associated with
myelofibrosis.
NRTN Reactome: RET signaling
PAQR3 Reactome: RET signaling; GO: negative regulation of MAP kinase activity
Tocris: Platelet-derived growth factor receptors (PDGFRs) are catalytic receptors that have intracellular tyrosine kinase activity. They have roles in the
PDGERA regulation of many biological processes including embryonic development, angiogenesis, cell proliferation and differentiation; Reactome: RET signalling.
HPO: Myeloproliferative disorder
Entrez Gene: The protein encoded by this gene is a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. The
identity of the growth factor bound to a receptor monomer determines whether the functional receptor is a homodimer (PDGFB or PDGFD) or a
PDGERB heterodimer (PDGFA and PDGFB). A translocation between chromosomes 5 and 12, that fuses this gene to that of the ETV6 gene, results in chronic
myeloproliferative disorder with eosinophilia. [provided by RefSeq, Aug 2017]; Reactome: RET signalling. HPO: Myeloproliferative disorder
PLA2G4A BioSystems: Fc-epsilon receptor | signaling in mast cells
PPEF2 GO: regulation of MAP kinase activity
UniProt: Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the
regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron
growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. During cytokinesis, forms a
PRKCE complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA.
In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2.
UniProt: Functions as a calcium- and diacylglycerol (DAG)-regulated nucleotide exchange factor specifically activating Ras through the exchange of
bound GDP for GTP (PubMed:15899849, PubMed:23908768). Regulates T-cell/B-cell development, homeostasis and differentiation by coupling T-
lymphocyte/B- lymphocyte antigen receptors to Ras (PubMed:10807788, PubMed:12839994). Functions in MC degranulation and cytokine secretion,
RASGRP1 regulating FcERI-evoked allergic responses (By similarity). May also function in differentiation of other cell types (PubMed:12845332); Reactome: RET
signaling
RASSF2 GO: positive regulation of protein kinase activity
RBBP6 J. Blood: Germline RBBP6 mutations in familial myeloproliferative neoplasms.
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Gene Evidence for biological relevance
selected
RGMA DISEASES| |[HGMD | | GeneCards: Leukaemia, Acute Myeloid
S0OX9 GeneCards| |OMIM| | ClinVar| |Orphanet| | Swiss-Prot| | GeneTests| |[HGMD | | Novoseek | | DISEASES: chronic myeloproliferative disorder
SYT1 HGMD | | GeneCards| | DISEASES: Mast-Cell Leukaemia
TACCI J. Cancer genetics and cytogenetics: Combined translocation with ZNF198-FGFR1 gene fusion and deletion of potential tumor suppressors in a
myeloproliferative disorder.
TBLIXR1 Orphanet| | DISEASES: Leukaemia, Acute Promyelocytic, Somatic
TLE1 GeneCards: Core Binding Factor Acute Myeloid Leukaemia
Entrex gene: Tryptases comprise a family of trypsin-like serine proteases, the peptidase family S1. Beta tryptases appear to be the main isoenzymes
expressed in MCs; whereas in basophils, alpha tryptases predominate. [provided by RefSeq, Jul 2008]; HGMD| | GeneCards| | Novoseek:
TPSABI Systemic/Cutaneous Mastocytosis and Mast cell Disease. Swiss Prot: Tryptase is the major neutral protease present in MCs and is secreted upon
the coupled activation-degranulation response of this cell type.
TPSDI UniProt: Tryptase is the major neutral protease present in mast cells and is secreted upon the coupled activation-degranulation response of this cell
type.
TRIM27 GO: negative regulation of protein kinase activity
VEGFC GO: positive regulation of mast cell chemotaxis
YSK4 GO: activation of protein kinase activity
ZBTB20 UniProt: May be a transcription factor that may be involved in haematopoiesis, oncogenesis, and immune responses (PubMed:11352661).
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Table A.3  All regions of Al for one sample ID:10138
Chr | Start End StartSNP EndSNP mBAF HetRate | Median LRR BpSize NbrSNPsMBAF NbrSNPsFull
1 1222596 1305561 exm2135 rs17160669 0.81 0.08 -0.36 82966 12 144
1 11850927 11863057 rs2274976 rs2066470 0.63 0.21 0.08 12131 8 38
1 97743805 98050656 rs641805 rs2811205 0.63 0.06 -0.39 306852 16 287
1 103165230 | 103578334 | rs6684108 rs7543626 0.83 0.03 -0.56 413105 4 119
2 116894086 | 116905270 | rs7579948 rs11903740 0.7 1 -0.15 11185 4 4
5 74798156 75514986 rs10055011 rs11960832 0.58 0.12 -0.06 716831 28 237
6 29782470 29789190 exm-rs1736959 | exm-rs1610678 0.62 0.71 0.3 6721 12 17
6 32428285 32652359 exm-rs6903608 | rs3021058 0.6 0.46 0.01 224075 66 143
6 42932200 43013046 exm547609 exm548040 0.67 0.06 0.2 80847 5 90
6 57761561 62673145 rs4236163 rs1192457 0.88 0.05 -0.24 4911585 8 151
8 144946092 | 145003862 | exm728897 exm729894 0.77 0.09 -0.37 57771 12 141
9 140093908 | 140141794 | exm802290 rs11497277 0.85 0.07 -0.07 47887 7 106
11 1017085 1018657 exm873676 exm873963 0.87 0.18 0.22 1573 7 39
12 80699475 81074138 exm1023804 rs11114567 0.85 0.09 -0.53 374664 13 140
14 48847571 49140883 rs1905824 rs946626 0.69 0.06 -0.34 293313 4 68
16 825003 855732 exm1199126 exm1199724 0.84 0.04 -0.2 30730 4 109
16 1538464 1559399 rs2745103 rs3829558 0.76 0.13 -0.33 20936 5 38
16 3598190 3763179 exm1211487 rs129988 0.81 0.02 -0.06 164990 4 221
17 19648316 21189598 exm1303404 rs1466314 0.85 0.01 -0.01 1541283 4 285
20 8186186 8206986 rs6055645 rs6133556 0.74 0.5 -0.42 20801 4 8
22 38065655 38822300 rs12628135 rs196057 0.58 0.19 0.05 756646 72 387
X 2655180 28817458 rs11575897 rs9786224 0.64 0.74 -3.96 26162279 1028 1389

158



Appendix A

The whole file contains all the regions of Al for each sample that was run through BAF segmentation. Each row of the table contains information for each segmented region identified as
Al. The information are reported in each column as follows: Chr: chromosome; Start: start of the Al breakpoint; End: end of the Al breakpoint; StartSNP: SNP name where the breakpoint
starts; EndSNP: SNP name where the breakpoint ends; mBAF: mirrored BAF value; HetRate: heterozygosity rate per segmented region; Median LRR: median Log R Ratio of the segment;

BpSize: length of the segmented region measured in base pair; NborSNPsMBAF: number of SNPs used to estimate the mirrored BAF; NbrSNPsFull: count of the total number of SNPs that
are present in the segmented region.
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Table A.4  Per chromosome regions spanned by SNPs

Chr |From SNP To SNP From Location  To Location Length

1 rs4477212 rs12746903 82154 249218992 249136838
2 rs10195681 rs12478296 18674 243048760 243030086
3 rs13060385 rs10433653 61495 197838262 197776767
4 rs13125929 rs3903261 71566 190963766 190892200
5 rs9313223 rs876154 25328 180693127 180667799
6 rs412135 rs12530134 108666 170919470 170810804
7 rs7456436 rs1124425 44935 159119486 159074551
8 rs11780869 rs6599566 164984 146293414 146128430
9 rs10814410 rs9314655 46587 141066491 141019904
10 |rs11252127 rs11528930 98087 135477883 135379796
11  |exm869284 rs12294124 193146 134934063 134740917
12 |rs11063263 exm1054977 191619 133810935 133619316
13 [rs2762261 rs17067959 19058717 115103529 96044812
14 |rs28842485 rs10149476 19255726 107287663 88031937
15  |rs12905389 rs4098905 20071673 102461162 82389489
16  [rs2541696 rs13331261 88165 90274695 90186530
17  [rs2396789 rs9897769 8547 81060040 81051493
18  [rs12455984 rs12960632 13034 78015180 78002146
19  [rs8100066 rs10411093 260912 59097160 58836248
20 |rs6139074 rs10460610 63244 62934877 62871633
21  |rs28971224 rs10483083 10827533 48100155 37272622
22 |rs12157537 rs5771007 16114244 51195728 35081484
Total [2792045802

Chr: Chromosomes; From SNP: first SNP; To SNP: last SNPs; From location: start chromosomic location; To
location: end chromosomic location; Lenght: length of the spanned region. The SNP highlighted in blue was
withdrawn from the Reference SNP (rs) cluster on September 2016 due to mapping or clustering errors
(Sherry, 2001).

160



Appendix A

Table A.5 Sample outliers excluded from BAF segmentation analysis

SAMPLE No Al REGION SumBp/SAMPLE % Al REGION MAX Bp
4008 32 2791706788 99.9879 249130276
803 52 2791327191 99.9743 249136839
4610 73 2791026971 99.9635 245610463
1655 89 2790982747 99.9619 220384060
9689 92 2790769031 99.9543 243025474
9104 130 2790549932 99.9464 199752297
4605 425 2790392927 99.9408 59506200
10543 165 2789021333 99.8917 154390319
MLL_10052 227 2789021961 99.8917 104837652
11709 38 2788193664 99.862 174951592
3075 33 2788155651 99.8607 243009823
10780 56 2784558399 99.7318 197623770
9632 372 2783314323 99.6873 98824831
2889 861 2779204191 99.5401 58168924
8396 2050 2767480533 99.1202 53250172
11694 1793 2763726818 98.9857 33126930
11345 1630 2762154763 98.9294 44259447
1692 1594 2761290069 98.8985 42351605
92 2226 2732432452 97.8649 65718106
3717 2147 2701525209 96.7579 39967087
12057 2100 2698551809 96.6514 36505632
11309 4734 2503132860 89.6523 33243631
6439 3630 1078610906 38.6316 7891910
MLL_09977Ra 3369 784428638 28.0951 25068432

Sample: sample IDs; No Al region: total number of Al regions per sample; SumBp/Sample: sum of the length
of all Al regions per samples; % Al region: percentage of Al per sample; Max Bp: biggest Al region in each
sample. The 19 sample IDs in black were already removed from the analysis because of more than 10% of
missingness. The samples highlighted in blue were identified as outliers and removed from the BAF
segmentation analysis.
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Table A6 GWA:s results from stages 1 and 2 for all SNPs selected for replication

Table A.7  Imputation and analysis of SNPs spanning TERT

Table A.8  Functional annotation for GWAS significant SNPs and their proxies in high LD
(r*>0.8)

Table A.9  Functional annotation for VEGFC lead SNPs and their proxies in high LD (r? 20.8)

Link to view/download the tables
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Table A.10 Methylation quantitative trait loci (mQTL) for rs13077541 in blood.

Appendix A

Trait _ CHR START END Effective_Allele | Effect_Size | Effect_Size_Desc | SE PVAL FDR PMID Sample_Size
cg01132484 -

(chr3:176916496) 176916496 176916496 NA 0.2388288 beta 0.03152906 1.03E-13 0.00000104 27036880 771
cg01132484

(chr3:176916496) 176916496 176916496 NA -0.276544  beta 0.03328853 4.41E-16 2.67E-09 27036880 764
cg01132484 -

(chr3:176916496) 176916496 176916496 NA 0.2825467 beta NA 2.62E-20 2.07E-13 27036880 742
cg01132484 -

(chr3:176916496) 176916496 176916496 NA 0.2996571 beta NA 1.87E-23 1.89E-16 27036880 834
cg01132484 -

(chr3:176916496) 176916496 176916496 NA 0.3387203 beta NA 2.67E-27 2.96E-20 27036880 837
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Appendix B

Supplementary Data for Chapter 4

Table B.1  The 29 likely aUPD events detected in the Schizo-WES02 cohort.
No Bases per Centrom
informat | Noall Bases per informati No ere Dawous's
chr start end mBAF HetRate size ive SNPs SNPs marker ve marker | merged New size coverage overlap ggscore score annotation
1 69270 17264920 0.73 0.36 13211375 229 267 18023.10 20658.79 5 17195650 0.77 0 0.63 62.99 1p
1 865738 18807897 0.69 0.29 17941597 317 355 35874.13 39664.99 4 17942159 1.00 0 0.85 90.34 1p
1 1225959 115258830 0.81 0.65 110878099 129 199 332297.89 544926.43 5 114032871 0.97 0 0.99 81.53 1p
1 12854021 35350573 0.69 0.38 18943245 190 210 54538.36 60735.73 6 22496552 0.84 0 0.67 60.00 1p
1 144220850 248814126 0.69 0.61 102235986 1078 1177 65572.98 69149.21 5 104593276 0.98 0 0.97 644.87 1q
3 118866376 197574936 0.66 0.38 78708561 515 553 142330.13 152832.16 1 78708560 1.00 0 0.97 195.70  3q
4 84230033 190903688 0.72 0.45 104876557 326 346 157849.02 167662.37 2 106673655 0.98 0 0.98 142.63 4q
4 106317429 190903688 0.76 0.41 84584272 296 321 136508.27 148078.71 2 84586259 1.00 0 0.99 12136 4q
7 64023371 158672619 0.76 0.54 91867464 357 851 103204.51 149005.89 5 94649248 0.97 0 0.99 187.81 7q
7 73097654 158851234 0.82 0.43 83827430 511 572 135647.98 149913.77 3 85753580 0.98 0 1.00 214.79 7q
9 116800 5732483 0.74 0.32 5615684 36 40 140392.10 155991.22 1 5615683 1.00 0 0.66 11.52 9p
9 116800 42368628 0.73 0.41 42122921 202 215 176519.29 187985.18 2 42251828 1.00 0 0.98 82.57 9p
9 117877 33798073 0.81 0.38 33680197 144 156 215898.70 233890.26 1 33680196 1.00 0 1.00 5472  9p
9 117934 33676094 0.77 0.45 33498291 127 134 116536.23 123717.30 3 33558160 1.00 0 0.95 57.47 9p
9 289557 21350904 0.73 0.32 21061348 109 115 183142.16 193223.38 1 21061347 1.00 0 0.95 34.88 9p
9 43875942 95887320 0.66 0.33 52011379 125 135 385269.47 416091.03 1 52011378 1.00 0.36 0.53 4125 9q
9 71114312 80932574 0.68 0.26 9818263 98 101 97210.52 100186.36 1 9818262 1.00 0 0.67 25.48 9q
11 193096 48347498 0.75 0.45 45668557 527 577 28505.71 30815.50 6 48154402 0.95 0 0.96 225.74  11p
11 62933774 134244123 0.73 0.42 71310350 554 596 119648.24 128719.04 1 71310349 1.00 0 0.99 232.68 11q
12 119563325 133778796 0.71 0.33 14215472 198 215 66118.47 71795.31 1 14215471 1.00 0 0.89 65.34 12q
13 19751032 115047496 0.61 0.48 92699017 343 356 197277.78 203528.66 2 95296464 0.97 0 0.76 160.15 13q
13 28197436 52971893 0.66 0.36 24774458 153 167 148350.05 161924.56 1 24774457 1.00 0 0.77 55.08 13q
14 30066929 107049080 0.86 0.31 76982152 323 323 238334.84 238334.84 1 76982151 1.00 0 1.00 100.13  14q
14 31354296 107283160 0.72 0.83 75321232 543 543 44380.05 44380.05 4 75928864 0.99 0 0.72 448.43  14q
14 35872926 107283160 0.76 0.78 70983139 578 622 79082.19 82962.93 8 71410234 0.99 0 0.97 448.86  14q
14 91110582 107113968 0.77 0.79 15945703 279 279 26823.58 26823.58 3 16003386 1.00 0 0.61 218.69 14q
17 38634929 81043039 0.63 0.37 42408111 644 679 62456.72 65851.10 1 42408110 1.00 0 0.87 238.28 17q
19 41354606 56520150 0.73 0.36 15165545 23 33  459561.97 659371.52 1 15165544 1.00 0 0.79 8.28 19q
20 29623223 49191228 0.66 0.37 19568006 186 209 93626.82 105204.33 1 19568005 1.00 0 0.71 68.82  20q
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Table B.2

Table B.3

Table B.4

Table B.5

Appendix B

High stringency settings: Al regions identified in the UK biobank exemplar dataset.

Low stringency settings: Al regions identified in the UK biobank exemplar dataset.

gg score system applied to the UKB-WES50 labelled data

gg score system applied to the Schizo-WES02 data

Link to view/download the tables
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Summary

Mastocytosis is a rare myeloid neoplasm characterized by uncontrolled expansion of mast cells, driven in >80% of affected individuals
by acquisition of the KIT D816V mutation. To explore the hypothesis that inherited variation predisposes to mastocytosis, we performed
a two-stage genome-wide association study, analyzing 1,035 individuals with KIT D816V positive disease and 17,960 healthy control
individuals from five European populations. After quality control, we tested 592,007 SNPs at stage 1 and 75 SNPs at stage 2 for
association by using logistic regression and performed a fixed effects meta-analysis to combine evidence across the two stages. From
the meta-analysis, we identified three intergenic SNPs associated with mastocytosis that achieved genome-wide significance without
heterogeneity between cohorts: 154616402 (Pmeta = 1.37 x 107'%, OR = 1.52), 154662380 (Pmeta = 2-11 x 10712, OR = 1.46), and
1513077541 (Pmeta = 2.10 X 107%, OR = 1.33). Expression quantitative trait analyses demonstrated that rs4616402 is associated with
the expression of CEBPA (peqr = 2.3 x 107'%), a gene encoding a transcription factor known to play a critical role in myelopoiesis.
The role of the other two SNPs is less clear: 154662380 is associated with expression of the long non-coding RNA gene TEX41 (peqrL
=2.55 x 10 '!), whereas rs13077541 is associated with the expression of TBL1XR1, which encodes transducin (f)-like 1 X-linked recep-
tor 1 (peqrL = 5.70 X 107®). In individuals with available data and non-advanced disease, rs4616402 was associated with age at presen-
tation (p = 0.009; beta = 4.41; n = 422). Additional focused analysis identified suggestive associations between mastocytosis and genetic
variation at TERT, TPSAB1/TPSB2, and IL13. These findings demonstrate that multiple germline variants predispose to KIT D816V pos-
itive mastocytosis and provide novel avenues for functional investigation.

Introduction

Mastocytosis (MIM: 154800) is an uncommon myeloid
neoplasm characterized by expansion and accumulation
of clonal mast cells in one or more organ systems,
including bone marrow, skin, liver, spleen, and gastrointes-
tinal tract. The extent of organ infiltration and organ
damage serves as the basis for classification as cutaneous

mastocytosis (CM) or systemic mastocytosis (SM).! CM is
typically found in children, while most adults with masto-
cytosis have SM with involvement of the bone marrow. Six
main subtypes of SM are recognized: indolent SM (ISM)
and smoldering systemic mastocytosis (SMM) are relatively
benign forms that usually have a stable clinical course over
many years. In contrast, SM with an associated hematolog-
ic neoplasm (SM-AHN), aggressive SM (ASM), and mast cell
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leukemia (MCL), collectively known as advanced SM
(advSM), are associated with a poor prognosis.” ISM is
the most common of the six subtypes, accounting for
80% of SM-affected individuals.’

Approximately 80%-90% of adult SM-affected individ-
uals across all subtypes test positive for the somatic muta-
tion KIT ¢.2447A>T (p.Asp816Val), usually referred to as
KIT D816V. Due to the nature of the disease, the mutant
allele frequency is often very low, particularly in peripheral
blood samples, and sensitive methods are needed for its
detection.” KIT D816V mutation burden, serum tryptase,
and B2-microglobulin levels correlate with disease burden
and severity,”® and for advSM, additional somatic muta-
tions in SRSF2, ASXL1, and RUNX1 indicate an adverse
prognosis.” !

Mastocytosis is usually a sporadic disorder, but familial
forms have been described, often in association with in-
herited, weakly activating KIT mutations.'*"* Very occa-
sionally, familial clustering of KIT D816V has been
observed, but in all affected individuals, this mutation is
somatically acquired'* and, as a strongly activating
variant, KIT D816V is believed to be incompatible with
normal embryonic development and thus not transmis-
sible through the germline. Other lines of evidence suggest
the possibility of a broader role for genetic variation in
mastocytosis. The presence of germline variants in genes
known to be somatically mutated in myeloid disorders
was one of several factors related to adverse clinical
outcome in SM."" Studies of mast cell activation disease
(MCAD), a disorder that overlaps with SM, indicate a sub-
stantial excess of symptoms in first-degree relatives of
affected individuals, which might suggest a common ge-
netic susceptibility.'*'® Several constitutional genetic var-
iants have been associated with the development of
different mastocytosis phenotypes in relatively small
candidate gene studies'’' and a recent single-stage
genome-wide association study (GWAS) of 234 affected in-
dividuals.** Finally, it has been clearly established that
constitutional genetic variation at several loci predispose
to other myeloproliferative neoplasms (MPN).?>

To determine whether common genetic variation plays
a role in predisposition to mastocytosis, we have per-
formed a robust two-stage GWAS focusing on affected in-
dividuals that tested positive for KIT D816V regardless of
clinical subtype to help ensure a genetically homoge-
neous cohort. We anticipate that the identification of
validated genetic markers associated with mastocytosis
will provide novel lines of investigation to understand
this complex disorder.

Material and methods

Discovery and replication cohorts

Prior to quality control (QC), the stage 1 discovery individuals
consisted of 479 KIT D816V positive mastocytosis-affected indi-
viduals recruited from the UK (n = 329) and Germany (n =

150). These affected individuals were compared with healthy con-
trol individuals from the UK Wellcome Trust Case Control Con-
sortium (WTCCC2, n = 5,200)>° and the German Cooperative
Health Research in the Region of Augsburg study (KORA, n =
4,397), respectively.*® At stage 2, 666 independent KIT D816V pos-
itive replication individuals were recruited from Spain (n = 399),
Denmark (n = 185), and Italy (n = 82) and compared to published
population controls from the Spanish National DNA Bank
(SNDNAB, n = 1,062),>”-*® a Danish study of ischemic heart dis-
ease (Inter99, n = 6,184),””°° and the Italian Invecchiare in
Chianti study (InCHIANTI, n = 1,210).>"*? Participants provided
informed consent for sampling according to the Declaration of
Helsinki. The number of samples that were recruited and used
for analysis after QC in the discovery and replication stages is
shown in Table S1. An overview of the two-stage study
design and sample numbers is shown in Figure S1. All mastocyto-
sis-affected individuals were adults diagnosed via standard
procedures. Further details on the five cohorts are provided in
the Supplemental methods.**

Genotyping

DNA was extracted from peripheral blood or bone marrow. The
stage 1 affected individuals were genotyped for 960,919 SNPs
via Infinium OmniExpress exome chips (version 8_1.4_A1l) and
the Genome Studio software (GSGT version 1.9.4) at the Clinical
Research Facility in Edinburgh. These data are available on
request from ArrayExpress (accession number E-MTAB-9358).
The stage-2 affected individuals were genotyped for 92 SNPs via
custom designed Kompetitive Allele Specific PCR (KASP) at
LGC.** Genotypic data for the control cohorts were obtained
from published studies. In WTCCC2, genotypes were called
with [llumina 1.2M Duo chips and Illumina’s program to call
SNPs with a posterior probability >0.95.** KORA control individ-
ualss were genotyped for 2,443,177 SNPs via the Illumina human
Omni chip (version 2.5-4v1_B) in KORA_A (a subset of follow-up
F3 of the population-based survey KORA S3) and 730,372 SNPs
with Illumina human Omni express chips (version 12v1_H) in
KORA_B (an independent subset of KORA S3/F3). Control indi-
viduals from SNDNAB, Inter99, and InCHIANTI were genotyped
with Illumina Global Screening arrays, Illumina HumanOmniEx-
press-24 (versions 1.0A and 1.1A), and Illumina Infinium Human-
Hap 550K SNP arrays, which include 18, 90, and 45 of the SNPs
selected for replication, respectively. Genotypes for the remaining
SNPs were determined by imputation.

Quality control

Standard GWAS QC measures®® were applied to the genotypic data
with Plink prior to analysis.>® These measures included genotype
missingness (per sample and per SNP), minor allele frequency
(MAF), Hardy Weinberg equilibrium (HWE), heterozygosity
(Figure S2), sex inference, cryptic relatedness, strand orientation,
and population stratification with multidimensional scaling
(MDS) (Figure S3). Since the affected individuals and control indi-
viduals were genotyped separately, SNPs were excluded if they had
modest deviation from HWE in control individuals (p value <
0.001) or extreme deviation in affected individuals (p value <
1 x 107'%), which most likely reflects poor genotyping rather
than disease association.’” The number of SNPs and samples
removed by these QC measures is shown in Table S1. QC and
imputation of the stage 2 control individuals has previously
been described.”®~*? Full details regarding the QC and imputation
procedures are given in the Supplemental methods.
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Figure 1.

Chromosome

Genome-wide association of KIT D816V positive mastocytosis

Manhattan plot showing results from the stage 1 meta-analysis of the UK and German cohorts for all 24 chromosomes. Results are
plotted for 592,007 SNPs tested as —log10 of the meta-analysis p values on the y axis against genomic location on the x axis. One
SNP was identified with genome-wide significance (p value < 5 x 10~%), indicated by the red line, and a further 18 SNPs were identified
with suggestive p values (<1 x 107%), indicated by the blue line. SNPs selected for replication are highlighted in green, and the three SNPs
that reached genome-wide significance after meta-analysis of stages 1 and 2 are highlighted in purple.

Imputation

Imputation of the discovery cohorts was used to increase SNP den-
sity and enable fine mapping around significant loci. SNPs were
imputed with the Sanger imputation server,*® which used EAGLE2
for pre-phasing into the Haplotype Reference Consortium (HRC
release 1.1) and positional Burrows-Wheeler transtorm (PBWT)
for imputation. Imputed genotypes were quality controlled by
exclusion of SNPs with info score <0.80, posterior genotype prob-
abilities less than 0.99, MAF less than 1%, greater than 10%
missing genotypes, or extreme deviation from HWE (p value <
1 x 10719,

Statistical analysis

SNPs were tested for association via binary logistic regression in
Plink. We carried out a fixed effects inverse variance-weighted
meta-analysis by using Plink to combine evidence from the stage
1 cohorts (UK and Germany) and to determine the final effect sizes
and significance levels by combining evidence across stages 1 and
2. Heterogeneity between studies was estimated with the y>-based
Cochran’s Q statistic and the I? statistic, which describes the per-
centage of variation across studies that is due to heterogeneity
rather than chance. To examine the effectiveness of the QC mea-
sures and assess evidence for any systematic biases, we used the
qqnorm and qqgplot procedures in R to construct quantile-quantile
(QQ) plots for the stage 1 analysis of the UK and German cohorts
and the stage 1 meta-analysis (Figure S4). Samples with evidence
of non-Caucasian ancestry were excluded rather than adjusting
the association analysis for population stratification. To examine
the effect of this decision, we retained the ancestry outliers and
repeated the stage 1 analyses with adjustment for the first two prin-
cipal components from the MDS analysis (Figure S5 and Table S2).

We visualized and interpreted the results from the stage 1 meta-
analysis by using the qgman package®” in R to create a Manhattan
plot (Figure 1) and the FUMA software to generate regional plots.*”
Results from the final meta-analysis of stages 1 and 2 were dis-
played in a forest plot with Stata (Figure 2).

The power to detect SNPs associated with SM was estimated with
the genetic power calculator*' under a multiplicative genetic risk
model and a type 1 error rate of 5 x 10~ (Figure S6). We used a
range of genotype relative risks (1.1-2.0) and risk allele frequencies

(MAF 0.05-0.4) to estimate power assuming a disease prevalence
of 1 in 100,000*? and unselected control individuals.

Selection of SNPs for replication

To minimize false positives and the potential for overlooking sig-
nals with compelling functional evidence but modest significance,
we used the following method to select SNPs for follow-up at stage
2. First, we used a clumping procedure in Plink to generate a short-
list of index SNPs (p < 0.001) with support from correlated SNPs
(SNPs 12 > 0.5, within 500 kb and p < 0.01) based on the stage 1
meta-analysis. From this shortlist, 92 index SNPs were selected
for replication, and priority, but not exclusivity, was given to
SNPs that were either located in or flanked by a gene with func-
tional relevance according to annotation from GeneAlacart.*’ Rele-
vant functions were signal transduction components, hematopoi-
esis, myeloid leukemia, and myeloproliferative or mast cell
conditions from GeneAlacart.*® A total of 44 SNPs were selected
with functional relevance. We then infilled the number of selected
SNPs to 82 by selecting the most significant remaining index SNPs.
We selected an additional 10 SNPs were selected as backups and to
add support to the most promising signals in terms of either their
biological relevance, individual significance, or level of support
from correlated SNPs.

Identification of chromosomal abnormalities

We identified regions of acquired uniparental disomy (aUPD) and
copy number gains or losses in the stage 1 SM-affected individuals
by using B allele frequency (BAF) segmentation** followed by post
processing to select likely somatic events as described*® and
manual review of all BAF plots (Figure S7). See Supplemental
methods for further details.

Functional annotation of variants

We explored the biological relevance of regions containing
genome-wide significant SNPs by using HaploReg (version 4.1)*¢
to annotate the lead SNP and its proxies (r* > 0.8) with respect
to histone modification, sequence conservation by using genomic
evolutionary rate profiling (GERP),*” estimated pathogenicity by
using combined annotation-dependent depletion (CADD)
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Summary statistics from these ana-
lyses, which are available from Locus-

6 8 1 12 141618 222
QOdds ratio (95% confidence interval)

scores,*® predicted effect on protein binding by using Regulo-
meDB*’ scores (SNPs scoring <3 are likely to affect binding),
and previous associations with clinical phenotypes by using the
NHGRI-EBI GWAS catalog.®’ Additionally, candidate regions
were annotated against a 15-state chromatin model®' in primary
hematopoietic stem cells (E035) and a myeloid leukemia cell line
(K562). This model categorizes non-coding DNA into active or
repressed states that are respectively enriched and depleted for
phenotype-associated SNPs.>” To gain further functional insight,
we performed expression and methylation quantitative trait loci
(eQTL and mQTL, respectively) analyses on the lead SNP and its
proxies (r* > 0.8) by using GTEx v8°® and QTLbase.’* Finally,
we used LNCipedia®® and the Cancer LncRNA Census (CLC)*° to
investigate the function of long non-coding RNA (IncRNA).

Association with clinical features

Diagnostic and phenotypic variables for initial diagnosis
(advanced, ASM, SM-AHN, MCL; non-advanced, all other sub-
types), the presence or absence of skin lesions (yes or no), gender,
baseline serum tryptase (ng/mL), and age were available for most
of the Spanish (n = 369) and Italian (n = 81) individuals but not
for other cohorts. Three categorical variables (initial diagnosis,
skin lesions, and sex) were tested for association with allelic counts
for the three significant SNPs via Fisher’s exact test. Continuous
variables (tryptase and age) were tested via linear regression
following Kolmogorov-Smirnov checks for normal distribution
and normalization of tryptase levels via quantile transformation.
We used a fixed effects inverse variance-weighted meta-analysis
to combine evidence from the two cohorts.

Results

Discovery stage
After QC of the stage 1 data, 592,007 SNPs were tested for
association with KIT D816V positive mastocytosis via bi-

Zoom, were combined with a fixed

effects meta-analysis.>” The QQ plots

for each analysis and their low
genomic inflation factors (A < 1.038) demonstrate a close
agreement with the null hypothesis until the tail of the dis-
tribution where SNPs with p values less than 10~* become
more significant than expected by chance alone
(Figure S4). Consequently, systematic biases such as the
separate genotyping of our affected individuals and con-
trol individuals, residual population stratification, or
clonal somatic changes are unlikely to account for the sig-
nificance of these SNPs. A Manhattan plot summarizing
the results of the stage 1 meta-analysis is shown in Figure 1.
A total of 18 SNPs were identified with suggestive p values
(p <1x10°%.

Replication and final meta-analysis

According to the number of samples that passed QC and
using a multiplicative disease model, we estimated the
stage 1 analysis to have 80% power to detect common
SNPs (MAF = 0.4) with a relative risk (RR) of 1.56 and
rare SNPs (MAF = 0.1) with an RR of 1.82 (Figure S6A).
Because of the potential to overlook SNPs with smaller ef-
fect sizes, we used a set of selection criteria rather than sig-
nificance alone (see Material and methods) to identify 92
SNPs for replication. These SNPs were selected to have
support from correlated SNPs and were either the most
significant (n = 38), surpassed a moderate significance
threshold (p < 0.001) and were located in or flanked by
a functionally relevant gene (n = 44), or were selected
as backups for the most promising signals (n = 10). One
SNP, rs7884433, achieved genome-wide significance in
the stage 1 analysis, but it was not selected for replication
because it lacked support from any of the SNPs in strong
linkage disequilibrium (LD) and is thus likely to be a tech-
nical artifact.
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Table 1.

Summary of the most significant SNPs from meta-analysis of stages 1 and 2

SNP Chr Location (hg19) Alleles RAF Gene Prmeta OR (CI) 12
154616402 19q13 33,753,555 A/G 0.240 SLC7A10-CEBPA 137 x 1071% 1.52 (1.37-1.68) 4.2
154662380 2q22 145,316,407 C/T 0.189 LINC01412 2.11 x 10712 1.46 (1.32-1.63) 0
1513077541 3q26 176,925,740 G/A 0.464 TBLI1XRI-LINC00501 2.10 x 1077 1.33 (1.21-1.45) 0

SNP, rs identifier from dbSNP; alleles, risk associated/non-risk associated allele; RAF, risk allele frequency in Europeans from 1000 genomes; pmeta, fixed effects
meta-analysis of stages 1 and 2; OR, odds ratio; Cl, 95% confidence interval; 1?, heterogeneity index (0-100).

Of the 92 SNPs selected, 75 were successfully genotyped
in 666 KIT D816V mastocytosis-affected individuals from
Spain, Denmark, and Italy. Additional control individuals
(n = 8,456) from the same populations that had previously
been genotyped were used for comparison. After QC, 621
affected individuals and all the control individuals re-
mained for analysis. All SNPs passed QC in affected
individuals, although 19 were excluded from the Spanish
control individuals because of per SNP missingness
(=10%) following imputation. Samples were tested for as-
sociation with SM as three separate cohorts via binary lo-
gistic regression. We determined the final significance
levels and effect sizes by using a fixed effects inverse vari-
ance-weighted meta-analysis to combine evidence from
stages 1 and 2. This meta-analysis identified three inter-
genic SNPs with genome-wide significance: rs4616402
(Pmeta = 1.37 X 1071%), 154662380 (Pmeta = 2.11 X 10712),
and 1513077541 (Pmeta = 2.10 X 107%) (Table 1). Results
for the three SNPs reaching genome-wide significance are
summarized in a forest plot that shows that each SNP is sig-
nificant in four of the five cohorts tested and that there is
evidence for the same trend in the remaining population
(Figure 2). Cochran’s Q test and 12 statistics showed that
for each SNP there was no evidence of heterogeneity be-
tween cohorts. Results from the meta-analysis of stages 1
and 2 for all SNPs tested are shown in Table S3.

To investigate the possibility of residual population strat-
ification, we repeated the stage 1 analyses without
removing 26 samples with evidence of outlying ancestry
(Table S1) and adjusting the association analysis by using
the first two principal components from MDS. The top
three SNPs retained genome-wide significance, and
154662380 and rs13077541 became slightly more signifi-
cant (Table S2), which suggests an absence of residual pop-
ulation stratification in the original analysis.

Functional annotation and candidate gene mapping

To explore the functional relevance of the regions associ-
ated with mastocytosis, we used HaploReg and Regulo-
meDB to determine whether the risk SNP or its proxies
(r* > 0.8) were located in regions with potential regulatory
functions based on chromatin modification, DNA methyl-
ation, and alteration of transcription factor (TF)-binding
motifs (Table S4). To gain further functional insight, we
performed eQTL and mQTL analyses on the lead SNP
and its proxies by using GTEx v8°* and QTLbase.** Finally,
we repeated the stage 1 meta-analysis by using imputation

to enable fine mapping around the lead SNPs and to
generate association results for proxies, which had not
been directly genotyped.

The most significant SNP, 154616402, confers a 1.52-fold
increased risk of developing mastocytosis and is situated in
an intergenic region on chromosome 19 between a solute
carrier gene (SLC7A10, 36.8 kb downstream) and a gene en-
coding a transcription factor (CEBPA, 37.2 kb downstream)
that coordinates proliferation and differentiation of
myeloid progenitor cells (Figure 3A). Using QTLbase, we
found that rs4616402 is strongly associated with the
expression of CEBPA in whole blood according to data
from three previous eQTL studies (peqr = 2.30 x 10~ '%;
Peqrr = 2.96 X 107 peqrr = 9.20 x 1077).°%°" There is
no evidence that SLC7A10 has a role in carcinogenesis,
including myeloid malignancies, and no additional SNPs
were identified in strong LD with rs4616402. However,
there is weak evidence that rs4616402 may have functional
consequences according to the RegulomeDB score (score =
4). The chromatin surrounding rs4616402 is characterized
as an enhancer (7_Enh) in primary hematopoietic stem
cells because of an enrichment of the H3K4mel signature.
Additionally, the risk allele is predicted to alter three TF-
binding motifs (Arnt_1, Gm397, and Hmx_1, Table S4).

The second most significant SNP, rs4662380, increases
the risk of developing mastocytosis by 1.46-fold and is
located in the first intron of a lincRNA gene (LINC01412)
(Figure 3B). Twelve additional SNPs in LINC01412 were
identified in strong LD with the lead. Three of these prox-
ies are located in chromatin enhancers (7_Enh: rs6722387,
rs16823865, and rs13413446) in primary hematopoietic
stem cells, and one is located in a flanking active transcrip-
tion start site (2_TssAFInk: r1s16823855) in K562 (Table S4).
The RegulomeDB scores indicate that two of the proxies,
154662227 (score = 2¢) and rs13413446 (score = 3a), are
likely to affect TF binding, while the remaining SNPs are
estimated to have weak evidence for functional conse-
quences. However, using the GWAS catalog,”” we found
that one of the remaining proxies, rs16823866, was
strongly associated with white blood cell counts in two
previous studies (p = 4 x 10" ¥ and p = 6 x 107 !1).02%3
Finally, using QTLbase, we found that the lead SNP (peqrL
= 2.55 x 10~'") and four proxies, including rs16823866
(Peqrr = 2.55 x 10~'"), were strongly associated with the
expression of the nearby gene TEX41 in neutrophils.®*

The final SNP, rs13077541, is associated with a 1.33-fold
increase in risk of developing mastocytosis and is located
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with data from the NIH Roadmap Epigenomics Consortium.®*
in an intergenic region of chromosome 3 between transdu-
cin (B)-like 1 X-linked receptor 1 (T'BL1XR1, 10.6 kb up-
stream) and another lincRNA gene (LINC00501, 86.5 kb
upstream) (Figure 3C). Fifty-three additional SNPs were
identified in strong LD with the lead, including 27 intronic
SNPs in TBL1XR1 (Table S4). Eleven of these proxies are
located in active chromatin regions, including three in
an active transcription start site (1_TssA: rs12493005,
1s12486557, and rs34302523) and two in a 5’ transcribed
region (3_TxFInk: rs35072945 and rs34311793) in K562.
The RegulomeDB scores indicate that five of the proxies
are likely to affect binding (score2a-c: 156790639,
1534302523, 156772872, 157616138, and rs1920131). Of
these, 156790639 is particularly relevant because the PU.1
TF, which is encoded by the Spi-1 proto-oncogene (SPI1),
has been shown to bind to this region in K562 via ChIP
sequencing.®® PU.1, together with other TFs, regulates
the expression of genes involved myelopoiesis.®® Using
QTLbase, we found that the lead SNP (peqr. = 5.70 X
107%) and one of the proxies, 1516823866 (peqr. =
9.52 x 10~?), were strongly associated with the expression
of TBLI1XRI in CD4+ naive T cells.”*

Association with clinical features

To determine whether variants that predispose to the
development of mastocytosis relate to particular clinical
features, we used Fisher’s exact tests and linear regression

Physical positions are relative to build 37 (hg19) of the human genome.

to correlate allelic counts for the three significant SNPs
with clinical phenotypes in the Spanish and Italian co-
horts (Table 2), the only affected individuals for which
clinical information was available. A significant associa-
tion that remained significant after correction for multiple
testing was identified between rs4616402 and age at pre-
sentation (n = 422; p = 0.009; beta = 4.41) in individuals
with non-advanced disease. No association with age was
seen in the much smaller group of individuals (n = 26)
with advanced disease, a subgroup for which additional
mutations may be a confounding factor. In affected indi-
viduals, the age of onset was estimated to increase by
4.41 years per risk allele. No associations were seen with
baseline tryptase levels, gender, skin lesions, or disease
phenotype.

Association with TPSABT and TPSB2

Increased copy number variation at TPSABI, the gene at
16p13 encoding a-tryptase, is associated with elevated
serum tryptase levels in hereditary a-tryptasemia.®” Our
analysis did not include direct copy number analysis of
this gene; however, a recent study linked TPSAB1 duplica-
tions with three SNPs, including rs58124832.°® This SNP
was genotyped at stage 1 and met our criteria for analysis
at stage 2, yielding a suggestive overall association with
SM (Pmeta = 9.03 x 107°). The Cochran’s Q test and I? sta-
tistics showed no evidence of heterogeneity between
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Table 2. Association between the most significant SNPs and clinical phenotypes in the Spanish and Italian cohorts

Number of rs4662380 rs13077541 rs4616402

affected
Phenotype individuals p value Effect size (ClI) p value Effect size (ClI) p value Effect size (CI)
Initial diagnosis 422/26 0.175 0.58 (0.26-1.27) 0.646 0.88 (0.50-1.54) 0.238 0.60 (0.25-1.40)
(indolent/advanced)
Sex (F/M) 235/214 0.266 1.18 (0.88-1.60) 0.384 1.12 (0.86-1.46) 0.904 1.03 (0.65-1.61)
Skin lesions (+/-) 275/122 0.638 1.08 (0.77-1.51) 0.151 0.81 (0.60-1.08) 0.406 1.23 (0.75-2.00)
Age at diagnosis 422 0.668 0.55 (-1.97-3.07) 0.625 0.67 (—2.02-3.35) 0.009 4.41 (1.09-7.73)
Tryptase 417 0.452 —0.08 (—0.29-0.13) 0.136 —0.17 (-0.39-0.05) 0.249 0.17 (-0.12-0.45)

Categorical phenotypes: initial diagnosis (422 indolent versus 26 advanced mastocytosis-affected individuals), sex (235 female versus 214 male
individuals), and skin lesions (275 individuals with skin phenotype versus 122 individuals without skin phenotype); p value, fixed effects meta-
analysis of Italian and Spanish Fisher’s exact test; effect size, odds ratio; Cl, 95% confidence interval. Continuous phenotypes: age at diagnosis and
tryptase levels tested in individuals with non-advanced phenotype; p value, linear regression; effect size, regression coefficient beta; Cl, 95% confidence

interval.

cohorts; however, the association was significant in only
three cohorts (PGerman = 0.0058, pyk = 0.0042, and pPspanish
= 0.05). The eQTL analysis showed that rs58124832 is
strongly associated with the expression of TPSABI (peqrL
< 1.9 x 10°®%) and TPSB2 (tryptase-B2; peqr. = 1.96 X
10~7%) in blood.

Association with TERT

Several TERT SNPs have been identified as risk factors for
the development of hematological malignancies,
including MPN, as well as some solid tumors. Our stage 1
analysis included 152853677, which has been linked to
both MPN and JAK2 V617F associated clonal hematopoie-
sis.”* This SNP marginally failed to meet our criteria for
analysis at stage 2; however, the stage 1 meta-analysis for
directly genotyped UK and German affected individuals
showed pmeta = 0.0011, suggesting the possibility of an as-
sociation. To examine this in more detail, we imputed ge-
notypes for 64 additional SNPs spanning TERT and tested
their association with SM. As shown in Table S5, seven
SNPs achieved p values < 0.001. The strongest of these
was for 157726159 (Pmeta = 8 X 1075), an established risk
SNP for multiple cancer types.®” We identified one second-
ary association at TERT for rs2853677, which remained sig-
nificant after conditioning on 157726159 (Pconditional =
0.035). No associations were seen with other SNPs that
predispose to MPN’" or clonal hematopoiesis of indetermi-
nate potential’’ in our stage 1 data (Table S6).

Associations with other genetic factors

To the best of our knowledge, 14 SNPs have been associ-
ated with the development or phenotype of human masto-
cytosis in published studies.'’~** Of these, 11 were directly
genotyped or could be imputed from our stage 1 data (Ta-
ble S7), but only one of these was significant: rs1800925 in
the promoter region of IL13 at 5431 (Pimputea = 0.008).
This SNP has been linked to the development of adult
SM and serum interleukin-13 levels'® and inflammatory
disorders such as chronic obstructive pulmonary dis-
ease.””

Discussion

Despite being characterized by a common somatic onco-
genic driver mutation, mastocytosis is a complex disorder
with a broad range of clinical phenotypes and outcomes.
In this study, we have identified constitutional genotype
as an additional factor contributing to the heterogeneity
of mastocytosis. The use of a molecular definition for
affected individuals rather than clinically defined subtypes
and careful ethnicity matching of affected individuals and
control individuals aimed to reduce the chance of hetero-
geneity both in the primary and replication cohorts.
Thus, with a relatively modest cohort size for a GWAS,
we were able to identify and validate three novel SNPs
that achieved genome-wide significance and additional
suggestive associations at TERT, TPSAB1/TPSB2, and IL13
that merit further investigation. Notably, apart from
rs1800925 (IL13), we did not confirm any of the previously
published associations derived from candidate gene
studies and a recent GWAS that did not include a replica-
tion cohort (Table S6). In addition, we found no evidence
that genetic variation at KIT is associated with acquisition
of KIT D816V, unlike the finding in MPN that the JAK2
haplotype strongly influences the probability of acquiring
JAK2 V617F.73

Theoretically, common genetic variation may influence
mastocytosis by distinct mechanisms, for example by pro-
moting or favoring the outgrowth of a KIT D816V positive
clone that arose by random mutation (fertile ground hy-
pothesis); by increasing the probability that a KIT D816V
mutation arises in a stem cell (hypermutability hypothe-
sis); or by promoting the development of signs or symp-
toms in an individual with a KIT D816V positive clone,
thus increasing the chance of clinical investigation
(phenotypic hypothesis). We considered the possibility
that clonal somatic changes might affect the analysis;
however, we found that mastocytosis genomes are rela-
tively simple in that only a small proportion of affected in-
dividuals showed likely somatic copy number changes or
acquired uniparental disomy (Figure S7). Furthermore,
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apart from isolated affected individuals, the genomic re-
gions with somatic changes did not include the risk factors
we identified.

Of the three significant SNPs identified in this study,
the strongest association was seen for rs4616402 at
19q13. Interestingly, this SNP was significantly associated
with age of diagnosis in individuals with non-advanced
disease. This SNP is located in a candidate enhancer,
and the risk allele is linked to reduced expression of
CEBPA,®° located 37.3 kb upstream. Another 19q13 SNP,
1578744187, has previously been linked to basophil
counts and shown to modulate the activity of a CEBPA
enhancer;”* however, this variant is not in LD with
154616402 (> = 0.22). CEBPA is an intronless gene that
encodes a leucine zipper TF that binds to the CCAAT
motif in the promoter of its target genes. It is expressed
in myeloid progenitor cells, and several studies have
defined its critical role in myelopoiesis and malignant
transformation of myeloid cells.”® Of particular relevance,
high C/EBPa expression inhibits the production of mast
cells from mast/basophil common progenitors, whereas
low C/EBPa expression inhibits the production of baso-
phils.”" Although the consequence of reduced CEBPA
levels in the context of KIT D816V remains to be defined,
reduced CEBPA expression associated with rs4616402 may
be relevant to the fertile ground and phenotypic hypoth-
esis defined above by creating an environment that favors
the production of mast cells. It is striking that CEBPA or
its product, C/EBPq, is targeted by two other oncogenic
tyrosine kinases: BCR-ABL1 downregulates CEBPA by a
post-transcriptional mechanism’® and oncogenic FLT3
mutants disrupt C/EBPa function by ERK1/2-mediated
phosphorylation.”” Furthermore, low CEBPA expression
is commonly seen in acute myeloid leukemia, although
the underlying mechanism is unclear.”® Detailed func-
tional studies are needed to clarify the relationship be-
tween KIT D816V-driven clonal outgrowth and CEBPA
expression.

The second most significant SNP, rs4662380, is located at
2q22 within the lincRNA LINC01412 and associated with
higher expression of the nearby gene TEX41. Both are of
unknown function, but because of the possibility of long
range interactions between GWAS signals and target genes,
it is unclear whether either are directly relevant to SM.
ZEB2 is another nearby gene that has been linked to
both myeloid and lymphoid leukemias,”®’? but we found
no association between 154662380 and ZEB2 expression.
Interestingly, 1516823866, a SNP strongly linked to
154662380, was associated with elevated white blood cells
and, specifically, basophils in three independent popula-
tion studies.®>°>%" Although the underlying mechanism
is unclear, this may be relevant to the phenotypic hypoth-
esis in that affected individuals with abnormal blood
counts may be more likely to be investigated clinically.
The final SNP, 1513077541, is linked to expression of
TBL1XR1. This gene has been reported as a fusion partner
of PDGFRB, ROS1, RARA, and RARB in myeloid malig-

nancies,®'"®3 but its significance in relation to SM remains
to be established.

Data and code availability

Genotyping data are available at ArrayExpress (https://www.ebi.ac.
uk/arrayexpress/; accession number E-MTAB-9358). GWAS sum-
mary statistics are available at LocusZoom (http://locuszoom.org/
under “Mastocytosis GWAS”).
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