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Modelling Black Hole Binaries in the Intermediate-Mass-Ratio Regime

by Mekhi Dhesi

This work presents a new method for creating gravitational waveform templates for

black hole binaries with an intermediate mass-ratio. Intermediate-mass-ratio inspirals

(IMRIs) are currently an open problem in gravitational-wave source modelling. While

black hole perturbation theory can accurately model extreme-mass-ratio inspirals, and

numerical relativity has seen much success modelling comparable-mass inspirals, neither

approach currently works well on its own for IMRIs. It is not clear how adequate a

purely perturbative treatment can be at intermediate mass-ratios of 1:100-1:1000, and

at such mass ratios the length-scale disparity remains large enough to pose a serious

challenge for numerical relativity.

Here we work to provide accurate modelling of such binaries through a synergistic com-

bination of black-hole perturbation and numerical relativity techniques. Our approach

matches an approximate analytical solution near the smaller black hole (formed from

the tidally perturbed black hole metric) to a fully nonlinear numerical solution in the

bulk of the spacetime. This has the effect of relieving some of the scale disparity.

This thesis presents the details of this worldtube excision model and goes on to develop

and test the architecture using a simple toy model of a scalar charge in orbit around a

Schwarzschild black hole. We then present results from numerical implementations of

such a test setup in 1+1D, as well as in 3+1D. Finally, we detail the model’s infras-

tructure in the full binary black hole case. The theoretical foundations of the model are

erected, which includes the derivation of a suitable approximate analytical solution.

http://www.southampton.ac.uk
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Chapter 1

Introduction

1.1 Gravitational Wave Astronomy

Einstein’s theory of general relativity (GR) resulted in a paradigm shift for our percep-

tion of nature [61]. The theory’s construction of spacetime, the interwoven fabric of the

universe that bends and warps in response to matter, led to the prediction of many rich

phenomena. One of the most exciting of these was gravitational waves (GWs), ripples

in spacetime itself. Produced in scenarios of accelerating matter, only the most violent

astrophysical events have the potential to emit waves with amplitudes detectable by our

GW detectors. Such spectacular celestial events include the inspiral of compact object

binaries, black hole mergers, and exploding supernovae.

A unique beauty of GWs is their ability to travel almost unimpeded through the universe.

Unlike electromagnetic radiation, GWs are not strongly affected by intermediary matter

and so can carry information from distant cosmic events, allowing us to probe gravity in

some of its strongest regimes. The first indirect detection of gravitational waves came

in 1974, with the binary pulsar PSR B1913+16 discovery by Hulse and Taylor [127].

Through electromagnetic observations, the orbital decay of the binary system was able

to be calculated. The magnitude of this decay was then found to be consistent with

the energy loss due to GW emission, as predicted by the theory of GR [143, 54]. This

indirect discovery then spurred on the community’s desire to directly detect GWs.

The next breakthrough came with the design of the GW interferometer, building on the

architecture of the Michelson interferometer. When a gravitational wave propagates, it

stretches and compresses the space-time through which it travels. This effect can be

measured via the relative separation of two test particles. The basic design of the laser

interferometer consists of perpendicular arms with mirrors (suspended as test masses) at

each end, see Fig. 1.1. Laser beams are then sent back and forth along the perpendicular

arms. Any relative change in the length of the arms, i.e. due to a transient gravitational
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Figure 1.1: Layout of a basic Michelson interferometer. Laser beams are sent back and
forth along the instrument’s two perpendicular arms. Analysis of the light’s interference
upon recombination of the beams is undertaken. The LIGO gravitational wave detector
is an advancement of this basic design. Image credit: Caltech/MIT/LIGO.

wave, can be measured by the analysis of the light’s interference upon recombination of

the beams.

Gravitational waves originate in violent astrophysical events, the brightest of which are

expected to produce a relative change in distance of approximately one part in 1021.

For a 4km long interferometric detector, this is equivalent to the change in its arm

length a thousand times smaller than the diameter of a single proton. This astonishing

observational precision was not reached by ground-based gravitational wave detectors

until the 2005 enhanced Laser Interferometer Gravitational Wave Observatory (LIGO)

[38, 2]. Despite this, many quiet years still followed without detection. However, the

gravitational wave community did not give up hope. Major advances to LIGO were

steadily made and other ground-based detectors (VIRGO [6], GEO600 [1]) were built to

add weight to the search.

Finally, on the 15th September 2015, the newly advanced LIGO detector resounded at

both its Livingston and Hanford sites. The first gravitational wave signal [8], GW150914,

was recorded; see Fig. 1.2. The event took place in a distant galaxy, more than one billion

light years away. The peak GW power radiated during the final merger was more than

ten times greater than the combined light power from all the stars in the observable

universe. This was, by far, the most powerful astrophysical observation by mankind to

the date.

The signal had a peak gravitational-wave strain of 10−21, it was observed with a matched-

filter signal-to-noise (SNR) ratio of 24 and had a significance greater than 5.1σ. The

components of the event were black holes of masses 36+5
−4 M� and 29+4

−4 M�, merging
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Figure 1.2: Plot from [9] showing the GW150914 gravitational wave signal detected
by the LIGO observatories. The plots show the data received at LIGO Livingston and
LIGO Hanford, alongside the prediction for the waveform using the theory of General
Relativity. Time is plotted on the x-axis and strain is plotted on the y-axis. The match
across detection sites confirms the detection, and the data is seen to closely match what
is expected from theory. Image credit: LIGO.

to form a final 62+4
−4 M� black hole, with 3.0+0.5

−0.5 M� radiated outward in gravitational

waves. This discovery marked three fundamental achievements in the community: the

first direct detection of GWs, the first direct detection of black holes themselves [9] and

the first direction detection of a binary black hole (BBH) system. A new era of GW

astronomy had just begun. The universe was now observable through a novel lens.

After GW150914 the flood gates opened. It was a matter of months later, on 26th De-

cember 2015, that a second gravitational wave event GW151226 was recorded [7]. Two

years after this, on the 17th August 2017, GW170817 then provided the first observa-

tion of a binary neutron star collision [10]. This GW signal came with an accompanying

electromagnetic counterpart, triumphantly demonstrating the newly possible comple-

mentarity between astronomical observations. To date there have been over 90 observed

gravitational wave events from compact binaries (see Fig. 1.3), whose constituents span
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Figure 1.3: The plot shows the masses of all compact binaries detected by LIGO-
Virgo-KAGRA GW and EM observations, to date. Image credit: LIGO-Virgo-KAGRA.

an exciting parameter range. Detections are now abundant, each providing a wealth of

information on the nature of gravity and a new test for Einstein’s theory.

1.1.1 Binary Systems and Future Detections

The strongest and most abundantly detectable sources of GWs are binary systems,

either binary black holes (BBHs), binary neutron stars (BNSs) or black hole-neutron

star (BHNS) pairs. The binary systems that will be the focus of this thesis are BBHs

(though the extension of our model to cover BNSs is discussed in Sec. 10.1). GWs from

BBHs will allow us to test models of black hole formation, growth and evolution, as

well as probe the environments in which they reside [67, 135]. More fundamentally still,

GWs from certain BBHs will test the theory of GR itself, probing the strongest gravity

regimes within the cosmos [14].

For the clear detection of GW signals from BBH systems, models of the predicted wave-

forms are required to filter the data, facilitating the extraction of signals from background

and instrumental noise. These theoretically predicted waveforms are referred to in the

community as waveform templates. The accuracy of our templates will need to increase

in line with the sensitivity of the latest detectors, or else modelling error will act as the

limiting factor for scientific progress.

Given the advancement in GW instrumentation, there is a pressing need to improve

existing BBH waveform templates in their accuracy and parameter-space reach, as well
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Figure 1.4: Artist’s impression of the LISA space mission. Three satellites form a
Michelson interferometer with an arm-length of 2.5 million kilometers. Image credit:
Astrium GmbH.

as their overall computational efficiency [31]. These templates must be constructed to

cover all stages of the binary’s lifetime—inspiral, merger and ringdown. The overarching

aim is to have a bank of waveform templates that covers the entire parameter range of

detectable sources.

The next landmark in GW astronomy will be the launch of the Laser Interferometer

Space Antenna (LISA), expected in 2034 [3, 19]; see Fig. 1.4 for an artist’s impression.

The advent of LISA will bring about a new, low-frequency observational range for GWs

(0.1 mHz to 1 Hz). This range will allow the detection and study of signals from a

plethora of sources, ranging from stellar-mass BBHs within our own galaxy, to mergers

between supermassive black holes out at high redshifts (z ≈ 10-15). TianQin is a further

proposed space-borne GW observatory, with a projected launch date in the 2030s [94].

As the frequency of the emitted GWs scales inversely with the total mass of the system

at merger, the lower frequency range of LISA will allow the detection of BBHs with

heavier total masses that include intermediate and supermassive black holes in their

components. This will allow the observation of BBH mergers with larger mass-ratios

[82].

A further landmark will be the third generation of ground-based GW detectors. Those

currently proposed include the Einstein Telescope, Cosmic Explorer and Voyager [74].

It is assumed that this next generation of detectors will be operational during LISA’s

lifetime. The synergy between ground-based and space-based detectors, and between

that of GW and traditional EM signals, should propel our understanding of astrophysics

across a breadth of areas.
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1.2 Intermediate-Mass-Ratio Inspirals

1.2.1 Formation Mechansisms

Black holes are grouped into three categories depending on their mass. Stellar-mass black

holes range from ∼ 3 to several tens of solar masses (M�), intermediate-mass black holes

(IMBHs) range between ∼ 102–104 M�, and supermassive black holes (SMBHs) range

between ∼ 105–109 M�. BBHs in turn fall into three categories depending on the mass-

ratio between the constituents. Comparable-mass-ratio inspirals (CMRIs) are systems

in which the bodies have a mass-ratio ∼ 1:1–1:10s, intermediate-mass-ratio inspirals

(IMRIs) are systems with a mass-ratio 1:100–1:1000s, and extreme-mass-ratio inspirals

(EMRIs) are systems with a mass-ratio 1:104 and upwards. An outstanding theoretical

and computational challenge is to accurately model binaries in the intermediate-mass-

ratio regime [31, 139]. Such IMRI waveform templates must be ready in advance of

third-generation ground detectors and of LISA’s launch, in order to obtain maximum

scientific return. It is the production of such IMRI waveform templates that is the focus

of this work.

IMRIs can be formed in two ways [20, 96]. The first is when a stellar-mass compact

object, such as a neutron star or a stellar-mass black hole inspirals into an IMBH.

These ‘category I’ IMRIs should emit GWs with frequencies that could make them, in

principle, detectable with LIGO [95, 96]. The analysis of these IMRI waveforms would

provide us insight into the dynamics of globular clusters, as this is their likely birthplace

[96, 66]. The second is when IMBHs collide with SMBHs, forming heavier IMRI systems.

Given the supermassive component in these systems, these ‘category II’ IMRIs will be

exciting sources for LISA. Their emitted GWs would allow us to explore the dynamics of

galactic nuclei [96], thus providing fundamental insight into black hole formation. Both

sources will undergo longer inspirals than we have been accustomed to with comparable-

mass-ratio observations, further probing the strong gravity regime and providing richer

information about the space-time geometry of black holes.

For category II IMRIs, the inspiral, merger and ringdown are all within the LISA fre-

quency band. However, for some category I IMRIs the merger and ringdown may also

be accessible to ground-based detectors [18, 52]. A detection of a single source with

both space and ground detectors is referred to as a multiband detection. Multiband de-

tections will be particularly useful for IMRIs, as their GWs contain larger contributions

from sub-dominant multipolar modes (` > 2) during the merger and ringdown stages,

compared to CMRIs [13, 152]. Having acquired information from LISA regarding var-

ious source parameters of the BBH, the measurement of the lower-amplitude modes in

ground-based detectors should then become possible. This multiband era of GW astron-

omy will bring about improved constraints on the parameters of binary constituents, as

well as greater statistical confidence associated to a detection.
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The potential for multiband reach with future detectors across the GW band is illus-

trated in Fig. 1.5.

1.2.2 Detection Prospects

Ref. [97] predicts category I and category II IMRIs to be detected by Advanced LIGO

and LISA respectively, at rates of a few per year. However, detection rates remain highly

uncertain due to a number of debated assumptions over IMBH formation mechanisms,

along with our limited knowledge about the dynamics of globular clusters and galactic

nuclei [20, 48, 82].

Although detection rates are uncertain, detectability ranges can be calculated to a

higher degree of certainty. For IMBH binaries, [82] showed that multiband observations

involving LIGO and LISA should detect their inspiral, merger and ringdown out to

redshift z ≈ 2. Assuming the third generation of ground detectors are online at this

time, [82] predicts the multiband detection capability should then extend this out to

redshift z ≈ 5.

Ref. [82] goes on to examine the detection ranges of binaries with mass ratios between

1:10 and 1:100 (which can inform our expectations for the 1:100–1:1000 intermediate-

mass-ratios). For the coalescence of an 80 M� black hole with a 1200 M� black hole

(a medium IMBH), we should expect that LISA plus the Einstein Telescope will be

able to detect this with a signal-to-noise ratio (SNR) of ≥ 100 within 0.4 Gpc, or SNR

≥ 8 when within 12.8 Gpc. These measurements will allow high resolution black hole

spectroscopy and tests of the no-hair theorem [82, 26, 129]. If instead using LISA plus

Voyager, we should expect a SNR of ∼ 5 within 1 Gpc. Alternatively, for the coalescence

of a 20 M� black hole with a 600 M� black hole (a small IMBH), we expect that LISA

in combination with either ET or Voyager will be able to detect the signal out to 1.4

Gpc. These types of multiband observations would provide strong constraints on the

growth and formation of IMBHs in dense stellar environments, potentially validating

the hierarchical merger growth theory [42, 112]. This, in turn, would then allow us to

better constrain their detection rates.

1.2.3 Relevant LIGO Detections

2020 saw two groundbreaking observations from the LIGO-Virgo Collaboration (LVC)

with respect to IMRIs. The GW signals detected in the first two observing runs (O1 and

O2) of the LVC all originated from binaries with mass-ratios close to unity. However,

the June 2020 announcement of GW190814 [13] presented the first system with mass

ratio close to 1:10. The system comprised of a 22.2–24.3 M� black hole and a compact

object of 2.50–2.67 M�, either a low-mass black hole or a heavy neutron star [13]. The
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Figure 1.5: Plot from [82] showing the predicted multiband detectability of binaries
with varying masses, over the course of their merger, with a variety of future GW
detectors. Category I IMRIs (red curve) start off in the LISA band and merge in the
LIGO band. See [82] for further details on BBH populations.

LVC now estimates a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary

sources that GW190814 represents.

GW190814, along with others, helped to push the Gravitational Wave Transient Cata-

logue (the collection of observed GW events from each observing run) to contain events

with smaller mass ratios in O3. Ref. [15] and [16] present analysis of the observed bi-

naries with LIGO-Virgo through to the end of O3. In Fig. 1.6 from [16], black contours

represent the expected distributions from analysis of O2 data, while blue regions rep-

resent new O3 observations. The left-most panel plots the small-mass-ratio q := m2
m1

,

against the primary mass m1. Here we can see O3 data reaching down into the smaller

q domain, substantially past our O2 expectations. Fig. 1.7 from [15] shows the marginal

posterior distributions for q, for all observed events in the second part of O3, O3b. Here,

we see q now extending down to a value of 0.02.

Upgrades and future generations of ground-based detectors [11, 74], and especially the

planned space-based detector LISA [19], will open up a new window of observation

in the low-frequency band of the gravitational-wave spectrum, enabling the detection of

signals from ever heavier binary systems, containing intermediate-mass and supermassive

black holes. In consequence, it is expected that the detection of high mass-ratio events

will become routine, and that the catalogue of detected binary sources will extend to
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Figure 1.6: Plot from [16], showing the new observations from the third LIGO-Virgo
observing run (O3). Black contours represent the expected distributions from analysis
of O2 data, while blue regions represent new O3 observations. The left-most panel plots
the small-mass-ratio q, against the primary mass m1. The O3 data show a reach down
into the smaller q domain.

include a broad range of mass ratios—potentially up to ∼ 1:106 with LISA [82, 132].

In anticipation of this remarkable expansion in observational reach, it is important to

develop accurate theoretical waveform templates that reliably cover the entire relevant

range of mass ratios.

The second groundbreaking discovery of 2020 was GW190521, with its merger product

weighing 142 M�, providing the first clear detection of an IMBH [12]. Prior to this ob-

servation, IMBHs had only been hinted at by electromagnetic observations, kinematical

measurements of massive star clusters and scaling relations between the central SMBH

and its host galaxy [12, 42]. As IMBHs are a core constituent in either channel of IMRI

formation, this conclusive evidence for their existence strongly corroborated the need for

accurate IMRI waveform templates. Only with accurate waveform templates will we be

able to confirm detections and perform accurate parameter estimation from our data.

1.3 Binary Black Hole Modelling Techniques

1.3.1 Overview

Four primary techniques currently exist for modelling gravitational waves from binary

systems: the post-Newtonian (PN) approach, the effective one-body (EOB) formalism,

numerical relativity (NR) and perturbation theory/gravitational self-force (GSF) theory.

Chapters in the Springer publication “Mass and Motion in General Relativity” [45]

provide detailed introductions to each technique. The fundamental factors that dictate

which technique can be used when modelling a BBH are the orbital separation and

mass-ratio between the two bodies; see Fig. 1.8.



10 Chapter 1. Introduction

Figure 1.7: Plot from [15]. The marginal posterior distributions for the source chirp
mass M, small-mass-ratio q, effective inspiral spin χeff , effective precession spin χP
and luminosity distance DL for O3b candidates. We note q now extends down to a
value of 0.02.
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Figure 1.8: Plot from Barack and Pound [35] illustrating the modelling methods used
for binary systems, depending on their orbital separation and mass ratio.

The PN approach expands the spacetime metric in powers of the parameter v
c , where v

is the orbital velocity of the system and c is the speed of light. This method works well

for weak-field regimes where the two bodies are orbiting at relatively slow velocities, but

breaks down near the inner-most stable orbit (ISCO) regime of a binary, regardless of

the mass-ratio. This approach shall not be expanded upon further in this thesis as its

techniques are not incorporated into our modelling method.

The EOB formalism interpolates solutions obtained using NR and the analytic approx-

imations (PN and GSF), and so relies on solutions from these methods for its tests and

calibration. As a result, EOB can describe all phases of the binaries lifetime—inspiral,

merger and ringdown, and work across the mass-ratio parameter space. Rather than

being considered distinct from the other modelling techniques, EOB should be thought

of as a way to resum information from them. We will now provide further detail on the

two modelling techniques used in our model, NR and perturbation theory.

1.3.2 Numerical Relativity

NR numerically evolves the fully nonlinear Einstein field equations governing the space-

time of a binary system. NR techniques have been in development for decades [138].

Despite progress on BBHs in head-on collisions [22, 17, 140, 24, 21, 27, 99, 23, 165, 163],

it was not until the 2005-2006 breakthroughs on BBH evolutions of quasi-circular coa-

lescence [124, 50, 28] that the field saw rapid growth. This advancement is detailed in

several reviews of the field [88, 51, 60]. It is now routine for numerical simulations to



12 Chapter 1. Introduction

evolve two-body systems through inspiral, merger and ringdown, at least for comparable

mass-ratios.

Solving the Einstein field equations in the strong-field regime with NR is a two step

process. The first is to produce valid initial data that corresponds to the physical

situation in question. The second is to evolve that initial data in time. Two main

approaches for the evolution schemes in the context of binary evolutions have developed:

the generalized-harmonic formulation [125, 89], and the Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) formulation [39] coupled to the Gamma driver gauge conditions (also

known as the moving puncture method) [50, 29]. A detailed summary of these two

approaches can be found in [79].

The limitation on the extension of NR to more disparate mass-ratios is the computational

runtime. The runtime scales proportionally to the square of the large mass-ratio of the

system, q−2 [150, 31]. One factor of 1/q comes from the number of orbits the binary

spends in the strong-field regime, there being 1/q of these over the course of the inspiral.

The second factor of 1/q comes from the Courant-Friedrichs-Lewy (CFL) limit [53] on the

timestep of the simulation, which requires the number of timesteps per orbit to increase

as ∝ 1/q. As the size of the small body decreases, the numerical resolution required to

resolve the field surrounding it increases. The need to preserve phase accuracy over the

increasingly long inspiral only increases this computational cost further. When there is

a significant disparity in the binary’s constituent masses, as in the case of IMRIs, this

method becomes computationally intractable.

1.3.2.1 Progress towards IMRIs

Recently, there has been significant progress on modelling mass-ratios up to ∼ 1:100

using adaptive mesh refinement techniques. The Dendro-GR code of the Brigham Young

University group [102, 63] has seen successful simulations of a number of orbits for mass-

ratios up to 1:100, as a proof of principle. The group at the Rochester Institute of

Technology (RIT) published results in June 2020 where a 1:128 mass-ratio binary was

evolved through a record 13 orbits before merger [91]. The plot in Fig. 1.9 shows the

obtained waveforms from successively higher mass ratios from 1:15 up to 1:128. New

results from the RIT group have now applied adapted gauge choices to improve their

numerical results, including numerical convergence results for mass-ratios 1:7, 1:15 and

1:32 [130]. These results required around one year of runtime.

A more recent 2022 paper by the RIT group [92] pushed numerical simulations up to

1:1024 mass-ratios. The plot in Fig. 1.10 shows the radiated energy spectrum from ever

more extreme-mass-ratios compared to a calculation in linear black hole perturbation

theory. Reaching the required numerical resolution to sufficiently resolve a 1:1024 binary

is a ground-breaking result, however it is one that was only achieved with a substantial
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Figure 1.9: Results from [91] using NR. The strain waveform for the real part of a
Y22 mode is plotted vs. time (t/m), for 1:15, 1:32, 1:64, 1:128 mass-ratio binaries. The
1:128 mass-ratio binary undergoes 13 orbits before merger.

Figure 1.10: NR results from [92] showing the radiated energy spectrum from ever
more extreme-mass-ratios. The comparative scaled spectra for mass ratios from 1:7 up
to 1:1028 are shown, against the particle limit case in black.

trade-off in evolution time. The numerical simulations of Fig. 1.10 are taken with the

smaller body starting at rest from a proper distance D ≈ 13M from the larger body.

The smaller body is then allowed to collide head-on with the larger black hole, resulting

in a simulation that takes a factor 1/q less times than a full inspiral.

Complete waveform templates for IMRIs will of course require the modelling of many

hundreds of orbits. Therefore, there is still much work to be done in the field of NR, if

relied upon alone, to fill the intermediate-mass-ratio parameter space.
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1.3.3 Black Hole Perturbation Theory

The technique of perturbing a known solution of a simple system in order to form an

approximate solution of a more complicated system, is a well-established approach in

mathematical physics. In black hole modelling, the known solution is the Kerr (or

Schwarzschild) metric of the primary black hole, to which a perturbation is added in

order to represent the gravitational effect of an external environment. In the case of

EMRI BBH systems, the external environment is a secondary black hole of much smaller

mass m2 � m1. In this case, the perturbative parameter is naturally taken to be q =
m2
m1
� 1. The Einstein field equations are then solved order by order in q, producing an

approximate analytical solution for the spacetime. This is the standard GSF approach;

we give more details on its status in Sec. 1.3.3.1.

The external environment can be kept more generic by instead choosing a perturbative

parameter r
R � 1, where r is a measure of distance from the black hole and R is the local

radius of curvature, assumed to be much larger than the mass of the black hole. This

approach is taken in the literature by Poisson and collaborators in a series of papers

deriving tidally perturbed Schwarzschild metrics [107, 144, 109, 111]. An extension

of this work to the Kerr metric begins in [108], though the state of the expressions are

much behind that of Schwarzschild. An extensive body of work also exists in the neutron

star community for metrics of a more general class of tidally perturbed compact bodies

[43, 55, 86, 128, 80].

Ref. [107] derives the tidally perturbed Schwarzschild metric in a particular light-cone

gauge. The metric has unknown tidal terms that can only be determined by matching

to a specified external environment. Ref. [144, 109] provide examples of this matching,

by placing the black hole in a post-Newtonian external spacetime. Ref. [109] provides

the tidally perturbed Schwarzschild metric to the highest order in the literature, ( rR)4,

now in the Regge-Wheeler gauge. We shall make use of these expressions in [109] for

our Schwarzschild BBH model, described in Sec. 2.1.

1.3.3.1 Gravitational Self-Force Theory

As aforementioned, traditional gravitational self-force theory uses a perturbative ap-

proach to expand the spacetime metric in powers of the small mass-ratio q. This there-

fore requires m2 � m1, and so it is applicable to EMRI systems. The effects of the

smaller body and its dynamics create an effective force term, known as the gravita-

tional self-force. For accurate EMRI templates, the inclusion of self-force effects up to

second-order in q is necessary, as it is at this order we achieve sub-radian precision in

the waveform over the full inspiral [158].

Numerical computations of the full first-order self-force have advanced greatly and their

formulation is now firmly entrenched. They have evolved from Lorenz-gauge calculations
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Figure 1.11: Results from [158]. A 1PA waveform for a mass-ratio 1:10 nonspinning
binary is given in orange. The NR simulation for the same binary is shown in black.
The inset shows the corresponding 0PA waveform, in blue. The 1PA and NR waveforms
show remarkable agreement up until late time and merger. Ref. [158] defines q as the
large mass-ratio m1/m2.

[33, 36, 37, 59] to more efficient methods relying on radiation gauges [121, 151, 147,

148]. First-order self-force results are now available for generic bound geodesics in Kerr

spacetime [149].

The formalism at second-order is now also well-established [131, 57, 117, 68, 113, 118,

120, 146] and there has been strong progress with regards to practical implementation

methods in the last decade [115, 157, 160, 114, 100, 101, 122]. The first complete

calculations of physical second-order quantities (fluxes) were reported in [123, 156], for

the restricted case of quasicircular orbits around a Schwarzschild black hole.

1.3.3.2 Progress towards IMRIs

In December 2021 [158] brought about the highly anticipated first waveform results using

second-order self-force theory. Figure. 1.11 shows a waveform at “first post-adiabatic”

(1PA) order, which requires the perturbation of the metric to second-order. The results

are for a mass-ratio 1:10 nonspinning binary, in a circular orbit. 1PA results are plotted

in orange, whilst NR results are plotted for comparison in black. The inset shows the

corresponding adiabatic (0PA) waveform in blue. With self-force results designed to

work best when the mass-ratio is extreme, the agreement of results at q = 1/10 is

remarkable. There is a strong agreement with NR up until late time in the merger, with

the inset evidencing the leap in accuracy from 0PA to 1PA. Remarkably, an impressive

agreement is obtained even for a 1:1 mass-ratio, far outside the perturbative regime; see

Fig. 1.12.

The main caveat to note is that these 1PA/2SF waveform results were obtained for

nonspinning binaries, on circular orbits only. The extension to Kerr and generic or-

bits remains a major theoretical endeavour, one for which the timeframe is still highly

uncertain.
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Figure 1.12: Results from [158]. A 1PA waveform for a mass-ratio 1:1 nonspinning
binary is given in orange. The NR simulation for the same binary is shown in black.
The inset shows the corresponding 0PA waveform, in blue. Impressive agreement is
still seen in this mass-ratio regime. Ref. [158] defines q as the large mass-ratio m1/m2.

Prior to the results of [158], Van de Meent and Pfeiffer [150] performed an assessment of

the potential accuracy of future self-force models at smaller mass-ratios by comparing

NR and GSF results. Ref. [150] concluded that a perturbative approach accurate to 1PA

order could possibly bridge the mass-ratio gap from binaries with extreme ratios down

to the comparable ratios covered by NR. Their findings are shown in Fig. 1.13, which is

in effect a quantitative adaptation of Fig. 1.8. The analysis of [150] is for the restricted

case of black hole binaries without spin or orbital eccentricity.

The challenges still facing both the NR and GSF approaches motivate a new model

for bridging the mass-ratio gap, in order to complement current efforts. Our proposed

method attempts to tackle the problem of modelling IMRIs using a hybrid of NR and

perturbation theory. The idea is to leverage existing successful NR infrastructure, while

excising a region surrounding the smaller black hole from the numerics. Within this

excision region we use an approximate analytical solution for the spacetime, formed

from a tidally perturbed black hole metric. We match this analytical solution to the

NR solution at each time step of the evolution. It is our hope that this method will

dramatically increase the numerical efficiency of binary simulations with small mass

ratios and extend our reach into the intermediate-mass-ratio regime.

1.4 Thesis Outline

Chapter 2 overviews our proposed worldtube excision method for modelling IMRIs.

Section 2.2 provides context with respect to other methods for modelling BBHs and

we highlight the inspiration our method has drawn from existing techniques. An initial

estimate of runtime saving using our method, compared to NR alone, is presented in

Sec. 2.3.

Chapter 3 introduces the physical set up of our scalar toy model, a scalar charge e

orbiting a black hole M . The equation governing this system, the scalar wave equation

in Schwarzschild spacetime with a delta point source, is presented and then decomposed



1.4. Thesis Outline 17

Figure 1.13: Results from [150] illustrating the regions of applicability of different
modelling techniques for a non-spinning quasi-circular BBH inspiral. The shaded re-
gions are ranges within which the cumulative orbital-phase error is less than π/4, π/8
and π/16 radians, respectively. The plot illustrates the ability of the first order post-
adiabatic (1PA) expansion to bridge the mass-ratio modelling gap, extending down to
ν = 0.25 and the blue region of NR.

into spherical harmonic modes in order to reduce the system to a 1+1 dimensional

(1+1D) problem. In Sec. 3.2, we derive the exact analytical solution for static modes of

this system. This solution provides a baseline against which we can compare results from

static modes of our worldtube excision model. Section 3.3 derives the local approximate

analytical solution valid for all multipole modes, which we then use to populate the

worldtube in our 1+1D models. Section 3.4 outlines the core constituents of our two

1+1D implementations, referred to as Schemes I and II.

Chapter 4 presents the setup and results from Scheme I, the first implementation of

our 1+1D scalar-field model. Chapter 5 presents the set up and results from Scheme

II, the second implementation. Scheme I uses finite difference evolution methods, a nu-

merical grid with characteristic slicing, and numerical data in open regions surrounding

the worldtube to perform the matching. Scheme II uses spectral evolution methods, a

numerical grid with Cauchy slicing, and data only on the worldtube surface to perform

the matching. We therefore have two independent test setups for the worldtube excision

model in 1+1D. Results assess the behaviour of static and non-static modes of the field,

as well as the convergence with respect to numerical resolution, worldtube size and the
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order of accuracy of the analytical solution. The results from these two schemes appear

in [58].

Chapter 6 presents a 3+1 dimensional (3+1D) scalar-field model. The scalar charge e is

now evolved on a circular orbit around the black hole M , in 3-dimensional space. For the

numerical evolution we now use the SpECTRE code developed by the SXS collaboration.

The local approximate analytical solution for this 3+1D model is then presented. This

is first done schematically, then high-order covariant expressions from the literature

are given. This is followed by a transformation into our preferred coordinate system.

The matching method is then presented in practice. We again assess the convergence

with respect to numerical resolution, worldtube size and the order of accuracy of the

analytical solution.

Chapter 7 describes the setup for the full gravity model, two black holes with masses m1

and m2 and an intermediate mass-ratio. The numerical implementation will again use

the SpECTRE code and we give more detail on the numerical set up in the BBH case.

We then explain the overall infrastructure of the BBH model and discuss the principles

of the matching method.

Chapter 8 presents the derivation of the tidally perturbed Schwarzschild metric, in

light-cone coordinates and the Regge-Wheeler gauge. These existing metrics shall be

the starting point for the formation of our local approximate analytical solution in the

BBH model. Chapter 9 then derives the transformation of this metric from light-cone

coordinates to harmonic coordinates, as a function of generalised harmonic time. This

transformation facilitates our matching method across the worldtube boundary, and it

is completed up to second-order in the perturbation. Final results for the transformed

metric are presented, grouped by their multipolar structure.

Chapter 10 summarises the main results presented in this thesis and outlines the future

research milestones necessary to take the worldtube excision method to its full BBH

implementation. We also provide a reminder of how this research effort fits into the

work currently being done by the broader waveform modelling community.

1.5 Research Collaboration Details

This research is work done as part of a collaboration with colleagues at the Albert

Einstein Institute (AEI): Harald Pfeiffer, Hannes Rüter, and Nikolas Wittek. Materials

in Chapters 2 - 5 of this thesis have been published under this joint authorship in [58].

Since parts of the research reported here were collaborative in nature, it is appropriate

to identify and highlight my own contribution to the collaborative elements: (i) the

design and numerical implementation of Scheme II (Chapter 5). Here my contribution

was to provide the appropriate form of the local approximate analytical solution. (ii)
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The numerical implementation of the scalar-field model in 3+1D (Chapter 6). Here

my contribution was again to to derive and provide the appropriate form of the local

approximate analytical solution. The design of this scheme, including the matching

method, was decided in joint conversations. The design of the BBH scheme, presented

in Chapter 7, was also decided in joint conversations.
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Chapter 2

Method Overview

2.1 Worldtube Excision

Our approach is a hybrid method that seeks to model IMRIs using direct synthesis of

black-hole perturbation and NR techniques. The central idea is simple, and illustrated in

Fig. 2.1 as applied to a compact-object binary with masses m1 � m2. An excision region

is introduced around the small object, of radial extent R chosen such that m2 � R� R,

where R is the characteristic lengthscale associated with the tidal field of m1 at the

location of m2 (such that R ∼ m1 near the end of the inspiral).

Inside this region—a “worldtube” in spacetime—an approximate analytical solution is

prescribed for the spacetime metric, arising from the perturbation theory of compact

objects in a tidal environment. An NR simulation is set up for the binary, in which

the worldtube’s interior is excised from the numerical domain, and replaced with the

analytical solution. At each time step of the numerical evolution, the numerical solution

(outside the tube) and analytical solution (inside the tube) are matched across the tube’s

boundary, in a process that fixes a priori unknown tidal coefficients in the analytical

solution, as well as gauge degrees of freedom. The intended effect of this construction

is to partially alleviate the scale disparity that thwarts the efficiency of the numerical

evolution at small q. An outline of such a strategy was first (to our knowledge) put

forward by B. Schutz in a conference talk a few years ago [134].

To begin thinking about how such a strategy may work in practice, we restrict attention

to the simplest scenario, where the smaller object is a black hole. The appropriate

analytical solution inside the worldtube is then that of a tidally perturbed Kerr black

hole, where the tidal perturbation arises from the presence of the larger body. Such

geometries are examples of a broader class of spacetimes studied extensively in recent

literature [107, 111, 144, 109, 87, 55, 128, 164, 80], where the tidal response of a compact

object to an external perturbative tidal field is derived analytically order by order in
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Figure 2.1: A cartoon of our excision method. We excise a region of size R from
the computational domain. In the interior of the excised region, we use an analytical
approximation.

s/R—the ratio of distance s from the smaller object and the characteristic lengthscale

R of the tidal field—under the assumption s � R. For a nonrotating black hole,

the perturbed metric has so far been constructed through order (s/R)4 [109]. For our

excision method we would need the perturbed metric near the worldtube’s boundary,

where it takes the form of an expansion in R/R � 1.

Since the analytically prescribed metric on the worldtube’s boundary is only an approxi-

mation, the spacetime constructed in the numerical simulation is also approximate, even

if numerical error could be reduced to zero. If our analytical solution is correct only up

to O ((R/R)n)—what we later call an “nth-order model”—we would naively expect an

error of O
(
(R/R)n+1

)
at the boundary. However, as we lay out in Sec. 4.3.2.5, we

achieve an error of O ((R/R)n). This error is then fed from the tube’s boundary to the

numerical solution, and propagates to the bulk of the numerical domain. One could then

only hope to construct the binary’s spacetime up to an error of O ((R/R)n), even in the

continuum limit. This worldtube error can be reduced either by increasing the order n

of the analytical model, or by decreasing the tube’s radius R. Of course, decreasing R

restores the original scale disparity and thus diminishes the gain from the introduction

of a tube. There is hence a fundamental trade-off in our method between precision and

computational cost, with R serving as a control parameter.

The NR evolution of our BBH worldtube excision model will be carried out using SpEC-

TRE [83], an open-source code for multi-scale, multi-physics problems in astrophysics

and gravitational physics. SpECTRE is a successor to the Spectral Einstein Code

(SpEC) [84] and is currently in development by the Simulating eXtreme Spacetimes

(SXS) collaboration. We provide more details in Subsec. 6.2.1.

2.2 Comparisons to Existing Methods

Our worldtube excision method draws inspiration from GSF and NR methods, and

existing techniques used in the modelling of various aspects of EMRIs and CMRIs. A
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direct similarity between GSF when modelling EMRIs and our method, is that they both

match an external solution to a local approximate solution around the smaller object

in the binary. In GSF, both the external and local solution use perturbation theory.

The external solution is a perturbed form of the larger black hole’s metric, whilst the

local approximate solution is a perturbed form of the smaller black hole’s metric. In our

method the local solution is the same, but the external solution is fully nonlinear.

When modelling EMRIs using GSF theory, the metric perturbation is divergent at the

location of the smaller body [110]. This singularity creates a technical difficulty when

numerically evolving the field, which must be dealt with in some way. A formalism

known as the puncture method has been developed, which is now a standard approach

in self-force calculations to deal with this feature. The puncture method was first imple-

mented for a scalar field in [155, 32] and later extended to a gravitational field in [59].

The method involves the implementation of a worldtube in a region surrounding the

smaller body, thus splitting the numerical domain into two regions. Inside this region a

suitable analytically derived, puncture function is subtracted from the full field, remov-

ing the part responsible for the singular nature. The remaining field, referred to as the

regular field, is then independently numerically evolved inside the worldtube. Outside

the worldtube, the full, original field is numerically solved for. The evolution variable

is suitably adjusted for across the boundary of the worldtube. An illustration of this is

given by Fig. 2.2. In the context of pure self-force calculations, the regular field is all

that is required for the calculation to proceed.

Our method draws obvious inspiration from the standard puncture method. We too

insert a worldtube around the smaller body, dividing the spacetime domain into two

regions. We then also construct a suitable puncture field, but instead subtract it from the

full numerical field outside the worldtube. This then allows us to match the regular field

across the boundary and fit for the unknown coefficients in the approximate regular field

solution. Our method performs a numerical evolution of the field outside the worldtube,

but excises the interior region from the computation grid. Inside the region we populate

the spacetime by evaluating the expression for the fitted approximate analytical solution.

When modelling CMRIs using NR, the singularities inside black holes must be dealt with

in some way. There are now two mainstream methods that address this. The first is the

moving puncture method associated with the ADM formulation of the Einstein equations

[25] and a BSSN formalism of NR [39, 136]. The moving puncture method relies in its

exploitation on the topology around a black hole. A coordinate transformation, first

discovered by Einstein and Rosen [62], is used that creates a wormhole-type structure

at the black hole singularity. In doing so, the physical singularity at r = 0 on the spatial

hypersurface is effectively removed from the computational grid, being sent to spatial

infinity of the introduced duplicate hypersurface; see Fig. 2.3. As our method does not

make use of the moving puncture technique in NR we shall not elaborate upon it further.
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Figure 2.2: Results from [32]. The field Ψ is displayed for three m modes along a
spatial slice. The full field Ψm is displayed outside the worldtube, and the residual field
Ψm
R := Ψm−Ψm

P inside it, where Ψm
P is a particular puncture function. The dotted line

indicates the full divergent field, obtained through Ψm := Ψm
R + Ψm

P .

Figure 2.3: A visualisation of the moving puncture technique used in NR for dealing
with black hole singularities, taken from [47]. A wormhole structure is introduced via
a coordinate transformation. The singularity at r = 0 is sent to spatial infinity of the
duplicate hypersurface.

The second mainstream method to deal with black hole singularities is the excision

method, associated with the generalised harmonic formalism of NR [125]. The idea here

is to entirely remove the region contained within the black hole event horizon from the

grid; see Fig. 2.4. Fundamentally, this works due to the fact that information cannot

propagate outwards from a black hole horizon. However, the event horizon is difficult to

numerically track in practice, and instead the apparent horizon is used as the excision

boundary due to the clear geometric features associated with it [76]. Excision methods

are generally implemented in NR codes that use spectral methods [142]. The main

code responsible for many of the successful NR simulations of this kind is the Spectral

Einstein Code (SpEC) [4].



2.3. Estimated Runtime Saving 25

Figure 2.4: Illustration of the computational domain with excision regions taken from
[76]. In the top panel the black holes are initially at rest. In the bottom panel the black
holes are near merger and the excision boundaries have distorted to track the apparent
horizons of the bodies.

Our method draws inspiration from this second method in NR, as it too excises a region

from the computational grid. The crucial difference is that our excision region not only

contains the spacetime within the black hole’s horizon, but rather the black hole plus a

portion of the spacetime surrounding it. Spacetime within the excision region is therefore

in causal contact with the numerical domain and information must propagate outwards

from within. This is achieved with our matching methods described in Sec. 4.3.1 and

Sec. 5.2.1.

2.3 Estimated Runtime Saving

Our method seeks to speed up the numerical evolution by effectively excising the smaller

scale from the IMRI problem. Before describing the details of the implementation, we

can develop a quantitative estimate of what the potential runtime savings might be.

The approximation error of the perturbative solution on the worldtube boundary is

expected to be

εWT ∼
(
R

R

)n
, (2.1)
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where n is the order of the analytic solution, R is the radius of the worldtube, and R is

the characteristic length scale associated with the tidal field of m1 at m2. Optimally, the

approximation error εWT should be comparable to the error εNR of the NR simulation,

i.e. εWT ∼ εNR. This gives an “optimal” worldtube radius of

R ∼ ε1/(n)
NR R. (2.2)

For n = 4 (as presently available for a tidally perturbed Schwarzschild black hole [111])

the dependence on εNR is quite weak. As an example, εNR = 10−4 and n = 4 yield

R ∼ 0.1R. As a measure of R we may use the Kretschmann scalar K = RαβγδR
αβγδ

associated with the Schwarzschild field of m1, with Riemann tensor Rαβγδ. This gives

R ∼ K−1/4 ∼ 0.4(D3/m1)1/2, where D is the separation between the two black holes.

For example, near the end of the inspiral (D ∼ 6m1) we have R ∼ 6m1, and an optimal

choice of R ∼ 0.6m1.

The efficiency gain of the worldtube method arises from the weakened CFL condition

[53]. The smallest scale on the numerical grid with a worldtube is ∼ R (as long as

the worldtube is smaller than the more massive BH), while the smallest scale for the

traditional simulation is ∼ m2. Therefore, the CFL condition allows a time-step larger

by a factor ∼ R/m2. Assuming a comparable computational cost per time-step between

worldtube and traditional methods, the speed-up will be

speed-up ∼ R

m2
∼ ε1/(n)

NR

R
m2

= ε
1/(n)
NR

R
m1

q−1. (2.3)

Equation (2.3) suggests a potential speed-up proportional to q−1 � 1, with the constant

of proportionality depending on the target error εNR, the order of the analytical approx-

imation n and the length scale R, itself depending on the orbital radius D. For D in

the relevant strong-field range between ∼ 6m1 and ∼ 10m1, and with our sample values

n = 4 and εNR = 10−4, the constant of proportionality is around unity. Therefore, for

example, a speed-up by a factor 100 seems feasible for mass-ratio 1 : 100. To phrase this

differently, the computational cost of evolving for one orbit with the worldtube approach

could be similar to evolving one orbit of a comparable-mass BBH with traditional NR

methods at the same numerical error εNR.

We caution that our estimate here is extremely crude. Moreover, Eq. (2.3) assumes that

time-stepping error is always subdominant, which may only hold for high-order time-

stepping schemes like those employed by the SpEC code [46]. Even if the substantial

speed-up of Eq. (2.3) can be realized, high-mass-ratio simulations will remain more

challenging than comparable mass simulations, because the duration of the inspiral

increases with more extreme mass-ratios. A tighter εNR might also be required at more

extreme mass-ratios, to resolve the smaller amplitude of the gravitational waves and to

preserve phase accuracy over the longer inspiral.
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Chapter 3

Scalar-Field Model in 1+1D

We wish to start with a toy model with which to develop and test a matching method-

ology for the field across the worldtube’s boundary. For that purpose we employ a

linear scalar-field model, in which the small black hole is replaced with a pointlike scalar

charge, and the large object is a Schwarzschild black hole. This setup has been exam-

ined frequently in the literature, for different purposes, see e.g. [72, 49, 162]. Instead

of tackling the full Einstein’s equations, we thus solve the massless linear Klein-Gordon

equation for a scalar field on a fixed Schwarzschild background.

Furthermore, we decompose the field equation into multipole modes on the Schwarzschild

geometry, and solve for each mode of the field individually as an evolution problem in

1+1 dimensions (radius+time). Our worldtube is then a 2-dimensional “strip” confined

between two parallel timelike curves. As a final simplification, we set the scalar charge

to move on a fixed circular geodesic orbit around the large black hole (ignoring radiation

reaction), meaning we can fix our worldtube in advance of the evolution, and it has a

simple geometry. All of these simplifications take us very far, of course, from the actual

physical problem in question. However, our toy problem retains enough relevant features

to make it useful as a development platform for worldtube matching procedures.

3.1 Multipole Decomposition

The orbiting charge sources a linear scalar field Φ, which satisfies the Klein-Gordon

equation

gαβ∇α∇βΦ(x) = −4πρ(x) . (3.1)

Here∇α is the covariant derivative compatible with the background Schwarzschild metric

gαβ , and ρ(x) is the scalar charge density, represented by the distribution

ρ(x) = e

∫ ∞
−∞

δ4[xµ − xµp (τ)]√
−g

dτ , (3.2)
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in which e is the scalar charge, xµp denotes the coordinates of the particle’s worldline,

parametrised with proper time τ , and g is the determinant of gαβ . In a Schwarzschild

coordinate system attached to the background Schwarzschild geometry we have, for our

circular orbit, rp := xrp = const, and, without loss of generality, we set θp := xθp ≡ π/2.

The particle’s geodesic orbit then has a tangent four-velocity given (in Schwarzschild

coordinates t, r, θ, φ) by

uα := dxαp /dτ = γ (1, 0, 0, Ω) , (3.3)

where Ω := (dφp/dτ)/(dtp/dτ) = (M/r3
p)

1/2 is the orbital angular velocity with respect

to time t, γ := (1− 3M/rp)
−1/2 is a gravitational redshift factor, and M is the mass pa-

rameter of the Schwarzschild background. In terms of time t, the particle’s Schwarzschild

coordinates are

xαp =
(
t, rp,

π

2
,Ωt
)
, (3.4)

where, again without loss of generality, we have set φp = 0 at t = 0.

Our toy model makes a further simplification: rather than tackling the field equation (3.1)

in the 3+1D spacetime, we separate it into spherical-harmonic multipole modes (taking

advantage of the background’s spherical symmetry), and solve for each multipole of the

field in 1+1D (time+radius). To achieve this, we write

Φ =
e

r

∞∑
`=0

∑̀
m=−`

Ψ`m(r, t)Y`m(θ, φ) , (3.5)

where Y`m(θ, φ) are standard spherical harmonics, defined on 2-spheres r = const around

the large black hole, and the factor 1
r is introduced for later convenience. We insert the

expansion (3.5) into Eq. (3.1), and on the right-hand side of the latter we substitute the

completeness relation δ(θ − θp)δ(φ − φp)/ sin θ =
∑

`m Y`m(θ, φ)Ȳ`m(θp, φp), where an

overbar denotes complex conjugation. By virtue of the orthogonality of the Y`m func-

tions, one immediately obtains a separate equation for each of the time-radial functions

Ψ`m(r, t). The equation reads

∂2Ψ`m

∂t2
− ∂2Ψ`m

∂r∗2
+ V`(r)Ψ`m = S`m(t)δ(r∗ − r∗p) , (3.6)

where

V`(r) =

(
1− 2M

r

)(
`(`+ 1)

r2
+

2M

r3

)
, (3.7)

and

S`m(t) =
4π

γrp
Ȳ`m

(π
2
,Ωt
)
. (3.8)

Here we have introduced the tortoise radial coordinate r∗ = r+2M ln[r/(2M)−1], with

r∗p := r∗(rp).

Equation (3.6) is the basic field equation of our 1+1D toy model, and we apply our

excision method to it in order to develop our strategy and test its performance. We aim
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to construct a solution of Eq. (3.6) subject to “physical” boundary conditions, namely

that there is no radiation coming in from past null infinity or out of the past event

horizon; we refer to that solution as the “physical” one. For benchmarking, it is useful to

have at hand the actual physical solution of Eq. (3.6) (without a worldtube), and for that

purpose we have developed a simple time-domain numerical code capable of accurately

computing Φ`m(r) := Ψ`m(r)/r for given mode numbers `,m and orbital radius rp. The

algorithm of our code, to be described in Sec. 4.2.1, is based on characteristic evolution

with a second-order-convergent finite-difference formula, with the δ-function source term

incorporated by way of imposing suitable jump conditions along the particle’s worldline.

3.2 Static-Mode Solution

For m = 0 (axially symmetric) modes of the scalar-field perturbation, the source S`m

becomes time-independent, and the physical solution is static. The field equation (3.6)

then reduces to an ordinary differential equation, and admits simple analytical solutions.

Such solutions are particularly useful for benchmarking purposes, and they will serve us

well in that capacity later in our analysis.

For a “physical” m = 0 field we look for a static solution of Eq. (3.6) for which the

modal Klein-Gordon field Φ`0(r) := Ψ`0(r)/r is bounded on the event horizon and falls

off at infinity. These conditions define a unique solution for each `.

After a coordinate transformation, the field equation takes the form of Legendre’s equa-

tion and we can obtain a solution in terms of Legendre functions

Ψ`0(r) = AP`(z) +BQ`(z), (3.9)

where A and B are constants and P` and Q` are Legendre functions of the first and

second kind, respectively, with the arguments z := r/M − 1:

P`(z) =
1

2ll!

dl

dz`
(z2 − 1)`, (3.10)

Q`(z) =
1

2
P`(z) ln

1 + z

1− z
. (3.11)

At the horizon z = 1 and here Q` is singular. Toward spatial infinity z → ∞ and here

P` diverges. For the solution to satisfy the desired regularity, we chose the following

ansatz,

Ψ(r) = AP`(z)Θ(rp − r) +BQ`(z)Θ(r − rp), (3.12)

where Θ is the Heaviside step function. The coefficients A and B are obtained by

substituting Eq. (3.12) into Eq. (3.6) and then equating the coefficients of δ and δ′. This
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procedure yields the inhomogeneous solution

Ψ`0(r) =
rrp
M

S`0

(
Q`(zp)P`(z)Θ(rp − r) +Q`(z)P`(zp)Θ(r − rp)

)
, (3.13)

where zp := rp/M − 1. An example of such a static solution, with ` = 2, is shown in

Fig. 4.14. All modes are continuous at the location of particle, but display a finite jump

discontinuity in the first radial derivative there.

3.3 Local Approximate Solution

The field satisfying Eq. (3.1) can be split into a singular and regular piece

Ψ(x) = ΨS(x) + ΨR(x). (3.14)

The ΨS singular piece i) is a solution to Eq. (3.1), ii) displays a singular structure near

the particle’s worldline, iii) does not exert a force on the particle. The ΨR regular piece

i) satisfies the homogeneous version of Eq. (3.1), ii) is smooth on the particle’s wordline,

iii) determines the self-force acting on the particle [73].

In our 1+1D toy model we replace the actual solution in a worldtube surrounding the

particle’s worldline with an analytical approximation ΨA
`m that consists of two terms: a

“puncture” field ΨP`m, and a “regular” field ΨR`m. In this 1+1D model, ΨP`m is not a mode

decomposition of ΨS . Instead, it is formed using an ansatz such that it does capture the

local irregularity in (i.e. discontinuous derivatives of) the field at the particle, as seen

in the singular field. The “regular” field ΨR`m, accounts for the remaining, smooth part

of the local field.

Both these terms are expressed as a power series in the distance to the worldline, trun-

cated at a certain order (to be referred to as “the order” of the analytical model). The

expansion coefficients of ΨP`m can be determined analytically from the field equation (3.6)

using a local asymptotic analysis, as we explain below, and are fixed in advance in our

model. The expansion coefficients of ΨR`m, on the other hand, can only be determined by

matching to the external field outside the worldtube; these coefficients remain a priori

unknown, and they are to be determined dynamically during the numerical evolution as

described in later sections. In the rest of this section we describe the construction of a

suitable local analytical model ΨA
`m for the scalar field.

We begin with the construction of a suitable puncture field ΨP`m. Recalling our obser-

vation that the physical solution is continuous but has a finite jump discontinuity in its

first radial derivative at the particle, we introduce the ansatz

ΨP`m(r, t) = |∆r|
n∑
j=1

aj`m(∆r)j−1S`m(t) , (3.15)
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where ∆r := r−rp. Our choice of time dependence here makes sense, because the source

function S`m(t) depends on t harmonically, via the factor e−imΩt implicit in Ȳ`m
(
π
2 ,Ωt

)
in Eq. (3.8), and the retarded solution inherits this harmonic time dependence. We

terminate the expansion at order (∆r)n for some n ≥ 1, referring to the resulting field

as an “nth-order puncture”, denoted Ψ
P(n)
`m .

The constant coefficients aj`m in Eq. (3.15) are determined by substituting (3.15) in

the field equation (3.6), re-expanding in powers of ∆r, and then demanding that the

resulting equation is satisfied at the particle as a distributional equality. This produces

a hierarchy of algebraic equations for aj`m, which we can solve recursively order by order

in ∆r. More specifically, once Eq. (3.15) is substituted in Eq. (3.6), the requirement that

the delta-function terms balance in the equation immediately determines a1`m. Then,

the requirement that the remaining discontinuity vanishes at O(∆r0) determines a2`m

in terms of a1`m, the requirement that it vanishes at O(∆r1) determines a3`m in terms

of a1`m and a2`m, and so on. For the first five coefficients one obtains, in this fashion,

a1`m = − 1

2fp
, (3.16a)

a2`m =
M

2f2
p r

2
p

, (3.16b)

a3`m =
r4
pm

2Ω2 − λr2
pfp − 2M(3rp − 2M)

12f3
p r

4
p

, (3.16c)

a4`m =
λr3

pfp − 3Mr4
pm

2Ω2 + 2M(3r2
p − 4Mrp + 2M2)

12f4
p r

6
p

, (3.16d)

a5`m =
1

240f5
p r

8
p

[
2r4
pm

2Ω2
(
λr2

pfp + 2M(11rp + 13M)
)
− r8

pm
4Ω4 − 2λr2

pfp

(9r2
p + 2Mrp − 4M2)− 24M(5r3

p − 10Mr2
p + 10M2rp − 4M3)− λ2r4

pf
2
p

]
,

(3.16e)

where fp := f(rp) = 1− 2M/rp and λ := `(`+ 1). With this, we have all that we need

to construct puncture fields through fifth order.

Next, consider the remaining piece of the local field, Ψ
R(n)
`m , which we now define as the

difference between the full physical field and the nth-order puncture field (Ψ`m−Ψ
P(n)
`m ) ,

expanded in ∆r, with the expansion truncated at O(∆rn). Since, by construction, Ψ
P(n)
`m

has the same singular structure as Ψ`m through O(∆rn), the so-defined field Ψ
R(n)
`m is

smooth through O(∆rn), and takes the form of a polynomial:

Ψ
R(n)
`m (t, r) =

n∑
j=0

ψRj (t)(∆r)j . (3.17)

The n + 1 coefficients ψRk (t) (their `,m indices suppressed for brevity) are a priori

unknown; they are to be determined by matching to the numerical field outside the
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worldtube at each time step in the numerical evolution, as we describe in the next

section.

Our full nth-order analytical approximate field inside the worldtube is given by

Ψ
A(n)
`m (t, r;ψRk ) = Ψ

P(n)
`m (t, r) + Ψ

R(n)
`m (t, r;ψRk ) , (3.18)

where our notation acts as a reminder that Ψ
A(n)
`m inherits from Ψ

R(n)
`m a parametric

dependence on the n + 1 time-dependent coefficients ψRk := {ψR0 (t), . . . , ψRn (t)}. We

use the field Ψ
A(n)
`m to populate the interior of the excision worldtube in our numerical

simulations, with ψRk determined by matching at each time step. The “approximate”

nature of Ψ
A(n)
`m comes from the finite truncation of the expansion in ∆r at order n. Note

that, due to the finite truncation, our definition of Ψ
A(n)
`m is attached to our particular

choice of a distance expansion parameter: using e.g. ∆r∗ instead of ∆r would yield

a slightly different (but equally valid) analytic approximation. Note also that Ψ
A(n)
`m

cannot be “made exact” (even in principle) with a fine-tuned choice of the parameters

ψRk , since these parameters control only the smooth piece of the field and cannot correct

the error in the non-smooth piece caused by the finite truncation of Ψ
P(n)
`m . The error

in Ψ
A(n)
`m is inherent, and can only be controlled by varying the model order n (or the

worldtube radius).

In Scheme I of our numerical implementation we, in fact, use a characteristic grid, with

numerical evolution proceeding along null rays v = t+ r∗ and u = t− r∗. We therefore

appropriately transform our analytical solution into these coordinates and the regular

field is then given by a double Taylor expansion,

ΨR(t, u, v) =

n∑
j+k=0

ΨRjk(t)(∆u)j(∆v)k. (3.19)

ΨRjk(t) are the coefficients to be determined by the matching, and ∆u,∆v are the dis-

tances in u, v from the point of field evaluation to the position of the scalar charge.

3.4 Matching Overview

In the next two chapters we formulate two (alternative) matching strategies for the field

in and outside of the worldtube. The first is based on matching the analytical and

numerical solutions in an open “buffer” region around the tube’s boundaries. At each

step of the time evolution, the matching determines the set of unknown coefficients in

the analytical solution. Once the analytical solution has been fixed inside the tube,

the evolution can proceed to the next time step. This approach is close in spirit to

the standard method of matched asymptotic expansions, which underlies most of the

literature on tidally perturbed black hole spacetimes and GSF theory. However, whereas
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in standard matched expansions one matches together two asymptotic expansions, here

one matches an asymptotic expansion (the approximate analytical solution in the tube)

to an “exact” numerical solution.

The second matching approach we explore is conceptually different, reminiscent more

of the standard treatment of interfaces between media in hyperbolic systems using a

junction condition. In this approach we regard the worldtube boundary as a strict

interface, where boundary conditions are set for the numerical evolution outside the

tube. These boundary conditions are obtained (at each time step) from solutions of

a certain set of first-order ordinary differential equations (ODEs) along the boundary,

formulated in a way that ensures well-posedness of the evolution scheme.

We formulate each of the two matching approaches quite independently of any implemen-

tation details; indeed, each approach can in principle be implemented using whichever

one’s favorite numerical evolution method happens to be (finite difference or spectral,

Cauchy or characteristic, etc.). Here, to illustrate the applicability of our two approaches

and test their performance, we present two independent numerical implementations, one

for each approach. For the first approach (matching in a buffer region), hereafter re-

ferred to as ‘Scheme I’, we present a finite-difference implementation in characteristic

coordinates. For the second approach (matching on the boundary), hereafter referred to

as ‘Scheme II’, we present a spectral implementation with Cauchy evolution. For each

approach we demonstrate the stability of the numerical evolution, compare with analyt-

ical solutions where possible, and explore the convergence of the solutions with respect

to numerical resolution, worldtube radius (R) and approximate analytical solution order

(n).
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Chapter 4

1+1D Scalar-Field Model:

Scheme I

This chapter presents our first 1+1D scalar-field toy model, “Scheme I”. Here we use a

finite-difference method for the numerical evolution and match the approximate analyti-

cal solution to the numerical solution using a sample of data points around the worldtube

boundaries. We go on to explore the dependence of the worldtube excision model on

the key parameters, namely numerical resolution, worldtube radius and approximate

analytical solution order.

4.1 Setup

4.1.1 Characteristic Grid

Scheme I uses finite difference methods for the numerical evolution of the scalar wave

equation, on a grid with characteristic coordinates u = t−r∗, v = t+r∗. The resolution is

defined as the distance along the side of a grid cell given by h, illustrated in Fig. 4.1. The

evolution proceeds along characteristic slices, u = const, v = const. Such characteristic

grid evolutions are tried and tested numerical schemes, with examples of use given in

[93, 90, 36, 37, 72]. Characteristic grid evolutions have benefits, compared to Cauchy

grid evolutions, due to their lack of a need for strict boundary conditions. This is a

result of the fact that the boundaries of the Schwarzschild exterior are null surfaces and

out of causal contact with the evolutionary domain. We construct the grid such that

the initial vertex u0, v0 is at coordinate values t = 0 and r = 7M, r∗ ≈ 8.8M .

The numerical evolution in Scheme I follows the principles laid out in [93, 90, 36, 37, 72].

Initial data must be specified on the lines u = u0 and v = v0. Since we do not know

the physical solution, we treat the initial data as freely specifiable; the deviation from
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Figure 4.1: Illustration of the characteristic grid. Initial data is set along the initial
u, v rays which are depicted in bold.

the physical solution is then equivalent to adding an incoming or outgoing wave in the

form of a homogeneous solution. This “junk” data will then radiate away, exiting the

numerical domain of interest and leaving behind the correct physical behaviour.

Typically we evolve the Scheme I model for t ≈ 500M , to allow sufficient time for junk

data to dissipate. Scalar (or gravitational) perturbations of the Schwarzschild black hole

exterior die off at late times with an inverse power law. For a spherical harmonic wave

mode of multipole `, this power law is given by t−2`+3 [126, 30].

When we introduce a scalar charge e, we fix it to be on a circular, equatorial orbit with

rp = 7M i.e. the vertex of our grid, θp = π
2 and φp = Ωt, where Ω =

√
M
r3p

. The orbital

period of the particle is given by P = 2π
Ω ≈ 116M . For simplicity in Schemes I and II,

we set M = 1 and e = 1 going forward.

4.1.2 Numerical Method

The finite difference scheme we use to numerically evolve the field over the characteristic

grid follows the quadratic-order algorithms laid out in [93, 90].

For simplicity we first consider the homogeneous scalar wave equation. In terms of u, v

coordinates, −Ψ2
,t + Ψ2

,r∗ = −4Ψ,uv this is

− 4Ψ,uv − V (r)Ψ = 0. (4.1)
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Figure 4.2: Depiction of grid cell in null coordinates. The centre of the cell is at (v, u),
whilst the values at the vertices show the relative changes in terms of the gridsize h.

By performing an integration over the grid cell whose centre has coordinate values

(tc, r
∗
c ), we have∫ ∫
cell
−4Ψ,uvdudv = −4

[
Ψ(tc +

h

2
, r∗c ) + Ψ(tc −

h

2
, r∗c )−Ψ(tc, r

∗
c −

h

2
)−Ψ(tc, r

∗
c +

h

2
)
]

= −4[Ψ4 + Ψ1 −Ψ2 −Ψ3],

(4.2)

where Ψ1,Ψ2,Ψ3,Ψ4 denote the field values at the four vertices labelled in Fig. 4.2. This

result is exact, containing no finite-difference errors. The integral of the potential term

is approximated to O(h4) using a trapezoidal rule [90],∫ ∫
cell

V (r)Ψdudv = h2V (rc)

(
Ψ2 + Ψ3

2

)
+O(h4), (4.3)

where V (rc) is the value of the potential at the centre of the grid cell. Given Eq. (4.2)

and (4.3) the integral of Eq. (4.1) can be rearranged to obtain a formula for the field at

point 4 in terms of field values at the three prior points

Ψ4 = −Ψ1 + (Ψ2 + Ψ3)

(
1− h2

2

V (rc)

4

)
+O(h4). (4.4)

As a first test of our characteristic evolution, we evolve the field without a source. In

this scenario we introduce a Gaussian wave packet along an initial ray, either

Ψ(u = u0, v) = exp

(
− (v − vi)2

2σ2

)
, Ψ(u, v = v0) = 0, (4.5)

or

Ψ(u, v = v0) = exp

(
− (u− ui)2

2σ2

)
, Ψ(u = u0, v) = 0, (4.6)
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Figure 4.3: We seed the evolution with a Gaussian wave packet and allow this to
evolve in Schwarzschild spacetime, using the finite difference scheme. Here we plot the
value of Ψ at r = 7M against t.

We set ui, vi = 15M , σ = 10M and where u0 ≈ −8.83258M , v0 ≈ 8.83258M due to

t = 0 and r∗ ≈ 8.83258M at this position. Figure (4.3) shows the field Ψ at r = 7M

against t, with this Gaussian initial seed data. We now use this as a scenario to test the

convergence of the finite difference scheme with respect to h.

In a complete run of the numerical simulation there is a total number N ∝ 1
h2

of cells

in the grid. This then results in the accumulation of the local O(h4) error, to an overall

global error ofO(h2). Our convergence test takes a ratio of Ψ values from three numerical

runs with grid sizes that differ by a factor of 2, using the formula

Ih :=
Ψ(h)−Ψ(h2 )

Ψ(h2 )−Ψ(h4 )
. (4.7)

The ratio test compares the field value either along slices of constant time, hence as

a function of r∗, or along slices of constant radius, hence as a function of t. The test

allows us to assess the convergence index across an entire domain, giving us a local view

of the behaviour. A global error of O(h2), i.e. a quadratic-order scheme, would produce

a convergence index of Ih = 4. In Fig. 4.4 we plot Ih for an ` = 2,m = 0 Ψ mode at

r = 7M against time t, to see the settling of this convergence index with the evolution.

The figure shows Ih settling to 4, corroborating the expected quadratic convergence.

The numerical evolution of our BBH models will be carried out using spectral methods

as opposed to finite difference methods. Spectral methods are characterised by their

exponential convergence with respect to resolution and so will vastly improve on this

Ih. Therefore, for the purposes of the Scheme I toy model where we are focusing our
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Figure 4.4: We plot the convergence index Ih given in Eq. 4.7 as a function of t, for
a non-sourced evolution of Ψ seeded by a Gaussian wave packet. We take the value of
Ψ at r = 7 and use runs of h = 0.8, 0.4, 0.2. Due to our second-order finite difference
scheme, we obtain quadratic convergence.

Figure 4.5: Illustration of the characteristic grid with a point particle source at a
fixed radius. The worldline of the point particle is depicted by the red line.

efforts on the architecture of the worldtube and the matching procedure, a quadratic-

order scheme is sufficient.

4.2 Test Setups

4.2.1 Evolution with a Point Particle Source

Instead of moving to excise a region from our numerical evolution straight away, we

first introduce a point particle on a circular orbit into our numerics. This will allow
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us to adapt our finite difference scheme to the presence of a source. The worldline

of the source in the characteristic grid is illustrated in Fig. 4.5. The value of this

intermediary construction is twofold. It will act as an initial check on our basic numerical

evolution scheme, as we can compare results to the exact analytical solution for static

modes computed in Sec. 3.2. Here we should see convergence with increasing resolution

(decreasing h). Secondly, for non-static modes, as no closed-form analytical solution

exists, the numerical results for the point particle source will act as the baseline to

which we can compare results from our worldtube model.

Our scalar wave equation in u, v coordinates becomes

Ψ,uv +
V (r)

4
Ψ =

πe

rp

f2(rp)

E
Y ∗`m(

π

2
,Ωt)δ(r − rp). (4.8)

The evaluation of the finite difference scheme on grid vertices will remain the same,

except if the vertex is crossed by the particle’s trajectory. In this case the formula reads

Ψ4 = −Ψ1 + (Ψ2 + Ψ3)

(
1− h2

2

V (rc)

4

)
+ Z +O(h4), (4.9)

where Z is given by the integral of the source over the u, v grid cell. As the source has

a delta function in r, it is convenient to use dudv = 2f−1drdt:

Z`m =

∫∫
cell

2πe

r

f(r)

E
Y ∗`m(

π

2
,Ωt)δ(r − rp)drdt, (4.10)

where we have reinstated the `,m indices on Z. The conjugate spherical harmonic has

the form

Y ∗`m

(
π

2
,Ωt

)
= A`me

−imΩt, (4.11)

where A`m = (−1)(`+m)/2

[
(2`+1)(`+m−1)!!(`−m−1)!!

4π(`+m)!!(`−m)!!

]1/2

if ` − m is even, or A`m = 0 if

`−m is odd [36]. For the m = 0 case the explicit integral of the source term is then

Z`0 =
2πe

rp

f(rp)

E
A`0

[
t

]tc+h
2

tc−h2

=
2πe

rp

f(rp)

E
A`0h. (4.12)

For non-zero m modes, the explicit integral is evaluated as follows:

Z`m =
2πe

rp

f(rp)

E)
A`m

∫ tc+
h
2

tc−h2
e−imΩtdt

= −2πe

rp

f(rp)

E

A`m
imΩ

e−imΩ(tc)

[
e−imΩh

2 − eimΩh
2

]
=

2πe

rp

f(rp)

E

A`m
mΩ

e−imΩ(tc)

[
2 sin (mΩ

h

2
)

]
.

(4.13)
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Here tc− h
2 , tc + h

2 are the values for t at the entry (tin) and exit (tout) points of the cell

on a circular geodesic. Therefore the full finite difference scheme is given by

Ψ4 = −Ψ1 + (Ψ2 + Ψ3)

(
1− h2

2

V (rc)

4

)
+

2πe

rp

f(rp)

E
A`0h+O(h4) (4.14)

for static modes and

Ψ4 =−Ψ1 + (Ψ2 + Ψ3)

(
1− h2

2

V (rc)

4

)
+

2πe

rp

f(rp)

E

A`m
mΩ

e−imΩ(tc)

[
2 sin

(
mΩ

h

2

)]
+O(h4)

(4.15)

for non-static modes. For the initial data along the initial rays, u0, v0, we set the field

to be zero.

Non-static modes of the field Ψ are radiative, with oscillations representing scalar-field

waves. This can be seen from the form of Eq. (4.15) and in Fig. 4.6. Figure 4.6 shows

the absolute, real and imaginary parts of the field generated from the point particle

code, for an ` = 2,m = 2 mode on a slice of time t = 400M . For all `,m, the field is

continuous at the location of the particle but has a finite jump discontinuity in its first

radial derivative there. Scalar waves are seen to emanate from the particle out towards

infinity (r∗ →∞), as well as down towards the event horizon (r∗ → −∞), with a much

smaller amplitude. We can also see the outgoing junk radiation at the edge of the r∗

domain.

Two types of convergence test with respect to h can be performed. The first is an

internal convergence test where three runs of the point particle code are compared. The

formula for the convergence index would be

Ih :=
Ψ(h)−Ψ(h2 )

Ψ(h2 )−Ψ(h4 )
. (4.16)

The second is an external convergence test, where two runs of the point particle code

and the exact analytical solution given by Eq. (3.13) are compared. We now denote the

exact analytical solution, Ψexact. These tests confirm convergence of the code to the

correct solution. The formula for the convergence index would then be

IhE :=
Ψ(h)−Ψexact

Ψ(h2 )−Ψexact

. (4.17)

The latter is of course only applicable for static mode (m = 0) runs of the point particle

code. Both tests confirm quadratic-order convergence, i.e. an index Ih = IhE = 4.

Figure (4.7) shows the internal convergence between h = 0.8, 0.4, 0.2 runs for an ` =

2,m = 2 mode. When performing an internal convergence test using Eq. (4.16) for a

non-static mode, it is preferable to compare the absolute value of Ψ. This is due to
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Figure 4.6: The field values for an ` = 2,m = 2 mode using the point particle code
at a slice of time t = 400M . Scalar waves are seen to emanate from the particle out
towards infinity (r∗ →∞), as well as down towards the event horizon (r∗ → −∞), with
much smaller amplitude. Outgoing junk radiation can also be seen at the edge of the
r∗ domain.

the fact that the settled index would be obscured by zero crossings, as a result of the

oscillatory nature of the propagating sinusoidal waves. An additional test for non-static

modes is to compare the phase of Ψ.

4.2.2 Evolution with the Exact Analytical Solution inside a Worldtube

We now introduce a worldtube into our characteristic grid; see Fig. 4.8. The radius of

the worldtube is denoted by R. As a final check on our code, before the implementation

of a matching procedure, we populate the worldtube with the exact analytical solution

for static modes. For initial data we set the field values along the initial rays inside the

worldtube to be equal to the analytical solution and outside the worldtube we introduce

a Gaussian function to smoothly send the field values to zero. This avoids creating a

discontinuity in the initial data, which would result in larger amplitude junk radiation.

In this test setup the finite difference scheme numerically evolves up to the boundaries.

The values of the field at vertices on the boundaries are then given by the exact analytical

solution, evaluated at the appropriate coordinate distance. Although our boundary data

corresponds to a static mode, we are not imposing staticity on the numerical evolution

outside it. Figure 4.9 shows a slice of the field Ψ at t = 400M , where the worldtube size

has been set to R = 0.8M , centred on r = 7M .
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Figure 4.7: The convergence index Ih given in Eq. (4.16) as a function of t for the
point particle code. We examine the absolute value of Ψ for an ` = 2,m = 2 mode
at r = 7M , using runs of h = 0.8, 0.4, 0.2. Due to our second-order finite difference
scheme, we obtain quadratic convergence.

Figure 4.8: Illustration of the characteristic grid with a worldtube, whose boundaries
are given by vertical red lines. The region within the worldtube is excised from the
numerical evolution.
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Figure 4.9: The field values for an ` = 2,m = 2 mode worldtube evolution, where the
worldtube interior has been populated with the exact analytical solution, at a slice of
time t = 400M . The worldtube size has been set to R = 0.8M , centered on r = 7M .
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Figure 4.10: We plot the convergence index Ih given in Eq. (4.16) as a function of t,
for the worldtube evolution using the exact analytical solution within the interior. We
examine the absolute value of Ψ for an ` = 2,m = 0 mode at r = 7M , using runs of
h = 0.8, 0.4, 0.2. Due to our second-order finite difference scheme, we obtain quadratic
convergence.

Once again we want to check whether the model gives the expected quadratic con-

vergence with respect to h. As done with the point particle evolution, we can per-

form an internal convergence and an external convergence test, examining convergence

to the correct solution. Both tests confirm quadratic-order convergence, i.e. an order

Ih = IhE = 4. Figure (4.10) shows the internal convergence between h = 0.8, 0.4, 0.2

runs for an ` = 2,m = 0 mode.
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Figure 4.11: The 1+1D characteristic mesh used in Scheme I. The particle’s circular
orbit is represented by the dashed (red) line running vertically down the center. At
each time step the particle sits at a red diamond point. The solid (red) vertical lines
mark the boundaries of the excision worldtube. Outside the worldtube we evolve the
field equation numerically along characteristic rays (as described in the text) using a
finite-difference formula. The evolution starts from characteristic initial data set on the
two initial rays v = v0 and u = u0 (blue square grid points) and proceeds to determine
the data points in the bulk of spacetime outside the tube and on its boundaries (grey
circle points). At each time step, a matching procedure, described in Subsec. 4.3.1,
is applied to determine the parameters of the approximate analytical solution on the
remaining sections of the characteristic rays inside the tube, and in particular on the
two “ghost” grid points (black, starred) needed at subsequent steps of the evolution.

4.3 Evolution with a Worldtube

4.3.1 Matching Method

4.3.1.1 Ethos

Our first approach is inspired by the method of matched asymptotic expansions. Let us

recall how that method is traditionally applied to the small-mass-ratio limit of the binary

problem [110], with reference to Fig. (2.1). The binary is treated as a one-parameter

system, using m1 as an overall length scale and the small mass ratio q = m2/m1 as a

small parameter (in this treatment, the length R is replaced with m1 rather than being

treated as an independent scale). In the bulk of the binary spacetime, one expands

the metric in powers of q. Sufficiently near m2, at distances ∼ m2, such an expansion

breaks down because the gravity of m2 dominates over that of m1. One then constructs

a complementary local approximation using an expansion in powers of q while holding

s/m2 fixed, where s is a suitable measure of spatial distance from the companion’s

representative worldline. By holding s/m2 fixed, this expansion zooms in on the region

s ∼ m2 � m1, such that s/m1 ∼ q. In a buffer region m2 � s � m1, s/m1 and

m2/m1 are both small, and the exterior and interior approximations must agree. This
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Figure 4.12: Spacetime diagram (in t, r coordinates) illustrating the various regions
involved in our first matching approach. The vertical dashed line indicates the particle’s
worldline at constant orbital radius. The disjoint shaded regions B± make up the buffer
region B = B− ∪ B+ where the matching occurs. The excision region Γ has a disjoint
boundary ∂Γ = ∂Γ+∪∂Γ− that lies within B. We carry out the matching by expanding
the numerical field ΨN in powers of ∆r and equating the coefficients in the expansion
to the coefficients in ΨA. The orange shaded region shows the domain of dependence
of the field outside Γ at time t2, given data at time t1.

requirement translates into a precise matching condition: if the local approximation

inside the worldtube is re-expanded in powers of q at fixed s (no longer holding s/m2

fixed), and the external solution is re-expanded in powers of s/m1, then in both cases

one arrives at a double series in q and s/m1, which should be a good approximation in

the buffer region. The matching condition states that because they are expansions of

the same metric, the two double expansions must agree term by term.

Now consider the translation of these notions into our toy problem. For simplicity we use

t–r coordinates in our description rather than the double-null coordinates we ultimately

use in Scheme I. The setup in the t–r plane is illustrated in Fig. 4.12. We define a

buffer region B, made up of disjoint regions B±, in which ∆r is small compared to M .

We then define an excision region Γ = [−R ≤ ∆r ≤ R] around the particle’s orbital

radius, with boundaries ∂Γ± lying in B±. We loosely imagine that outside of Γ, we solve

for Ψ using the homogeneous field equation, Eq. (3.6) with the right-hand side set to

zero, and that inside, we use the analytical approximation ΨA
`m. For convenience, we

label the numerically evolved field outside Γ as ΨN
`m. However, following the dictates

of matched expansions, we operate under the principle that in B, ΨN
`m and ΨA

`m can be

used interchangeably.

As in the method of matched expansions, to match the two fields we expand ΨN to put

it in the same form as ΨA (we hereafter omit the indices `m for brevity). In each of the
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regions B±, ΨN can be approximated by a power series in ∆r,

ΨN±(t, r) =
n∑
j=0

ψ±j (t)(∆r)j +O(∆rn+1) , (4.18)

where ΨN± denotes the restriction of ΨN to B±. The coefficients ψ±j can be found

by projecting ΨN onto the basis of functions {(∆r)0, . . . , (∆r)n} using a suitable inner

product

〈x, y〉 =

∫
B′
x(r)y(r)dr. (4.19)

Here B′ is some open interval (with fixed t) in B, or a collection of multiple such intervals;

we consider the choice of integration domain below. Our matching condition is then that

the coefficients in Eq. (4.18) are identical to the coefficients in ΨA:

ψ±j (t) = ψRj (t) + ψP±j (t) , (4.20)

where ψP± are the puncture coefficients, which can be read off Eq. (3.15): ψP±j (t) =

±aj`mS`m(t).

To satisfy Eq. (4.20), we must ensure that ψ±j satisfies the same jump conditions as ψP±j ,

meaning ψ+
j − ψ

−
j = ψP+

j − ψP−j . If we were to construct the approximations (4.18)

separately in their respective regions B±, with no regard to the relationship between

them, then these jump conditions would not be precisely satisfied. We enforce the correct

jumps by demanding that the difference ΨN −ΨP is approximated by the smooth field

ΨR,

ΨN (t, r)−ΨP(t, r) =
n∑
j=0

ψRj (t)(∆r)j +O(∆rn+1) . (4.21)

This requires choosing the integration domain in Eq. (4.19) to have support in both B+

and B−. Taking the inner product of Eq. (4.21) with (∆r)k and discarding higher-order

terms, we obtain a linear system for ψRj ,

n∑
j=0

Ajkψ
R
j (t) = bk(t) for k = 0, . . . , n , (4.22)

with Ajk = 〈(∆r)j , (∆r)k〉 and bk = 〈ΨN − ΨP , (∆r)k〉. We note that the solution to

Eq. (4.22) yields the L2 best approximation of ΨN −ΨP . Since this equation must hold

for all t, it also implies an analogous equation for ∂tψ
R
j , which is required for a Cauchy

evolution.

To enforce the matching condition in a numerical evolution, we can use the following

scheme:

1. Suppose that at time t1, we have data for ΨN and ∂tΨ
N everywhere outside Γ.
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2. Determine the approximate solution ΨA(t1) and ∂tΨ
A(t1) by solving Eq. (4.22)

and the analogous equation for ∂tψ
R
j . We then have Ψ and ∂tΨ for all r at time

t1, given by the field values from Step 1 outside Γ and by ΨA and ∂tΨ
A inside Γ.

3. Use the homogeneous equation, Eq. (3.6) with the right-hand side set to zero,

together with the data at t1 to obtain ΨN at a later time t2 everywhere outside Γ,

as illustrated in Fig. 4.12. This requires data from inside Γ at t1, which is provided

by ΨA(t1, r) and ∂tΨ
A(t1, r).

This can then be repeated indefinitely. Note that the time interval from one slice to the

next is tied to the length scale of the buffer region. The evolution from tk to tk+1 should

only draw upon data for ΨA in the buffer region, implying that the time intervals must

be of order R or shorter. In principle, this division of spacetime into time intervals need

not be associated with one’s numerical discretisation, and the spacetime region between

tk and tk+1 can be spatially discretised in any convenient way.

Our description here refers to an evolution between slices of constant t, but it extends

straightforwardly to any choice of slicing, including particularly the characteristic slicing

we work with in Scheme I. In general, the one-dimensional series approximation (4.18) is

replaced by a two-dimensional series in powers of coordinate distances (∆t and ∆r or ∆u

and ∆v, for example) from a reference point on the worldline. The inner product (4.19) is

then replaced by an integral over a two-dimensional region. We can also naturally extend

the method to an evolution in 3 + 1 dimensions by matching to a local approximation

in a three- or four-dimensional region around the companion.

One additional aspect of this matching approach that should be noted is that it does not

inherently impose any degree of differentiability across ∂Γ±, except in the limit n→∞.

This contrasts with the matching method we employ in Scheme II.

4.3.1.2 Implementation

In practice, the implementation is a discretised version of the above approach, and the

integral in Eq. (4.19) reduces to a summation over discrete data points. With i labelling

the discrete data points, Eq. (4.22) becomes

n∑
j=0

Ajkψ
R
j (t)h = bk(t)h for k = 0, . . . , n , (4.23)

with Ajk =
∑d

i=1 ∆rji∆r
k
i and bk =

∑d
i=1(ΨN

i − ΨPi )∆rki . The discretisation factor h

appears on both sides of Eq. (4.23) and cancels. The number d of data points must be

taken to be greater than or equal to the number of unknown coefficients ψRj , and the

solution to Eq. (4.23) then yields the least-squares polynomial regression of ΨN
i −ΨPi .
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Figure 4.13: Data used to fit for the unknown parameters ψRij in the linear, quadratic
and cubic-order approximate analytical models (n = 1, 2 and 3, left to right respec-
tively). Red vertical lines mark the worldtube’s boundaries, and red diamonds mark
the location of the particle about which the regular field is expanded in a double Tay-
lor series. Black circles represent the numerically determined field data points used to
the fit the parameters ψRij of the analytical model inside the tube, using the procedure
described in the text.

The above description assumes (for simplicity) a Cauchy-type evolution, and it needs to

be adapted for use in our characteristic evolution setup. In the Cauchy evolution case,

the regular field component of the analytical solution is expanded in powers of ∆r about

the point where the current Cauchy slice intersects the particle’s worldline (at the center

of the tube; refer again to Fig. 4.12). In our characteristic implementation, we instead

choose to expand ΨR(u, v) as a double Taylor series in ∆u := u− up and ∆v := v − vp
about the point of intersection of the two current null slices (up, vp), which in our setup

is a point along the particle’s worldline at the center of the tube (refer again to the

points labelled with red diamonds in Fig. 4.11). The expansion takes the form

ΨR(u, v) =

n∑
i=0

n−i∑
j=0

ψRij∆ui∆vj , (4.24)

where n is the puncture order, and the coefficients ψRij are a priori unknown constant

coefficients at each time step. There are N = (n + 1)(n + 2)/2 such coefficients. The

matching conditions in Eq. (4.23) are then replaced with a suitable two-dimensional

version, with solutions that are the least-squares 2D polynomial regression model of

ΨN
i − ΨPi over a 2D array of data points in the u, v plane. For this to work, one must

take d ≥ N , i.e. the number of data points must be greater than or equal to the number

of coefficients ψRij .

In our particular implementation we choose to take d = 2N , i.e. twice as many data

points as unknown coefficients. This choice appeared to provide a good balance in the

tradeoff between accuracy and runtime. Since, with this choice, the number of data

points is always even, it allows us to distribute them evenly and symmetrically on either

side of the worldtube. Our choice of data points for the matching, for model orders

n = 1, 2 and 3, is shown in Fig. 4.13. In all cases, we draw our matching points from

the current u, v null rays and from the u, v null rays in the preceding time step (it
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is necessary to use data from more than a single time step in order to fit for mixed-

derivative coefficients like ψR11).

With these choices, the matching procedure is as follows. As described already, at each

time step we evolve the initial data using successive applications of our finite-difference

formula along the corresponding two null rays u = const and v = const (such that

v − u = 2r∗p) running from the initial null surfaces to the boundaries of the tube. Once

this step is completed, we record the d numerical data points ΨN
i shown in Fig. 4.13, all

of which are known to us from the current or previous steps of the numerical evolution,

and then construct the d values ΨN
i −ΨPi by subtracting the analytically known puncture

values at the corresponding grid points. To these d values we now match the nth-order

2D polynomial given in Eq. (4.24) using a least-square minimisation procedure to obtain

the coefficients ψRij . This, in turn, determines the regular field ΨR, and thus also the

complete analytical approximation ΨA = ΨR+ ΨP inside the worldtube, in the vicinity

of the current characteristic rays. We record the values of ΨA at the two “ghost” grid

points inside the tube adjacent to the boundaries on the current ray (starred points in

Fig. 4.11); these two values will be required when calculating the numerical field on the

boundary in the next time step. This concludes the computation for the current time

step, and we can now step forward in (advance/retarded) time and repeat.

A few comments are in order. First, it may be noticed that in the first few time steps

of the evolution there may not be available sufficiently many data points to fit all of the

N model parameters. In such cases we simply set to zero the values of the “missing”

data points. This does not cause a problem, because the early evolution is in any case

dominated by non-physical junk radiation; all this does is modify the profile of the initial

junk.

Second, we note that in our procedure we choose not to impose that ΨA satisfies the

field equation in the tube; if we did, some of the coefficients ψRij would become mutu-

ally dependent. For example, in the quadratic model with n = 2, imposing the field

equation would determine the coefficient ψR11 in terms ψR00, ψR01 and ψR10. Such an alter-

native approach is possible, but for simplicity we opt to treat all N coefficients ψRij as

independent for the purpose of the matching. By matching ΨA to a vacuum solution

over an extended region, we guarantee the field equation is satisfied within the tube to

the overall order of accuracy of the scheme. We have confirmed numerically that the

violation of the field equation appropriately goes to zero with decreasing worldtube size

R.

Finally, we comment on the degree of differentiability of our solution on the tube’s

boundary. As already mentioned, since we are not explicitly imposing continuity of the

field or its derivatives at the tube’s boundary, there is no reason to expect that the

field constructed via our matching procedure should exhibit any level of differentiability

there. In practice, for our specific choice of matching data points, we find that the
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discrepancy between ΨN and ΨA, and between their radial derivatives, are numerically

small and seem to decrease to zero with h, as expected on theoretical grounds.

4.3.2 Results

4.3.2.1 Static Modes

The scheme is tested with a scalar charge kept fixed at the Schwarzschild coordinate

r = 7M , using the ` = 2,m = 0 spherical harmonic mode. For initial data we set the

field values along the initial rays inside the worldtube to be equal to the puncture field

ΨP given in Sec. 3.3. Outside the worldtube we again introduce a Gaussian function to

smoothly send the field values to zero.

As highlighted, for static modes we can compare our results to the exact analytical

solution Ψexact given in Sec. 3.2. This provides us a baseline against which to compare

our worldtube results. One way of doing this is to calculate the absolute and relative

error on a late-time slice, as a function of r∗.

The absolute error is calculated by

|Ψ−Ψexact| (4.25)

and the relative error is calculated by

|Ψ−Ψexact|
|Ψexact|

. (4.26)

4.3.2.2 Radiative Modes

To test the scheme in a radiative mode situation we investigate the ` = 2, m = 2 spherical

harmonic mode. We use the same type of initial data as in the static mode case. For

radiative modes there is no analytical solution against which we can compare the results

from our worldtube model. Instead, we remove the worldtube from our characteristic

grid and use numerical baseline results obtained from an exposed point particle source

of the same `,m mode, as described in Sec. 4.2.1

Agreement between worldtube model results and the point particle solution is again

examined by calculating the absolute and relative error on a late time slice. Field values

for radiative modes are complex-valued and so we examine the magnitude of the field

|Ψ| to avoid zero-crossings.

Figure 4.14 shows the typical profile of the field Ψ`m for ` = 2, m = 0 and ` = 2, m = 2

mode obtained using our excision method, at a slice of constant late time t. We typically

evolve the scheme for a coordinate time of 500M , as we find after this time most of the
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Figure 4.14: Solutions to the modal scalar-field Eq (3.6), with a source corresponding
to a scalar charge on a circular geodesic orbit of radius rp = 7M (r∗p ≈ 8.83M),
obtained using worldtube excision. Shown here are Ψ22 and Ψ20 as functions of the
radial coordinate r∗ at t = 500M .

junk radiation has sufficiently decayed in all cases. We see that Fig. 4.14 qualitatively

recovers all the features of Fig. 4.6 obtained using the point particle code. In Ψ22 we see

the (i) scalar-field waves (of frequency mΩ) that emanate from the particle and appear

in the outer “wave zone”, r∗ � M ; (ii) scalar-field waves (again of frequency mΩ but

typically of a lower amplitude) going into the black hole, visible at r∗ � −M ; and (iii)

the cusp in the scalar field at the particle’s location, where Ψ`m is continuous but has a

finite jump in its first radial derivative.

4.3.2.3 Convergence

Our numerical solutions depend on three ‘control’ parameters: the uniform grid res-

olution h, the worldtube radius R, and the order n of the analytical model inside

the tube. For our numerical convergence tests we use the sequence of values h =

{0.02, 0.01, 0.005}M , fixing the resolution at h = 0.005M for all other tests. The value

of R for our various tests is chosen in the interval [0.0125M, 0.8M ]. In Scheme I we

restrict to models with n = 1, 2, 3 (while Scheme II extends this to n = 4, 5).

Convergence towards our benchmark solution is observed, as expected, when decreasing

h, or when decreasing R, or when increasing n (for a sufficiently small R). In what

follows we demonstrate, explore and better quantify this behaviour using a range of

numerical experiments.
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Figure 4.15: The numerical data pattern selected to evaluate a model where the
approximate analytical solution is taken to quadratic order. The left shows the data
points selected for h = 0.1, whilst the right shows the data points selected for h =
0.2. The number of numerical data points and their physical location is held fixed,
independent of the resolution.

4.3.2.4 Convergence with Resolution

We start by examining the convergence of the finite difference scheme with respect to

grid resolution h, using a local convergence test. Three runs are performed, with fixed

worldtube width R and model order n, and variation of h. Denoting the field computed

with resolution h by Ψh, we now construct the local convergence index

nh := log2

∣∣∣∣∣Ψh −Ψh
2

Ψh
2
−Ψh

4

∣∣∣∣∣ , (4.27)

note this is log base 2 of index previously used, to match the convention in Chapter

5. Given our second-order finite difference scheme, this should yield approximately 2

i.e. quadratic-order convergence.

We have a choice in how the array of matching points outside the tube is modified as we

vary h. A sensible “like-to-like” comparison is one in which the physical position and

pattern of the data points around the worldtube is held fixed as h is varied. Figure 4.15

illustrates this choice. Proceeding in this way, our convergence test with a worldtube

excision yields nh ≈ 1, indicating that the convergence is only linear; see Fig. 4.16.

We find this deterioration in convergence rate affects all `,m modes examined (static

as well as radiative), and all model orders attempted (n = 1, 2, 3). Repeating the test

with a sequence of smaller h values does not improve the situation, and the convergence

remains linear. However, quadratic convergence is recovered if (for a static mode) we

replace the regression model in the tube with the known exact analytical solution. We

also recover quadratic convergence if we “freeze” the matched analytical model in the

tube as we vary h (i.e. fit the model using one value of h and then apply the same

polynomial regression model when running with the other two h values participating in

our convergence test).
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Figure 4.16: Convergence of the numerical solution with respect to grid resolution
h. Plotted is the convergence index nh, defined in Eq. (4.27), as a function of t along
a slice of constant radius r∗ = 8.93258 (corresponding to the right boundary of the
excision tube). In the “standard” test, the analytical solution in the tube is fitted for
afresh for each choice of grid resolution, and the observed steady-state convergence is
linear (nh ≈ 1). For comparison, when we fix the analytical solution in the tube as we
vary h (“frozen fit”), the observed convergence is quadratic (nh ≈ 2), as it is for a run
with an exposed point particle without a worldtube (“point particle”). The reduction
in convergence rate evidently caused by the matching procedure is discussed in the text.

The apparent reduction in convergence rate may be explained as resulting from a cou-

pling between h-related and R-related errors, expected when the approximate analytical

model in the tube is allowed to depend on h, as in our convergence test. To understand

this, consider that the value of the numerical field at a point x outside the worldtube

is a function Ψ(x; h̃, R̃) = Ψexact(x) + δΨ(x; h̃, R̃) depending parametrically on both

h̃ := h/m1 and R̃ := R/m1 (we ignore here the dependence on n, assumed fixed for

the rest of this discussion). For small h̃ and R̃, the error term may be expressed as a

double Taylor expansion, δΨ =
∑

i,j aij h̃
iR̃j . The terms with j = 0 describe the usual

discretization error for R→ 0 (exposed point particle); we have a00 = 0 = a10, with the

leading term being a20h̃
2 for our quadratically convergent code. The terms with j 6= 0

arise from the approximate nature of the analytical solution in the tube. As demon-

strated, the leading finite-R error is of O(Rn), and it is therefore expected to have the

form δΨ ' (a0n + a1nh̃ + · · · )R̃n in general. When we construct the index nh in our

convergence test, the contribution from the ∝ a0n term cancels out, and nh is dominated

by the ∝ a1n error term, giving rise to the observed linear convergence in h at fixed R.

The crucial point here is that, in our convergence test, we allow the value of the approx-

imate analytical model on the tube’s boundary to depend on h (in a complicated way,

via a matching procedure that involves numerical data points that themselves depend

on h), and as a result the R-related error also becomes h-dependent. When we freeze
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the analytical model (or use the exact analytical solution for it) we decouple between

the h-related and R-related errors, and quadratic convergence is recovered.

We note the occurrence of such linear-in-h error terms is not necessarily a weakness

of our scheme: in practice, for a particular choice of h and R, the error term a1nh̃R
n

is not necessarily numerically larger than the term a02h̃
2. Rather, the occurrence of a

linear term is a somewhat artificial combined feature of the particular matching proce-

dure applied and the particular way the convergence test is designed. The lesson from

the above discussion is that one should exercise caution in designing and interpreting

convergence tests for a worldtube scheme, being mindful about the potential effect of

coupling between finite-difference and worldtube-related sources of error.

4.3.2.5 Convergence with Worldtube Size

It is of greater interest, in the context of this work, to quantify and understand the

scaling of our solutions with the tube size R and model error n. Figures 4.17 and 4.18

show how the local finite-R error in our numerical solutions varies as a function of R

(at fixed n; top panels) and as a function of n (at fixed R; bottom panels). In Fig. 4.17

we measure the finite-R error by comparing with the exact analytical solution for the

static mode (2, 0), and in Fig. 4.18 we measure it by comparing with numerical solutions

obtained using our exposed point-particle code. In both cases we display the relative

differences as functions of r∗ on a late-time t = const slice.

We see that, as expected, our solutions generally become more accurate as we decrease

R or increase n. We note that even with the simplest, linear (n = 1) analytical model,

and with a tube radius as large as R = 0.1M , the worldtube-related error is only around

1% almost uniformly. There is a marked reduction in error at smaller R and larger n,

except near the worldtube (at r∗ ≈ 9M in these figures, too narrow to be resolved),

where the error seems to saturate. As we demonstrate further below, the saturation

marks the point where finite-difference error becomes dominant over R-related error,

so that a further decrease in R (or increase in n) does not lead to a further reduction

in overall error. The effect is most pronounced near the worldtube, since the finite-

difference error is largest there (where field gradients are largest), while worldtube error

(we expect) remains roughly spatially uniform. The effect is exacerbated by the fact that

as we decrease R we expose more of the high-gradient region surrounding the particle.

To fully demonstrate convergence with R or n near the tube would require a concurrent

refinement of resolution there.

Next we examine the convergence rate with respect to R (at fixed n and h). To form our

theoretical expectations, consider the error in our method inside the worldtube, Γ, which

is introduced through our matching method and independent of any discretisation. In

that region we use the approximation ΨA, which differs from Ψ by an amount of order
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Figure 4.17: The relative finite-R error in Ψ20 as measured by comparison with the
exact analytical solution Ψexact. In the upper panel we vary the tube radius R at
fixed model order n = 2, and in the lower panel we vary n at fixed R = 0.1M . The
relative difference is shown on a late-time t = const slice. The numerical resolution is
h = 0.005M in all cases.

(∆r)n+1 at best. This is a best-case estimate because it assumes that our matching

methods enforce the exact values 1
j!∂

j
r(Ψ−ΨP)|r=rp for the coefficients ψRj in Eq. (3.17).

For simplicity, let us assume this best case.

Now consider the field outside Γ. More concretely, consider a bounded region V with ∂Γ

as one of its boundaries; in a Cauchy evolution, the other boundaries might be an initial-

data surface (outside Γ) and timelike boundaries far away, for example. Inside V , our

field ΨN satisfies the same homogeneous field equation as Ψ, 2ΨN = 0, but it inherits

errors that propagate out from Γ. Those errors can be understood by writing ΨN in a

Kirchhoff integral form [110]. We introduce a retarded Green’s function satisfying

2G(x,x′) = 2′G(x,x′) = δ2(x,x′) , (4.28)
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Figure 4.18: The relative finite-R error in Ψ22 as measured by comparison with the
(accurate) numerical solution from our point-particle code, denoted Ψpp. The format
of this plot and all other details are as in Fig. 4.17.

where x = (t, r∗), 2′ := ∂2
t′ − ∂2

r′∗ +V (r′), and δ2(x,x′) := δ(t− t′)δ(r∗− r′∗). If we now

take any point x ∈ V , then Eq. (4.28) and 2ΨN = 0 imply the identity

ΨN (x′)2′G(x,x′)−G(x,x′)2′ΨN (x′) = ΨN (x′)δ2(x,x′). (4.29)

Integrating this equation over all x′ ∈ V and then using integration by parts, we obtain

the Kirchhoff representation

ΨN (x) =

∫
V

[
ΨN (x′)2′G(x,x′)

−G(x,x′)2′ΨN (x′)
]
d2x′ ,

=

∫
∂V

[
ΨN (x′)∂n′G(x,x′)

−G(x,x′)∂n′Ψ
N (x′)

]
ds′ . (4.30)



58 Chapter 4. 1+1D Scalar-Field Model: Scheme I

Here the coordinate area element in V is d2x′ = dt′dr′∗. ∂n′ is the partial derivative

normal to the boundary ∂V , and ds′ is the coordinate line element on the boundary. For

us the relevant portions of ∂V are the worldtube boundaries ∂Γ±, where ∂n′ = ∓∂r′∗
and ds′ = dt′.

From the Kirchhoff form, we see that ΨN inherits two errors, respectively proportional

to the errors in ΨN |∂Γ and ∂r∗Ψ
N |∂Γ. Suppose that ΨN = ΨA + O(|∆r|n+1) in an

open neighbourhood of ∂Γ, as we seek to enforce in our first matching approach. Then

ΨN |∂Γ has an error of order Rn+1, but ∂r∗Ψ
N |∂Γ has an error of order Rn. The field ΨN

therefore differs from Ψ by O(Rn) throughout V . This represents a loss of one order

relative to the O(Rn+1) scaling that one might naively expect.

Analogous error estimates can be obtained for the 3+1D problem using a covariant

Kirchhoff representation of the form Eq. (138) in [116]. A similar estimation might also

be possible in fully nonlinear general relativity using Eq. (39) in [116].

To quantity the convergence rate and test the above theory we construct the index

nR = log2

∣∣∣∣∣ΨR −ΨR
2

ΨR
2
−ΨR

4

∣∣∣∣∣ , (4.31)

where ΨR′ represents the value of the field calculated with a tube radius R = R′. This

measures the internal convergence of the numerical solution as we decrease R (as opposed

to convergence to the exact solution, illustrated in Figs. 4.17 and 4.18). Figure 4.19 shows

nR as a function of t along an r = const slice. We observe nR ≈ n, indicating that the

dominant tube-related error is of O(Rn)—precisely as predicted.

So far we have been considering “local” measures of error, ones depending on location

and time. It is also informative to examine a global error norm, which we now introduce

and adopt for the rest of our analysis here and in Scheme II. We denote by ||Ψ||L1 the L1

norm of a numerical field Ψ evaluated on a t = const slice. The numerical data points for

this norm are sampled uniformly in r∗ in the domain [−100M, r∗p −R]∪ [r∗p +R, 100M ].

When comparing norms corresponding to runs with different R values, the largest of the

R values is used for all norms.

The top panel in Fig. 4.20 shows the value of the relative error norm

||Ψ−Ψexact||L1

||Ψexact||L1

(4.32)

as a function of R for the static mode (2, 0), with Ψexact being the exact analytical

solution. We see that the error norm decreases with increasing model order n and

decreasing tube size R, but for n = 2, 3 it seems to saturate at small R. This behavior is

consistent with what we saw in Figs. 4.17 and 4.18: when the worldtube error magnitude

falls below that of the discretization error, a further reduction in tube size does not
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Figure 4.19: Convergence of the numerical solution with respect to worldtube radius
R, at fixed model order n and resolution h(= 0.005M). We plot the internal convergence
index nR, defined in Eq. (4.31), as a function of t along a fixed radius of r∗ = 8.93258M .
To obtain nR (for each model order n) we carry out three runs with R = 0.1M , 0.05M
and 0.025M . After the decay of initial junk, the convergence index appears to be
nR ≈ n, indicating that the dominant tube-related error is of O(Rn).

improve the accuracy of the solution. This explanation is further supported by the

data shown in the lower panel of Fig. 4.20, where we display the internal error norm

||ΨR −ΨR/2||L1/|ΨR/2||L1 . Here we see a monotonic convergence with R at a constant

rate even for n = 2, 3; the field norm converges to a value that differs slightly from

||Ψexact||L1 due to the dominating h-related error.

To quantify the rate of convergence of the global norm with R, we introduce the con-

vergence index

n
(norm)
R := log2

||ΨR −ΨR
2
||L1

||ΨR
2
−ΨR

4
||L1

, (4.33)

plotted in Fig. 4.21. Again we observe n
(norm)
R ≈ n; i.e. the tube-related error is O(Rn)

also as measured by the global L1 norm. Similar results are obtained for other `,m

modes.
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Figure 4.20: Top panel: Relative L1 error norm with respect to the exact analytical
solution, as a function of worldtube radius R. Bottom panel: Internal relative error
norm calculated by varying R. In both cases the finite-difference resolution is held fixed
at h = 0.005. The saturation of error in the upper panel is due to the finite-difference
error becoming dominant at small R.
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Figure 4.21: Convergence of the L1 error norm with respect to R, at fixed order n

and resolution h(= 0.005M). We plot the internal convergence index n
(norm)
R , defined

in Eq. (4.33), and observe n
(norm)
R ≈ n. Thus the worldtube error scales like ∼ Rn.
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Chapter 5

1+1D Scalar-Field Model:

Scheme II

This chapter presents a second 1+1D scalar-field toy model, “Scheme II”. Here we use

spectral methods for the numerical evolution and treat the worldtube boundaries as

a strict interfaces, using data on these surfaces only to perform the matching. This

implementation provides us another testbed in which to trial our worldtube excision

method, whose architecture now more closely resembles the setup that will be used in

the BBH model.

5.1 Setup

Scheme II comprises of a spectral numerical method based on a Cauchy evolution in

(t, r∗) coordinates. Such Cauchy evolutions are standard in NR and the ADM formula-

tion of the Einstein Field Equations [25], and so we adopt this structure in order to move

closer to the setup of the BBH model. Here the boundaries of the Schwarzschild exterior

are timelike surfaces and so are in causal contact with the evolution domain and will re-

quire well-formulated boundary conditions. The particle is again at r = 7M, r∗ ≈ 8.8M ,

and the initial time-slice is set with the coordinate value t = 0. Initial data for the field

must be specified on the t = 0 slice, and various choices can be made. These include

setting the field entirely to zero, using a Gaussian wave packet as in Scheme I, or using

the exact analytical solution (Eq. (3.13)) if working with a static mode. This last choice

minimizes the amplitude of the resulting transient junk data that propagates outwards

over the course of the numerical evolution.
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5.1.1 Numerical Method

5.1.1.1 Foundations of Spectral Methods

Before proceeding to explain the numerical details of the evolution in Scheme II, a

very brief overview of spectral methods will be given. The overarching idea of a spectral

method is to approximate a function by polynomials. A function u will be approximated

by

u(x) ≈ ûN (x) =

N∑
n=0

ûnΦn(x), (5.1)

where û(x) are coefficients and Φn(x) are the chosen polynomials. In finite difference

schemes Φn(x) are often local polynomials of a low degree. In contrast, in spectral

methods Φn(x) are global polynomials and contributions from the higher order basis

functions Φn(x) decrease quickly with n.

In spectral methods, the chosen polynomials must constitute an orthogonal set on [−1, 1],

and common choices are Legendre or Chebyshev polynomials. The chosen polynomials

are also referred to as the chosen set of basis functions. A benefit of spectral methods

is that the derivatives of the polynomial basis functions Φn(x) are known analytically.

The derivatives of ûN (x) can then be calculated exactly using

dûN (x)

dx
=

N∑
n=0

ûn
dΦn(x)

dx
. (5.2)

Spectral methods converge exponentially with N , so long as the function being approx-

imated is C∞. Finite difference methods, on the other hand, only converge with some

low power of N . Therefore, spectral methods often reach a much higher accuracy with

lower computational resources than achieved by finite difference methods.

However, spectral methods are usually more complicated to implement than finite dif-

ference methods, and, as they make use of global polynomials (and so information from

the entire numerical domain), they are far more affected by the presence of boundaries

[69, 70]. Scheme II requires well-formulated boundary conditions at the key interfaces

of the domain, namely, the standard spectral element boundaries, the outer domain

boundaries and the worldtube boundaries. In Scheme II we choose to treat the world-

tube boundary as a strict interface. We can therefore import existing methods of trans-

porting information between spectral elements at this junction. Our chosen boundary

conditions are that of the Penalty method [78] and the Bjørhus method [44]. Details of

these are given in Sec. 5.2.1.2.
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5.1.1.2 Our Spectral Method

We evolve the scalar field in Schwarzschild time t using the classic fourth-order Runge–Kutta

method [161] on the spatial domain [−300M, 300M ] \ Γ, where the worldtube Γ is cen-

tered on the position r∗p of the particle. The spatial domain is divided into a set of

spectral elements. On each element, field values are expanded into a series of basis

polynomials and on every element the series is truncated at the same order. For the

results presented here, Chebyshev polynomials are used as the spectral basis and the

grid is collocated on Chebyshev-Gauss-Lobatto points. Further details on this aspect of

the numerical evolution can be found in [85], which we mostly followed for our code.

For the evolution of the system to be stable, the time step has to satisfy a CFL condi-

tion, where the relevant length interval is given by the minimal interval ∆r∗min between

collocation (grid) points. Henceforth we choose the time step to be ∆t = cCFL∆r∗min.

The constant cCFL is set to 0.5 for static setups (m = 0 modes), whereas for the evolu-

tion of radiative modes we chose cCFL = 0.25, which we have checked to be sufficiently

small for the results in our setups to converge with respect to ∆t.

For radiative modes it is important to treat the phase factor e−imΩt, which is implicit

in S`m(t) in Eq. (3.15), with high numerical precision. Because of the high precision of

the spectral scheme, we are sensitive to machine round-off in the argument of the phase

factor. If we were to use the total time t, the round-off error would grow linearly with

t and thus affect the precision of the phase factor as well. Instead we use an approach

where after every time step ∆t we multiply the phase factor by e−imΩ∆t to update it

for the next time step, and normalise the result such that the norm of the phase factor

remains exactly 1. Furthermore, we use quadruple precision in evaluating the evolution

time. We find this necessary to ensure that our convergence tests are not limited by

round-off error in the time at which different configurations are compared.

5.2 Evolution with a Worldtube

5.2.1 Matching Method

Our second approach consists of matching the field and its derivatives on the surface of

the worldtube. As in the first approach, the regular part ΨR is a truncated Taylor series

in ∆r∗

ΨR(t, r∗) =

2d+1∑
j=0

ψRj (t)(∆r∗)j (5.3)

where 2d + 1 is our chosen order of expansion. The expansion order of ΨR jumps by

two and is always odd, for reasons which will become clear below.
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In order to determine the coefficients we now treat the Taylor series for ΨR as a Hermite

interpolation of the field ΨN −ΨP . (We now drop the explicit (t, r∗) dependence of the

field for brevity.) Concretely, we equate the values of the field and its first d derivatives

on both the worldtube boundaries ∂Γ− and ∂Γ+ at each timestep (see Fig. 4.12). We

then solve the system

∂kr∗

ΨN −ΨP −
2d+1∑
j=0

ψRj (∆r∗)j

∣∣∣∣∣∣
∂Γ±

= 0,

for k = 0, . . . , d ,

(5.4)

which is a system of (2d + 2) linear equations for the (2d + 2) coefficients ψRj . It is

for this reason that in Scheme II we restrict to odd-nR models. Unlike in the previous

scheme, here we take the expansion order of the puncture field, nP , and that of the

regular field, nR = 2d+ 1, as independent. The overall convergence of the scheme with

respect to R is hence limited by both nP and nR. This will allow us to explore the effect

of independently varying the accuracy of the puncture field and the regular field.

The matched analytical solution (ΨA = ΨP + ΨR) is then required to construct the

boundary conditions, which are implemented as modifications to the partial differential

equations (PDEs) in the numerical domain (henceforth referred to as in “the bulk”).

We assume these PDEs are strongly hyperbolic, as is the case for our wave equation

toy model. The system remains well-posed if the boundary conditions retain strong

hyperbolicity [104]. This means ensuring the principal part (i.e. the second-derivative

terms) of the wave equation remains unchanged. As such the coefficients ψRj of the series

expansion can only be constructed from non-principal derivatives of ΨN .

At first sight this may seem to severely limit the achievable expansion order, because

we can use at most up to first derivatives of ΨN . This limitation can be overcome by

introducing an auxiliary system of ODEs, evolving independent variables that represent

the restriction of the field and its derivatives to the worldtube boundary. In practice,

the coefficients ψRj are then computed using these auxiliary variables, denoted Ψ̃N (t),

instead of data directly from the bulk PDEs, ΨN (t, r∗).

5.2.1.1 Implementation

By introducing the new variables

π := ∂tΨ , (5.5)

χ := ∂r∗Ψ , (5.6)
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we can reduce the evolution equation (3.6) in the vacuum region outside the worldtube

to the first-order system

∂tΨ = π , (5.7a)

∂tπ = ∂r∗χ− VΨ , (5.7b)

∂tχ = ∂r∗π + κ(∂r∗Ψ− χ) , (5.7c)

where κ is a constraint damping parameter controlling how strongly violations of the

constraint in Eq. (5.6) are damped. Ref. [81] provides further details on constraint

damping. In practice we chose κ = 1 for all the results presented for this scheme. In

Eqs. (5.6)-(5.7) we have omitted the superscript N on the fields for brevity, but it is to

be understood that these are the numerical fields.

The next stage is to introduce the auxiliary variables Ψ̃(t), π̃(t), χ̃(t), mentioned above.

In what follows we explain the method as it applies in the case of nP = nR = 1 for

simplicity, though the generalisation to higher order is straightforward.

Let us assume that the values of the auxiliary variables are known at a given timestep,

as is the puncture field ΨP to order nP = 1 and its analytical derivatives, πP and χP .

We now wish to calculate the auxiliary variables at the next timestep. To this end we

solve for ΨR to leading order, evaluating(
Ψ̃N −ΨP − ψR0 − ψR1 ∆r∗

)
|∂Γ± = 0, (5.8)

which is the reduction of Eq. (5.4) to the case of nR = 1. This is repeated analogously

for the π and χ variables. At this timestep we can subsequently form the analytical

solution for each variable: ΨA = ΨP + ΨR, πA = πP + πR and χA = χP + χR.

The evolution of these auxiliary fields is then determined by solving a set of ODEs along

∂Γ, obtained from the restriction of Eqs. (5.7) to the boundary:

∂tΨ̃
∧
= π̃ , (5.9a)

∂tπ̃
∧
= χ̃′ − V Ψ̃ , (5.9b)

∂tχ̃
∧
= π̃′ + κ(Ψ̃′ − χ̃) , (5.9c)

where
∧
= denotes equality on Γ. At this timestep we know the values of Ψ̃, π̃, χ̃, however

Ψ̃′, π̃′, χ̃′ remain unknown. To close the set of equations we then replace these variables

with derivatives of the analytical solution that has just been computed:

∂tΨ̃
∧
= π̃ , (5.10a)

∂tπ̃
∧
= ∂r∗χ

A − V ∂r∗ΨA , (5.10b)

∂tχ̃
∧
= ∂̃r∗π

A + κ(∂̃r∗Ψ
A − χ̃) . (5.10c)
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This replacement has converted the set of partial differential equations in (5.7) into a set

of ordinary differential equations for the auxiliary variables. We can then numerically

evolve these using the RK4 stepper to find Ψ̃, π̃, χ̃ at the next timestep. The process

then repeats from Eq. (5.8).

The auxiliary system can be extended to arbitrary derivatives by taking sufficiently

many derivatives of the field equations. Such extensions allow us to fit for a higher order

analytical solution. In order to match for ΨR up to nR = 5 we require the introduction

of the further auxiliary variables Ψ̃′, Ψ̃′′, π̃′, π̃′′, χ̃′, χ̃′′. Again we assume all auxiliary

variables are known at the given timestep, along with the puncture field ΨP to nP = 5.

We are then able to solve for ΨR up to j = 5 using

∂kr∗

Ψ̃N −ΨP −
5∑
j=0

ψRj (∆r∗)j

∣∣∣∣∣∣
∂Γ±

= 0,

for k = 0, 1, 2

(5.11)

and analogously for the π and χ variables. Our closed set of ODEs for the auxiliary

variables then becomes Eqs. (5.9) along with

∂tΨ̃
′ ∧= π̃′ , (5.12a)

∂tπ̃
′ ∧= χ̃′′ − Ψ̃∂r∗ − V Ψ̃′ , (5.12b)

∂tχ̃
′ ∧= π̃′′ + κ(Ψ̃′′ − χ̃′) , (5.12c)

∂tΨ̃
′′ ∧= π̃′′ , (5.13a)

∂tπ̃
′′ ∧= ∂3

r∗χ
A − Ψ̃∂2

r∗V − 2Ψ̃′∂r∗V − V Ψ̃′′ , (5.13b)

∂tχ̃
′′ ∧= ∂3

r∗π
A + κ(∂3

r∗Ψ
A − χ̃′′) . (5.13c)

Note that we have closed the system by replacing the highest (in this case the third)

derivatives with the analytical fields. Just as in the nR system, we then numerically

evolve using the RK4 stepper to find Ψ̃, Ψ̃′, Ψ̃′′, π̃, π̃′, π̃′′, χ̃, χ̃′, χ̃′′ at the next timestep

and the process repeats.

5.2.1.2 Boundary Treatment

Boundary conditions must be provided in three cases: i) at the interfaces between stan-

dard neighbouring elements, ii) on the outer boundaries of the computational domain,

and iii) on the excision boundary ∂Γ. These conditions are implemented by introducing

what are known as characteristic variables, u0 and u±, which are constructed from lin-

ear combinations of Ψ, π and χ. The variable u0 represents the static mode, while the
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variables u+ and u− are derivatives of Ψ in the incoming and outgoing null directions,

respectively (see Sec.VI.B. of [58] for precise definitions).

Standard Neighbouring Elements

In order to impose boundary conditions at element boundaries, we modify the time

derivatives of the incoming characteristic variables at the boundary points. The time

derivative of the incoming characteristic field û+ are modified in two ways, dependent

on the boundary type. At standard spectral element boundaries, we employ the penalty

method, in which we replace all time derivatives according to

∂tû
+ → ∂tû

+ + λ(û− − û+). (5.14)

We take the λ parameter to be as in [78]. This addition of a penalty term, λ(û− −
û+), ensures that the evolution converges towards the desired continuous solution, with

discontinuities exponentially suppressed in a dynamical fashion.

Outer Domain Boundaries

At outer domain boundaries and on the worldtube boundary we found that a modified

penalty method, known as the Bjørhus method works better. In this method we replace

all time derivatives according to

∂tû
+ → ∂tû

+ − λ(∂r∗ û
+ − g). (5.15)

The term g models the expression for ∂r∗ û
+ that one desires to impose at the boundary.

The physical purpose of this damping term is the same as in penalty method, namely

to ensure convergence towards the desired continuous solution.

At the outer boundaries, for the radiative modes we find that for large r∗ the charac-

teristic variables behave like û+ − κΨ ∼ exp[imΩ(r∗ − t)]/r∗2, and so we impose

g =

(
−2

r
+ imΩ

)
(π + χ) + κχ . (5.16)

On the other hand, near the horizon the characteristic variables behave like û+ − κΨ ∼
exp(imΩ(−r∗ − t)), and so we impose

g = −imΩ(π + χ) + κχ . (5.17)

We find these choices minimise numerical reflection at the outer boundaries and ensure

stability of the evolution.
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Worldtube Boundaries

On the excision boundary, our choice for g is

g = ∂r∗(π
A + χA + κΨA) . (5.18)

where ΨA, πA, χA are the matched analytical fields evaluated at the radial position of

the boundary. This allows us to couple the auxiliary ODEs to the bulk PDEs.

One also needs a way of communicating information back from the bulk into the auxiliary

system. This is practically implemented by introducing a fiducial element within the

worldtube, such that the auxiliary system can be treated on the same footing with the

spectral method. In the fiducial element we collocate grid points, again employing a

Chebyshev-Gauss-Lobatto [85] collocation scheme. We require a spectral collocation of

sufficiently high polynomial order to enable satisfying the boundary conditions for all

auxiliary variables.

We can now employ the same technique as before when imposing boundary conditions,

i.e. we modify each block of the boundary ODEs with Eq. (5.15), where we choose g to

be

g = (∂r∗π + ∂r∗χ+ κχ) . (5.19)

Here Ψ, π, χ are the numerical fields evaluated at the position of the boundary. The

system generalises in an obvious way to higher orders by taking higher and higher

derivatives in r∗.

5.2.2 Results

5.2.2.1 Static Modes

We first test the scheme for the static mode ` = 2,m = 0, with the scalar charge

on a fixed circular geodesic orbit with rp = 7M . As initial data for the evolution,

the static analytical solution (Eq. (3.13)) is used. The transition from the analytical

initial data to the numerical static solution causes transient radiation propagating off the

numerical domain, with a small partial reflection at the outer domain boundaries. After

a coordinate time of t ∼ 5000M the transient radiation has decayed, and the numerical

data at this time is taken as the representation of the numerical static solution.

Figure 5.1 shows the relative difference between the numerical and analytic solution.

The results show errors on the scale of 10−10 for a fifth-order model, (nP = nR = 5),

with R = 0.1 and 15 collocation points per element. The small differences are amplified

at large r∗, because they are normalised by the solution, which approaches zero in this

limit. The data shows that the numerical solution does not settle down completely, but

that there remains some residual numerical noise propagating on the grid, which can be
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Figure 5.1: Relative error of the Ψ20 mode for 15 points per element using the 5th
order expansions for the puncture and regular field, and a worldtube radius of R = 0.1.

attributed to the finite machine precision. The numerical scheme has also been tested

with different initial data and found to settle to the same static solution. However, in

these cases the transient radiation has a larger amplitude and so takes longer to decay.

5.2.2.2 Radiative Modes

To test the convergence with R in a non-static situation, we investigate the ` = 4,m = 4

mode, with the charge again being fixed at rp = 7M . For these modes there is no known

analytical solution, and so we choose to start with zero initial data, i.e. Ψ = 0, Ψ̇ = π = 0.

As in the static case, there is some transient radiation that is radiated away until the

system settles down to a stationary state. The presence of this junk radiation is partially

obscured by the periodic changes in Ψ, but it can be observed when looking at |Ψ|.

We calculate the relative errors for radiative modes by comparing two runs that differ

in worldtube size by a factor of two, i.e. an internal comparison. Figure 5.2 shows the

estimated relative error for the highest resolution used in our results. It can be observed

that the error on the left side of the particle is dominated by numerical noise, whereas

on the right the difference between the two runs looks smooth and is modulated by

the periodic waveform of the signal. The noise on the left side can be attributed to an

insufficient resolution, which is amplified by the relatively small modulus |Ψ| in that

area; cf. Fig. 4.14.



72 Chapter 5. 1+1D Scalar-Field Model: Scheme II

−100 −50 0 50 100 150 200 250 300
r ∗ /M

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
(R

eΨ
R
−
R
eΨ

R
/2
)/
|Ψ

R
/2
|

1e−11

Figure 5.2: Relative error of the Ψ44 mode for 15 points per element using the 5th
order expansions for the puncture and regular field and a worldtube radius of R = 0.05.
The data is taken for the stationary end state at t = 11000M .

5.2.2.3 Convergence

We use a numerical resolution of 15 grid points per spectral element and up to 256

spectral elements covering r∗ values in the interval [−100, 300] \ [r∗p −R, r∗p +R]. As the

numerical domain changes when the worldtube radius is changed, we always compute

norms on the reference r∗ interval covering values [−100, 300] \ [r∗p − 2M, r∗p + 2M ] to

ensure comparability. For the internal convergence tests we interpolate all solutions on

a common reference grid before subtracting the different solutions. This accounts for

the change of grid collocation when the resolution or the worldtube radius is changed.

With this we can then undertake meaningful internal convergence tests with respect to

numerical resolution or worldtube radius, comparing runs using formulas like those in

Eq. (4.7) and Eq. (4.31).

5.2.2.4 Convergence with Resolution

As the scheme uses spectral methods, we should see exponential convergence with re-

spect to numerical resolution. We first examine the error of a particular global norm,

computing the difference between its value at a particular resolution n and at the highest

resolution in our data set, nhigh. The quantity we choose to examine is the sum of the

values of the spectral coefficients c, calculating |c− chigh|. We then make a semi-log plot

of this error versus the number of grid points. Fig. 5.3 shows this for two worldtube

radii R = 0.2M and R = 0.4M . The exponential convergence is manifest with the

approximately straight line.
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Figure 5.3: The difference between the value of the spectral coefficients c obtained
with n grid points and their value chigh obtained with the highest number of grid
points in our data set, nhigh. Results are displayed for two fixed worldtube radii R.
The linear decay on the semi-log scale shows the exponential convergence with respect
to resolution, achieved with the spectral method.
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Figure 5.4: The error of the Ψ20 mode as a function of the number of grid points
per spectral element. The grid consists of 128 elements and a has worldtube radius of
R = 0.2. The puncture and regular parts of fields are expanded to fifth order.

Figure 5.4 shows the error as a function of the number of grid points per spectral ele-

ment and again demonstrates the exponential convergence of our spectral discretisation

scheme. The error levels off at high number of points, because error contributions in

the matched analytical solution within the worldtube become the dominating source of

error.
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5.2.2.5 Convergence with Worldtube Size

We investigate the scheme with two different matching setups, which differ by the poly-

nomial order of the matched regular field inside the worldtube, nR. We test one setup

where the regular field is expanded to fifth-order. We compare this against a second

setup where the regular field is expanded to third-order only, i.e. closing the system of

auxiliary equations at Eqs. (5.12) instead of Eqs. (5.13).

The expansion of the puncture field varies from second to fifth-order and hence the

second setup can probe a situation where the truncation error is dominated by the

regular field, whereas the first setup always makes sure that the error in the puncture

field converges slower or as fast as the regular field. Compared, these setups allow us

to distinguish between the convergence behaviour stemming from the truncation of the

puncture expansion and the one stemming from the expansion of the regular field; an

analysis we did not perform in Scheme I.

In these Scheme II results, the achieved resolution is sufficiently high that its error does

not saturate our external L1 error results as it did in Scheme I. In general, the observed

behaviour matches our overall findings from Scheme I. We find the error decreases with

the worldtube size, for all models under investigation. We also find that increasing the

order of the interior approximate analytical solution generally results in a smaller error

norm.

Figure 5.5 demonstrates the convergence of the first setup, where the matched regular

fields are all expanded up to order five. It shows the L1 norm of the difference to the

exact analytical solution, along with the corresponding convergence order n
(norm)
R defined

in Eq. (4.33). For even expansion orders nP of the puncture field, the total scheme

converges with nP , whereas for the odd orders the convergence is one order higher. It

is not known to us what causes this irregular convergence pattern with respect to nP ,

but this finding suggests that the ∂nΨN term in Eq. (4.30) is suppressed in this scheme

for odd nP . As this is a gain in order compared to our original expectations, we leave

further investigation of this to future work.

Figure 5.6 shows the convergence behaviour of the second setup. For the cases where the

expansion order of the puncture is in the range from two to four, we find convergence

consistent with the findings of the first setup. However, for a puncture expansion order

of five, the convergence order is limited by the regular solution. Since the regular field

is truncated at third order in this setup, the analysis of Subsec. 4.3.2.3 would predict a

convergence order of only three, and disregarding the ∂nΨN terms a convergence order

of four, but it is observed that the convergence is actually of fifth order. Again, since this

is a gain in order compared to our original expectations, we leave further investigation

of this to future work.
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Figure 5.5: Top panel: L1 norm of the difference to the analytical static solution with
respect to the worldtube radius R for the Ψ20 mode. The indicated order nP denotes
the order of expansion of the puncture field ΨP . The regular fields are all expanded to
order five. Bottom panel: Convergence order for the L1 norm.

The radiative modes exhibit an error convergence behaviour that is qualitatively identical

to the static modes. For completeness we show the corresponding convergence behaviour

in Figs. 5.7 and 5.8. As all models show results that are generally in-line with our

expectations from theory and Scheme I, we now choose to move onto a 3+1D scalar

model, whose architecture much more closely resembles that which will be used in the

full BBH model.
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Figure 5.6: Top panel: L1 norm of the difference to the analytical static solution with
respect to the worldtube radius R for the Y20 mode. The indicated order nP denotes
the order of expansion of the puncture field ΨP . The regular fields are all expanded to
order three. Bottom panel: Convergence order for the L1 norm.
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Chapter 6

3+1D Scalar-Field Model

In this chapter we present a 3+1D scalar-field toy model. The physical system that

we are modelling is the same as in Chapters 4 and 5 but we now choose not to take

advantage of the spherical symmetry with a spherical harmonic mode decomposition.

This allows us to better simulate the BBH problem, where there will no longer be such

spherical symmetry.

As a consequence, the spacetime topology of the worldtube is different compared to the

1+1D case. In the 1+1D models, the tube (at each given time) was a shell around the

large black hole, with boundaries at rp±R. However, in the 3+1D model to be discussed

now, the tube is a sphere centred around the scalar charge.

6.1 Setup

We maintain the physical system of a scalar point charge e orbiting a Schwarzschild

black hole M at a fixed radius rp. However, we refrain from decomposing into spherical

harmonics and now work in 3+1D. Consequently, here we develop a develop worldtube

architecture, numerical evolution and matching method in a 3+1D environment. The

numerical evolution will now be carried out by SpECTRE [56] and the numerical domain

is illustrated in Fig. 6.1. This model infrastructure will largely carry over to the BBH

case.

As described at the end of Sec. 2.2, SpECTRE uses the standard excision method to

remove the spacetime within the larger black hole’s horizon from the computational grid.

This is shown as the white region on the left in Fig. 6.1. A worldtube region surrounding

the charge e is then also excised from the domain, shown as a smaller white region on

the right in Fig. 6.1.

The SpECTRE numerical evolution is much more complex compared to the numerical

evolutions used in the Scheme I or II 1+1D toy models. We give fuller details on its
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Figure 6.1: SpECTRE domain for a binary consisting of a black hole, whose horizon
interior is excised from the computational grid (left white region), and a worldtube
populated with a local approximate solution (right white region). The division into
elements is visible with the grid line structure.

structure in Sec. 6.2. The local approximate analytical solution here is still the scalar

singular field plus a regular field piece, which are now, however, formulated in 3+1D.

In this 3+1D model we employ a matching method that is conceptually similar to the

one used in Scheme II, described in Subsec. 5.2.1. First we expand the field in a spherical

harmonic basis centered on the charge rather than on the black hole. We then match

the field and its derivatives on a mode-by-mode basis at the worldtube boundary. To

facilitate this matching, the known singular part of the approximate analytical solution

will be transformed into the same coordinates as the numerics. In this case, these are

Kerr-Schild coordinates.

Sec. 6.2 gives more detail on SpECTRE itself, Kerr-Schild coordinates, and the 3+1 nu-

merical evolution. Sec. 6.3 pedagogically presents the structure of the local approximate

analytical solution and the matching method, followed by the derivation of the singular

part of the scalar field in Kerr-Schild coordinates. Sec. 6.4 demonstrates the matching

method in practice up to second-order in the approximate analytical solution. Sec. 6.5

then presents preliminary results from this model.
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6.2 Numerical Evolution

6.2.1 SpECTRE

The numerical evolution in the 3+1D scalar field model will be carried out by SpECTRE,

the successor to the Spectral Einstein Code (SpEC) [4], being developed by the Sim-

ulating eXtreme Spacetimes (SXS) collaboration. The aim of SpECTRE is to achieve

accurate solutions for challenging relativistic astrophysics problems.

SpECTRE uses Cauchy slicing and Discontinuous Galerkin (DG) methods for the numer-

ical evolution [83]. A key difference between DG methods and classic spectral methods

is the independent nature of the spectral elements. Each element is evolved separately,

only requiring boundary data from its neighbour. This makes DG methods well suited

to code parallelization. A task-based parallelism model allows the efficient use super-

computers and minimizes the number of idle cores at any time, as tasks are assigned to

cores dynamically during the computation. This is a distinct advantage of SpECTRE

over more traditional synchronous, data parallelism models used in other grid-based

astrophysics codes [83].

Furthermore, the local nature of DG schemes can better facilitate adaptive mesh re-

finement and local timestepping. SpECTRE uses adaptive strategies to either split the

elements into smaller elements (h-refinement) or increase the order of the polynomial

within each element (p-refinement) [83]. To evolve dynamical spacetimes, SpECTRE

implements the Einstein equations using a generalised harmonic formulation [125, 71],

written with first-order time and first-order space derivatives [89].

Although SpECTRE is under development, we choose to construct our 3+1D model

using this code to provide us with experience prior to implementing a BBH model, by

which time it should be a well-established software.

6.2.2 Kerr-Schild Coordinates

For the 3+1D scalar field model SpECTRE is set to work in Kerr-Schild coordinates.

The choice of Kerr-Schild coordinates in SpECTRE is motivated by the NR excision

method for handling black hole singularities, reviewed in Sec. 2.2. Kerr-Schild time

slicing, in comparison with Schwarzschild time slicing, penetrates the event horizon,

making it a good candidate for black hole singularity excision [40].

The Schwarzschild metric in Kerr-Schild coordinates (t, x, y, z) is,

ds2 = −dt2 + dx2 + dy2 + dz2 +
2M

r

[
dt+

xdx+ ydy + zdz

r

]2

, (6.1)
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with r =
√
x2 + y2 + z2. In this chapter (t, r) will always denote Kerr-Schild time and

radius. We fix our particle e so that it is moving on a circular orbit in the z = 0 plane.

In this case, the four-velocity of the particle is given by

ut =
1√

1− 3M
rp

, ux = −
√
My√

r2
p(−3M + rp)

, uy = −
√
Mx√

r2
p(−3M + rp)

, uz = 0. (6.2)

and its trajectory is

xαp (t) = (t, rp cos(Ωt), rp sin(Ωt), 0), (6.3)

where Ω =
√

M
r3p

.

6.2.3 Numerical Details

SpECTRE is an NR code and is therefore built on the principles of the ADM (3+1) for-

malism. We now present the key principles of this formalism, following the explanation

in Sec. 4.2.2 of [106].

The formalism foliates the spacetime gαβ into a family of spacelike hypersurfaces, which

we call Σt. The spacelike three-surfaces Σt, are level sets of a scalar function t(yα) which

then defines a universal time. On each hypersurface spatial coordinates xa are installed.

A congruence of curves γ can be constructed that pass through the hypersurfaces. On

these curves we can use t as a parameter and have a vector tα that is tangent to the

congruence. A particular curve γP passes through the point P on Σt, P
′ on Σt′ and so

on. The coordinates on the hypersurfaces can then be fixed such that xa(P ) = xa(P ′)

and so on. This defines a coordinate system (t, xa). The transformation between these

coordinates and any generic system, yα = yα(t, xa), is set by

tα =

(
∂yα

∂t

)
xa
, eαa =

(
∂yα

∂xa

)
t

, (6.4)

where eαa are tangent vectors on Σt. We can now form a unit normal to the hypersurfaces,

nα, which we write as

nα = −N∂αt, nαe
α
a = 0, (6.5)

where N is known as the lapse function. The congruence of curves are not assumed to

intersect the surfaces Σt orthogonally, and so tα is not fixed to be parallel to nα. It is

therefore decomposed in the basis (nα, eαa ),

tα = Nnα +Naeαa , (6.6)
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Figure 6.2: Sketch from [106] illustrating key elements in the 3+1 decomposition of
spacetime. Σt are spatial hypersurfaces, through which a family of congruent curves γ
pass. tα are tangential to the curves and can be decomposed into the basis (nα, eαa ),
where nα are unit normals to the hypersurface and eαa are tangent vectors to the hy-
persurface.

where the final key ingredient Na is introduced, known as the shift function. The metric

can now be expressed in the coordinates (t, xa). First we construct

dyα = tαdt+ eαadx
a

= (Ndt)nα + (dxa +Nadt)eαa ,
(6.7)

from which we can then form the line element

ds2 = gαβdy
αdyβ

= −N2dt2 + gab(dx
a +Nadt)(dxb +N bdt),

(6.8)

where gab = gαβe
α
ae
β
b is the induced spatial metric on Σt.

In Kerr-Schild coordinates, the spatial metric, lapse and shift are given by

gab =

1 + 2Mx2

r3
2Mxy
r3

2Mxz
r3

2Mxy
r3

1 + 2My2

r3
2Myz
r3

2Mxz
r3

2Mxy
r3

1 + 2Mz2

r3

 , (6.9)

N = 1, and Nx = Mx
r2
, Ny = My

r2
, Nz = Mz

r2
.

In our 3+1D scalar worldtube excision model, we are solving the standard scalar field

equation on a fixed Schwarzschild spacetime,

∇µ∇µΦ = 0. (6.10)
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Just as in Scheme II of the 1+1D scalar model, we reduce this equation to a first-order

evolution system. This is now done in the standard NR way (see for full details [133]):

∂tΦ−Nk∂kΦ,= −Nπ, (6.11)

∂tπ −Nk∂kπ +Ngki∂kχi = NJ iχi +NKπ, (6.12)

∂tχi −Nk∂kχi +N∂iπ = −π∂iN + χj∂iN
j . (6.13)

where

π = −N−1(∂tΦ−N i∂iΦ),

χi = ∂iΦ.

Φ, π, χi, are referred to as the set of fundamental fields. Here, K and J i are defined by

J i = −N−1g−1/2∂j(Ng
1/2gij), (6.14)

K = −N−1g−1/2[∂tg
1/2 − ∂j(g1/2N j)], (6.15)

where g is the determinant of the spatial metric gij . K is known as the trace of the

extrinsic curvature, providing information as to how the three-dimensional hypersurfaces

are embedded into the four-dimensional spacetime. The extrinsic curvature is defined

as Kab := nα;βe
α
ae
β
b .

The field is only a solution to Eq. (6.10) if the following constraints are satisfied [5, 81]:

Ci = ∂iΦ− χi = 0, (6.16)

Cij = ∂[iχj] = 0. (6.17)

The first of these ensures that the evolved variable χi is indeed acting as the spatial

derivative of Φ, while the second ensures the field obeys the commutative rule for partial

derivatives.

We run simulations on a domain out to a Kerr-Schild coordinate radius r = 400M .

Although dependent on the desired resolution of our run, the number of spectral elements

is usually set ≈ 4000. We adopt a Legendre polynomial basis and have a range in nL

(polynomial order) across the domain, with a maximum of nL = 12. The model sets the

initial field data equal to zero across the domain. At t = 0 of the evolution we introduce

a Gaussian error function at the worldtube boundary, whose argument smoothly takes

the field from 0 to 1 at t = 250M . This is similar to the handling of initial data in the

Scheme I 1+1D model. In doing this, we reduce the amplitude of the initial junk and

numerical noise in our simulation and obtain smoother convergence.

Similarly to the Scheme II 1+1D model, this model requires boundary conditions in

three locations: (i) on the outer boundaries of the computational domain, (ii) at the
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interfaces between neighbouring elements, and (iii) on the excision boundary ∂Γ.

At the outer boundaries we implement what are known as constraint-preserving bound-

ary conditions, plus a Bayliss-Turkel radiation boundary condition [5]. The constraint-

preserving boundary conditions are similar to the Penalty method introduced in Scheme II,

in that they modify the time derivatives of the fundamental fields, Φ, π, χi. Their in-

clusion is standard practice in NR evolutions and for our implementation we follow the

method laid out in Sec. III of [81]. The Bayliss-Turkel boundary conditions, as presented

in [41], are employed when spacetime is approximately Minkowski, as is the case at our

outer boundary. The condition ensures that the solution has a form of an outgoing-wave

with an appropriate fall-off.

At the element boundaries we implement the upwind flux boundary condition. The

upwind flux condition is a standard numerical boundary condition, commonly employed

in problems of hydrodynamics, electromagnetism and general relativity. We will not

provide detail on it within this thesis but the underlying theory can be found in [77],

while implementation details with respect to Discontinuous Galerkin methods can be

found in [137] and [64].

Finally, at the worldtube boundary we implement Dirichlet boundary conditions, i.e. di-

rect matching of the field values themselves. This is explained in detail in Sec. 6.4. In

this 3+1D model, we implement the approximate analytical solution to zeroth, first,

and then second order in accuracy i.e. order in distance from the worldline. Extending

the boundary conditions to higher order implementations should be a straightforward

extension of theory laid out in Sec. 6.4.

6.3 Local Approximate Solution and Matching Method

In this section, we examine the 4D structure of the local solution near the particle and

develop a general method of matching it to a 3+1D numerical solution. For simplicity,

we first carry out this analysis in locally inertial coordinates comoving with the particle;

we then conclude the section by expressing the singular part of the local solution in

Kerr-Schild coordinates.

6.3.1 First Principles Derivation

The worldtube must now be populated with a local approximate analytical solution that

is valid in 3+1D. To characterize the field’s local form near the particle, we can adopt

locally Cartesian co-moving coordinates (τ, xa) centered on the particle’s worldline. This

gives us an intuitive understanding of the field’s structure, before we move to other

coordinate systems that are more amenable to the numerics.
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Fermi-Walker coordinates are an example in which gαβ = ηαβ on the worldline, τ is

proper time along the worldline, surfaces Στ of constant τ are generated by spatial

geodesics emanating orthogonally from the point zµ(τ), xa are coordinates on each Στ ,

and s :=
√
δabxaxb is the proper geodesic distance from zµ(τ) to the point labelled by

xa in Στ . For more detail see Chapter 1 of [106]. (Note, in Sec. 6.3.1 and Sec. 6.3.2,

lowercase Latin indices denote the spatial Fermi-Walker coordinates, while in the rest

of the chapter they denote the spatial Kerr-Schild coordinates.)

Constructing the local field in Fermi-Walker coordinates allows us to exemplify its struc-

ture and the ability to split it into a regular and singular contribution. To do this we

follow the algorithm laid out in [113]. Ref. [113] obtains the general solution to the

linear wave equation in the local neighbourhood outside a compact mass or charge dis-

tribution in any coordinates satisfying gαβ = ηαβ on the worldline, such as Fermi-Walker

coordinates.

The focus in [113] is on metric perturbations at nonlinear orders in gravitational per-

turbation theory, but the algorithm applies straightforwardly to the linear scalar field

outside a monopolar scalar particle. In this case we start with the ansatz

Φ =
∑
p≥−1

∑
`≥0

spΦ
(p,`)
L (τ)n̂L. (6.18)

na = xa/s is a radial unit vector, and L := a1 · · · a` is a multi-index. The quantity n̂L :=

n〈a1na2 · · ·na`〉 is the symmetric trace-free (STF) combination of ` unit vectors and the

set {n̂L}` is equivalent to the set of spherical harmonics. It provides an orthogonal basis

for functions on a sphere, and each n̂L is an eigenfunction of the Laplacian ∇2 := δab∂a∂b,

satisfying ∇2n̂L = − `(`+1)
s2

n̂L, the same eigenvalue equation satisfied by Y`m. Recall

these bases are defined on spheres of constant s, centered on the particle.

We substitute the ansatz Eq. (6.18) into the wave equation gµν∇µ∇νΦ = 0 (outside the

charge) and solve order by order in s. A spatial derivative lowers the power of s while

a τ derivative does not. This implies that we can write the wave operator as ∇2 plus a

subdominant operator D:

gµν∇µ∇νΦ =
1√
−g

∂µ
(√
−ggµν∂νΦ

)
= ∇2Φ +

∂µ (
√
−ggµν)√
−g

∂νΦ + δgµν∂µ∂νΦ := ∇2Φ +DΦ,

(6.19)

where δgµν := gµν − δµa δνb δab. More concretely,

D = Dττ∂2
τΦ +Dτa∂τ∂a +Dab∂a∂b +Dτ∂τ +Da∂a, (6.20)

with Dττ = −1 + O(s), Dτa = O(s2), Dab = O(s2), Dτ = O(s), and Da = O(s).

These powers of s hold for a generic coordinate system with gαβ(s = 0) = ηαβ , including
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Fermi-Walker coordinates centred on an accelerated worldline. If the particle moves on

a geodesic, then in Fermi-Walker coordinates they become Dττ = −1 + O(s2), Dτa =

O(s2), Dab = O(s2), Dτ = O(s), and Da = O(s2). In either case, in Fermi-Walker

coordinates, we have

D = −∂2
τ −

s2

3
Rai

b
jn
inj∂a∂b +O(s), (6.21)

where we count ∂τ as O(s0) and ∂a as O(s−1). Here Rai
b
j = δacδbdRcidj is the Riemann

tensor evaluated on the worldline.

Given the split in Eq. (6.19), the wave equation reduces to a sequence of Poisson equa-

tions, one at each order s. These become algebraic equations for the coefficients Φ
(p,`)
L :

sp−2[p(p+ 1)− `(`+ 1)]Φ
(p,`)
L (τ)n̂L = sp−2S

(p,`)
L (τ)n̂L, (6.22)

where the source terms are constructed from D acting on lower-order terms sp
′
Φ

(p′,`′)
L′ n̂L

′

with p′ < p.

At each value of p, there is one ` for which the left-hand side of Eq. (6.22) automat-

ically vanishes: ` = −p − 1 if p < 0 and ` = p if p ≥ 0. These are the standard
1

s`+1 and s` solutions of the Laplace equation. For these special combinations of p

and `, one can prove that S
(p,`)
L = 0, meaning Eq. (6.22) is trivially satisfied for any

Φ
(p,`)
L (τ). For all other ` at each p, we can immediately solve Eq. (6.22) to obtain

Φ
(p,`)
L = S

(p,`)
L /[p(p+1)− `(`+1)]. It follows that to all orders, the solution is fully spec-

ified by the “seed coefficients” {Φ(−1,0),Φ(0,0),Φ
(1,1)
i , . . . ,Φ

(p,p)
P , . . .}; these free functions

of τ fully characterize the freedom in the solution [119].

Φ =
Φ(−1,0)(τ)

s
+Φ(0,0)(τ)+Φ

(0,1)
i (τ)ni+. . .+sp

Φ
(p,p)
P (τ)n̂P +

p+1∑
`6=p, `=0

Φ
(p,`)
L (τ)n̂L

+. . . ,

(6.23)

where all coefficients Φ
(p≥0,`6=p)
L are expressed in terms of the seed coefficients and their

τ derivatives. We note that in this expansion, the only smooth terms are those with ` =

p− 2k for integers k in the range 0 ≤ k ≤ bp/2c, where bp/2c denotes the largest integer

smaller than p/2. To see why these are smooth, observe that spn̂P−2K = s2kx̂P−2K =

(δabx
axb)kx̂P−2K , where here we use the notation x̂P := x〈P 〉 := x〈a1 · · ·xap〉. All other

terms in Eq. (6.23) have finite differentiability at xa = 0.

We can use this local multipole structure to define a singular and regular field. ΦS is

the piece of Eq. (6.23) seeded by Φ(−1,0), i.e. Eq. (6.23) with all other seed coefficients

set to zero. ΦR is the piece seeded by the coefficients Φ
(p,p)
P (p ≥ 0). To all known orders

in s this singular-regular split agrees with the Detweiler-Whiting decomposition.

For our particle with constant charge e, the only seed coefficient in the singular field

is Φ(−1,0) = e. One can prove that in the algorithmic construction of Eq. (6.23), the



88 Chapter 6. 3+1D Scalar-Field Model

smooth terms spn̂P−2K never involve Φ(−1,0). We can therefore write the generic form

ΦS =
e

s
+ Φ

(0,1)
i (τ)ni + . . .+ sp

p+1∑
`=0

`6=p−2k

Φ
(p,`)
L (τ)n̂L + . . . (6.24)

Explicitly, for a nonaccelerating charge in Fermi-Walker coordinates, the first few orders

in the singular field are

ΦS =
e

s
− es

6
Eij(τ)n̂ij − es2

24
Eijk(τ)n̂ijk +O(s3). (6.25)

where Eij(τ) := Riτjτ (τ, xa = 0) and Eijk(τ) := STFijkRiτjτ ;k(τ, x
a = 0).

The regular field then contains all the other terms in Eq. (6.23):

ΦR = Φ(0,0)(τ) + sΦ
(1,1)
i (τ)ni + . . .+ sp

bp/2c∑
k=0

Φ
(p,p−2k)
P−2K (τ)n̂P−2K + . . . (6.26)

Since this is a smooth field, we can write it as the Taylor series

ΦR = ΦR(τ, 0) + ∂iΦ
R(τ, 0)xi + . . .+

1

p!
∂PΦR(τ, 0)xP + . . . (6.27)

where ∂P := ∂a1 · · · ∂ap . We can relate the two forms (6.26) and (6.27) using the fact

that

xP = spnP = sp
(
n̂P + c1δ

(i1i2 n̂P−2) + c2δ
(i1i2δi3i4 n̂P−4) + · · ·+ ckδ

(i1i2 · · · n̂P−2K)
)

(6.28)

where the cn’s are constants and k = bp/2c. Each seed coefficient Φ
(p,p)
P is then identified

with the STF piece of the pth derivative of ΦR at s = 0:

ΦR(τ, 0) = Φ(0,0)(τ), ∂iΦ
R(τ, 0) = Φ

(1,1)
i (τ), . . . ,

1

p!
∂̂PΦR(τ, 0) = Φ

(p,p)
P (τ),

(6.29)

with ∂̂P := ∂〈P 〉. The non-STF pieces (i.e. the trace pieces) of the derivatives are related

to the lower-order seed coefficients. Explicitly, the first few terms in (6.27) are

ΦR = ΦR(τ, 0) + ∂iΦ
R(τ, 0)xi +

s2

2

[
∂̂ijΦ

R(τ, 0)n̂ij +
1

3
δij∂ijΦ

R(τ, 0)

]
+O(s3). (6.30)

We observe that the Laplacian on the worldline, δij∂ijΦ
R(τ, 0) = ∇2ΦR(τ, 0), is the co-

efficient 3Φ(2,0)(τ) in Eq. (6.23). It is written in terms of the lower-order seed coefficients

using Eqs. (6.22) and (6.21), which implies

Φ(2,0)(τ) =
1

3
∂2
τΦ(0,0)(τ) or ∇2ΦR(τ, 0) = ∂2

τΦR(τ, 0). (6.31)

The second version of the equality is a trivial statement of the wave equation evaluated
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on the worldline. At higher orders in distance, the Riemann term in Eq. (6.21) will be

involved in such relations.

In summary, we conclude that the local solution is fully specified by the set of STF

derivatives ∂̂PΦR(τ, 0). Through any given order sn, the local solution is fully specified

by ΦR(τ, 0), ∂iΦ
R(τ, 0), ∂̂ijΦ

R(τ, 0), etc., up to ∂̂NΦR(τ, 0). We can use equations such

as Eq. (6.31) to replace one of these free functions with an alternative free function.

For example, we can treat ∇2ΦR(τ, 0) as the free function rather than ΦR(τ, 0). The

wave equation does not impose any conditions on the generating set {∂̂PΦR(τ, 0)}p. We

can use the wave equation to replace an element of this set, but we cannot use it to

determine relationships between elements of the set. We make use of this in practice in

our second order matching method, explained in Fermi coordinates in Sec. 6.3.2 and in

generic coordinates in Sec. 6.4.3.

6.3.2 Matching Ethos

Through order sp, our local solution contains (p+1)2 unknown independent components.

These can be determined by matching to the external field. In this section we lay out

the core principles of our matching method.

Suppose we match on a worldtube Γ = {s = s0}. In this model we choose to expand

the external field in multipoles as Φ|Γ =
∑

` Φ
(`)
L (τ, s0)n̂L, and match multipole by

multipole. For the zeroth-order approximation

Φ =
e

s
+ ΦR(τ, 0), (6.32)

we have the single unknown ΦR(τ, 0), and our matching condition is

Φ(0)(τ, s0) =
e

s0
+ ΦR(τ, 0). (6.33)

For the first-order approximation

Φ =
e

s
+ ΦR(τ, 0) + s

[
∂iΦ

R(τ, 0)ni + Φ
(1,2)
ij (τ)n̂ij

]
, (6.34)

we have the unknowns ΦR(τ, 0) and ∂iΦ
R(τ, 0), and our matching conditions are

Φ(0)(τ, s0) =
e

s0
+ ΦR(τ, 0), (6.35)

Φ
(1)
i (τ, s0) = s0∂iΦ

R(τ, 0). (6.36)
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For the second-order approximation

Φ =
e

s
+ΦR(τ, 0)+s

[
∂iΦ

R(τ, 0)ni + Φ
(1,2)
ij (τ)n̂ij

]
+s2

1

2
∂ijΦ

R(τ, 0)nij +
∑
`=1,3

Φ
(2,`)
L (τ)n̂L

 ,
(6.37)

we have the unknowns ΦR(τ, 0), ∂iΦ
R(τ, 0), and ∂̂ijΦ

R(τ, 0), and our matching conditions

are

Φ(0)(τ, s0) =
e

s0
+ ΦR(τ, 0) +

1

6
s2

0∂
2
τΦR(τ, 0), (6.38)

Φ
(1)
i (τ, s0) = s0∂iΦ

R(τ, 0) + s2
0Φ

(2,1)
i (τ), (6.39)

Φ
(2)
ij (τ, s0) = s0Φ

(1,2)
ij (τ) +

1

2
s2

0∂̂ijΦ
R(τ, 0), (6.40)

where ∂2
τΦR(τ, 0) has appeared through Eqs. (6.30) and (6.31). In these equations, the

quantities Φ
(1,2)
ij , Φ

(2,1)
i , and Φ

(2,3)
ijk are expressible in terms of the Riemann tensor: from

Eq. (6.24), Φ
(1,2)
ij = −1

6eEij , Φ
(2,1)
i = 0, and Φ

(2,3)
ijk = − 1

24eEijk. For our 3+1D scalar

model implementation, as presented in Sec. 6.4 we do not go beyond a second-order

approximation for the local approximate analytical solution.

In summary, when we use a zeroth-order order approximation, the matching condition

Eq. (6.33) determines the unknown in the internal approximation in terms of the ` = 0

piece of the external field on the worldtube; when we use a first-order approximation,

the matching condition of Eqs. (6.35)-(6.36) determine the 4 unknowns in terms of

the ` = 0 and 1 pieces of the external field; if we use a second-order approximation,

the matching condition of Eqs. (6.38)-(6.40) determines 9 unknowns in terms of the

` = 0, 1, and 2 pieces of the external field, but in this case some of the unknowns are

determined through differential equations on the boundary rather than purely algebraic

relations. For all higher-order approximations, the matching conditions will likewise

yield differential equations governing the unknowns.

6.3.3 High-Order Covariant Expressions

In our worldtube excision model, our approach will be to subtract the singular field piece

ΦS from the full numerical field ΦN at each time-step, and then match this residual field,

mode by mode, to ΦR at the worldtube boundary. For this we require ΦS in the same

coordinates as ΦN , which in this model is Kerr-Schild coordinates.

In principle, we could obtain ΦS in Kerr-Schild coordinates by transforming the solution

from Fermi-Walker coordinates. However, in practice that is generally done by convert-

ing from Fermi-Walker coordinates to a covariant expansion [115], and such covariant

expansions are already readily available to high order in the literature [75, 73, 159]. In
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Figure 6.3: An illustration of field points used in the covariant calculation of the
singular field. x is the point where the field is evaluated. x′′ is the advanced point of
x on the worldline and x′ is the retarded point of x on the worldline. x̄ is an arbitrary
point on the worldline that lies after x′ and before x′′.

this section we review these covariant forms for the singular field. Ref. [75] derives the

scalar singular field to the highest known order. The regular field will be written directly

as a Taylor series in Kerr-Schild coordinates.

Refs. [75, 73, 159] use the following convention: the worldline of the charge is parametrised

as zµ(τ), where τ is proper time, x refers to the point where the singular field is evalu-

ated. x̄ is an arbitrary point on the worldline, except for the fact that it is in spacelike

separation with x. It is assumed that x belongs to a convex normal neighbourhood of

x̄, i.e. the set of points that are linked to x̄ by unique geodesics. The indices we assign

to the various spacetime points will mirror their notational form, e.g. at x we assign

indices α, at x̄, we assign indices ᾱ.

The covariant expressions contain several ingredients. σ(x, x̄) is the Synge world function

[141], equal to one half of the squared geodesic distance between x and x̄ when x and x̄

are spacelike separated. The gradient of the Synge’s worldfunction is denoted by σα(x, x̄)

if it is differentiated with respect to its first argument, or σᾱ(x, x̄) if it is differentiated

with respect to its second argument. r̄ and s are the tangential and normal projections

of distance with respect to the worldline:

r̄ := σᾱ(x, x̄)uᾱ, (6.41)

and

s2 := (gᾱβ̄ + uᾱuβ̄)σᾱ(x, x̄)σβ̄(x, x̄). (6.42)

The identity s2 = 2σ(x, x̄) + r̄2 shows that s2 is positive when x and x̄ are spacelike

separated. This identity itself can be explained by noting gᾱβ̄σᾱσβ̄ = 2σ.
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Finally, ε is a book-keeping quantity, measuring the fundamental scale of separation

between x and x̄. In terms of these quantities, the covariant expansion of ΦS through

order ε4 is given by [75, 159]

ΦS =e

{
1

s
+
r̄2 + s2

6s̄3
Cuσuσ +

1

24s3

(
(r̄2 − 3s2)r̄Cuσuσ|u − (r̄2 − s2)Cuσuσ|σ

)
+

1

360s5

[
ΦS

]
(3)

+O(ε4)

}
,

(6.43)

where[
ΦS

]
(3)

= 15

[
r̄2 − s̄2

]2

CuσuσCuσuσ + s̄2

[
(r̄2 − s̄2)(3Cuσuσ|σσ + 4CuσσᾱC

ᾱ
uσσ)

+ (r̄4 − 6r̄2s̄2 − 3s̄4)(4CuσuᾱC
ᾱ
uσu + 3Cuσuσ|uu) + r̄(r̄2 − 3s̄2)(16CᾱuσuCuσσᾱ − 3Cuσuσ|uσ)

]
+ s̄4

[
2Cᾱβ̄uu [(r̄2 + s̄2)Cσᾱσβ̄ + 2r̄(r̄2 + 3s̄2)Cuᾱσβ̄ ] + 2Cᾱβ̄uσ [2r̄Cσᾱσβ̄ + (r̄2 + s̄2)Cuβ̄σᾱ]

+ [r̄4 + 6r̄2s̄2 + s̄4]Cuᾱuβ̄C
ᾱβ̄
uu + [r̄2 + s̄2]2Cuᾱσβ̄C

ᾱβ̄
uσ + Cσᾱσβ̄C

ᾱβ̄
σσ

]
.

(6.44)

Here Cαβµν is the Weyl curvature tensor. The compact notation used represents the

projection of the tensor along the vectors σᾱ and uᾱ:

Cuσuσ := Cᾱβ̄µ̄ν̄u
ᾱσβ̄uµ̄σν̄ , (6.45)

Cuσuσ|σ := Cᾱβ̄µ̄ν̄;γ̄u
ᾱσβ̄uµ̄σν̄σγ̄ . (6.46)

The Weyl tensor, its derivatives and the velocity vector uᾱ are all evaluated at the

reference point x̄ on the worldline of the particle.

6.3.4 Transformation to Kerr-Schild Coordinates

We now transform the above expressions for the scalar singular field into Kerr-Schild

coordinates. To achieve this we follow the method in [159]. All terms in Eq. (6.43) can

be written in terms of σᾱ and local quantities at x̄. Forming a coordinate expression

for ΦS(x) involves re-expressing terms using an expansion in the coordinate separation

between x and x̄, which we define ∆xα := xα − x̄ᾱ. In our implementation we choose x̄

to be the point with the same Kerr-Schild time as x, such that ∆t = t− t̄ = 0.
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The expansion of σ(x, x̄) about x̄ in the powers of the coordinate separation ∆xα is

given by [159]

σ =
1

2
gᾱβ̄∆xα∆xβ +Aᾱβ̄γ̄∆xα∆xβ∆xγ +Bᾱβ̄γ̄δ̄∆x

α∆xβ∆xγ∆xδ

+ Cᾱβ̄γ̄δ̄ρ̄∆x
α∆xβ∆xγ∆xδ∆xρ + . . .

(6.47)

First we use the identity 2σ = σᾱσ
ᾱ to recursively determine the coefficients Aᾱβ̄γ̄ , Bᾱβ̄γ̄δ̄

and Cᾱβ̄γ̄δ̄ρ̄ and so on, for example Aᾱβ̄γ̄ = 1
4g(ᾱβ̄,γ̄). We can then differentiate this

expression at x̄ to give us

σᾱ = gᾱβ̄∆xβ + (gγ̄γ̄,ᾱ + 3Aᾱβ̄γ̄)∆xβ∆xγ + (Aᾱβ̄γ̄,ᾱ + 4Bᾱβ̄γ̄δ̄)∆x
β∆xγ∆xδ

+ (Bβ̄γ̄δ̄ρ̄,ᾱ + 5Cᾱβ̄γ̄δ̄ρ̄)∆x
β∆xγ∆xδ∆xρ + . . .

(6.48)

This expression is then substituted into Eq. (6.43). After this, σᾱ is contracted with the

four-velocity, metric and Riemann tensor to get the coordinate expressions for r̄, s2 and

the Weyl terms as per their formulae in Eqs. (6.41), (6.42) and Eqs. (6.45), (6.46).

All terms within Eq. (6.43) can now be expressed as a coordinate expansion in powers

of ∆xα. By inserting these expansions the final result is an explicit expression for ΦS in

the adopted system of coordinates, expanded to the desired order of accuracy.

We choose to write the results for the field in the style of [34]; ΦS expressed as an

expansion in powers of 1/s1. Here s1 is the leading-order piece of s. It is first easier to

compute the coordinate expansion of s2 in powers of ε,

s2 = ε2S1 + ε3S2 + ε4S3 + ε5S4 +O(ε6). (6.49)

From this we can then obtain the expansion of s = ε
√
S1

√
1 + εS2+ε2S3+ε3S4+O(ε5)

S1
, which

takes the form

s = εs1 +
ε2p3(∆xα)

s1
+
ε3p6(∆xα)

s3
1

+
ε4p9(∆xα)

s5
1

+O(ε5), (6.50)

and
1

s
=

1

εs1
+

q3(∆xα)

s3
1

+
εq6(∆xα)

s5
1

+
ε2q9(∆xα)

s7
1

+O(ε3), (6.51)

where pn(∆xα) and qn(∆xα) are polynomials in O(∆xα) of order n. These are related

by q3 = −p3, q6 = p2
3 − p6, q9 = −p3

3 + 2p3p6 − p9. Here s1 =
√

(gᾱβ̄ + uᾱuβ̄)∆xα∆xβ .

At leading order ΦS = 1/(s) + O(ε0), but the structure seen in Eq. (6.51) carries over

to the higher order terms in the covariant expression. This means

ΦS = e

{
1

εs
+ ε

r̄2 + s2

6s̄3
Cuσuσ + ε2

1

24s3

(
(r̄2− 3s2)r̄Cuσuσ|u− (r̄2− s2)Cuσuσ|σ

)
+O(ε3)

}
(6.52)
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can be written as

ΦS = e

{
1

εs1
+

P3(∆xα)

s3
1

+
εP6(∆xα)

s5
1

+
ε2P9(∆xα)

s7
1

+O(ε3)

}
. (6.53)

The Kerr-Schild coordinate expressions are too long to be included here in print. Instead

we give s1 and the polynomials P3(∆xα),P6(∆xα),P9(∆xα) in Appendix A.

6.4 Matching Method in Kerr-Schild Coordinates

We now want to generalize the Fermi-Walker matching procedure, presented in Sec. 6.3.2,

to Kerr-Schild coordinates. (Though the presentation here is still valid in generic coordi-

nates and a generic spacetime.) As motivated by the Fermi-Walker discussion, we want

to match the numerical and analytical fields multipole by multipole, where multipoles

are now defined on spheres of constant Kerr-Schild coordinate distance from the particle

ρ =
√

∆x2 + ∆y2 + ∆z2 where (∆xi) = xi − x̄i(t), x̄i(t) now denoting the coordinates

of the particle.

We want to match the approximate analytical solution for the scalar field inside the

worldtube (ΦS + ΦR := ΦA) to the numerical field (ΦN ) on the boundary of the world-

tube. The matching method’s function is to solve for the unknowns within ΦR. Given

we now have ΦS in Kerr-Schild coordinates, it is simpler to subtract it from ΦN as first

step, defining Φ̃N := ΦN − ΦS . We will then match

ΦR
`m(t, xi)|ρ = Φ̃N

`m(t, xi)|ρ. (6.54)

It should be noted that unlike in Fermi-Walker coordinates, the puncture does not have

a simple multipole structure in Kerr-Schild coordinates, but we absorb that complexity

into Φ̃N . In practice the multipole modes of Φ̃N are found through numerical integration

over the worldtube at each time step.

The regular field is taken to be a three-dimensional Taylor series in arbitrary (but in

our case Kerr-Schild) spatial coordinate separation at each time slice,

ΦR(t, xi) = ΦR
0 (t) + ΦR

1i(t)∆x
i + ΦR

2ij(t)∆x
i∆xj +O(x3), (6.55)

with the notation ΦR
0 (t) ≡ ΦR(t,∆xi = 0), ΦR

1i(t) ≡ ∂iΦ
R(t,∆xi = 0).... The multipole

structure of the regular field here is the same as described in Fermi-Walker coordinates: a

term with n powers of ∆xi is a linear combination of ` ≤ n harmonics defined on spheres

of constant ρ =
√
δab∆xa∆xb, and the STF pieces are precisely ` = n harmonics.

At the order of Eq. (6.55) the second-order derivative is broken up into the trace part

and the STF part. The coefficients ΦR
0 (t), δijΦR

2ij(t) will be determined from the ` = 0
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matching, ΦR
1i will be determined from the ` = 1 matching, and the STF part, ΦR

2〈ij〉,

will be determined from the ` = 2 matching. Recall again ` refers to modes on a sphere

around the particle rather than modes on spheres around the central black hole.

6.4.1 Zeroth-Order Implementation

We expand the regular field up to leading order in coordinates:

ΦR(t, xi) = ΦR
0 (t) +O(∆x). (6.56)

We now impose Dirichlet boundary conditions to match the fields

ΦR
`m(t, xi)|ρ = Φ̃N

`m(t, xi)|ρ for ` = 0. (6.57)

This gives

ΦR
0 (t) = Φ̃N

0 (t), (6.58)

where Eq. (6.58) is analogue of Eq. (6.35) in Sec. 6.3.2.

6.4.2 First-Order Implementation

We expand the regular field up to first order in coordinates:

ΦR(t, xi) = ΦR
0 (t) + ΦR

1i(t)∆x
i +O(∆x2). (6.59)

We now impose Dirichlet boundary conditions to match the fields

ΦR
`m(t, xi)|ρ = Φ̃N

`m(t, xi)|ρ for ` = 0, 1. (6.60)

This gives

ΦR
0 (t) = Φ̃N

0 (t), (6.61)

ΦR
1i(t)ρn

i = Φ̃N
1i(t)n

i, (6.62)

where ni := ∆xi/r. Here, Eqs. (6.61)-(6.62) are the analogues of Eqs. (6.35)-(6.36) in

Sec. 6.3.2. Consequently, the field inside the worldtube is completely determined by the

field on the boundary up to first order.

6.4.3 Second-Order Implementation

We now expand the scalar field to second order in xi:

ΦR(t, xi) = ΦR
0 (t) + ΦR

1i(t)∆x
i + ΦR

2ij(t)∆x
i∆xj +O(x3). (6.63)
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Just as seen in Sec. 6.3.2 in Fermi coordinates, the STF piece ΦR
2〈ij〉 must be determined

by matching the ` = 2 multipole mode. Whereas, the trace piece of ΦR
2ij can be expressed

in terms of lower-order coefficients using the wave equation, using the fact that ΦR must

satisfy the homogeneous wave equation.

Just as in the lower-order implementations, we first impose Dirichlet boundary condi-

tions to match the fields

ΦR
`m(t, xi)|ρ = Φ̃N

`m(t, xi)|ρ for ` = 0, 1, 2. (6.64)

This gives

ΦR
0 (t) +

1

3
ρ2δijΦR

2ij = Φ̃N
0 (t), (6.65)

ΦR
1i(t)ρn

i = Φ̃N
1i(t)n

i, (6.66)

ΦR
2〈ij〉(t)ρ

2ninj = ΦN
2〈ij〉(t)n

inj . (6.67)

We see that for a second-order expansion, the boundary conditions will give us only 9

equations for 10 unknowns, i.e. we cannot solve for both ΦR
0 (t) and δijΦR

2ij . Solving for

the last unknown has to make use of the wave equation,

gµν∇µ∇νΦ = gµν∂µ∂νΦ− Γρ∂ρΦ = 0. (6.68)

where Γρ := gµνΓρµν . To expand the wave equation near the particle, we require the

expansions of the smooth fields gµν and Γµ, which we write as

gµν(t, xi) = gµν0 (t) + gµν1i (t)∆xi + gµν2ij(t)∆x
i∆xj +O(x3), (6.69)

Γµ = Γµ0 (t) + Γµ1i(t)∆x
i + Γµ2ij(t)∆x

i∆xj +O(x3). (6.70)

Inserting the expansions into the wave equation, Eq. (6.68), we obtain

[gµν0 (t) + gµν1i (t)∆xi + gµν2ij(t)∆x
i∆xj ]∂µ∂ν [ΦR

0 (t) + ΦR
1i(t)∆x

i + ΦR
2ij(t)∆x

i∆xj ]

− [Γµ0 (t) + Γµ1i(t)∆x
i + Γµ2ij(t)∆x

i∆xj ]∂µ[ΦR
0 (t) + ΦR

1i(t)∆x
i + ΦR

2ij(t)∆x
i∆xj ] = 0.

(6.71)

Solving at order (∆xi)0, recalling ∆xi = xi − x̄i(t), we find

(∆xi)0 : g00
0 Φ̈R

0 − g00
0 ΦR

1i
¨̄xi − 2g00

0 Φ̇R
1i

˙̄xi + 2g00
0 ΦR

2ij
˙̄xi ˙̄xi + 2g0i

0 Φ̇R
1i

+ 2gij0 ΦR
2ij − Γ0

0Φ̇R
0 + Γ0

0ΦR
1i

˙̄xi − Γi0ΦR
1i = 0.

(6.72)
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We then re-write Eq. (6.72) using ΦR
2ij = ΦR

2〈ij〉 + 1
3δijδ

klΦR
2kl, giving

g00
0 Φ̈R

0 − g00
0 ΦR

1i
¨̄xi − 2g00

0 Φ̇R
1i

˙̄xi + 2g00
0 (ΦR

2〈ij〉 +
1

3
δijδ

klΦR
2kl) ˙̄xi ˙̄xi + 2g0i

0 Φ̇R
1i

+ 2gij0 (ΦR
2〈ij〉 +

1

3
δijδ

klΦR
2kl)− Γ0

0Φ̇R
0 + Γ0

0ΦR
1i

˙̄xi − Γi0ΦR
1i = 0.

(6.73)

We can rearrange the constant part of Eq. (6.65), which gives gij0 ΦR
2ij = 3

Φ̃N0 −ΦR0
r2

. In-

serting this into Eq. (6.73) yields a second-order ODE for ΦR
0 :

g00
0 Φ̈R

0 − g00
0 ΦR

1i
¨̄xi − 2g00

0 Φ̇R
1i

˙̄xi + 2g00
0 ΦR

2〈ij〉 + 2g00
0 δij

Φ̃N
0 − ΦR

0

r2
˙̄xi ˙̄xi + 2g0i

0 Φ̇R
1i

+ 2gij0 ΦR
2〈ij〉 + 2gij0 δij

Φ̃N
0 − ΦR

0

r2
− Γ0

0Φ̇R
0 + Γ0

0ΦR
1i

˙̄xi − Γi0ΦR
1i = 0.

(6.74)

Solving this numerically will then fix the form of the final unknown at this order, ΦR
0 .

The full numerical algorithm can be laid out step by step, as follows:

1. We project the field Φ̃N on the worldtube boundary onto spherical harmonics

Y00, Y1m and Y2m. The resulting coefficients can then be mapped to Φ̃N
0 , Φ̃N

1i ,

Φ̃N
2〈ij〉 using the relations between symmetric trace-free (STF) tensors and spherical

harmonics, as detailed in Sec. II A of [145].

Eqs. (6.65)-(6.67) then directly gives us the 8 coefficients ΦR
1i and ΦR

2〈ij〉 of the

scalar field inside the worldtube.

2. We project the time derivative of the scalar field ˙̃ΦN of the numerical domain on

the worldtube boundary onto spherical harmonics Y00, Y1m and Y2m. ˙̃ΦN can be

directly obtained from the numerical fields. This data can then be mapped directly

to ˙̃ΦN
0 , ˙̃ΦN

1i ,
˙̃ΦN

2〈ij〉 again using the relation between STF tensors and spherical

harmonics. By taking a time derivative of Eqs. (6.65)-(6.67), we can immediately

fix the time derivative of the 8 coefficients Φ̇R
1i and Φ̇R

2〈ij〉 of the scalar field inside

the worldtube.

3. We now obtain ΦR
0 and Φ̇R

0 by solving the 2 coupled ODEs which come from the

reduction of Eq. (6.74) to first order:

d

dt
ΦR

0 = Φ̂R
0 , (6.75)

g00
0

d

dt
Φ̂R

0 = g00
0 ΦR

1i
¨̄xi + 2g00

0 Φ̇R
1i

˙̄xi − 2g00
0 ΦR

2〈ij〉 − 2g00
0 δij

Φ̃N
0 + ΦR

0

r2
˙̄xi ˙̄xi − 2g0i

0 Φ̇R
1i

− 2gij0 ΦR
2〈ij〉 − 2gij0 δij

Φ̃N
0 + ΦR

0

r2
+ Γ0

0Φ̂R
0 − Γ0

0ΦR
1i

˙̄xi + Γi0ΦR
1i.

(6.76)
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4. The last undetermined coefficients of the scalar field inside the worldtube, δijΦR
2ij

and δijΦ̇R
2ij , can be obtained from the constant part of Eq. (6.65) and its time

derivative:

δijΦR
2ij =

3

r2
[Φ̃N

0 − ΦR
0 (t)], (6.77)

δijΦ̇R
2ij =

3

r2
[ ˙̃ΦN

0 − Φ̇R
0 (t)]. (6.78)

This completely specifies the scalar field Φ and its time derivative Φ inside the

worldtube up to O(∆xα)2.

5. We need to provide boundary conditions to the numerical field on the worldtube

boundary for all evolution variables which are linear combinations of Φ, Φ̇ and

∂iΦ. We can calculate the spatial derivative ∂iΦ by differentiating Eq. (6.63):

∂iΦ
R = ΦR

1i +
2

3
δlkΦR

2lkδijx
j + 2ΦR

2〈ij〉x
j . (6.79)

We then evaluate the evolved fields on the collocation points of the numerical

domain on the worldtube boundary. This information is then passed into the

domain as boundary conditions, which are applied via the upwind flux.

6.5 Results

The model is tested with the scalar charge e, on a circular orbit of radius of 5M around

the Schwarzschild black hole, M . The outer boundary of the numerical domain is placed

at 400M . The radius of the worldtube is varied between 0.2M and 1.6M and we test

the implementation of an approximate analytical solution to order n = 0, 1 and 2. The

simulations are run until the field settles to a steady state solution over the entire domain,

which takes between t = 3000M and t = 7000M .

Figure 6.4 shows the equatorial plane of the domain, at a late time. The charge is at the

location of the red dot, while the excised interior of the black hole is the white circle.

The scalar charge is seen to emit scalar radiation as it orbits the black hole, creating an

outward propagating spiral. The amplitude of the scalar radiation is illustrated by the

color gradient scale.

6.5.1 Convergence with Resolution

We first examine the convergence of the model with respect to resolution, i.e. the Leg-

endre polynomial basis order of the spectral elements. Figure 6.5 is taken from a n = 2,

R = 1.6M model. The model has 128 spectral elements, each of which has a polynomial

basis of order 7. Each line in the figure represents an element and shows the magnitude
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Figure 6.4: A late time slice showing the equatorial plane of the domain. The excised
interior of the black hole is visible as the white circle in the center of the domain.
Scalar waves are seen to emanate from the charge as it orbits the black hole, creating
an outward propagating spiral. The amplitude of the scalar radiation is illustrated by
the color gradient scale.

of the 0th to 7th basis coefficient within that element. When plotted on a semi-log

plot, the straight line demonstrates the exponential convergence with respect to numer-

ical resolution. Beyond polynomial order 7, the model employs a filter on higher-order

coefficients for stability. This is seen in the steep gradient fall off from 7 onwards.

6.5.2 Convergence with Worldtube Size

We now turn to assessing the convergence of the 3+1D scalar-field model with worldtube

size. The error’s scaling with worldtube radius R can be estimated using the same type

of argument as in Sec. 4.3.2.3. While Eq. (4.30) held for the 1D case, here we replace

the integral over the line element ds′ with the spatial element dS′

ΦN (x) =

∫
∂V

[
ΦN (x′)∂n′G(x,x′)−G(x,x′)∂n′Φ

N (x′)
]
R2dΩdt (6.80)

where dΩ = sin θdθdφ. In this case, due to the integration over the two-dimensional

surface of radius R, assuming an Rn+1 error in ΦN and loss of one order of accuracy in

the derivatives ∂n′Φ
N , the error would be expected to scale as O(Rn+2).
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Figure 6.5: The magnitude of the spectral coefficient, plotted against the spectral
coefficient on a semi-log scale, for 128 spectral elements. This shows exponential con-
vergence of the model, with respect to resolution.

In these results, the numerical resolution is fixed at a sufficiently high value such that

it does not affect the steady state solution. This ensures the measured errors are due to

the worldtube size.

Solution along z-axis

Here we restrict our analysis to the value of the field on the z-axis. On the z-axis only

axisymmetric (m = 0) modes contribute to the field. As long as we sum our exact

analytical solution for an `,m = 0 mode from Eq. (3.13) over a sufficient number of `

modes, the solution can then act as an analytical baseline against which to compare our

worldtube results. This is given by

ΦA(z) = e

∞∑
`=0

Ψ`0(z)Y`0(θ, φ). (6.81)

This mode-sum converges exponentially everywhere except for on and near the sphere

r = rp, where the convergence is very slow. As such, we do not have a method of

reconstructing the analytical solution there, and so this region is omitted from any plots

which use ΦA as a baseline.

Figure 6.6 shows the relative error |ΦN − ΦA|/|ΦA| for two worldtube radii R = 0.4M

and R = 1.6M , between z = 0M and z = 100M . The error is fairly constant across the
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axis after the solution has settled to its final value. We can see the error decreases with

higher order n, or smaller worldtube radii R.

We now examine the relative L1 error norm, as done in the analysis of the 1+1D model

results. To calculate the relative L1 error norm we integrate the relative error shown in

Fig. 6.6 between z = 10M and z = 100M and then normalize by the analytical solution

integrated over the same region. This is given by

ε =
‖ΦN (z)− ΦA(z)‖L1

‖ΦA(z)‖L1

. (6.82)

The result is shown in the top panel of Fig. 6.7. Each cross represents the integrated,

relative error of a simulation’s final value. Also plotted is a best fit of the error conver-

gence ε ∝ Rα, where R is the worldtube radius and α is the global convergence order. In

the bottom panel, we have plotted the local convergence order between two simulations

with adjacent worldtube radii,

αloc,i =
log(εi)− log(εi−1)

log(Ri)− log(Ri−1)
. (6.83)

Generally we achieve the expected convergence order of α = n+ 2 in the volume outside

the worldtube. The n = 2 model has a fitted global convergence order of 4.07 and the

n = 1 model has a fitted global convergence order of 3.14. The n = 0 model has a fitted

global convergence order of 2.36. The n = 0 model does show larger values for the local

convergence order at larger worldtube radii, which suggests that here R is not sufficiently

small to ensure the dominating error of the model is of O(Rn+2). However, this value

steadily decreases to the expected order of ≈ 2 as the worldtube radii decreases and the

simulation enters the appropriately convergent regime.
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Figure 6.6: The relative error of the scalar field ΦN along the z-axis compared to the
analytical solution ΦA given by Eq. (6.81). We show two simulations with worldtube
radii R = 1.6M and R = 0.4M for n = 0, 1 and 2. The error decreases with higher
order or smaller worldtube radii.

Solution along x-axis

Here we perform an internal comparison which demonstrates that the solution along the

co-moving x-axis converges with the worldtube radius as expected. The x-axis connects

the black hole’s center with the scalar charge and here no analytical solution exists.

Instead, we use the simulation with n = 2 and R = 0.4 as a baseline solution (denoted

Φref ) as from the previous analysis, it is seen to have the lowest error.

Figure 6.8 shows the relative error |ΦN −Φref |/|Φref | for two worldtube radii R = 0.4M

and R = 1.6M , between x = 0M and x = 100M . The field along the x-axis has more

sharp features as it lies in the orbital plane of the charge and therefore the relative error

along the x-axis is not as smooth as along the z-axis.

We now calculate the relative L1 error norm, by integrating the relative error shown

in Fig. 6.8 between x = 10M and x = 100M and then normalizing by the reference

solution Φref integrated over the same region. This is given by

ε =
‖ΦN (x)− Φref (x)‖L1

‖Φref (x)‖L1

. (6.84)

The result is shown in the top panel of Fig. 6.9. Again, each cross represents a simulation,

the straight line shows a power law fit ε ∝ Rα and in the bottom panel we show the

local convergence order αloc.
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Figure 6.7: Top panel: the relative L1 error norm along the z-axis with respect to the
analytical solution ΦA, defined in Eq. (6.81). Each cross represents the final value of a
simulation and the straight lines are a best fit of the power law relation ε ∝ Rα. Bottom
panel: the local convergence order between the simulations of adjacent worldtube radii
as defined in Eq. (6.83). The results generally demonstrate the expected convergence
order of α = n+ 2.

Once again, we generally achieve the expect the convergence order of α = n + 2 in the

volume outside the worldtube. The n = 2 model has a fitted global convergence order

of 4.29. The local convergence order does appear to be increasing as the worldtube size

decreases. This is unexpected, but as there are only 3 data points we do not deem it

a significant result and future work will run simulations at smaller worldtube radii to

investigate the trend further. The n = 1 model has a fitted global convergence order

of 3.18. The n = 0 model has a fitted global convergence order of 2.29. At larger

values of worldtube radii we see larger values for the local convergence order (as in the

z-axis results) which again suggests that here R is not sufficiently small to ensure the

dominating error of the model is of O(Rn+2). However again this value steadily decreases

to the expected order of ≈ 2 as the worldtube radii decreases and the simulation enters

the appropriately convergent regime.

Overall the 3+1D scalar-field model shows convergent behaviour in line with our expec-

tations when varying key parameters, and impressive relative error results. We are now

ready to proceed to the BBH model.
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Figure 6.8: The relative error of the scalar field ΦN along the x-axis compared to
the reference solution Φref which uses n = 2 and R = 0.4M . We show two simulations
with worldtube radii R = 1.6M and R = 0.4M for n = 0, 1 and 2. The error decreases
with higher order or smaller worldtube radii.

Figure 6.9: Top panel: The relative L1 error norm along the x-axis with respect to
the reference solution Φref which uses n = 2 and R = 0.4M . Each cross represents a
simulation and the straight lines are a best fit of the relation ε ∝ Rα. Bottom panel:
The local convergence order as defined in Eq. (6.83). The results generally demonstrate
the expected convergence order of α = n+ 2.
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Chapter 7

Gravity Model

We now finally move on from the scalar-field toy model and begin to consider the phys-

ical BBH model. Specifically, we introduce a design for a worldtube scheme as applied

to the astrophysically relevant problem of a BBH with an intermediate mass-ratio. We

interchangeably refer to this as the “gravity model”. We first describe the numerical

evolution using SpECTRE. Here SpECTRE works with the generalised harmonic gauge

formalism of NR and so we devote Sec. 7.2 to reviewing the key equations of this ap-

proach. Section 7.3 then presents the various coordinate systems that are necessary for

the model’s cohesion. Finally, Sec. 7.4 lays out the matching method.

7.1 Setup

The gravity model simulates the full BBH configuration, with two black holes of masses

m1 and m2, so that m2/m1 < 1 is in the intermediate range. Our work in this thesis

models two Schwarzschild black holes; a future step of the model’s development will

be to move to a model of Kerr black holes in order to represent realistic astrophysical

IMRIs.

The NR evolution will be carried out by SpECTRE. As illustrated in Chapter 6, Fig. 6.1,

standard excision will be used to remove the spacetime within the larger black hole’s

horizon from the computational grid. This is shown as the white region on the left in

Fig. 6.1. A worldtube region now surrounding the smaller black hole will also be excised

from the domain. For an idea of scale, we predict a worldtube size of order
√
m1m2.

In this model the approximate analytical solution for the smaller black hole will be a

tidally perturbed Schwarzschild metric, as first discussed in Sec. 1.3.3. The metric will

now be expanded in terms of a perturbative parameter ε = m2
R , where R is the local

radius of curvature due to the larger black hole. As mentioned, the tidally perturbed
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metric contains unknown tidal terms which can only be specified by matching to an

external environment.

Just as in the 3+1D model, we will need this analytical solution to be in a coordinate

system that is amenable to the numerical evolution. In a BBH model, SpECTRE uses

the generalised harmonic gauge formulation for NR. This formulation is explained in

further detail in Sec. 7.2 below. Our tidally perturbed Schwarzschild metric is given

initially in light-cone coordinates to O(ε4) using [109] . Transforming this metric to

generalised harmonic coordinates is too complex, instead we choose to transform to

standard harmonic coordinates. However, this choices requires the evolution of extra

numerical infrastructure to act as an intermediary system between the analytical solution

and the numerics. This is explained in Sec. 7.3.

This chapter will, at a high level, cover the architecture of the BBH model: the numerical

evolution, coordinates systems and matching method. For the purpose of this chapter we

assume we have the tidally perturbed Schwarzschild metric readily available in harmonic

coordinates. We devote Ch. 8 and Ch. 9 to the theory behind this solution; its derivation

from first principles in the original coordinate system, the transformation into harmonic

coordinates and the presentation of its final structure.

7.2 Generalised Harmonic Gauge

Harmonic coordinates have been valuable in studies of general relativity from the field’s

conception. These coordinates satisfy the covariant scalar-wave equation

∇γ∇γzβ = 0. (7.1)

In this chapter our notation is such that Ψαβ is the NR spacetime metric, ∇γ is the

covariant derivative compatible with Ψαβ and zα = (t, za) is our harmonic coordinate

system. The equation can instead be written in terms of partial derivatives and Christof-

fel symbols as

− Γα = 0. (7.2)

where Γα is the trace of the standard Christoffel symbol, Γα = ΨβγΓαβγ , and

Γαβγ =
1

2
(∂βΨαγ + ∂γΨαβ − ∂αΨβγ). (7.3)

The Ricci curvature tensor can then be written as

Rαβ = −1

2
Ψγδ∂γ∂δΨαβ +∇(αΓβ) + ΨγδΨρτ (∂ρΨγα∂τΨβδ − ΓαγρΓβδτ ), (7.4)
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where ∇αΓβ = ∂αΓβ − ΨγδΓγαβΓδ. In the harmonic coordinates Γα = 0 and so the

vacuum Einstein equations, Rαβ = 0, form a hyperbolic system,

Ψγδ∂γ∂δΨαβ = 2ΨγδΨρτ (∂ρΨγα∂τΨδβ − ΓαγρΓβδτ ). (7.5)

BBH simulations using pure harmonic coordinates tend to be unstable. A reason for

this is that Eq. (7.1) does not sufficiently constrain the behaviour of the coordinates

and can admit dynamical wavelike solutions [153]. A choice must be made to reduce the

dynamical range that the coordinates can take, thereby better controlling the behaviour

of their evolution.

The idea of specifying arbitrary coordinates using a generalization of harmonic coor-

dinates was first introduced by Friedrich in 1985 [65, 89]. This generalisation played

a major role in the break-through first successful numerical simulation of the inspiral

and merger of a binary black-hole system [124]. The generalization is implemented by

assuming the coordinates instead satisfy the inhomogeneous wave equation

Ψαβ∇γ∇γzβ = Hα(z,Ψ) = −Γα, (7.6)

where Hα(z,Ψ) is some algebraic function of the coordinates zα and the metric Ψαβ , but

crucially not its derivatives. In these coordinates, Hα = −Γα and the vacuum Einstein

equations are given by

Ψγδ∂γ∂δΨαβ = −2∇(αHβ) + 2ΨγδΨρτ (∂ρΨγα∂τΨδβ − ΓαγρΓβδτ ). (7.7)

The Hβ term operates here as a source term. It does not contain any derivatives of

Ψαβ , thereby not altering the principal part of the equation and retaining hyperbolicity.

The principal part of the system remains identical to the harmonic coordinate system,

Eq. (7.5).

NR evolutions foliate the spacetime with spacelike hypersurfaces. In term of the lapse

N and the shift Nk (as introduced in Sec. 6.2.3), the line element can be written as

Ψαβdz
αdzβ = −N2dt2 + Ψij(dz

i +N idt)(dzj +N jdt). (7.8)

The generalised harmonic coordinate condition from Eq. (7.7) can then be expressed in

this 3+1 language as [89]

∂tN −Nk∂kN = −N(Ht −N iHi +NK), (7.9)

∂tN
i −Nk∂kN

i = NΨij [N(Hj + ΨkjΓjkl)− ∂jN ], (7.10)

where K is again the trace of the extrinsic curvature. Specifying the form of Hα deter-

mines the derivatives of the lapse and shift, and so fixes the gauge degrees of freedom

in the system [89].
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Our NR evolution using SpECTRE adopts a specific generalised harmonic gauge known

as the damped harmonic gauge [5, 142]

∇γ∇γzα = Hα
DH(z,Ψ), (7.11)

with

Hα
DH = µL log

(√
Ψ

N

)
tα − µSΨα

i N
i/N, (7.12)

where µL and µS are damping factors set ≥ 0 and Ψ = detΨij . The form of the gauge

source function in Eq. (7.12) has been chosen carefully. Firstly, the spatial coordinates zi

satisfy a damped wave equation and are driven towards a solution of the spatial Laplace

equation on a timescale of 1
µS

. This reduces unwanted gauge dynamics so long as 1
µS

is

smaller than the physical timescale. An analogous damped-wave condition for the time

coordinate would be inappropriate as z0 would then be driven towards a constant value,

thereby no longer acting as a meaningful time coordinate. We instead choose to use

the remaining gauge freedom to control the spatial volume element Ψ, which tends to

experience explosive growth in the region near the black-hole horizons. This is imposed

with the log

(√
Ψ
N

)
term, with damping factor µL. As Hα

DH depends on zα and Ψαβ ,

but not its derivatives, the principal part of the Einstein equation continues to retain

its hyperbolicity with this choice.

Finally, the damping factors are chosen such that

µS = µL = µ0

[
log

(√
Ψ

N

)]2

, (7.13)

Again, this choice is found to effectively suppress the growth of singularities [142]. µ0 is

taken to be a function of time that reduces the damped harmonic gauge to the harmonic

gauge far from the origin or at early times [142, 153]. Any choice such that µ0 ≈ 1 near

the black holes and µ0 ≈ 0 near the outer boundary should achieve this and be sufficient.

It is expected that initial data will be prescribed for the SpECTRE evolution as is

currently done in SpEC. Namely, using an extended conformal thin sandwich (XCTS)

approach [105] which begins by choosing a conformal metric, the trace of the extrinsic

curvature, and the first time-derivatives of these quantities. The conformal metric will

be a superposition of Schwarzschild black holes in harmonic coordinates [154]. Further

detail on the numerical implementation of the initial data is given in [103] and references

therein.

7.3 Coordinate Systems in our Worldtube Scheme

The scheme involves three coordinate systems: (i) The NR generalised harmonic coordi-

nate system in the bulk, (ii) the analytical harmonic coordinate system in the worldtube



7.3. Coordinate Systems in our Worldtube Scheme 109

and (iii) an auxiliary NR harmonic coordinate system that couples (i) and (ii) on the

worldtube boundary. We denote the NR metric by Ψαβ and the analytical metric by

gαβ , with the corresponding compatible derivatives ∇Ψ and ∇g.

We denote the NR generalised harmonic coordinate system by zα. The coordinates

satisfy the equation 2Ψz
α = Hα, where Hα is the gauge-driver term given in Eq. (7.12).

As the evolution proceeds, NR data is computed on successive hypersurfaces of constant

generalised harmonic time, z0 = t = const. Boundary conditions are required at three

locations: (i) the edges of the numerical domain, (ii) at spectral element interfaces

and (iii) at the worldtube boundary. These boundary conditions must of course also

be specified on surfaces of constant generalised harmonic time. (i) and (ii) will be

implemented as per standard spectral NR BBH evolutions [4, 5, 81], we provide further

detail on (iii) in Sec. 7.4.

We denote the auxiliary NR harmonic coordinate system by yα. The coordinates satisfy

the equation 2Ψy
α = 0 and so their inclusion amounts to the co-evolution of 4 scalar

fields. These yα fields are harmonic coordinates in the NR domain with the property

that they approach the generalised harmonic NR coordinates za at large distance. This

is achieved by setting boundary conditions such that at early time or at large distances

yα = zα.

The Jacobian between zα and yα can be readily computed numerically. This allows us

to obtain the harmonic-coordinate metric from the generalised harmonic one:

Ψyαyβ =
∂yα

∂zα
∂yβ

∂zβ
Ψzαzβ , Ψyαyβ = (Ψyαyβ )−1. (7.14)

The analytical metric is originally in light-cone coordinates, xα = (v, r,ΘA), and the

metric is denoted gαβ(xα;λ(v)), where λ(v) are the a priori unknown tidal moments. We

define a new harmonic coordinate system Xα = (T,X, Y, Z) that satisfies the equation

2gX
α = 0. We obtain the transformation Xα(xβ) and its inverse analytically, as detailed

in Ch. 9.

The harmonic coordinates Xα are functions of the light-cone coordinates xα, the original

tidal moments λ(v), and new unknown parameters c(v), generated during the coordinate

transform from xα to Xα. The newly generated c(v) functions encode the harmonic coor-

dinate freedom within the transformation. The transformed analytical metric therefore

also depends on these quantities, gαβ = gαβ(Xα;λ(T ); c(T )).

Due to the matching taking place on surfaces of constant generalised harmonic time t,

as a final step we must transform the dependence of the unknown functions from T to

t. This procedure is is detailed in Sec. 9.3. This then gives us gαβ = gαβ(Xα;λ(t); c(t)),

i.e. the harmonic components of the metric, in harmonic coordinates, as a function
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xα

Xα

zα

yα
Light-cone

Harmonic

Generalised Harmonic

Auxiliary Harmonic

Γ
Worldtube Numerical Domain

Figure 7.1: A sketch of the various coordinate systems in their respective domains,
for the BBH worldtube excision model. Within the worldtube we have the approxi-
mate analytical solution originally in xα light-cone coordinates, that we then transform
into Xa harmonic coordinates. In the numerical bulk we have the zα generalised har-
monic coordinates and the ya auxiliary harmonic coordinate system which couples the
analytical solution and the numerical solution on the worldtube boundary, Γ.

of generalised harmonic time. The coordinate systems in their respective domains are

illustrated in Fig. 7.1.

7.4 Matching Method

How the numerical algorithm will be implemented can be laid out step by set, as follows:

1. At each time step of the evolution we have the following NR data available on the

t = const hypersurface: the coordinates zα, metric Ψαβ , and the values of the aux-

iliary harmonic coordinates as a function of the generalised harmonic coordinates,

yα(zβ).

2. Prepare the NR data for matching: from Ψzαzβ we compute Ψyαyβ using Eq. (7.14).

3. The worldtube Γ is represented by a 2D set of SpECTRE grid-points ziΓ(θA; t) at

fixed generalised harmonic time t.

4. Project the equated metrics onto spherical harmonics, in order to match mode by

mode for as many of the λ(t), c(t) functions as possible.
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5. Equate the value of the analytical metric with the auxiliary NR harmonic metric,

along with their spatial derivatives, on Γ: gX
αXβ

= Ψyαyβ , ∂ig
XαXβ

= ∂iΨ
yαyβ .

Match for λ(t), c(t) functions.

Also equate the value of the fields themselves on Γ, to ensure the coordinates are

smoothly matched: Xα = yβ .

6. Match the time derivative of Ψαβ to the time-derivative of gαβ , ġX
αXβ

= Ψ̇yαyβ

on Γ, and/or use the Einstein equations on Γ to yield ODEs for any remaining

unknown λ(t), c(t) functions.

7. Solve the ODEs numerically to match for any remaining λ(t), c(t) functions. We

now have a fully specified interior metric gX
αXβ

and the value of the interior

harmonic coordinates Xα.

8. Time derivatives of the analytical solution will be required for boundary conditions

for the NR evolution. ġX
αXβ

is now fully specified from the above. Calculate Ẋα.

9. Implement characteristic style boundary conditions on Γ, for both the generalised

harmonic metric Ψαβ and the auxiliary harmonic fields yα.

10. The NR solution evolves to the next hypersurface of t = const and the procedure

repeats.
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Chapter 8

Tidally Perturbed Black Hole

Metric

The local approximate solution that will populate the excision region in the BBH world-

tube mode will be a tidally perturbed Schwarzschild metric of the smaller black hole

m2. Tidally perturbed black hole metrics have been derived in the literature and we

will make use of these works [107, 144, 109, 111]. Here the metric is expressed as an

expansion in powers of ε := r
R � 1, where r is a measure of distance from the black hole

and R is the local radius of curvature of the external spacetime. (In our model, in the

next chapter, we will specialise r to be the mass of the small object m2.) The metric

contains unknowns that depend on the tidal gravitational fields that characterize the

black hole’s local environment, in our case those generated by the presence of m1. As

far as we are aware, such metric expansions have been derived up to O(ε4) [111].

The tidally perturbed black hole metric will need to be transformed into a coordinate

system that is amenable to the NR evolution. As described in Chapter 7 this will

be a harmonic coordinate system and this transformation is obtained in Chapter 9.

However, our starting metric is the metric in (v, r) light-cone coordinates in the Regge-

Wheeler gauge published in [109], and we devote this chapter to re-deriving its form.

Although this is therefore a review of existing results, it is worth including as it is a

fundamental building block of our model. Furthermore, our presentation includes a level

of derivation of some of the results that in [109] were only postulated. We first derive

the mode-decomposed perturbative Einstein field equations. The Regge-Wheeler gauge

is then presented and the perturbative equations are then solved, yielding the solution

for the metric to leading order in the tidal perturbation.
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8.1 Manifolds, Coordinates, Metrics

Our first aim will be to obtain the metric perturbations of the Schwarzschild spacetime.

For the work in this section we follow [98] and adopt their notational conventions. The

manifold of the full spacetime is denoted M4. On this we have the full metric denoted
4gαβ ; this is comprised of the background Schwarzschild metric gαβ , plus a perturbation

pαβ ,
4gαβ = gαβ + pαβ . (8.1)

We then split the spacetime manifold M4 into the product of two submanifolds, M4 =

M2xS2. We treatM2 as the (t, r) plane with coordinates xa, where the lower-case Latin

indices run over the values 0 and 1. S2 is the two-sphere with coordinates θA, where the

upper-case Latin indices run over the values 2 and 3. The Schwarzschild metric gαβ is

expressed as

ds2 = gabdx
adxb + r2ΩABdθ

AdθB, (8.2)

which is covariant under two-dimensional coordinate transformations xa → x
′a and θA →

θ
′A. Any desired coordinate system xa = (x0, x1) that can be obtained from the usual

Schwarzschild coordinates (t, r) can be used, while we chose the angular coordinates

remain to be fixed as θA = (θ, φ). The tensor gab and scalar r are functions of xa, while

ΩAB is the metric on the unit two-sphere.

Some further structure onM2 and S2 must now be introduced. A dual vector is specified

by ra := ∂r
∂xa , which is normal to surfaces of constant r(xa) and εab is the Levi-Civita

tensor on M2. From these quantities, the timelike Killing vector of the Schwarzwchild

spacetime that is tangent toM2 can be constructed as ta = −εabrb. With this, ra and ta

form a basis onM2. The covariant derivative onM2 is denoted ∇a, such that ∇agbc = 0

and the Riemann tensor onM2 is Rabcd = (2M
r3

)(gacgbd−gadgbc). The covariant derivative

on S2 is denoted DA, such that DAΩBC = 0. The Levi-Civita tensor on S2 is εAB with

εθφ = sin θ, and the Riemann tensor on S2 is RABCD = ΩACΩBD−ΩADΩBD. Finally, if

Γabc is the connection associated with ∇a and ΓABC is the connected associated with DA,

then it can be shown that the nonvanishing components of the full spacetime connection
4Γ are given by 4Γabc = Γabc,

4 ΓaBC = −rraΩBC ,
4 ΓABc = r−1rcδ

A
B and 4ΓABC = ΓABC .

8.2 Spherical-Harmonic Decomposition

The metric perturbations will be decomposed into scalar, vector and tensor spherical

harmonics. Here we drop the (θA) dependence of these harmonics for brevity. The scalar

harmonics Y lm satisfy the eigenvalue equation

[ΩABDADB + `(`+ 1)]Y `m = 0. (8.3)
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The vectorial spherical harmonics are related to the standard scalar harmonics by

Y `m
A := DAY

`m, (8.4a)

Z`mA := −εBADBY
`m , (8.4b)

where Y `m
A are even-parity harmonics and Z`mA are odd-parity harmonics. The tensorial

spherical harmonics are related to the standard scalar harmonics by

Y `m
AB := [DADB +

1

2
`(`+ 1)ΩAB]Y `m, (8.5)

Z`mAB := −1

2

(
εCADB + εCBDA

)
DCY

`m, (8.6)

where again Y `m
AB are even-parity harmonics and Z`mAB are odd-parity harmonics.

The vector and tensor spherical harmonics satisfy the following orthonormality relations:∫
Ȳ A
`mY

`′m′
A dΩ = `(`+ 1)δ``′δmm′ , (8.7)

∫
Z̄A`mZ

`′m′
A dΩ = `(`+ 1)δ``′δmm′ , (8.8)∫
Ȳ A
`mZ

`′m′
A dΩ = 0, (8.9)∫

Ȳ AB
`m Y `′m′

AB dΩ =
1

2
(`− 1)`(`+ 1)(`+ 2)δ``′δmm′ , (8.10)∫

Z̄AB`m Z`
′m′
AB dΩ =

1

2
(`− 1)`(`+ 1)(`+ 2)δ``′δmm′ , (8.11)∫

Ȳ AB
`m Z`

′m′
AB dΩ = 0, (8.12)

where dΩ := sin θdθdφ. Finally, ΩABY `m
AB = 0 = ΩABZ`mAB.

The metric perturbation pαβ is decomposed into spherical harmonics as follows:

pab =
∑
`m

h`mab Y
`m, (8.13)

paB =
∑
`m

(
j`ma Y `m

B + h`ma Z`mB
)
, (8.14)

pAB =
∑
`m

(
r2K`mΩABY

`m + r2G`mY `m
AB + h`m2 Z`mAB

)
. (8.15)

The fields h`mab , j
`m
a , h`ma ,K`m, G`m, and h`m2 are all defined onM2 and so depend on the

xa coordinates only.



116 Chapter 8. Tidally Perturbed Black Hole Metric

8.3 Regge-Wheeler Gauge

We now wish to analyse the effect of a gauge transformation. Even-parity gauge trans-

formations are generated by a dual vector field Ξα = (Ξa,ΞA), which is expanded as

Ξa =
∑
`m

ξ`mα Y `m, (8.16)

ΞA =
∑
`m

ξ`mY `m
A . (8.17)

Under such a transformation tensors on M2 will change according to

χ′ = χ+ Lξχ (8.18)

where Lξ is the Lie derivative with respect to the vector ξ. The perturbation fields

become

h`m
′

ab = h`mab −∇aξ`mb −∇bξ`ma , (8.19)

j`m
′

a = j`ma − ξ`ma −∇aξ`m +
2

r
raξ

`m, (8.20)

K`m′ = K`m +
`(`+ 1)

r2
ξ`m − 2

r
raξ`ma , (8.21)

G`m
′

= G`m − 2

r2
ξ`m, (8.22)

where we have dropped the `,m labels for brevity. The combinations

h̃`mab := h`mab −∇aε`mb −∇bε`ma (8.23)

and

K̃`m := K`m +
1

2
`(`+ 1)G`m − 2

r
raε`ma (8.24)

can be shown to be gauge-invariant, where

ε`ma := j`ma −
1

2
r2∇aG`m. (8.25)

Eqs. (8.20) and (8.22) show that a gauge can always be chosen such that j`ma = 0 = G`m.

This choices gives what is known as the Regge-Wheeler gauge. This Regge-Wheeler

gauge is particularly useful, as in it the quantities in Eqs. (8.23) and (8.24) reduce to

their untilde counterparts: h̃`mab = h`mab , K̃`m = K`m. This will allow us to write the

covariant perturbation equations in the form of gauge-invariant quantities.
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The odd-parity sector proceeds similarly. Odd-parity gauge transformations are gener-

ated by a dual vector field Ξα = (0,ΞA), which is expanded as

ΞA =
∑
`m

ξ`mZ`mA . (8.26)

Under such a transformation the perturbation quantities on M2 change according to

h`ma → h`m
′

a = h`ma −∇ξ`m +
2

r
raξ

`m, (8.27)

h`m2 → h`m
′

2 = h`m2 − 2ξ`m. (8.28)

In this sector, the combination

h̃`ma = h`ma −
1

2
∇ah`m2 +

1

r
rah

`m
2 (8.29)

is gauge-invariant. Eq. (8.28) shows that a gauge can always be chosen such that h`m2 = 0,

and this is the odd-parity condition of the Regge-Wheeler gauge. Again, in this gauge,

the quantity in Eq. (8.29) reduces to its untilde counterpart: h̃`ma = h`ma .

The collective Regge-Wheeler gauge conditions are numbered here for later reference

j`ma = 0, (8.30a)

G`m = 0, (8.30b)

h`m2 = 0. (8.30c)

8.4 The Field Equations in the Regge-Wheeler Gauge

As our aim is to obtain the metric perturbations of the Schwarzschild spacetime, we

must compute the linearised Einstein field equation

δGαβ = 8πTαβ , (8.31)

where Gαβ is the Einstein tensor, Tαβ is the linear approximation to the full energy-

momentum tensor, and the universal constants G and c have been set to 1. The linearised

Einstein tensor is given by

δGαβ =
1

2
(−∇α∇βpγγ +∇µ∇αpµβ +∇µ∇βpµα

− gµν∇µ∇νpαβ + gαβg
µν∇µ∇νpγγ − gαβ∇µ∇νpµν).

(8.32)

We substitute Eqs. (8.13), (8.14) and (8.15) to respectively create three separate equa-

tions for δGab, δGaB, and δGAB.
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δGab is expanded in terms of Y `m, δGaB is expanded in terms of Y `m
B and Z`mB , and δGAB

is expanded in terms of ΩABY
`m, Y `m

AB and Z`mAB. The field equation now contains many

terms involving the derivatives of the scalar, vector and tensorial harmonics. Using

the relations given between Eqs. (8.3) and (8.6), we derived expressions relating all

derivative quantities to the scalar, vector and tensorial harmonics themselves. These

are given in Appendix B. We apply these relations as a necessary step in order to match

the final form of the perturbation equations presented in [98]. Each separate spherical

harmonic component can then be extracted to form an independent equation using the

orthonormality relations given in Sec. 8.2.

As in [98] we remain in the Regge-Wheeler gauge and can then take advantage of the

fact that in this gauge hab → h̃ab,K → K̃, ha → h̃a. This allows us to write the field

equations in terms of gauge-invariant quantities. We now discard spherical harmonic

`m indices for brevity. In covariant form our final results are

Qab =∇c∇(ah̃
c
b) −

1

2
gab∇c∇dh̃cd −

1

2
2(h̃ab − gabh̃)− 1

2
∇a∇bh̃+

2

r
rc(∇(ah̃

c
b) − gab∇dh̃

cd)

− 1

r
rc∇c(h̃ab − gabh̃) +

`(`+ 1)

2r2
h̃ab −

1

r2
gabrcrdh̃

cd − 1

2

(
`(`+ 1)

r2
+

2M

r3

)
gabh̃

−∇a∇bK̃ + gab2K̃ −
2

r
r(a∇b)K̃ +

3

r
gabr

c∇cK̃ −
`(`− 1)(`+ 2)

2r2
gabK̃,

(8.33)

Qa = ∇ch̃ca −∇ah̃+
1

r
rah̃−∇aK̃, (8.34)

Q[ = 2h̃−∇a∇bh̃ab −
2

r
ra∇bh̃ab −

`(`+ 1)

2r2
h̃+ 2K̃ +

2

r
ra∇aK̃, (8.35)

Q] = −h̃, (8.36)

Pa = −2h̃a +∇a∇bh̃b +
2

r
(rb∇ah̃b − ra∇bh̃b)−

2

r2
rarbh̃

b +
`(`+ 1)

r2
h̃a, (8.37)

P = ∇ah̃a, (8.38)

where h̃ := gabh̃ab and 2 := gab∇a∇b. The source terms are themselves given by

Qab = 8π

∫
T abȲ `mdΩ, (8.39)

Qa =
16πr2

`(`+ 1)

∫
T aBȲ `m

B dΩ, (8.40)

Q[ = 8πr2

∫
TABΩABȲ

`mdΩ, (8.41)

Q] =
32πr4

(`− 1)`(`+ 1)(`+ 2)

∫
TABȲ `m

ABdΩ, (8.42)

P a =
16πr2

`(`+ 1)

∫
T aBZ̄`mB dΩ, (8.43)
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P =
16πr4

(`− 1)`(`+ 1)(`+ 2)

∫
TABZ̄`mABdΩ. (8.44)

Finally we re-express these equations in terms of (v, r) coordinates. We firmly adopt

the Regge-Wheeler gauge specified by Eqs. 8.30 and so can remove all the over-tildes,

giving

Qvv = −∂2
rrK −

2

r
∂rK −

1

r
∂vhrr +

f

r
∂rhrr +

2

r
∂rhvr +

`(`+ 1)r + 4M

2r3
hrr, (8.45)

Qvr =∂2
vrK +

2

r
∂vK −

f

r
∂vhrr +

r −M
r2

∂rK −
1

r
∂rhvv

− 1

r2
hvv −

`(`+ 1) + 4

2r2
hvr −

f

r2
hrr −

µ

2r2
K,

(8.46)

Qrr =− ∂2
vvK +

r −M
r2

∂vK +
1

r
∂vhvv +

2f

r
∂vhvr +

(r −M)f

r2
∂rK

− f

r
∂rhvv +

µr + 4M

2r3
hvv −

2f

r2
hvr −

f2

r2
hrr −

µf

2r2
K,

(8.47)

Qv = ∂vhrr − ∂rhvr − ∂rK +
2

r
hvr +

r −M
r2

hrr, (8.48)

Qr = −∂vhvr − ∂vK + ∂rhuu − f∂rK +
2(r −M)

r2
hur +

(r −M)f

r2
hrr, (8.49)

Q[ =− ∂2
vvhrr + 2∂2

vrhvr + 2∂2
vrK −

r −M
r2

∂vhrr +
2

r
∂vK − ∂2

rrhvv + f∂2
rK −

2

r
∂rhvv

− 2(r −M)

r2
∂rhvr −

(r −M)f

r2
∂rhrr +

2(r −M)

r2
∂rK

− `(`+ 1)

r2
hvr −

`(`+ 1)r2 − 2µMr̃ − 4M2

2r4
hrr,

(8.50)

Q] = −2hvr − fhrr, (8.51)

P v = −∂2
vrhr + ∂2

rrhv −
2

r
∂vhr −

2

r2
hv +

µ

r2
hr, (8.52)

P r = ∂2
vvhr − ∂2

vrhv +
2

r
∂vhh +

µ

r2
hv +

µf

r2
hr, (8.53)

P = ∂vhr + ∂rhv + f∂rhr +
2M

r2
hr. (8.54)

where µ := `(`+ 1)− 2.

8.5 Solution for a Tidally Perturbed Black Hole

A core assumption in our calculation is that the time dependence of the tidal pertur-

bations is slow. Therefore we assume the perturbation depends on time only through

ṽ := εv. As a result any v derivatives at a particular order in ε of the calculation will
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be demoted to the next order. Though we do not lay out the calculation fully explicitly

here, the key features of the derivation are as follows.

For clarity, let us now make explicit the dependence of the metric on the coordinates x

and the parameter ε:
4gαβ(x, ε) = gαβ(x) + pαβ(x, ε), (8.55)

where xα = (v, r, θA). As we are in Schwarzschild spacetime, the full metric 4gαβ(x, ε)

must satisfy the vacuum Einstein field equation. This is expanded as

0 = Gαβ [g] + δGαβ [p] + δ2Gαβ [p] + . . . , (8.56)

where we have dropped the spacetime indices on g and p. Each term is further expanded

in a slow-time expansion as

Gαβ [g] = G(0)αβ [g] + εG(1)αβ [g] + ε2G(2)αβ [g], (8.57)

δkGαβ [p] = δkG(0)αβ [p] + εδkG(1)αβ [p] + ε2δkG(2)αβ [p]. (8.58)

where G(n)αβ and δkG(n)αβ consist of the terms in Gαβ and δkGαβ that contain n deriva-

tives with respect to v. Finally, the perturbation itself is given as an expansion in powers

of the parameter ε,

pαβ(x, ε) = εp
(1)
αβ(x) + ε2p

(2)
αβ(x) + ... (8.59)

Substituting into the Einstein field equation and solving order-by-order in powers of ε

we obtain a series of equations,

G(0)αβ [g] = 0, (8.60)

δG(0)αβ [p(1)] = −G(1)αβ [g], (8.61)

δG(0)αβ [p(2)] = −δ2G(0)αβ [p(1)]− δG(1)αβ [p(1)]−G(2)αβ [g].

...
(8.62)

Equation (8.60) is the ordinary Einstein equation for gαβ , with all derivatives with

respect to v removed. For the solution to Eq. (8.60), we take the Schwarzschild metric

in advanced Eddington-Finkelstein coordinates,

gαβ = −f(r)dv2 + 2dvdr + r2dΩ2, (8.63)

where f = 1− 2M
r̃ .

We now seek to solve Eq. (8.61). The only non-zero source term in Eq. (8.61) is

G(1)rr[g] = 2
r2
dM
dv [106]. We note G(1)αβ is just the Einstein tensor of the Vaidya met-

ric, the time-varying Schwarzschild metric. For ` ≥ 2, the equation can be solved

for arbitrary `. However, it should be noted that low multipoles (` = 0, 1) must

be solved for separately as various quantities are only defined for ` ≥ 2. We solve
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Eqs. (8.45)-(8.51) and Eqs. (8.52)-(8.54) in a hierarchical manner, to find the coeffi-

cients K`m, h`mvv , h
`m
rr , h

`m
vr , h

`m
v , h`mr . The equations are solved in terms of undetermined

functions of slow advanced time ṽ, formally denoted Ak(n)`m(ṽ) where n denotes the

power of ε.

We schematically explain the procedure for ` = 2 and the even sector as an example.

We start with Eq. (8.46). This equation allows us to solve for h2m
vr in terms of h2m

rr .

This result is then substituted into the remaining set of equations. Eq. (8.47) then

allows us to solve for h2m
rr in terms of K2m. Substituting this into the remaining set of

equations, Eq. (8.48) then produces a second order ODE in r for K2m. We then solve

this differential equation, which produces two integration constants denoted A1
(1)2m(ṽ),

A2
(1)2m(ṽ). The procedure repeats analogously for the odd-sector, hierarchically solving

Eqs. (8.52)-(8.54).

Along the way certain physical conditions are then imposed on each solution, e.g. that

it is regular at the horizon and does not contain any singularities. This forces certain

Ak(n)`m(ṽ) to be set to zero. When the results are substituted into the remaining set

of perturbation equations, this sets further restrictions on the various Ak(n)`m(ṽ) terms.

As a last step we use any remaining gauge freedom to simplify the final results as best

possible. It turns out that at n = 1 all Ak(1)`m(ṽ) terms can be set to zero. The n = 1

equations also demand that dM
dv = 0.

We now seek to solve Eq. (8.62), which, with the above findings, reduces to

δG(0)αβ [p(2)] = 0. (8.64)

We repeat the procedure of systematically solving the equations for each `, imposing

physical conditions on our solutions and exploiting remaining gauge freedom to simply

results. At this order even after the imposition of boundary and regularity conditions,

we are left with a single non-vanishing term in each of the even and odd sectors, which

we denote A(2)2m(ṽ) and B(2)2m(ṽ). These appear in the ` = 2 perturbation only.

Specifically,

h2m
vv =

1

2
r2f2A(2)2m(ṽ), (8.65)

h2m
vr = −1

2
r2fA(2)2m(ṽ), (8.66)

h2m
rr = r2A(2)2m(ṽ), (8.67)

K2m =
1

2
r2(−2M2 + r2)A(2)2m(ṽ), (8.68)

h2m
v = −r3fB(2)2m(ṽ), (8.69)

h2m
r = r3B(2)2m(ṽ). (8.70)
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We find these results match exactly the leading order form of the metric presented in

[109]. We can now write the form of the full tidally perturbed metric up to O(ε2):

gvv= − f + ε2
1

2
r2f2

∑
m

A2m(ṽ)Y 2m(θA) +O(ε3), (8.71)

gvr = 1− ε2 1

2
r2f

∑
m

A2m(ṽ)Y 2m(θA) +O(ε3), (8.72)

grr = ε2r2
∑
m

A2m(ṽ)Y 2m(θA) +O(ε3), (8.73)

gvA = −ε2r3f
∑
m

B2m(ṽ)Z2m
A (θA) +O(ε3), (8.74)

grA = ε2r3
∑
m

B2m(ṽ)Z2m
A (θA) +O(ε3), (8.75)

gAB = r2ΩAB + ε2
1

2
r2(−2M2 + r2)ΩAB

∑
m

A2m(ṽ)Y 2m(θA) +O(ε3), (8.76)

where we have dropped the (n) label from A(2)2m(ṽ) and B(2)2m(ṽ) as they are the only

remaining terms. A2m(ṽ), B2m(ṽ) can now be thought of as quadrupole tidal potentials

that must be determined by matching to the exterior spacetime.
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Chapter 9

Transformation to Harmonic

Coordinates

In this chapter we obtain the transformation of the tidally perturbed Schwarzschild met-

ric, from light-cone coordinates to harmonic coordinates. We first perturbatively obtain

the forward transform (Xµ → xµ), followed by the inverse transformation (xµ → Xµ).

We then compute the contravariant components of the metric, expressed in harmonic co-

ordinates. Our metric components are presented grouped by their multipolar structure.

When implemented, our IMRI worldtube excision model will match these components,

mode-by-mode, on the worldtube boundary to the NR solution.

9.1 Forward Transformation

9.1.1 Set Up

We start with the tidally perturbed Schwarzschild metric as given in [109] to order ε2

and now use the notation gαβ = g
(0)
αβ + εp

(1)
αβ + ε2p

(2)
αβ , where recall ε = m2/R.

We wish to transform this metric into harmonic coordinates Xµ := (T,X, Y, Z). The

harmonic coordinate condition is that Xµ must satisfy the scalar wave equation,

2Xµ = gαβOαOβX
µ = 0 (9.1)

where gαβ is the full, perturbed spacetime metric, given in Eqs. (8.71) to (8.76).

We begin with an ansatz for Xµ which takes the form of a power series in ε at fixed

(ṽ, r, θA) coordinates

Xµ = X̄µ +Xµ
0 (ṽ, r, θA) + εXµ

1 (ṽ, r, θA) + ε2Xµ
2 (ṽ, r, θA) +O(ε3), (9.2)
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where X̄µ is a chosen leading-order contribution. The time dependence is again slow

(ṽ := εv) and so whenever we encounter derivatives of Xn
µ with respect to v during our

calculation, these terms will be demoted to the next order in ε.

We make two demands of Xµ, (i) that it be smooth at the horizon r = 2M and (ii)

that the metric does not blow up as M → 0, at fixed r values. These conditions should

allow the solution to be extended arbitrary far into the interior of the worldtube and

thus facilitate a smooth matching to the NR solution.

We now examine the structure of the wave operator and its expansion in powers of

ε. The wave operator can be written in terms of covariant derivatives ∇α or partial

derivatives ∂α

2Xµ = ∇α(gαβ∂βX
µ)

=
1√
−g

∂α(
√
−ggαβ∂βXµ),

(9.3)

where g is the determinant of the metric. It can be seen clearly from the balancing of

indices that the wave operator is a scalar quantity.

The expansion of the inverse metric is given by

gαβ = gαβ(0) − ε
2gαµ(0)g

βν
(0)p

(2)
µν +O(ε3), (9.4)

while the square root of the determinant is expanded as

√
−g =

√
−g(0)

[
1 +

ε2

2
gγδ(0)p

(2)
γδ +O(ε3)

]
. (9.5)

Combining these expansions we obtain an overall expansion for 2Xµ as

2Xµ =
1√
−g(0)

∂α(

√
−g(0)gαβ(0)∂βX

µ)

+
ε2√
−g(0)

[
− 1

2
gγδ(0)p

(2)
γδ ∂α

(√
−g(0)gαβ(0)∂βX

µ

)
+ ∂α

(√
−g(0)

1

2
gγδ(0)p

(2)
γδ g

αβ
(0)∂βX

µ −
√
−g(0)gαν(0)g

βρ
(0)p

(2)
νρ ∂βX

µ

)]
+O(ε3).

(9.6)

We compactify this expression with the notation

2Xµ = DXµ − ε2
[

1

2
p(2)γ
γ DXµ +

1√
−g(0)

(
∂α[

√
−g(0)p(2)αβ∂βX

µ]

)]
+O(ε3), (9.7)

where

p(2)αβ := gαν(0)g
βρ
(0)p

(2)
νρ −

1

2
gγδ(0)p

(2)
γδ g

αβ
(0) (9.8)
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is the trace-reverse of the metric perturbation and

D :=
1

r2
∂a(r

2gab(0)∂b) +
1

r2
DAD

A. (9.9)

As stated above, derivatives of Xµ
n with respect to v are of order ε and therefore Eq. (9.9)

can be broken into two pieces, D = D0 + εD1, with

D0 =
1

r2
∂r(r

2f∂r) +
1

r2
DAD

A, (9.10)

D1 =
2

r
∂ṽ + 2∂r∂ṽ. (9.11)

We now take Eq. (9.7) and expand Xµ as in Eq. (9.2), grouping terms in powers of ε.

This gives us

2Xµ =D0X̄
µ +D0X

µ
0 + ε

(
D0X

µ
1 +D1(X̄µ +Xµ

0 )
)

+ ε2
[
D0X

µ
2 −

1

2
p(2)γ
γ D0(X̄µ +Xµ

0 )

+D1X
µ
1 −

1

r2
√

Ω

(
∂α[r2

√
Ωp(2)αβ∂β(X̄µ +Xµ

0 )]
)]

+O(ε3),

(9.12)

where
√
−g(0) = r2

√
Ω and Ω is the determinant of the ΩAB metric.

We next make a choice for the leading order barred components of the expansion. De-

manding the coordinates are harmonic and regular at the horizon, we choose

T̄ = v − ρ∗, (9.13)

X̄i = ρni, (9.14)

where we define

ρ := r −M (9.15)

and

ρ∗ := r + 2M ln
( r

2M

)
. (9.16)

Latin indices represents the spatial coordinates, and ni := xi

r is the radial unit vector.

We now have a series of equations to solve order by order in ε. As DX̄µ = 0 by

construction, we are left with

ε0 : D0(Xµ
0 ) = 0, (9.17)

ε1 : D0X
µ
1 = −D1(Xµ

0 ), (9.18)

ε2 : D0X
µ
2 =

1

2
p(2)γ
γ D0(Xµ

0 ) +
1

r2
√

Ω
∂α[r2

√
Ωp(2)αβ∂β(X̄µ +Xµ

0 )]−D1X
µ
1 . (9.19)

It should be reminded that, in Eq. (9.19), to retain O(ε2), ∂v on Xµ
0 is ignored.
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In solving Eqs. (9.17)-(9.19), we will find the forms of Xµ
0 , X

µ
1 and Xµ

2 in terms of the

light-cone coordinates. As we are only working with the expressions for gαβ to order ε2,

we truncate the expansion of Xµ at order ε2Xµ
2 for consistency.

9.1.2 Solution at O(ε0)

The leading order equation, Eq. (9.17), can be readily solved by hand, mode by mode

in a multipole expansion. We perform a decomposition of the scalar functions Xµ
n into

spherical harmonic modes,

Xµ
n =

∑
`m

Xµ
n`mY

`m. (9.20)

Using the relation DAD
AY `m = −`(` + 1)Y `m, Eq. (9.17) separates into the model

equations

fXµ
0`m,rr +

2ρ

r2
Xµ

0`m,r −
`(`+ 1)

r2
Xµ

0`m = 0. (9.21)

Upon inspection we can see this is of the form of Legendre’s differential equation. There-

fore, the solution is a combination of Legendre functions of the first and second kind

Xµ
0`m = cµ0`m(ṽ)P`

(
ρ̌
)

+ dµ0`m(ṽ)Q`
(
ρ̌
)
, (9.22)

where cµ0`m(ṽ) and dµ0`m(ṽ) are unknown functions of slow time ṽ and we have introduced

ρ̌ = ρ
M . For reference, the forms of the Legendre functions are

P`(z) =
1

2``!

d`

dz`
(z2 − 1)`, (9.23)

Q`(z) =


1
2 log

(
1+z
1−z

)
` = 0,

P1(z)Q0(z)− 1 ` = 1,

2`−1
` zQ`−1(z)− `−1

` Q`−2(z) ` ≥ 2.

(9.24)

We now recall the demands we are making on the form of Xµ. The first is that it must

be smooth on the horizon, r = 2M . P`(ρ̌) is a polynomial of order ` in ρ (and in r)

and therefore regular on the horizon. However, Q`(ρ̌) blows up on the event horizon for

all ` modes. We therefore use the freedom we have in the solution to set dµ0`m(ṽ) = 0,

removing the divergent Q` term. Our second demand is that there are no negative

powers of M in the overall transformation, such that the metric does not blow up as

M → 0. This is only achieved here for the ` = 0 case of the P` Legendre function,

P0(ρ̌) = 1, and so we set cµ0`m(ṽ) = 0 for all ` ≥ 1. The final solution is then,

Xµ
000 = cµ000(ṽ). (9.25)
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This form of Xµ
0 represents a simple spacetime translation which re-aligns the coordinate

origins. We now have the transformation to leading order in ε,

T = v − ρ∗ + c0
000(ṽ)Y 00 +O(ε), (9.26)

Xi = ρni + ci000(ṽ)Y 00 +O(ε). (9.27)

9.1.3 Solution at O(ε1)

Now that we have the form of Xµ
0 , the ε1 order equation can also clearly be examined

by hand. Starting with

D0X
µ
1 = −D1X

µ
0 , (9.28)

and again employing a spherical harmonic decomposition of Xµ
1 , the overall equation

becomes an inhomogeneous Legendre equation with Xµ
1`m as the subject and with a

source term formed from Xµ
0`m. Explicitly, this reads

fXµ,rr
1`m,rr +

2ρ

r2
Xµ

1`m,r −
`(`+ 1)

r2
Xµ

1`m = −2

r
Ẋµ

0`m − 2∂rẊ
µ
0`m, (9.29)

where an overdot represents a derivative with respect to ṽ.

For ` = 0 we obtain

fXµ
100,rr +

2ρ

r2
Xµ

100,r = −2

r
ċµ000(ṽ). (9.30)

This equation can be solved for Xµ
100 using the variation of parameters method. The

general solution is

Xµ
100 =

∫ r

2M

(
− 2ċµ000(ṽ)

f(r′)r′W (r′)

)[
P0

(
ρ̌
)
Q0

(
ρ̌′
)
−Q0

(
ρ̌
)
P0

(
ρ̌′
)]
dr′

+ cµ100(ṽ)P0

(
ρ̌
)

+ dµ100(ṽ)Q0

(
ρ̌
) (9.31)

where

W (r) :=
dP`(ρ̌

)
dr

Q`(ρ̌
)
− P`(ρ̌

)dQ`(ρ̌)
dr

=
M

r2f
(9.32)

is the Wronskian. Evaluating the right hand side of Eq. (9.31) we obtain

Xµ
100 = ċµ000(ṽ)

(
2M − ρ∗

)
+ cµ100(ṽ)P0

(
ρ̌
)

+ dµ100(ṽ)Q0

(
ρ̌
)
. (9.33)

Regularity on the horizon demands dµ100(ṽ) = 0. The most general horizon-regular

solution is therefore

Xµ
100 = ċµ000(ṽ)

(
2M − ρ∗

)
+ cµ100(ṽ). (9.34)

We absorb the 2Mċµ000(ṽ) into a redefinition of cµ100(ṽ), leaving

Xµ
100 = −ċµ000(ṽ)ρ∗ + cµ100(ṽ). (9.35)
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For ` ≥ 1 the right hand side of Eq. (9.29) is zero and we are left with the homogeneous

Legendre equation for Xµ
1 . The solution then reads

Xµ
1`m = cµ1`m(ṽ)P`

(
ρ̌
)

+ dµ1`m(ṽ)Q`
(
ρ̌
)
. (9.36)

Once again due to our demand for a smooth solution at the horizon, we set dµ1`m[v] = 0.

For ` = 1 we have the solution

Xµ
11m = cµ11m(ṽ)ρ̌, (9.37)

as X1
µ appears with a pre-factor of ε in Eq. (9.2), this solution is permissible as it does

not lead to any overall negative powers of M in the transformation. However, for all

` > 1 we set c1µ
1`m[v]→ 0. We then have the transformation up to order ε,

T = v−ρ∗+c0
000(ṽ)Y 00+ε

(
c0

100(ṽ)−ċ0
000(ṽ)ρ∗

)
Y 00+ε

1∑
m=−1

c0
11m(ṽ)ρ̌Y 1m+O(ε2), (9.38)

Xi = ρni+ci000(ṽ)Y 00+ε

(
ci100(ṽ)−ċi000(ṽ)ρ∗

)
Y 00+ε

1∑
m=−1

ci11m(ṽ)ρ̌Y 1m+O(ε2). (9.39)

As the monopolar cµ100 piece has no radial dependence, it can be absorbed into a redef-

inition of the monopolar piece from ε0, cµ000. Our final form for the inverse solution up

to ε1 is therefore

T = v − ρ∗ + c0
000(ṽ)Y 00 − εċ0

000(ṽ)ρ∗Y 00 + ε
1∑

m=−1

c0
11m(ṽ)ρ̌Y 1m +O(ε2), (9.40)

Xi = ρni + ci000(ṽ)Y 00 − εċi000(ṽ)ρ∗Y 00 + ε
1∑

m=−1

ci11m(ṽ)ρ̌Y 1m +O(ε2). (9.41)

9.1.4 Solution at O(ε2)

We now move to the ε2 equation. The calculation at this order is more involved as it

is the first to contain the metric perturbation p
(2)
αβ . Returning to Eq. (9.19), we see the

first term is zero due to Eq. (9.17), and so we have

D0X
µ
2 =

1

r2
√

Ω
∂α[r2

√
Ωp(2)αβ∂β(X̄µ

0 +Xµ
0 )]−D1X

µ
1 ,

=
1

r2
√

Ω
∂α(r2

√
Ωp(2)αβ∂βX̄

µ
0 )−D1X

µ
1 ,

=
1

r2
∂a(r

2p(2)aβ∂βX̄
µ
0 ) +DA(p(2)Aβ∂βX̄

µ
0 )−D1X

µ
1 ,

=
1

r2
∂r(r

2p(2)rβ∂βX̄
µ
0 ) +DA(p(2)Aβ∂βX̄

µ
0 )−D1X

µ
1 .

(9.42)
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In moving to the second line we note that ∂βX
µ
0 = 0 since the only non-zero derivative

of Xµ
0 = cµ000(ṽ) is with respect to v and such terms are demoted to order ε3. In moving

to the last line we note that ∂v(r
2p(2)vβ∂βX̄

0
µ) terms will also be demoted to the next

order of ε.

Before examining the T2 and Xi
2 components we state the values of p(2)αβ in the Regge-

Wheeler gauge which will greatly help us simplify the computation at this order. Com-

puting the components of p(2)αβ = gαν(0)g
βρ
(0)p

(2)
νρ − 1

2g
γδ
(0)p

(2)
γδ g

αβ
(0) in (v, r, θ, φ) coordinates

we obtain

pαβ =


r2A2mY

2m −MρA2mY
2m rB2mZ

2m
θ

r
sin(θ)B2mZ

2m
φ

−MρA2mY
2m −MfρA2mY

2m 0 0

rB2mZ
2m
θ 0 0 0

r
sin(θ)B2mZ

2m
φ 0 0 0

 . (9.43)

For the T coordinate Eq. (9.42) thus reads

D0T2 =
1

r2
∂r

[
r2p(2)rv − r2p(2)rr(1 +

2M

r
)

]
Y 00 − 2

r
∂ṽT1 − 2∂r∂ṽT1, (9.44)

where the DA term drops away due to the fact that the only contributing term would

be DA

(
p(2)Ar(1 + 2M

r )
)
, which vanished by virtue of p(2)Ar = 0.

For the Xi coordinates we obtain

D0X
i
2 =

1

r2
∂r(r

2p(2)rr)ni − 2

r
∂ṽX

i
1 − 2∂r∂ṽX

i
1. (9.45)

We expand Eqs. (9.44) and (9.45) in terms of spherical harmonics, noting that

ni =

1∑
m=−1

αimY1m, (9.46)

where the only non-vanishing components are

αX±1 = ∓
√

2π

3
, αY±1 = i

√
2π

3
, αZ0 = 2

√
2π

3
. (9.47)

Once expanded in spherical harmonics, the relations in Appendix B are used to re-write

any derivatives of scalar, vector, or tensor harmonics in terms of scalar, vector, or tensor

harmonics themselves.

Once evaluated, the right-hand sides of Eqs. (9.44) and (9.45) contain products of three

spherical harmonic terms. For these, we use the identity∫
Y
`m
Y `′m′Y `′′m′′dΩ = C`m`′m′`′′m′′ , (9.48)
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where the coupling constant is given by

C`m`′m′`′′m′′ = (−1)m
√

(2`+ 1)(2`′ + 1)(2`′′ + 1)

4π

(
` `′ `′′

0 0 0

)(
` `′ `′′

−m m′ m′′

)
, (9.49)

in which the arrays are the Wigner 3j symbols. The Wigner 3j symbols have a value of

0 except in the case where m′ +m′′ = m and |`− `′| ≤ `′′ ≤ `+ `′.

The final ODEs for the Xµ
2`m coefficients are found to be

D0X
µ
2`m = Sµ2`m (9.50)

where

S0
200 =

2c̈0
000(ṽ)(ρ∗ + r + 2M)

r
, (9.51a)

S0
21m =

−2(ρ+ r)ċ0
11m(ṽ)

Mr
, (9.51b)

S0
22m = −4M3A2m(ṽ)

r2
, (9.51c)

S0
2`m = 0 for ` ≥ 3, (9.51d)

Si200 =
2c̈i000(ṽ)(ρ∗ + r + 2M)

r
, (9.51e)

Si21m = −2Ai1m(ṽ)M4P2(ρ̌) + 2r(ρ+ r)ċi11m(ṽ)

Mr2
, (9.51f)

Si22m = 0, (9.51g)

Si23m = −2Ai3m(ṽ)M3P2(ρ̌)

r2
, (9.51h)

Si2`m = 0 for ` > 3. (9.51i)

(9.51j)

Here we have introduced

Ai1m(ṽ) :=
1∑

m′=−1

C1m
1m′2m′′α

i
m′A2m′′(ṽ), Ai3m(ṽ) :=

3∑
m′=−3

C3m
1m′2m′′α

i
m′A2m′′(ṽ), (9.52)

with m′′ fixed such that m′ +m′′ = m.

We use the method of variation parameters, with a lower integration bound of r = 2M ,

to solve for Xµ
2`m just as we solved for Xµ

1`m in Sec. 9.1.3:

Xµ
2`m =

∫ r

2M

(
Sµ2`m(r′)

f(r′)W (r′)

)[
P`
(
ρ̌
)
Q`
(
ρ̌′
)
−Q`

(
ρ̌
)
P`
(
ρ̌′
)]
dr′

+ cµ2`m(ṽ)P`
(
ρ̌
)

+ dµ2`m(ṽ)Q`
(
ρ̌
)
.
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We find that the first two terms always give a horizon-regular contribution, so horizon

regularity implies dµ2`m = 0 in all cases. We then ensure to restrict the P`
(
r
M − 1

)
terms

that appear such that the overall solution does not blow up for M → 0 at fixed r. The

most general solutions satisfying these conditions are found to be

T200 =c0
200(ṽ)− 4c̈0

000(ṽ)M2Li2(1− r

2M
) (9.53a)

+
c̈0

000(ṽ)

3

(
(3ρ+ 14M)ρ∗ − (ρ2 + 8Mρ+ 25M2)

)
,

T21m =c0
21m(ṽ)ρ̌− ċ0

11m(ṽ)

(
ρ̌ρ∗ + 2(ρ− 2M)

)
, (9.53b)

T22m =c0
22m(ṽ)P2

(
ρ̌
)
−A2m(ṽ)M(ρ2 −M2), (9.53c)

T2`m =0 for ` ≥ 3, (9.53d)

Xi
200 =ci200(ṽ)− 4c̈i000(ṽ)M2Li2(1− r

2M
) (9.53e)

+
c̈i000(ṽ)

3

(
(3ρ+ 14M)ρ∗ − (ρ2 + 8Mρ+ 25M2)

)
,

Xi
21m =ci21m(ṽ)ρ̌− ċi11m(ṽ)

(
ρ̌ρ∗ + 2(ρ− 2M)

)
(9.53f)

+
1

4
Ai1m(ṽ)M(ρ2 −M2)(3ρ+M),

Xi
22m =ci22m(ṽ)P2

(
ρ̌
)
, (9.53g)

Xi
23m =

1

6
Ai3m(ṽ)(ρ2 −M2)(5ρ2 + 2Mρ−M2), (9.53h)

Xi
2`m =0 for ` > 3, (9.53i)

where Li2(1− r
2M ) is a polylogarithm defined by Lin(z) =

∑∞
k=1

zk

kn . With the argument

1− r
2M the polylogarithm is smooth all the way down to r = 2M . At r = 2M all Xµ

2`m

coefficients reduce to being equal to the newly generated cµ2`m(ṽ) term or 0.

On examination of the solutions, we see the monopole piece cµ200(ṽ) can be absorbed

into a further redefinition of cµ000(ṽ), and the dipole piece cµ21m(ṽ)ρ̌ can be absorbed into
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cµ11m(ṽ)ρ̌. Our final solutions are therefore

T200 = −4c̈0
000(ṽ)M2Li2(1− r

2M
) (9.54a)

+
c̈0

000(ṽ)

3

(
(3ρ+ 14M)ρ∗ − (ρ2 + 8Mρ+ 25M2)

)
,

T21m = −ċ0
11m(ṽ)

(
ρ̌ρ∗ + 2(ρ− 2M)

)
, (9.54b)

T22m = c0
22m(ṽ)P2

(
ρ̌
)
−A2m(ṽ)M(ρ2 −M2), (9.54c)

T2`m = 0 for ` ≥ 3, (9.54d)

Xi
200 = −4c̈i000(ṽ)M2Li2(1− r

2M
) (9.54e)

+
c̈i000(ṽ)

3

(
(3ρ+ 14M)ρ∗ − (ρ2 + 8Mρ+ 25M2)

)
,

Xi
21m = −ċi11m(ṽ)

(
ρ̌ρ∗ + 2(ρ− 2M)

)
+

1

4
Ai1m(ṽ)M(ρ2 −M2)(3ρ+M), (9.54f)

Xi
22m = ci22m(ṽ)P2

(
ρ̌
)
, (9.54g)

Xi
23m =

1

6
Ai3m(ṽ)(ρ2 −M2)(5ρ2 + 2Mρ−M2), (9.54h)

Xi
2`m = 0 for ` > 3, (9.54i)

The coefficients Xµ
2lm are then multiplied by their respective spherical harmonics to form

the overall Xµ
2 solution,

Xµ
2 =

3∑
`=0

∑̀
m=−`

Xµ
2`mY

`m. (9.55)

9.1.5 Final Results

The overall transformation can be written in the following form:

T = v − ρ∗ + [f0
00 + εf0

10 + ε2f0
20]Y 00 + [εf0

11 + ε2f0
21]Y 1m + ε2f0

22Y
2m +O(ε3), (9.56)

Xi = [f i00 + εf i10 + ε2f i20]Y 00 + [f i01 + εf i11 + ε2f i21]Y 1m + ε2f i22Y
2m + ε2f i23Y

3m +O(ε3).

(9.57)

We have chosen to group our transformation results by their spherical harmonic struc-

ture. The fµε`-type coefficients are functions of v and ρ, where ρ = r −M .

The fµε`-type coefficients are given in Tables 9.1 and 9.2.
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Table 9.1: f0ε`-type functions featuring in Eqs. (9.56)-(9.57)

f000 = c0000(ṽ) f010 = −ċ0000(ṽ)ρ∗ f020 = −4c̈0000(ṽ)M2Li2(1−
r

2M
) +

c̈0000(ṽ)

3

(
(3ρ+ 14M)ρ∗ − (ρ2 + 8Mρ+ 25M2)

)
,

f011 = c011m(ṽ)ρ̂ f021 = −ċ011m(ṽ)

(
ρ̌ρ∗ + 2(ρ− 2M)

)
,

f022 = c022m(ṽ)P2

(
ρ̌
)
−A2m(ṽ)M(ρ2 −M2)

Table 9.2: f iε`-type functions featuring in Eqs. (9.56)-(9.57)

f i00 = ci000(ṽ) f i10 = −ċi000(ṽ)ρ∗ f i20 = −4c̈i000(ṽ)M2Li2(1−
r

2M
) +

c̈i000(ṽ)

3

(
(3ρ+ 14M)ρ∗ − (ρ2 + 8Mρ+ 25M2)

)

f i01 = αimρ f i11 = ci11m(ṽ)ρ̂ f021 = −ċi11m(ṽ)

(
ρ̌ρ∗ + 2(ρ− 2M)

)
+

1

4
Ai1m(ṽ)M(ρ2 −M2)(3ρ+M)

f i22 = ci22m(ṽ)P2

(
ρ̌
)

f i23 =
1

6
Ai3m(ṽ)(ρ2 −M2)(5ρ2 + 2Mρ−M2)

We now have the transformation from Xµ to xµ up to order ε2. This would allow us

to obtain the harmonic components of the tidally perturbed metric up to ε2. However,

in order to express these components in the harmonic coordinates themselves, we also

require the inverse relation i.e. from xµ to Xµ. We now solve for this inverse transfor-

mation in a perturbative manner.

9.2 Inverse Transformation

9.2.1 Setup

For the rest of this chapter we will temporarily refer to the (v, r, θA) coordinates as wµ

instead of xµ. This is to avoid confusion with standard Cartesian coordinates, naturally

denoted xµ = (t, x, y, z), which will also feature as an intermediary coordinate system

within this calculation.
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The calculation of the inverse transformation first involves writing an expansion for the

wµ coordinates in terms of the Xµ = (T,X, Y, Z) harmonic coordinates,

wβ(Xµ, ε) = wβ0 (Xµ) + εwβ1 (Xµ) + ε2wβ2 (Xµ) +O(ε3). (9.58)

Eq. (9.58) is then substituted back into Eq. (9.2) and solved for, order by order in ε.

This gives

Xµ =Xµ
0 (w0) + εwβ1∂βX

µ
0 (w0) + εXµ

1 (w0)

+ ε2wβ2∂βX
µ
0 (w0) + ε2wβ1∂βX

µ
1 (w0) + ε2

1

2
wβ1w

γ
1∂β∂γX

µ
0 (w0) + ε2Xµ

2 (w0) +O(ε3),

(9.59)

where Xµ
0 now combines both ε0 contributions in Sec. 9.1, X̄µ +Xµ

0 .

A scalar function F can be expanded on the unit-sphere as

F =
∑
`m

f`mY
`m(θA). (9.60)

This can be alternatively written as

F =
∞∑
`=0

f̂Ln
L (9.61)

where L is a multi-index L := i1i2...i`. The tensor coefficients F̂L are then defined by

F̂L =
(2`+ 1)!!

4π`!

∫
Fn̂LdΩ. (9.62)

Going forwards we shall adopt the notation that upon the transformation from spherical

harmonics to symmetric trace-free tensors the cµn`m(ṽ) functions are re-scaled as

∑̀
m=−`

cµn`m(ṽ)Y `m(θA) =: ĉµn`L(ṽ)n̂L. (9.63)

To deal with the unknown ĉµn`L(ṽ) functions that appear in Xµ, we follow an iterative

procedure to re-write them as functions of T̃ := εT .

ĉµn`L(ṽ) = ĉ0µ
n`L(T̃ ) + εĉ1µ

n`L(T̃ ) + ε2ĉ2µ
n`L(T̃ ) +O(ε3), (9.64)

and using Eq. (9.40) we obtain

ĉµn`L(ṽ) =ĉµn`L(T̃ + ερ∗ − εĉ0
000(ṽ)− ε2(−ρ∗ ˙̂c0

000(ṽ) + ĉ0
11i(ṽ)niρ̌) +O(ε3)). (9.65)
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Identifying the O(ε0) and O(ε) pieces, we find

ĉ0µ
n`L(T̃ ) = ĉµn`L(T̃ ), (9.66)

and

ĉ1µ
n`L(T̃ ) = ˙̂cµn`L(T̃ )(ρ∗ − ĉ0

000(T̃ )). (9.67)

Using this we express the εĉ0
000(ṽ) term in Eq. (9.65) as

εĉ0
000(ṽ) = εĉ0

000(T̃ ) + ε2 ˙̂c0
000(T̃ )(ρ∗ − ĉ0

000(T̃ )) +O(ε3). (9.68)

The overall ε2 piece is then given by

ĉ2µ
n`L(T̃ ) =

1

2
¨̂cµn`L(T̃ )(ρ∗ − ĉ0

000(T̃ ))2 − ˙̂cµn`L(T̃ ) ˙̂c0
000(T̃ )(ρ∗ − ĉ0

000(T̃ ))

− ˙̂cµn`L(T̃ )(−ρ∗ ˙̂c0
000(T̃ ) + ĉ0

11i(T̃ )niρ̌)

=
1

2
¨̂cµn`L(T̃ )(ρ∗ − ĉ0

000(T̃ ))2 + ˙̂cµn`L(T̃ ) ˙̂c0
000(T̃ )ĉ0

000(T̃ )

− ˙̂cµn`L(T̃ )ĉ0
11i(T̃ )niρ̌,

(9.69)

where recall ρ̌ := ρ/M .

9.2.2 Inversion at O(ε0)

The order O(ε0) piece of the transformation is given by

Xµ = Xµ
0 (w0). (9.70)

Explicitly:

T = v0 − ρ∗0 + c0
000(T̃ )Y 00, (9.71)

Xi = ρ0n
i
0 + ci000(T̃ )Y 00, (9.72)

where ni0 :=
xi0
r0

, within which xi0 are cartesian coordinates x, y, z and r0 =
√
δijxi0x

j
0.

Recall ρ0 := r0 −M and ρ∗0 = r0 + 2M log
(
r0

2M

)
.

We now need to invert Eqs. (9.71) and (9.72) to obtain xµ0 in terms of Xµ. We begin by

solving Eq. (9.72) for ρ0:

δij(X
i − ĉi000(T̃ ))(Xj − ĉj000(T̃ )) = δijρ0n

i
0ρ0n

j
0,

→ ρ0 =

√
δij(Xi − ĉi000(T̃ ))(Xj − ĉj000(T̃ )).

(9.73)

Rearranging Eq. (9.72) then gives

xi0 = r0n
i
0 =

M + ρ0(X)

ρ0(X)

(
Xi − ĉi000(T̃ )

)
. (9.74)
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Substituting r0 into Eq. (9.71) finally gives us

v0 = T + ρ∗0(X)− ĉ0
000(T̃ ). (9.75)

9.2.3 Inversion at O(ε1)

At O(ε) we need to solve

0 = wβ1∂βX
µ
0 (w0) +Xµ

1 (w0) +Xµ
0 (w0)|ε (9.76)

for wβ1 in terms of Xµ. The last term in Eq. (9.76) comes from the expansion of cµn`m(ṽ)

terms within Xµ
0 in terms of T̃ . Recalling Eq. (9.65) and

Xµ
0 = X̄µ + ĉµ000(ṽ), (9.77)

we have:

Xµ
0 |ε(w0) = ˙̂cµ000(T̃ )(ρ∗0 − ĉ0

000(T̃ )). (9.78)

Recalling also Eqs. (9.40) and (9.41) we have

Xµ
1 = −ċµ000(T̃ )ρ∗0Y

00 +
1∑

m=−1

cµ11m(T̃ )ρ̌0Y
1m. (9.79)

Here we transform from spherical harmonics to symmetric trace-free tensors which gives

Xµ
1 = − ˙̂cµ000(T̃ )ρ∗0 + ĉµ11j(T̃ )nj ρ̌0. (9.80)

Substituting into Eq. (9.76), we obtain

0 = wβ1∂βX
µ
0 (w0)− ˙̂cµ000(T̃ )ĉ0

000(T̃ ) + ĉµ11j(T̃ )nj ρ̌0. (9.81)

Recall our goal is to solve this for wβ1 . We hereafter omit the argument (T̃ ) of the ĉµn`L
functions for brevity. Using

∂vT0 = 1, ∂kT0 = −(1 +
2M

r0
)n0k, (9.82)

∂vX
i
0 = 0, ∂kX

i
0 = δik −

M

r0
(δik − ni0n0k), (9.83)

where we have used ∂kr = nk, Eq. (9.81) becomes

0 = v1 − wk1n0k(1 +
2M

r0
)− ˙̂c0

000ĉ
0
000 + ĉ0

11in
i
0ρ̌0, (9.84)
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and

0 = wk1

(
δik −M

pik
r0

)
− ˙̂ci000ĉ

0
000 + ĉi11jn

j
0ρ̌0, (9.85)

where pik = δik − ni0n0k is a projection operator. We now introduce the notation Cr :=

Cin0i for any vector C. With this, the equations take the form

0 = v1 − wr1(1 +
2M

r0
)− ˙̂c0

000ĉ
0
000 + ĉ0

11rρ̌0, (9.86)

0 = wk1

(
δik −M

pik
r0

)
− ˙̂ci000ĉ

0
000 + ĉi11rρ̌0. (9.87)

We start by solving Eq. (9.87) for wk1 . Here we notice that we can solve for the projected

spatial components of wk1 with the basis (ni0,Ω
i
A), where Ωi

A =
∂ni0
∂θA

. Contracting with

n0i we obtain the radial component

r1 := wi1n0i = ˙̂cr000ĉ
0
000 − ĉr11rρ̌0. (9.88)

Contracting with ΩA
i we obtain the angular components

θA1 := wi1ΩA
i =

r0

ρ0

[
˙̂cA000ĉ

0
000 − ĉA11rρ̌0

]
, (9.89)

where we have introduced the notation CA := CiΩA
i for any vector C. From this we can

form the Cartesian xk1 coordinate

xk1 = r1n
k
0 + θA1 Ωk

A. (9.90)

Finally, solving Eq. (9.86) for v1, we obtain

v1 = r1

(
1 +

2M

r0

)
+ ˙̂c0

000ĉ
0
000 − ĉ0

11rρ̌0, (9.91)

where r1 is given by Eq. (9.88).

9.2.4 Inversion at O(ε2)

Recalling Eq. (9.59), at O(ε2) we need to solve

0 = wβ2∂βX
µ
0 (w0) + wβ1∂βX

µ
1 (w0) +

1

2
wβ1w

γ
1∂β∂γX

µ
0 (w0)

+Xµ
2 (w0) +Xµ

1 (w0)|ε +Xµ
0 (w0)|ε2 + wβ1∂βX

µ
0 (w0)|ε

(9.92)

for wβ2 in terms of Xµ.
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The last three terms in Eq. (9.92) come from the expansion of cµn`m(ṽ) within Xµ
0 and

Xµ
1 , in terms of T̃ . Recalling Eq. (9.65) and

Xµ
0 = X̄µ + ĉµ000, (9.93)

Xµ
1 = − ˙̂cµ000ρ

∗
0 + ĉµ11rρ̌0, (9.94)

we have

wβ1∂βX
µ
0 (w0)|ε = v1

˙̂cµ000, (9.95)

Xµ
0 |ε2 =

1

2
c̈µ000(ρ∗0 − c0

000)2 + ċµ000ċ
0
000c

0
000 − ċ

µ
000c

0
11in

iρ̌0, (9.96)

Xµ
1 |ε = −¨̂cµ000ρ

∗
0

(
ρ∗0 − ĉ0

000

)
+ ˙̂cµ11in

iρ̌0

(
ρ∗0 − ĉ0

000

)
. (9.97)

From Sec. 9.1.4 we have

T2 =

[
− 4c̈0

000M
2Li2(1− r0

2M
) +

c̈0
000

3

(
(3ρ0 + 14M)ρ∗0 − (ρ2

0 + 8Mρ0 + 25M2)

)]
Y00

+
1∑

m=−1

[
− ċ0

11m

(
ρ̌0ρ
∗
0 + 2(ρ0 − 2M)

)]
Y1m +

2∑
m=−2

[
c0

22mP2

(
ρ̌0

)
−A2mM(ρ2 −M2)

]
Y2m,

(9.98)

Xi
2 =

[
− 4c̈i000M

2Li2(1− r0

2M
) +

c̈i000

3

(
(3ρ0 + 14M)ρ∗0 − (ρ2

0 + 8Mρ0 + 25M2)

)]
Y00

+
1∑

m=−1

[
− ċi11m

(
ρ̂0ρ
∗
0 + 2(ρ0 − 2M)

)
+

1

4
Ai1mM(ρ2

0 −M2)(3ρ0 +M)

]
Y1m

+

2∑
m=−2

[
ci22mP2

(
ρ̌0

)]
Y2m +

3∑
m=−3

[
1

6
Ai3m(ρ2

0 −M2)(5ρ2 + 2Mρ−M2)

]
Y3m.

(9.99)

Performing the transformation to symmetric trace-free tensors we obtain

T2 =− 4¨̂c0
000M

2Li2(1− r0

2M
) +

¨̂c0
000

3

(
(3ρ0 + 14M)ρ∗0 − (ρ2

0 + 8Mρ0 + 25M2)

)
− ˙̂c0

11in
i
0

(
ρ̌0ρ
∗
0 + 2(ρ0 − 2M)

)
+ ĉ0

22ijn
ij
0 P2

(
ρ̌0

)
− Â2ijn

ij
0 M(ρ2 −M2),

(9.100)

Xi
2 =− 4¨̂ci000M

2Li2(1− r0

2M
) +

¨̂ci000

3

(
(3ρ0 + 14M)ρ∗0 − (ρ2

0 + 8Mρ0 + 25M2)

)
− ˙̂ci11jn

j
0

(
ρ̌0ρ
∗
0 + 2(ρ0 − 2M)

)
+

1

4
Âi1jn

j
0M(ρ2

0 −M2)(3ρ0 +M) + ĉi22jkn
jk
0 P2

(
ρ̌0

)
+

1

6
Âi3jkln

jkl
0 (ρ2

0 −M2)(5ρ2
0 + 2Mρ0 −M2),

(9.101)
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where an ni0 with multiple indices denotes multiplication of terms, nij0 := ni0n
j
0 and

where Âi1j , Â
i
3jkl are by definition symmetric trace-free tensors. They are given by Âi1j =

3
4π

∫ ∑
Ai1mY

1mnjdΩ and Âi3jkl = 35
8π

∫ ∑
Ai3mY

3mn̂jkldΩ. Again we are now dropping

the (T̃ ) arguments of the ĉ, Â functions everywhere for brevity.

To evaluate Eq. (9.92) we require the derivatives

∂v∂vT0 = 0, ∂v∂vX
i
0 = 0, (9.102)

∂v∂kT0 = 0, ∂v∂kX
i
0 = 0, (9.103)

∂j∂kT0 = ∂j
[
(−1− 2M

r0
)ni0δik

]
= −

δkj
r0

+
n0kj

r0
+

4M

r2
0

n0jk −
2M

r2
0

δkj , (9.104)

∂j∂kX
i
0 = ∂j

[
δik −M

pik
r0

]
=
M

r2
0

n0jδ
i
k −

3M

r2
0

ni0jk +
M

r2
0

n0kδ
i
j +

M

r2
0

ni0δkj , (9.105)

∂vT1 = 0, ∂vX
i
1 = 0, (9.106)

∂kT1 = ∂k
[
ĉ0

11in
i
0

( r0

M
− 1
)]

= ĉ0
11i

( δik
M
−
δik
r0

+
ni0k
r0

)
, (9.107)

∂kX
i
1 = ∂k

[
ĉi11jn

j
0

( r0

M
− 1
)]

= ĉi11j

( δjk
M
−
δjk
r0

+
nj0k
r0

)
. (9.108)

We now substitute everything into Eq. (9.92) and perform any possible cancellations.

Due to the appearance of wk2

(
δik −

M
r0

(δik − ni0n0k)

)
in the equations, we are again

able to solve for the radial and angular projections of wk2 by contracting with n0k and

ΩA
k . We then substitute in the values for wk1n0k, w

k
1ΩA

k given by Eqs. (9.88) and (9.89)

respectively.
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Finally, we collects over ni0, and in turn group their coefficients into powers of ρ0 and

ρ∗0. The results are:

r2 =− M ˙̂ci000
˙̂ci000(ĉ0

000)2

2ρ2
0

+ ni0

[ ˙̂cj000ĉ
0
000ĉ

i
11j

M
− 2 ˙̂ci000ĉ

0
000

˙̂c0
000 +

1

6
¨̂ci000

(
50M2 − 3(ĉ0

000)2

+ 24M2Li2(
M − ρ

2M
)

)
−

˙̂cj000ĉ
i
11j ĉ

0
000

ρ0
+ ρ0

8M ¨̂ci000

3
+ ρ2

0

¨̂ci000

3
− ρ∗0

14

3
M ¨̂ci000 + ρ∗20

1

2
¨̂ci000 − ρ0ρ

∗
0
¨̂ci000

]
+ n0ij

[
− M3

4
Âij1 −

1

2M
ĉj11k ĉ

ki
11 − 4M ˙̂cij11 +

M2 ˙̂ci000
˙̂cj000(ĉ0

000)2

2ρ2
0(M + ρ0)

+
M ˙̂ci000

˙̂cj000(ĉ0
000)2

2ρ0(M + ρ0)

− 3M ˙̂ci000
˙̂cj000ĉ

0
000

M + ρ0
−

˙̂ci000
˙̂cj000ĉ

0
000ρ0

M + ρ0
+ ρ0

(
− 1

2
M2Âij1 +

1

M2
ĉj11k ĉ

ik
11 + 2 ˙̂cij11 +

˙̂cij11ĉ
0
000

M
+

2 ˙̂ci000ĉ
0j
11

M

)
+ ρ2

0

3

4
MÂij1

]
+ n0ijk

[
Mĉijk22

2(M + ρ0)
−

˙̂ci000ĉ
jk
11ĉ

0
000

M + ρ0
− M ˙̂ci000ĉ

jk
11ĉ

0
000

ρ0(M + ρ0)
+

3 ˙̂ci000ĉ
jk
11ρ0

M + ρ0

+
ĉijk22 ρ0

2(M + ρ0)
+

˙̂ci000ĉ
jk
11ρ

2
0

M(M + ρ0)
− 3ĉijk22 ρ

2
0

2M(M + ρ0)
− 3ĉijk22 ρ

3
0

2M2(M + ρ0)

]
n0ijkp

[
M4Âijkp3 + 3ĉij11ĉ

kp
11

6M
− 1

2
M2Âijkp3 ρ0 −

1

2
MÂijkp3 ρ2

0 +
5

6
Âijkp3 ρ3

0

]
,

(9.109)

θA2 =

[(
− 1

2
¨̂ci000(ĉ0

000)2 − ¨̂ci000
˙̂c0
000ĉ

0
000 +M2¨̂ci000

(
11 + 4Li2(2,

M − ρ0

2M
)
))

ΩA
i −

˙̂ci000ĉ
j
11iĉ

0
000ΩA

j

M

+
1

ρ0

(
1

6
M ¨̂ci000(50M2 − 3(ĉ0

000)2 + 24M2Li2(
M − ρ0

2M
)− 28Mρ∗0 + 3ρ∗20

)
ΩA
i − ˙̂ci000ĉ

0
000(2M ˙̂c0

000ΩA
i

+ ĉj11iΩ
A
j )

)
+ ρ0(3M ¨̂ci000ΩA

i − ¨̂ci000ρ
∗
0ΩA

i ) + ρ2
0

1

3
¨̂ci000ΩA

i − ρ∗0
17M

3
c̈i000ΩA

i + ρ∗20

1

2
¨̂ci000ΩA

i

]
+ n0j

[
1

4

(
− 3M2Âaj1 + 4 ˙̂caj11(−2M + ˙̂c0

000) + 4 ˙̂ca000(− ˙̂cj000ĉ
0
000 + ĉ0j

11 + ˙̂c0j
11)

)
ΩA
a

+
ĉaj11ĉ

b
11aΩ

A
b

M
+

1

ρ2
0

M ˙̂ca000
˙̂cj000(ĉ0

000)2ΩA
a −

1

ρ0

1

4
M(M3Âaj1 + 12 ˙̂cj000ĉ

0
000

˙̂ca000 + 16M ˙̂caj11)ΩA
a

+ ρ0
1

4M2

(
M
(
M3Âaj1 + 4 ˙̂caj11(2M + ˙̂c0

000) + 8 ˙̂ca000ĉ
0j
11

)
ΩA
a + 4ĉaj11ĉ

b
11aΩ

A
b

)
+

3

4
MÂaj1 ρ

2
0ΩA

a

]
+ n0jk

[
1

2
(6¨̂ci000ĉ

jk
11 + ĉijk22 )ΩA

i +
1

ρ0

1

2
(2 ˙̂cj000ĉ

ik
11 + 2 ˙̂ci000ĉ

0
000ĉ

jk
11 +Mĉijk22 )ΩA

i

+ ρ0
1

2M
(2 ˙̂ca000ĉ

jk
11 − 3ĉajk22 )ΩA

a − ρ2
0

3

2M2
ĉijk22 ΩA

i

]
+ n0jkp

[
− (M4Âijkp3 + 3ĉij11ĉ

kp
11)ΩA

i

3M

+
1

ρ0

M4

6
Âijkp3 ΩA

i − ρ0M
2Âijkp3 ΩA

i + ρ2
0

M

3
Âijkp3 ΩA

i + ρ3
0

5

6
Âijkp3 ΩA

i

]
,

(9.110)
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v2 =

[
1

6

(
50M2¨̂c0

000 − 3ĉ0
000(4( ˙̂c0

000)2 + ĉ0
000

¨̂c0
000)− 6 ˙̂ci000ĉ

0
11iĉ

0
000

M
+ 24M2Li2(

M − ρ0

2M
)

+
3 ˙̂ci000

˙̂ci000(ĉ0
000)2(3M + ρ0)

ρ2
0

+ ρ016M ¨̂c0
000 + ρ2

02¨̂c0
000

)
− ρ∗0

1

3
¨̂c0
000(14M + 3ρ0) + ρ∗20

1

2
¨̂c0
000

]
+ n0i

[
3M + ρ0

M + ρ0
yi2 −

˙̂cj000ĉ
i
11j

M
− 4M ˙̂c0i

11 −
1

ρ0
3 ˙̂cj000ĉ

i
11j −

3M + ρ0

M + ρ0

˙̂ci000ĉ
0
000

˙̂c0
000

+ ρ0
1

M2
(2M ˙̂c0

000ĉ
0i
11 + ĉij11ĉ

0
11j + 2M2 ˙̂c0i

11 + 2M ˙̂c0
000

˙̂c0i
11)

]
+ n0ij

[
−M3Âij2 +

3ĉj11k ĉ
ki
11

2M

− ĉij11
˙̂c0
000ρ0

M
+

(ĉj11k ĉ
ki
11 + 2Mĉij11

˙̂c0
000)ρ0

2M2
+M2Âij2 ρ

2
0 −

7M ˙̂ci000
˙̂cj000(ĉ0

000)2

2(M + ρ0)2

+
M2ĉ0ij

22

2(M + ρ0)2
− 3M2 ˙̂ci000

˙̂cj000(ĉ0
000)2

2ρ2
0(M + ρ0)2

− 7M2 ˙̂ci000
˙̂cj000(ĉ0

000)2

2ρ0(M + ρ0)2
− ρ0

˙̂ci000
˙̂cj000(ĉ0

000)2

2(M + ρ0)2
+

3Mĉij11
˙̂c0
000ρ0

(M + ρ0)2

+
Mĉ0ij

22 ρ0

(M + ρ0)2
+

4ĉij11
˙̂c0
000ρ

2
0

(M + ρ0)2
− ĉ0ij

22 ρ
2
0

(M + ρ0)2
+

ĉij11
˙̂c0
000ρ

3
0

M(M + ρ0)2
− 3ĉ0ij

22 ρ
2
0

M(M + ρ0)2
− 3ĉ0ij

22 ρ
4
0

2M2(M + ρ0)2

]
+ n0ijk

[
7M ˙̂ci000ĉ

0
000ĉ

jk
11

(M + ρ0)2
+

3M2 ˙̂ci000ĉ
0
000ĉ

jk
11

ρ0(M + ρ0)2
+ ρ0

7 ˙̂ci000ĉ
0
000ĉ

jk
11

(M + ρ0)2
+ ρ2

0

˙̂ci000ĉ
0
000ĉ

jk
11

M(M + ρ0)2

]
+ n0ijkp

[
− 3Mĉij11ĉ

kp
11

2(M + ρ0)2
− ρ0

7ĉij11ĉ
kp
11

2(M + ρ0)2
− ρ2

0

7Mĉij11ĉ
kp
11

2M(M + ρ0)2
− ρ3

0

ĉij11ĉ
kp
11

2M2(M + ρ0)2

]
.

(9.111)

9.2.5 Final Results

The overall inverse transformation can be written in the following form:

v = ev0+εev1+ε2ev2+
[
εeiv1+ε2eiv2

]
n0i+

[
εeijv1+ε2eijv2

]
n0ij+ε

2eijkv2 n0ijk+ε
2eijkpv2 n0ijkp+O(ε3),

(9.112)

r = ε2er2 +
[
eir0 + εeir1 + ε2eir2

]
n0i+

[
εeijr1 + ε2eijr2

]
n0ij + ε2eijkr2 n0ijk+ ε2eijkpr2 n0ijkp+O(ε3),

(9.113)

θA = eA0 +εeA1 +ε2eA2 +
[
εeAj1 +ε2eAj2

]
n0j+ε

2eAjk2 n0jk+ε2eAjkp2 n0jkp+ε
2eAijkp2 n0ijkp+O(ε3).

(9.114)

We have chosen to group our inverse transformation results by their multipolar structure

as (as described in Sec. 7.4) we will eventually be matching the analytical metric mode-

by-mode to the NR metric. The e-type coefficients are functions of T , ρ0 and ρ∗0; they

are given in explicit form in Tables 9.3 - 9.5.
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Table 9.3: e0, e1-type functions featuring in Eqs. (9.112)-(9.114)

ev0 = T + ρ∗0 − ĉ0000, ev1 = ˙̂c0000ĉ
0
000, eiv1 = ˙̂ci000ĉ

0
000

(
1 +

2M

r0

)
− ĉ0i11ρ̌0, eijv1 = −ĉij11ρ̌0

(
1 +

2M

r0

)

eir0 =
M + ρ0

ρ0

(
Xi − ĉi000

)
, eir1 = ˙̂ci000ĉ

0
000, eijr1 = −ĉij11ρ̌0

eA0 =
M + ρ0

ρ0

(
Xi − ĉi000

)
ΩAi , eA1 =

M + ρ0

ρ0
˙̂ci000ĉ

0
000ΩAi , eAj1 =

M + ρ0

ρ0
ĉij11ρ̌0ΩAi
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Table 9.4: e2-type functions featuring in Eqs. (9.112)-(9.114)

ev2 =
1

6

(
50M2 ¨̂c0000 − 3ĉ0000(4( ˙̂c0000)2 + ĉ0000

¨̂c0000)−
6 ˙̂ci000ĉ

0
11iĉ

0
000

M
+ 24M2Li2(

M − ρ0
2M

)

+
3 ˙̂ci000

˙̂ci000(ĉ0000)2(3M + ρ0)

ρ20
+ ρ016M ¨̂c0000 + ρ202¨̂c0000

)
− ρ∗0

1

3
¨̂c0000(14M + 3ρ0) + ρ∗20

1

2
¨̂c0000

eiv2 =
3M + ρ0

M + ρ0
xi2 −

˙̂cj000ĉ
i
11j

M
− 4M ˙̂c0i11 −

1

ρ0
3 ˙̂cj000ĉ

i
11j −

3M + ρ0

M + ρ0
˙̂ci000ĉ

0
000

˙̂c0000

+ ρ0
1

M2
(2M ˙̂c0000ĉ

0i
11 + ĉij11ĉ

0
11j + 2M2 ˙̂c0i11 + 2M ˙̂c0000

˙̂c0i11)

eijv2 =−M3Âij2 +
3ĉj11k ĉ

ki
11

2M
−
ĉij11

˙̂c0000ρ0

M
+

(ĉj11k ĉ
ki
11 + 2Mĉij11

˙̂c0000)ρ0

2M2
+M2Âij2 ρ

2
0 −

7M ˙̂ci000
˙̂cj000(ĉ0000)2

2(M + ρ0)2

+
M2ĉ0ij22

2(M + ρ0)2
−

3M2 ˙̂ci000
˙̂cj000(ĉ0000)2

2ρ20(M + ρ0)2
−

7M2 ˙̂ci000
˙̂cj000(ĉ0000)2

2ρ0(M + ρ0)2
−
ρ0 ˙̂ci000

˙̂cj000(ĉ0000)2

2(M + ρ0)2
+

3Mĉij11
˙̂c0000ρ0

(M + ρ0)2

+
Mĉ0ij22 ρ0

(M + ρ0)2
+

4ĉij11
˙̂c0000ρ

2
0

(M + ρ0)2
−

ĉ0ij22 ρ
2
0

(M + ρ0)2
+

ĉij11
˙̂c0000ρ

3
0

M(M + ρ0)2
−

3ĉ0ij22 ρ
2
0

M(M + ρ0)2
−

3ĉ0ij22 ρ
4
0

2M2(M + ρ0)2

eijkv2 =
7M ˙̂ci000ĉ

0
000ĉ

jk
11

(M + ρ0)2
+

3M2 ˙̂ci000ĉ
0
000ĉ

jk
11

ρ0(M + ρ0)2
+ ρ0

7 ˙̂ci000ĉ
0
000ĉ

jk
11

(M + ρ0)2
+ ρ20

˙̂ci000ĉ
0
000ĉ

jk
11

M(M + ρ0)2

eijkpv2 =−
3Mĉij11ĉ

kp
11

2(M + ρ0)2
− ρ0

7ĉij11ĉ
kp
11

2(M + ρ0)2
− ρ20

7Mĉij11ĉ
kp
11

2M(M + ρ0)2
− ρ30

ĉij11ĉ
kp
11

2M2(M + ρ0)2

er2 = −M
˙̂ci000

˙̂ci000(ĉ
0
000)

2

2ρ20

eir2 =
˙̂cj000ĉ

0
000ĉ

i
11j

M
− 2 ˙̂ci000ĉ

0
000

˙̂c0000 +
1

6
¨̂ci000

(
50M2 − 3(ĉ0000)2

+ 24M2Li2(
M − ρ

2M
)

)
−

˙̂cj000ĉ
i
11j ĉ

0
000

ρ0
+ ρ0

8M ¨̂ci000
3

+ ρ20
¨̂ci000

3
− ρ∗0

14

3
M ¨̂ci000 + ρ∗20

1

2
¨̂ci000 − ρ0ρ∗0 ¨̂ci000

eijr2 =−
M3

4
Âij1 −

1

2M
ĉj11k ĉ

ki
11 − 4M ˙̂cij11 +

M2 ˙̂ci000
˙̂cj000(ĉ0000)2

2ρ20(M + ρ0)
+
M ˙̂ci000

˙̂cj000(ĉ0000)2

2ρ0(M + ρ0)

−
3M ˙̂ci000

˙̂cj000ĉ
0
000

M + ρ0
−

˙̂ci000
˙̂cj000ĉ

0
000ρ0

M + ρ0
+ ρ0

(
−

1

2
M2Âij1 +

1

M2
ĉj11aĉ

ia
11 + 2 ˙̂cij11 +

˙̂cij11ĉ
0
000

M
+

2 ˙̂ci000ĉ
0j
11

M

)
+ ρ20

3

4
MÂ1ij

eijkr2 =
Mĉijk22

2(M + ρ0)
−

˙̂ci000ĉ
jk
11 ĉ

0
000

M + ρ0
−
M ˙̂ci000ĉ

jk
11 ĉ

0
000

ρ0(M + ρ0)
+

3 ˙̂ci000ĉ
jk
11ρ0

M + ρ0

+
ĉijk22 ρ0

2(M + ρ0)
+

˙̂ci000ĉ
jk
11ρ

2
0

M(M + ρ0)
−

3ĉijk22 ρ
2
0

2M(M + ρ0)
−

3ĉijk22 ρ
3
0

2M2(M + ρ0)

eijkpr2 =
M4Âijkp3 + 3ĉij11ĉ

kp
11

6M
−

1

2
M2Âijkp3 ρ0 −

1

2
MÂijkp3 ρ20 +

5

6
Âijkp3 ρ30
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Table 9.5: eA2 -type functions featuring in Eqs. (9.112)-(9.114)

eA2 =

(
−

1

2
¨̂ci000(ĉ0000)2 − ¨̂ci000

˙̂c0000ĉ
0
000 +M2 ¨̂ci000

(
11 + 4Li2(2,

M − ρ0
2M

)
))

ΩAi −
˙̂ci000ĉ

j
11iĉ

0
000ΩAj

M

+
1

ρ0

(
1

6
M ¨̂ci000(50M2 − 3(ĉ0000)2 + 24M2Li2(

M − ρ0
2M

)− 28Mρ∗0 + 3ρ∗20

)
ΩAi − ˙̂ci000ĉ

0
000(2M ˙̂c0000ΩAi

+ ĉj11iΩ
A
j )

)
+ ρ0(3M ¨̂ci000ΩAi − ¨̂ci000ρ

∗
0ΩAi ) + ρ20

1

3
¨̂ci000ΩAi − ρ∗0

17M

3
c̈i000ΩAi + ρ∗20

1

2
¨̂ci000ΩAi

eAj2 =
1

4

(
− 3M2Âaj1 + 4 ˙̂caj11(−2M + ˙̂c0000) + 4 ˙̂ca000(− ˙̂cj000ĉ

0
000 + ĉ0j11 + ˙̂c0j11)

)
ΩAa

+
ĉaj11 ĉ

b
11aΩAb
M

+
1

ρ20
M ˙̂ca000

˙̂cj000(ĉ0000)2ΩAa −
1

ρ0

1

4
M(M3Â1aj + 12 ˙̂cj000ĉ

0
000

˙̂ca000 + 16M ˙̂caj11)ΩAa

+ ρ0
1

4M2

(
M

(
M3Âaj1 + 4 ˙̂caj11(2M + ˙̂c0000) + 8 ˙̂ca000ĉ

0j
11

)
ΩAa + 4ĉaj11 ĉ

b
11aΩAb

)
+

3

4
MÂaj1 ρ20ΩAa

eAjk2 =
1

2
(6¨̂ci000ĉ

jk
11 + ĉijk22 )ΩAi +

1

ρ0

1

2
(2 ˙̂cj000ĉ

ik
11 + 2 ˙̂ci000ĉ

0
000ĉ

jk
11 +Mĉijk22 )ΩAi

+ ρ0
1

2M
(2 ˙̂ca000ĉ

jk
11 − 3ĉajk22 )ΩAa − ρ20

3

2M2
ĉijk22 ΩAi

eAjkp2 =−
(M4Âijkp3 + 3ĉij11ĉ

kp
11 )ΩAi

3M
+

1

ρ0

M4

6
Âijkp3 ΩAi − ρ0M2Âijkp3 ΩAi + ρ20

M

3
Âijkp3 ΩAi + ρ30

5

6
Âijkp3 ΩAi

9.3 Transformed Metric

Now that we have the coordinate transformation to harmonic coordinates, our final task

is to express the metric itself in these coordinates.

9.3.1 Preliminaries

We will perform an intermediary transformation to Cartesian coordinates as this will

allow us to move from the arbitrary angles θA that appear in the metric to a fully specified

spatial coordinate basis (x, y, z). Such a transformation is effected by xa = rna(θA),

where θA = (θ, φ) [109]. The Jacobian matrix is given by

∂xa

∂r
= na,

∂xa

∂θA
= rΩa

A, (9.115)

where Ωa
A := ∂na/∂θA. The inverse of the Jacobian matrix is

∂r

∂xa
= na,

∂θA

∂xa
=

1

r
ΩA
a , (9.116)
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where ΩA
a := ΩABδabΩ

b
B = diag[1, sin2 θ].

We now return to the original Regge-Wheeler gauge metric as presented in Eqs. (8.71)-

(8.76). First we re-write the two terms that involve spherical harmonics in terms of

symmetric trace-free tensors. Straightforwardly,∑
m

Am(ṽ)Y 2m = Â2ij(ṽ)nij . (9.117)

The Z2m
A term is a little more involved:∑

m

Bm(ṽ)Z2m
A =

∑
m

Bm(ṽ)DBY
2mεBA

= DB

∑
m

Y 2mBm(ṽ)εBA

= DBB̂2ij(ṽ)nijεBA

= 2B̂2ij(ṽ)niΩj
Bε

B
A ,

(9.118)

where in the last line we have used ∂xa

∂θA
= rΩa

A.

The covariant components of the tidally perturbed metric are then

gvv= − f + ε2
1

2
r2f2Â2ij(ṽ)nij +O(ε3), (9.119)

gvr = 1− ε2 1

2
r2fÂ2ij(ṽ)nij +O(ε3), (9.120)

grr = ε2r2Â2ij(ṽ)nij +O(ε3), (9.121)

gvA = −ε22r3fB̂2ij(ṽ)niΩj
Bε

B
A +O(ε3), (9.122)

grA = ε22r3B̂2ij(ṽ)niΩj
Bε

B
A +O(ε3), (9.123)

gAB = r2δijΩ
i
AΩj

B + ε2
1

2
r2(−2M2 + r2)δijΩ

i
AΩj

BÂ2kp(ṽ)nkp +O(ε3), (9.124)

where r =
√
δijxixj .

We chose to compute the contravariant components of the metric in harmonic coordi-

nates. This is preferable theoretically, as it avoids derivative of the inverse transforma-

tion. The contravariant metric is also the preferable form of the metric in NR, as the

information readily available in the numerical domain is that of the auxiliary harmonic

coordinates, yµ, as functions of the generalised harmonic coordinates, zµ.
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From the calculation in Sec. 9.1.5, we have

T =v − r − 2M ln
( r

2M

)
+ ĉ0

000 + ε

(
− ˙̂c0

000

(
2M ln

( r

2M

)
+ r
)

+ ĉ0
11ini(−1 +

r

2M
)

)
ε2
(

1

3
¨̂c0
000(−18M2 − 12M2Li2(1− r

2M
) + 5Mr + 2r2 + 2M ln

( r

2M

)
(11M + 3r))

+Mnij(2M − r)rÂ2ij +
1

M
˙̂c0
11in

i(6M2 + 2M ln
( r

2M

)
(M − r)−Mr − r2)

+
1

2M2
ĉ0

22ijn
ij(2M2 − 6Mr + 3r2)

)
+O(ε3),

(9.125)

Xi =(r −M)ni + ĉi000 + ε

(
− ˙̂ci000

(
2M ln

( r

2M

)
+ r
)

+ ĉi11jn
j(−1 +

r

2M
)

)
1

6
ε2
(
− 24M2¨̂ci000Li2(1− r

2M
) + 2¨̂ci000(−18M2 + 5Mr + 2r2 + 2M ln

( r

2M

)
(11M + 3r))

+
6

M
nj
(

˙̂ci11j(6M
2 + 2M ln

( r

2M

)
(M − r)−Mr − r2) +M2r(4M2 − 8Mr + 3r2)Âi1j

)
+

3

M2
ĉi22jkn

jk(2M2 − 6Mr + 3r2)− Âi3jkpnjkp(2M − r)r(2M2 − 8Mr + 5r2)

)
+O(ε3).

(9.126)

Here we have chosen to write the forward transformation in terms of r instead of ρ, as

we will be taking derivatives with respect to wα = (v, r, θA). For brevity of expression

we have dropped the ṽ time dependence of the unknown ĉ functions and the Â, B̂ tidal

moments.

From the outset of this calculation we now assume we can set ĉµ000 along with its deriva-

tives to zero. For µ = i, the spatial pieces, this is entirely acceptable as it simply

represents a shift of the harmonic coordinate origin to be in-line with the center of mass

of the binary system. For µ = 0, the temporal piece, this is less clear. At the ini-

tial time, this alignment of coordinate times is perfectly acceptable. However, whether

we can consistently impose ĉ0
000 = 0 throughout the evolution needs to be checked in

later analysis. For now we assume it is a consistent simplification and proceed with our

calculation of the metric.

We first compute and store the derivatives of Xµ with respect to wα. From the metric

in components gwαwβ we compute the inverse metric gw
αwβ . We can then form

gX
µXν

=
∂Xµ

∂wα
∂Xν

∂wβ
gw

αwβ . (9.127)

At this stage we have obtained the harmonic components of the metric. These have

not yet been expressed in harmonic coordinates themselves; for this we will require the

inverse transformation.
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Next we make use of the useful identities

ΩAiΩB
i = ΩAB, (9.128)

ΩAiΩj
A = δij − ninj , (9.129)

ΩAiεABΩBj = nkεijk , (9.130)

to remove any Ω dependence from the metric components. The results at this stage are

now in terms of ni, ∂n
i

∂v , r, ĉ
µ
n`m(ṽ), Â2ij(ṽ) and B̂2ij(ṽ). As a last step of this stage, we

expand all functions of ṽ in terms of ε and T̃ using the relations in Eq. (9.66), (9.67)

and (9.69). We then perform a series re-expansion in ε, with truncation at ε2 to remove

higher-order terms generated from multiplicative expansions. The results at this stage

are now in terms of ni, ∂n
i

∂v , r, ĉ
µ
n`L(T̃ ), Â2ij(T̃ ), B̂2ij(T̃ ).

Next, ni, ∂n
i

∂v , and r must be written in terms of harmonic coordinates. To do this

appropriate to O(ε2) we write ni = ni0 + εni1 + ε2ni2, where ni =
xi0+εxi1+ε2xi2
r0+εr1+ε2r2

. This gives

us

ni0 =
xi0
r0
, ni1 =

−r1x
i
0 + r0x

i
1

r2
0

=
θA1 Ωi

A

r0
,

ni2 =
r2

1x
i
0 − r0r2x

i
0 − r0r1x

i
1 + r2

0x
i
2

r3
0

=
−r1θA1 Ωi

A + r0θ
A
2 Ωi

A

r2
0

,

(9.131)

where we have used xin = rnn
i
0 +θAnΩi

A to simplify the expressions. We again make use of

ΩAiΩj
A = δij−ninj to remove Ωαβ dependence. Equivalently, we write r = r0+εr1+ε2r2.

We now use the results for the inverse transformation in Sec. 9.2 for r0, r1, r2, θ
A
1 , θ

A
2 ,

with ĉµ000(T̃ ) = 0. Though ni0 can be expressed as Xi

ρ0
, where ρ0 =

√
δijXiXj , we choose

to leave it unevaluated in our expressions. This is due to our desire to group our final

results into powers of ni0 to assess the multipolar structure of the transformed metric.

Again we perform a series re-expansion in ε, with truncation at ε2 to remove higher-order

terms generated from multiplicative expansions.

The results are now in terms of ni0, ρ0, ĉ
µ
n`L(T̃ ), A2ij(T̃ ) and B2ij(T̃ ). A final step is for

us to re-expand all functions of T̃ in terms of ε and t, where t is generalised harmonic

time. This is necessary (as explained in Sec. 7.4), since the matching to the NR solution

will take place on slices of constant generalised harmonic t. To do this we perform a

Taylor series expansion in Xi:

ĉµn`L(T̃ (t,X i)) = ĉµn`L(t, 0) + εXj∂j T̃ (t, 0) ˙̂cµn`L(t, 0) +O(ε2),

= ĉµn`L(t, 0) + ερ0n
j
0∂j T̃ (t, 0) ˙̂cµn`L(t, 0) +O(ε2).

(9.132)

Within our working order, the only term that requires a post-leading-order expansion

in t is ĉµ11i(T̃ ). All other terms appear with a factor of ε2, and terms would therefore be

higher order than required. ĉµ11i(T̃ ) always appears with a factor of ni0 and so we can



148 Chapter 9. Transformation to Harmonic Coordinates

re-write it in the following way:

εĉµ11i(T̃ (t,X i))ni0 = εĉµ11i(t, 0)ni0 + ε2ρ0n
i
0n

j
0∂j T̃ (t, 0) ˙̂cµ11i(t, 0) +O(ε3),

= εĉµ11i(t, 0)ni0 + ε2ρ0

(
1

3
ni0n

j
0δij∂kT̃ (t, 0) ˙̂cµ11l(t, 0)δkl + ni0n

j
0∂〈j T̃ (t, 0) ˙̂cµ11i〉(t, 0)

)
+O(ε3),

= εĉµ11i(t, 0)ni0 + ε2ρ0ĉ
µ
N00(t, 0) + ε2ρ0n

i
0n

j
0ĉ
µ
Nij(t, 0) +O(ε3),

(9.133)

where in the second line have used χij = χ〈ij〉+
1
3δijδ

klχkl, with angular brackets denoting

a trace-free piece. In going to the final line we redefine 1
3n

i
0n

j
0δij∂kT̃ (t, 0) ˙̂cµ11l(t, 0)δkl →

ĉµN00, i.e. a newly generated monopole moment, and ∂〈j T̃ (t, 0) ˙̂cµ11i〉(t, 0) → ĉµNij , i.e. a

newly generated quadrupole moment. Therefore, transforming to functions of gener-

alised harmonic time at O(ε2) creates two more unknowns. We now have the harmonic

components of the metric, in harmonic coordinates, as a function of generalised harmonic

time.

Finally, we group our results in powers of ni0 to assess multipolar structure. We re-write

ni0n
j
0 = nij0 , n

i
0n

j
0n

k
0 = nijk0 and so on. During this step Xi is written as ni0ρ0. This

creates ` = 5 terms in gtX
i
, and ` = 6 terms in gX

iXj
. The final results are now in terms

of ni0, ρ0, ĉ
µ
n`L(t), Â2ij(t) and B̂2ij(t). Â1ij(t) and Â3ijkp(t) appear, but these are related

to Â2ij(t) as given by Eq. (9.52). As a final step, for each multipolar component we set

ε → 1 and further simplify the results. This can be done as we are at the stage where

we will match the analytical expression for the metric to the NR metric, which does not

carry a reference to ε.

9.3.2 Tidally Perturbed Black Hole Metric in Harmonic Coordinates

We now present the contravariant components of the tidally perturbed metric in our har-

monic coordinate system, Xµ. We have perturbatively derived gαβ = g(0)αβ + εp(1)αβ +

ε2p(2)αβ + O(ε3). As described in Sec. 7.4, we will match this analytical metric to the

NR metric mode-by-mode on the worldtube boundary, at each time-step. We therefore

present the metric components as grouped by their multipolar structure.

Our results are given as:

gTT = eTT + eTT in0i + eTT ijn0ij + eTT ijkn0ijk + eTT ijkpn0ijkp, (9.134)

gTa = eTa + eTain0i + eTaijn0ij + eTaijkn0ijk + eTaijkpn0ijkp + eTaijkpgn0ijkpg, (9.135)

gab = eab+eabin0i+e
abijn0ij+e

abijkn0ijk+eabijkpn0ijkp+eabijkpgn0ijkpg,+e
abijkpghn0ijkpgh

(9.136)
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where Latin letters are spatial indices that are left covariant, ni0 = Xi

ρ and nij0 = ni0n
j
0

and so on. The e-type coefficients are functions of t, ρ0 =
√
XiXjδij and M , the mass

of the small black hole.

The e-type coefficients are given in Tables 9.6 - 9.8 below wherein we have used sym-

metric tensor bracket notation,

χ(i1i2...ik) =
1

k!

∑
permutations

χi1i2...ik . (9.137)

In these results we have dropped the explicit time dependence of the Â, B̂, ĉ functions

everywhere for brevity. Matching to the NR metric will allow us to fit for all these

a priori unknown functions, both the tidal moments and those generated during the

coordinate transformation. The matched analytical solution will then provide boundary

conditions for the NR evolution at the next time step, as described in Sec. 7.4.

Table 9.6: gTT metric components in harmonic coordinates

eTT =
ĉ011aĉ011aρ2

M2(M + ρ)2
−

15M3 +M2(11− 8ĉ0N0)ρ+M(5− 8ĉ0N0)ρ2 + ρ3

(M + ρ)3

eTTi =−
2

M(M + ρ)4

(
4Mĉ11

aiĉ011a(M + ρ)2 − 4M2ĉ011
i(M + ρ)2 +MĉN0

iρ2(17M2 + 6Mρ+ ρ2)

+ ˙̂c011
i(8M5 + 31M4ρ+ 34M3ρ2 + 16M2ρ3 + 6Mρ4 + ρ5)

)

eTTij =−
1

2M(M + ρ)4

(
34M3ĉ11a

iĉ11
aj + 17M7Â2

ij + 17M7Â1
ij + 68M3ĉ011

ijρ− 48M3ĉ022
ijρ− 16M4ĉ0N2

ijρ

− 68M2ĉ11
ik ĉ11k

jρ+ 12M2ĉ11a
iĉ11

ajρ+ 70M6Â2
ijρ+ 40M6Â1

ijρ+ 24M2ĉ011
ijρ2 − 96M2ĉ022

ijρ2 − 32M3ĉ0N2
ijρ2

− 24Mĉ11
ik ĉ11k

jρ2 + 2Mĉ11a
j ĉ11

aiρ2 + 95M5Â2
ijρ2 − 38M5Â1

ijρ2 + 4Mĉ011
ijρ3 − 48Mĉ022

ijρ3 − 16M2ĉ0N2
ijρ3

− 4ĉ11
ik ĉ11k

jρ3 + 52M4Â2
ijρ3 − 16M4Â1

ijρ3 + 15M3Â2
ijρ4 − 3M3Â1

ijρ4 + 6M2Â2
ijρ5 +MÂ2

ijρ6

+ 2Mĉ011
iĉ011

j(M + ρ)2 − 8M2 ˙̂c11
ij(−34M3 + 5M2ρ+ 4Mρ2 + ρ3)

)

eTTijk =
1

M(M + ρ)4

(
ĉ22

ijk(17M4 + 6M3ρ− 50M2ρ2 − 18Mρ3 − 3ρ4)− 2MĉN2
ijkρ2(17M2 + 6Mρ+ ρ2)

+ 8Mĉij11ĉ
0k
11(M2 + 4Mρ+ 3ρ2)

)

eTTijkp =
1

3M(M + ρ)5

(
3ĉ11

ij ĉ11
kp(17M4 + 23M3ρ− 55M2ρ2 − 15Mρ3 − 2ρ4)

+M2Â3
ijkp(17M6 − 28M5ρ− 113M4ρ2 − 4M3ρ3 + 91M2ρ4 + 32Mρ5 + 5ρ6)

)
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Table 9.7: gTa metric components in harmonic coordinates

eTa =
ρ
(
2M2 ˙̂c011a(2M − ρ) + (Mĉ011a + ĉ11abĉ011b)ρ

)
M2(M + ρ)2

eTai =−
1

2M2ρ(M + ρ)3

(
8M3 ˙̂c11

ai(4M3 + 4M2ρ+ 3Mρ2 + ρ3) + (M + ρ)

(
ρ
(
2M3δai(−4M + ĉ0N0ρ) + 2ĉ022

aiρ(M2 − 3ρ2)
)

+ 2
(

4M5Â1
aiρ2(3M2 − 2Mρ− 9ρ2) +M3(M − ρ)(−2Âai2 ρ

2(M + ρ) +M2Âai1 (M + 3ρ)
))))

eTaij =
1

Mρ(M + ρ)3

(
2Mĉ22k

ijδak(M3 +M2ρ− 3Mρ2 − 3ρ3) + ρ
(
M2ĉ11

kj ĉ011kδ
ai + 4M3ĉN0

jδaiρ+Mĉ11
kj ĉ011kδ

aiρ

+ 12M2ĉ22
aijρ− 2M5B̂2

j
kε
kaiρ+ 12M2ĉN0

jδaiρ2 − 2ĉ11
ij ĉ011

aρ2 + 12Mĉ22
aijρ2 − 8M4B̂2

j
kε
kaiρ2

− 12M3B̂2
j
kε
kaiρ3 − 8M2B̂2

j
kε
kaiρ4 − 2MB̂2

j
kε
kaiρ5 −M2ĉ011

jδai(M + ρ) + 2M3 ˙̂c011
jδai(M + ρ)

))

eTaijk =
1

3Mρ(M + ρ)3

(
2M3δabÂ3b

ijk(M4 − 2M3ρ− 6M2ρ2 + 2Mρ3 + 5ρ4) + 3 ˙̂c11
jkδai(16M5 + 40M4ρ− 27M3ρ2 − 7M2ρ3

− 5Mρ4 − ρ5)− 4Mρ
(
M2Â3

aijk(M4 + 7M3ρ+ 3M2ρ2 − 13Mρ3 − 10ρ4) + 3ĉ11
gj
(
−Mĉ11g

kδai + ĉ11g
kδai(M + 3ρ)

))
+ 3Mδai

(
4Mĉ11

jkρ(M + 3ρ) +M3Â1
jk(M − ρ)(M + 3ρ)2 + ρ(M + ρ)

(
−(2ĉ022

jk +Mĉ0N2
jk)ρ+ 2Â2

jk(M4 −M2ρ2)
)))

eTaijkp = −
2δai

(
ĉ22jkp(M3 + 3M2ρ− 3Mρ2 − 9ρ3) + ρ

(
ĉ11jk ĉ011p(M + 2ρ)− 2MĉN2

jkpρ(M + 3ρ)
))

ρ(M + ρ)3

eTaijkpg =−
1

3ρ(M + ρ)4

(
2δai

(
−18ĉ11

jk ĉ11
pgρ2(M + 2ρ) +M2Â3

jkpg(M5 +M4ρ− 12M3ρ2 − 16M2ρ3 + 11Mρ4 + 15ρ5)
))
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Table 9.8: gab metric components in harmonic coordinates

eab =
1

M2(M + ρ)2

(
ρ
(
−2M6Â1

ab + 4M2 ˙̂c11
(ab)(2M − ρ) + 2Mĉ11

(ab)ρ+ ĉ11
aiĉ11

b
iρ

+M2δabρ− 6M5Â1
abρ+ 2M4Â1

abρ2 + 6M3Â1
abρ3

))

eabi =−
1

M2(M + ρ)3

(
2ĉ22

abiρ(M3 +M2ρ− 3Mρ2 − 3ρ3)−Mρ3
(
−2MĉN0

iδab + 2ĉN0
(aδb)i(M + ρ)

))

eabij =
1

4Mρ(M + ρ)3

(
2M7δi(aÂ1

b)j − 4M4δaiδbjρ+ 6M6δi(aÂ1
b)jρ+ 24M7δj(bÂ1

a)iρ− 4M3δaiδbjρ2

− 32M3 ˙̂cij11δ
abρ2 − 4Mĉ11k

iĉ11
kjδabρ2 − 2M5δi(bÂ

a)j
1 ρ2 + 16M6δi(bÂ

a)j
1 ρ2 − 2M5δabÂ1

ijρ2

+ 4M6Â3
abijρ2 − 16ĉ11

(ab)ĉ11
ijρ3 − 8Mĉ11

ijδabρ3 + 16M2 ˙̂c11
ijδabρ3 + 8ĉ11

ik ĉj11kδ
abρ3

+ 2M4δabÂ2
ijρ3 − 6M4δi(bÂ1

a)jρ3 − 80M5δi(bÂ1
a)jρ3 − 4M4δabÂ1

ijρ3 − 4M5Â3
abijρ3

− 2M3δabÂ2
ijρ4 − 64M4δi(bÂ1

a)jρ4 + 6M3δabÂ1
ijρ4 − 32M4Â3

abijρ4 − 6M2δabÂ2
ijρ5

+ 56M3δi(bÂ1
a)jρ5 − 16M3Â3

abijρ5 − 2MδabÂ2
ijρ6 + 48M2δi(bÂ1

a)jρ6 + 28M2Âabij3 ρ6 + 20MÂ3
abijρ7

+ 8 ˙̂c11
j(bδa)i(4M5 + 4M4ρ−M3ρ2 − 3M2ρ3 − 3Mρ4 − ρ5)

)
.

eabijk =−
1

2Mρ(M + ρ)3

(
2Mδi(aĉ

b)jk
22 (M3 +M2ρ+Mρ2 + ρ3)− 2ρ2

(
−2M2ĉkN0δ

aiδbj(M + 2ρ) + ĉijk22 δ
ab(M2 − 3ρ2)

+ ρ2
(
−2MĉijkN2δ

ab + 2δi(aĉ
b)jk
N2 (M + ρ)

)))

eabijkp =−
1

6Mρ(M + ρ)4

(
2M8δi(bÂ

a)jkp
3 − 12M3ĉkg11 ĉ

p
11gδ

aiδbjρ+ 6M3ĉk11g ĉ
gp
11δ

aiδbjρ− 2M7δi(bÂ3
a)jkpρ

− 4M8δi(bÂ
a)jkp
3 ρ− 36M2ĉ11

kg ĉp11gδ
aiδbjρ2 + 6M2δaiδbj ĉk11g ĉ11

gpρ2 − 6M2ĉ11
ij ĉ11

kpδabρ2

− 16M6δi(bÂ
a)jkp
3 ρ2 − 26M7δi(bÂ3

a)jkpρ2 − 2M6δabÂijkp3 ρ2 − 24Mĉ11
kg ĉ11g

pδaiδbjρ3 − 12Mĉ11
ij ĉ11

kpδabρ3

− 8M5δi(bÂ
a)jkp
3 ρ3 − 36M6δi(bÂ3

a)jkpρ3 + 4M5δabÂijkp3 ρ3 + 12ĉ11
ij ĉ11

kpδabρ4 + 14M4δi(bÂ3
a)jkpρ4

+ 18M5δi(aÂ3
b)jkpρ4 + 12M4δabÂijkp3 ρ4 + 10M3δi(bÂ3

a)jkpρ5 + 60M4δi(bÂ3
a)jkpρ5

− 4M3δabÂijkp3 ρ5 + 18M3δi(bÂ
a)jkp
3 ρ6 − 10M2δabÂijkp3 ρ6 − 20M2δi(bÂ3

a)jkpρ7 − 10Mδi(bÂ3
a)jkpρ8

+ 12 ˙̂c11
kpδaiδbj(4M6 + 10M5ρ+M4ρ2 − 8M3ρ3 − 6M2ρ4 − 4Mρ5 − ρ6)

+ 3M2δaiδbj(M + ρ)
(
4ĉ11

kpρ(M + 2ρ) +M2Â1
kp(M3 + 4M2ρ+Mρ2 − 6ρ3)

+ Â2
kpρ(M4 +M3ρ−M2ρ2 − 3Mρ3 − 2ρ4)

))

eabijkpg =
δaiδbj(M + 2ρ)

(
−2MĉN2

kpgρ2 + ĉ22kpg(M2 − 3ρ2)
)

ρ(M + ρ)3

eabijkpgh =
1

3ρ(M + ρ)4
δaiδbj(M + 2ρ)

(
−3ĉkp11 ĉ

gh
11 ρ(2M + 5ρ) +M2Âkpgh3 (M4 − 2M3ρ− 6M2ρ2 + 2Mρ3 + 5ρ4)

)
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Chapter 10

Summary and Concluding

Remarks

Numerical simulations of binary black holes are increasingly costly with more extreme

mass ratios q. This is partially due to the CFL condition forcing a reduction of the

evolution time step ∆t . m2 ∝ q. This thesis presented a novel technique to circumvent

the time step limitations that arise from solving the field equations fully numerically

in the region of spacetime near the small mass m2. We place a worldtube of radius

R� m2 around m2. Inside this worldtube we replace the fully numerical solution by a

perturbative solution, while retaining a fully numerical solution outside the worldtube.

Thus, the smallest length scales remaining on the numerical grid are of order R, and the

CFL limit is relaxed to ∆t ∼ R.

The work in this thesis provides a strong foundation for the implementation of the

worldtube excision method for modelling IMRIs. The implementation and trial of two

testbed cases:—a scalar charge on a fixed circular orbit around a Schwarzschild black hole

evolving in 1+1D (Chapters 4 and 5), followed by an advancement to 3+1D (Chapter 6)

provided understanding of the core behaviours of the worldtube model. The framework

for the BBH case was then laid out (Chapter 7) and the derivation of the appropriate

form of the perturbative solution presented (Chapters 8 and 9).

The 1+1D scalar model allowed the exploration of two different algorithms to match

the perturbed solution inside the worldtube with the fully numerical solution outside:

(i) A matching scheme that fits over an extended region, and (ii) a boundary scheme

that imposes conditions precisely at one radius. We explored two different numerical

implementations for the numerical exterior solution, one based on finite differences on

a characteristic grid, the other on spectral methods on spatial hypersurfaces. The most

accurate solutions are obtained with the spectral scheme, which allows significantly

smaller discretisation errors than the finite-difference scheme.
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We achieved stable evolutions in both schemes. We also established convergence of the

results with respect to various key quantities: the numerical resolution, the radius R

of the worldtube, and the order of the approximate perturbative solution n inside the

worldtube. Of primary concern is convergence with worldtube radius R. For the finite-

difference scheme, Fig. 4.20 demonstrates convergence ∝ Rn for a perturbative solution

of order n. For the spectral scheme, Figs. 5.5 and 5.7 demonstrate cases of convergence

∝ Rn+1.

For a worldtube radius of R = 0.8M (where here M = m1) we achieve relative errors

≈ 10−4 for a third-order internal solution and . 10−6 for a fifth-order perturbative

solution. This level of accuracy at such a large worldtube radius is encouraging for our

ultimate goal, the application of the worldtube method for IMRIs.

The 3+1D scalar model and the usage of SpECTRE progressed the worldtube imple-

mentation far closer to resembling the BBH case. Here we were able to trial a match-

ing procedure that foreseeably can be transferred to the BBH model’s implementation:

matching the perturbative solution and the NR solution mode-by-mode on the worldtube

boundary. The model also evidenced the practicality of transforming the perturbative

solution to the coordinates of the numerics, prior to performing the matching.

Fig. 6.7 and 6.9 presented convergence results with respect to R for zeroth, first and

second-order internal models models. The results demonstrate that model achives the

expected convergence ∝ Rn+2. For worldtube radius of R = 0.8M , the second-order

internal solution achieves a relative error of ≈ 10−5. This is again an extremely encour-

aging level of accuracy, at such a large worldtube radius.

This thesis then laid the foundations for the BBH model, whose actual numerical im-

plementation is left to future work. The main ingredient of the BBH model namely is

an approximate analytical model of a tidally perturbed black hole in a gauge compat-

ible with that of the NR solution. Our derivation of such an analytical model should

allow the practical implementation of the scheme. The evolution procedure is laid out

schematically, to be followed in the future.

10.1 Future Work

We now discuss possible follow-ups to the work presented in this thesis. Firstly, there

remain a couple of tests to be run on the 3+1D scalar model. Further investigation

is ongoing into the n = 2 model in the hope of obtaining the expected O(Rn+2) con-

vergence rate. Up until this point the work has focused on the implementation of the

worldtube architecture and exploration of matching approaches. With the 3+1D scalar

model we also wish to probe the runtime saving of the worldtube excision method. This
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will provide a first quantification of the predictions in Sec. 2.3. It can be done either im-

plicitly, by comparing the runtime for successively smaller worldtube sizes, or explicitly,

comparing the runtime of a worldtube model to that of an exposed charge distribution.

Future work will numerically implement the BBH model in the IMRI case. Here the

perturbed solution will initially be the O(ε2) tidally perturbed Schwarzschild metric in

suitable coordinates, derived in Chapter 9. At this stage, work will test the matching

method in the BBH case and hopefully achieve a stable evolution.

The model can then continue to advance to progressively higher level:

(i) The perturbed Schwarzschild solution can be extended to higher order in ε, hence

increasing its accuracy and so the overall accuracy of the worldtube model. This will

require the matching of a larger number of unknowns. However, this should be a fairly

straightforward extension of the mode-by-mode matching method developed here, taken

to higher `.

(ii) The model can advance to include spin of the black holes. For the larger black hole,

this can be done by adding spin into the SpECTRE evolution; for the smaller black hole

this would mean working with a tidally perturbed Kerr metric. Building on preliminary

work for tidally perturbed Kerr metrics [108, 87], we would first have to derive the

metric to a suitable order in the most natural set of coordinates. We would then have

to transform it to harmonic coordinates as functions of generalised harmonic time, as

done in this thesis for the Schwarzschild case.

(iii) The model can advance to include matter. For an IMRI model this would, for

example, mean replacing the smaller black hole with a neutron star, hence working with

a tidally perturbed neutron-star metric [55, 164, 128, 80]. Again, such metrics would

have to be transformed into suitable coordinates. Achieving this would allow us to model

black hole-neutron star binaries.

iv) The model can advance to include eccentricity, which may be astrophysically relevant

at the high mass-ratio end of the IMRI range.

10.2 Perspective

With the advancement of our GW detectors, it is of high priority to have a bank of

waveform templates that cover the entire parameter range of detectable sources. The

push towards lower-frequency observational ranges means the prospect of detecting ever-

more disparate mass binaries in the years to come. Third-generation ground detectors

and LISA promise this extended frequency window, and so the potential for a wealth of

new discoveries during their years of operation is high.
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The worldtube excision method seeks to complement existing efforts from NR and BHPT

(as reviewed in Sec. 1.3) to bridge the mass-ratio modelling gap. Despite the strong

recent advancements from both NR and BHPT, there is a still a compelling case for a

novel technique to generate IMRI waveforms in a shorter timeframe, working towards

the aim of ensuring we can obtain the maximum scientific return from all active GW

detectors.

From a broader perspective, the scientific body of knowledge from the GW community is

extending at an impressive rate. The community is enjoying advancements in all areas of

the field, from instrumentation design to data processing and analysis and to waveform

template creation. The size of the community is also growing at an accelerated pace,

with more human power being applied to unlocking the truths that can come from GW

analysis. This thesis hopes to have tackled a challenge in a subspace of this cutting-edge

field, and helped push the goal of better understanding the universe using GWs a little

further along.
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Appendix A

Singular Part of the Scalar Field

in Kerr-Schild Coordinates

In this appendix we give the singular part of the scalar field in Kerr-Schild coordinates.

This is used in our 3+1D scalar-field model as presented in Chapter 6. The singular

piece of the scalar field can be expressed as [34]

ΦS = e

{
1

εs1
+

P3(∆xα)

s3
1

+
εP6(∆xα)

s5
1

+
ε2P9(∆xα)

s7
1

+O(ε3)

}
. (A.1)

Here ε is a book-keeping quantity, measuring the fundamental scale of separation ∆xα =

xα − x̄α, where xα is the field point and x̄α is the position of the scalar charge. In this

expression, Pn(∆xα) are polynomials in (∆xα) of homogeneous order n, and s1 is the

leading-order piece of the orthogonal distance from xα to the worldline. The forms of

s1 and Pn(∆xα) in Kerr-Schild coordinates are obtained by following the procedure laid

out in Sec. 6.3.4 .

In the following expressions M is the mass of the black hole, rp =
√
x̄2 + ȳ2 + z̄2 is the

radius of the scalar charge, and

ξ = rp − 3M (A.2)

s1 is given by

s1 =
√
{

∆x2

(
1 +

2Mx̄2

r3
p

)
+ ∆y2 + ∆z2 +

4M∆x∆yx̄ȳ

r3
p

+
2M∆y2ȳ2

r3
p

+

(
(−∆yx̄+ ∆xȳ)

√
M

ξr2
p

− 2M(∆xx̄+ ∆yȳ)√
ξr3
p

)2}
.

(A.3)

We now give the expressions for the polynomials Pn(∆xα) in Kerr-Schild coordinates, up

to O(ε2) as this is the highest order currently used within the 3+1D scalar-field model.

These are given as a Mathematica file exportation.



P3(Δxα)

Out[25]=

1

2 rp
6

M (Δx x + Δy y) Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y + -2 Δx2 + Δy2 - 2 Δz2 y2 rp +

2
M

ξ

3/2

Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2

2 M ξ (Δx x + Δy y) rp + (Δy x - Δx y) ξ rp
3


P6 (Δxα)

Out[28]=

1

24 rp
12

-M rp
2

Δy2 + Δz2 + Δx2 1 +
2 M x2

rp
3

+

4 M Δx Δy x y

rp
3

+
2 M Δy2 y2

rp
3

+

2 M (Δx x + Δy y) rp + (Δy x - Δx y) M rp
3 

2

ξ rp
5

12 M Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y22 rp
3

ξ
+

rp 2 M2 (Δx x + Δy y)4 + M (Δx x + Δy y)2

3 Δx2 - 4 Δy2 + Δz2 x2 + 14 Δx Δy x y + -4 Δx2 + 3 Δy2 - 4 Δz2 y2 rp +

4 2 Δx4 - 11 Δx2 Δy2 + Δz2 + 2 Δy2 + Δz22 x4 + 30 Δx Δy Δx2 - Δy2 - Δz2 x3 y -

11 Δx4 + 11 Δy4 + 7 Δy2 Δz2 - 4 Δz4 + Δx2 -68 Δy2 + 7 Δz2 x2 y2 -

30 Δx Δy Δx2 - Δy2 + Δz2 x y3 +

2 Δx4 + 2 Δy4 - 11 Δy2 Δz2 + 2 Δz4 + Δx2 -11 Δy2 + 4 Δz2 y4 rp
2
 +

1

ξ3/2
4 × -2 M2 ξ (Δx x + Δy y)3 - 2 M ξ (Δx x + Δy y)

Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2 rp + M ξ (Δy x - Δx y)

Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y + -2 Δx2 + Δy2 - 2 Δz2 y2 rp
3/2

- 4 ξ

(Δx x + Δy y) Δx2 - 3 Δy2 + Δz2 x2 + 8 Δx Δy x y + -3 Δx2 + Δy2 - 3 Δz2 y2

rp
2
+ 2 M3/2 (Δy x - Δx y) (Δx x + Δy y)2 ξ rp  ×

-2 M (Δx x + Δy y) rp + (-Δy x + Δx y) M rp
3
 +

9 M (Δx x + Δy y) Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y + -2 Δx2 + Δy2 - 2 Δz2 y2 rp +

2
M

ξ

3/2

Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2

2 M ξ (Δx x + Δy y) rp + (Δy x - Δx y) ξ rp
3


2
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P9 (Δxα)

Out[]=

1

48 ξ7/2 rp
17

M 9 M2 ξ rp
2

ξ (Δx x + Δy y) Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y + -2 Δx2 + Δy2 - 2 Δz2 y2 +

2 Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2

2 M (Δx x + Δy y) + (Δy x - Δx y) M rp 
3
+

2 4 M Δx Δy ξ x y + 2 M Δy2 ξ y2 + Δy2 ξ rp
3
+ Δz2 ξ rp

3
+ Δx2 ξ 2 M x2 + rp

3
 +

2 M (Δx x + Δy y) + (Δy x - Δx y) M rp 
2

2

ξ
3/2

(Δx x + Δy y) M2 (Δx x + Δy y)2 5 Δx2 - 4 Δy2 + Δz2 x2 + 18 Δx Δy x y +

-4 Δx2 + 5 Δy2 - 4 Δz2 y2 + 2 M 3 Δx4 - 9 Δx2 Δy2 + Δz2 + 2 Δy2 + Δz22

x4 + 2 Δx Δy 15 Δx2 - 13 Δy2 + Δz2 x3 y - 9 Δx4 + 9 Δy4 + 5 Δy2 Δz2 - 4 Δz4 +

Δx2 -66 Δy2 + 5 Δz2 x2 y2 - 2 Δx Δy 13 Δx2 - 15 Δy2 + 13 Δz2 x y3 +

2 Δx4 + 3 Δy4 - 9 Δy2 Δz2 + 2 Δz4 + Δx2 -9 Δy2 + 4 Δz2 y4 rp +

3 2 Δx4 - 21 Δx2 Δy2 + Δz2 + 12 Δy2 + Δz22 x4 +

10 Δx Δy 5 Δx2 - 9 Δy2 + Δz2 x3 y - 3 × 7 Δx4 + 7 Δy4 - Δy2 Δz2 - 8 Δz4 -

Δx2 56 Δy2 + Δz2 x2 y2 - 10 Δx Δy 9 Δx2 - 5 Δy2 + 9 Δz2 x y3 +

12 Δx4 + 2 Δy4 - 21 Δy2 Δz2 + 12 Δz4 - 3 Δx2 7 Δy2 - 8 Δz2 y4 rp
2
 +

2 × 2 M (Δx x + Δy y) + (Δy x - Δx y) M rp  × 2 M2 ξ (Δx x + Δy y)2

5 Δx2 - 3 Δy2 + Δz2 x2 + 16 Δx Δy x y + -3 Δx2 + 5 Δy2 - 3 Δz2 y2 +

2 M ξ 4 Δx4 - 9 Δx2 Δy2 + Δz2 + Δy2 + Δz22 x4 +

2 Δx Δy 17 Δx2 - 11 Δy2 + Δz2 x3 y - 9 Δx4 + 9 Δy4 + 7 Δy2 Δz2 - 2 Δz4 +

Δx2 -66 Δy2 + 7 Δz2 x2 y2 - 2 Δx Δy 11 Δx2 - 17 Δy2 + 11 Δz2 x y3 +

Δx4 + 4 Δy4 - 9 Δy2 Δz2 + Δz4 + Δx2 -9 Δy2 + 2 Δz2 y4 rp +

6 ξ Δx4 - 6 Δx2 Δy2 + Δz2 + Δy2 + Δz22 x4 + 16 Δx Δy Δx2 - Δy2 - Δz2 x3 y -

2 × 3 Δx4 + 3 Δy4 + 2 Δy2 Δz2 - Δz4 + 2 Δx2 -9 Δy2 + Δz2 x2 y2 - 16 Δx Δy

Δx2 - Δy2 + Δz2 x y3 + Δx4 + Δy4 - 6 Δy2 Δz2 + Δz4 + Δx2 -6 Δy2 + 2 Δz2 y4

rp
2
- 4 M3/2 Δx Δy x2 + -Δx2 + Δy2 x y - Δx Δy y2

2 Δx2 - Δy2 - Δz2 x2 + 6 Δx Δy x y - Δx2 - 2 Δy2 + Δz2 y2 ξ rp -

3 Δx Δy x2 + -Δx2 + Δy2 x y - Δx Δy y2

Δx2 - 4 Δy2 + Δz2 x2 + 10 Δx Δy x y + -4 Δx2 + Δy2 - 4 Δz2 y2 rp M ξ rp  +

4 M Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2

2 M2 ξ (Δx x + Δy y)3 + 2 M ξ (Δx x + Δy y)

Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2 rp + 4 ξ (Δx x + Δy y)

Δx2 - 3 Δy2 + Δz2 x2 + 8 Δx Δy x y + -3 Δx2 + Δy2 - 3 Δz2 y2 rp
2
-

2 M3/2 (Δy x - Δx y) (Δx x + Δy y)2 ξ rp - (Δy x - Δx y)

Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y + -2 Δx2 + Δy2 - 2 Δz2 y2 rp M ξ rp  -

M ξ (Δx x + Δy y) Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y + -2 Δx2 + Δy2 - 2 Δz2 y2 +
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2 Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2

2 M (Δx x + Δy y) + (Δy x - Δx y) M rp 

4 M Δx Δy ξ x y + 2 M Δy2 ξ y2 + Δy2 ξ rp
3
+ Δz2 ξ rp

3
+ Δx2 ξ 2 M x2 + rp

3
 +

2 M (Δx x + Δy y) + (Δy x - Δx y) M rp 
2
 ×

12 M ξ Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y22 rp
2
+

ξ
3/2

2 M2 (Δx x + Δy y)4 + M (Δx x + Δy y)2

3 Δx2 - 4 Δy2 + Δz2 x2 + 14 Δx Δy x y + -4 Δx2 + 3 Δy2 - 4 Δz2 y2 rp +

4 2 Δx4 - 11 Δx2 Δy2 + Δz2 + 2 Δy2 + Δz22 x4 +

30 Δx Δy Δx2 - Δy2 - Δz2 x3 y - 11 Δx4 + 11 Δy4 + 7 Δy2 Δz2 - 4 Δz4 +

Δx2 -68 Δy2 + 7 Δz2 x2 y2 - 30 Δx Δy Δx2 - Δy2 + Δz2 x y3 +

2 Δx4 + 2 Δy4 - 11 Δy2 Δz2 + 2 Δz4 + Δx2 -11 Δy2 + 4 Δz2 y4 rp
2
 +

4 × 2 M (Δx x + Δy y) + (Δy x - Δx y) M rp  × 2 M2 ξ (Δx x + Δy y)3 + 2 M ξ

(Δx x + Δy y) Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2 rp + 4 ξ

(Δx x + Δy y) Δx2 - 3 Δy2 + Δz2 x2 + 8 Δx Δy x y + -3 Δx2 + Δy2 - 3 Δz2 y2

rp
2
- 2 M3/2 (Δy x - Δx y) (Δx x + Δy y)2 ξ rp - (Δy x - Δx y)

Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y + -2 Δx2 + Δy2 - 2 Δz2 y2 rp M ξ rp  +

2 M ξ (Δx x + Δy y) Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y + -2 Δx2 + Δy2 - 2 Δz2 y2 +

2 Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2

2 M (Δx x + Δy y) + (Δy x - Δx y) M rp 

3 M ξ rp
2
ξ (Δx x + Δy y) Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y + -2 Δx2 + Δy2 - 2 Δz2

y2 + 2 Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2

2 M (Δx x + Δy y) + (Δy x - Δx y) M rp 
2
-

4 M Δx Δy ξ x y + 2 M Δy2 ξ y2 + Δy2 ξ rp
3
+ Δz2 ξ rp

3
+ Δx2 ξ 2 M x2 + rp

3
 +

2 M (Δx x + Δy y) + (Δy x - Δx y) M rp 
2
 ×

12 M ξ Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y22 rp
2
+

ξ
3/2

2 M2 (Δx x + Δy y)4 + M (Δx x + Δy y)2

3 Δx2 - 4 Δy2 + Δz2 x2 + 14 Δx Δy x y + -4 Δx2 + 3 Δy2 - 4 Δz2 y2 rp +

4 2 Δx4 - 11 Δx2 Δy2 + Δz2 + 2 Δy2 + Δz22 x4 + 30 Δx Δy Δx2 - Δy2 - Δz2

x3 y - 11 Δx4 + 11 Δy4 + 7 Δy2 Δz2 - 4 Δz4 + Δx2 -68 Δy2 + 7 Δz2

x2 y2 - 30 Δx Δy Δx2 - Δy2 + Δz2 x y3 +

2 Δx4 + 2 Δy4 - 11 Δy2 Δz2 + 2 Δz4 + Δx2 -11 Δy2 + 4 Δz2 y4 rp
2
 +

4 × 2 M (Δx x + Δy y) + (Δy x - Δx y) M rp  × 2 M2 ξ (Δx x + Δy y)3 +

2 M ξ (Δx x + Δy y) Δx2 - Δy2 - Δz2 x2 + 4 Δx Δy x y - Δx2 - Δy2 + Δz2 y2

rp + 4 ξ (Δx x + Δy y) Δx2 - 3 Δy2 + Δz2 x2 + 8 Δx Δy x y +

-3 Δx2 + Δy2 - 3 Δz2 y2 rp
2
- 2 M3/2 (Δy x - Δx y) (Δx x + Δy y)2 ξ rp -

(Δy x - Δx y) Δx2 - 2 Δy2 + Δz2 x2 + 6 Δx Δy x y +

-2 Δx2 + Δy2 - 2 Δz2 y2 rp M ξ rp 
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Appendix B

Derivatives of Spherical

Harmonics

Here we give the relations to express the derivatives of scalar, vector and tensor spherical

harmonics in terms of the scalar, vector, tensor spherical harmonics themselves. These

are used in the derivation of the tidally perturbed Schwarzschild metric in Chapter 8,

specifically Sec. 8.4, with the aim of matching the metric as presented in [109].

These relations were derived using the identities:

Y `m
A := DAY

`m = Y `m
A , (B.1)

X`m
A := εBADBY

`m, (B.2)

Y `m
AB :=

[
DADB +

1

2
`(`+ 1)ΩAB

]
Y `m, (B.3)

X`m
AB := −1

2

(
εCADB + εCBDA

)
DCY

`m, (B.4)

along with the relations [
ΩABDADB + `(`+ 1)

]
Y `m = 0, (B.5)

εFAY
`m
F = −X`m

A , (B.6)

εFBY
`m
AF + εFAY

`m
BF = −2X`m

AB. (B.7)

We split the results into the even and odd sector.
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Even vector harmonics:

DAY
A`m = −`(`+ 1)Y `m, (B.8)

DAY
`m
B =

1

2
`(`+ 1)ΩABY

`m + Y `m
AB , (B.9)

DBDBY
`m
A = −`(`+ 1)Y `m

A , (B.10)

DADBY
`m
A = −`(`+ 1)Y `m

B + Y `m
B . (B.11)

Even tensor harmonics:

DBY
B`m
A = −`(`+ 1)Y `m

A +
1

2
`(`+ 1)ΩABY

B`m, (B.12)

DFDFY
`m
AB = −`(`+ 1)Y `m

AB , (B.13)

DBDAY
AB`m =

1

2
`2(`+ 1)2Y `m, (B.14)

DFDBY
F`m
A =

1

4
`2(`+ 1)2ΩABY

`m − 1

2
`(`+ 1)Y `m

AB . (B.15)

Odd vector harmonics:

DAX
A`m = 0, (B.16)

DAX
`m
B = 2X`m

AB −
1

2
`(`+ 1)εFAΩBFY

`m + εFAY
`m
BF , (B.17)

DADBX
B`m = X`m

A , (B.18)

DBDBX
`m
A = [`(`+ 1) + 1]X`m

A . (B.19)

Odd tensor harmonics:

DBX
B`m
A =

1

2
`(`+ 1)εBAY

`m
B , (B.20)

DBDAX
AB`m = 0, (B.21)

DFDBX
F`m
A = −1

4
`2(`+ 1)2εGAΩBGY

`m +
1

2
`(`+ 1)εGAY

`m
BG, (B.22)

DFD
FX`m

AB =
1

2
`(`+ 1)[εGAY

`m
BG + εGBY

`m
AG ]. (B.23)
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