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We introduce a quantum interferometric scheme that uses states that are sharp in frequency
and delocalized in position. The states are frequency modes of a quantum field that is trapped
at all times in a finite volume potential, such as a small box potential. This allows for significant
miniaturization of interferometric devices. Since the modes are in contact at all times, it is possible
to estimate physical parameters of global multi-mode channels. As an example, we introduce a
three-mode scheme and calculate precision bounds in the estimation of parameters of two-mode
Gaussian channels. This scheme can be implemented in several systems, including superconducting
circuits, cavity-QED and cold atoms. We consider a concrete implementation using the ground
state and two phononic modes of a trapped Bose-Einstein condensate. We apply this to show
that frequency interferometry can improve the sensitivity of phononic gravitational waves detectors
by several orders of magnitude, even in the case that squeezing is much smaller than assumed
previously and that the system suffers from short phononic lifetimes. Other applications range from
magnetometry, gravimetry and gradiometry to dark matter/energy searches.

Interferometers have become a powerful tool for preci-
sion measurements, often achieving sensitivities that are
not possible using any other known technique. In the
most common implementation, waves travel along two
different spatial paths and are recombined creating an
interference pattern. We will call this setup a spatial
interferometer since the system follows two different tra-
jectories in space. The phase difference along the paths is
a U(1) channel that encodes physical parameters, such as
frequency and field strengths, that can be measured with
very high precision. Interferometers can operate in both
the classical and quantum regime. The most remarkable
application of a spatial interferometer is perhaps LIGO,
which uses a very similar interferometer to that designed
by Michelson to observe gravitational waves [1]. Early
measurements used classical light but recently the sensi-
tivity has been enhanced by injecting quantum states of
light through the output Faraday isolator [2].

Interferometry in the quantum regime not only uses
photons but also the wave character of massive parti-
cles, such as electrons, neutrons, atoms and molecules.
Here, each particle generically follows a superposition of
two spatial trajectories and interferes with itself when the
paths recombine. The phase difference acquired by a spa-
tial quantum superposition has been used, for example,
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to measure accelerations [3]; fundamental constants [4],
including the fine-structure constant [5]; set constraints
on dark energy models [6]; and has also been proposed as
a method to detect gravitational waves at low frequencies
[7]. For a review on the state of the art see [8].

In spatial interferometry, cutting-edge sensitivity is
usually limited by the available time of flight. This gener-
ically requires large spatial separations or long interfer-
ometer arms, which can be several metres or kilometers
long. Typically, spatial interferometers cannot be re-
duced in size without loosing precision. However, the
time of flight in atom interferometry can be increased
by using Bragg diffraction and Bloch oscillations to slow
down the particles [9]. In such schemes, interactions are
undesirable because they reduce the coherence time of
the interferometer [10]. Here, we propose using interac-
tions as a way to miniaturize devices while keeping high
precision. The idea is to use interferometry in the fre-
quency domain, or equivalently, temporal domain, and
we refer to this as quantum frequency interferometry. In
this case, waves do not follow different spatial paths but
are quantum modes of vibration, such as those produced
by interacting particles trapped in a localized potential.
Since the modes are non-local and they can interact at
all times, it is also possible not only to estimate quan-
tities encoded in phase channels, but also to estimate
the parameters of global unitaries, including entangling
operations, in the Hilbert space of the modes.

This new type of quantum interferometry is inspired by
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FIG. 1. Quantum frequency interferometry. Top: N fre-
quency modes of a box potential. Bottom: N frequency
modes, here taken to be in the vacuum, first pass through an
active/passive beam splitter Û(θ). A subset then go through

a unitary channel Û(ε) that imprints the parameters to be

estimated. Finally, Û(ε) “recombines” the frequency modes.

recent non-interferometric studies that consider estimat-
ing physical parameters using phonons of Bose-Einstein
condensates (BECs). For example, frequency modes were
used in a quantum metrology scheme to measure acceler-
ations [11] and detect high-frequency gravitational waves
using a BEC [12, 13]. More recently, phonons have been
used in a method to miniaturize gravimeters [14] and to
measure the gravitational field gradient within the mil-
limetre scale [15]. In this paper, we extend these ideas
to frequency interferometry, the application of which can
improve by several orders of magnitude the sensitivities
reported in these studies, which we illustrate using the
phononic gravitational wave detector [12].

Spatial interferometry and the pumped-up SU(1,1)
scheme. In general, a quantum interferometer can be bro-
ken up into four stages: i) the active/passive beam split-
ter, which usually entangles/populates the input state,
ii) the channel(s) that imprint(s) the parameter to be
estimated, iii) the transformation that recombines the
modes, facilitating interference. Finally, in iv) the modes
are measured. Conventionally, the second stage is consid-
ered to consist of unitaries acting independently in each
spatial mode Û(φ) = U1(φ)⊗U2(φ)⊗· · · (see also Figure
2).

Spatial interferometers, including the well-known
Mach-Zehnder interferometer, are commonly SU(2)
interferometers where the states belong to a two-
dimensional Hilbert space, which basis is spanned by
the states corresponding to the two possible paths |1〉
and |2〉 followed by the particles, and all the elements

of the interferometer can be described in terms of quan-
tum operators that obey an SU(2) algebra [16]. For ex-
ample, beam splitters exchange particles from one path
to another and can be mathematically represented by
σ+ = |1〉 〈2| and σ− = |2〉 〈1|. In 1986, Yurke et al. in-
troduced a new type of interferometer where the passive
beam splitters of SU(2), which perform mode-mixing op-
erations, are replaced with active beam splitters, which
perform quantum squeezing operations, such that the al-
gebra that defines its operations is SU(1,1) [16]. This new
type of interferometry, called SU(1,1) interferometry, has
the advantage over SU(2) that squeezing and entangle-
ment, which can improve the sensitivity of an interferom-
eter, are generated within the interferometer itself rather
than this having to be sourced separately. Then, since
the overall scheme will have fewer operational elements,
it should, in principle, be more robust to noise. In this
case, squeezing between spatial modes is introduced at
points P1 and P2 in Figure 2.

Sending in a coherent pump to an SU(1,1) interferome-
ter results in a two-mode squeezed state in the two spatial
modes and, therefore, in principle, a 1/N scaling in sensi-

tivity compared to 1/
√
N for a classical side mode state.

However, generating a large number of particles in the
spatial modes is extremely challenging and so the sensi-
tivity is easily beaten by interferometers operating at the
standard quantum limit with large input states. In order
to overcome this issue, a variant of the SU(1,1) inter-
ferometer, called pumped-up SU(1,1), has recently been
proposed where the pump beam first goes through a para-
metric amplifier and is then mixed with the side modes
such that all particles take part in the estimation proce-
dure [17]. This essentially allows for a 1/

√
NN0 scaling

in sensitivity where N0 is the number of particles in the
pump beam and, in general, N0 � N . This interferome-
ter contains both passive and active beam-splitters, such
that all the beam splitters within it are generated by gen-
eral two and three-mode unitary Gaussian operations. In
some sense this interferometer is a generalisation of SU(2)
and SU(1,1) interferometry, with the parametric ampli-
fiers of the SU(1,1) scheme seeding the quantum input
state of an SU(2) (or more properly SU(3) since there
are three modes) interferometer. Depending on the cho-
sen three-mode mixing angle, it is also able to act like an
SU(1,1) or SU(2) interferometer. After the three-mode
mixing operation, the modes are physically separated and
undergo unitary transformations that encode phases φ1

and φ2 on the respective states. For example, in an SU(2)
interferometer, the relative phase φ1 − φ2 is estimated,
whereas, an SU(1,1) interferometer is sensitive to the to-

tal unitary transformation Û(φ) = exp(−iφN̂/2) where

φ := φ1 + φ2 and N̂ := â†1â1 + â†2â2, with â1 and â2

the annihilation operators for the two side modes [16]
(see Figure 2). Note that the unitary can be written as
two transformations acting independently on each mode

Û(φ) = e−i
φ
2 â
†
1â1e−i

φ
2 â
†
2â2 = U1 ⊗ U2.

Quantum frequency interferometry. In matter-wave
spatial interferometers, interactions are usually sup-
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FIG. 2. Spatial interferometry. Top: pumped-up SU(1,1)
scheme with phase channel [17]. The pump mode (red) is ini-
tially in a coherent state and frequency modes (in blue and

green) are in the vacuum state. Ûsq(r) creates a two-mode
squeezed state between the frequency modes. The side modes
and pump are then sent through a tritter Ûtr(θ). The modes
are separate and follow different trajectories in space. The
side modes pick up a relative phase exp(−i(φ1 − φ2)N̂/2).
The dashed lines are laser pulses which act as atomic mir-
rors, or regular mirrors in the case of interferometry with
photons. The modes are recombined through the reverse trit-
ter and active beam splitter operations. Finally, a number-
sum measurement is performed on the side modes. Bottom:
circuit representation of pumped-up SU(1,1) interferometry
with phase channel.

pressed so that all particles are independent of each other.
In that sense, they are single particle setups. The ini-
tial state is a product state of the individual particle
states and the sensitivity scales with the standard quan-
tum limit 1/

√
N . However, quantum metrology stud-

ies show that entanglement, which requires interactions,
can be used to increase precision, reaching, in the op-
timal case, the Heisenberg limit 1/N . Interactions are
key to frequency interferometry: the atomic interactions
give rise to collective excitations, which are described by
massless bosons (also known as phonons) that are used
as the quantum information carriers.

We consider initially N frequency phonon modes of
a localized potential (Figure 1 Top). First the modes
are prepared, often in the vacuum, then a passive or ac-
tive beam splitter Û(θ), with θ = (θ1, θ2 . . . θN ), is ap-
plied to create a quantum state of a subset of modes,
which usually involves populating and entangling these
modes. Subsequently, the modes (or an even smaller

subset of modes) go through a channel Û(ε) with ε =
(ε1, ε2 . . . εm), which imprints the parameters to be es-
timated. Finally, before measurement, the modes are
“recombined” by Û(−θ). The frequency modes of the
phonons are delocalized in the potential but in physical

contact with each other, allowing for global estimation
channels where a global channel is a unitary that cannot
be written as U(ε) 6= U1 ⊗ U2 ⊗ · · · . This, in particu-
lar, facilitates the generalization of pumped-up SU(1, 1)
interferometry to global channels that include unitaries
which entangle the modes. Sensitivities are increased by
preparing entangled states, which can be achieved using
the particle interactions. The precision depends on the
lifetime of the mode excitations, which can be extended
by tuning the interactions without making the interfer-
ometer larger.
Frequency interferometry with Gaussian channels.

Here, we have chosen to present a three-mode exam-
ple of frequency interferometry, illustrated in Figure 3.
The example uses an analogue in frequency space of the
squeezing and tritter operations used in the pumped-up
SU(1,1) scheme. However, the pumped-up SU(1,1) was
introduced for spatial interferometry and, therefore, re-
stricted to separable channels of the form Û(φ) = U1⊗U2.
In this example, the channels we consider are entangling
two-mode Gaussian channels given by two-mode squeez-
ing and mode-mixing channels,

U(ξ) = eξâ
†
1â
†
2−ξ

∗â1â2 or (1)

U(ζ) = eζâ
†
1â2−ζ

∗â1â
†
2 , (2)

respectively, where ξ := seiφB and ζ := meiφA , with
s ≥ 0, m ≥ 0 and φA, φB ∈ R. These channels in-
clude both SU(1,1) and SU(2)-like interferometry. To-
gether with the phase-shift channel, considered in [17]
and single-mode squeezing, they form the complete set
of unitary two-mode Gaussian channels, also known as a
Bogoliubov transformations [18]. An analysis of the opti-
mum Gaussian input states for Gaussian channels using
the Quantum Fisher Information (QFI) is given in [19].

We will consider the parameter of interest ε to be en-
coded in the squeezing parameter s and mode-mixing pa-
rameter m. Specifically, we take s =: 1

4εB and m =: 1
4εA,

where A and B depend on the physical quantities of the
specific implementation of the scheme. Since the input is
a Gaussian state and all operations within the interfer-
ometer are Gaussian, we find it most straightforward to
consider the operation of the new interferometer within
the covariance matrix formalism (CMF) (see e.g. [18]),
where just two finite matrices are needed to describe the
quantum states of the modes. This formalism allows for
simple calculations of the QFI for the device, where we
surprisingly find that the sensitivity can be slightly en-
hanced when the parameter of interest is encoded in a
squeezing or mode-mixing channel.

Although the QFI can provide the optimum precision
given the above first two stages of an interferometer,
it does not by itself identify the measurement scheme
that achieves this. However, we find that the sensitivity
of a simple intensity measurement scheme can saturate
the quantum Cramér-Rao bound (QCRB) at large input
particle number. Within the CMF, we also find simple
expressions for the sensitivity of general interferometers
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FIG. 3. Three-mode example of Frequency Interferometry.
Top: ground state and frequency modes in a box potential.
The pump mode (red) is the phononic ground state and is
initially in a coherent state. Frequency modes (green and
blue) are sharp in frequency and delocalized in the potential.

Two-mode squeezing Ûsq(r) and mode mixing Ûtr(θ) can be
implemented, for example, by periodically changing the box’s
length at the right frequency or by tailoring a given sequence
of periodic motion at difference frequencies [20–24]. Bottom:
Circuit representation of pumped-up SU(1,1) scheme with a
Gaussian unitary channel. Since the modes are not spatially
separated, it is possible to consider channels that act on the
modes globally. In this case, the green and blue modes un-
dergo a two-mode Gaussian unitary channel Ûε. After the
reverse tritter and active beam splitter operations, a number-
sum measurement is performed on the frequency modes.

with such intensity measurement schemes, which can be
straightforwardly generalised to other schemes such as
homodyne.

The CMF is a phase-space representation of a quantum
state where a Gaussian state is fully defined by its dis-
placement vector d and covariance matrix σ. In the real
q − p representation, these are defined as the following
for a system consisting of n bosonic modes [25]:

d := 〈x̂〉 , (3)

σij :=
1

2
〈{x̂i, x̂j}〉 − 〈x̂i〉 〈x̂j〉 , (4)

where x̂ := (x̂1, x̂2, . . . x̂2n−1, x̂2n)T and x̂i are quadra-
tures defined by:

x̂2i−1 := âi + â†i , (5)

x̂2i := i(â†i − âi), (6)

with i ∈ Z+, and âi and â†i the annihilation and creation
operators. Unitary transformations U acting on density
matrices now lead to symplectic matrices S acting on the
displacement and covariance matrices through d′ = Sd
and σ′ = SσST [18].

The initial state of the pump mode is assumed to be
a coherent state. As in standard SU(1,1) interferometry,
we act on this state with a two-mode squeezing operation

Ûsq(r) = exp{χ(â†1â
†
2−â1â2)} to parametrically populate

the side modes, where χ := r exp{iϑsq}. The state of the

full system is then given by Ssd0 and Ssσ0S
T
s where Ss

is the symplectic matrix of this squeezing unitary and d0

and σ0 of the displacement and covariance matrices of
the initial coherent state [26]. Here we have assumed that
the pump is fairly undepleted by the squeezing operation
and remains in a coherent state |α〉, but we take α→ α0

after acting with Ss, where |α2
0| := |α|2 − 2 sinh2 r, and

N0 := |α0|2, N := 2 sinh2 r, so that particle number is
conserved [17].

Next we apply a tritter to the three modes, whose sym-
plectic matrix we denote by Str. We then act on the
side modes with the squeezing or mode-mixing opera-
tions given by (1) and (2). Subsequently, the beams are
brought ‘back together’ with another tritter and then an
outcoupling process, which are both the reverse of the
operations that were performed prior to the Gaussian
unitary channel. The state of the full interferometer is
then defined by d = Sd0 and σ = Sσ0S

T , where S :=
S−SεS+ with S− := Ss(−r)St(−θ), S+ := St(θ)Ss(r)
and Sε being either the squeezing or mode-mixing chan-
nel for the side modes.
Quantum Fisher information. Since it is independent

of the particular measurement scheme used, when calcu-
lating the QFI, we only need to consider the operations
up to and including the Gaussian unitary channels i.e. the
state of the relevant system is defined by d = SεS+d0

and σ = SεS+d0(SεS+)T . For Gaussian states, the
QFI, Hε, can be obtained through simple expressions (see
e.g. [27, 28]). When the squeezing channel is chosen, the
QFI is:

Hε =
1

16
B2
[
4 + sin2(2θ) sinh2 r

+ 2(1 + cos4 θ)η2(ϑsq) sinh2(2r)

+ |α0|2
(

4 sin4 θ + η1(r) sin2 2θ
)]
, (7)

where:

η1(r) := sinh(2r) cos νB + cosh(2r),

η2(ϑsq) := sin2(ϑsq − φB),

νB := 2ϑ− 2ϑ0 − ϑsq + 2φB .

In Figure 4, we plot the dependence on the tritter an-
gle θ for the QFI when there is a squeezing channel (7),
standard phase-shift channel (which can be found in [17]
and Appendix C) and mode-mixing channel (8). Inter-
estingly, we find a slight improvement in the QFI for the
squeezing and mode-mixing channels compared to the
conventional phase-shift channel. In the former case this
is because even a vacuum input to the channel can be
used to estimate the parameter of interest.

Given the optimum phase relationships ϑsq = φB+π/2
and νB = 0, the QFI for the squeezing channel (7) has
turning points at θ = 0, θ − π/2 and θ = θt where θt
is defined in [17] and Appendix D, and approximates

π/4 + csc−1(N +
√
N(N + 2)) when N is large. Here we
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concentrate on the most interesting and relevant regimes,
which are when θ = 0 and N � 1. In the former case,
we recover standard SU(1,1) interferometry, and so (7)
becomes the QFI for an SU(1,1) interferometer with a
squeezing channel, which could still be considered an
SU(1,1) interferometer since the unitary representation
of a squeezing channel is part of the SU(1,1) group and
the number-sum operation can still be used in the mea-
surement scheme. The QFI in this case scales as N2,
which is the scaling obtained in conventional SU(1,1) in-
terferometry. On the other hand, when N � 1, the QFI
(7) can be approximated by B2 sin2(2θ)NN/8, where we
have also assumed that N � 2 and taken the optimum
phase relation νB = 0. This NN scaling was also found
in [17] for the phase-shift channel case. In practice, this
scaling can beat the conventional N2 scaling by orders of
magnitude since N � N in current experiments.

If instead of the squeezing channel we use the mode-
mixing channel, the QFI is:

Hε =
1

8
A2
[
(1 + cos2 θ) sinh2(2r)

+ sin2 θ Φ1(θ, φA)
(

sinh2(2r)− 2 sinh2 r
)

+ 2|α0|2 sin2 θ
(

sin2 θ sin2 φ+ Φ1(θ, φA)η3(r)
)]
, (8)

where:

Φ1(θ, φA) := sin2 θ sin2 φA − 1,

η3(r) := sinh(2r) cos νA − cosh(2r),

νA := 2ϑ− 2ϑ0 + ϑsq

As for the squeezing channel, when θ = 0 we obtain
the QFI for a conventional SU(1,1) interferometer with a
mode-mixing channel. In contrast to the squeezing case,
however, this type of interferometer derived when θ = 0
would not be considered an SU(1,1) interferometer by the
original definition [16] since the unitary representation
of the mode-mixing channel does not form part of the
SU(1,1) group. Instead, such an interferometer would
be described by a larger group, for example, the uni-
tary group associated with a double covering of Sp(4,R)
[29]. Similarly, our full interferometer with a general uni-
tary Gaussian channel could be considered an Sp(6,R)
interferometer. If we assume N � 1 in (8), we obtain
H ≈ A2 sin2 θ(1 − sin2 θ sin2 φA)NN/2, where we have
also assumed that N � 1/2 and taken νA = π.
Sensitivity. We now choose a specific measurement

process, the sum of the number of particles in the side
modes. That is, the measured observable is Ŝ = N̂ :=

â†1â1 + â†2â2. The square of the sensitivity of the interfer-
ometer is defined as (see e.g. [30] for a derivation):

∆2ε :=
Var(Ŝ)

(∂ε 〈Ŝ〉)2
, (9)

where Var(Ŝ) := 〈Ŝ2〉 − 〈Ŝ〉
2
. For Gaussian states, this

0
π

8

π

4

3 π

8
π

2

θ0

2

4

6

8
H

FIG. 4. The QFI, Hε, of the interferometer as a function of
the tritter angle θ, with r = 0.4 and |α0|2 = 3.4. The solid
blue line is when a phase-shift channel is used, the dotted
red line is for a two-mode squeezing channel (with νB = π/2,
ϑsq = φB + π/2, B = 2), and the dashed purple line is for a
two-mode mode-mixing channel (with νA = π/2, φA = 0, and
A = 2).

is related to the Fisher information through [31]:

F = F0 +
2
(
∂ε

√
Var(Ŝ)

)2

Var(Ŝ)
, (10)

where F0 := 1/∆2ε, such that F ≥ F0. Writing (9) in
the CMF in the q, p basis, we find the simple expressions
[32]:

〈Ŝ〉 =
1

4
[Tr(σs) + dTs ds − 2n], (11)

Var(Ŝ) =
1

8
[Tr(σ2

s) + 2dTs σsds − 2n] (12)

where n is the number of modes, which is 2 in this case,
and σs and ds are the covariance and displacement ma-
trices of the side modes, which are generated from the
full d and σ by simply removing the first two rows and
columns. Expressions for the mean 〈Ŝ〉 and variance

Var(Ŝ) for the squeezing channel can be found in Ap-
pendix E when working with small s. In the limit that
N � 1 and N � 1, we find F0 = B2 sin2(2θ)NN/8,
where we have also taken the optimum phase relation
νB = 0. This matches the corresponding QFI and so the
number-sum measurement is an optimum measurement
scheme in these limits.

When working with small m, full expressions for the
mean 〈Ŝ〉 and variance Var(Ŝ) for the mode-mixing chan-
nel can be found in Appendix E. Taking N � 1 and N �
1, we obtain F0 ≈ A2 sin2 θ(1 − sin2 θ sin2 φA)NN/2,
where we have also taken the optimum phase relation
νA = π. Therefore, as with the squeezing channel, this
matches the QFI in the corresponding limits. Future
work will apply multiparameter estimation techniques
to, for example, estimate squeezing and mode-mixing pa-
rameters simultaneously.
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Implementation in a BEC. As an example of an im-
plementation of the scheme, consider a one-dimensional
BEC trapped in a box of length L and interacting with
a periodic potential εVε(x, t), with ε� 1. The Hamilto-
nian for the Bose gas is given by

Ĥ =

∫
dxΨ̂†

[
− ~2

2m
∇2 + εVε(x, t)

]
Ψ̂ (13)

+
1

2
g

∫
dxΨ̂†Ψ̂†Ψ̂Ψ̂, (14)

where Ψ̂ is the field operator of the atoms. The constant
g = 4π~2a/m is the coupling strength for a two-body
contact potential, with a the s-wave scattering length and
m the atomic mass [33, 34]. Depending on the nature of
the potential εVε(x, t), this implementation can be used
to measure gravitational effects including gravitational
fields and their gradient [35], gravitational waves [12] and
also electromagnetic fields interacting with the phonons
[36–38].

For a large number of atoms N0 � 1 in the dilute
and low-energy regime, the Bogoliubov approximation
enables the decomposition of the atomic field operator

Ψ̂(x, t) = [φ0a0 + ψ̂(x, t)]e−iµt/~ in terms of a classical
function for the ground state φ0a0 ≈ φ0

√
N0 and a quan-

tum field ψ̂(x, t) that can be written as an infinite sum
of quasi-particle modes, with µ the chemical potential.
At low energies, these quasi-particles behave as phonons
with frequency ωn = nπcs/L, where cs is the speed of
sound. In Appendix H, we show how different choices of
potentials Vε(x, t) and resonance conditions can imple-
ment Ss(r), St(θ) and Sε for the phonons.

Consider, for example, taking Vε(x, t) = V0x
2 sin Ωt,

with V0 and Ω constants. If two phonon modes l and
n have frequencies such that Ω = ωn + ωl, then this
potential will generate a resonant two-mode squeezing
Gaussian channel that has squeezing parameter s = εB

4 =
2ε|MlnVl,n|t/~, with:

Mln ≈ i
L3
(
l2 + n2

)
2
√

2nl (l2 − n2)
2
π3ζ

. (15)

Here, ζ := ~/(
√

2mcs) is the BEC healing length., and
the coefficients Vl,n are given by Vl,n =

(
1 + (−1)l+n

)
V0

[35]. If we assume that Ss(r) creates NP = 2 sinh2 r
phonons in modes n and l, and that the squeezing channel
is generated by a quadratic potential, the precision in
estimating ε is then:

∆ε =
~2π3

√
2nl

(
l2 − n2

)2
mcsV0θL3

√
τtN0Np (l2 + n2)

, (16)

where we used M = τ/t, with τ the integration time
and t is the interaction time, which is bounded by the
lifetime of the phonons. Similarly, one can estimate
the precision for the the mode-mixing channel, where
A = 8|MlnVl,n|t/~. However in this case l, n are mode
numbers of frequency modes whose difference matches Ω.

Note that when the phonons interact with a periodic
potential which encodes the parameter to be estimated, it
has been found to be convenient to choose phonon modes
that are in resonance with the frequency of the potential.
Previous work shows that resonances producing paramet-
ric amplification lead to higher degrees of mode mixing
and squeezing of phonons [22, 24, 35]. The periodic po-
tentials can be due to gravitational [1, 35] or electromag-
netic [36–39] effects and lead to higher sensitivities in the
detectors [11, 12].
Application of frequency interferometry to gravita-

tional wave detection. In the case that the external po-
tential corresponds to a monochromatic continuous grav-
itational wave of frequency Ω = ωl + ωn, the potential
is Vε(x, t) = V0x

2 sin Ωt, with V0 = mΩ2/4 (see [40, 41]
and Appendix I). Consider, for example, a 7Li BEC with
N0 = 4.4 × 108 atoms [42] in a trap with dimensions
L = 0.005 m and α = 0.001. We assume that the scatter-
ing length is tuned to a = 99a0, with a0 the Bohr radius.
Taking into consideration two and three-body losses, we
initially prepare the modes n = 260 and l = 258 in a
two-mode squeezed state with Np = 4000 phonons and a
lifetime of t = 1 ms. In this case, we obtain a sensitivity
of ∆ε = 4.3 × 10−21 for the interferometry scheme at a
gravitational wave of angular frequency Ω = 25.3 kHz
and assuming 10 independent detectors operating for
τ = 1 yr. In contrast, the previous non-interferometric
scheme would have provided a sensitivity of ∆ε = 10−10.
Higher sensitivities can be reached because frequency in-
terferometry increases the number of phonons in the side
modes by beam-splitting the phonons with the conden-
sate, which can be achieved by, for example, modifying
the tapping potential (see [43, 44] and Appendix H). For
a detail derivation, constraints and examples on sensitiv-
ities, see Appendix I.

There are no known astrophysical objects which are
small and dense enough to emit at frequencies beyond
104 Hz [45]. However, we consider sensitivities to higher
frequencies because any discovery beyond this range
would be produced by other yet-unknown sources of grav-
itational waves in the cosmos. This includes exotic ob-
jects such as primordial black holes or boson stars and
cosmological events in the early Universe, such as phase
transitions, preheating after inflation, oscillons, and cos-
mic strings [45, 46]. Detecting gravitational waves at fre-
quencies beyond the range of sensitivity of LIGO might
eventually lead to the detection of dark matter. Interest-
ingly, ultralight dark matter models for collective phe-
nomena, as opposed to single scattering regimes, predict
monochromatic long-lived dark matter waves at very high
frequencies. The frequency of these wave is set by the
dark matter mass and ranges from 10−8 to 1014 Hz [47].
The range of the application of frequency interferometry
to the detection of long-lived gravitational waves depends
on the frequency of the modes that resonate with the
wave. In the case that the modes are BEC phonons, this
is given by the mode number, the speed of sound and the
dimensions of the trap.
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Interestingly, Weber bars attempted to use resonances
of frequency modes to detect gravitational waves. How-
ever, the large metallic devices were not cooled below
100mK. At these temperatures the vibrational modes
are in the classical domain and cannot be prepared in
quantum states. Ultracryogenic detectors could reach
the standard quantum limit, but squeezing of the modes
could not be produced in these systems [48]. The pro-
posal in [12] resembles a quantum version of a Weber
bar where the atom-atom interactions in the BEC are
Hamiltonian non-linearities which produce quantum ex-
citations of phononic modes. In this case, a harmonic
perturbation can produce squeezing via parametric am-
plification exploiting resonances between the potential
perturbation and the quantum modes.

Compatibility with General Relativity. Quantum spa-
tial atom interferometers are commonly described by
non-relativistic quantum mechanics. The state evolu-
tion is then given by the Schrödinger equation which is
invariant under Galilean transformations. For this rea-
son, the description is only compatible with the Newto-
nian approximation of gravity where the notion of time is
absolute. Describing spatial interferometers beyond the
Newtonian approximation is non-trivial since the equa-
tions, as well as the inner products, must be Lorentz-
invariant and conserve quantum probabilities. This con-
dition can be consistently satisfied for quantum fields but
is problematic for individual particles [49]. An impor-
tant advantage of frequency interferometry is that it can
be applied in both Newtonian and General Relativistic
regimes, in the latter using a theoretical description that
is underpinned by quantum field theory in curved space-
time [37, 50]. This enables the application of the scheme
to study effects in General Relativity and modified the-
ories, including the estimation of spacetime parameters,
and searches for dark energy and matter.

Summary. We have introduced a scheme for interfer-
ometry that uses the frequency modes of a quantum field
trapped in a localized potential. This setup does not re-
quire a large spatial extent, facilitating miniaturization.
Since the modes occupy the same region in space at all
times, it is possible to estimate parameters encoded in
both phase shift and global channels acting on the modes.
This includes channels that entangle the modes. As an

example, we estimate the parameters of two-mode Gaus-
sian channels using a three-mode scheme that implements
an analogue in the frequency domain of the tritter oper-
ation introduced in the pumped-up SU(1,1) scheme [16].
The tritter operation improves the scaling of the precision
with the number of particles. Quantum frequency in-
terferometry should be implementable in many systems,
such as optical, hybrid atom-light, superconducting cir-
cuits, cold atoms and BECs where the global channels
could be generated using, for example, non-linear medi-
ums and non-linear interactions. We show how the three-
mode example can be implemented in a BEC, where the
scheme exploits atom-atom interactions. These type of
interactions produce undesired noise in other setups such
as atom spatial interferometry. When the external po-
tential that interacts with the BEC corresponds to an
electromagnetic or a gravitational field, the scheme can
be used to estimate the field parameters with a system
trapped in a millimetre-scale trap. We show that this
scheme can improve the precision in the detection of
gravitational waves, enabling good sensitivities even in
the case that squeezing is much smaller than assumed
previously in [12] and that the system suffers from short
phononic lifetimes.
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Appendix A: Symplectic matrices of interferometry operations

Here we provide the symplectic matrices, in the real q, p representation, for the various processes involved in our
considered active interferometry schemes. As in the main text, the initial state of the pump mode is assumed to be a
coherent state, and so the displacement and covariance matrices of the full input state to the interferometer are:

d0 =


2Re(α)
2Im(α)

0
0
0
0

 =
√
N


2 cosϑ0

2 sinϑ0

0
0
0
0

 , (A1)

σ0 = 16, (A2)

where we have written α ≡
√
Neiϑ0 , with N the total particle number, and 16 := diag(1, 1, 1, 1, 1, 1) the identity

matrix of which the first two rows and columns are for the pump mode, the next two rows and columns are for one
of the side modes, and the final rows and columns are for the other side mode.

The first stage of the interferometer is the two-mode squeezing operation that parametrically populates the side
modes, which has the following symplectic matrix (see e.g. [18]):

Ss =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 cosh r 0 sinh r cosϑsq sinh r sinϑsq
0 0 0 cosh r sinh r sinϑsq − sinh r cosϑsq
0 0 sinh r cosϑsq sinh r sinϑsq cosh r 0
0 0 sinh r sinϑsq − sinh r cosϑsq 0 cosh r

 , (A3)

where r is the squeezing parameter and ϑsq is the squeezing phase. Here, the first two columns and rows are for the
pump, the next two column and rows are for one of the side modes, and the last two columns and rows are for the
other side mode.

The next stage is a tritter between the side-modes and the pump, which has the symplectic matrix given in (B11).
Following the tritter, there is the squeezing or mode-mixing channel, which are defined by the unitary transformations:

U(ξ) = eξâ
†
1â
†
2−ξ

∗â1â2 or (A4)

U(ζ) = eζâ
†
1â2−ζ

∗â1â
†
2 , (A5)

where ξ := seiφB and ζ := meiφA , with s ≥ 0, m ≥ 0 and φA, φB ∈ R. The symplectic matrices for these unitary
evolutions are (see e.g. [18]):

Ssc =

 1 0 0
0 1 cosh s RφB sinh s
0 RφB sinh s 1 cosh s

 , (A6)

and

Smc =

 1 0 0
0 1 cosm RφA sinm
0 −RTφA

sinm 1 cosm

 , (A7)

where:

RφB :=

(
cosφB sinφB
sinφB − cosφB

)
, (A8)

RφA :=

(
cosφA sinφA
− sinφA cosφA

)
. (A9)
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In contrast, the symplectic matrix for a unitary phase evolution Û(φ) = exp(−iφN̂/2) would be the following (see
e.g. [18]):

Spc =



1 0 0 0 0 0
0 1 0 0 0 0

0 0 cos φ2 sin φ
2 0 0

0 0 − sin φ
2 cos φ2 0 0

0 0 0 0 cos φ2 sin φ
2

0 0 0 0 − sin φ
2 cos φ2

 . (A10)

Appendix B: Derivation of symplectic matrix of tritter

The tritter used in the pumped-up SU(1,1) interferometry scheme is generated by the following Hamiltonian [17]:

Htr =
~G√

2

[
eiϑâ†0(â1 + â2) + e−iϑâ0(â†1 + â†2)

]
, (B1)

which, in the Heisenberg picture, results in:

â1,2(θ) = â1,2 cos2(θ/2)− â1,2 sin2(θ/2)− ie−iϑ√
2
â0 sin θ, (B2)

â0(θ) = â0 cos θ − ieiϑ√
2

(â1 + â2) sin θ, (B3)

where θ := Gt is the angle for an evolution time t, and ϑ is the phase. We can write the above transformation in
matrix form:

a(θ) := Aa (B4)

where:

a :=



â0

â†0
â1

â†1
â2

â†2

 , (B5)

A :=



cos θ 0 − ie
iϑ
√

2
sin θ 0 − ie

iϑ
√

2
sin θ 0

0 cos θ 0 ie−iϑ√
2

sin θ 0 ie−iϑ√
2

sin θ

− ie
−iϑ
√

2
0 cos2(θ/2) 0 − sin2(θ/2) 0

0 − ie
iϑ
√

2
0 cos2(θ/2) 0 − sin2(θ/2)

− ie
−iϑ
√

2
0 − sin2(θ/2) 0 cos2(θ/2) 0

0 − ie
iϑ
√

2
0 cos2(θ/2) 0 cos2(θ/2)


. (B6)

We now move to the real symplectic q, p representation:

q = Qa, (B7)

where:

q :=


q0

p0

q1

p1

q2

q2

 , (B8)
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and:

Q :=


1 1 0 0 0 0
−i i 0 0 0 0
0 0 1 1 0 0
0 0 −i i 0 0
0 0 0 0 1 1
0 0 0 0 −i i

 . (B9)

The symplectic representation of the tritter transformation is then:

q(θ) = Qa(θ) = QAa = QAQ−1q := Strq, (B10)

where:

Str = QAQ−1 (B11)

=



cos θ 0 1√
2

sin θ sinϑ 1√
2

sin θ cosϑ 1√
2

sin θ sinϑ 1√
2

sin θ cosϑ

0 cos θ − 1√
2

sin θ cosϑ 1√
2

sin θ sinϑ − 1√
2

sin θ cosϑ 1√
2

sin θ sinϑ

− 1√
2

sin θ sinϑ 1√
2

sin θ cosϑ cos2( θ2 ) 0 1
2 (−1 + cos θ) 0

− 1√
2

sin θ cosϑ 1√
2

sin θ sinϑ 0 cos2( θ2 ) 0 1
2 (−1 + cos θ)

− 1√
2

sin θ sinϑ 1√
2

sin θ cosϑ 1
2 (−1 + cos θ) 0 cos2( θ2 ) 0

− 1√
2

sin θ cosϑ − 1√
2

sin θ sinϑ 0 1
2 (−1 + cos θ) 0 cos2( θ2 )


. (B12)

Note that with a conventional two-way beam-splitter, θ = π/2 would swap the modes. However, for the above tritter,
θ = π/2 would not completely swap the side modes and pump modes. This is responsible for N appearing in the QFI
expressions even when θ = π/2.

Appendix C: Quantum Fisher Information of Phase-Shift Channel

If a conventional phase-shift channel were used instead of the squeezing or mode-mixing channels, the QFI is:

H =
1

4

[
sin2(2θ) sinh2 r + 2(1 + cos4 θ) sinh2(2r)

+ |α0|2
(

4 sin4 θ + ηp(r) sin2 2θ
)]
, (C1)

where:

ηp(r) := sinh(2r) cos νP + cosh(2r), (C2)

νP := 2(ϑ− ϑP ) + ϑsq. (C3)

This is obtained using the CMF by replacing Sε with the symplectic matrix for a phase-shift channel. It was also
derived in [17] using the Heisenberg picture rather than the CMF [51].

Appendix D: Turning points of Quantum Fisher Information

As discussed in the main text, the QFI H of the interferometer with a squeezing channel has three turning points
when the optimum phase relations are chosen: ϑsq = φB + π/2 and ϑ = ϑ0 − φB/2 + π/4. These occur at: θ = 0,
θ = π/2 and θ = θt, where θt = cos−1(zt)/2 with:

θt := cos−1(zt)/2, (D1)

zt :=
csch2 r(sinh(2r)2 − 2|α0|2)

4|α0|2(1 + coth r)− 2 cosh(2r)
≡ N(N + 4)− 2N

N(2N − 3N − 1) + 2(N −N)
√
N(N + 2)

. (D2)

The angle θt matches that found in [17] for a phase-shift channel. When N is large it can be approximated by [17]:

θt ≈
1

4
π +

1

2
csc−1(N +

√
N(N + 2)). (D3)
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For θ = 0, θ = π/2 and θ = θt, H is:

H(θ = 0) =
1

4
B2
(

1 + sin2(ϑsq − φB) sinh2(2r)
)
≡ 1

4

(
1 + sin2(ϑsq − φB)N2

)
, (D4)

H(θ =
π

2
) =

1

4
B2
(

1 +N0 +
1

2
sin2(ϑsq − φB)N2

)
, (D5)

H(θ = θt) =
1

32
B2Ne2r(1 + coth r) +O(N

0
) (D6)

−−−→
r�1

1

8
B2NN, (D7)

where, for the θ = θt turning point, we have assumed that N � 1 and taken the optimum phase relation ϑ =
ϑ0 + ϑsq/2− 2φB .

Analogous expressions to (D4)-(D6) for the squeezing case can be obtained for H of the mode-mixing channel when
θ = 0, θ = π/2 with φA = π/2, and θ = π/2 with φA = 0:

H(θ = 0) =
1

4
A2N2, (D8)

H(θ =
π

2
, φA =

π

2
) =

1

4
A2
(
N0 +

1

2
N2
)
, (D9)

H(θ =
π

2
, φA = 0) =

1

4
A2(Ne2r +N) +O(N

0
) (D10)

−−−→
r�1

1

2
A2NN, (D11)

where, for the last case we have assumed that N � 1 and taken ϑ = ϑ0 − ϑsq/2 + π/2.

Appendix E: Sensitivity

In the main text we assume an intensity measurement. For the squeezing channel, and working with small s, we
find the following expressions for this measurement scheme:

〈Ŝ〉 =
1

4
s2
(
|α0|2 sin2(2θ) (sinh(2r) cos νB + cosh(2r))

+ 4
(
1 + cos4 θ

) (
sinh2(2r) sin2(ϑsq − φB) + 1

)
+ sin2(2θ) cosh2 r

)
, (E1)

Var(Ŝ) =
1

4
s2
(
|α0|2 sin2(2θ)(sinh(2r) cos νB + cosh(2r))

+ 8
(
1 + cos4 θ

) (
sinh2(2r) sin2(ϑsq − φB) + 1

)
+ sin2(2θ) cosh2 r

)
, (E2)

F0 =
1

16
B2

(
η4 sin2(2θ) +

(
1 + cos4 θ

)
η5

)2

η4 sin2(2θ) + 2 (1 + cos4 θ) η5

, (E3)

where:

η4 := |α0|2η1(r) + cosh2 r, (E4)

η5 := sinh2(2r)η2 + 1. (E5)

We now use particle conservation to write |α0(r)|2 = |α|2 − 2 sinh2 r and |α|2 = N so that |α(r)|2 = 1/ε − 2 sinh2 r,
where ε := 1/N , and take N � 1, to find:

F0 =
1

16
B2 sin2(2θ)η1(r)N +O(N

0
) (E6)

≈ 1

8
B2 sin2(2θ)NN, (E7)
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where in the last line we have assumed that N � 1 and taken the optimum phase relation νB = 0.
If, on the other hand, the mode-mixing channel is chosen, then, for small m, we have:

〈Ŝ〉 = m2
[

sin2 θ(Φ1|α0|2η3(r)− Φ2 sinh2 r

+ (Φ1 − 1) sinh2(2r)) + 2 sinh2(2r)
]
, (E8)

Var(Ŝ) = m2
[
Φ1 sin2 θ(|α0|2η3(r)− sinh2 r

+ 2 sinh2(2r)) + 2(1 + cos2 θ) sinh2(2r)
]
, (E9)

where

Φ2 := sin2(θ) cos2(φA)− 1. (E10)

Taking N � 1, we find:

F0 =
1

4
A2 sin2 θ Φ1(θ, φA)η3(r)N +O(N

0
) (E11)

≈ 1

2
A2 sin2 θ(1− sin2 θ sin2 φA)NN, (E12)

where in the last line we have assumed that N � 1 and taken the optimum phase relation νA = π.

Appendix F: Full undepleted pump regime

In the main text, we have assumed that the pump is relatively undepleted after the first active element (see also
[17]). If we want to further assume that the pump is also relatively undepleted after the tritter stage, then θ cannot
be too large. After the tritter stage, in general, the number of particles in the pump and side modes is the following:

N0(θ) = N0 cos2 θ +
1

2
N sin2 θ, (F1)

N(θ) = N0 sin2 θ +
1

2
N(1 + cos2 θ). (F2)

Let us require that N = γN0 and N(θ) = δN0(θ) where γ � 1, δ � 1 and δ ≥ α. Then θ must satisfy:

θ ≤ 1

2
arccos

(δγ + 2δ − 3γ − 2

δγ − 2δ + γ − 2

)
. (F3)

For example, taking δ = 0.1, we obtain:

θ ≤ 1

2
arccos

(18 + 29γ

22− 11γ

)
, (F4)

which, in the limit γ → 0, gives θ2 ≈ 0.0938, and we note that θ2/ sin2 θ ≈ 1.03.
In the case of the squeezing channel, the QFI in this fully undepleted pump regime becomes:

H ≈ 1

4
B2
(

1 +N2 + θ2(N0e
2r +N/2−N2)

)
(F5)

≈ 1

2
B2θ2N0N, (F6)

where we have again used ϑ = ϑ0 + ϑsq/2− 2φB , and further assumed that r � 1 and N � 1 in the last line. When
considering a number-sum measurement scheme, the square-inverse of the sensitivity is:

F0 ≈
1

2
B2θ2N0N, (F7)

when r � 1, and 2ϑ = 2ϑ0 + ϑsq − 2φB . This agrees with the QFI expression above (F6). The number-sum
measurement is, therefore, an optimum measurement scheme in these limits.
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For the pump to remain relatively undepleted before the mode-mixing channel, the QFI becomes:

H ≈ 1

4
A2
(
N2 + θ2(N0e

2r +N/2−N2)
)

(F8)

≈ 1

2
A2θ2N0N, (F9)

where we have assumed that r � 1 in the last line. This is similar to the QFI for the squeezing channel (F5), just
with B replaced by A. Equally, the square inverse of the sensitivity is:

F0 ≈
1

2
A2θ2N0N, (F10)

with 2ϑ = 2ϑ0 − ϑsq and r � 1.

Appendix G: Heterodyne detection

Rather than using a number-sum measurement, another possibility would be to use a heterodyne measurement, for
example, between the pump and the side modes. Balanced homodyne detection for the side modes was considered in
[52] for a standard SU(1,1) interferometer and [53] for a ‘truncated’ SU(1,1) experiment. In our considered heterodyne
case, at the measurement stage a balanced beam splitter could be applied between one of the side modes and the
pump, and the difference of the number of particles in the two output parts of the final beam splitter could be
considered: Ŝ = N̂1 − N̂2. In the covariance matrix formalism we have:

〈Ŝ〉 =
1

4
[Tr(σJz) + dTJzd] (G1)

Var(Ŝ) =
1

8
[Tr([σJz]

2) + 2dTJzσJzd− 2n]. (G2)

where:

Jz =

(
1 0
0 −1

)
. (G3)

However, in order to measure the squeezing parameter of the estimation channel, Var(Ŝ) or 〈Ŝ2〉 would need to be
considered as the signal (see e.g. [54]) and, therefore, the variance of this would be used in the error estimation.

Appendix H: Implementation in a BEC

In this section, we provide detail on the implementation of the three-mode frequency interferometric scheme using
phonons of a BEC. The Hamiltonian of a Bose gas with a tapping potential V(r) is:

Ĥ =

∫
V

drΨ̂†
[
− ~2

2m
∇2 + V(r)

]
Ψ̂ +

1

2
g

∫
V

drΨ̂†Ψ̂†Ψ̂Ψ̂, (H1)

where V is the volume. We consider the dilute regime, where the contact potential only depends on two-body
interactions and the coupling strength is given by g = 4π~2a/m, where a isthe s-wave scattering length [33, 34]. It is

convenient to decompose the field operator Ψ̂† in terms of the annihilation operator for the ground state â0 and the
operators for the n-th excited state ân:

Ψ̂(r, t) = [ψ̂0(r) + ψ̂(r, t)]e−iµ(t)/~, (H2)

where:

ψ̂0(r) := φ0(r)â0, (H3)

ψ̂(r, t) :=
∑
n 6=0

φn(r)ân(t). (H4)
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with the commutator [ân, â
†
l ] = δnl. We consider µ(t) = µt where µ is the chemical potential. In the case that the

external potential vanishes, the Hamiltonian can be diagonalized by taking two steps. The first is assuming that
the ground state is macroscopically occupied in a large coherent state. In this case the ground state operator can
be replaced by â0 ≈

√
N0. This is called the Bogoliubov approximation and it is applicable to systems with a large

number of particles in the low temperature regime (T much smaller than the condensates’ critical temperature). The
second step involves applying a Bogoliubov transformation to ân, such that:

ψ̂(r, t) =
∑
n

[un(r)b̂ne
−iωnt + v∗n(r)b̂†ne

iωnt], (H5)

where [b̂n, b̂
†
l ] = δnl. Neglecting trilinear and quartic terms in b̂n, b̂

†
n (since they have fewer factors of

√
N0 � 1), yields

the diagonal Hamiltonian (see e.g. [33]):

: Ĥ : =
∑
n

~ωnb̂†nb̂n. (H6)

Here :: refers to normal ordering and un, vn are mode solutions to the Bogoliubov-de-Gennes equations [33]:

~ωnun(r) =
[
− ~2

2m
∇2 − µ+ 2gN0|φ0|2

]
un(r) + gN0φ

2
0vn(r) (H7)

−~ωnvn(r) =
[
− ~2

2m
∇2 − µ+ 2gN0|φ0|2

]
vn(r) + gN0φ

∗2
0 un(r), (H8)

satisfying the orthonormal condition: ∫
dr[u∗n(r)ul(r)− v∗n(r)vl(r)] = δnl. (H9)

The ground state wave function φ0 satisfies the time-independent Gross-Pitaevskii equation:[
− ~2

2m
∇2 + V(r) + gN0|φ0|2

]
φ0 = µφ0, (H10)

such that φ0(t) := φ0e
−iµt/~ satisfies the time-dependent version. The energy spectrum is given by:

(~ωn)2 = (cs~kn)
2

+
(
~2k2

n/2m
)2
, (H11)

where cs :=
√
gρ/m is the speed of sound of the BEC and ρ is the number density. In the low energy limit ~ωn � mc2s,

the dispersion law is linear and thus b̂†n and b̂n create and annihilate phonons of the BEC.

We now apply a small time-dependent potential εVε(r, t) to the BEC where ε� 1. This introduces a term εVεΨ̂†Ψ̂
to (H1), which, after applying (H2) and (H5), provides an interaction Hamiltonian (see Appendix C of [55] for a
detailed derivation using the grand canonical Hamiltonian):

ĤI(t) = ε

∫
drVε(r, t)

[
|a0|2|φ0|2 + |a0|

∑
n

(
b̂ne
−iϑ(r)e−iωnt + b̂†ne

iϑ(r)eiωnt
)

(H12)

+
∑
n,m

[u∗n(r)um(r)b̂†nb̂me
i(ωm−ωn)t + vn(r)v∗m(r)b̂nb̂

†
me
−i(ωm−ωn)t] (H13)

+
∑
n,m

[u∗n(r)v∗m(r)b̂†nb̂
†
me

i(ωm+ωn)t + un(r)vm(r)b̂nb̂me
−i(ωm+ωn)t]

]
, (H14)

where exp(iϑ(r)) := φ0(r)u∗n(r) + φ∗0(r)v∗n(r).
We now consider how the experimentalist can tailor a sequence of external potentials of the form Vε(r, t) with

the appropriate resonance conditions to implement the unitaries Û(θ) and Û(−θ) in the phases (i) and (iii) of our
frequency interferometric scheme. Frequency interfereometry can then be performed with a single BEC in a pumped-
up SU(1,1) scheme. In this case, the condensate atoms act as the pump, and two phonon modes can be used as the
side modes.
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1. Tritter

The Hamiltonian for a tritter is given by (B1) where here we treat â0 as the annihilation operator for the condensate,

and ân 6=0 as the annihilation operator for the phonon modes, which we denoted as b̂n 6=0 above. Since the condensate
must be more populated than the phonon modes before and after the tritter for our description of the BEC used
above to still hold, we can apply the Bogoliubov approximation and drop the hat on â0, leaving us with:

Htr =
~G√

2
|a0|
[
eiϑ(b̂m + b̂n) + e−iϑâ0(b̂†m + b̂†n)

]
. (H15)

This can be picked out from (H12) by choosing an oscillating potential of the form V (t) = εV0 cos(Ωt) cos(Ω′t), where
Ω := ωm + ωn and Ω′ := ωn − ωn, and assuming that ϑn(r) ≈ ϑm(r), which could be achieved, for example, by
choosing modes with equal and opposite momenta in a uniform BEC with periodic boundary conditions [33].

2. Two-mode squeezing

To create a two-mode squeezed state of phonons, we require a Hamiltonian of the form (see e.g. [18]):

Ĥ = s[eiϑsq b̂†mb̂
†
n + e−iϑsq b̂mb̂n]. (H16)

This can be obtained from (H12) by choosing an oscillating potential to pick out these particular terms on resonance
[55]. For example Vε(t) = εV0 sin Ωt would achieve this where Ω := ωm + ωn and V0 is a constant amplitude.

Appendix I: Application to the detection of gravitational waves

As in the previous appendix, we assume a Bose gas operating in the dilute regime. However, we now take a box
potential with V(r) = 0 and V = LA, where L is the length and A is the cross-section. We assume that L is much
greater than the dimensions of A and restrict the analysis to modes with vanishing transversal wave numbers, i.e.
we only consider the direction along L, which we label x. The mode solutions, which fulfill von Neumann boundary
conditions since ρ vanishes at the potential walls, are given by [33, 55]:

un(r) = un

√
2

LA
cos(kn(x+ L/2)), (I1)

vn(r) = vn

√
2

LA
cos(kn(x+ L/2)), (I2)

where

un, vn =

√
~2k2

n/2m±
√

2mc2s + ~2k2
n/2m

2
√
~ωn

(I3)

and kn = nπ/L = ωn/cs. Taking the time-dependent potential Vε(r, t) = Vε(x, t) = Vε(x) sin Ωt, writing sin Ωt ≡
1/(2i)(eiΩt − e−iΩt), and applying the rotating-wave approximation, yields [55]:

ĤI(t) =
∑
n

M0n

(
b̂ne−i(ωn−Ω)t − b̂†nei(ωn−Ω)t

)
+
∑
l,n

Mln

(
b̂lb̂ne−i(ωn+ωl−Ω)t − b̂†l b̂

†
nei(ωn+ωl−Ω)t

)
(I4)

−
∑
l>n

(
Aln

(
b̂†l b̂nei(ωl−ωn−Ω)t − b̂†nb̂le−i(ωl−ωn−Ω)t

)
+Bln

(
b̂†l b̂nei(ωl−ωn−Ω)t − b̂†nb̂le−i(ωl−ωn−Ω)t

))
, (I5)

with:

M0n ≈ −iL3/2

√
N0ζ

(
√

2nπ)3
((1 + (−1)n)V′) (I6)

Mln ≈ −Aln ≈ −Bln ≈ i
L3
(
l2 + n2

)
2
√

2nl (l2 − n2)
2
π3ζ
Vl,n for l 6= n, (I7)

Mnn ≈ −Ann ≈ −Bnn ≈ i
L3V0

8
√

2n3π3ζ
(I8)
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and ζ := ~/(
√

2mcs) is the healing length. If the external potential is linear Vε(x) = V0x, where V0 is a constant,
then the coefficients are given by Vl,n = −

(
1− (−1)l+n

)
(V0/L) and, if it is quadratic Vε(x) = V0x

2, then Vl,n =(
1 + (−1)l+n

)
V0 [35].

From inspection of the interaction Hamiltonian, we see that the resonance condition Ω = ωn generates a dis-
placement of the mode n which creates a (classical) coherent state. Two-mode squeezing (parametric amplification)
is produced through the resonance condition Ω = ωn + ωm, and Ω = ωn − ωm leads to mode-mixing (frequency
conversion). In the two-mode squeezing case the squeezing parameter is s = εB

4 = 2ε|MlnVl,n|t/~ where

Mln ≈ i
L3
(
l2 + n2

)
2
√

2nl (l2 − n2)
2
π3ζ

, (I9)

with l, n (l 6= n) the mode numbers of the two frequency modes whose sum is resonant with Ω. For the mode-mixing
channel A = 8|MlnVl,n|t/~, however, l, n are mode numbers of frequency modes whose difference sum is resonant
with Ω.

Using the results also from the previous appendix, we can perform frequency interfereometry with a single BEC
in a pumped-up SU(1,1) scheme, with the condensate atom acting as the pump, and two phonon modes as the side
modes. Since the number of condensate atoms N0 must be much larger than the number of phonons Np, with the
implementation of a number-sum measurement scheme, the sensitivity of the interferometer to a two-mode squeezing
channel:

∆ε =
1√
MF0

(I10)

≈
√

2

Bθ
√
MN0NpNd

(I11)

=

√
2~

8|MlnVl,n|tθ
√
MN0NpNd

(I12)

=
~2π3

√
2nl (l − n)

2

4mcs|Vl,n|θL3
√
τtN0NpNd(l2 + n2)

, (I13)

where M is the number of repetitions of estimation and θ must satisfy (F3). In the second line we have assumed that
θ2N0Np � N2

P , and in the last line we have assumed that M = τ/t where τ is the total time of the full estimation
procedure, with t then being the time it takes for each individual estimation (which we take to be the phonon lifetime).
Nd is the number of independent detectors.

We now consider a gravitational wave interacting with a BEC. Gravitational waves are often considered from the
perspective of the transverse-traceless (TT) frame. However, this is not the frame of a BEC experimentalist, which
can lead to intuitive effects that must be considered carefully, such as the fact that a rigid cavity oscillates in this
frame. Instead, we consider the BEC from the proper detector frame [40, 41], which is the frame closest to a BEC
experimentalist (for example, rigid cavities do not appear to change length in this frame). In this case, the effect of a
monochromatic gravitational wave of frequency Ω on a quasi-one dimensional BEC is to introduce a time-dependent
quadratic potential of the form Vε(x, t) = mx2Ω2 sin Ωt/4. Comparing to the above, the gravitational wave will create
parametric-amplification in the BEC, leading to squeezing of phonons [41]. Using (I13), and taking Ω = ωl +ωn with
l + n even, we find:

∆ε =
~2π
√

2nl (l − n)
2

m2c3sθL
√
τtN0NpNd(l2 + n2)

(I14)

=
mπ

4
√

2~
α3

θN2
0

√
NpNdτt

√
L7

a3

√
nl (l − n)

2

(l2 + n2)
,

where we have used cs =
√
gρ/m with ρ = N0/V , defined A := πR2 with R =: αL, and Nd is the number of

independent detectors. This improves on sensitivity of [12], which, written in fundamental experimental parameters,
would be:

∆ε ≈ 2√
MωnωlNpt

(I15)

=
m√
π~

α√
N0NdτtNp

√
L5

a

1√
nl
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Note that the sensitivity reported in [12] is given in terms of ∆ε/
√

Ω. However, we use ∆ε since it is a figure of
merit which is more convenient for resonant detectors. The sensitivity reported in [12] also has a different dependence
on N0. This is because a factor 1/

√
N0 was added assuming that the sensitivity scales with the number of atoms

detected in the experiment. In this work, the dependence on N0 is not assumed, it is obtained from first principles
calculations.

Taking, for example, a 7Li BEC with N0 = 4.4 × 108, Np = 4000, a = 99a0 (a0 is the Bohr radius), L =
0.005 m, α = 0.001, and t = 1 ms, and resonating with modes n = 260 and l = 258, we obtain a sensitivity of
∆ε = 4.3 × 10−21 for the interferometry scheme at a gravitational wave of angular frequency Ω = 25.3 kHz and
assuming 10 independent detectors operating for τ = 1 yr. In contrast, the previous non-interferometric scheme
would have provided a sensitivity of ∆ε = 10−10. In deriving these results we have been careful to satisfy various
theoretical and experimental constraints. For example, we have made sure that the chosen modes are phononic modes
(~ωn,l � mc2s), that we are operating in the dilute regime (na3 � 1), and that (F3) is satisfied. We have also chosen
a phonon lifetime that is much smaller than the expected BEC and phononic lifetimes from three-body and two-body
(Beliaev and Landau) decay processes for a three-dimensional BEC [56]. However, it should be noted that three-body
and two-body decay lifetimes would be expected to very much set an upper bound for the BEC of the detector
since it is assumed to operate in the quasi one-dimensional or pure one-dimensional regimes where decay processes
are heavily suppressed [56, 57]. In [58], a comprehensive review of the gravitational wave detector will be provided
with a detailed account of the sensitivities that can be achieved using frequency interferometry, and with a range of
constrained experimental parameters. Furthermore, in [38], we have investigated the amount of squeezing that can
be generated for phonons by periodically shaking the trap as proposed above, finding that high levels of squeezing
are theoretically possible. The results in [38] take into account Landau and Beliaev damping as well as three-body
recombination. Future work will also consider how the bandwidth of the detector could be tuned in practice and the
corresponding relevant figure of merit.

In the tables below we show further examples of the precision reached by the phononic gravitational wave detector
using 7Li (in the |F = 1,mF = 1〉 hyperfine state) and 87Rb BECs. The frequency interferometry (FI) scheme
improves by many orders of magnitude the sensitivities given by [12]. The integration time τ is one year, the tritter
angle is θ = 0.31 and we considered Nd = 10 independent detectors. For 7Li, the three-body loss rate is calculated
using the universal theory of Efimov physics [59, 60], which have been shown to match experimental data very well
[61]. For 87Rb, we assume a three-body rate coefficient of 4× 10−30 cm6 s−1 [62].

7Lithium BEC

Parameter L α N0 Np l n t a/a0 n0 Ω cs ∆ε ∆ε/
√

Ω

Units mm s cm−3 kHz m/s Hz−1/2

[12] scheme 4 0.01 4.4× 109 2500 480 478 0.02 119 2.2× 1014 28.4 0.04 4.1× 10−11 2.4× 10−13

FI scheme 4 0.01 4.4× 109 2500 480 478 0.02 119 2.2× 1014 28.4 0.04 2.9× 10−21

[12] scheme 5 0.001 4.4× 108 4000 260 258 0.001 99 1.1× 1015 25.3 0.08 1.0× 10−10 6.4× 10−13

FI scheme 5 0.001 4.4× 108 4000 260 258 0.001 99 1.1× 1015 25.3 0.08 4.3× 10−21

[12] scheme 4 0.01 4.4× 109 4.4× 107 480 478 0.04 99 2.2× 1014 25.9 0.03 1.8× 10−15 1.1× 10−17

FI scheme 4 0.01 4.4× 109 4.4× 107 480 478 0.03 99 2.2× 1014 25.9 0.08 2.0× 10−23

87Rubidium BEC

Parameter L α N0 Np l n t a/a0 n0 Ω cs ∆ε ∆ε/
√

Ω

Units mm s cm−3 kHz m/s Hz−1/2

[12] scheme 6 0.0005 4.4× 108 4400 480 478 0.002 109.6 2.6× 1015 5.3 0.01 3.8× 10−10 5.3× 10−12

FI scheme 6 0.0005 4.4× 108 4400 480 478 0.002 109.6 2.6× 1015 5.3 0.01 4.5× 10−21

[12] scheme 4 0.003 4.4× 109 4.4× 107 1680 1678 0.003 109.6 2.4× 1015 25.65 0.01 7× 10−15 4.4× 10−17

FI scheme 4 0.003 4.4× 109 4.4× 107 1680 1678 0.003 109.6 2.4× 1015 25.65 0.01 6.3× 10−24
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I. Fuentes, and C. M. Wilson, Phys. Rev. Applied 10, 044019 (2018).
[21] D. E. Bruschi, C. Sab́ın, P. Kok, G. Johansson, P. Delsing, and I. Fuentes, Scientific reports 6, 18349 (2016).
[22] D. E. Bruschi, A. Dragan, A. R. Lee, I. Fuentes, and J. Louko, Phys. Rev. Lett. 111, 090504 (2013).
[23] N. Friis, M. Huber, I. Fuentes, and D. E. Bruschi, Phys. Rev. D 86, 105003 (2012).
[24] D. E. Bruschi, J. Louko, D. Faccio, and I. Fuentes, New Journal of Physics 15, 073052 (2013).
[25] Note that several conventions are used for the definitions of d,σ and x̂. See, e.g. [18], for an alternative convention.
[26] See Appendix A for real q, p representations of the symplectic matrices corresponding to all the unitary processes involved

in the interferometer.
[27] A. Monras, ArXiv e-prints (2013), arXiv:1303.3682 [quant-ph].
[28] O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, Phys. Rev. A 88, 040102 (2013).
[29] Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana 45, 471 (1995).
[30] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Ko lodyński (Elsevier, 2015) pp. 345 – 435.
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