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A B S T R A C T

Soil Moisture (SM) is a direct measure of agricultural drought. While there are several global SM indices, none of
them directly use SM observations in a near-real-time capacity and as an operational tool. This paper presents a
near-real-time global SM index monitor based on integrated SMAP (Soil Moisture Active Passive) and SMOS (Soil
Moisture and Ocean Salinity) remote sensing data. We make use of the short period (2015–2018) of SMAP
datasets in combination with two approaches—Cumulative Distribution Function Mapping (CDFM) and
Bayesian conditional process—and integrate them with SMOS data in a way that SMOS data is consistent with
SMAP. The integrated SMOS and SMAP (SMOS/SMAP) has an increased global revisit frequency and a period of
record from 2010 to the present. A four-parameter Beta distribution was fitted to the SMOS/SMAP dataset for
each calendar month of each grid cell at ~36 km resolution for the period from 2010 to 2018. We used an
asymptotic method that guarantees the values of the bounding parameters of the Beta distribution will envelop
both the smallest and largest observed values. The Kolmogorov-Smirnov (KS) test showed that more grids
globally will pass if the integrated dataset is from the Bayesian conditional approach. A daily global SM index
map is generated and posted online based on translating each grid's integrated SM value for that day to a
corresponding probability percentile relevant to the particular calendar month from 2010 to 2018. For vali-
dation, we use the Canadian Prairies Ecozone (CPE). We compare the integrated SM with the SMAP core vali-
dation and RISMA sites from ISMN, compare our indices with other models (VIC, ESA's CCI SM v04.4 integrated
satellite data, and SPI-1), and make a two-by-two comparison of candidate indices using heat maps and summary
CDF statistics. Furthermore, we visually compare our global SM-based index maps with those produced by other
organizations. Our Global SM Index Monitor (GSMIM) performed, in many tests, similarly to the CCI's product
SM index but with the advantage of being a near-real-time tool, which has applications for identifying evolving
drought for food security conditions, insurance, policymaking, and crop planning especially for the remote parts
of the globe.

1. Introduction

Surface soil moisture (SM) is an Essential Climate Variable (Liu
et al., 2011) because it is a culmination of many hydrological, energy,
and carbon cycle processes representing variables such as precipitation
(Koster et al., 2009; Berg et al., 2017), runoff (Wagner et al., 2003),
infiltration (Wagner et al., 2013), temperature (Lintner et al., 2014),
evapotranspiration (ET) (Seneviratne et al., 2010), and other water

supply processes (Entekhabi et al., 1996). Reduced supplies of pre-
cipitation, and subsequently SM for crops, leads to agricultural drought
that impacts crop yield, consequently inflicting enormous economic
impacts in developed countries and suffering by millions of people in
less developed regions of the world (Sheffield and Wood, 2007; Wilhite
et al., 2007; EM-DAT, 2020). As the global population is increasing to
reach an estimated 9 billion people by 2050, the demand for agri-
cultural produce is putting pressure on already scarce agricultural
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lands, especially in developed countries (UN/ISDR, 2007; FAO, 2009).
The food production, including biofuels, required for this growing po-
pulation is estimated to increase by 52% by 2050. Accordingly, to meet
food security by 2050, the world's arable land will need to be expanded
by 70 million hectares (net balance of 120 ha in the developing coun-
tries such as Africa and South America, and a contraction of 50 million
hectares in developed countries) (FAO, 2009). Additionally, the ex-
pected overall increase of drought events under climate change
(Sheffield and Wood, 2008b) will impact agriculture and water re-
sources over these large areas and can have tremendous economic,
social, and humanitarian consequences for food and water security
(Wilhite, 2000; Sheffield et al., 2014).

Although the severity of such impacts are closely linked to the
vulnerability of a population to adverse conditions (Haile, 2005; FAO,
2009) and how their political sectors respond within the constraints of
economies (Hill and Pittman, 2013), monitoring SM and providing
timely assessments of intensity, duration, and spatial extent of its
anomalous conditions (Seneviratne and Nicholls, 2018) are essential for
identifying evolving agricultural drought, flood monitoring, crop
planning, food security, insurance, policymaking, and resilience-
building especially in parts of the world where livelihoods and economy
are closely intertwined with climate variability (Knutson, 2004;
Sheffield and Wood, 2011; Nijssen et al., 2013; Al Bitar et al., 2017).
Despite the fact that SM availability plays such important roles for
agricultural drought monitoring and numerical weather predictions,
unfortunately, it is among the least observed variables globally, espe-
cially in the developing world (Sheffield and Wood, 2011; Reichle,
2017).

Traditionally, drought indices are required to monitor drought
conditions and are built upon long-term hydrological variables, mostly
precipitation. Precipitation is the most spatially and temporally ob-
served hydrologic variable (McKee et al., 1993). The Standardized
Precipitation Index (SPI) (McKee et al., 1993) is a precipitation-based
index recognized by the World Meteorological Organization (WMO) as
the global index for meteorological drought. Another well-used index is
the Palmer Drought Severity Index (PDSI) which is based on evapo-
transpiration and runoff (Palmer, 1965). Both SPI and PDSI are long-
term drought indicators. Shorter-term indices such as CMI (Crop
Moisture Index) exist but have limitations in assuming that parameters
like land use/land cover and soil properties are uniform for all climatic
regions (Narasimhan and Srinivasan, 2005). Other indices include the
SM deficit index (SMDI) (Sánchez et al., 2016), the ET deficit index
(ETDI) based on the SWAT model (Narasimhan and Srinivasan, 2005),
the NLDAS-2 index based on four Land Surface Models (LSMs) of
Variable Infiltration Capacity (VIC), Noah, Mosaic, and Sacramento
(SAC) (Sheffield et al., 2014), and European Space Agency (ESA)’s
ESSMI index (Carrão et al., 2016). All of these indices can be useful in
support of decision-making systems but they are mostly regional tools
based on estimated values from climatic variables, reanalysis, or hy-
drological modeling (Hunt et al., 2009; Sánchez et al., 2016). None of
these indices directly use measured SM in near-real-time, in a global
extent, and as an operational tool. Furthermore, they cannot be built
toward drought prediction.

In recent years, a number of near-real-time drought monitoring
systems have been developed based on such indices (Pozzi, 2013), but
so far, the ability to monitor and predict the development and occur-
rence of extreme droughts at a global scale and in near-time has re-
mained limited. One of the earliest attempts at developing a global
drought monitor was by Kogan and Sullivan (1993) who used satellite
information as the base of vegetation indices. Lloyd-Hughes and
Saunders (2007) operated a global drought monitor from 2007 to 2013,
which was updated on a monthly basis and used station-based pre-
cipitation from the Global Precipitation Climatology Centre (GPCC)
(Schneider et al., 2014), air temperature from the European Centre for
Medium-Range Weather Forecasts (ECMWF), SPI, and PDSI.
AghaKouchak and Nakhjiri (2012) developed a global drought monitor

that uses near-real-time precipitation data from the Tropical Rainfall
Measuring Mission (TRMM; (Huffman et al., 2007)) and Precipitation
Estimation from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN; (Sorooshian et al., 2000)) to develop SPI indices.
The output is then bias-corrected with historical precipitation from the
GPCC (Adler et al., 2003) through the use of a Bayesian correction al-
gorithm. Their efforts have led to the development of the Global In-
tegrated Drought Monitoring and Prediction System (GIDMaPS) (Hao
et al., 2014). The Global Drought Monitor Portal is based on the
Standardized Precipitation-Evapotranspiration Index (SPEI). It is in
near real-time, with a 1° spatial resolution and a monthly time resolu-
tion. It provides information about drought conditions on a global scale
and is part of the Global Framework for Climate Services of the WMO
and can act as a reference for global drought information from multiple
sources (Heim and Brewer, 2012). Nijssen et al. (2013) described the
implementation of a multimodel drought monitoring system or the
Global Drought Information System (GDIS), which provides near-real-
time estimates of surface moisture storage for the global land areas
between 50°S and 50°N with a time lag of about 1 day at a spatial
resolution of 0.5°. GDIS combines hydrological simulations from mul-
tiple LSMs (VIC, Noah, and Sacramento) to provide daily estimates of
near-real-time SM conditions. Sheffield et al. (2014) developed an
African Drought Monitor (AFDM) which uses VIC LSM whose accuracy
comes from the availability of rain gages combined with temperature
from the National Centers for Environmental Prediction's (NCEP)
Global Forecast System (GFS) analysis fields. Drought conditions are
reported as percentiles relative to a long-term climatology.

Since the 1980s, using microwave remote sensing data with spa-
tially and temporally continuous operation over large areas, especially
where ground measuring is not possible, has become an attractive op-
tion for drought monitoring (Sheffield et al., 2004; Bolten et al., 2010),
flood forecasting (Wanders et al., 2014; Alvarez-Garreton et al., 2016),
precipitation estimates (Wanders et al., 2015; Zhan et al., 2015), crop
yield (Manzoni et al., 2013), and weather forecasting (Drusch et al.,
2009). However, the use of satellite SM data for agricultural drought
monitoring has remained limited. The reasons have been either that the
short-term availability of satellite SM poses a statistical challenge for
meaningful estimation of drought indices, or that the long-term data are
not produced in near-real-time. For example, the ESA's ECV SM, better
known as CCI (Climate Change Initiative) SM product, which merged
11 active and passive microwave satellite sensors, covers a 40-year
period between November 1978 and June 2018 with a daily temporal
resolution (European Space Agency, 2012). The CCI dataset is produ-
cing an updated SM product once or twice a year. In this situation, even
if an index can be defined, it cannot be developed into an operational
tool. For example, Carrão et al. (2016) developed an empirical stan-
dardized SM index for agricultural drought assessment based on CCI SM
dataset product, but the index has not led to near-real-time applica-
tions. The Copernicus Climate Change Service (C3S) is an online service
developed by ESA's CCI SM project as an R&D product to provide key
indicators on climate change including the global SM gridded data from
1978 to present on a near-real-time (minimum 10 days and maximum
20 days after sensing) basis (C3S, 2020). Unlike the CCI data, the C3S
data are not released as packages, however, they are still based on CCI
and between 10 and 20 days behind real-time (de Jeu et al., 2018;
Climate Change Service, 2018).

Currently, there are two orbiting satellite missions that measure the
global surface SM (nominally top 0–5 cm) in a near-real-time capacity.
One is NASA's Soil Moisture Active and Passive (SMAP) (Entekhabi
et al., 2010; Chan et al., 2016) and the other is ESA's Soil Moisture and
Ocean Salinity (SMOS) (Kerr et al., 2010, 2016). SMOS was launched in
November 2009 (Pan et al., 2010; Kerr et al., 2016) while SMAP is a
more recent mission launched in January 2015, mapping the globe
gridded at about ~36 km resolution every 2–3 days.

Of particular interest to NASA's SMAP mission is a global drought
index product that monitors SM in terms of probability percentiles for
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dry and wet conditions in near-real-time (Bindlish et al., 2018; JPL,
2020). However, the short period of SMAP and its global revisit fre-
quency (every 2–3 days) pose a statistical challenge for meaningful
assessment of its indices. Sadri et al. (2018) developed a near-real-time
soil moisture index monitor for the Contiguous U.S. (CONUS) using
SMAP at near-surface (~36 km resolution) and an assimilated version
of it at root zone (~9 km resolution) depths. To overcome the short-
term of SMAP record, data was integrated with the simulated SM data
from VIC LSM using the Bayesian conditional process. For the global
scale, the ability of VIC to simulate SM is not sufficient globally (Sadri
et al., 2018) and hence it cannot be used. Bindlish et al. (2018) de-
monstrated the use of reprocessed constant-angle SMOS brightness
temperatures in the SMAP SM retrieval algorithm to develop a con-
sistent multi-satellite product. This approach, in practice, has become a
very time-consuming task since the brightness temperatures from the
two missions are not consistent and have a bias of about 2.7 K over land
with respect to each other. Furthermore, the two missions use different
retrieval algorithms and ancillary datasets which result in further in-
consistencies between the SM products. Therefore, no integrated SMOS
and SMAP dataset has become available.

In this paper, we use statistical approaches to integrate SMAP and
SMOS (Kerr et al., 2010, 2016) as one dataset (we refer to the in-
tegrated SMOS and SMAP SM dataset as SMOS/SMAP from this point
on). The SMOS/SMAP is consistent with the SMAP data but, with an
increased global revisit frequency (1-day) and a period of record from
2010 to the present that would be unachievable by either one of the
satellites alone. We describe the implementation of a Global Soil
Moisture Index Monitor (GSMIM) between 55°S and 80°N with a time
lag of about 7–8 days with a spatial resolution of ~36 km. Similar to the
AFDM, in the GSMIM drought and pluvial conditions are reported as
percentiles relative to long-term climatology. The system is an exten-
sion and improvement of its prototype system developed by Sadri et al.
(2018) for the Contiguous U.S. Major differences to achieve this global
system include: we integrated SMOS with SMAP datasets using Cumu-
lative Distribution Function Mapping (CDFM) and Bayesian conditional
process approaches and compared the two approaches to understand
the efficiency of each method in defining a global drought index; we
used the 4-parameter Beta distribution with an asymptotic approach
but for extending the tails of the distribution, which guarantees that the
value of the two bounding parameters will envelop both the smallest
and largest observed values; and we did validation by comparing our
results with the in-situ SM data, other indices, and SPI-1.

A key element of this study is the development of a web interface to
view the daily SM index maps overlaid as a dynamic layer of Google
Maps, which provides coordinate lookup, panning, zooming, and
overlaying other geographical layers such as land use, land covers, and
political borders. Users can access the archive of previous days, and
download the maps.

In Section 1, we looked at the importance of monitoring SM and
having a global near-real-time agricultural drought index. The rest of
this paper is organized as follows: Section 2 explains our datasets and
the availability of passive and active microwave soil moisture re-
trievals. Section 3 explains our methodologies. Section 4 is about va-
lidating the results in the Canadian Prairies. In Section 5, we explain the
results and discuss the findings. Section 6 provides online references to
the data used in this study, and Section 7 provides discussion and ideas
for future work.

2. Datasets

The resources where we obtained global SM measurements include
in-situ measurements, simulations from LSMs, and several Earth
Observations that use active and/or passive measurements (Kerr and
Njoku, 1990).

2.1. SMAP and SMOS

The SMAP mission, launched by NASA in January 2015, maps the
globe (between 85.044°N and S) using a 1.4 GHz L-band microwave
radiometer and delivers brightness temperature (TB) observations at a
fixed 40 incidence angle (Entekhabi et al., 2010). The microwave sen-
sors are categorized into passive and active sensors. The passive sensor,
i.e. radiometer, measures the naturally emitted energy from the earth's
surface in the form of TB. The active sensor, i.e. radar, sends a focused
beam of microwave radiation toward the ground and captures the
backscattered signal from the earth's surface (Karthikeyan et al.,
2017a). The radar on SMAP failed after 3 months from its launch, but
SM estimates based on a single-channel algorithm (SCA) from a single-
orbit passive radiometer continue to be produced (Sadri et al., 2018).
SMAP Level 1 delivers products from its instrument measurements and
Level 2 delivers SMAP's Swath based geographical retrievals. SMAP
Level 3 (SPL3SMP) is a composite based on daily passive radiometer
estimates of global land SM at the top 5 cm of the soil that is resampled
to a global, cylindrical ~36 km Equal-Area Scalable Earth Grid, Version
2.0 (EASE-Grid 2.0) (O'Neill et al., 2016). LSMs assimilating SMAP
measurements at the root zone depth (up to 1 m) are delivered as SMAP
Level 4 (Reichle, 2017; Colliander et al., 2017). In all release versions of
SMAP, regions with permanent snow, ice, frozen, and thawed ground
are masked out using a passive freeze-thaw retrieval mask. Ad-
ditionally, areas with Radio Frequency Interference (RFI), open water,
permanent ice, and large Vegetation Water Content (VWC) are also
marked out. The SMAP satellite is in a 6 AM/6 PM ascending and
descending orbit. The primary objective of SMAP is to retrieve SM from
the morning overpasses. For this study, we use version 4 of SPL3SMP
retrievals from the morning overpasses that are used (hereafter referred
to as SMAP).

The SMOS L-band radiometer was launched in November 2009 (Pan
et al., 2010; Kerr et al., 2016) by the Centre Aval de Traitement des
DonnÃ©es SMOS. Its retrievals are based on a Multi Orbit retrieval
algorithm. The satellite measures the thermal emission of SM such as
the SM EASE grid Level 3 (L3SM) from the Earth at a frequency of
1.4 GHz and for incidence angles from 0° to ~60° sampled at ~25 km
resolution, with a revisit time of every 2–3 days (similar to SMAP) and a
mission target accuracy of 0.04 (m3/m3) (Kerr et al., 2010). Detection of
ice and snow is performed and added as flags. For SMOS L3SM both
ascending (~6 am local time) and descending (~6 pm local time) orbits
are processed separately (Al Bitar et al., 2017; Centre Aval de
Traitement des Données SMOS, 2017) on a daily basis. Here, we use
only the ascending orbits of SMOS L3SM (hereafter referred to as
SMOS), in order to have consistency with the SPL3SMP data as well as
smaller uncertainties and bias from the in-situ data (Al Bitar et al.,
2017).

2.2. ESA-CCI merged SM

Developed by the Vienna University of Technology (TU Wien),
Dutch company VanderSat BV, and the Austrian Earth Observation Data
Centre and hosted by ESA, the ESA-CCI merged SM is a quarter degree
resolution global scale daily long-term SM record (provided in volu-
metric units m3/m3). Version 4.4 of the CCI product covers a 40 year
period from 1978 to 2018 and is based on blending data from 11 active
and passive microwave satellite sensors through the method described
in (Liu et al., 2011; Wagner et al., 2013). The active data set was
generated based on observations from the C-band scatterometers on
board of ERS-1-2 SCAT, MetOp-A ASCAT, MetOp-B and for the period
of 1991/08/05 to 2018/06/29. The passive data set was generated
based on passive microwave observations from Nimbus-7 Scanning
Multichannel Microwave Radiometer (SMMR), Defense Meteorological
Satellite Program (DMSP) F8-F13 Special Sensor Microwave - Imager
(SSM/I), the microwave imager on-board Tropical Rainfall Measuring
Mission (TRMM) TMI, Aqua's Advanced Microwave Scanning
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Radiometer – Earth Observing System (AMSR-E), GCOM the Advanced
Microwave Scanning Radiometer 2 (AMSR2), Coriolis Windsat, and
SMOS for the period of 1978/11/01 to 2018/06/29 (Chung et al.,
2019). SMOS has been integrated into Version 4.04 but it is a version of
SMOS estimated with AMSR-E/Aqua surface soil moisture (LPRM, V5).
The way SMOS was integrated was to use a grid per grid change de-
tection approach (scaled by either the ground site or model outputs and
then spatially smoothed) to derive ASCAT SM maps on which AMSR
LPRM data have been scaled to produce CCI. SMAP, Aquarius, and
MetOp-C missions are not considered in the v04.4 and even in the
current release (v04.5) of the CCI SM product. The harmonization of
CCI datasets aimed to take advantage of both types of microwave
techniques but proved difficult owing to sensor degradation, drifts in
calibration and algorithmic changes in the processing systems. In fact,
one of the challenges in using the ESA's CCI product is guaranteeing
consistency between the SM data retrieved from the different active and
passive microwave instruments. In addition, it is noteworthy that CCI's
product is not a near-real-time product. Albergel et al. (2013) con-
sidered in-situ measurements from 2007 to 2010 from 196 stations of
five networks in different countries (USA, Spain, France, China, and
Australia) to evaluate the CCI product. Results indicate that in general,
the product captures the temporal dynamics of observed SM well, with
correlations of 0.6 (Â ± 0.06) at the 5% significance level. The merged
product is freely available after completion of a simple registration
(European Space Agency, 2012). For this study, we used the global
gridded CCI version 4.4 (that goes up to June 29, 2018) product (Liu
et al., 2011) with a spatial resolution of ~25 km.

2.3. In-situ dataset

The performance of active and passive soil moisture products is
assessed by comparing them with station data. The in-situ candidate
sites used in this study are from the International Soil Moisture Network
(ISMN) (Dorigo et al., 2011a, 2012; Ojo et al., 2015; TUWIEN, 2019).
Initiated by the SMOS project, ISMN plays a crucial role in globally
assessing the quality of SM estimates from space-borne microwave
sensors and LSMs. ISMN is the first, fully operational, and publicly
available international initiative to globally host in-situ measurements
of SM (Karthikeyan et al., 2017b) from more than 500 stations spanning
18 different networks (Dorigo et al., 2011b; TUWIEN, 2019). The main
limitation of the ISMN is that it does not cover the globe homo-
geneously. Some areas (boreal, or tropical for instance) are almost not
covered while others are densely covered (US, Europe) (Karthikeyan
et al., 2017b).

2.4. VIC-SM

Large variations in in-situ data and its scarcity have encouraged the

use of available global meteorological observations, such as precipita-
tion and temperature, to simulate SM using LSMs such as VIC (Liang
et al., 1994, 1996). Sheffield et al. (2004) used VIC to simulate retro-
spective SM for the contiguous U.S. using subgrid variability in land
cover, elevation, soil water storage capacity, and storm coverage. The
VIC model divides the soil column into three layers, with a fixed 10 cm
top layer depth and a spatially varying depth for the lower layers
(Sheffield and Wood, 2008a). The downside of using simulated SM data
is that such data are prone to large uncertainties since their forcings and
land-atmosphere feedback mechanisms are not well understood for
many regions of the world (Sheffield et al., 2004; Dorigo et al., 2015).

2.5. SPI

Since SM responds to precipitation anomalies on a relatively short
scale (Sánchez et al., 2016), we compared the SM indices with the SPI at
the selected locations to assess whether they provide spatiotemporal
consistency. The one-month SPI (SPI-1) is generally related to short-
term SM and crop stress, especially during the growing season and
therefore, can approximate conditions represented by the SMOS/SMAP
drought index. SPI-1 means that at a given month, we compare the total
precipitation for that month in a particular year, with total precipita-
tion of that month in all the years of the time record. In this study, the
precipitation data are from the Multi-Source Weighted Ensemble Pre-
cipitation (MSWEP) Version 2 (Beck et al., 2019) and re-gridded to
~36 km resolution. A drought event occurs any time the SPI-1 is con-
tinuously negative, reaches an intensity of −1.0 or less, and ends when
the SPI becomes positive.

Table 1 summarizes the type of data and the periods used for cali-
bration and validation in this study.

2.6. Soil moisture climatology on a global scale

Fig. 1 shows the comparison among mean interannual SM from VIC,
CCI, SMOS, and SMOS/SMAP. For the CCI SM map, areas of a dense
canopy in the mid-latitude have been masked out at the source. The
mean SM values of all the groups differ by several volumetric percent.
VIC LSM's physical interpretation of the three layers and possession of a
smaller dynamic range than remotely sensed data cause a systematic
difference against others, showing it to be wetter in general. The spatial
patterns of CCI and SMOS maps are highly consistent although SMOS
has a higher intensity in dryness. SMOS and SMOS/SMAP agree on dry
parts of the globe but disagree on the wetness pattern. The SMOS/SMAP
climatology is highly similar to that from SMAP (not shown here). The
difference between SMOS/SMAP and SMOS is mostly in the type of
configuration algorithms that SMOS and SMAP use for the computation
of the Faraday rotation (Al Bitar et al., 2017). In all cases the Sahara
Desert, the Arabian Peninsula, central and eastern Iran, and

Table 1
Datasets and their calibration/validation periods used in this study.

Dataset Source Depth (cm) Period Gridded res. (km) Temporal. res. Cosidered period for validation

SMAP RS 5 2015/03/31- 36 Every 3–4 –
(SPL3S MP) 2018/11/12 days
SMOS RS 5 2010/01/15- 25 Every 7–8 –
(L3SM) 2018/11/12 days
SMOS/SMAP Integrated 5 2010/01/15- 36 Daily 2010/01/15-

2018/11/12 2018/06/29
CCI Integrated 0.5–2 1978/01/01- 25 Daily 2010/01/15-
(V04.4) 2018/06/29 2018/06/29
VIC LSM 5–10 1978/01/01- 36 Daily 2010/01/15-

2018/11/12 2018/06/29
SPI-1 MSWEP – 1978/01/01- 36 Monthly 1979/01/01-

2018/11/12 2018/06/29

* RS: Remote Sensing
** MSWEP: Multi-Source Weighted-Ensemble Precipitation
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northwestern China agree in dryness. However, SMOS/SMAP and
SMOS show the average dryness in many other parts of the world as
being noticeably drier than those from CCI and VIC. These areas include
central Australia, Namibia and Botswana, eastern and along the western
coast of South America, central/western U.S., and northwest Alaska.
The overall wetness patterns among the SM sources disagree more
noticeably, especially in the northern latitudes which include Canada
and Alaska.

Fig. 2 shows the standard deviation and the areas with the highest
SM variability for the four groups of VIC, CCI, SMOS, and SMOS/SMAP.
Regional biases are strong, especially in SMOS, with a spatial standard
deviation of 0.07 m3/m3 for the difference between the time-average
fields. In the U.S., VIC shows the strongest deviation in the northwest.
Among the remotely sensed data, the differences in standard deviation
can be related to the differences in calibration of the sensors and ac-
quisition time (Al Bitar et al., 2017).

3. Methodology

In this section, we present the computation process of the GSMIM.
The process has three major steps:

1. For each grid g at ~36 km resolution and each calendar month m,
we integrate SMAPg, m (2015–2018) and SMOSg, m (2010–2018)
using two processes: Bayesian conditional and CDFM;

2. For each grid g and each calendar month m, we calculate the

parameters of the Beta distribution of the SMOS/SMAPg, m data
(therefore every grid has parameters associated with each of the 12
calendar months); and

3. For near-real-time (NRT) application, as the incoming SMAPg, d and
SMOSg, d come in every day d, we integrate them, and then a per-
centile is assigned for each of the 100,500 grids on the earth from
that grid's 4 parameters of the Beta distribution called from the re-
levant calendar month in the calibration period.

Fig. 3 shows a summary flowchart of the steps taken in order to
develop the GSMIM.

3.1. Integrating SMAP and SMOS

Satellite remote sensing data are often spatially and temporally
discontinuous (Nijssen et al., 2001). SMAP provides data in near-real
time for operational applications but its 5-year scattered data makes it
technically difficult to meaningfully define an index. This raises the
challenge of creating a longer-term high temporal resolution global
dataset with remote sensing data provided by sensors on different sa-
tellites (Coccia et al., 2015). We use the global data from SMOS, up-
scaled from 25 km to 36 km resolution, from the period of 2010/01/15
to 2018/06/29 but since the characteristics of SMAP and SMOS sensors
and their viewing geometry used to observe SM are slightly different,
their retrievals also generate specific differences. To make a consistent
dataset of these two satellites, we use the Bayesian conditional process

Fig. 1. Average SM (m3/m3) for VIC, CCI, SMOS, and SMOS/SMAP for the period of 2010/01/15 to 2018/06/29.
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and CDFM. In both approaches, we aim to create a continuous SMOS/
SMAP dataset consistent with SMAP, using their 2015–2018 over-
lapping period. In other words, we treat the SMAP data as the pre-
dictand and the SMOS data as the predictor. The Bayesian conditional
process approach has been extensively explained by Coccia et al. (2015)

and Sadri et al. (2018) and will result in an extended-dataset consistent
with sparse (short record length) remotely sensed data as well as pro-
vide in-filling of data due to the orbit gaps. CDFM has been a strong and
standard way of rescaling and matching two or more datasets on the
basis of their common periods (Liu et al., 2012). Both of these ap-
proaches are transferable to other areas of hydrology.

3.1.1. Bayesian conditional process overview
We follow the Bayesian conditional process from Coccia et al.

(2015); Sadri et al. (2018), which operates as follows. It is based off the
assumption that, if we normalize both SMOS and SMAP in an order-
preserving way to be unit normal distributions, then their joint dis-
tribution is a bivariate normal, determined uniquely by the normalized
variables' correlation. This principle is applied separately to each grid
cell and each calendar month. Then, it gives us a way to randomly
sample a missing value from one sequence, given the corresponding
value from the other sequence.

The grid g- and month m-based process begins with calculating the
empirical distribution of the values of SMOSg, m and SMAPg, m, for the
days that they both had an observation. We apply a quantile-preserving
map of these values to unit normal functions, naming the new values
ηSMOS

g, m and ηSMAP
g, m.

For a number of random grids, we plotted the CDF of each month for
each grid to find the minimum number of common days required to
balance between having a reasonably-spread CDF while letting most

Fig. 2. Standard deviation of SM (m3/m3) for VIC, CCI, SMOS, and SMOS/SMAP for the period of 2010/01/15 to 2018/06/29. Areas of dense canopy in the mid-
latitude have been masked out from CCI data.

Fig. 3. Flowchart describing steps involved in developing a global NRT drought
index monitor.
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grids from most months participate in the analysis. For the CPE, for
example, the maximum number of common days was 60. The CDF
showed that if we choose 10 days or more the non-exceedance prob-
ability would be at least 30% meaning that we can use 70% of all the
data. Therefore, we deemed at least 10 days of common observations
required to proceed with that grid for that month.

We compute the correlation ρg, m of the normalized variables ηSMOS
g,

m and ηSMAP
g, m. For any day d such that SMAPg, d is missing, but SMOSg,

d is not, we find the realization of SMOSg, d transformed to the standard
normal space. Our assumption is that the normalized variables form a
Gaussian Bivariate Distribution with unit normal marginals and corre-
lation ρg, m, so the distribution f(ηSMAP

g, d|ηSMOS
g, d) of ηSMAP

g, d condi-
tioned on this ηSMOS

g, d is a normal distribution with mean and variance

=µ . ( )g m g d,
SMOS

, (1)

= 1 ( )g m2 , 2 (2)

Here ηSMOS
g, d is the transformed value of SMOSg, d in the standard

normal space. Next, in the stochastic step, we draw a number from this
distribution, which will be our missing ηSMAP

g, d. We map this value
back to real space using the inverse quantile-preserving map for g and
m. This new number replaces the missing SMAPg, d.

3.1.2. CDFM
The CDFM approach is simpler and deterministic. It also can be

viewed as a variant of the Bayesian approach where we assume perfect
correlation (i.e. ρ = 1) for all grids and months. For days with a SMOSg,
d record but no SMAPg, d observation, the closest value to SMOSg, d from
the SMOSg, m calibration period is selected. We compute its exceedance
probability and then apply the inverse CDF for SMAPg, m; we define this
SMAPg, d as the missing SMAP for that day.

3.2. Fitting a four-parameter Beta distribution to the integrated datasets

Application of the Beta distribution for capturing SM variability was
suggested by (Famiglietti et al., 1999) and first tested by (Ryu and
Famiglietti, 2005; Famiglietti et al., 2008). The Beta distribution is a
family of continuous probability distributions, defined on the interval
of [0,1], and parameterized by two positive shape parameters p and q.
The probability density function (PDF) of the standard Beta distribu-
tion, a random variable x between [0,1] with positive shape parameters
p and q, is as follows:

= >f x p q x x
B p q

x p q( ; , ) ( ) (1 )
( , )

0 1; , 0
p q( 1) ( 1)

(3)

B(p,q) is a normalizing constant known as the Beta function, related
to the Gamma function:

=B p q u u du( , ) (1 )p q
0

1 ( 1) ( 1)
(4)

Here u is a parameter introduced for the sake of integration.
The generalized form of Beta distribution is transformed linearly to

have lower and upper bounds a, b instead of 0 and 1, with probability
density function:

=

= >+

f x a b p q f x a
b a

p q b a

x a b x
B p q b a

a x b p q

( ; , , , ) ; , /( )

( ) ( )
( , )( )

; , 0
p q

p q

( 1) ( 1)

( 1) (5)

The Beta distribution has the capability of mapping the behavior of
SM as a random variable with limited variability range (Sheffield et al.,
2014; Sadri et al., 2018), however, the fact that the SMOS/SMAP ca-
libration data spans only 8 years can be still a statistical challenge for
meaningful assessment of its indices. Even with long enough datasets,
we still want to extend the tails of the distribution beyond the observed
values for those extreme drought and flood events. To the authors'

knowledge, no existing methodology works for this case, although there
have been efforts to establish such procedures in the past. For example,
Sadri et al. (2018) extended the lower and upper bounds of the in-
tegrated SMAP/VIC data proportional to the difference of long-term
(1979–2017) with short-term (2015–2017) of VIC data for each grid.
Sheffield et al. (2004) used the first and last 10% of the sorted soil
moisture values to linearly extrapolate the cumulative distribution
functions. This approach does not consistently extend the tails of the
data and sometimes it even gives bounding parameters less than the
already observed values.

3.2.1. Finding a and b using an asymptotic model endpoints
Since there has been a lack of scientific exploration on extending the

tails of the Beta distribution, and to better support our needs, we in-
troduce a new and robust approach that uses asymptotic model end-
points for finding a and b parameters. We calculate the limit of the CDF
as x gets closer to a,

=d
dx

F x a b p q f x a b p q(lim( ( , , , , ))) lim ( , , , , )
x a x a (6)

and by definition limx→af(x,a,b,p,q) = (x − a)p−1. k0 where
= =+k b a

B p q b a B p q b a0
( )

( , )( )
1

( , )( )
q

p q p
1

( 1) . So integrating, the CDF of the Beta
distribution in the limit as x approahces a becomes:

= =F x a b p q u a k du x a klim ( , , , , ) ( ) . ( ) .
x a a

b p p( 1)
0 (7)

where k = k0/p0. The problem then becomes to fit the limiting CDF
(x − a)p. k to the empirical CDF.

Let n be the total length of SMOS/SMAP values in grid g in month m,
and xi denote the observed data point of rank i. To mimic the behavior
of the limit, we consider only the lowest decile of the observed CDF. So
the empirical CDF is x i n( , / )i for i : [1,2,3,…N/10]. Taking logs, we
equivalently want to fit:

+k p x a i nlog . log( ) log( / )i (8)

We formalize the objective as finding a, such that the resulting line
of best fit minimizes the sum of squared vertical residuals to

x a
i n

X axis: log( )
Y axis: log( / )

i

(9)

Similarly for finding b, the objective is to choose b yielding the line
of best fit to:

b x
n j n

X axis: log( )
Y axis: log(( )/ )

n j( )

(10)

where j is defined as j : [1,2,3,…N/10], the highest decile of observed
data points.

This can be implemented by trying all possible values of a and b in a
reasonable range by brute force (SMAP data are ∈[0.02,0.99]), then
using a standard linear regression computation for each one. The ben-
efits of this method are:

• it guarantees that the value of a will be smaller than the smallest soil
moisture value, and similarly for b
• it removes the complexity to past approaches—we do not try to
solve for more than one Beta parameter at a time.

We discard any other information from the optimal solutions other
than the values of a, b (i.e. we don't try to infer approximate informa-
tion about p, q; See the next section). We also tried alternative defini-
tions of the line of best fit:

• We calculated the line of best fit in terms of squared horizontal re-
siduals but the values of a (and b) tend to be unrealistically very
close to a = 0 and b = 1, which were not close enough to the actual
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observed soil moisture range for most of the candidate grids we
tested.
• We also tried picking a, b to maximize the correlation. The results
were very close to the line of best fit in the first scenario.

It is important to note that here, we want a model that describes the
two vectors in the best linear relationship it can get, and therefore, tests
such as NSE, KGE, Bias or RMSE are not as useful as their purpose is to
measure exact correspondence.

3.2.2. Finding p, q using method of moments
We applied the method of moments (1st and 2nd) to estimate p and q

after we transformed: X′ = (X − a)/(b − a). Note that when estimating
a and b, due to the asymptotic analysis we looked at only the first and
last 10 percentiles of the distribution. But for estimating p and q we look
at the entire data.

Fig. 4 shows an example of CDF and PDF plots before and after
fitting a 4-parameter Beta distribution at a grid point in Saskatchewan
for all Aprils from 2010-to 2018. The observed data (black circles in the
left plot) are in the range of 0.13 to 0.36 m3/m3. However, using the
asymptotic model, the endpoints of a and b (blue dots) extend the tails
of the distribution to a range of 0.02 to 0.52 m3/m3. The longer tailed
distribution can take care of those unseen drought and flood events.
This process was done for every calendar month of every grid point.

We used the Kolmogorov-Smirnov (KS) test to examine the good-
ness-of-fit of Beta distribution at the 95% significance. The null hy-
pothesis of the KS test is that the data follow the specified distribution.
The null hypothesis regarding the distributional form was rejected if the
test statistic, D, was greater than the critical value, Dcrit., obtained from
the KS table. Otherwise, there was no evidence to support the rejection
of the null hypothesis, and therefore we accepted that the data follow
the Beta distribution.

3.3. Finding the percentile as the new integrated SMAP and SMOS come in
every 24 h

For NRT application, as the SMAPg, d and SMOSg, d come in every
day d, we integrate them as SMOS/SMAPg, d, m, and then we find the
corresponding percentile of the integrated SMOS/SMAPg, d, m using the
grid's Beta distribution parameters repository from the month m of that

day d belongs to. The global grids' percentiles are then smoothed up
(each grid is the average of neighbor grids) and transformed into a
colored map similar to the U.S. Drought Monitor (USDM), which uses
levels D0-D4 to indicate drought severity. In addition, we extend our
indices to pluvial conditions similar to the maps from the Gravity
Recovery and Climate Experiment (GRACE). We have developed an
online platform that overlays these maps over Google Maps and stores
the archive for download (i.e. GSMIM). We programmed the GSMIM to
run on a daily schedule.

4. Validation strategies

Ensuring the accuracy of integrated data originating from space is a
crucial aspect of any satellite data processing effort (Sánchez et al.,
2016). One way of achieving this is to compare the in-situ measure-
ments on the ground with the integrated remote sensing data
(Rodríguez-Fernández et al., 2017). Even though ground-based mea-
surements are sparse and not necessarily representative of large-scale
satellite soil moisture (Molero et al., 2018), such evaluation is im-
portant to understand the variations and diversity of conditions be-
tween the point measurements and the SMOS/SMAP data.

4.1. Canadian Prairies Ecozone (CPE)

The Canadian Prairies (or grassland) are the three provinces of
Alberta, Saskatchewan, and Manitoba. The southern parts of these
provinces are called the CP Ecozone (CPE), an area of 520,000 km2,
shown in Fig. 5, an area with relatively homogeneous soil texture. CP
has about 50% of Canada's number of farms and more than 80% of the
farmland (in terms of hectares) that are mostly concentrated in the CPE.
The CPE is the core of the agricultural economy of Canada with some of
the world's highest climate and weather variability. Such variabilities
have significant effects on CPE's agriculture, environment, economy,
and culture on a year to year basis since most of the agriculture is still
rain-fed. For example, the drought of 2001–2002 cost approximately
$3.6 billion in agricultural production losses (Wheaton et al., 2005).
Between 2008 and 2012, federal-provincial disaster relief payouts for
climate-related events totaled more than $785 million, and more than
$16.7 billion in crop insurance was paid out. The 100-year record-
breaking drought in 2017 caused massive wildfires (also in British

Fig. 4. Example from fitting 4-parameter Beta to months of April between the period of 2010–2018 at a grid point in SK, Canada (lon:-106.2448, lat:51.18893). (left)
The a and b values are shown on the CDF by blue dots are the lower and upper bounds outside of the observed values. (right) The density plot is consistent with the
CDF plot on extended beyond the observed values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

S. Sadri, et al. Remote Sensing of Environment 246 (2020) 111864

8



Columbia), reduced yields (particularly canola), heat stress, poor grain
fill, livestock feed shortages, and relocation of nearly 3000 cattle in
Saskatchewan and Alberta (Cherneski, 2018). Given the vulnerability of
the CPE to drought and agricultural production risks and the future
scenarios of climate, which show more severe and frequent droughts
with declining trends of precipitation and surface water resources
during summer and fall, there is a need to develop drought outlook and
forecasting for the CPE to better inform decisions by producers, espe-
cially at the start of the growing season (Sauchyn and Kulshreshtha,
2008; Cherneski, 2018).

High seasonal and interannual variability in rainfall are shown in
Figs. 6 and 7. The mean annual precipitation in the CPE from 1979 to
2018 ranges from 130 mm to 860 mm. The average spring and fall
rainfall, the seasons of the great demand for agriculture, is low. Summer
has the highest average precipitation but with great interannual
variability (Fig. 7) and a declining trend on some future projections
scenarios. In general, the eastern and western margins of the area re-
ceive slightly higher precipitation but the major part of the CPE is
suffering from the narrow window of favorable agricultural weather for
much of the year.

4.2. Regional comparison of SMOS/SMAP soil moisture with in-situ data

In the CPE, the in-situ data of ISMN are collected from SMAP core
validation sites and RISMA, a Canadian monitoring network of in-situ
SM established by Agriculture and Agri-Food Canada (AAFC) and
Environment and Climate Change Canada (ECCC). RISMA has three in-
situ monitoring networks near Kenaston (Saskatchewan) (Tetlock et al.,
2019), Carman (Manitoba) (Bhuiyan et al., 2018), and Casselman
(Ontario) as part of the Sustainable Agriculture Environmental Systems
(SAGES) project entitled Earth Observation Information on Crops and
Soils for Agri-Environmental Monitoring in Canada (Government of

Canada, 2017). A total of 111 in-situ sites were gathered in combination
which many of them were geographically very close to each other or
closely overlapped. Both SMAP core validation sites and RISMA are
chosen based on a requirement of having continuous soil moisture
measurements at 5 cm depth with replication within our grid cells with
a spatial scale of ~36 km. Fig. 8 shows the locations of these 111
sensors in the CPE region with overlapping transparent orange circles.
The centers of the ~36 km grids containing these sites are numbered.
Four of these grids are in Saskatchewan (SK) and 4 are in Manitoba
(MB). Grids 1 to 6 have a higher number of sensors and therefore,
higher confidence in the representativeness of data. Grids 7 and 8 can
be used in algorithm testing but the confidence of representativeness is
not high enough due to the low number of sensors within the grids.
Furthermore, land use land cover studies show that both of these grids
are located in urban and developed areas which might contribute to
their discrepancy between the in-situ and remotely sensed data.
Therefore, the in-situ data from these two grids are eliminated from the
study.

Our study period for point validation spans from January 2012 to
December 2017. According to the Canadian Drought Monitor (CDM),
there were at least two periods of drought in the prairies during this
period. One severe drought occurred in 2012 and the other occurred in
2017. In contrast, the year 2016 was a very wet year with above-normal
precipitation during summer and fall. In the next section, we look for
these events in our results.

5. Results and discussions

5.1. CDFM vs. Bayesian conditional process

Fig. 9 compares correlation and RMSE from the two processes of
integrating SMOS/SMAP SM data. The SMOS/SMAP dataset obtained

Fig. 5. CPE position relative to Canada and the CP region (three provinces of Manitoba, Saskatchewan, and Alberta). Source: (ESTR Secretariat, 2014).
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from CDFM in column 2 revealed to have lower RMSE (and bias) and
higher correlation with SMAP over the globe compared with the dataset
obtained from the Bayesian process in column 1. It can be, therefore,
concluded that there is less uncertainty associated globally with the
CDFM dataset. However, this step was only preliminary in under-
standing which dataset could be used to proceed with developing a
global SM index.

5.2. Global and regional goodness-of-fit of the Beta distribution

For the SMOS/SMAP datasets, we performed the KS test on both
CDFM and the Bayesian conditional process integrated datasets at a
95% confidence margin to filter the grids whose time series for each
calendar month fit a Beta distribution. The SMOS/SMAP SM dataset
from CDFM showed less flexibility to fit the Beta distribution regionally
and globally. The number of grids that passed the KS test varied in each
month. We summed the total number of passed grids in every month for

Fig. 6. Seasonal mean precipitation for 1979 to 2018 for (a) Dec-Feb, (b) Mar-May, (c) Jun-Aug, and (d) Sep-Nov. AB: Alberta, SK: Saskatchewan, MB: Manitoba.
Legend unit is mm/d.

Fig. 7. Same as Fig. 6 but showing seasonal standard deviation of precipitation for 1979 to 2018 for (a) Dec-Feb, (b) Mar-May, (c) Jun-Aug, and (d) Sep-Nov.
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12 months and divided them by the total number of grids that were
overpassed for 12 months to get the percentage of grids that fit the Beta
distribution both globally and for the CPE region. On the global scale,
we eliminated 18,872 grids (from the total of 100,500 grids) that were
permanent bare soil/deserts from the percentages of KS passing calcu-
lation, whereas for the CPE, only 4 grids were identified as bare soil and
so we did not eliminate them. The summary of results is presented in
Table 2. For comparison, we did a similar analysis of VIC and CCI da-
tasets. Although there is a chance that the results in Table 2 are affected
by spatial autocorrelation which may affect the total passing percen-
tages, considerably more grids passed the KS test using the Bayesian
conditional process than the CDFM approach both globally and in the
CPE. While the CDFM process is widely practiced for integrating data,
the assumption of perfect correlation between SMOS and SMAP, the
process might not lead to better parametric fit.

Since we used monthly batches to extract indices, we performed a
“breakpoint” analysis to check for temporal biases in month-to-month
changes. For every grid, we made two frequency distributions: one by
calculating the differences between the indices of every two con-
secutive dates that fall inside of the same calendar month; the second by
calculating the difference between the indices of every two consecutive
dates that fall on the last day of the old and first day of the new month.
If breakpoints are not an issue, the expectation is that the two dis-
tributions are the same. A KS test with a p-value of 95% found that out
of 382 grids in CPE, only 36 grids did not have the same distributions.
So we concluded that the breakpoints could be an issue for less than
10% of grids.

We also investigated whether the 3-year SMOS and SMAP common
period introduced any stability issue of the parameters. To do this, we
performed cross-validation on the data by removing 20% of the days
from common days of SMOS and SMAP in the 3 years overlapping

period and recalculated the SMOS/SMAP data, fitted the 4-parameter
Beta distribution, and obtained new indices for the period of
2010–2018 for all the grids in the CPE. The index bias for each grid was
very small, between [−0.9 to 0.9], and scattered like random noise
across the CPE with mean and median of close to zero (~ − 0.01). The
cross-validation test showed that using only 3-year common period
between SMOS and SMAP is stable enough to carry the index identifi-
cation. However, the 3 years affected the choice between the Bayesian
process and CDFM.

5.3. In-situ comparison

For the 6 validation grids in the CPE, we calculated BIAS, RMSE,
correlation coefficient, and the Nash-Sutcliffe Efficiency (NSE) coeffi-
cient between the average in-situ SM data and the SM from SMOS,
SMAP, SMOS/SMAP (from both CDFM and the Bayesian process). We
tried two combinations of SMOS/SMAP SM time series. One approach
was to fully simulate the SMOS/SMAP series even for the days that
SMAP satellite had a retrieval. The other approach was to partially si-
mulate the SMOS/SMAP series meaning that we replace the SMAP re-
trievals back in the SMOS/SMAP datasets for the days that they existed.

Fig. 10 shows the boxplots of summary statistics between the
average in-situ SM values and SMOS, SMAP, fully simulated SMOS/
SMAP using CDFM, partially simulated SMOS/SMAP using CDFM, and
partially simulated SMOS/SMAP using Bayesian process. Comparing
fully simulated SMOS/SMAP using CDFM (orange bars) and partially
simulated SMOS/SMAP using CDFM (dark brown bars), we see that
they have similar biases but in the partially simulated dataset, we get a
better correlation and NSE with the in-situ data. Therefore, we decided
to proceed with the partially simulated integrated time series in gen-
eral. We then compare the partially simulated SMOS/SMAP using

Fig. 8. The CPE is covered by 382 grids at ~36 km resolution and the blue dots are the centers of SMAP grids points. The ascending SMAP orbit path is drawn with an
arrow. The locations of 111 in-situ sites are shown with orange dots with some transparency. The legend lists the number of the candidate grids from the global
dataset and their respective longitude and latitude. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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CDFM (dark brown) and the partially simulated SMOS/SMAP using the
Bayesian conditional (light brown) series. In this latter case, the two,
again, have very similar bias and RMSE statistics. Some of the bias
values from both the CDFM and the Bayesian process are slightly in the
negative range for both datasets. But the average bias values are less
than 0.04 m3/m3 and close to zero. Correlation (Corr in Fig. 10) and
NSE for the SMOS/SMAP from partially simulated CDFM is slightly
better than in the partially simulated SMOS/SMAP from the Bayesian

conditional process, specifically in terms of median and upper extreme
values. However, such statistical improvements are at the cost of fewer
grids fitting the Beta distribution in CPE and globally (Table 2), since
the Bayesian process showed a significant improvement in terms of the
number of grids that passed the KS test.

The decision for choosing an approach for integrating satellite data
is ultimately about our final goal to develop an SM-based index. We
decided to carry the rest of the analysis using the partially simulated

Fig. 9. Comparing RMSE (a) and (b) and correlation (c) and (d) between SMOS/SMAP and SMAP from the two methods of Bayesian conditional process and CDFM.
The period of comparison is from 2015/03/31 to 2018/06/29.

Table 2
The percentage of grids that fit the Beta distribution with 95% confidence in the globe and CPE.

Dataset Pass KS Test 81,628 global grids
(Bayesian)

Pass KS Test 81,628 global grids
(CDFM)

Pass KS Test 382 CPE grids (Bayesian) Pass KS Test 382 CPE grids (CDFM)

VIC 58% 58% 64% 64%
SMOS/SMAP 76% 51% 81% 71%
CCI 86% 86% 98% 98%
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SMOS/SMAP dataset using the Bayesian conditional approach (with
SMAP values replacing the simulated SM on any day and grid that has a
SMAP SM observation). The best reasons for choosing the Bayesian
process over the CDFM are firstly a similar accuracy to partially si-
mulated SMOS/SMAP using CDFM and secondly, the higher number of
grid coverage. The latter was especially important since for prediction
purposes we need to have more SM data reliability fit a parametric
distribution.

5.4. SM time series comparison

Fig. 11 shows a more in-depth analysis of the SM time series of the 4
validation sites (grids 1 to 4) in Saskatchewan and 2 validation sites in
Manitoba (grids 5 and 6). Here we only show the period from 2014 to
2016. We are using partially simulated SMOS/SMAP and that is why
the series covers over the observed SMAP data (blue circles). Overall,
the SMOS/SMAP time series has captured the behavior of the on-site
soil moisture dynamics over all the 6 sites.

In almost all plots of Fig. 11, the in-situ sites show a pronounced low
level of soil moisture from November to early-April, expected from the
CPE due to the frozen winter season. Except for grids 1 and 2, SMOS
tend to show a lower amount of soil moisture for higher in-situ SM
values. While SMOS series can be slightly more correlated to the on-site
data, the SMOS/SMAP series showed a lower bias with the in-situ va-
lues (Fig. 10). This means SMOS/SMAP on average has less sum of
differences with the in-situ data while it can capture the in-situ sea-
sonality reasonably well. The SMOS data also capture seasonality but
show a bigger bias. Fig. 11 (as well the P–P plots of the SMAP vs. the
SMOS/SMAP) confirm that the SMOS/SMAP dataset has captured the
SMAP pattern while using the information that SMOS provided (having
more revisit frequency and a longer period of record).

5.5. Comparison between drought indices

A comparison of the SPI-1 with the average monthly SMOS/SMAP
index allows assessing time of co-occurrence of historic events as well
as their intensity and duration. We calculated the monthly average
precipitation, SPI-1, as well as monthly average of drought indices from
SMOS/SMAP, VIC, and CCI for each of the candidate grids in the CPE.
In Fig. 12, we present the time series of such analyses for grids 2, 3, and
6 and for the period from 2012 to 2017.

In the first panels, average monthly precipitation and SPI-1 are
plotted. In the second panels, we can compare the pattern and overall
temporal variability of SMOS/SMAP, CCI, and VIC average monthly
indices. The SMOS/SMAP and CCI indices follow each other quite
consistently and closely, while VIC shows different behavior from the
other two on some months. The CCI and SMOS/SMAP also corresponds
more with the SPI-1. All grids and indices captured the extreme
droughts of 2012 and 2017 quite well, although they show different
levels of severity. The year 2013 was abnormally dry (D0), dominant in
southern Alberta and Saskatchewan, for most of August since rainfall in
the region was 40–60% of normal. This is reflected in the plots of grids
2 and 3 showing Saskatchewan. The wet summer and fall of 2016 is also
captured in the plots.

In Fig. 13, the spatial extent and severity of the monthly average of
the SMOS/SMAP drought indices for August 2012, 2013, 2016, and
2017 are compared with the monthly spatial maps released by AAFC's
CDM. The monthly maps from CDM are produced through data sources
from consultations with federal, provincial, regional, and academic
scientists to establish a single drought index based on the five categories
of intensity of drought (Agriculture Agrifood Canada, 2019). Therefore,
CDM is more comparable to USDM than our SM-based inex maps, but
the purpose here is to compare the overall patterns of dryness. The CDM
maps are generated Canada-wide but here, we cropped the maps to

Fig. 10. Boxplot comparison between in-situ data and SMOS, SMAP, partially and fully simulated SMOS/SMAP using two types of CDFM approach, and partially
simulated SMOS/SMAP SM using the Bayesian conditional approach. The period of comparison is from 2010 to 2018.
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show only the CPE. Visual examination of SMOS/SMAP with CDMmaps
shows that SMOS/SMAP captured extreme events in terms of spatial
extent and severity of drought conditions quite well. For example, years
2012 and 2013 were moderately dry (D1) years since February, but
particularly from August to October in southern Manitoba and the
southeast part of Saskatchewan, less than 70% of the normal amount of
rain fell. Very relevant pattern of dryness is captured in the left panels
of Fig. 13. The year 2016 was a very wet year with an overabundance of
precipitation in most of the CPE, leading to the deletion of both ab-
normally dry (D0) and moderate drought (D1) conditions in the area
from the past years. Only a small packet in southeastern Saskatchewan
began to show short-term dryness with D0-D1. This is, again, well
captured in the SM-index map of Fig. 13. Finally, in 2017, severe to
exceptional drought (D2 to D4) in Alberta and Saskatchewan negatively
impacted most crops and pasture yields and quality. Pockets of extreme
drought (D3) caused wildfires that burned more than 100,000 ha. This
is also well shown in Fig. 13. The SM-based index map showed to be
capable of capturing the sptail and temporal patterns and severity of
drought conditions in most cases in the CPE.

5.6. Joint distribution heat maps

Although studying the monthly pattern of indices show the overall
agreement and disagreement of the indices, to understand the similarity
of the daily index maps, we generated two-by-two comparison heat
maps from the actual daily indices of SMOP/SMAP, VIC, and CCI.
Fig. 14 shows heat maps from such comparisons for selected grids (2,3,
and 6) for the entire period of 2010 to 2018. Percentiles from 1 to 100
are partitioned into 5-percentile increments for each of the indices and
the number of times that two indices at the time fall within the same bin
is counted. For each grid, a heat map denser diagonally would be more
ideal because it shows that the two indices identify similar severity of
drought or pluvial conditions numerically.

There are warmer colors in higher percentiles between VIC and
SMOS/SMAP and between VIC and CCI percentiles meaning that, in the
CPE region, the daily maps of indices from VIC datasets most likely
agree more with CCI or SMOS/SMAP in terms of severity of the pluvial
conditions but agrees less in terms of drought conditions. CCI and
SMOS/SMAP show noticeable agreement in recognition of drought

Fig. 11. Time series for the validation sites from 2014 to 2016. Note that the partially simulated SMOS/SMAP (red dots) overlap with the SMAP (blue dots) for days
that SMAP has a retrieval. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Comparative evaluation between mean monthly precipitation, SPI-1 (top) and mean monthly drought indices from SMOS/SMAP, VIC, and CCI (bottom) for
test grids in the CP for the period from 2012 to 2017. The month of August of each year is shown by a pink shadow. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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conditions in terms of percentiles especially for the grids in Manitoba.
CCI and SMOS/SMAP indices also show a clearer diagonal relation,
which is less observed between VIC index and these two indices.

5.7. All indices comparison

In comparing all indices, we want to answer two questions. Firstly,
which of these indices are more reliable, and secondly, which of these
indices are more suitable and has the potential of assessing agricultural
drought impacts. Reliability is a matter of matching ground truth; as far
as the CPE region is concerned, SMAP datasets showed to be the most
reliable, with the partially simulated SMOS/SMAP next in reliability.

Suitability of use can be assessed by more statistical tests to find which
index is more harmonized with major drought and pluvial conditions
and can be used as a monitoring and prediction tool. We compared all
382 grids in the CPE in terms of their statistics and plotted the CDFs of
CCI, SMOS/SMAP, and VIC indices in Fig. 15 knowing that, in esti-
mating the indices, every grid on any given day should have an equal
chance of having all the percentiles. In the long run, this means that the
CDF of all the indices should be very close to the 1:1 line. Although that
is the expectation, none of the 3 indices in Fig. 15 are completely
matching the 1:1 line, meaning that they all have some sort of bias.
Fig. 15 also explain the tails or extreme indices. For further investiga-
tion, in Fig. 16 the 10th, 50th, and 90th percentiles of VIC, SMOS/SMAP,

Fig. 13. Comparison of indices from SMOS/SMAP with those from CDM for the months of August and the years of 2012, 2013, 2016, and 2017. Note that projection
of the right and left column are different, and even for AAFC's CDM (right column), the projection of year 2012–2013 is different from that in years 2016–2017.
Drought conditions outside of the CPE is not plotted in the left column.
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and CCI are drawn.
Studying 15 together with Fig. 16 reveals that all of the three indices

can show extreme pluvial conditions slightly less wet than what might
be happening on the ground. The SMOS/SMAP index can show ex-
tremely dry conditions slightly less dry than what might be happening
on the ground as well. The reason behind this behavior is that SMOS/
SMAP is still having shorter tails due to having a shorter record, even
after we extended its tails using the asymptotic model. However, this

might not cause a major problem when translating the SMOS/SMAP
indices into the colour map according to D0-D4 categories given that
each category includes a range of percentiles. For example, D1 and D0
categories allow indices to be anywhere in the range of 11% to 20% and
21% to 30%, respectively. Therefore, SMOS/SMAP index is most likely
to categorize a D4 drought as a D3 and a D3 drought as a D2 but much
less likely to categorize a D2 drought as a D1. Around the 50th per-
centiles, CCI and SMOS/SMAP indices show a very similar assessment
which probably corresponds realistically with what is happening on the
ground. This is evident also in Fig. 15 where the two CDFs cross each
other around the middle percentiles. VIC indices, in contrast, show a
great negative bias for indices between 30% to 70%. An event with the
non-exceedance probability of 30 percentiles can be presented with an
index of 40% in the VIC index and therefore, in mid percentiles, VIC
tends to show the D0-type droughts as no dryness at all. This is further
confirmed in Fig. 16. VIC also shows extremely severe droughts (D4 to
D2) that fall in the 1% to 10% index range more severe than it might be
on the ground, for example it can show a D3 drought as a D4.

Overall, the CCI indices are almost on the 1:1 line in lower indices
(less than 30%) so we can say that CCI indices in lower percentiles tend
to show the ground as dry as it is in reality. CCI and SMOS/SMAP
performed closest to each other in capturing seasonality (due to close
correlation) and their spatial patterns. Their CDFs show similar patterns
and we can say that SMOS/SMAP CDF is an exaggerated version of CCI,
which means that SMOS/SMAP sometimes tones the dry and wet si-
tuations slightly down. SMOS/SMAP indices bias can be sensitive to one

Fig. 14. Two-by-two comparison of VIC, SMOS/SMAP, and CCI using joint distribution heat maps. The period represented by this comparison is 2010–2018.

Fig. 15. Summary CDF of each index for the 382 grids of the CPE region. The
period represented is 2010–2018.
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or more of factors such as the way that the two types of data got in-
tegrated, the record length, or the regional characteristics of indices.
Understanding the behaviors of indices are important in interpreting
the daily index maps, however, such analysis also brings out the im-
portance of investigating the source and removal of biases, although,
this is not in the scope of this study.

5.8. Global drought monitor maps

Fig. 17d shows an example of the SMOS/SMAP-based index mapped
for the GSMIM for August 31, 2017. Areas without vegetation and de-
serts are eliminated using FAO IIASA mask (FAO, 2019). The GSMIM is
a 3-day composite map for more continuous coverage, e.g., August 31 is
the average of August 29, 30, and 31. For comparison, other drought
maps from other organizations and agencies are presented although not
all of them represent merely soil moisture nor are they only based on
the day of August 31, 2017. CDM (Fig. 17b), for example, is an average
over the entire month of August. USDM (Fig. 17a) presents weekly
maps and, similar to CDM, it integrates several drought indices and
experts' inputs (Svoboda et al., 2002). European Drought Monitor
(EUDM in Fig. 17c) is also a combined drought indicator and its maps
here represent the last 10 days of August. For our GSMIM, we include
wetness percentiles similar to AFDM (Fig. 17e) except that AFDM is
colour-coded as shades of green instead of blue.

The extension of abnormal dryness (D0) to exceptional (D4) drought
conditions from the CPE in CDM shows in the USDM map in the high
plains of Montana, northern plains of Nebraska, and the Dakotas.
Pasture and crop conditions were poor to very poor in these areas
during August. The northern Rockies and Pacific Northwest also ex-
perienced moderate (D1) to severe (D2) drought. Some of the D0 and
D1 situations lingered in parts of southern California and Arizona,
which was not captured by GSMIM. One reason for this can be human
interference and the use of groundwater wells for irrigation during the
warm season. This was further confirmed by NOAA's monthly report for

August 2017 which indicated that the southern California and Arizona
drought were mostly based on groundwater and GRACE observations
(NOAA, 2017). Abnormal dryness and moderate hydrological drought
expanded in the Northeast of the U.S. as well. The GSMIM map also
captured the drought conditions in the Northwest and interior South-
east of Alaska, as well as the pluvial conditions everywhere else in
Alaska. GSMIM is mostly in agreement with AFDM but disagrees in
terms of severity of drought in some regions, particularly in South
Africa and Madagascar. The areas where we see the lack of corre-
spondence with GSMIM are exactly the areas of poor or no rain gage
availability and hence, we speculate that this affects AFDM is showing
similar conditions as those in GSMIM. Summer 2017 was exceptionally
dry in Europe, particularly Southwest Europe which was hit by heat-
wave “Lucifer”. By August 31, most of the Southwest recovered from
the heatwave, but the drought continued to linger in some of the
Scandinavian countries, East and Central France, West and South of
Spain, as well as in Ukraine, Serbia, and Croatia (C3S, 2017). We
compared more maps of GSMIM from various dates with the regional
maps and overall, there is a high correspondence among the drought
maps from different regions and GSMIM. Future developments can,
however, focus on the quality of performance of the GSMIM in various
areas of the globe.

5.9. Data and maps availability

For accessibility and as an outreach tool, we have developed an
online platform that overlays these maps over Google Maps and stores
the archive for download. The website can be reached at http://
hydrology.princeton.edu/ sadri/nasasmap_globe/in-
dex.html. The CDM monthly maps are available at https://open.
canada.ca/data/en/dataset/292646cd-619f-4200-afb1-
8b2c52f984a2. USDM weekly maps of the U.S. are available at
https://droughtmonitor.unl.edu/Maps/MapArchive.aspx.
GRACE-based assimilated weekly maps are available at https://

Fig. 16. Comparing VIC, SMOS/SMAP, and CCI spatial pattern of tails distributions and medians.
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nasagrace.unl.edu/Archive.aspx. The 10-day European
Drought Monitor maps are from https://edo.jrc.ec.europa.
eu/edov2/php/index.php?id=1111. AFDM is generated by
Princeton Climate Analytics (PCA) at https://platform.
princetonclimate.com/AFDM/interface.php?locale=en.

6. Conlusions

In this study, we developed GSMIM, the first operational global SM-
based index product using merged near-real-time remote sensing data.
The constructed dataset used SMAP observations as predictand while
taking advantage of the spatial information and temporal coverage that
SMOS provides since 2010. We make the index maps available online
every 24 h. In its current form, the system only monitors the SM index
state of the globe for studying drought and flood evolutions and does
not address impacts.

The GSMIM is distinguished from other operating systems in that it
uses 4-parameter Beta distributions with asymptotics to describe its
limiting behavior and extend its endpoints beyond the observed data.
Furthermore, the value of this study is enhanced by the use of remotely
sensed data which characterizes the drought condition spatially and
temporally in a near-real-time capacity. The algorithm developed in
this study is implemented operationally for the use of SMAP/SMOS
dataset as the basis for GSMIM, however, the methodology for

integrating two or more datasets, fitting a non-standard Beta distribu-
tion whose extreme tails go beyond the observed data, and translating
the incoming integrated soil moisture into index percentile is essentially
applicable to any datasets in any regional or temporal scales. Since
GSMIM uses a parametric distribution, it also has great potential for
being developed further into a prediction tool. In this current stage, the
7–8 day temporal latency of GSMIM comes from the latency of the
SMOS SM and if that is addressed, the GSMIM can easily be synced with
SMAP's latency (3-day). Compared with the C3S SM, GSMIM's 7–8 day
lag is lower which may be critical for some applications.

The differences in VIC-based indices and other indices can be due to
the way that these data are produced. Soil moisture through satellite
data is calculated from the C-band passive microwave signal, whereas
LSM models such as VIC integrate soil moisture from antecedent me-
teorological forcing mostly precipitation. It can be argued that the
ground measurements could be the most accurate but they are also
prone to errors and uncertainties and can be altered or not re-
presentative. Moreover, different sites can have different instruments
and protocols for onsite measurement, be far more sparsely distributed
in space and in time, and not necessarily representative of large-scale
soil moisture. The synergy between precipitation index SPI-1 and
SMOS/SMAP index makes this index more powerful for future use in
depicting drought conditions in the CPE than the use of observations
separately.

Fig. 17. Comparison between GSMIM and other agencies' drought monitor maps around August 31, 2017. Areas of the globe that have bare soil (i.e. dominated by
deserts) have been removed in GSMIM.
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SMOS/SMAP indices might not show the extreme drought condition
as severe as they are on the ground albeit capturing their presence and
spatial extent. This can be due to the fact that both CCI and VIC SM
datasets have longer record periods than SMOS/SMAP SM datasets. The
CCI still has biases to be recognized and removed, but it performed
closest to an index. The CCI, however, is not currently available in near-
real-time. SMOS/SMAP's indices performed better than VIC indices.
Because SMOS and SMAP monitor soil moisture directly and provide
critical information for drought early warning, GSMIM can be a rea-
sonable global index with operational capacity and competitive quality.
It is important, however, to acknowledge that such an operational tool
relies on continuous efforts to improve the system, e.g. recalibration
and other updates, which can lead to changes in the product.

Although this study overcame several obstacles, it also shed light on
other future developments and research. It is important that future
developments focus on merging CCI with SMOS/SMAP SM data for
building a version of GSMIM based on a longer-term record while
maintaining the near-real-time capacity of the product. Downscaling of
the SMOS/SMAP indices and correcting biases (such as the bias de-
tected from the SMOS/SMAP indices in the CPE shown in Fig. 15) are
other possible future directions. Next steps can be also on under-
standing the relationship and feedback between surface SM, root zone
soil moisture, crop development stages, and land surface temperature
(LST). However, evaluation of drying and wetting trends of SM and
associated feedback with LST would still remain difficult in many re-
gions worldwide due to a lack of availability of global long-term SM
observations. It would be crucial to run validation in other regions,
especially in underrepresented parts of the world. The relationship
between point measurements in a region, SM, and crop yields is another
interesting direction that this work can take. Developing GSMIM has
been a step forward toward building a global SM index prediction tool
and bridging the gap between the satellite data information and on-the-
ground improvements in water and food security.
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