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A B S T R A C T   

The auditory brainstem response (ABR) is a clinical test used to evaluate hearing objectively. The aim of this 
study was to optimise weighted averaging for both residual noise reduction and also for objective ABR detection 
using the Fmp statistical test. Analyses were performed using no-stimulus EEG background activity recorded 
from 15 participants and simulated “response present” data (4,602 ensembles in total). Different approaches for 
estimating the variance of the noise within each block were compared, as was the effect of the number of 
recording epochs in each block when calculating and applying the weights. The “VAR Whole Block” method was 
found to be more effective than the “VAR MP” method at estimating the noise level, especially for smaller block 
sizes (2–10 epochs). Caution should be exerted when selecting recording parameters for use with weighted 
averaging as an inflation in the “response absent” Fmp statistic was observed using small block sizes (relative to 
unweighted averaging); this may be due to a bias in the Fmp statistic observed as a result of the combined effects 
of the finite Fmp analysis window length and the high-pass filter setting. Optimised weighted averaging was 
effective in reducing the mean residual noise level in the averaged waveform, leading to improved ABR detec-
tion. Further work is required to optimise the Fmp analysis window length, recording settings, and weighted 
averaging parameters in combination, using a large clinical dataset.   

1. Introduction 

The auditory brainstem response (ABR) is a well-established clinical 
test, providing clinicians with an objective method of assessing hearing. 
The ABR consequently constitutes an integral component of numerous 
national newborn hearing screening programs [1]. 

Statistical detection methods may be used to assist clinicians in 
detecting if a response is present. If we define the recorded electroen-
cephalogram (EEG) data for analysis as a matrix X, structured as N rows 
of recording epochs by M columns of samples within the chosen analysis 
window per recording epoch [2], then the tth sample of the unweighted 
coherent average is calculated as: 

x[t] =
1
N

∑N

i=1
xi[t] (1)  

where xi[t] denotes the tth sample of the ith recording epoch. The pres-
ence of a response in the average can be evaluated using statistical tests, 
including the Fsp [3] and its close relation, the Fmp [4]. Both methods 
produce an F-statistic relating to the signal-to-noise ratio (SNR) of the 
averaged waveform, which may be converted into a p-value, quantifying 

the probability of obtaining the given result (or greater) under the 
assumption that the null hypothesis (no response present in the averaged 
waveform) is true. This is achieved by calculating a ratio of the esti-
mated variance of the evoked potential signal (the coherent average) to 
the estimated variance of the averaged background noise and obtaining 
a p value for the F-statistic from the associated theoretical F-distribution. 
Specifically, the Fmp is calculated as [4]: 

Fmp =
VAR(x)

1
N

(
1
Q

∑Q
j=1VAR

(
spj

) ) (2)  

where x is the coherently averaged waveform, Q is the number of chosen 
single point noise estimates (sp) to be included in the analysis, and VAR 

(⋅) denotes variance. Note that VAR
(

spj

)
is found by taking the variance 

down the jth chosen column of data matrix X. As a variance-ratio test, the 
Fmp is expected to produce a test statistic which follows an F-distribu-
tion under the condition that the null hypothesis (“response absent”) is 
true. The degrees of freedom (df) of the numerator and the denominator 
are furthermore expected to be v1 = M − 1, and v2 = N − 1, respectively, 
under the assumption that the data follow a Gaussian distribution and 
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there is independence between samples both in the numerator (the 
coherent average) and the denominator (samples in each of the chosen 
single point noise estimates) [3]. However, due to the predominance of 
low frequency power in EEG background activity, there is correlation 
between samples within any given recording epoch, which reduces the 
degrees of freedom of the numerator (v1) [3]. The value of v1 is difficult 
to estimate on a recording-by-recording basis, and in order to safeguard 
against inflated false-positive rates in statistical tests, a conservative 
value of v1 = 5 has been recommended with the majority of background 
EEG activity having been found to be at this level or greater [3]. The 
conservative choice for v1 comes at the expense of a reduced statistical 
power relative to larger values of v1. 

Unweighted averaging is known to provide the maximum likelihood 
estimate of the response signal when the background noise is Gaussian 
white noise [5]. It is known that noise levels in the recording vary over 
time e.g. due to changes in EEG background activity, myogenic activity, 
or environmental sources of noise [6]. Some epochs will therefore 
contain more noise than others and have a proportionally lower SNR. A 
sequitur of this is that coherent averaging, which affords equal weight to 
all epochs (unweighted averaging), is inefficient for non-stationary noise 
and that applying a weight inversely linked with the noise level within 
each recording epoch will improve the SNR of the coherent average; this 
process is known as weighted averaging [6,7]. 

Applying weighted averaging to ABR recordings was proposed to 
address the shortcomings of unweighted coherent averaging, with the 
aim of reducing the residual noise levels within the coherent average 
[6,7]. When applying weighted averaging, the weights will typically be 
calculated as being inversely proportional to some estimate of the noise 
level within the EEG recording [6]. These weights may be calculated for 
individual recording epochs, however, the accuracy of the noise level 
estimate is limited by the amount of information regarding the noise 
level contained in such a short data segment. Elberling & Wahlgreen [7] 
therefore proposed that the (single point) noise variance estimate be 
calculated from blocks of several recording epochs, with the weight then 
being applied to the whole block. Elberling & Wahlgreen [7] provide the 
following equation to calculate the tth sample of the weighted coherent 
average (xw): 

xw[t] =
(

x1[t]
V1

+
x2[t]
V2

+⋯
xn[t]
Vn

)

•
1
T

(3)  

where xn[t] is the tth sample of the unweighted coherent average of the 
recording epochs within the nth block of recording epochs, Vn is the 
estimated noise variance of the nth block [3], and n is the number of 
blocks of recording epochs. The variable T constrains the weights to sum 
to unity, calculated as the sum of the reciprocal of the n noise variance 
estimates [7]: 

T =
1
V1

+
1
V2

+⋯
1
Vn

(4) 

Applying weighting inversely proportional to the noise power 
(variance) in each block provides a linear minimum mean square error 
(MMSE) estimator [6,7], and maximum likelihood estimator of the 
evoked potential signal [5]. 

Using larger blocks of recording epochs has the advantage of 
allowing the noise level to be estimated more accurately. However, this 
does not account for any non-stationarity occurring within the block, 
with all epochs within the same block being allocated the same weight. 
There is therefore a trade-off when deciding on the value of the block 
size parameter, between improving the accuracy of the noise level es-
timate and faster adaptation of the weights as the noise level changes 
over time [8]. Don & Elberling [8] sought to optimise the block size 
parameter for residual noise reduction, evaluating block sizes of 32, 64, 
128, and 256, and using up to 8 samples from each recording epoch in a 
block to estimate the noise levels. The block size of 32 epochs reduced 
the residual noise levels in the weighted coherent average most 

efficaciously and the possibility therefore remains for an even smaller 
block size to be yet more effective. 

Another aspect of weighted averaging which may benefit from 
optimisation, and was addressed by this study, is how best to estimate 
the variance of the background noise. Finally, whilst the effects of 
weighted averaging on the F-statistics for ABR detection have been 
demonstrated on isolated recordings [3], a systematic evaluation of the 
effects of weighted averaging on statistical methods for ABR detection 
has not yet been presented in the literature. The primary aim of this 
study was therefore to optimise weighted averaging, in terms of residual 
noise level and ABR detection, by comparing noise estimation methods 
for calculating the weights. The second aim was to optimise the block 
size parameter. The final aim was to assess the impact of weighted 
averaging when using the Fmp statistical test to detect the ABR 
objectively. 

2. Materials and methods 

2.1. “Response absent” background EEG data 

The spontaneous EEG data used in this study were previously 
recorded from 17 participants by Madsen et al. [9,10] under several 
recording conditions: asleep, lying still, blinking, and with head move-
ment. No sound stimuli were delivered. Only the EEG recordings from 
the “asleep” and “lying still” conditions were used in the current study as 
these conditions best reflect those under which the ABR is recorded in 
clinical practice, representing approximately 6.5 h of recordings from 15 
participants. Offline processing of these data included band-pass 
filtering from 30 to 1,500 Hz using a 3rd order Butterworth filter and 
downsampling the data to 5 kHz. These filter parameters were chosen as 
they reflect the recommendations of the British Society of Audiology 
[1]. Artefact rejection was applied with the threshold level set at ±25 
µV. A relatively high artefact rejection level was chosen to allow more 
noise into the recordings so as to allow better observation of the effects 
of weighted averaging. The continuous EEG recordings were arranged 
into ensembles of 1,000 epochs each. Recording epochs were 30 ms in 
length and were spaced temporally from each other to emulate a stim-
ulus rate of 33.3 Hz (albeit with no stimulus being delivered). In total, 
2,301 “response absent” ensembles of 1,000 recording epochs each were 
produced. 

2.2. “Response present” ABR data 

The “response present” data used in this study were simulated by 
making a copy of the 2,301 “response absent” ensembles and adding an 
ABR template to every recording epoch of each ensemble. The ABR 
template was constructed from the database described by Chesnaye et al. 
[2] and Lv et al. [11] (available at: https://doi. 
org/10.5258/SOTON/D0168), which contained 33.3 Hz click-evoked 
ABR data from 12 normal-hearing adults (6 females and 6 males), 
filtered offline in the same manner as the background EEG data. The 
single “response present” ABR template used was a coherently averaged 
waveform recorded at 50 dB SL (sensation level – relative to the in-
dividual’s hearing threshold) and scaled to have a peak-to-peak ampli-
tude of 500 nV. The benefit of using simulations in this study is that the 
“true” ABR signal is known a priori, hence allowing the estimation error 
in the ABR waveform to be calculated. 

2.3. Ethics 

Ethical approval for secondary data analysis of the datasets used in 
this study was granted by the University of Southampton Research 
Ethics Committee. 
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2.4. Evaluation of the operating characteristics of the weighted Fmp 
statistic 

In order to find the Fmp statistic (Equation (2)) with weighted 
averaging, a weighted ensemble is first defined as follows by adapting 
Equation (3): 

Xw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1 •

(
n

V1 • T

)

X2 •

(
n

V2 • T

)

⋮

Xn •

(
n

Vn • T

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)  

where Xn is the sub-ensemble formed by the nth block of L = N
n recording 

epochs from X. The (unweighted) coherent average of the weighted 
ensemble Xw produces the weighted average xw from Equation (3), 
which was substituted for the unweighted average x in Equation (2) 
when calculating the weighted Fmp statistic. The multiple single point 
noise estimates in the Fmp denominator were also calculated from Xw, 
rather than the original unweighted ensemble X when calculating the 
weighted Fmp statistic. The Fmp statistic was calculated over an analysis 
window of sample points contained within 1–15 ms of the recordings, 
using all available columns within the analysis window for the noise 
estimate such that Q = M. The Fmp statistic was calculated for all 4,602 
ensembles, for each of the block sizes evaluated. 

Detection performance was measured using the partial area under 
the receiver operating characteristic curve (ROC AUC) performance 
metric [12]. For this application, the clinical area of interest on the ROC 
curve is the portion of the curve on the left, corresponding to high 
specificity levels. The partial ROC AUC was calculated for the region 
from 95 to 100% specificity. 

2.5. Noise level estimation methods 

Two approaches for calculating Vk (for k = 1,2,⋯,n) in Equation (5) 
were evaluated, i.e. estimating the variance of the noise within each 
block. These noise level estimates were derived from the unweighted 
ensemble X and used to produce the weighted ensemble Xw. The first 
method, “VAR MP”, is similar to the original noise level estimation 
method which Elberling & Wahlgreen [7] used to perform weighted 
averaging, except that multiple points are used instead of a single point 
(Q = 1). For each block of recording epochs, the mean of multiple single 
point estimates of the variance of the noise is calculated 
(

1
Q
∑Q

j=1VAR
(

spj

))
as used in the denominator of the Fmp ratio 

(Equation (2)): 

Vk,(VAR MP) =
1

Q(L − 1)
∑Q

j=1

∑L

i=1

(
xk,i,j − xk,*,j

)2 (6)  

where xk,i,j is the EEG sample from the ith row of the jth chosen column of 
the kth block of recording epochs and xk,*,j is the mean value of the jth 

chosen column of the kth block. In this study all columns within the 1–15 
ms analysis window were used in the multiple point noise estimate, 
meaning that Q = M. 

The second approach to estimating the noise level within each block 
(Vk), the “VAR Whole Block” method, is calculated as the variance of all 
of the (L× M) concatenated samples within the block: 

Vk, (Whole Block) =
1

ML − 1
∑M

t=1

∑L

i=1
(xk,i,t − xk,*,*)

2 (7) 

where xk,*,* is the average of all the samples in the kth block. This 
method has the advantage of making more efficient use of the available 
information within the block to estimate the noise level and provides an 

unbiased estimator of the variance of the EEG background activity under 
the “response absent” condition. However, when an ABR signal (s) is 
present, the estimate will be biased [5] by an additional VAR(s) term 
(assuming a deterministic evoked potential signal which is independent 
of the background noise), where VAR(s) denotes the variance of the 
evoked potential response. For low-amplitude evoked responses, the 
bias term in the variance estimate is expected to be negligible [5], but 
for larger responses this could lead to sub-optimal weighting. It was 
hypothesised that using the “VAR Whole Block” method would allow the 
noise variance to be estimated more accurately (albeit with a bias), 
particularly for small block sizes where “VAR MP” is estimated from few 
points and hence subject to large random estimation errors. 

2.6. Residual noise estimation and optimisation of block size 

For each of the 4,602 ensembles, the weighted coherent average (xw) 
and weighted ensemble (Xw) were calculated using weights provided by 
either the “VAR Whole Block” or the “VAR MP” approach for estimating 
the noise level Vk (for k = 1, 2, …, n). The residual background noise in 
the weighted average of the “response present” data, could then be 
calculated accurately by subtracting the known ABR template from the 
weighted average xw (subtraction not required for the “response absent” 
data). The residual noise level in the coherent average was quantified by 
the root mean square (RMS) value of this difference signal, within the 
analysis window of 1–15 ms. The assessment was repeated over a range 
of block sizes to determine which block size optimally reduced the re-
sidual noise level within the averaged waveform. The block sizes used 
were equal to all of the factors of the ensemble size of 1,000 epochs: 1, 2, 
4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, and 1,000 epochs. 
Note that using a block size of 1,000 (i.e. all) epochs equates to un-
weighted ensemble averaging. Also note that the “VAR MP” method 
(Equation (6)) cannot be applied to a block size of 1. 

3. Results 

3.1. A comparison of the two noise level estimation methods and 
optimisation of block size 

Fig. 1 provides a comparison of the “Var MP” and “Var Whole Block” 
methods in terms of their efficacy at reducing residual noise levels 
within the weighted average. 

Fig. 1 shows that weighted averaging can achieve notable improve-
ment in residual noise levels compared to unweighted averaging. The 
“VAR Whole Block” method consistently led to lower mean and median 
residual noise levels when used for weighted averaging compared to the 
“VAR MP” method. As expected, for larger block-sizes the RMS error 
gradually converged to that of unweighted averaging. However, as the 
block size becomes smaller, the noise level estimates may become 
inaccurate, leading to an increase in residual noise levels, which can 
exceed that of unweighted coherent averaging. For the “VAR Whole 
Block” method, a lower block size led to a quite consistently lower 
median residual noise level (relative to unweighted averaging), how-
ever, the mean residual noise level increased above that of the baseline 
of unweighted averaging. Whilst the largest median reduction in resid-
ual noise in the averaged waveform was achieved using the smallest 
block size of 1 epoch with the “VAR Whole Block” method, the largest 
mean reduction in noise was achieved using 25 epochs-per-block. 
Improved reduction in residual noise within the coherent average is 
expected to translate into improved detection of the ABR using the Fmp 
statistical test. 

A further simulation was performed to determine the effects of the 
SNR of the data on the accuracy of the noise level estimation method 
(see Figure, Supplemental Digital Content 1). The results showed that if 
the SNR of the “response present” continuous EEG data (before aver-
aging) was less than ~ -16 dB, then the “VAR Whole Block” method was 
more effective or of equivalent effectiveness to the “VAR MP” method at 
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estimating the noise level, depending on the block size (the smaller the 
block size the larger the difference between the two methods). Where 
the SNR was above around − 16 dB, the effectiveness of the “VAR Whole 
Block” method began to deteriorate substantially, as the bias present in 
the variance estimate increased. 

3.2. The effects of weighted averaging on ABR detection using the Fmp 

Fig. 2 provides a comparison of the performance of the Fmp in 
detecting the ABR when weighted averaging was carried out using either 
the “VAR MP” or “VAR Whole Block” noise level estimation method. 

Fig. 2 shows that weighted averaging in conjunction with the Fmp 
criterion can lead to improved detection of responses (as measured by 
the partial ROC AUC), compared to unweighted averaging. A paired 
permutation test (using 5,000 permutations) was used to compare the 

“VAR Whole Block” method with the “VAR MP” method for each block 
size. The “VAR Whole Block” method (in combination with the Fmp) 
was able to achieve a statistically significantly higher partial ROC AUC 
than the “VAR MP” method, for block sizes between 2 and 10 (inclusive), 
indicating that this is a more powerful (combined) ABR detection 
method. The highest partial ROC score was achieved using the “VAR 
Whole Block” method and a block size of 2. 

The previous analysis (Fig. 1) considered only the RMS error, which 
affects the numerator of the Fmp, however, block-wise analysis 
(weighted averaging) impacts upon both the numerator and the de-
nominator. Whilst lower residual noise levels will aid detection, detec-
tion performance as measured using the partial ROC AUC is influenced 
by how well “response present” and “response absent” data can be 
separated based on their Fmp values. Further analysis was therefore 
undertaken providing separate evaluations for “response present” and 

Fig. 1. The effects of the weighted aver-
aging noise level estimation method on 
residual noise levels in the coherent 
average. The mean (Fig. 1A) and median 
(Fig. 1B) residual noise levels in the coherent 
average, are presented as a function of block 
size. Unweighted coherent averaging, ob-
tained when using a single block (block size 
of 1,000), provided a baseline (dotted line) 
for comparison of performance. Note that a 
block size of 1 cannot be used for the “VAR 
MP” method. Error bars represent the 95% 
confidence interval of the mean (Fig. 1A) and 
the median (Fig. 1B) residual noise levels in 
the coherent average.   

Fig. 2. Performance of the Fmp in detecting the 
ABR after weighted averaging. A comparison of 
the “VAR MP” and “VAR Whole Block” methods is 
presented based on the partial area under the 
receiver operating characteristic curve (ROC AUC) 
and the Fmp measure of the quality of the averaged 
ABR criterion. A higher partial ROC AUC corre-
sponds to the detection method (Fmp combined 
with weighted averaging) having a better ability to 
discriminate between “response present” and 
“response absent” data for false positive rates of up 
to 0.05. The baseline value corresponds to the re-
sults from unweighted averaging. The error bars 
represent the bootstrapped standard error of the 
partial ROC AUC. A single asterisk, *, indicates a 
Bonferroni-adjusted two-sided p value of < 0.05. A 
double asterisk, **, indicates a Bonferroni-adjusted 
two-sided p value of < 0.01.   
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“response absent” data. 

3.3. The effects of weighted averaging on the Fmp test statistic for 
“response present” and “response absent” data 

Based on the results from Fig. 1 and Fig. 2, the more effective “VAR 
Whole Block” method was selected over the “VAR MP” method for use in 
the subsequently presented analyses. Fig. 3 shows the effects of 
weighted averaging (using the “VAR Whole Block” method) for both 
“response present” and “response absent” data. 

Fig. 3 shows that smaller block sizes led to increased Fmp values 
(positive absolute change as opposed to negative), both for “response 
present” and “response absent” data. The plots also show that using 
smaller block sizes tended to lead to a greater increase in the Fmp value 
for the “response present” data (dashed grey lines, Fig. 3A and 3B). Of 
surprise, it was observed that the Fmp values for the “response absent” 
data began to increase when reducing the block size from the baseline of 
1,000 epochs-per-block. Based on the assumption of the EEG back-
ground noise data comprising independent and identically distributed 
random variables following a Gaussian distribution, the expectation is 
that the Fmp value for “response absent” data would remain unchanged. 
The observed Fmp inflation for the “response absent” data may also lead 
to false positive rates that exceed the expected (nominal) values. 

3.4. Investigating Fmp inflation in the “response absent” data 

In order to investigate the Fmp inflation observed in the “response 
absent” data when weighted averaging was applied (Fig. 3), further 
analysis of the null distribution of the data were performed along with 
an analysis of the effects of weighted averaging based on the initial 
unweighted value of the Fmp statistic (Fig. 4). 

Fig. 4B shows how the mean Fmp value of the “response absent” data 
changed with weighted averaging (using 2 epochs-per-block) as a 
function of the unweighted Fmp level. If an unweighted Fmp value was 
< 1, then weighted averaging tended to revert the Fmp value upwards 
towards 1. For ensembles with an unweighted Fmp value > 1, the 
reverse was true. As the mean Fmp value of the ensembles in the dataset 
was less than one, the mean Fmp was found to increase when applying 
weighted averaging (Fig. 3). 

The empirically obtained mean unweighted Fmp value under the 
null condition (equal to 0.952 ± 0.020 [95% CI]) was found to be 
significantly lower than the expected value of an F-distributed random 
variable: E[F] = v2

v2 − 2 = 1.002 [13]. A one-sample permutation test (using 
20,000 permutations) was performed to test the hypothesis that there 
was no difference between the observed mean value of the null Fmp 
distribution and the expected value (E[F]), assuming that v2 = N − 1 
degrees of freedom; p < 0.001 (two-sided). This indicates that even the 
standard, unweighted Fmp value, as evaluated using the present dataset 
and analysis parameters, did not conform to the F-distribution expected 
from theory and with the standard assumptions. The reasons for this will 
be considered in the Discussion section. The effect of inflation of the Fmp 
test statistic in the null condition on the false positive rate is investigated 
in the next section. 

3.5. Specificity analysis 

Fig. 5 shows the specificity when using weighted averaging paired 
with the Fmp detection method with the critical value determined by the 
F-distribution with the assumed v1 = 5 degrees of freedom [3]. The 
specificity levels achieved were significantly above those expected for 
block sizes of 2 to 1,000 (i.e. including unweighted averaging) as evi-
denced by the bars in Fig. 5 exceeding the binomial proportion 95% 
confidence interval (CI) for the nominal significance level of 0.01, 
calculated using the Wilson score interval method [14]. Whilst a low 
false positive rate is desirable, exceeding the target level of specificity 
comes at the expense of reduced sensitivity. The specificity level for 1 
epoch-per-block was significantly below the expected 95% CI, likely due 
to the large inflation in the mean “response absent” Fmp value observed 
using this block size (Fig. 3). In order to control the false positive rate a 
bootstrap method for evoked potential recordings was evaluated [2,11]. 

3.6. Controlling the false positive rate using the bootstrap method 

An alternative approach to calculating a p value for the Fmp statistic 
using the associated theoretical cumulative distribution function [3], is 
to apply a nonparametric bootstrap to the empirically obtained data 
[2,11,15,16]. For each ensemble being evaluated, the data are repeat-
edly resampled in a manner which disrupts the presence of any evoked 

Fig. 3. The effects of weighted averaging on the Fmp test statistic. Here the data are presented as the absolute change in mean (Fig. 3A) and median (Fig. 3B) 
Fmp values. The absolute change was measured with reference to the baseline of the mean (Fig. 3A) or median (Fig. 3B) Fmp value of the data using unweighted 
averaging (1,000 epochs-per-block). The solid black and dashed grey lines correspond to “response absent” and “response present” data, respectively. The light grey 
band represents the 95% confidence interval for the mean (Fig. 3A) and the median (Fig. 3B) Fmp values of the “response absent” data in the unweighted condition. 
These confidence intervals may be used to evaluate whether the mean/median “response absent” Fmp values obtained using weighted averaging differ significantly 
to the mean/median obtained using unweighted averaging. 
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potential signal in order to estimate the null distribution of the test 
statistic for that particular recording. A p value for the test statistic 
calculated from the original ensemble may then be obtained by 
observing the proportion of the bootstrapped null distribution that re-
sides above that value [2,11]. The resampling is performed by selecting 
N random sections of M samples from the continuous EEG to form an 
ensemble. As these N recording epochs are selected randomly from 
anywhere within the continuous EEG, irrespective of their timing in 
relation to the stimulus onset, the evoked potential will be disrupted and 
hence reflect the null condition (“response absent”) [2,11]. Through 
repeated resampling, the null distribution may be approximated; in the 
current study 500 bootstrap samples per ensemble were used. The re-
sults obtained from the set of 2,301 “response absent” ensembles show 
that the bootstrap was effective in controlling the false positive rate 
(Fig. 6A). Thus, by combining the weighted average, using the “VAR 
Whole Block” method to estimate the weights, and the Fmp combined 
with the bootstrap method, the ABR detection rate increased from the 
initial (unweighted) level of 0.415 to 0.500 using the smallest block size 

(Fig. 6B). 

4. Discussion 

Weighted averaging is an effective method for reducing the residual 
noise levels present in the coherently averaged waveform, placing 
greater emphasis on recording epochs with lower noise levels relative to 
those containing higher noise levels [6,7]. This study has sought to 
further optimise the weighted averaging procedure as well as provide an 
analysis of the effects of weighting averaging on automated ABR 
detection, focusing specifically on the Fmp statistical test. The results 
clearly show that weighted averaging can both improve the quality of 
the estimated ABR signal, and also its detection using the Fmp, when 
using appropriately selected parameters. 

4.1. Observed bias in the Fmp statistic 

In the present study, the empirically observed mean value of the Fmp 

Fig. 4. The effects of weighted averaging 
on the “response absent” Fmp value. 
Fig. 4A shows the null distribution of the 
unweighted Fmp test statistic (“response ab-
sent” data). The mean Fmp value of this null 
distribution was 0.952 ± 0.020 (95% CI). 
When weighted averaging was applied the 
mean Fmp value increased from 0.952 to 
1.017. Fig. 4B shows the mean change in 
Fmp value for the “response absent” data 
when applying weighted averaging (using 2 
epochs-per-block), based on the initial un-
weighted Fmp value of the data. For ensem-
bles with an initial unweighted Fmp value of 
<1, the mean Fmp value tended to increase 
when weighted averaging was applied. The 
further away from 1, the greater the effect 
was. For ensembles with an initial un-
weighted Fmp value of >1, the reverse was 
true. Note that for unweighted Fmp values in 
both the upper and lower extremes, there 
were fewer data points compared to the 
centrally occurring values leading to greater 
variability in results. Error bars represent the 
standard error (SE) of the mean (◊ denotes 
where the SE was not calculable due to a low 
sample size of ≤ 1).   

Fig. 5. Specificity measured across block sizes. 
The specificity level is shown as a function of the 
weighted averaging block size. A nominal signifi-
cance level of 0.01 was selected based on the clinical 
need to have a high degree of confidence when 
declaring a waveform as containing a response [1]. 
This corresponds to a target specificity of 0.99. The 
binomial proportion 95% CI (grey), calculated using 
the Wilson score interval, was based on an expected 
false positive rate of 0.01 and n = 2,301 “response 
absent” trials.   
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statistic in the null condition (“response absent”) (0.952) was signifi-
cantly below the expected value of just over one. Following discussion 
with researchers in the field, it was suggested that the low mean Fmp 
value may be due to the effects of the analysis window length on the Fmp 
numerator (Dr Jaime Undurraga, personal communication, 2022). It has 
already been indicated that the Fmp numerator will not reflect fully the 
signal power for frequencies below 1/a Hz, where a is the length of the 
analysis window in seconds [3]. For the present study an analysis win-
dow length of 14 ms was used, suggesting that the signal power for 
frequencies below 71.4 Hz would not be fully reflected in the Fmp 
numerator, biasing the null statistic to be below its expected value. This 
bias effect has also been reported by the British Society of Audiology [1]. 
Further simulations were carried out, confirming that the analysis 
window length can indeed have a bias effect on the numerator of the 
Fmp, with short analysis window lengths reducing its value (see Figure, 
Supplemental Digital Content 2). The data shown in the present study 
must be interpreted in light of the pre-processing techniques used and 
their associated parameters. 

One way to overcome the limitations imposed by the length of the 
analysis window is to simply increase its length. However, this comes at 
the expense of potentially reducing the SNR within the coherent 
average, as most of the ABR signal would be expected to be recorded 
within the first 15 ms post stimulus [17]. Elberling and Don [3] advocate 
the selection of a suitable high-pass filter setting to ensure that low- 
frequency signal components are not excluded from the Fmp numer-
ator as a result of the analysis window length whilst being present in the 
Fmp denominator. As spectral analyses of the ABR show that most of the 
signal energy is in the region below 150 Hz [17], caution again must be 
employed to avoid depreciating the SNR within the coherent average 
when choosing either an extended analysis window length or higher cut- 
off frequencies for the high-pass filter. 

A further investigation was performed, repeating elements of this 
study with a raised high-pass filter setting of 100 Hz (see Figures, Sup-
plemental Digital Content 3). In summary, the “VAR Whole Block” 
method was still more effective than the “VAR MP” method in terms of 
residual noise reduction and ABR detection (although the difference was 

less marked – perhaps due to less noise in the EEG limiting the effects of 
weighted averaging). Inflation of the null Fmp statistic when weighted 
averaging was applied was also almost fully reduced (apart from for a 
block size of 1 for the median Fmp level). Weighted averaging will 
preferentially reduce the frequency components whose amplitudes are 
greatest in the noise i.e. low frequencies for EEG [6]. This would serve to 
reduce the bias associated with the finite Fmp analysis window length, 
minimising ‘response absent’ Fmp inflation. Fmp inflation for the 
‘response absent’ data was not eliminated fully after the high-pass filter 
was raised to 100 Hz so additional explanations for its cause should be 
sought. This finding highlights the importance of avoiding bias in the 
null Fmp statistic imposed by the finite analysis window length. Sup-
plemental Fig. 3-2 shows the performance of the Fmp in detecting the 
ABR after weighted averaging. Much higher partial ROC AUC scores 
were achieved in Supplemental Fig. 3-2 where the high-pass filter was 
set to 100 Hz, compared with Fig. 2 (main text). This is likely the result 
of the improved SNR observed by raising the high-pass filter setting. As 
only one ABR template was used, further research on the combined ef-
fects of analysis window length and filter settings on ABR detection is 
warranted. It was chosen to present the results of the initial 30 Hz high- 
pass filter setting rather than the better-performing 100 Hz high-pass 
filter setting, because this filter setting reflects those suggested by the 
British Society of Audiology guidelines and therefore may better reflect 
what is happening in current clinical practice when using these rec-
ommended filter parameters [1]. The Fmp analysis window parameters 
recommended by the British Society of Audiology vary by equipment 
manufacturer and the stimulus used, and are up to 10 ms in duration [1]. 
This is shorter than the 14 ms analysis window used in the present study, 
and so the bias present in the Fmp numerator may be larger. This study 
shows that caution is required in selecting the Fmp analysis window 
length and filter settings as these interact complexly to affect the Fmp 
statistic (both when weighted and unweighted) and likely contributed to 
the inflation in the “response absent” Fmp statistic observed when 
weighted averaging was applied. 

Signal processing methods such as weighted averaging may produce 
unanticipated effects [18], potentially introducing additional violations 

Fig. 6. Using the bootstrap method to control 
the false positive rate. Fig. 6A shows that the 
false positive rate, when using the bootstrap 
method, was within the expected 95% confidence 
interval across all block sizes, showing clear 
improvement compared to the equivalent data in 
Fig. 5 (without bootstrapping). Fig. 6B shows the 
detection rate for each block size when using the 
bootstrap statistic with its well-controlled false 
positive rate (see Fig. 6A). Note that the sensi-
tivity refers to detections across all “response 
present” data which had a wide range of SNRs.   
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to the assumptions underlying statistical detection methods. Boot-
strapping is an effective technique for controlling the false positive rate 
when the extent of these violations cannot be predicted or controlled 
[2]; bootstrapping successfully controlled the false positive rate and 
allowed the benefits of lower block sizes to be harnessed by effectively 
controlling the false positive rate for all block sizes. 

4.2. Optimisation of the noise estimation method 

Effective weighting relies upon accurate estimation of the noise 
levels within each block of recording epochs. Don & Elberling [8] 
advocated the technique of estimating the noise level by calculating the 
variance across all samples contained within up to eight equally spaced 
columns within the block of recording epochs. It is difficult to estimate 
the number of independent samples in each epoch and so using a large 
number (e.g. all) sample points to estimate the noise level ensures that 
no information is neglected. In the current study we compared two 
methods of estimating the noise levels within a block of recording 
epochs, the “VAR MP” method and the “VAR Whole Block” method. The 
“VAR Whole Block” method was able to provide a more accurate esti-
mate of the noise levels within each block of recording epochs, and 
therefore resulted in lower residual noise levels within the coherent 
average and better ABR detection (for block sizes of 2 to 10 epochs), 
compared to the “VAR MP” method. The “VAR MP” method recognises 
the assumption that the ABR signal is deterministic and calculates the 
variance for each chosen column of the block of epochs accordingly, 
before finally averaging together the results. The “VAR Whole Block” 
method, on the other hand, assumes that the mean value is constant for 
all values in the block, which allows all samples to be included in a single 
estimate of variance, making more efficient use of the available data, 
and increasing the degrees of freedom of the variance estimate. This 
reduces the random estimation error of the noise variance but at the cost 
of a bias error (in the “response present” condition) given by the vari-
ance of the ABR signal. The magnitude of the impact of this bias is ex-
pected to be small for low SNR signals such as the ABR [5]. This 
perspective would need to be reconsidered if applying the “VAR Whole 
Block” method to other evoked potential tests which may produce a 
typically higher SNR [5]. 

4.3. Optimisation of the block size parameter 

Previous work optimising block size for residual noise reduction by 
Don & Elberling [8] evaluated block sizes of 32, 64, 128, and 256 
epochs-per-block and found the smallest block size to be most effective. 
The current study found even smaller block sizes to be more effective 
yet. In conjunction with using the “VAR Whole Block” noise estimation 
method, weighted averaging with a block size of 25 resulted in the 
largest mean reduction in the residual noise levels in the coherent 
average (relative to unweighted averaging). Whilst median residual 
noise levels decreased further for smaller block sizes, mean residual 
noise levels increased to levels above the baseline level (unweighted 
averaging). This effect of increased residual noise levels using small 
block sizes was also observed by Riedel et al. [19]. They found that 
applying iterative averaging substantially mitigated this increase in re-
sidual noise when using small block sizes. Riedel et al. [19] found that 
applying iterative averaging reduced the optimal block size from 32 to 4 
when measuring mean residual noise using simulated data. However, 
the small number of recordings used limits the ability to meaningfully 
infer an optimal block size. 

In terms of automated ABR detection using the Fmp, the largest 
partial ROC AUC score was observed using a block size of 2 epochs-per- 
block (Fig. 2). Whilst this block size was associated with considerable 
Fmp inflation in “response absent” data when using weighted averaging 
and a mean increase in residual noise levels, overall detection perfor-
mance was improved (due to an even greater Fmp inflation in the 
“response present” data). The use of conventional analysis using F- 

statistics with v1 = 5 df led to an excessively conservative response de-
tector, however the false positive rate was well-controlled using the 
bootstrap method. Despite better overall detection performance, the 
increase in mean residual noise levels when using small block sizes 
suggests that a block size of around 25 epochs per block, may be rec-
ommended. This provided consistent improvement in ABR quality and 
also considerable benefit in detection performance, compared to un-
weighted averaging. 

Ultimately, the exact value of the block size parameter will be 
influenced both by the intended purpose of weighted averaging and the 
characteristics of the EEG data that the technique is being applied to, 
including as a result of the recoding parameters selected. The results 
presented and any derived recommendation relate specifically to the 
recording parameters used in this study, and may not generalise across 
other recording parameter configurations. For example, the optimal 
block size was found to vary depending on the high-pass filter setting 
used (compare Fig. 1 and Fig. 2 with those presented in Supplemental 
Digital Content 3). The choice of block size may vary depending on the 
signal characteristics, including the degree of stationarity and depen-
dence between samples, as well as whether the primary objective is to 
obtain an averaged waveform with low mean square error for visual 
inspection or whether weighted averaging is to be combined with a 
particular statistical detection method. As weighted averaging using 
small block sizes was associated with a steep drop-off in performance, 
cautious selection of larger block sizes may be recommended, allowing 
for differences in EEG characteristics between datasets. Further experi-
mental work with a large sample of ABR data, preferably recorded from 
the intended target clinical population using the intended recording 
parameters, should be carried out before finalising recommended pro-
tocols for specific applications. 

An effective method of controlling for violations to statistical test 
assumptions is to combine the statistical test with the bootstrap method. 
This allowed the benefits to ABR detection of using much smaller block 
sizes to be harnessed. Using the bootstrap to control the false positive 
rate, the highest detection rate achieved was using one epoch-per-block 
(50.0%). The lowest detection rate was achieved using unweighted 
averaging (41.5%) (Fig. 6). This corresponds to just over a 20% relative 
increase in detection rate. Whilst ABR detection may improve overall 
using a block size of one epoch-per-block, this parameter value may be 
undesirable due to the increase in mean residual noise level observed, 
especially if visual inspection is being used. 

4.4. Limitations and future work 

The findings in this study are derived from a single (large) database 
of empirically obtained background EEG data and simulated “response 
present” data using one ABR template. Further work to evaluate the 
methods in this study using different databases of EEG data is required in 
order to determine the generalisability of the presented findings. Future 
work should also include evaluating the combined performance of 
weighted averaging with other statistical detection methods such as 
Hotelling’s T2 test, which previous work has found to be more sensitive 
than the Fmp [2]. 

The interactions between data pre-processing techniques and their 
parameters such as filter settings, weighted averaging, and objective 
detection methods are complex. Further investigation into the optimal 
combination of analysis window, filter settings and weighted averaging 
parameters is therefore warranted, especially prior to clinical imple-
mentation of any recommendations. 

Future work may also seek to compare the performance of weighted 
averaging with other published denoising methods such as Kalman- 
weighted averaging [20], wavelet analysis [21], and adaptive Kalman 
filtering [22]. 
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5. Conclusion 

Weighted averaging provides an effective method for reducing the 
residual noise level within the averaged waveform. The current work 
showed that weighted averaging using optimised methods and param-
eters led to improved ABR detection using the Fmp statistical test on the 
dataset evaluated, compared to unweighted averaging. The “VAR Whole 
Block” method for estimating the noise level within each block was able 
to provide better performance than the “VAR MP” method, especially for 
smaller block sizes. However, when using smaller block sizes combined 
with the Fmp statistical detection method, weighted averaging produced 
an increase in the “response absent” Fmp statistic, relative to un-
weighted averaging. The Fmp analysis window length, in combination 
with the high-pass filter setting, introduced a bias to the Fmp statistic. 
This contributed to the “response absent” Fmp inflation observed. This 
study highlights the importance of selecting an appropriate Fmp analysis 
window length and high-pass filter setting, both when calculating the 
unweighted Fmp statistic, and when combining the Fmp with weighted 
averaging. Further work is required to optimise the Fmp analysis win-
dow length, filter settings, and weighted averaging parameters (block 
size) in combination, as recommended values for these parameters 
cannot be considered in isolation. The current work clearly demon-
strates the potential of the approach taken, however, further analysis of 
larger datasets reflecting the specific clinical purpose (e.g. ABR detec-
tion in neonates) and the intended recording parameter settings should 
be carried out before exploiting the benefits the methods presented can 
provide. 
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