Predicting the outcomes of management strategies for controlling invasive river fishes using individual‐based models
Predicting the outcomes of management strategies for controlling invasive river fishes using individual‐based models
The effects of biological invasions on native biodiversity have resulted in a range of policy and management initiatives to minimize their impacts. Although management options for invasive species include eradication and population control, empirical knowledge is limited on how different management strategies affect invasion outcomes.
An individual-based model (IBM) was developed to predict how different removal (‘culling’) strategies affected the abundance and spatial distribution of a virtual, small-bodied, r-selected alien fish (based on bitterling, Rhodeus sericeus) across three types of virtual river catchments (low/intermediate/high branching tributary configurations). It was then applied to nine virtual species of varying life-history traits (r- to K-selected) and dispersal abilities (slow/intermediate/fast) to identify trade-offs between the management effort applied in the strategies (as culling rate and the number of patches it was applied to) and their predicted effects. It was also applied to a real-world example, bitterling in the River Great Ouse, England.
The IBM predicted that removal efforts were more effective when applied to recently colonized patches. Increasing the cull rate (proportion of individuals removed per patch), and its spatial extent was effective at controlling the invasive population; when both were relatively high, population eradication was predicted.
The characteristics of the nine virtual species were the main source of variation in their predicted abundance and spatial distribution. No species were eradicated at cull rates below 70%. Eradication at higher cull rates depended on dispersal ability; slow dispersers required lower rates than fast dispersers, and the latter rapidly recolonized at low cull rates. The trade-offs between management effort and the outcomes of the invasion were, generally, optimal when intermediate effort was applied to intermediate numbers of patches. In the Great Ouse, model predictions were that management interventions could restrict bitterling distribution by 2045 to 21% of the catchment (versus 90% occupancy without management).
Synthesis and application. This IBM predicted how management efforts can be optimized against invasive fishes, providing a strong complement to risk assessments. We demonstrated that for a range of species' characteristics, culling can control and even eradicate invasive fish, but only if consistent and relatively high effort is applied.
2427-2440
Almela, Victoria Dominguez
c46c331c-e5ba-4da9-8f58-207a4999e02e
Palmer, Stephen C.F.
92797f81-ceea-4591-97a1-0c198965e9fa
Andreou, Demetra
e06d2d95-c8e6-470a-9471-20b1d200f65b
Gillingham, Phillipa K.
f6ba612e-862d-4a06-9496-6a7c40cb6432
Travis, Justin M.J.
eeb29958-d843-49e0-8583-7515a7b7708c
Britton, J. Robert
bafd1794-86de-435b-a0fb-c106c33620a1
12 November 2021
Almela, Victoria Dominguez
c46c331c-e5ba-4da9-8f58-207a4999e02e
Palmer, Stephen C.F.
92797f81-ceea-4591-97a1-0c198965e9fa
Andreou, Demetra
e06d2d95-c8e6-470a-9471-20b1d200f65b
Gillingham, Phillipa K.
f6ba612e-862d-4a06-9496-6a7c40cb6432
Travis, Justin M.J.
eeb29958-d843-49e0-8583-7515a7b7708c
Britton, J. Robert
bafd1794-86de-435b-a0fb-c106c33620a1
Almela, Victoria Dominguez, Palmer, Stephen C.F., Andreou, Demetra, Gillingham, Phillipa K., Travis, Justin M.J. and Britton, J. Robert
(2021)
Predicting the outcomes of management strategies for controlling invasive river fishes using individual‐based models.
Journal of Applied Ecology, 58 (11), .
(doi:10.1111/1365-2664.13981).
Abstract
The effects of biological invasions on native biodiversity have resulted in a range of policy and management initiatives to minimize their impacts. Although management options for invasive species include eradication and population control, empirical knowledge is limited on how different management strategies affect invasion outcomes.
An individual-based model (IBM) was developed to predict how different removal (‘culling’) strategies affected the abundance and spatial distribution of a virtual, small-bodied, r-selected alien fish (based on bitterling, Rhodeus sericeus) across three types of virtual river catchments (low/intermediate/high branching tributary configurations). It was then applied to nine virtual species of varying life-history traits (r- to K-selected) and dispersal abilities (slow/intermediate/fast) to identify trade-offs between the management effort applied in the strategies (as culling rate and the number of patches it was applied to) and their predicted effects. It was also applied to a real-world example, bitterling in the River Great Ouse, England.
The IBM predicted that removal efforts were more effective when applied to recently colonized patches. Increasing the cull rate (proportion of individuals removed per patch), and its spatial extent was effective at controlling the invasive population; when both were relatively high, population eradication was predicted.
The characteristics of the nine virtual species were the main source of variation in their predicted abundance and spatial distribution. No species were eradicated at cull rates below 70%. Eradication at higher cull rates depended on dispersal ability; slow dispersers required lower rates than fast dispersers, and the latter rapidly recolonized at low cull rates. The trade-offs between management effort and the outcomes of the invasion were, generally, optimal when intermediate effort was applied to intermediate numbers of patches. In the Great Ouse, model predictions were that management interventions could restrict bitterling distribution by 2045 to 21% of the catchment (versus 90% occupancy without management).
Synthesis and application. This IBM predicted how management efforts can be optimized against invasive fishes, providing a strong complement to risk assessments. We demonstrated that for a range of species' characteristics, culling can control and even eradicate invasive fish, but only if consistent and relatively high effort is applied.
Text
Journal of Applied Ecology - 2021 - Dominguez Almela - Predicting the outcomes of management strategies for controlling
- Version of Record
More information
Accepted/In Press date: 3 June 2021
e-pub ahead of print date: 23 July 2021
Published date: 12 November 2021
Identifiers
Local EPrints ID: 475306
URI: http://eprints.soton.ac.uk/id/eprint/475306
ISSN: 1365-2664
PURE UUID: ae21ebe1-cff3-46db-8b0d-638bec24244f
Catalogue record
Date deposited: 15 Mar 2023 17:33
Last modified: 17 Mar 2024 04:11
Export record
Altmetrics
Contributors
Author:
Stephen C.F. Palmer
Author:
Demetra Andreou
Author:
Phillipa K. Gillingham
Author:
Justin M.J. Travis
Author:
J. Robert Britton
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics