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Low-Resolution Hybrid Beamforming in
Millimeter-wave Multi-user Systems

H. Yu1,2, H. D. Tuan2, E. Dutkiewicz2, H. V. Poor3, and L. Hanzo4

Abstract—A new hybrid amalgam of analog and baseband
digital beamforming is conceived for millimeter-wave (mmWave)
multi-user networks. The base station is equipped with a large-
scale antenna-array, which however relies on a limited number
of radio frequency chains for mitigating the severe path-loss of
mmWave band transmission. Each user is also equipped with a
multi-antenna array. The analog beamformer’s weight-resolution
is set low for the sake of power efficient implementation. The hy-
brid beamformer design relies on the novel optimization criterion
of directly maximizing the geometric means of users’ rates, which
is shown to result in fair rate-distributions for the users without
imposing a minimum user-rate constraint. Furthermore, new
computationally efficient algorithms are developed, which are
purely based on closed-form low-complexity expressions. Hence
these low-complexity solutions are eminently suitable for large-
scale mmWave arrays. Numerical examples are provided for
demonstrating their efficiency.

Index Terms—Millimeter-wave communications, hybrid beam-
forming, analog beamforming, baseband beamforming, nonlinear
discrete optimization, nonconvex optimization algorithms

I. INTRODUCTION

Since the treatises [1], [2], the millimeter-wave (mmWave)
frequency band spanning from 30 GHz to 300 GHz has re-
ceived considerable interest from both academia and industry.
Hence numerous special issues have been devoted to its coevo-
lutionary development [3]–[6]. Given that its physical channel
modeling and compact antenna array configurations are well-
understood [3], [7], [8], one of the main issues becomes the
development of signal processing techniques for approaching
its capacity potential [4], [9]. The hybrid combination of ana-
log beamforming (ABF) and digital beamforming (DBF) has
been accepted as the most power-efficient signal processing
technique for mmWave communications [4], [6], [9]–[11].
However, the design of hybrid beamforming (HBF) remains
challenging owing to the following factors: (i) the HBF matrix
is a product of the ABF and DBF matrices, so both the transmit
power constraint and its rate functions are complex and hard
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to formally optimize; (ii) The entries of the ABF matrix
are subject to the unit modulus constraint. As for single-user
mmWave systems, most contributions aim for designing a HBF
matrix to approximate fully digital beamforming matrix by
alternately optimizing the ABF and DBF matrices [12]–[14].
It should be noted however that the alternating optimization
in the ABF matrix still remains challenging due to the unit
modulus constraints on its entries [15].

The challenges in HBF design are further aggravated in
multi-user mmWave systems. To ease the computation at com-
plexity, the design has typically been based on the users’ sum
rate (SR) maximization [16], [17], which however allocates
a large fraction of the total SR to a few users having good
channel conditions, while leaving the rest of the users with
almost zero rates. For alternating optimization in the ABF
matrix, both [16], [17] simply optimized each of its entries
with all other entries held fixed. Our recent work [18] has
shown that the HBF design based on a simple ABF relying on
the closed-form expression proposed in [19] outperforms that
HBF design of [16] or [20] by a high margin. Max-min rate
optimization, which aims for maximizing the users’ minimum
rate, is more appropriate for multi-user communications [21]–
[24]. In principle, the joint design of ABF and DBF for
max-min rate optimization may be tackled by approximate-
ly adjusting the exact-penalty algorithms developed in [25],
which invoke convex problems at each iteration for generating
better points. However, as the ABF and DBF matrices tend
to be high-dimensional, these convex problems are of large-
scale and thus are still computationally intractable. Making
things worse, each ABF weight/entry of the ABF matrix has
to be from a discrete set of its finite-resolution counterpart
for practical implementation in the mmWave frequency range
[26]. Since such alternating optimization of the ABF matrix
involves extremely high-dimensional combinatoric problems,
[16] and [17] tackled such problem by checking the value
of the objective function used at all 2b possible points of
the b-resolution set for each entry with all other entries held
fixed. Needless to say, both nonlinear manifold optimization
based approach [15] and exactly-penalized optimization based
approach [25] are not applicable to such mixed discrete
continuous optimization problems.

Against the above background, this paper develops a new
systematic design approach for HBF in multi-user mmWave
communications. Explicitly, the contributions of the paper are
as follows:
• We improve the spectral efficiency of multi-user HBF by

maximizing the novel objective function constituted by
the geometric mean of the users’ rates (GM-rate). Our
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GM-rate based optimization has substantial advantages
over its conventional SR-based counterpart, because the
latter results in assigning excessive rates to the privileged
users having high channel quality, while only granting
meagre rates for the rest. This implement may be circum-
vented by setting certain minimum user-rate constraints,
but at the unaffordable cost of exacerbating the com-
putational complexity for large-scale antenna-arrays. By
contrast, our GM-rate based regime tends to distribute the
rates to all users in a fair and equitable manner without
imposing any minimum user-rate constraints, while the
overall SR is still high. The rate-fairness is quantified in
terms of the users’ rate deviation (RD) from their mean
and by the rate ratio (RR) of the users’ maximal and
minimal rates.

• We develop low-complexity optimization algorithms for
the joint design of ABF and DBF to maximize the
GM-rate, which iterate by evaluating low-complexity
closed-form expressions and thus are eminently suitable
for massive antenna-arrays. The key point is to exploit
the unit modulus constraints to develop tight concave
minorants [27] for the objective functions. Optimization
of the former results in better points for the latter. Most
importantly, it admits closed-form solutions of scalable
complexity, regardless whether the ABF has infinite or
finite resolution. As such, better ABF is generated by
closed-form expressions of scalable complexity, which is
achieved upon bypassing any exhaustive search over the
entire discrete set of solutions. This result is novel even
from an optimization perspective [27].

To sum up, we boldly and explicitly contrast our novel
contributions to the literature in Table I.

The paper is organized as follows. Section II and Section
III respectively develop approximation optimization (AO) and
penalty optimization (PO) algorithms for the HBF design to
maximize the GM-rate, which iterate by purely relying on
closed-form expressions. Section IV evaluates the performance
of all the algorithms. By comparing them to the existing
algorithms in terms of the achievable SR. Section VI concludes
the paper.

Notation. Only the optimization variables are boldfaced.
For a complex number x, ∠x is its argument, so its trigonomet-
ric representation is x = |x|e∠x. As such we have x = e∠x

for |x| = 1, i.e. a unit modulus complex number is completely
characterized by its argument. The inner product between
vectors x and y is defined as 〈x, y〉 = xHy. Analogously,
〈X,Y 〉 = trace(XHY ) for the matrices X and Y . We also
use 〈X〉 for the trace of X when X is a square matrix. X � 0
(X � 0, resp.) means that X is Hermitian symmetric and pos-
itive semi-definite (positive definite, resp.). Accordingly, X �
Y (X � Y , resp.) means that X−Y � 0 (X−Y � 0, resp.).
||X|| is the Frobenius norm of the matrix X , which is defined
by
√
〈XHX〉. [X]2 stands for XXH � 0, so ||X||2 = 〈[X]2〉.

For Hermitian symmetric matrix X , denote by λmax(X) its
largest eigenvalue. Thus, it is true that λmax(X)I � X , so
〈λmax(X)I − X,Y 〉 = 〈(λmax(X)I − X)Y 〉 ≥ 0 for all
Y � 0, where I is the identity matrix of the same size as
X . However, when the size of the identity matrix is not clear

in expressions, we use the notation IN to emphasize its size
of N×N . Lastly, RN+ is the set of N -dimensional real vectors
with positive entries.

Ingredient. According to [27, p. 366], a function f̄ is said
to be a tight minorant of a function f over the domain dom(f)
at a point z(κ) ∈ dom(f) if it satisfies the conditions of global
bounding

f(z) ≥ f̄(z) ∀ z ∈ dom(f), (1)

and matching at z(κ):

f(z(κ)) = f̄(z(κ)). (2)

Lemma 1: The optimal solution z(κ+1) of the tight mino-
rant maximization problem

max
z∈dom(f)

f̄(z) (3)

provides a better feasible point than z(κ) upon maximizing f
over dom(f) as far as f̄(z(κ+1)) 6= f̄(z(κ)), i.e.

f(z(κ+1)) > f(z(κ)). (4)

Proof. In fact, according to (1) we have f(z(κ+1)) ≥
f̄(z(κ+1)) and then f̄(z(κ+1)) > f̄(z(κ)), because z(κ+1) and
z(κ) are the optimal solution and a feasible point of the the
problem (3), so f(z(κ+1)) > f̄(z(κ)) which is (4) because
f(z(κ)) = f̄(z(κ)) by (2).

The following matrix inequality [21] for all V, V̄ , and pos-
itive definite Y and Ȳ of appropriate dimension is frequently
used in the paper

ln |I + [V]2Y−1| ≥ ln |I + [V̄ ]2Ȳ −1| − 〈[V̄ ]2Ȳ −1〉
+2<{〈V̄ H Ȳ −1V〉} − 〈Ȳ −1

−
(
[V̄ ]2 + Ȳ

)−1
, [V]2 + Y〉. (5)

One can check that the right hand side (RHS) of (5) matches
with its left hand side (LHS) at (V̄ , Ȳ ) so the former provides
a tight minorant of the latter at (V̄ , Ȳ ).

II. APPROXIMATION OPTIMIZATION BASED HBF DESIGN

Consider the mmWave downlink (DL) of a base station (BS)
serving Nu users indexed by i ∈ Nu , {1, 2, . . . , Nu}.1
The BS is equipped with a massive N -antenna array, while
each user (UE) i is equipped with an NR-antenna array. For
N , {1, . . . , N} and NRF , {1, . . . , NRF }, where NRF
is the number of radio frequency (RF) chains that the BS
uses for HBF, let θθθ , [θθθn,j ](n,j)∈N×NRF

∈ [0, 2π)N×NRF

be the phase shift matrix. Define the following one-to-
one mapping from [0, 2π)N×NRF to UN×NRF , {U =
[u(n, j)](n,j)∈N×NRF

: |un,j | = 1, (n, j) ∈ N ×NRF }:

VRF (θθθ) ,
[
V 1
RF (θθθ) . . . V NRF

RF (θθθ)
]

= [eθθθn,j ](n,j)∈N×NRF
∈ UN×NRF

1Each RF chain serves a group of users will be considered in our future
research [28].
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TABLE I: Contrasting our novel contributions to the related literature.

Contents
Literature This work [16] [17] [18] [15] [25] [21]–[24]

SR maximization
√ √ √ √

max-min rate optimization
√ √ √

GM-rate maximization
√

zero rate issue
√ √ √

computational tractability in ABF
√

computational efficiency for massive antenna-arrays
√

combinatoric optimization
√

multi-antenna users
√ √ √

to represent the phase shift based ABF matrix. In this paper,
we always set NRF ≤ Nu. Since ABF relying on infinite res-
olution weights is not practical for mmWave communication
[26], we opt for b-bit resolution, i.e.

θθθn,j ∈ B , {ν 2π

2b
, ν = 0, 1, . . . , 2b − 1}, (n, j) ∈ N ×NRF .

(6)
In what follows, the projection of α ∈ [0, 2π) into B denoted
by bαeb is referred to as its b-bit rounded version:

bαeb = να
2π

2b
(7)

with
να , arg min

ν=0,1,...,2b−1

∣∣∣∣ν 2π

2b
− α

∣∣∣∣ , (8)

which can be readily found, because we have να ∈ {ν, ν+ 1}
for α ∈ [ν 2π

2b
, (ν + 1) 2π

2b
]. When b =∞, it is true that

α = bαe∞. (9)

Upon denoting the mmWave channel between the BS and UE
i ∈ Nu by Hi ∈ CNR×N , the signal received at UE i is
formulated as:

yi = HiVRF (θθθ)x+ ni, (10)

where x ∈ CNRF is the baseband signal, and ni is the
background noise of power σ.

Let si ∈ CNR with E(sis
H
i ) = INR

be the information in-
tended for UE i, which is ”beamformed” by VB

i ∈ CNRF×NR

before the BS’s transmission. For s , (s1, . . . , sNu
)T and

VB =
[
VB

1 . . . VB
Nu

]
∈ CNRF×(NuNR), (11)

which is the DBF matrix, the baseband signal x in (10) is
x = VBs =

∑Nu

`=1 V
B
` s`, i.e. (10) is in fact the following

multi-input multi-output (MIMO) equation

yi = HiVRF (θθθ)

Nu∑
`=1

VB
` s` + ni (12)

= Hi(θθθ)
Nu∑
`=1

VB
` s` + ni, (13)

for

Hi(θθθ) , HiVRF (θθθ) ∈ CNR×NRF , i = 1, . . . , Nu (14)

The product of the ABF matrix VRF (θθθ) and beamformer VB
i ,

i ∈ Nu is given by

VHD
i , VRF (θθθ)VB

i ∈ CN×NR , (15)

and accordingly,

VHD ,
[
VHD

1 . . . VHD
Nu

]
∈ CN×(NuNR), (16)

is referred to as the HBF matrix, for distinguishing it from the
fully digital beamforming matrix of

VFD ∈ CN×(NuNR), (17)

which does not rely on the matrix product structure (15).
It follows from the equations (13) that the achievable rate

of UE i’ is

ρi(θθθ,V
B) , ln

∣∣INR
+ [Hi(θθθ)VB

i ]2Ψ−1i (θθθ,VB)
∣∣ , (18)

with

Ψi(θθθ,V
B) ,

Nu∑
` 6=i

[HiVRF (θθθ)VB
` ]2 + σINR

. (19)

Given the power budget P , the BS transmit power is con-
strained as

Nu∑
i=1

||VRF (θθθ)VB
i ||2 =

Nu∑
i=1

〈V HRF (θθθ)VRF (θθθ), [VB
i ]2〉 ≤ P.

(20)
As mentioned in the Introduction, the authors of [15]–[17]
considered the SR maximization problem

max
θθθ,VB

Nu∑
i=1

ρi(θθθ,V
B) s.t. (6), (20). (21)

Here, particularly, [17] addressed (21) via the following PO:

max
U,VB ,VHD

Nu∑
i=1

r̂i(V
HD)− c||VHD −UVB ||2 (22a)

s.t. u(n, j) ∈ {e2πν/2
b

, ν = 0, 1, . . . , 2b − 1},
(n, j) ∈ N ×NRF , (22b)

||VHD||2 ≤ P, (22c)

with the penalty parameter c > 0 to be updated, where by
definition we have

r̂i(V
HD) , ln

∣∣∣INR
+ [HiV

HD
i ]2Ψ̃−1i (VHD)

∣∣∣ , (23)

along with

Ψ̃i(V
HD) ,

Nu∑
6̀=i

[HiV
HD
` ]2 + σINR

. (24)

The constraint (22b) in U is equivalent to the constraint (6)
in θθθ, and the constraint (22c) in VHD is equivalent to the
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constraint (20) under the equality constraint VHD = UVB ,
which is enforced by the penalty term in the objective function
of (22a). The algorithm in [17] is based on alternating opti-
mization between each of the three sets of variables VHD, U,
and VB with the other two held fixed. As such, alternating
optimization in U with (VHD,VB) held fixed at (V̄ HD, V̄ B)
is provided by the problem

min
U
||V̄ HD −UV̄ B ||2 s.t. (22b), (25)

which was addressed by optimizing each single variable
u(n, j) with all NNRF−1 other variables u(n′, j′), (n′, j′) 6=
(n, j) held fixed, to avoid the combinatoric complexities
calculation. For b < ∞, like [16] it simply checks at all 2b

possible points e2πν/2
b

, ν = 0, 1, . . . , 2b−1. The simulations
in [17] showed its superior performance over that achieved by
[15], [16].

The well-known drawback of the SR maximization problem
(21) is that it results in assigning excessive rates to the priv-
ileged users having high channel quality, while only granting
meagre rates for the rest. As such it cannot serve as a metric of
multi-user spectral efficiency. A more appropriate optimization
problem for multi-user spectral efficiency is the following
max-min rate optimization problem

max
θθθ,VB

min
i=1,...,Nu

ρi(θθθ,V
B) s.t. (6), (20), (26)

with unknown computational solution. For b =∞, it may be
computed by adjusting the exact-penalty algorithms developed
in [25], which invoke convex problems at each iteration to
generate better points. The computational complexity of these
problems is on the order of O[(NNRF )6] as it involves
O(NNRF ) decision variables and O(NNRF ) convex con-
straints, which is still intractable when N is very large.

We now propose to exploit the following HBF design
problem of maximizing the GM of user-rates (GM-rate) for
multi-user spectral efficiency:

max
θθθ,VB

(
Nu∏
i=1

ρi(θθθ,V
B)

)1/Nu

s.t. (6), (20). (27)

Our recent works [29]–[31] show that the GM-rate optimiza-
tion results in fair distributions of user-rates while keeping
their sum high without setting the threshold on the user
rates that causes very difficult nonconvex constraints. Such
attractive accomplishment will be shown by our simulation in
Section IV.

The remainder of this section is devoted to an AO approach
for computing (27).

A. Approximation optimization

The power constraint (20) is computationally intractable
because the ABF matrix VRF (θθθ) and the DBF matrix VB

are coupled. Our first contribution is that of decoupling them
as follows. Using the law of large numbers, it was shown in
[12] that for large N , we have

V HRF (θθθ)VRF (θθθ) ≈ NINRF
, (28)

so
Nu∑
i=1

〈V HRF (θθθ)VRF (θθθ), [VB
i ]2〉 ≈

Nu∑
i=1

〈NINRF
, [VB

i ]2〉

= N ||VB ||2. (29)

Therefore the power constraint (20) is approximated by the
following convex constraint

||VB ||2 ≤ P/N, (30)

which is independent of VRF (θθθ). For ρ(θθθ,VB) ,
(ρ1(θθθ,VB), . . . , ρNu

(θθθ,VB))T ∈ RNu , which is a nonlinear
mapping of (θθθ,VB), we thus consider the following problem
of AO associated with (27):

max
θθθ,VB

F (ρ(θθθ,VB)) ,

(
Nu∏
i=1

ρi(θθθ,V
B)

)1/Nu

s.t. (6), (30).

(31)
Initialized by a (V B,(0), θ(0)) feasible for (31), for κ = 1, . . . ,
let (θ(κ), V B,(κ)) be a feasible point for (31) that is found
from the (κ − 1)-st round. To resolve the high nonlinearity
of the objective function in (31), which is a composition of

the GM function F (ρ) ,
(∏Nu

i=1 ρi

)1/Nu

and the nonlinear
mapping ρ(θθθ,VB), we recast (31) in the following maximin
problem2

max
θθθ,VB

min
γγγ∈RNu+,

∏Nu
i=1 γγγi=1

〈γγγ, ρ(θθθ,VB)〉 s.t. (6), (30). (32)

Initialized by a (V B,(0), θ(0)) feasible for (31), for κ =
0, 1, . . . , we optimize in γγγ to have

γ
(κ)
i ,

maxi′∈Nu ρi′(θ
(κ), V B,(κ))

ρi(θ(κ), V B,(κ))
, i ∈ Nu. (33)

For γ(κ) , (γ
(κ)
1 , . . . , γ

(κ)
NU

)T , we iterate (V B,(κ+1), θ(κ+1))
by solving the following problem of mixed discrete continuous
optimization problem:

max
θθθ,VB

F (κ)(θθθ,VB) , 〈γ(κ), ρ(θθθ,VB)〉 s.t. (6), (30). (34)

As discussed in [29]–[32], the problem (34) is the same as the
following problem

max
θθθ,VB

L(κ)(ρ(θθθ,VB)) s.t. (6), (30), (35)

where L(κ)(ρ(θθθ,VB) is the linearized function of F (ρ) at
ρ(θ(κ), V B,(κ)):

L(κ)(ρ(θθθ,VB) =
F (ρ(θ(κ), V B,(κ)))

Nu

Nu∑
i=1

ρi(θθθ,V
B)

ρi(θ(κ), V B,(κ))
. (36)

One should not confuse L(κ)(ρ(θθθ,VB)), which is still a
nonlinear function in (θθθ,VB), with the linear approximation
of the function F̃ (θθθ,VB) , F (ρ(θθθ,VB)) at (θ(κ), V B,(κ)),
which is used for the standard gradient ascent algorithms [33].
In fact, L(κ)(ρ(θθθ,VB)) provides a nonlinear approximation of
F̃ (θθθ,VB) at (θ(κ), V B,(κ)).

2By Cauchy’s inequality, we have 1
Nu
〈γγγ, ρ(θθθ,VB)〉 ≥

[
∏Nu

i=1 γγγiρi(θθθ,V
B)]1/Nu = [

∏Nu
i=1 ρi(θθθ,V

B)]1/Nu with the equality
sign at γγγ1ρi(θθθ,VB) = · · · = γγγNuρi(θθθ,V

B)
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1) Alternating ascent in the DBF matrix: We seek DBF
V B,(κ+1) ensuring that

F (κ)(θ(κ), V B,(κ+1)) > F (κ)(θ(κ), V B,(κ)), (37)

by considering the following problem:

max
VB

F (κ)(θ(κ),VB) s.t. (30). (38)

which is nonconvex because its objective function is noncon-
cave.

By using the inequality (5), we obtain the following tight
concave quadratic minorant of ρi(θ(κ),VB) at V B,(κ):

ρ
(κ)
i (VB) , a

(κ)
i +2<{〈A(κ)

i VB
i 〉}

−〈HHi (θ(κ))B
(κ)
i Hi(θ

(κ)),

Nu∑
`=1

[VB
` ]2〉,(39)

with

a
(κ)
i , ρi(θ

(κ), V B,(κ))

−〈[Hi(θ(κ))V B,(κ)i ]2Ψ−1i (θ(κ), V B,(κ))〉 − σ〈B(κ)
i 〉,

A
(κ)
i , [Hi(θ(κ))V B,(κ)i ]HΨ−1i (θ(κ), V B,(κ))Hi(θ(κ)),

and

B
(κ)
i , Ψ−1i (θ(κ), V B,(κ))− (Ψi(θ

(κ), V B,(κ))

+[Hi(θ(κ))V B,(κ)i ]2)−1.

Thus, the following concave quadratic function provides a tight
minorant of the objective function in (38):

F̃ (κ)(VB) ,
Nu∑
i=1

γ
(κ)
i ρ

(κ)
i (VB)

=

Nu∑
i=1

γ
(κ)
i a

(κ)
i + 2

Nu∑
i=1

γ
(κ)
i <{〈A

(κ)
i VB

i 〉}

−
Nu∑
`=1

〈Q(κ), [VB
` ]2〉, (40)

for Q(κ) ,
∑Nu

`=1 γ
(κ)
` (H`(θ(κ)))HB(κ)

` Hi(θ(κ)). We solve
the following problem of tight minorant maximization for (38)
to generate V B,(κ+1)

max
VB

F̃ (κ)(VB) ,
Nu∑
i=1

γ
(κ)
i ρ

(κ)
i (VB) s.t. (30). (41)

This convex quadratic problem admits the following closed-
form solution

V
B,(κ+1)
i =


γ
(κ)
i (Q(κ))−1(A

(κ)
i )H

if
Nu∑
i=1

||(Q(κ))−1γ
(κ)
i (A

(κ)
i )H ||2 ≤ P/N(

Q(κ) + µINRF

)−1
γ
(κ)
i (A

(κ)
i )H otherwise,

(42)
where µ > 0 is chosen such that

Nu∑
i=1

||(Q(κ) + µINRF
)−1γ

(κ)
i (A

(κ)
i )H ||2 = P/N. (43)

The computational complexity of (43) is on the order of
O(NRFNuNR), i.e. it is linearly scalable in NRFNuNR.
By Lemma 1, we thus have (37) as claimed.

2) Alternating ascent in the ABF: We seek θ(κ+1) feasible
for (6) for ensuring that

F (κ)(θ(κ+1), V B,(κ+1)) > F (κ)(θ(κ), V B,(κ+1)), (44)

by considering the following problem

max
θθθ

F (κ)(θθθ, V B,(κ+1)) = 〈γ(κ), ρ(θθθ, V B,(κ+1))〉 s.t. (6),

(45)
This is a combinatoric problem because its objective function
is nonlinear, while its constraint (6) is discrete.

Recalling from (18) that ρi(θθθ, V
B,(κ+1)) ,

ln
∣∣∣INR

+ [Hi(θθθ)V B,(κ+1)
i ]2Ψ−1i (θθθ, V B,(κ+1))

∣∣∣, and using
the inequality (5), we obtain the following tight minorant of
ρi(θθθ, V

B,(κ+1)) at θ(κ):

ρ̃
(κ)
i (θθθ) , ã

(κ)
i + 2<{〈Ã(κ)

i VRF (θθθ)〉}

−〈HH
i B̃

(κ)
i Hi, VRF (θθθ)(

Nu∑
`=1

[V
B,(κ+1)
` ]2)V HRF (θθθ)〉, (46)

with

ã
(κ)
i , ρi(θ

(κ), V B,(κ+1))

−〈[Hi(θ(κ))V B,(κ+1)
i ]2Ψ−1i (θ(κ), V B,(κ+1))〉 − σ〈B̃(κ)

i 〉,

Ã
(κ)
i , V

B,(κ+1)
i (Hi(θ(κ))V B,(κ+1)

i )HΨ−1i (θ(κ), V B,(κ+1))Hi,

and

B̃
(κ)
i , Ψ−1i (θ(κ), V B,(κ+1))−

(
Ψi(θ

(κ), V B,(κ+1))

+[Hi(θ(κ))V B,(κ+1)
i ]2

)−1
.

Thus, a tight minorant of the objective function in (45) is
Nu∑
i=1

γ
(κ)
i ρ̃

(κ)
i (θθθ) =

ã(κ) + 2<{〈Ã(κ)VRF (θθθ)〉}
−〈B̃(κ), VRF (θθθ)C̃(κ)V HRF (θθθ)〉 = (47)

ã(κ) + 2<{〈Ã(κ)VRF (θθθ)〉} − λ(κ)〈[VRF (θθθ)]2〉
+
(
λ(κ)〈[VRF (θθθ)]2 −〈B̃(κ), VRF (θθθ)C̃(κ)V HRF (θθθ)〉

)
= (48)

ã(κ) + 2<{〈Ã(κ)VRF (θθθ)〉} − λ(κ)NNRF
+
(
λ(κ)〈[VRF (θθθ)]2〉−〈B̃(κ), VRF (θθθ)C̃(κ)V HRF (θθθ)〉

)
(49)

for

ã(κ) ,
Nu∑
i=1

γ
(κ)
i ã

(κ)
i , Ã(κ) ,

Nu∑
i=1

γ
(κ)
i Ã

(κ)
i ,

B̃(κ) ,
Nu∑
i=1

γ
(κ)
i HH

i B̃
(κ)
i Hi, C̃

(κ) ,
Nu∑
`=1

[V
B,(κ+1)
` ]2,

and
λ(κ) , λmax(B̃(κ))λmax(C̃(κ)),

where for deriving (49) we exploit the following constant
modulus of VRF (θθθ):

〈[VRF (θθθ)]2〉 = ||VRF (θθθ)||2 ≡ NNRF ∀θθθ. (50)

Regarding the last term in (49), note that

λ(κ)〈[VRF (θθθ)]2〉 − 〈B̃(κ), VRF (θθθ)C̃(κ)V HRF (θθθ)〉 ≥ 0 ∀VRF (θθθ)



6

because

〈B̃(κ), VRF (θθθ)C̃(κ)V HRF (θθθ)〉 ≤
λmax(B̃(κ))λmax(C̃(κ))〈VRF (θθθ)V HRF (θθθ)〉 =

λ(κ)〈[VRF (θθθ)]2〉.

Thus, λ(κ)〈[VRF (θθθ)]2〉 − 〈B̃(κ), VRF (θθθ)C̃(κ)V HRF (θθθ)〉 is non-
negative quadratic function of VRF (θθθ), so it must be convex
[27]. Hence, its linearization at VRF (θ(κ)) provides its tight
minorant [27]:

2<{〈λ(κ)V HRF (θ(κ))VRF (θθθ)}
−2<{〈C̃(κ)V HRF (θ(κ))B̃(κ)VRF (θθθ)〉}

−λ(κ)NNRF + 〈C̃(κ)V HRF (θ(κ))B̃(κ)VRF (θ(κ))〉. (51)

As VRF (θθθ) is a nonlinear mapping, (51) provides a nonlinear
function of θθθ. It follows from (49) and (51) that a tight
minorant of the objective function in (45) is the following
trigonometric function:

F̂ (κ)(θθθ) , ã(κ)p + 2<{〈D̃(κ)VRF (θθθ)〉}, (52)

for ã
(κ)
p , ã(κ) − 2λ(κ)NNRF +

〈C̃(κ)V HRF (θ(κ))B̃(κ)VRF (θ(κ))〉, and D̃(κ) , Ã(κ) +
λ(κ)V HRF (θ(κ)) − C̃(κ)V HRF (θ(κ))B̃(κ). We thus solve the
following problem of tight minorant maximization for (45)
to generate θ(κ+1):

max
θθθ

F̂ (κ)(θθθ) s.t. (6). (53)

This trigonometric discrete problem admits the following
closed-form solution

θ(κ+1) =
[
2π − b∠D̃(κ)(j, n)eb

]
(n,j)∈N×NRF

. (54)

The computational complexity of (54) is on the order of
O(NNuNR), i.e. it is also linearly scalable in NNuNR. By
Lemma 1, we have (44) as claimed, provided that θ(κ+1) 6=
θ(κ).

As the first booster, we use (28) to obtain the following
approximated minorant of the objective function in (47)

RHS of (47)
= ã(κ) + 2<{〈Ã(κ)VRF (θθθ)〉}
−〈λmax(B̃(κ))IN , VRF (θθθ)C̃(κ)V HRF (θθθ)〉
+〈λmax(B̃(κ))IN − B̃(κ), VRF (θθθ)C̃(κ)V HRF (θθθ)〉

≈ ã(κ) + 2<{〈Ã(κ)VRF (θθθ)〉} − λmax(B̃(κ))N〈C̃(κ)〉
+〈λmax(B̃(κ))IN − B̃(κ), VRF (θθθ)C̃(κ)V HRF (θθθ)〉

≥ ˜̃a(κ) + 2<{〈 ˜̃D(κ)VRF (θθθ)〉}〉, (55)

with ã(κ), Ã(κ), B̃(κ), and C̃(κ) defined from (47), and then
˜̃a(κ) , ã(κ) − λmax(B̃(κ))N〈C̃(κ)〉

−〈λmax(B̃(κ))IN − B̃(κ), VRF (θ(κ))C̃(κ)V HRF (θ(κ))〉,
and

˜̃D(κ) , Ã(κ) + C̃(κ)V HRF (θ(κ))
(
λmax(B̃(κ))IN − B̃(κ)

)
,

based on which we generate θ(κ+1) by solving the following
problem of approximate minorant maximization for (45):

max
θθθ

˜̃a(κ) + 2<{〈 ˜̃D(κ)VRF (θθθ)〉} s.t. (6), (56)

which admits the following closed-form solution

θ(κ+1) = [2π − b∠ ˜̃D(κ)(j, n)eb](n,j)∈N×NRF
. (57)

As the second booster, we also generate θ(κ+1) by

θ(κ+1) =
[
2π − b∠D̂(κ)(j, n)eb

]
(n,j)∈N×NRF

. (58)

with D̂(κ) , Ã(κ)−C̃(κ)V HRF (θ(κ))B̃(κ), which is the optimal
solution by maximizing the linearized function of the tight
minorant defined by (47). Note that this function and that
defined by (55) are not necessarily minorants of the objective
in (45) so θ(κ+1) generated by (57) and (58) are not necessarily
better than θ(κ).

3) Algorithm and its convergence: Algorithm 1 is the
pseudo-code of implementing the alternating ascent iterations
(42) and (54), (57), and (58) in addressing the problem (31).
Note that

〈∂F (ρ(θ(κ), V B,(κ)))/∂ρ, ρ(θθθ,VB)〉 = δ(κ)F (κ)(θθθ,VB)
(59)

with δ(κ),F(ρ(θ(κ),V B,(κ)))/(Numaxi′∈Nuρi′(θ
(κ),V B,(κ)))>

0, and as such the sequence {(V B,(κ), θ(κ))} converges to
(V B,(∞), θ(∞)), which satisfies the first-order optimality
condition in VB (θθθ, resp. with other variable held fixed
at θ(∞) (V B,(∞), resp.) [27]. Moreover, as it will shown
by simulations in Section IV, the following inequalities are
achieved after a few iterations

F (θ(κ+1), V B,(κ+1)) > F (θ(κ), V B,(κ+1)) > F (θ(κ), V B,(κ)),
(60)

so V B,(κ+1) generated by (42) is an ascent of the full-length
step, while θ(κ+1) generated by (54) provides a new ascent
for discrete optimization.

Algorithm 1 AO algorithm for locating the ABF matrix.

1: Initialization: Initialize (θ(0), V B,(0)).
2: Repeat until convergence of the objective function in

(31): Generate V B,(κ+1) by (42) and θ(κ+1) by taking
the best of three generated by (54), (57), and (58). Reset
κ := κ+ 1.

3: Output (θopt, Ṽ B,opt) = (θ(κ), V B,(κ)).

B. Performance booster by DBF

Until now, Algorithm 1 has not addressed the original prob-
lem (27), only its approximation problem (31). This subsection
considers the problem of optimizing the DBF matrix VB in
(27) with θθθ held fixed at θopt that was found by Algorithm 1.

Under θθθ = θopt, the rate of UE i defined by (18) is
ri(V

B) , ρi(θ
opt,VB) = ln

∣∣∣INR
+ [H̃iV

B
i ]2Φ−1i (VB)

∣∣∣,
with H̃i = Hi(θopt), and Φi(V

B) , Ψi(θ
opt,VB) =∑Nu

` 6=i[H̃iV
B
` ]2 + σINR

. Thus, the problem (27) with θθθ held
fixed at θopt is formulated as:

max
VB

fGM (VB) ,

(
Nu∏
i=1

ri(V
B)

)1/Nu

(61a)
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s.t.
Nu∑
i=1

||VRF (θopt)VB
i ||2 ≤ P. (61b)

Initialized from

V B,0 = t0Ṽ
B,opt, t0 =

√
P/||VRF (θ(κ))Ṽ B,opt||2 (62)

with Ṽ B,opt found by Algorithm 1, for κ = 0, 1, . . . , we
iterate V B,(κ+1) based on the problem

max
VB

f (κ)(VB) , 〈γ(κ), r(VB) s.t. (61b), (63)

where r(VB) , (r1(VB), . . . , rNu(VB))T and γ(κ) ,
(γ

(κ)
1 , . . . , γ

(κ)
Nu

)T with

γ
(κ)
i =

maxi′∈Nu
ri′(V

B,(κ))

ri(V B,(κ))
, i ∈ Nu. (64)

Upon using the inequality (5), we obtain the following tight
minorant of ri(VB):

r
(κ)
i (VB) , ã

(κ)
i + 2<{〈A(κ)

i VB
i 〉}

−〈B(κ)
i

(
Nu∑
`=1

[H̃iV
B
` ]2 + σINR

)
〉 (65)

= a
(κ)
i + 2<{〈A(κ)

i VB
i 〉}

−〈H̃H
i B

(κ)
i H̃i,

Nu∑
`=1

[VB
` ]2〉, (66)

with

ã
(κ)
i , ri(V

B,(κ))− 〈[H̃iV
B,(κ)
i ]2Φ−1i (V B,(κ))〉,

a
(κ)
i , ã

(κ)
i − σ〈B

(κ)
i 〉,

A
(κ)
i , (V

B,(κ)
i )HH̃H

i Φ−1i (V B,(κ))H̃i,

and

B
(κ)
i , Φ−1i (V B,(κ))−

(
Φi(V

B,(κ)) + [H̃iV
B,(κ)
i ]2

)−1
.

For r(κ)(VB) , (r
(κ)
1 (VB), . . . , r

(κ)
Nu

(VB))T , we then have
the following tight minorant of the objective function in (63):

f̃ (κ)(VB) , 〈γ(κ), r(κ)(VB)〉

= a(κ) + 2

Nu∑
i=1

<{〈γ(κ)i A
(κ)
i VB

i 〉}

−
Nu∑
i=1

〈Q(κ), [VB
i ]2〉 (67)

where a(κ) ,
∑Nu

i=1 a
(κ)
i , and Q(κ) ,

∑Nu

`=1 γ
(κ)
` H̃H

` B
(κ)
` H̃`.

We solve the following problem of tight minorant maxi-
mization for (63) to generate V B,(κ+1):

max
VB

f̃ (κ)(VB) s.t. (61b). (68)

This convex quadratic problem admits the following closed-
form solution

V
B,(κ+1)
i =



γ
(κ)
i (Q(κ))−1(A

(κ)
i )H

if
Nu∑
i=1

||VRF (θopt)(Q(κ))−1γ
(κ)
i (A

(κ)
i )H||2≤P(

Q(κ) + µ[V HRF (θopt)]2
)−1

γ
(κ)
i (A

(κ)
i )H

otherwise,
(69)

where µ > 0 is chosen for ensuring that

Nu∑
i=1

||VRF (θopt)
(
Q(κ)+µ[V HRF (θopt)]2

)−1
γ
(κ)
i (A

(κ)
i )H||2 =P.

(70)
By Lemma 1

f (κ)(V B,(κ+1)) > f (κ)(V B,(κ)), (71)

provided that f (κ)(V B,(κ+1)) 6= f (κ)(V B,(κ)), i.e. V B,(κ+1)

is a better feasible point than V B,(κ). Like Algorithm 1,
Algorithm 2 provided below generates a sequence {V B,(κ)} of
gradually improved feasible points for (61), which converges
at least to a locally optimal solution.

Algorithm 2 Booster algorithm

1: Initialization: Initialize V B,(0) by (62).
2: Repeat until convergence of the objective function in

(61): Generate V B,(κ+1) by (69). Reset κ := κ+ 1.
3: Output V B,(κ).

III. PENALTY OPTIMIZATION APPROACH

Recalling the definition (15) of HBF and (23) with
Ψ̃i(V

HD) defined from (24) as the achievable rate of UE, our
HBF design problem of maximizing the GM-rate is formulated
as:

max
θθθ,VB ,VHD

f(VHD) ,

(
Nu∏
i=1

r̂i(V
HD)

)1/Nu

s.t. (7), (15), (22c). (72)

We will address (72) via the following PO:

max
θθθ,VB ,VHD

Fp(θθθ,V
B ,VHD)

, f(VHD)− c||VHD − VRF (θθθ)VB ||2

s.t. (6), (22c) (73)

with the penalty parameter c > 0 to be updated.
Initialized by (θ(0), V B,(0), V HD,(0)) which is feasible for

(72), for κ = 0, 1, . . . , we let (θ(κ), V B,(κ), V HD,(κ)) be a
feasible point for (73) that is found from the (κ− 1)-st round
and γ(κ) , (γ

(κ)
1 , . . . , γ

(κ)
Nu

)T with

γ
(κ)
i ,

max`∈Nu
r̂`(V

HD,(κ))

r̂i(V HD,(κ))
, i ∈ Nu. (74)
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For r̂(VHD) , (r̂1(VHD), . . . , r̂Nu
(VHD))T , we iterate

(θ(κ+1), V B,(κ+1), V HD,(κ+1)) by solving the following prob-
lem

max
θθθ,VB ,VHD

F (κ)
p (θθθ,VB ,VHD)

, 〈γ(κ), r̂(VHD)〉 − c||VHD − VRF (θθθ)VB ||2

s.t. (6), (22c). (75)

A. Alternating ascent in VHD

We seek V HD,(κ+1) such that

F (κ)
p (θ(κ), V B,(κ), V HD,(κ+1)) > F (κ)

p (θ(κ), V B,(κ), V HD,(κ))
(76)

by solving the problem

max
VHD

F (κ)
p (θ(κ), V B,(κ),VHD) s.t. (22c). (77)

By exploiting the inequality (5), we obtain the following
tight concave quadratic minorant of the function r̂i(VHD) at
V HD,(κ):

r̂
(κ)
i (VHD) , a(κ) + 2<{〈A(κ)

i VHD
i 〉}

−〈HH
i B

(κ)
i Hi,

Nu∑
`=1

[VHD
` ]2〉, (78)

with

a
(κ)
i , ri(V

HD,(κ))− 〈[HiV
HD,(κ)
i ]2Ψ̃−1i (V HD,(κ))〉

−σ〈B(κ)
i 〉,

A
(κ)
i , (V

HD,(κ)
i )HHH

i Ψ̃−1i (V HD,(κ))Hi,

and

B
(κ)
i , Ψ̃−1i (V HD,(κ))−

(
Ψ̃i(V

HD,(κ)) + [HiV
HD,(κ)
i ]2

)−1
.

A tight minorant of the objective function in (77) is the
following convex function:

f̃ (κ)(VHD) ,
Nu∑
i=1

γ
(κ)
i r̂

(κ)
i (VHD)

−c||VHD − VRF (θ(κ))V B,(κ)||2 (79)

= a(κ) + 2

Nu∑
i=1

<{〈A(κ)
c,i V

HD
i 〉}

−
Nu∑
i=1

〈Q(κ), [VHD
i ]2〉 (80)

for

a(κ) ,
Nu∑
i=1

a
(κ)
i − c||VRF (θ(κ))V B,(κ)||2,

A
(κ)
c,i , γ

(κ)
i A

(κ)
i + c(V

B,(κ)
i )HV HRF (θ(κ)),

and

Q(κ) ,
Nu∑
`=1

γ
(κ)
` HH

` B
(κ)
` H` + cIN .

We generate V HD,(κ+1) as the optimal solution of the follow-
ing convex quadratic problem of tight minorant maximization
for (77),

max
VHD

f̃ (κ)(VHD) s.t. (22c). (81)

which admits the closed-form solution

V
HD,(κ+1)
i =


(Q(κ))−1A

(κ)
c,i

if
Nu∑
i=1

||(Q(κ))−1A
(κ)
c,i ||

2 ≤ P(
Q(κ) + µIN

)−1
A

(κ)
c,i otherwise,

(82)

where µ > 0 is chosen such that

Nu∑
i=1

||(Q(κ) + µIN )−1A
(κ)
c,i ||

2 = P. (83)

By Lemma 1, we have (76) as claimed, provided that
f̃ (κ)(V HD,(κ+1)) 6= f̃ (κ)(V HD,(κ)).

B. Alternating ascent in θθθ

We seek θ(κ+1) such that

Fp(θ
(κ+1), V B,(κ), V HD,(κ+1)) >

Fp(θ
(κ), V B,(κ), V HD,(κ+1)), (84)

which is equivalent to

−||V HD,(κ+1) − VRF (θ(κ+1))V B,(κ)||2 >
−||V HD,(κ+1) − VRF (θ(κ))V B,(κ)||2. (85)

To this end, we solve the following combinatoric problem

max
θθθ

ϕ(κ)(θθθ) , −||V HD,(κ+1) − VRF (θθθ)V B,(κ)||2

s.t. (6), (86)

where we have:

ϕ(κ)(θθθ)

= −||V HD,(κ+1)||2 − 〈[V B,(κ)]2V HRF (θθθ)VRF (θθθ)〉
+2<{〈V B,(κ)(V HD,(κ+1))HVRF (θθθ)〉}

= −||V HD,(κ+1)||2 − λ(κ)NNRF
+2<{〈V B,(κ)(V HD,(κ+1))HVRF (θθθ)〉}
+
[
λ(κ)||VRF (θθθ)||2 − 〈[V B,(κ)]2V HRF (θθθ)VRF (θθθ)〉

]
≥ −||V HD,(κ+1)||2 − λ(κ)NNRF

+2<{〈V B,(κ)(V HD,(κ+1))HVRF (θθθ)〉}
+
[
2<{λ(κ)〈V HRF (θ(κ))VRF (θθθ)〉}

−2<{〈[V B,(κ)]2V HRF (θ(κ))VRF (θθθ)〉} − λ(κ)NNRF
+〈[V B,(κ)]2V HRF (θ(κ))VRF (θ(κ))〉

]
(87)

= a(κ) + 2<{〈A(κ)VRF (θθθ)〉}, (88)

with
λ(κ) , λmax([V B,(κ)]2),

a(κ) , −||V HD,(κ+1)||2 − 2λ(κ)NNRF
+〈[V B,(κ)]2V HRF (θ(κ))VRF (θ(κ))〉,
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and

A(κ) , V B,(κ)(V HD,(κ+1))H + λ(κ)〈V HRF (θ(κ))
−[V B,(κ)]2V HRF (θ(κ)).

Note that (87) follows from (50), while (87) is derived by
replacing the last term 〈[V B,(κ)]2V HRF (θθθ)VRF (θθθ)〉 in (87),
which is a convex quadratic function of VRF (θθθ), by its
linearized function at VRF (θ(κ)). One can easily check that
the RHS of (88) constitutes a tight minorant of ϕ(κ)(θθθ).

We thus solve the following discrete trigonometric problem
of tight minorant maximization for (86) to generate θ(κ+1):

min
θθθ

ϕ̃(κ)(θθθ) , a(κ) + 2<{〈A(κ)VRF (θθθ)〉} s.t. (6), (89)

which admits the following closed-form solution:

θ(κ+1) = [2π − b∠A(κ)(j, n)eb](n,j)∈N×Nu
. (90)

By Lemma 1, we have (85)/(84) as claimed, provided that
ϕ(κ)(θ(κ+1)) 6= ϕ(κ)(θ(κ)).

As its booster, we use (28) and (87) to obtain

ϕ(κ)(θθθ) ≈ −||V HD,(κ+1)||2 −N ||V B,(κ)||2

+2<{〈V B,(κ)(V HD,(κ+1))HVRF (θθθ)〉}(91)
= â(κ) + 2<{〈Â(κ)VRF (θθθ)〉}, (92)

for â(κ) , −||V HD,(κ+1)||2 − N ||V B,(κ)||2 and Â(κ) ,
V B,(κ)(V HD,(κ+1))H , based on which we generate θ(κ+1) by
solving the following problem of AO for (86):

max
θθθ

â(κ) + 2<{〈Â(κ)VRF (θθθ)〉} s.t. (6), (93)

which admits the closed-form solution:

θ(κ+1) = [2π − b∠Â(κ)(j, n)eb](n,j)∈N×NRF
. (94)

C. Alternating optimization in VB

We seek V B,(κ+1) such that

V B,(κ+1)

= arg max
VB

Fp(θ
(κ+1),VB , V HD,(κ+1))

= arg min
VB
||V HD,(κ+1) − VRF (θ(κ+1))VB ||2

= (V HRF(θ(κ+1))VRF(θ(κ+1)))−1V HRF(θ(κ+1))V HD,(κ+1). (95)

D. Algorithm

Algorithm 3 formulates the pseudo-code of implementing
the alternating ascent iterations (82), (90) and (94), and (95) in
addressing the problem (73). Note that (73) is not exactly the
penalized formulation of (72) in terms of the definition in [34].
As such, its performance is sensitive to the specific choice of
the penalty parameter c and also to the initial feasible points.
Another point is that the dimension of VHD is N × (NuNR),
which is very high compared to the dimension NRF×(NuNR)
of the DBF matrix and the closed-form (82) involves the
inversion of high-dimensional matrices.

Algorithm 3 PO Algorithm

1: Initialization: Initialize θ(0), V B,(0), and V B,(0). Set κ =
0 and c = c0.

2: Repeat until ||V HD,(κ) − VRF (θ(κ))V B,(κ)||2 ≤
Nu10−3: Generate V HD,(κ+1) by (82). Generate
θ(κ+1) by taking the best of two generated
by (90) and (94), and V B,(κ+1) by (95).
If ||V HD,(κ+1) − VRF (θ(κ+1))V B,(κ+1)||2 >
0.9||V HD,(κ) − VRF (θ(κ))V B,(κ)||2, reset c := 1.2c
in (73), and accordingly in (77), (79), (80), (82), (83).
Reset κ := κ+ 1.

3: Output V HD,(κ), θ(κ) and V B,(κ). Reset

V B,(κ) → t0V
B,(κ), t0 =

√
P/||VRF (θ(κ))V B,(κ)||2

and then output f(VRF (θ(κ))V B,(κ)) as well as
r̂i(VRF (θ(κ))V B,(κ)).

IV. NUMERICAL RESULTS

With the users randomly located within the cell radius of
200 meters, so that half of the users are in the cell-center
while the remaining users are placed near the cell-edge. The
path-loss of UE i experienced at a distance di from the BS is
set to ρi = 36.72 + 35.3 log 10(di)dB taking into account a
16.5 dB gain due to multiple-antenna mmWave transmission
[7], [8], [35]. The mmWave channel Hi ∈ CNR×N between
the BS and UE i in (10) is modelled by [12]

Hi = F
√

10−ρi/10
Nc∑
c=1

Nsc∑
`=1

αi,c,`ar
(
φri,c,`

)
aHt
(
φti,c,`, θ

t
i,c,`

)
,

(96)

where F =
√

NNR

NcNsc
, Nc is the number of scattering clusters,

Nsc is the number of scatterers within each cluster, and
αi,c,` ∼ CN (0, 1) is the complex gain of the `th path in the
cth cluster between the BS and UE i. Under a uniform planar
array antenna configuration having half wavelength antenna
spacing with N1 and N2 elements on horizon and vertical,
respectively, the normalized transmit and receive antenna array
response vectors at

(
φti,c,`, θ

t
i,c,`

)
and ar

(
φri,c,`

)
are defined

as [12]:

at
(
φti,c,`, θ

t
i,c,`

)
=

1√
N

[
1, ejπ(x sin(φt

i,c,`) sin(θ
t
i,c,`)+y cos(θ

t
i,c,`)), . . . ,

ejπ((N1−1) sin(φt
i,c,`) sin(θ

t
i,c,`)+(N2−1) cos(θti,c,`))

]T
, (97)

and

ar
(
φri,c,`

)
=

1√
NR

[
1, ejπ sin(φr

i,c,`),. . . ,ej(NR−1)π sin(φr
i,c,`)

]T
,

(98)
where we have 0 ≤ x ≤ (N1 − 1) and 0 ≤ y ≤ (N2 −
1). φti,c,` and θti,c,` are the azimuth angle and elevation angle
of departure for the `th path in the cth cluster arriving from
the BS to the UE i, respectively, φrk,c,` is the azimuth angle
of arrival for the `th path in the cth cluster from the BS to



10

UE i, the angles are generated according to the Laplacian
distribution in conjunction with random mean cluster angles
in the interval [0, 2π) and spreads of 10 degrees within each
cluster. As in [7], we set Nc = 5 and Nsc = 10. Note that
Hi can be readily estimated by exploiting the sparsity of the
channel in the angular domain [36]–[38].

The carrier frequency is set to 28 GHz, the noise power
density is set to −174 dBm/Hz, while the bandwidth is set
to B = 100 MHz. Unless otherwise stated, b = 3, P = 15
dBm, NRF = 8, Nu = 8, N = 64 and N1 = 8 are used. The
results are multiplied by log2 e to convert the unit nats/sec into
the unit bps/Hz. The convergence tolerance of the proposed
algorithms is set to 10−3.

Below, we use the following legends to specify the proposed
implementations:
• ”AO” and ”3-bit AO” refer to the performance of the

inner approximation algorithm 1 used for determining the
ABF matrix having infinite resolution and 3-bit resolu-
tion, respectively, and then implementing the baseband
DBF Algorithm 2.

• ”PO” and ”3-bit PO” refer to the results of implementing
the penalty optimization Algorithm 3 with θ(κ+1) gener-
ated by (90).

A. Comparison with existing algorithms

We use the legends ”Shi-Hong” and ”3-bit Shi-Hong” to
specify the performance of the Algorithm [17] for computing
(21).

It is plausible that our proposed Algorithms 1, 2, and 3 are
eminently suitable for addressing the problem (21) by setting
γ
(κ)
i ≡ 1 in (34), (63) and (75), which improve the sum-rate

objective function in each iteration as illustrated by Fig. 1.

0 50 100 150 200
0

1

2

3

4

Fig. 1: Convergence of Algorithm 1 in optimizing the sum
rate/mean rate and GM rate

Fig. 2 plots the achievable SR of the proposed algorithms
AO and PO, and ”Shi-Hong” for different number of RF
chains. Fig. 2(a) shows that ”PO” has the best SR, AO
outperforms ”Shi-Hong”, and their 3-bit resolution solutions
follow the same trend under NR = 1. For NR = 2, Fig. 2(b)

shows that ”AO” has the best performance for NRF ≤ 6, while
”PO” has the best performance for NRF ≥ 7, and among all 3-
bit resolution algorithms, ”3-bit AO” has the best performance
for NRF ≤ 5, while ”3-bit PO” has the best performance for
NRF ≥ 6. It is not surprising that AO, PO and ”Shi-Hong”
have difference performance under NR = 1 and NR = 2 since
they enjoy the spatial diversity associated with the increased
number of receive antennas at the UE in varying degrees.
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Fig. 2: Achievable sum rate vs the number of RF chains: (a)
NR = 1, (b) NR = 2

To substantiate the fact that SR-based optimization cannot
avoid zero rate allocation, Table II provides the average
number of zero-rate users (ZR-UEs) in producing Fig. 2. As
expected, Table II shows that the number of ZR-UEs increases
when NRF is reduced for all proposed algorithms because the
less data streams are transmitted. Table II also shows that there
are always ZR-UEs in SR maximization.

B. GM-rate performance index and qualitative analysis
Fig. 1 illustrates the convergence behaviour of Algorithm

1, which terminates within 200 iterations, confirming (60) on
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TABLE II: The average number of ZR-UEs versus NRF

(a) NR = 1

NRF = 4 NRF = 5 NRF = 6 NRF = 7 NRF = 8
AO 4.10 3.81 3.63 3.22 3.07
PO 3.97 3.03 2.31 1.93 1.43
Shi-Hong 2.72 2.03 1.67 1.27 1.07
3-bit AO 4.48 4.27 3.93 3.77 3.69
3-bit PO 3.97 3.03 2.21 1.63 1.42
3-bit Shi-Hong 2.63 1.96 1.48 1.02 0.98

(b) NR = 2

NRF = 4 NRF = 5 NRF = 6 NRF = 7 NRF = 8
AO 4.66 4.22 4.13 4.05 3.99
PO 4.17 3.96 3.73 3.55 2.97
Shi-Hong 3.44 2.88 2.30 1.74 1.65
3-bit AO 4.40 4.14 4.13 3.96 3.81
3-bit PO 4.11 3.76 3.48 3.23 2.63
3-bit Shi-Hong 3.14 2.57 2.00 1.77 1.56

steady increase of the GM-rate objective. Algorithm 2 follows
a similar pattern.

Fig. 3 plots the achievable GM under different numbers of
RF chains for NR = 1 and NR = 2. For NR = 1, ”AO” has
the best performance except for NRF = 8, under which ”PO”
outperforms ”AO”. Similarity, ”3-bit AO” outperforms ”3-bit
PO” for NRF ≤ 7, and ”3-bit PO” outperforms ”3-bit AO”
when NRF = 8. For NR = 2, ”AO” has the best performance,
”3-bit AO” and ”3-bit PO” follows the same trend of Fig. 3(a).
It can also be observed that AO based algorithms are better
benefited from increasing the number of receive antennas than
PO based algorithms. As expected, all the algorithms benefit
from increasing the number of RF chains. Furthermore, by
comparing Fig. 3(a) and Fig. 3(b) it can be found ”PO” based
algorithms benefit a less extend from the increasing number
of receive antennas at the UEs than ”AO” based algorithms.

Fig. 4(a) and Fig. 4(b) portray the rate distribution for NR =
1 and NR = 2, respectively, where all the proposed algorithms
are capable of avoiding the assignment of zero rate, hence
demonstrating superiority.

Table III and Table IV show the min-rate/max-rate and
the rate variance versus NRF for NR = 1 and NR = 2,
respectively. Table III shows that ”PO” has best performance,
”3-bit PO” outperforms ”AO” and ”3-bit AO”. Table IV shows
that ”PO” the best resultant rate distribution, ”AO” has the
worst resultant rate distribution despite it has the best overall
GM rate.

The sum rates of the proposed algorithms are examined
in Table V. Table V shows ”AO” and ”3-bit AO” has better
performance than ”PO” and ”3-bit PO” except when (NR =
1, NRF = 8). Table V also shows ”PO” and ”3-bit PO” can
not benefit from the increasing number of receive antennas at
the UEs except for NRF = 8.

Fig. 5, which plots the achievable GM under different num-
bers of BS antennas N for NR = 1 and NR = 2. For NR = 1,
”PO” has best GM rate, while for NR = 2 ”AO” has the best
performance. Among their 3-bit resolutions algorithms, ”3-bit
PO” outperforms ”3-bit AO” all the time. Fig. 5 also shows
the performance of all the proposed algorithms is improved
by using more resources to exploit beamforming flexibility.
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Fig. 3: Achievable GM vs the number of RF chains: (a)
NR = 1, (b) NR = 2
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TABLE III: The min-rate/max-rate versus NRF

(a) NR = 1

NRF = 4 NRF = 5 NRF = 6 NRF = 7 NRF = 8
AO 0.08 0.08 0.09 0.12 0.21
PO 0.16 0.14 0.16 0.18 0.20
3-bit AO 0.08 0.07 0.07 0.09 0.12
3-bit PO 0.16 0.11 0.13 0.15 0.20

(b) NR = 2

NRF = 4 NRF = 5 NRF = 6 NRF = 7 NRF = 8
AO 0.08 0.08 0.09 0.11 0.25
PO 0.21 0.20 0.21 0.23 0.25
3-bit AO 0.12 0.08 0.08 0.11 0.17
3-bit PO 0.21 0.14 0.17 0.20 0.25

TABLE IV: The rate variance versus NRF

(a) NR = 1

NRF = 4 NRF = 5 NRF = 6 NRF = 7 NRF = 8
AO 2.52 3.80 3.34 2.73 2.14
PO 0.33 0.82 0.98 1.46 2.34
3-bit AO 1.81 2.78 2.99 2.78 2.73
3-bit PO 0.42 1.13 1.52 1.76 2.17

(b) NR = 2

NRF = 4 NRF = 5 NRF = 6 NRF = 7 NRF = 8
AO 3.51 4.85 4.51 3.32 2.22
PO 0.22 0.50 0.73 1.05 1.77
3-bit AO 2.10 3.34 3.54 3.16 2.52
3-bit PO 0.25 0.72 1.02 1.22 1.76

TABLE V: The sum rate (bps/Hz) versus NRF

(a) NR = 1

NRF = 4 NRF = 5 NRF = 6 NRF = 7 NRF = 8
AO 10.13 15.42 18.09 19.95 21.18
PO 6.65 9.80 12.32 16.20 21.89
3-bit AO 9.23 13.31 16.61 18.19 19.13
3-bit PO 6.61 9.74 12.29 15.71 20.96

(b) NR = 2

NRF = 4 NRF = 5 NRF = 6 NRF = 7 NRF = 8
AO 11.51 17.72 21.58 23.17 25.03
PO 6.45 9.31 12.44 16.16 22.47
3-bit AO 9.77 14.84 19.14 21.07 22.15
3-bit PO 6.37 9.14 12.23 15.66 22.03

We then examine the achievable GM under different power
budgets P for NR = 1 and NR = 2 in Fig. 6. As expected,
the GM increases upon increasing the available power budget
due to the availability of more power for information delivery.
And the trend follows Fig. 5.

Furthermore, Fig. 7 allows us to compare the performance
achieved by the b-bit solution under different values of b. As
expect, all the b-bit resolution algorithms benefit from the
increasing b. Fig. 7 also shows an approximately up to 30%
and 10% reduction in the GM-rate for a 3-bit quantization
compared to the∞-resolution for AO based algorithms and PO
based algorithms, respectively. Furthermore, Fig. 7 also shows
”b-bit PO” has similar performance with ”PO” for b ≥ 4.

Finally, Fig. 8 plots the GM attained for different numbers

of RF chains under NR = 1 and NR = 2 in serving more
UEs (Nu = 16 and N = 128). It can be observed that Fig.
8 has the same trend as Fig. 3, namely that ”AO” has the
best performance except for (NR = 1, NRF = 8), ”3-bit PO”
quickly outperforms ”3-bit AO” for NRF = 8. The results also
confirm the efficiency of the proposed algorithms in serving
more users.

V. CONCLUSIONS

We have considered a mmWave communication network,
which consists of a base station equipped with a massive
antenna array for serving multiple downlink users. We have
proposed different hybrid beamforming algorithms optimized
by maximizing the GM of the users’ rates, which result in a
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Fig. 4: Rate distribution: (a) NR = 1, (b) NR = 2

fair rate distribution, while maintaining reasonable sum rates.
The analog beamforming component was of a low resolu-
tion, facilitating its practical implementation in high mmWave
bandwidth scenarios. Extension of the GM maximization-
based approach to multi-carrier mmWave communication is
under our current study.
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