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Abstract: In this paper, we proposed two mixed algorithms of Newton’s and Abbasbandy’s methods
using a known iteration scheme from fixed point theory in polynomiography. We numerically
investigated some properties of the proposed algorithms using periodic sequence parameters instead
of the constant parameters that are mostly used by many authors. Two pseudo-Newton algorithms
were introduced based on the mixed iterations for the purpose of generating polynomiographs. The
properties of the obtained polynomiographs were studied with respect to their graphics, turning
effects and computation time. Moreover, some of these polynomiographs exhibited symmetrical
properties when the degree of the polynomial was even.
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1. Introduction

Polynomiography has many applications in our everyday life, from painting to anima-
tion. It has been used to create images that have inspired several hand-painted artworks,
lead to the creation of elegant carpet designs, provided a great source for the production
of many tapestries and served as a useful technique in the content of both education and
art in the generation of several animations [1]. Polynomiography may also be used in
textile design. According to Kalantari [1], polynomiography is described as the art or
science of creating graphics based on the approximation of zeros of complex polynomials.
These graphical images can be fractals or nonfractals and are created using mathematical
convergence properties of iteration functions. A single image created via polynomiography
is referred to as a polynomiograph. Although polynomiographs belong to the same class
of images as fractals (an earlier word for an image produced from iteration functions),
they, however, differ in the sense that their shapes and designs can be controlled more
predictably by using different iteration methods. More so, polynomiographs are sensitive to
small changes in the control parameters of the iteration functions, polynomials or scales of
the graphics, whereas fractals are self-similar, have a typical structure and are independent
of scale. In general, polynomiography has found several applications in design, education,
art and science [2–4].

According to the fundamentals of algebra, a complex polynomial p of degree n with
coefficients {an, an−1, . . . , a1}, which can be written as

p(x) = anxn + an−1xn−1 + · · ·+ a1x + a0,

has n roots (zeros), which may or may not be distinct. In a polynomiograph, the degree
of the polynomial describes the number of basins of attraction the polynomial has. In
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addition, the localization of the basins is controlled by placing roots on the complex plane
manually. Polynomiographs are colored based on the number of iterations needed to
obtain the approximation of the root within a chosen accuracy. One of the most popular
methods for finding the roots of a polynomial p is Newton’s method. This method has
served as a motivation for the introduction of several generalized methods for finding
roots of polynomials in real and complex domains. Recently, polynomiographs have
been created using the modified Newton’s method together with several iterations from
the theory of fixed points. A major contribution towards the development of pseudo-
Newton algorithms for locating the maximum modulus of a polynomial on the unit disk is
attributed to Kalantari [5]. Gdawiec et al. [6–9] modified and studied Kalanrari’s pesudo-
Newton method with other known methods for approximating fixed points, resulting
in new algorithms to solve the local maxima of polynomial modulus problems. Instead
of using the standard Picard iteration, they used several different iterations, such as the
Mann, Ishikawa, Noor, S and SP iterations. Many other authors have proposed several
polynomiographs obtained using generalized versions of Newton’s method with different
iteration processes, for instance, [10,11] and references therein. Moreover, a survey of
stability analysis for solving systems of nonlinear equations can be found in [12,13].

In this paper, we introduced two mixed algorithms consisting of Newton’s method and
Abbasbandy’s method for generating polynomiographs. We modified the mixed processes
by using a known iterative scheme that was used for finding the common fixed points of
two nonlinear mappings. We also investigated some properties of these algorithms by using
periodic sequence parameters instead of constant parameters, which have been mostly
used by many authors. Using these processes, we obtained several polynomiographs with
interesting properties from an artistic and aesthetic point of view.

2. Iterative Methods

In this section, some iterative methods for finding the fixed points of a mapping are
recalled. Let (X, d) be a complete metric space and T : X → X be a mapping. A point
x ∈ X is called a fixed point T if Tx = x. For approximating the fixed point of T, the
following iterative methods are well known. Take x0 ∈ X as a starting point, then we have
the following:

(i) The standard Picard iteration [14] is defined by

zn+1 = Tzn, n ≥ 0; (1)

(ii) The Mann iteration [15] is given by

zn+1 = (1− ξn)zn + ξnTzn, n ≥ 0,

where ξn ∈ (0, 1];
(iii) The Ishikawa iteration [16], which is a two-step process, is given by{

zn+1 = (1− ξn)zn + ξnTyn,
yn = (1− ηn)zn + ηnTzn, n ≥ 0,

where ξn ∈ (0, 1] and ηn ∈ [0, 1];
(iv) The Picard–Mann iteration of Khan [17] is given as{

zn+1 = Tyn

yn = (1− ξn)zn + ξnTzn, n ≥ 0,

where ξn ∈ (0, 1].
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In the celebrated Banach fixed-point theorem [14], the standard Picard iteration is used
to ensure the existence of a fixed point of a contraction mapping T. The Mann and Ishikawa
iterations allow the weakening of the assumption on the mapping T to be nonexpansive.
It is easy to see that the Ishikawa iteration with ηn = 0 is a Mann iteration, and for
ηn = 0, ξn = 1 it is a Picard iteration. The Mann iteration with ξn = 1 is a Picard iteration.
In addition, the Picard–Mann iteration with ξn = 0 is the Picard iteration.

Recently, Khan et al. [18] introduced a new iteration for finding common fixed points
of two mappings S, T : X → X, as follows: given x0 ∈ X,

xn+1 = Tyn

yn = S((1− ξn)wn + ξnTwn)

wn = (1− ηn)xn + ηnSxn, n = 0, 1, 2, . . . ,

(2)

where {ξn} and {ηn} are sequences in (0, 1). It is easy to see that (2) is more general than
the Picard, Mann, Ishikawa and Picard–Mann iterations. In the sequel, we take the space
X = C, which is clearly a Banach one, z0 = (x0, y0) ∈ R2 and ξn = ξ, ηn = η such that
0 < ξ ≤ 1 and 0 ≤ η ≤ 1.

Mixed Algorithms

Let p(z) be a complex polynomial. Newton’s method for finding the roots of p is given
by the formula

zn+1 = zn −
p(zn)

p′(zn)
, n = 0, 1, 2, . . . , (3)

where z0 ∈ C is a starting point and p′ is the first derivative of p. Newton’s method was
introduced in the 17th century and has continued to be a very important tool in mathematics.
It is well known that Newton’s method converges quadratically.

Using the technique of domain decomposition, Abbasbandy [19] introduced the fol-
lowing generalization of Newton’s method:

zn+1 = zn −
p(zn)

p′(zn)
− p2(zn)p′′(zn)

2(p′(zn))3 − p3(zn)p′′′(zn)

6(p′(zn))4 . (4)

It was shown that the Abbasbandy method (4) converges cubically, and, hence, has a
better rate of convergence than Newton’s method.

Next, we define the following mixed iteration process using (2) with Newton’s and
Abbasbandy’s methods: 

zn+1 = N(vn),
vn = B((1− η)wn + ηN(wn)),
wn = (1− ξ)zn + ηB(zn),

(5)

and 
zn+1 = B(vn),
vn = N((1− η)wn + ηB(wn)),
wn = (1− ξ)zn + ξN(zn),

(6)

where n ∈ N, z0 ∈ C,

N(z) = z− p(z)
p′(z)

,

and

B(z) = z− p(z)
p′(z)

− p2(z)p′′(z)
2(p′(z))3 −

p3(z)p′′′(z)
6(p′(z))4 .
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If the sequence {zn} (the orbit of point z0) converges to a root z∗ of p, then we say that
z0 is attracted to z∗. The set of all starting points z0, for which {zn} converges to z∗, is called
the basin of attraction of z∗. The boundaries among basins are usually fractals in nature.
The above mixed iteration processes are convergent to the roots of the polynomial p. More
so, the speed of convergence is different and the polynomiographs created by each process
look different. The application of each iteration perturbs the shape of the polynomiographs,
which is interesting from an aesthetic point of view.

3. Escape Criterion Results

In this section, we present some escape criterion for the mixed algorithm presented
in (5) and (6). We used the general polynomial zn + c and zn + az + r to repsent Newton’s
and Abbassbany’s methods, respectively. In the sequel, we took z0 ∈ C and ξ, η ∈ (0, 1].
The escape criterion is important in the analysis of Julia sets, Mandelbrot sets and their
generalizations.

The following theorem describes the escape criterion for (5).

Theorem 1. Let Nc(z) = zn + c and Ba,r(z) = zn + az + r. Suppose

|z| ≥ |r| > 2(1 + |a|)
ξ|rn−2| and |z| ≥ |c| > 2

η|cn−2| ,

where ξ, µ ∈ (0, 1] and r, c, a ∈ C. Define {zn} by the iteration in (5). Then, |zn| → ∞ as n→ ∞.

Proof. From (5), we consider

|w| = |(1− ξ)z + ξBa,r(z)|
= |(1− ξ)z + ξ(zn + az + r)|
≥ |(1− ξ)z + ξ(zn + az)| − ξ|r|
≥ |(1− ξ)z + ξ(zn + az)| − ξ|z|
≥ ξ|zn| − (1− ξ + ξ|a|)|z| − ξ|z|
= ξ|zn| − (1 + ξ|a|)|z|
= |z|(ξ|zn−1| − (1 + ξ|a|)).

Since ξ ∈ (0, 1] and |z| > |r|, then

|w| ≥ |z|(ξ|z||zn−2| − (1 + ξ|a|))
≥ |z|(ξ|z||rn−2| − (1 + |a|))

= |z|(1 + |a|)
(

ξ|z||rn−2|
1 + |a| − 1

)
.

From the hypothesis of our theorem, we get

|z| > 2(1 + |a|)
ξ|rn−2| ,

which implies that

ξ|z||rn−2|
1 + |a| − 1 > 1. (7)

Therefore,
|w| > |z|.
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Furthermore, set u = (1− η)w + ηNC(w), then

|u| = |(1− η)w + ηNc(w)|
= |(1− η)w + η(wn + c)|
≥ |(1− η)w + ηwn| − η|w|
≥ η|wn| − (1− η)|w| − η|w|
≥ |w|(η|w||cn−2| − 1).

In addition, since |w| ≥ |z|, thus

|u| ≥ |z|(η|z||cn−2| − 1).

Again, |z| > 2
η|cn−2| , so η|z|cn−2 − 1 > 1, hence,

|u| ≥ |z|.

Then,

|v| = |Ba,r(u)|
= |un + au + r|
≥ |un + au| − |r|
≥ |un + au| − |u|.

Since ξ ∈ (0, 1], then

|v| ≥ ξ|un| − |a||u| − |u|
= |u|(ξ|u||un−2| − (1 + |a|)). (8)

Since |u| > |z|, then

|v| ≥ |u|(ξ|u||un−2| − (1 + |a|))
> |z|(ξ|z||rn−2| − (1 + |a|))

≥ |z|
(

ξ|z||rn−2|
1 + |a| − 1

)
.

Hence (7), we get

|v| ≥ |z|.

More so, from (5), we obtain

|z1| = |Nc(v)|
= |vn + c|
≥ |vn| − |c|
≥ η|vn| − |v|
= |v|(η|v||cn−2| − 1)

≥ |z|(η|z||cn−2| − 1).

Since |z| > 2
η|cn−2| , which implies that η|z||cn−2| − 1 > 1, then there exists a real

number λ > 0 such that

2
η|cn−2| − 1 > 1 + λ.
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Therefore, |z1| > (1 + λ)|z|. Hence by induction, we have

|zn| > (1 + λ)n|z|.

This means that |zn| → ∞ as n→ ∞.

Next, we prove the escape criterion for (6).

Theorem 2. Let Nc(z) = zn + c and Ba,r(z) = zn + az + r. Suppose

|z| ≥ |r| > 2(1 + |a|)
η|rn−2| and |z| ≥ |c| > 2

ξ|cn−2| , (9)

where ξ, µ ∈ (0, 1] and r, c, a ∈ C. Define {zn} by the iteration in (5). Then, |zn| → ∞ as n→ ∞.

Proof. From (6), we get

|w| = |(1− ξ)z + ξNc(z)|
= |(1− ξ)z + ξ(zn + c)|
≥ |(1− ξ)z + ξzn| − ξ|c|
≥ |(1− ξ)z + ξzn| − ξ|z|
≥ ξ|zn| − |z|
= |z|(ξ|z||cn−2| − 1).

From (9), we obtain |z| > 2
ξ|z||cn−2| . Thus ξ|z||cn−2| − 1 > 1. Hence,

|w| ≥ |z|.

Similarly, put p = (1− η)w + ηBa,r(w). Then,

|p| = |(1− η)w + ηBa,r(w)|
= |(1− η)w + η(wn + aw + r)|
≥ |(1− η)w + η(wn + aw)| − η|r|
≥ |(1− η)w + η(wn + aw)| − η|w|
≥ η|wn| − (1− η + η|a|)|w| − η|w|
≥ η|wn| − (1 + η|a|)|w|.

Since η ∈ (0, 1], then

|p| ≥ η|wn| − (1 + η|a|)|w|
≥ η|wn| − (1 + |a|)|w|
= |w|(η|w||wn−2| − (1 + |a|)).

In addition, since |z| ≥ |r|, then

|p| ≥ |w|(η|w||wn−2| − (1 + |a|))
≥ |w|(η|w||rn−2| − (1 + |a|))

= |w|
(
|w|η|rn−2|

1 + |a| − 1
)

.

Hence by (9), we have

|w| > 2(1 + |a|)
η|rn−2| ,
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which implies that

|w|η|rn−2|
1 + |a| − 1 > 1. (10)

Therefore |p| > |w|. Consequently,

|v| = |Nc(p)|
= |pn + c|
≥ |pn| − |c|
≥ ξ|pn| − |p|
= |p|(ξ|p||pn−2| − 1)

≥ |z|(ξ|z||cn−2| − 1).

From the hypothesis of our theorem, we have |v| ≥ |z|. Hence,

|z1| = |Ba,r(v)|
= |vn + av + r|
≥ |vn + av| − |r|
≥ |vn + av| − |v|.

Similarly since η ∈ (0, 1], then

|z1| ≥ η|vn| − |a||v| − |v|
= |v|(η|v||vn−2| − (1 + |a|))
≥ |z|(η|z||rn−2| − (1 + |a|))

= |z|
(

η|z||rn−2|
1 + |a| − 1

)
.

From (10), we get

η|z||rn−2|
1 + |a| − 1 > 1.

This implies that there exists a real number ρ > 0 such that

2(1 + |a|)
η|rn−2| − 1 > 1 + ρ.

Therefore,

|z1| > (1 + ρ)|z|.

Then, by induction, we have

|zn| > (1 + ρ)n|z|.

This means that |zn| → ∞ as n→ ∞.

4. Polynomiographs Generation
4.1. Algorithms

To generate a polynomiograph, we selected a polynomial p, parameters ξn and ηn for
the mixed algorithms, and the maximum number of iterations M. Then, for each starting
point z0 in the area A ⊂ C (the area was discretized depending on the resolution of the
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graphics), we used the mixed iteration processes to iterate the root of the polynomial.
The iteration proceeded until the following convergence test was satisfied:

|zn+1 − zn| < ε,

where ε > 0 is the accuracy of computation, or the maximum number of iterations was
reached. Finally, when the iteration process stopped, we determined a color for the starting
point by mapping the number n of performed iterations to a color in the color map.
The algorithms for generating the polynomiographs were presented as follows.

4.2. Visualization of Polynomiographs

In this subsection, we present some polynomiographs, which were obtained by using
Algorithms 1 and 2. Furthermore, we compare the performance of the algorithms using the
time taken by each algorithm to generate a polynomiograph.

Algorithm 1: Mixed Algorithm 1 for generating polynomiography
Input: Choose

p ∈ C[Z] −− polynomial of degree ≥ 2,
z0 ∈ C −− starting point,

ξn ∈ (0, 1], ηn ∈ [0, 1] −− parameters of mixed iteration,
M −− maximum number of iteration,

A ∈ C −− area for the polynomiographs.

(11)

While: n ≤ M, compute
wn = (1− ξn)zn + ηnB(zn)

vn = B((1− ηn)wn + ηnN(wn))

zn+1 = N(vn)

(12)

Stopping criterion: |zn+1 − zn| < ε.
Output: color c of z0.

Algorithm 2: Mixed Algorithm 2 for generating polynomiography
Input: Choose

p ∈ C[Z] −− polynomial of degree ≥ 2,
z0 ∈ C −− starting point,

ξn ∈ (0, 1], ηn ∈ [0, 1] −− parameters of mixed iteration,
M −− maximum number of iteration,

A ∈ C −− area for the polynomiographs.

(13)

While: n ≤ M, compute
wn = (1− ξn)zn + ηnN(zn)

vn = N((1− ηn)wn + ηnB(wn))

zn+1 = B(vn)

(14)

Stopping criterion: |zn+1 − zn| < ε.
Output: color c of z0.

Example 1. In the first example, we used six various polynomials to generate different poly-
nomiographs with Algorithms 1 and 2. We chose ξn = 1

n+1 , ηn = 2n
5n2+8 , M = 30, ε = 0.0001 and
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A = [−2, 2]2. The control parameter was chosen arbitrarily such that ξn, ηn ∈ [0, 1]. In particular,
we considered the following polynomials:

Case I p(z) = z3 + 1;
Case II p(z) = 2z4 − 3z3 + z2 + 2;
Case III p(z) = z4 + 2z− 1;
Case IV p(z) = z8 − 1;
Case V p(z) = z12 + 2z− 3;
Case VI p(z) = z17 + 8z8 + 2z7 − z− 1.

The polynomiographs generated by Algorithm 1 are shown in Figure 1 and those generated by
Algorithm 2 are shown in Figure 2. More so, the graph of time of execution against the number of
examples is shown in Figure 3.

From Figures 1 and 2, we see that both algorithms were able to generate distinct poly-
nomiographs, which were artistically appealing. Figure 3 shows that the average time of execution
for Algorithm 1 was less than the average time of execution for Algorithm 2.

Figure 1. (Example 1) Visualization of polynomiographs by Algorithm 1: Case I (top left); Case II
(top Right); Case III (middle left); Case IV (middle right); Case V (bottom left) and Case VI
(bottom right).
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Figure 2. (Example 1) Visualization of polynomiographs by Algorithm 2: Case I (top left); Case II (top
right); Case III (middle left); Case IV (middle right); Case V (bottom left) and Case VI (bottom right).
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Figure 3. Graph of time of execution against the number of examples (in ascending order) for
Example 1.
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Example 2. For the second example, we used periodic control parameter ξn = sin(2n), ηn =
cos(n + 1) together with the following polynomials to generate our polynomiographs:

Case I: p(z) = z3 − 5z2 − 2z + 1;
Case II: p(z) = 10z5 − 2z4 + 3πz + 1;
Case III: p(z) = −5z6 + 7z3 + 2z2 + z− 10;
Case IV: p(z) = −50z8 + 5z7 + 6z6 + 7z5 + 3z3 − 7z2 + 4z− 10;
Case V: p(z) = z12 − 1;
Case VI: p(z) = 20z12 + 9z3 + 2z + 3.

Similar to Example 1, the mixed algorithms were used for generating distinct polyomiographs.
The polynomiographs generated by Algorithm 1 are shown in Figure 4 and the polynomiographs
generated by Algorithm 2 are shown in Figure 5.The time of execution against the number of cases
is shown in Figure 6. In this case, the average time of execution for Algorithm 2 was less than the
average time of execution for Algorithm 1.

Figure 4. (Example 2) Visualization of polynomiographs by Algorithm 1: Case I (top left); Case II (top
right); Case III (middle left); Case IV (middle right); Case V (bottom left) and Case VI (bottom right).
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Figure 5. (Example 2) Visualization of polynomiographs by Algorithm 2: Case I (top left); Case II (top
right); Case III (middle left); Case IV (middle right); Case V (bottom left) and Case VI (bottom right).
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Figure 6. Graph of time of execution against the number of examples (in ascending order) for
Example 2.
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5. Conclusions and Future Work

In this paper, we introduced two new mixed algorithms, which consisted of Newton’s
and Abbasbandy’s methods with a known iteration process in fixed point theory. We
investigated some properties of the algorithms while generating polynomiographs using
periodic parameters. The use of periodic parameters gave the obtained polynomiographs
more interesting patterns. More so, numerical results showed that the change in the
parameters did not have any significant effect on the convergence of the algorithms. These
results were new and interesting from an artistic point of view.

The results of this paper could be further modified by using other known methods for
approximating the roots of complex polynomials. In addition, the mixed algorithms could
be modified by using other iteration methods from fixed point theory. We could also define
different periodic functions for the parameters, as well as measure the comparison of the
mixed algorithms using the mean number of iterations and the convergence area index.
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