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1. Introduction

Subgroup separability is a strengthening of residual finiteness. It has many equivalent definitions; we will
use the following:

Definition 1.1. Let G be a group and H be a subgroup of G. Say H is separable in G if for every element
g ∈ G � H, there is a finite index subgroup K of G containing H and not g.

If every finitely generated subgroup of G is separable in G, say that G is subgroup separable.

This note is concerned with the following theorem, giving that subgroup separability is closed under
finite free products:

Main Theorem. Suppose G is a finite free product of subgroup separable groups. Then G is itself subgroup
separable.

This theorem is originally due (independently) to Romanovskii [9] and Burns [4], and there are
subsequent proofs due to Gitik [5] and Wilton [12].

The object of this paper is to provide a new proof of this theorem, generalizing the proof Stallings
gives in [11] that free groups are subgroup separable (a theorem originally due to Hall [7]; see also [3])
to graphs of groups with trivial edge groups.

The notions of immersions and coverings of graphs of groups, due to Bass, are rather more technical
than those used by Stallings for graphs. So we begin by covering the necessary definitions for graphs of
groups, then the notion of Kurosh rank for a subgroup of a free product (given an action on a tree). Given
a group acting on any set (or in particular a tree) we provide a way to calculate the index of a subgroup
from its action in Lemma 3.4. Finally in Section 4 we combine these results to show how to complete an
immersion of graphs of groups to a cover, and how this implies the Romanovskii–Burns theorem.

CONTACT Naomi Andrew N.G.Andrew@soton.ac.uk Mathematical Sciences, University of Southampton, Southampton, Building
54, SO17 1BJ, UK.
© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ ), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1080/00927872.2022.2149764
https://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2022.2149764&domain=pdf&date_stamp=2022-12-06
mailto:N.G.Andrew@soton.ac.uk
http://creativecommons.org/licenses/by/4.0/


2 N. ANDREW

2. Graphs of groups

We follow Bass’ exposition [2], although we change some notation. There are other sources covering the
same material, such as [10]. Unlike many expositions, we put the action on the right.

Graphs of groups are a combinatorial tool encoding group actions on trees: they consist of a graph
corresponding to the quotient together with edge and vertex groups corresponding to stabilizers.

Definition 2.1. A graph � consists of a set of vertices V� and a set of edges E�, together with two maps:
ι : E� → V�; and an involution E� → E�, e → e. We also define τ : E� → V�, τ(e) = ι(e). An
orientation of � is a choice of one edge from each pair {e, e}.

Definition 2.2. A Graph of Groups, G, consists of
• a connected graph �G ;
• for each vertex v of �G , a group Gv;
• for each edge e of �G , a group Ge such that Ge = Ge and there is a monomorphism αe : Ge → Gτ(e).

Where the graph of groups is clear, we may just refer to � for the underlying graph.
There are two main ways of defining the fundamental group and universal cover of a graph of groups:

by a maximal tree, and by considering loops at a base point. We follow Bass, and consider paths and loops
in the graph of groups.

Definition 2.3 (Paths). Let F(G) be the group generated by all the vertex groups and all the edges of
G, subject to relations eαe(g)e = αe(g) for g ∈ Ge. Note that taking g = 1 this gives that e−1 = e, as
expected.

Define a path (of length n) in F(G) to be a sequence g0e1g1 . . . engn, where each ei has ι(ei) = vi−1
and τ(ei) = vi for some vertices vi (so there is a path in the graph), and each gi ∈ Gvi . A loop is a path
where v0 = vn.

The set of all paths in F(G) forms a groupoid (sometimes called the fundamental groupoid of G).

Definition 2.4 (Reduced paths). A path is reduced if it contains no subpath of the form eαe(g)e (for
g ∈ Ge). A loop is cyclically reduced if, in addition to being reduced, en(gng0)e1 is not of the form
eαe(g)e.

Every path is equivalent (by the relations for F(G)) to a reduced path, and similarly every loop
is equivalent to both a reduced loop and a cyclically reduced loop. In general these reduced rep-
resentations are not unique, although all equivalent (cyclically) reduced paths (or loops) will have
the same edge structure. Note that a cyclically reduced loop might not be at the same vertex as the
original loop.

Definition 2.5. The fundamental group of G at a vertex v is the set of loops in F(G) at v, and is denoted
π1(G, v).

The isomorphism class of this group does not depend on the vertex chosen. (In fact, the two groups
obtained by choosing different base vertices are conjugate in the groupoid.)

We define the Bass–Serre tree (or universal cover) in the corresponding way:

Definition 2.6 (Bass–Serre Tree). Let T be the graph formed as follows: the vertex set consists of “cosets”
Gwp, where p is a path in F(G) from w to v. There is an edge(-pair) joining two vertices Gw1 p1 and Gw2 p2
if p1 = egw2 p2 or p2 = egw1 p1 (with gw ∈ Gw).
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This graph is a tree, and there is a right action of π1(G, v) on the vertex set, since this multiplication is
possible in the groupoid, and the paths will still start at v. This action preserves adjacency and is without
inversions, and so π1(G, v) acts on T.

There is another construction, that takes a group action on a tree and returns a graph of groups:

Definition 2.7 (Quotient graph of groups). Suppose a group G acts on a tree T. Form a graph of groups
whose underlying graph to be the quotient graph of the action, with edge and vertex groups are assigned
as follows: choose subtrees Tv ⊆ Te such that Tv contains exactly one representative of each vertex orbit
(that is, a lift of a maximal tree in the quotient), and Te exactly one representative of each edge orbit, in
such a way that at least one end of every edge is in Tv. We abuse notation a little by identifying vertices
in Tv and edges in Te with their orbits (that is, their image in the quotient graph). Set the vertex and
edge groups to be the stabilizers Gv and Ge. To define the monomorphisms, we choose elements gv ∈ G
which act to bring each vertex of Te into Tv: if v ∈ Tv then set gv = 1, and otherwise choose any element
with this property. Now we may set the monomorphisms αe to be the composition of the inclusion with
conjugation by our chosen elements (so s �→ g−1

τ(e)sgτ(e)).

In many cases, the full complexity of this definition is unnecessary: we can consider the stabilizer of
any orbit representative and assert that the injection is the composition of an inclusion and the relevant
conjugation.

Theorem 2.8. Up to isomorphism of the structures concerned, the processes of constructing the quotient
graph of groups, and of constructing the fundamental group and Bass–Serre tree are mutually inverse.

From the perspective of groups acting on trees, the isomorphisms required are an isomorphism
between the original group and the fundamental group, and an equivariant isometry between the original
tree and the Bass–Serre tree. From the perspective of graphs of groups, they are an isomorphism of
underlying graphs, together with isomorphisms of corresponding edge and vertex groups (and these
must respect the edge monomorphisms). This is the fundamental result linking actions on trees with
splittings of groups.

Morphisms, immersions and covers

If G is the fundamental group of a graph of groups, then any subgroup of G will also act on the Bass–
Serre tree, and this action will give a quotient graph of groups carrying that subgroup. In the case of
a free action (where G must be a free group), then we know that the quotient graph is a cover of the
original graph—in fact, there is a correspondence between covers and subgroups. This point of view has
been fruitful for investigating free groups, and is the main tool of Stallings’ paper [11]. The aim of Bass’
definitions of morphisms and covers (and immersions) is to recover the same correspondence for graphs
of groups.

There is a lot of structure, and so any definition of a morphism must feature a graph map and several
group homomorphisms. It turns out that slightly more data is needed as well, in the form of group
elements attached to each edge and vertex.

The definitions we give here are specialized to the case of free products—that is, when all Ge are trivial.
In general the elements δe defined below must satisfy conditions involving the edge group inclusions, but
these are automatically satisfied for any choices with trivial edge groups.

Definition 2.9. SupposeH andG are graphs of groups with all edge groups trivial. A morphism of graphs
of groups � : H → G consists of:
• a graph morphism ϕ : �H → �G ;
• a group homomorphism φv : Hv → Gϕ(v) for every vertex v ∈ �H;
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• an element λv in π1(G, ϕ(v)) for every vertex v of �H;
• an element δe ∈ Gϕ(ι(e)) for every edge of �H.

Such a morphism induces maps on the structures that can be defined from a graph of groups, as
follows:
• A homomorphism (of groups) F(H) → F(G) by s �→ λ−1

v φv(s)λv for s ∈ Hv and e �→
λ−1

ι(e)δ
−1
e eδeλτ(e).

• A homomorphism �P of fundamental groupoids, by restricting that map to the paths in F(H). Note
that, in this case, for each edge e, the extra elements introduced at e, ι(e) and τ(e) will cancel to leave
δe and δe which are elements of the vertex groups at either end.

• A homomorphism �v : π1(H, v) → π1(G, ϕ(v)) of the fundamental groups, by further restricting
the above map to loops at v.

• An equivariant graph map �̃ on the Bass–Serre trees, defined on vertices by Hwp �→ Gϕ(w)λw�P(p).
Additionally, we can define a “local map” at each edge of G. (Requiring edge stabilizers to be trivial

simplifies this considerably compared to Bass’ general definition.)
Given a vertex v and an edge with τ(e) = v, the lifts of e at a single vertex in the Bass–Serre tree

correspond to the elements of Gv, by identifying the edge [Gvp, Gwesp] with the element s.
Given a morphism � : H → G, let v be a vertex of �H and f be an edge of �G with τ(f ) = ϕ(v).

Define a map

�v/f :
∐

e∈ϕ−1(f ),τ(e)=v

Hv → Gϕ(v)

by

h �→ δeφv(h).

Alternatively, we can view �v/f as a map Hv × {e ∈ E(H) : ι(e) = v, ϕ(e) = f } → Gϕ(v) taking
(Hv, e) �→ δeφv(Hv). These maps are useful for “locally” understanding the image of the Bass–Serre tree
under a morphism: see Proposition 2.12.

Given two group actions on trees, and an equivariant map between the trees we can induce a graph
of groups morphism between the quotient graphs of groups. We continue to assume that the actions are
free on edges.

Proposition 2.10. Suppose S is an H-tree, T a G-tree, ψ : H → G is a homomorphism and f : S → T
is a ψ-invariant graph map. (That is, f sends vertices to vertices, edges to edges, preserves adjacency, and
vhf = (vf )(hψ).) Let H and G be the quotient graphs of groups corresponding to the actions of H on S and
G on T respectively. Then ψ , f induce a graph of groups morphism H → G, which (after the isomorphisms
required by Theorem 2.8) recovers ψ and f as maps of fundamental groups and Bass–Serre trees.

For details, and full proofs, see [2, Section 4]. Here we give sufficient details to explain how the induced
morphism is constructed. First, since f was ψ-equivariant it induces a graph map ϕ on the quotients
S/H → T/G: this is our map between the underlying graphs. Let Sv, Se, Tv, and Te be the subtrees of
S and T used in Definition 2.7, and let hu and gv be the elements given there which bring vertices of Se

and Te into Sv and Tv respectively.
For vertices v in Sv, choose a kv in G, so that f (v)kv is in Tv; similarly for an edge e let ke be an element

of G with f (e)ke in Te, and ke = ke. Since f is ψ-equivariant, ψ takes stabilizers to stabilizers, though not
necessarily of the preferred representative of each orbit. Define φv : Hv → Gf (v)kv by s �→ k−1

v ψ(s)kv.
To define a morphism also requires elements λv and δe. For an edge e in Se, let v = ι(e), x = f (v)ke

and y = vhv. Then let δe = g−1
x k−1

e ψ(hv)ky. To see that this is indeed an element of Gϕ(v), observe
that both ψ(hv)ky and kegx act to bring f (v) into Tv, and the vertex group Gϕ(v) (of G) is defined as the
stabilizer of the vertex of Tv in the same orbit as f (v).
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We will want to let λv = k−1
v ; however to be in the right group we must first apply the isomorphism

(of Theorem 2.8 from G → π1(G, ϕ(v)). (This can be thought of as “reading” the path between v and
vkv in T.)

There is usually some choice as to the subtrees used to construct the quotient graph of groups.
In particular, if we arrange for f (Sv) to (maximally) intersect Tv, we may choose several λv to be 1,
simplifying the morphism and allowing choices of basepoint (in H) so that the map on fundamental
groups is “as written”—meaning it does not involve a conjugation by a non-trivial λv.

We are most interested in studying subgroups H of a group G with an action on a tree T, so usually
ψ is an inclusion, and f is either the inclusion TH → T (sometimes a slightly larger H-invariant tree) or
the identity T → T. In this case, we should expect the induced morphism to have good properties, since
the map on trees makes no identifications. These good properties are characterized by the morphism
being a cover or immersion.

In the context of a graph (with no groups) a covering map corresponds to the usual topological
definition, and an immersion relaxes “locally bijective” to “locally injective.” This allows the universal
cover of the immersed graph to be strictly contained in the original universal cover.

The Bass–Serre tree gives the “universal cover” in this world: of course it is not a true cover, since
an edge may have many (even infinitely many) preimages at each vertex. Similarly, our covers and
immersions might have several preimages of an edge at a vertex:

Definition 2.11 ([2, Definition 2.6]). A morphism � : H → G is an immersion if

(1) each φv : Hv → Gφ(v) is injective and
(2) each �v/e is injective

And a covering if the second condition is replaced by

(2’) each �v/e is bijective.

Bass proves that these properties exactly characterize the situation of a subgroup acting on a subtree:

Proposition 2.12 ([2, Proposition 2.7]). A morphism � is an immersion if and only if �v0 (on fundamen-
tal groups), and �̃ (on Bass–Serre trees) are injective. Furthermore, it is a covering if and only if �v0 (on
fundamental groups) is injective and �̃ (on Bass–Serre trees) is bijective.

Viewing �v/f as a map Hv ×{e ∈ E(H) : ι(e) = v, ϕ(e) = f } → Gϕ(v) taking (Hv, e) �→ δeφv(Hv), we
have that it will be injective if and only if φv is, and the δe represent different right cosets of Gϕ(v)/φv(Hv).

One way to construct immersions is by taking a subgraph of subgroups: restrict to a subgraph of the
underlying graph, and take subgroups of each vertex group. Then letting � consist of the graph and
group inclusions, and all λv and δe trivial, this is an immersion.

3. Kurosh rank and finite index subgroups of free products

Recall Kurosh’s theorem about subgroups of free products:

Theorem 3.1 ([8]). Suppose G is a free product ∗ Gi (over some index set I) and H is a subgroup of G.
Then H ∼= (∗ Hj) ∗ F where each Hj is isomorphic to an intersection H ∩ Gki

i of H with a conjugate of
some Gi. Further, the set {Hj} is unique up to conjugation and reindexing, and the rank of F is uniquely
determined.

The idea of Kurosh rank is inspired by this theorem, and aims to measure the “complexity” of such a
subgroup in terms of its free factors. Here we take the approach of [1] of defining it with respect to an
action on a tree:
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Definition 3.2. For a group G and a G-tree T with trivial edge stabilizers, the Kurosh rank (relative to
T) of a subgroup H is

κT(H) = rank(H\T) + |{Hv ∈ H\T : Hv 	= 1}|
where rank(H\T) is the number of edges outside a maximal tree.

The reduced Kurosh rank of a subgroup is κT(H) = max{κT(H) − 1, 0}.

Note that rank(H\T) is the rank of the fundamental group of the graph H\T. In particular, in the case
of a free group acting freely on a tree, (reduced) Kurosh rank reduces to the usual definition of (reduced)
rank.

Proposition 3.3 ([1, Proposition 2.3]). Let H be a subgroup of G, and T a G-tree with trivial edge
stabilizers. Then

(1) The Kurosh rank with respect to any H-invariant subtree T′ of T, κT′(H) is equal to the Kurosh rank
with respect to the minimal H-invariant subtree TH, κTH (H).

(2) The Kurosh rank κT(H) is finite if and only if the quotient H\TH is finite.

If T is clear from context then we will often just write κ , without subscripts, even if we are reasoning
with some H-subtree.

By Grushko’s theorem [6], the Kurosh rank of a subgroup is bounded above by its true rank. (Each
vertex group adds 1 to the Kurosh rank while adding at least 1 to the true rank of the subgroup.)

We need to calculate the index of a subgroup from its covering graph of groups, for which we use the
following lemma:

Lemma 3.4. Suppose a group G acts transitively on a set X, and H is a subgroup of G. Let X0 be a set of
orbit representatives for the action of H on X. Then

[G : H] =
∑

x∈X0

[Gx : Hx].

In particular, [G : H] is finite if and only if X0 is finite as is every index [Gx : Hx].

Proof. We will exhibit a bijection (though it is very far from canonical) from
∐

x∈X0 Hx\Gx to H\G. To
define this, fix a base point x0 ∈ X, and for every element x of X a g[x] ∈ G such that g[x]x0 = x.

Now define a function sending a coset Hxg to the coset Hgg[x]. This is well defined in the sense that
if g1 and g2 are in the same Hx-coset of Gx, then (g1g[x])(g2g[x])−1 = g1g−1

2 which is an element of
Hx and in particular H. To see it is injective, suppose there are orbit representatives x, y and elements
g1 ∈ Gx, g2 ∈ Gy such that Hg1g[x] = Hg2g[y]. That is, g1g[x]g[y]−1g−1

2 is an element of H. But this
element moves y to x, and so these must represent the same orbit. So we may assume x = y, and this
reduces to considering g1g−1

2 . This is an element of H, and also of Gx, and therefore of Hx, so g1 and g2
represent the same Hx-coset.

To see surjectivity, we will write an arbitrary g ∈ G as a product hĝg[x], where ĝ ∈ Gx. To do this,
let y be the element gx0, and observe that we may write y as hx = hg[x]x0 for some orbit representative
x. The element hg[x] is in the same Gy-coset as g, so we may write g = g̃hg[x] with g̃ ∈ Gy. But recall
that Gy = hGxh−1, so we have that g̃ = hĝh−1, with ĝ an element of Gx. In particular, we have that
g = (hĝh−1)hg[x] = hĝg[x], as required.

Given any (not necessarily transitive) action, we can calculate the index of a subgroup by restricting
our attention to one orbit and using Lemma 3.4. In the context of an action on a tree, this would mean
looking at the orbit of a single edge or vertex and considering the edge or vertex groups that arise in the
covering graph of groups. In particular, for a free product, counting the occurrences of any edge in the
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same G-orbit will give the index. If the original action gave rise to a finite quotient graph, so will the
action of a finite index subgroup. In particular, if the original action was minimal, the minimal invariant
subtree for the subgroup will be the whole tree again.

This gives a criterion for a subgroup of a graph of groups to be finite index: this happens if and only
if the covering graph of groups has finite underlying graph, and every vertex (or indeed edge) group is
finite index in the relevant vertex group of the original graph of groups.

Note that this lemma provides a link between the index and Kurosh rank of a finite index subgroup
of a free product, though this is complicated somewhat by the possibility that a vertex has non-trivial
stabilizer under G but is trivially stabilized by the subgroup H. However, if we reduce to the case that
the vertex groups are infinite these complications disappear. (Restricting to normal subgroups provides
a different simplification.)

Corollary 3.5. Suppose a group G is expressed as a free product of infinite groups, and H is a finite index
subgroup of G. Then κ(H) = [G : H] κ(G).

Proof. Represent G as the fundamental group of a graph of groups G with trivial edge stabilizers, and
let H be the covering graph of groups corresponding to the action of H on the Bass–Serre tree of G.
Write κ(H) = |EH| − |{v ∈ VH : Hv = 1}|. If a vertex has trivial stabilizer under H, it will also have
trivial stabilizer under G, since otherwise Gv would be a finite subgroup. So use Lemma 3.4 to rewrite as
follows:

κ(H) = |EH| − |{v ∈ VH : Hv = 1}|
= [G : H]|EG| − [G : H]|{v ∈ VG : Gv = 1}|
= [G : H] κ(G).

For a free group acting either freely or as a free product of infinite cyclic groups, the Kurosh rank and
the true rank agree, so this recovers Schreier’s formula for free groups:

rank(H) − 1 = [F : H](rank(F) − 1).

4. Subgroup separability for free products

In this section we provide the Bass–Serre theoretic proof of the theorem that free products of subgroup
separable groups are themselves subgroup separable. The proof is in three steps, dealing in turn with
“completing” a graph of groups immersion, enlarging the vertex groups, and then doing this in general
for all finitely generated subgroups of a free product.

Stallings’ proof (in the free group case) begins with a (finite) labeled graph where the labeling provides
an immersion to a rose. The lifts of any edge in a cover would provide a bijection from the vertex set
to itself, and the lifts present in the immersion give a partial bijection. Thus any way of completing the
partial bijection to a full bijection is admissible in a cover. (There are only finitely many options, and all
of them will work.) The condition on a cover can be checked one edge of the rose at a time, so we may
do this separately to each edge and the final graph will be a covering graph.

There are several obstacles in extending this to graphs of groups. First, the graph (of groups) we are
covering may have more than one vertex. In the free group case this is easily surmountable, although
a little care is needed: we must first make sure that all vertices have equal numbers of lifts. We can
achieve this by adding isolated vertices to the immersed graph, to take each vertex up to the maximum.
Notice that after adding edges (which now correspond to bijections between different kinds of vertex,
in general), every vertex will be connected to at least one vertex of every kind. Since at least one vertex
had no extra preimages added, all of these are connected. Thus the constructed graph will have only one
component.
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Another obstacle is that the notion of “local injectivity” is different, and we will need to assign δe
values to any new edges in a way which preserves the immersion. Finally, we will have to alter the vertex
groups so that all of them are finite index, otherwise (by Lemma 3.4) the subgroup cannot be.

We deal in turn with the obstacles presented in generalizing Stallings’ proof. First, Theorem 4.1 gives
a way to complete an immersion to a cover when the vertex groups have finite index image in the target
graph of groups; then Theorem 4.2 gives sufficient conditions for enlarging the vertex groups so this
condition is met. Finally we prove the Romanovskii–Burns theorem by combining these to produce
a covering graph of groups containing a given finite index subgroup but excluding any given element
outside it.

Theorem 4.1. Suppose G is a free product, expressed as the fundamental group of a graph of groupsG where
every edge group is trivial. Suppose H is a subgroup of G, corresponding to an immersion � : H → G,
where �H is finite and each Hv is mapped to a finite index subgroup of Gϕ(v).

Then there is a finite index subgroup M of G containing H as a free factor.

Proof. By Lemma 3.4, in a cover the index of the subgroup can be calculated by looking at the preimages
of any edge or vertex and their stabilizers. So we need to ensure these are equal. To this end, for each
vertex u of G calculate

du =
∑

v∈ϕ−1(u)

[Gu : Hv].

Each du is finite: the sum is over finitely many vertices (since H is finite), and each [Gu : Hv] is finite by
assumption. Since G is also finite, there is a maximum among the du, say d. This will be the degree of the
cover. For each vertex in G add d − du isolated vertices to H, declaring them to be in the pre-image of
u, and assigning each the full subgroup Gu. (Recalculating du after doing this, all are equal to d.)

Though it is disconnected, we can still extend � to the new vertices: each v is in the pre-image of some
vertex u of G, and set each new φv to be the identity map. We now need to add edges, further extending
the morphism � by assigning ϕ(e) and δe as we do.

We have the local maps on cosets, �v/f and we may extend these to the new vertices (note that, where
there are no edges in the pre-image of f at v, this is a map from the empty set). These maps are all
injections since we began with an immersion and maps out of the empty set must be injective. Our goal
is that they should all be bijections: we will need to add more edges, choosing values for δe to achieve
this.

For each edge f of G, there should be d pre-images in H. Consider a vertex v of H, and the pre-images
e of f at v. The values δe form a partial system of coset representatives for Gϕ(v)/φv(Hv), since �v/f is
injective.

Suppose f has initial vertex u and terminal vertex y. The edges in the pre-image of f provide a partial
bijection

∐

v∈ϕ−1(u)

Gϕ(v)/φv(Hv) →
∐

x∈ϕ−1(y)

Gϕ(x)/φx(Hx),

by
φι(e)(Hι(e))δe �→ φτ(e)(Hτ(e))δe.

Both these disjoint unions have cardinality d, so this can be completed to a bijection. Add new edges
(in the pre-image of f ) and coset representatives δe and δe according to this bijection. (The choice of
bijection will usually change the subgroup we construct, but not its index.)

LetM be the graph of groups constructed by repeating this for each edge inG, and � be the extension
of the original morphism to all of M. This process added finitely many edges to H. Every connected
component of M contains at least one pre-image of each vertex of G, and since at least one vertex of G
had no pre-images added, and this means the underlying graph of M will be connected. Also, each �v/f
is now bijective, so the morphism � has been extended to a cover.
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Picking a base point for M (in the pre-image of a chosen base point for G) we recover a subgroup M
of G, which has index d by Lemma 3.4.

Just as in the free group case, restricting M to the edges and vertices of H recovers H: so we may
view H as a free factor of M = π1(M).

For a general subgroup H of G, the vertex groups of H are not finite index subgroups of the
corresponding vertex groups of G so the process used proving Theorem 4.1 will not terminate—in
fact, any cover must have infinite degree by Lemma 3.4, so there will be infinitely many edges in each
pre-image.

So to say anything for general H, we must first replace each vertex group Hv with a group mapping to
a finite index subgroup of Gϕ(v). Done carelessly, this enlarging of vertex groups is likely to cause some δe
values to represent the same coset, and we will no longer have an immersion. So care—and separability
assumptions—will be needed as we do this.

Theorem 4.2. Suppose G is a free product, expressed as the fundamental group of a graph of groupsG where
every edge group is trivial. Suppose H is a subgroup of G, corresponding to an immersion � : H → G with
�H finite. If each φv(Hv) is separable in Gϕ(v), then there is a finite index subgroup K of G corresponding
to a cover K that contains H as a subgraph of subgroups.

Proof. Our first goal is to alter H and �, so each vertex group maps to a finite index subgroup of the
relevant Gv, while keeping � an immersion. In order to achieve this, we must ensure that the elements
δe continue to represent different cosets Gϕ(v)/φv(Hv).

For each vertex v of H and edge f with ι(f ) = ϕ(v), let Xv/f be the finite set of elements δ−1
ei δej where

ei and ej are distinct edges with ι(ei) = ι(ej) = v and ϕ(ei) = ϕ(ej) = f . Let Xv be the disjoint union of
the Xv/f over edges f at ϕ(v).

Since each φv(Hv) was assumed separable in Gϕ(v), there is a finite index subgroup of Gϕ(v) that
contains φv(Hv) but no elements of Xv. Let Kv be isomorphic to this subgroup, contain Hv, and extend
φv to Kv so its image is this subgroup.

This remains an immersion: the vertex maps are still injective, so we have to check the local coset
maps �v/f . This amounts to checking that for each edge f at ϕ(v) the elements δe with e in the preimage
of f represent different right cosets of φv(Kv), or equivalently that δ−1

ei δej are outside φv(Kv) for all pairs
ei, ej of edges.

But this is exactly what we ensured by requiring φv(Kv) to exclude Xv, so this condition is satisfied,
and � remains an immersion.

Now we are able to apply Theorem 4.1: we have an immersion where the vertex groups correspond
to finite index subgroups. This immersion can be completed to a cover corresponding to a finite index
subgroup. Since the procedure to do this does not identify any edges or vertices, we can recover H (and
the original immersion) by restricting to a subgraph and subgroups of the vertex groups.

Remark 4.3. Note that the hypothesis that each vertex group embedding is separable was stronger than
needed for the conclusion: all that was used was the fact that each φv(Hv) was contained in a finite
index subgroup excluding Xv in order to keep the cosets separate. This condition is necessary as well as
sufficient, since otherwise there is no way to enlarge Hv to a finite index subgroup where the δei represent
different cosets.

Now we have the tools to prove the main theorem,

Main Theorem. Suppose G is a finite free product of subgroup separable groups. Then G is itself subgroup
separable.

Proof. The proof is essentially an application of Theorem 4.2 (and therefore also of Theorem 4.1), but a
little care is needed in the set up to be sure that we can exclude any element.
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Let G be a finite graph of groups (with trivial edge groups) representing G as π1(G, v0), and T be the
Bass–Serre tree for G. Let v be the vertex in T represented by Gv0 —the “preferred lift” of v0 to T.

Let H be any finitely generated subgroup of G and let g be any element of G outside of H. Define a
subtree T1 of T as the smallest subtree which
• is H-invariant (that is, contains TH);
• contains v;
• contains vg.

This subtree is the union of TH and the orbits of paths from v and vg to TH ; since these paths are finite
the quotient T1/H is again finite.

Let u0 be the vertex of H corresponding to the H-orbit of v: this will be our basepoint for H. Let H be
the quotient graph of groups obtained from the action of H on T1, choosing the subtree Sv to contain v.

The group and graph inclusions H → G and T1 → T induce an immersion � : H → G, as described
in Proposition 2.10. This realizes the embedding of H into G as �u0 : π1(H, u0) → π1(G, v0); careful
choice of subtrees avoids any conjuations appearing in this map, so a cyclically reduced loop at u0 will
be mapped to a cyclically reduced loop at v0.

Since H is finitely generated, it also has finite Kurosh rank as this is bounded above by the true rank.
So Proposition 3.3 implies that H is a finite graph of groups, since in constructing it we used a tree which
differed from TH only by the addition of the orbits of two finite paths. Notice that since the Kurosh rank
must not change when we add these paths, there are no non-trivial vertex stabilizers: the “interest” will
be captured by the elements δe of the immersion �.

The path p from vg to v in T and T1 is the lift of g as a loop in G, and quotients to a path beginning
at u0 in H. Since g is not an element of H, either this path is not a loop, or it is a loop but the final group
element s at Gv0 is not the image of an element in Hu0 .

In the first case, we can apply Theorem 4.2 directly. Since G was a free product of subgroup separable
groups, all the φv(Hv) are separable in Gϕ(v). Since no identifications are made between edges or vertices
in this process, the path p will still not be a loop in K, and therefore π1(K, u0) will not be an element
of K.

If, on the other hand, p is a loop, we must slightly adapt the proof. When the sets Xv are constructed
(containing the elements that must be excluded from each Kv), we simply add s to Xu0 . Then s will still
not be the image of an element of Ku0 , so g is not an element of K.
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