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Abstract
Let 𝐴𝐿 be the right-angled Artin group associated with
a finite flag complex 𝐿. We show that the amenable
category of 𝐴𝐿 equals the virtual cohomological dimen-
sion of the right-angled Coxeter group 𝑊𝐿. In par-
ticular, right-angled Artin groups satisfy a question
of Capovilla–Löh–Moraschini proposing an inequality
between the amenable category and Farber’s topologi-
cal complexity.
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1 INTRODUCTION

A classical approach to study a topological space𝑋 is to cover it by open subsets𝑈0,… ,𝑈𝑛 that are
simpler or small in an appropriate sense and to analyse how these overlap. Theminimal possible 𝑛
for which such a cover exists yields ameasure of complexity of the space𝑋.When the subsets (𝑈𝑖)𝑖
are required to be contractible in𝑋, we obtain the Lusternik–Schnirelmann category (LS-category
for short) LS−cat(𝑋) which is a well-studied homotopy invariant originating from critical point
theory [6]. We will relax the contractibility assumption and instead require the subsets (𝑈𝑖)𝑖 to be
amenable in 𝑋, in the sense that the group

im
(
𝜋1(𝑈𝑖 ↪ 𝑋, 𝑥)

)
is amenable for every basepoint 𝑥 ∈ 𝑈𝑖 . Then the amenable category cat (𝑋) of 𝑋 is the mini-
mal 𝑛 ∈ ℕ⩾0 for which there exists an open cover 𝑋 =

⋃𝑛
𝑖=0 𝑈𝑖 by 𝑛 + 1many amenable subsets.

Clearly, we have cat (𝑋) ⩽ LS−cat(𝑋).
Amenable groups (such as finite or abelian groups) and hence amenable subsets can be con-

sidered small for many purposes in geometry, topology, and dynamics. Therefore, the amenable
category is a meaningful threshold, especially for aspherical spaces. For instance, there are

© 2022 The Authors. Bulletin of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.

Bull. London Math. Soc. 2022;1–12. wileyonlinelibrary.com/journal/blms 1

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12771 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

mailto:kevin.li@mathematik.penalty -@M uni-regensburg.de
mailto:kevin.li@mathematik.penalty -@M uni-regensburg.de
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12771&domain=pdf&date_stamp=2022-12-25


2 LI

vanishing results in all degrees larger than the amenable category for the comparison map
from bounded cohomology to singular cohomology [20, 22], for 𝓁2-Betti numbers [32], and for
homology growth [21, 33]. The amenable category was systematically studied as an invariant of
3-manifolds in [15, 16] and for arbitrary spaces recently in [4, 23].
The focus of this note is on the amenable category of aspherical spaces. Since the amenable cat-

egory is a homotopy invariant, it yields an invariant of discrete groups 𝐺 by setting cat (𝐺) ≔

cat (𝐵𝐺). Here,𝐵𝐺 is anEilenberg–MacLane space. By the classicalwork of [11, 34, 35], the LS-
categoryLS−cat(𝐵𝐺) coincideswith the cohomological dimension cd(𝐺). In particular, we always
have cat (𝐺) ⩽ cd(𝐺). The amenable category is difficult to compute in general, the usual
strategy being to exhibit an explicit open cover by amenable subsets and to prove its minimality
using (co)homological obstructions. The precise value of cat (𝐺) is known, for example, for
the following classes of groups:

∙ cat (𝐺) = 0 if and only if 𝐺 is amenable;
∙ cat (𝐺) = 1 if and only if 𝐺 is a non-amenable fundamental group of a graph of amenable
groups [4, Corollary 5.4];

∙ cat (𝐺) = cd(𝐺) if 𝐺 is torsion-free non-elementary hyperbolic [27] [4, Example 7.8].

The main result of the present note is a computation of the amenable category for all right-
angled Artin groups. These form an important class of groups in geometric group theory,
interpolating between free groups and free abelian groups. Let 𝐿 be a finite flag complex (i.e.,
a simplicial complex in which every clique spans a simplex) with vertex set 𝑉. The right-angled
Artin group𝐴𝐿 has as generators vertices 𝑣 ∈ 𝑉, subject to the relation that 𝑣1 and 𝑣2 commute if
and only if they are connected by an edge in 𝐿. The right-angled Coxeter group𝑊𝐿 is the quotient
of𝐴𝐿 obtained by adding the relations that each generator 𝑣 ∈ 𝑉 is of order 2. Since𝑊𝐿 is virtually
torsion-free, its virtual cohomological dimension vcd(𝑊𝐿) is well-defined as the cohomological
dimension of a finite index torsion-free subgroup.

Theorem 1.1 (Corollary 3.6). Let 𝐴𝐿 be the right-angled Artin group associated with a finite flag
complex 𝐿. Then we have

cat (𝐴𝐿) = vcd(𝑊𝐿) .

Theorem 1.1 provides many examples of groups for which the amenable category is not
extremal, in the sense that 1 < cat (𝐺) < cd(𝐺). Furthermore, it follows from Theorem 1.1
and [9] that there are right-angled Artin groups 𝐴𝐿1

and 𝐴𝐿2
satisfying cat (𝐴𝐿1

× 𝐴𝐿2
) <

cat (𝐴𝐿1
) + cat (𝐴𝐿2

).
Another invariant of a similar spirit is Farber’s topological complexity 𝖳𝖢which ismotivated by

the motion planning problem in robotics [12]. In [4, Question 8.1] it is asked for which topological
spaces 𝑋 the following inequality holds:

cat (𝑋 × 𝑋) ⩽ 𝖳𝖢(𝑋) .

Examples of spaces and groups satisfying this inequality can be found in [4, Section 8], and no
counter-example seems to be known at the time of writing. We show that all right-angled Artin
groups are positive examples.

Theorem 1.2 (Proposition 3.7). Let 𝐴𝐿 be the right-angled Artin group associated with a finite flag
complex 𝐿. Then we have cat (𝐴𝐿 × 𝐴𝐿) ⩽ 𝖳𝖢(𝐴𝐿).
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AMENABLE COVERS OF RIGHT-ANGLED ARTIN GROUPS 3

We also obtain a complete characterisation of right-angled Artin groups with (non-)vanishing
minimal volume entropy (Theorem 3.9), resolving the cases that were not covered by recent work
in [3, 21].
Our proofs rely on combining upper and lower bounds (Lemma 2.2) with existing results

on generalised LS-category, classifying spaces for families of subgroups, and homology growth
from [4, 21, 23, 28, 30, 33].

2 PRELIMINARIES

2.1 Generalised LS-category

Let 𝐺 be a group. A family  of subgroups of 𝐺 is a non-empty set of subgroups of 𝐺 that is closed
under conjugation and under taking subgroups. Important examples are the families   consist-
ing only of the trivial subgroup,  consisting of all finite subgroups, and consisting of
all amenable subgroups. For a set of subgroups of 𝐺, the family ⟨⟩ generated by is defined
as the smallest family containing. For a family and a subgroup𝐻 of𝐺, we can form the family
 |𝐻 = {𝐹 ⊂ 𝐻 ∣ 𝐹 ∈  } of subgroups of𝐻.

Definition 2.1 [4, Definition 2.16]. Let 𝑋 be a path-connected space with fundamental group 𝐺
and let  be a family of subgroups of 𝐺. A (not necessarily path-connected) open subset𝑈 of 𝑋 is
an  -set if

im
(
𝜋1(𝑈 ↪ 𝑋, 𝑥)

)
∈ 

for all 𝑥 ∈ 𝑈. The generalised LS-category with respect to  (also  -category) cat (𝑋) is the mini-
mal 𝑛 ∈ ℕ⩾0 for which there exists an open cover 𝑋 =

⋃𝑛
𝑖=0 𝑈𝑖 by 𝑛 + 1 many  -sets. If no such

finite cover of 𝑋 exists, we set cat (𝑋) = ∞.
The  -category of the group 𝐺 is defined as cat (𝐺) ≔ cat (𝐵𝐺).

We point out that we use a different normalisation than in [4], our value for cat (𝑋) is smaller
by 1. In the literature, similar invariants are sometimes defined in terms of the multiplicity
of open covers rather than the cardinality. However, for CW-complexes there is no difference
[4, Remark 3.13]. Fromhere onwards, wewill study the generalised LS-category for groups, that is,
for aspherical spaces (even though some results holdmore generally for not necessarily aspherical
spaces).
It is a classical result [11, 34, 35] that the  -category cat (𝐺) coincides with the coho-

mological dimension cd(𝐺). The following upper and lower bounds for the  -category are
immediate.

Lemma 2.2. Let 𝐺 be a group and let  be a family of subgroups of 𝐺.

(i) For a subfamily  ⊂  , we have cat (𝐺) ⩽ cat (𝐺).
In particular, cat (𝐺) ⩽ cd(𝐺);

(ii) For a subgroup𝐻 ⊂ 𝐺, we have cat |𝐻 (𝐻) ⩽ cat (𝐺).
In particular, if  |𝐻 =   then cd(𝐻) ⩽ cat (𝐺).
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4 LI

Our main object of interest is the -category (also amenable category) cat (𝐺). A
lower bound for the amenable category is given by homology growth. Recall that a group 𝐺 is
of type 𝐹 if there exists a finite model for 𝐵𝐺. A group 𝐺 is residually finite if it admits a residual
chain (Γ𝑖)𝑖∈ℕ, that is, a nested sequence 𝐺 = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ … such that each Γ𝑖 is a finite index
normal subgroup of 𝐺 and

⋂
𝑖∈ℕ Γ𝑖 = {1}. We denote by 𝑏𝑘(Γ𝑖; 𝔽𝑝) the 𝑘-th Betti number of 𝐵Γ𝑖

with coefficients in 𝔽𝑝.

Theorem 2.3 [21, Theorem 3.2; 33, Theorem 1.6]. Let 𝐺 be a residually finite group of type 𝐹 and
let (Γ𝑖)𝑖 be a residual chain. Then we have

lim
𝑖→∞

𝑏𝑘(Γ𝑖; 𝔽𝑝)

[𝐺 ∶ Γ𝑖]
= 0

for all 𝑘 > cat (𝐺) and all primes 𝑝.

2.2 Classifying spaces for families of subgroups

Let 𝐺 be a group and let  be a family of subgroups of 𝐺. A classifying space 𝐸𝐺 for 𝐺 with
respect to the family is a terminal object in the𝐺-homotopy category of𝐺-CW-complexeswhose
isotropy groups lie in [26]. For the trivial family  , a model for 𝐸 𝐺 is given by the universal
covering space 𝐸𝐺 of 𝐵𝐺. In particular, for every family  there is a unique (up to 𝐺-homotopy)
𝐺-map 𝐸𝐺 → 𝐸𝐺.
The  -category of groups can be characterised via classifying spaces for families.

Theorem 2.4 [4, Proposition 7.5]. Let 𝐺 be a group and let  be a family of subgroups of 𝐺. Then
cat (𝐺) equals the infimum of 𝑛 ∈ ℕ⩾0 for which the canonical 𝐺-map 𝐸𝐺 → 𝐸𝐺 is 𝐺-homotopic
to a 𝐺-map with values in the 𝑛-skeleton of 𝐸𝐺.

The usual notions of geometric and cohomological dimension of groups admit generalisations
to the setting of families. The geometric dimension gd (𝐺) of 𝐺 with respect to  is the smallest
possible dimension of a model for 𝐸𝐺. The cohomological dimension cd (𝐺) of 𝐺 with respect
to  is the supremum of degrees in which the 𝐺-equivariant Bredon cohomology of 𝐸𝐺 is non-
trivial for some Bredon coefficient module [2]. Clearly, we have cd (𝐺) ⩽ gd (𝐺).
Conversely, the inequality gd (𝐺) ⩽ max{cd (𝐺), 3} holds for every family  [25]. It is conjec-

tured that cd (𝐺) = 1 implies gd (𝐺) = 1 for every family  , see [18] for a recent account. While
the conjecture is open in general, it is known to hold, for example, for the family  [10].

Corollary 2.5. Let 𝐺 be a group and let  be a family of subgroups of 𝐺. Then we have
cat (𝐺) ⩽ gd (𝐺).
Moreover, if cd (𝐺) = 1 implies gd (𝐺) = 1, then cat (𝐺) ⩽ cd (𝐺).

Proof. The inequality cat (𝐺) ⩽ gd (𝐺) is an immediate consequence of Theorem 2.4. It remains
to treat the case that cd (𝐺) = 2 and gd (𝐺) = 3. We follow a standard argument using equivari-
ant obstruction theory (see e.g., [18, Theorem 3.6]). Let 𝐸𝐺 be a three-dimensional model and
consider the identity map id2 ∶ (𝐸𝐺)2 → (𝐸𝐺)2 on its 2-skeleton. The obstruction to extending
the restriction id2 |(𝐸𝐺)1 to a 𝐺-map 𝐸𝐺 → (𝐸𝐺)2 lies in the Bredon cohomology of 𝐸𝐺 in
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AMENABLE COVERS OF RIGHT-ANGLED ARTIN GROUPS 5

degree 3. This cohomology group is trivial by the assumption that cd (𝐺) = 2 and hence there
exists a 𝐺-map 𝜑∶ 𝐸𝐺 → (𝐸𝐺)2. By considering the composition

𝐸𝐺 → 𝐸𝐺
𝜑
'→ (𝐸𝐺)2 ↪ 𝐸𝐺 ,

it follows from Theorem 2.4 that cat (𝐺) ⩽ 2. □

2.3 Graph products of groups

Let 𝐿 be a flag complex, which shall always mean a finite flag complex, with vertex set 𝑉. Let 𝐺
be a group and for all 𝑣 ∈ 𝑉 let 𝐺𝑣 = 𝐺. The graph product 𝐺𝐿 [19] is the group

𝐺𝐿 =∗𝑣∈𝑉 𝐺𝑣∕⟨[𝐺𝑣1
, 𝐺𝑣2

] for 𝑣1, 𝑣2 ∈ 𝑉 spanning an edge in 𝐿⟩ .
The right-angled Artin group (RAAG for short) associated with 𝐿 is 𝐴𝐿 = ℤ𝐿. The right-angled
Coxeter group (RACG for short) associated with 𝐿 is𝑊𝐿 = (ℤ∕2ℤ)𝐿.

Remark 2.6. The results of this note hold, when suitably modified, also for graph products with
varying vertex groups (𝐺𝑣)𝑣∈𝑉 . However, we restrict ourselves to the case of identical vertex groups
for ease of notation.

For every full subcomplex 𝐾 of 𝐿, the graph product 𝐺𝐿 retracts onto 𝐺𝐾 by mapping the
factors (𝐺𝑣)𝑣 corresponding to vertices in 𝐿 ⧵ 𝐾 to the trivial element in 𝐺𝐾 .

Remark 2.7. Suppose that the group 𝐺 is abelian. Then the obvious projection 𝑞∶ 𝐺𝐿 →
∏

𝑣∈𝑉 𝐺𝑣

is the abelianisation homomorphism and the kernel of 𝑞 is the commutator subgroup 𝐺′
𝐿
. More-

over, since the restriction of 𝑞 to 𝐺𝜎 is injective for every simplex 𝜎 ⊂ 𝐿, the intersection of 𝐺′
𝐿

with conjugates of 𝐺𝜎 in 𝐺𝐿 is trivial.

By functoriality of the graph product construction (−)𝐿 in the group variable, the projection
ℤ → ℤ∕2ℤ induces a map 𝑝∶ 𝐴𝐿 → 𝑊𝐿 which restricts to the commutator subgroups 𝑝′ ∶ 𝐴′

𝐿
→

𝑊′
𝐿
. Since 𝑊′

𝐿
⊂ 𝑊𝐿 is of finite index and torsion-free, the virtual cohomological dimension

vcd(𝑊𝐿) equals cd(𝑊′
𝐿
).

Lemma 2.8. Let 𝐿 be a flag complex. The group homomorphism 𝑝′ ∶ 𝐴′
𝐿
→ 𝑊′

𝐿
admits a right-

inverse. In particular, vcd(𝑊𝐿) ⩽ cd(𝐴′
𝐿
).

Proof. We argue on the level of topological spaces using the polyhedral product construction
and its functoriality (see e.g., [29]). Models for 𝐵(𝐴′

𝐿
) and 𝐵(𝑊′

𝐿
) are given by the polyhedral

products (ℝ, ℤ)𝐿 and ([0, 1], {0, 1})𝐿, respectively. Consider the map

𝑓∶ (ℝ, ℤ) → ([0, 1], {0, 1}) , 𝑥 ↦

{
𝑥 − ⌊𝑥⌋ if ⌊𝑥⌋ is even;
1 − (𝑥 − ⌊𝑥⌋) if ⌊𝑥⌋ is odd
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6 LI

that “folds” the real line onto the unit interval. The map 𝑓 induces a map on polyhedral prod-
ucts and on their fundamental groups the map 𝑝′ ∶ 𝐴′

𝐿
→ 𝑊′

𝐿
. A right-inverse to 𝑓 is given

by the inclusion ([0, 1], {0, 1}) ↪ (ℝ,ℤ). It follows that 𝑊′
𝐿
is a retract of 𝐴′

𝐿
and in particular

cd(𝑊′
𝐿
) ⩽ cd(𝐴′

𝐿
). □

We recall an explicit formula for the virtual cohomological dimension of RACGs.

Theorem 2.9 [7, Corollary 8.5.5]. Let𝑊𝐿 be the right-angled Coxeter group associated with a flag
complex 𝐿. Then we have

vcd(𝑊𝐿) = max{𝑛 ∣ �̃�𝑛−1(𝐿 ⧵ 𝜎; ℤ) ≠ 0 for some simplex 𝜎 ⊂ 𝐿 or 𝜎 = ∅} ,

where �̃�∗ denotes reduced cohomology.

The virtual cohomological dimension of RACGs will play a key role due to its interpretation as
the cohomological dimension of graph products with respect to the following family.
Let 𝐺𝐿 be a graph product and let ⟨⟩ be the family of subgroups of 𝐺𝐿 that is generated by

the set of spherical subgroups

 = {𝐺𝜎 ⊂ 𝐺𝐿 ∣ 𝜎 ⊂ 𝐿 simplex} .

In the case of RACGs, we have ⟨⟩ =  . In the case of RAAGs, the family ⟨⟩ consists of
free abelian groups and in particular, ⟨⟩ ⊂  .

Theorem 2.10 [30, Corollaries 8.3 and 1.10]. Let 𝐺𝐿 be the graph product associated with a non-
trivial group 𝐺 and a flag complex 𝐿. Then we have cd⟨⟩(𝐺𝐿) = vcd(𝑊𝐿).
Moreover, cd⟨⟩(𝐺𝐿) = 1 implies gd⟨⟩(𝐺𝐿) = 1.

In view of Theorem 2.3, we recall a computation of homology growth for graph products (using
that residually finite amenable groups of type𝐹 are 𝔽𝑝-𝓁2-acyclic by Theorem2.3). Graph products
of residually finite groups are residually finite [19].

Theorem 2.11 [28, Theorem 5.1]. Let 𝐺 be a non-trivial residually finite amenable group of type 𝐹
and let 𝐺𝐿 be the graph product associated with a flag complex 𝐿. Then for any residual chain (Γ𝑖)𝑖
in 𝐺𝐿, we have

lim
𝑖→∞

𝑏𝑘(Γ𝑖; 𝔽𝑝)

[𝐺𝐿 ∶ Γ𝑖]
= 𝑏𝑘−1(𝐿; 𝔽𝑝)

for all 𝑘 > 0 and all primes 𝑝. Here, 𝑏𝑘−1(𝐿; 𝔽𝑝) denotes the reduced Betti number of 𝐿 with
coefficients in 𝔽𝑝 .

Our formulations of Theorems 2.10 and 2.11 for graph products are special cases of the
results in [28, 30] which apply to the more general context of group actions with a strict
fundamental domain.
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AMENABLE COVERS OF RIGHT-ANGLED ARTIN GROUPS 7

3 GENERALISED LS-CATEGORY OF RIGHT-ANGLED ARTIN
GROUPS

We investigate the generalised LS-category of RAAGs with respect to several interesting families.
Throughout, let 𝐿 be a finite flag complex. The  -category cat (𝐴𝐿) equals the cohomological
dimension cd(𝐴𝐿)which is dim(𝐿) + 1. The following lemmaprovides an upper bound for various
families and will be used frequently.

Lemma 3.1. Let 𝐺𝐿 be the graph product associated with a group 𝐺 and a flag complex 𝐿. Let  be
a family of subgroups of 𝐺𝐿 satisfying ⟨⟩ ⊂  . Then we have cat (𝐺𝐿) ⩽ vcd(𝑊𝐿).

Proof. Combining Lemma 2.2 (i), Corollary 2.5, and Theorem 2.10 yields the claim. □

3.1 Spherical category

We compute the generalised LS-category with respect to the family ⟨⟩ for RAAGs and RACGs.
Proposition 3.2 (Spherical category of RAAGs). Let𝐴𝐿 be the right-angled Artin group associated
with a flag complex 𝐿. Then we have cat⟨⟩(𝐴𝐿) = vcd(𝑊𝐿).
In particular, cd(𝐴′

𝐿
) = vcd(𝑊𝐿).

Proof. Lemma 3.1 provides the upper bound cat⟨⟩(𝐴𝐿) ⩽ vcd(𝑊𝐿). For the lower bound,
consider the commutator subgroup 𝐴′

𝐿
which satisfies ⟨⟩|𝐴′

𝐿
=   by Remark 2.7. Then

Lemma 2.2 (ii) applied to 𝐴′
𝐿
together with Lemma 2.8 yields

cat⟨⟩(𝐴𝐿) ⩾ cat⟨⟩|𝐴′
𝐿

(𝐴′
𝐿) = cd(𝐴′

𝐿) ⩾ vcd(𝑊𝐿) ,

concluding the proof. □

An alternative proof for the lower bound cat⟨⟩(𝐴𝐿) ⩾ vcd(𝑊𝐿) will be provided by
Theorem 3.5 below.
A virtually torsion-free group 𝐺 satisfies cd (𝐺) ⩾ vcd(𝐺), which follows from the Shapiro

lemma for Bredon cohomology. This inequality can be strict, but it is in fact an equality for right-
angled Coxeter groups (Theorem 2.10), as well as for many other examples [8].

Proposition 3.3. Let 𝐺 be a virtually torsion-free group and suppose 𝐺 satisfies cd (𝐺) =

vcd(𝐺). Then we have cat (𝐺) = vcd(𝐺).

Proof. By Corollary 2.5, we have cat (𝐺) ⩽ cd (𝐺) = vcd(𝐺). The opposite inequality
vcd(𝐺) ⩽ cat (𝐺) follows from Lemma 2.2 (ii) by restricting to a finite index torsion-free
subgroup of 𝐺. □

Corollary 3.4 (Finite category of RACGs). Let𝑊𝐿 be the right-angled Coxeter group associatedwith
a flag complex 𝐿. Then we have cat (𝑊𝐿) = vcd(𝑊𝐿).
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8 LI

3.2 Amenable category

We prove the main result of this note.

Theorem 3.5. Let 𝐺 be a non-trivial residually finite amenable group of type 𝐹 and let 𝐺𝐿

be the graph product associated with a flag complex 𝐿. Let  be a family of subgroups of 𝐺𝐿

satisfying ⟨⟩ ⊂  ⊂  . Then we have

cat (𝐺𝐿) = vcd(𝑊𝐿).

Proof. On the one hand, since ⟨⟩ ⊂  we have cat (𝐺𝐿) ⩽ vcd(𝑊𝐿) by Lemma 3.1. On the
other hand, since  ⊂  we have cat (𝐺𝐿) ⩾ cat (𝐺𝐿) by Lemma 2.2 (i) and it remains to
prove that cat (𝐺𝐿) ⩾ vcd(𝑊𝐿).
Let 𝑛 = vcd(𝑊𝐿). By Theorem 2.9 there exists a (possibly empty) simplex 𝜎 ⊂ 𝐿 such

that �̃�𝑛−1(𝐿 ⧵ 𝜎; ℤ) ≠ 0. Let 𝐾 be the full subcomplex of 𝐿 spanned by the vertices in 𝐿 ⧵ 𝜎. Then
the graph product 𝐺𝐾 associated with 𝐾 is a subgroup of 𝐺𝐿. Hence, cat (𝐺𝐿) ⩾ cat (𝐺𝐾)

by Lemma 2.2 (ii) and it suffices to prove cat (𝐺𝐾) ⩾ 𝑛.
Indeed, since 𝐾 is homotopy equivalent to 𝐿 ⧵ 𝜎, we have �̃�𝑛−1(𝐾; ℤ) ≠ 0. The universal

coefficient theorem implies that �̃�𝑛−1(𝐾; 𝔽𝑝) ≠ 0 for some prime 𝑝. By Theorem 2.11, we have

lim
𝑖→∞

𝑏𝑛(Γ𝑖; 𝔽𝑝)

[𝐺𝐾 ∶ Γ𝑖]
= 𝑏𝑛−1(𝐾; 𝔽𝑝) ≠ 0 ,

where (Γ𝑖)𝑖 is any residual chain in 𝐺𝐾 . Thus, we conclude from Theorem 2.3 that cat (𝐺𝐾) ⩾

𝑛. This finishes the proof. □

Applying Theorem 3.5 to 𝐺 = ℤ and  =  yields the following.

Corollary 3.6 (Amenable category of RAAGs). Let 𝐴𝐿 be the right-angled Artin group associated
with a flag complex 𝐿. Then we have cat (𝐴𝐿) = vcd(𝑊𝐿).

3.3 Topological complexity

Another important generalised LS-category is Farber’s topological complexity [12]. Let 𝐺 be a
torsion-free group and consider the product 𝐺 × 𝐺. Let ⟨Δ⟩ be the family of subgroups of 𝐺 × 𝐺

generated by the diagonal subgroup Δ ⊂ 𝐺 × 𝐺. The topological complexity 𝖳𝖢(𝐺) coincides with
the ⟨Δ⟩-category cat⟨Δ⟩(𝐺 × 𝐺) of 𝐺 × 𝐺 by [13], which might as well be taken as the definition
of 𝖳𝖢(𝐺).
The topological complexity of RAAGs has been computed [5, 17].We recall the precise result for

completeness, even though we will not need it in the sequel. For the right-angled Artin group 𝐴𝐿

associated with a flag complex 𝐿 with vertex set 𝑉, we have

𝖳𝖢(𝐴𝐿) = max{|𝑉1 ∪ 𝑉2| ∣ 𝑉1, 𝑉2 ⊂ 𝑉 each spanning a simplex in 𝐿} .

The topological complexity and amenable category of RAAGs are related by the following
inequality, providing positive examples to [4, Question 8.1].
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AMENABLE COVERS OF RIGHT-ANGLED ARTIN GROUPS 9

Proposition 3.7. Let𝐴𝐿 be the right-angled Artin group associated with a flag complex 𝐿. Then we
have cat (𝐴𝐿 × 𝐴𝐿) ⩽ 𝖳𝖢(𝐴𝐿).

Proof. We prove the inequalities cat (𝐴𝐿 × 𝐴𝐿) ⩽ 2 vcd(𝑊𝐿) ⩽ 𝖳𝖢(𝐴𝐿). Since the prod-
uct 𝐴𝐿 × 𝐴𝐿 is a right-angled Artin group (associated with the join 𝐿 ∗ 𝐿), by Lemma 3.1 we
have cat (𝐴𝐿 × 𝐴𝐿) ⩽ vcd(𝑊𝐿 ×𝑊𝐿) ⩽ 2 vcd(𝑊𝐿).
To prove the remaining inequality, let 𝜎 ⊂ 𝐿 be a simplex of maximal dimension. Consider the

subgroup 𝐴𝜎 × 𝐴′
𝐿
of 𝐴𝐿 × 𝐴𝐿 which satisfies ⟨Δ⟩|𝐴𝜎×𝐴

′
𝐿
=   by Remark 2.7. It follows from

Lemma 2.2 (ii) that 𝖳𝖢(𝐴𝐿) ⩾ cd(𝐴𝜎 × 𝐴′
𝐿
). Since 𝐴𝜎 is free abelian and using Lemma 2.8, we

obtain

cd(𝐴𝜎 × 𝐴′
𝐿) = cd(𝐴𝜎) + cd(𝐴′

𝐿) ⩾ 2 vcd(𝑊𝐿) .

This concludes the proof. □

Remark 3.8. The analogous inequality holds for all higher topological complexities [31], that is,
we have cat ((𝐴𝐿)

𝑟) ⩽ 𝖳𝖢𝑟(𝐴𝐿) for all 𝑟 ∈ ℕ⩾2.

3.4 Minimal volume entropy

The generalised LS-category with respect to families of subgroups with controlled growth
is closely related to the (non-)vanishing of minimal volume entropy. The arguments in this
section follow [21] to which we refer for the precise definitions.
Let 𝐺 be a group of type 𝐹 with gd(𝐺) = 𝑛. The minimal volume entropy 𝜔(𝐺) is defined as

the minimal exponential growth rate of balls in cocompact models for 𝐸𝐺 of dimension 𝑛. There
are sufficient conditions for the (non-)vanishing of minimal volume entropy, called the fibre
(non-)collapsing assumption (F(N)CA for short) [1]. More precisely,

∙ if there exists a finite model for 𝐵𝐺 of dimension 𝑛 satisfying FCA, then 𝜔(𝐺) = 0;
∙ if every finite model for 𝐵𝐺 of dimension 𝑛 satisfies FNCA and 𝐺 has uniform uniform
exponential growth, then 𝜔(𝐺) > 0.

The conditions FCA and FNCA are not complementary in general.
We will use a reformulation of condition FCA in the language of generalised LS-category

[1, 23]. Let 𝐺 be a group as above. For 𝛿 ∈ ℝ>0, let 𝖲𝗎𝖻𝖾𝗑𝗉<𝛿 denote the family of subgroups 𝐻
of 𝐺 such that every finitely generated subgroup of 𝐻 has subexponential growth with subexpo-
nential growth rate < 𝛿. It follows from [23, Corollary 5.9] that there exists a finite model for 𝐵𝐺
of dimension 𝑛 satisfying FCA if and only if

cat𝖲𝗎𝖻𝖾𝗑𝗉<(𝑛−𝑘)∕𝑛 (𝐺) < 𝑘 + 1

for some 𝑘 ∈ {0, … , 𝑛 − 1}. (Our values for the generalised LS-category are smaller by 1 than in [23]
because we use a different normalisation.)
The following is a complete characterisation of RAAGs with (non-)vanishing minimal volume

entropy. Most cases of Theorem 3.9 appeared in [21, Theorem 1.1], which however left open if
�̃�𝑑(𝐿; ℤ) = 0 implies 𝜔(𝐴𝐿) = 0 in the case when 𝑑 = 2. Our resolution of this case goes back to
the obstruction theoretical argument in the proof of Corollary 2.5.
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Theorem 3.9 (Minimal volume entropy of RAAGs). Let 𝐴𝐿 be the right-angled Artin group
associated with a flag complex 𝐿 of dimension 𝑑. Then we have 𝜔(𝐴𝐿) > 0 if and only if
�̃�𝑑(𝐿; ℤ) ≠ 0.

Proof. Using Theorem 2.9 we observe that �̃�𝑑(𝐿; ℤ) ≠ 0 is equivalent to vcd(𝑊𝐿) = 𝑑 + 1. For
all 𝛿 > 0, we have ⟨⟩ ⊂ 𝖲𝗎𝖻𝖾𝗑𝗉<𝛿 ⊂  and hence Theorem 3.5 implies

cat𝖲𝗎𝖻𝖾𝗑𝗉<𝛿 (𝐴𝐿) = vcd(𝑊𝐿) .

By the above, we have vcd(𝑊𝐿) < 𝑑 + 1 if and only if there exists a finite model for 𝐵(𝐴𝐿) of
dimension 𝑑 + 1 satisfying FCA. In this case 𝜔(𝐴𝐿) = 0. On the other hand, the conditions FCA
and FNCA are in fact complementary for 𝐵(𝐴𝐿) [3]. Thus, we have vcd(𝑊𝐿) = 𝑑 + 1 if and only
if every finite model for 𝐵(𝐴𝐿) of dimension 𝑑 + 1 satisfies FNCA. In this case 𝜔(𝐴𝐿) > 0, using
that RAAGs have uniform uniform exponential growth. □

4 GRAPH PRODUCTS OF HYPERBOLIC GROUPS

Weprovide examples of graph products whose amenable category is maximal, that is, it equals the
cohomological dimension. For a group 𝐺 and a flag complex 𝐿 of dimension 𝑑, we have cd(𝐺𝐿) =

cd(𝐺𝑑+1) ⩽ (𝑑 + 1) ⋅ cd(𝐺).

Lemma 4.1. Let 𝐺 be a group and let 𝐿 be a flag complex of dimension 𝑑. Let  be a family of
subgroups of the graph product𝐺𝐿. If there is a simplex𝜎 ⊂ 𝐿 of dimension𝑑 such that cat |𝐺𝜎 (𝐺𝜎) =

cd(𝐺𝜎), then cat (𝐺𝐿) = cd(𝐺𝑑+1).

Proof. The claim follows at once from Lemma 2.2 (ii) by restricting to the subgroup 𝐺𝜎 of 𝐺𝐿. □

In the following proof, we use the notion of simplicial volume of manifolds and some of its
standard properties [14, 20].

Proposition 4.2. Let𝐺 be the fundamental group of an oriented closed connected hyperbolic mani-
fold and let𝐺𝐿 be the graph product associated with a flag complex 𝐿. Let  be a family of subgroups
of 𝐺𝐿 satisfying  ⊂  . Then we have cat (𝐺𝐿) = (dim(𝐿) + 1) ⋅ cd(𝐺).

Proof. Let 𝑑 = dim(𝐿) and let 𝑀 be an oriented closed connected hyperbolic manifold
with 𝜋1(𝑀) ≅ 𝐺. Since  ⊂  , by Lemma 2.2 (i) we have

cat (𝐺𝐿) ⩽ cat (𝐺𝐿) ⩽ cd(𝐺𝐿) ⩽ (𝑑 + 1) ⋅ cd(𝐺) .

Since 𝑀 is a model for 𝐵𝐺, the product 𝑀𝑑+1 is a model for 𝐵𝐺𝑑+1 and we have
that cd(𝐺𝑑+1) = (𝑑 + 1) ⋅ cd(𝐺). Hence, by Lemma 4.1 it suffices to show that
cat (𝑀

𝑑+1) = dim(𝑀𝑑+1). Indeed, the hyperbolic manifold 𝑀 has positive simplicial
volume and by the product inequality for simplicial volume [14, Proposition 7.13] so does𝑀𝑑+1.
Finally, the amenable category of manifolds with positive simplicial volume is maximal, that is,
it equals the dimension of the manifold [20, p. 41]. □

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12771 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



AMENABLE COVERS OF RIGHT-ANGLED ARTIN GROUPS 11

Remark 4.3. More generally, Proposition 4.2 holds by the same proof for every group 𝐺 that is
the fundamental group of an oriented closed connected aspherical manifold with positive sim-
plicial volume. For a recent list of manifolds known to have positive simplicial volume, see for
example, [24, Example 3.1].
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