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Abstract—The authors conducted a field survey of Cobalt-
rich Manganese Crusts (Mn-crusts) using a visual 3D mapping
system and a multibeam sonar mounted on an underwater robot
for studying the distribution of these resources on the seafloor.
The multibeam sonar covers an area 4 times that of the visual
system and generates bathymetric and backscatter information.
This paper shows preliminary results from field trials, showing
the correlations between the multibeam and visual mapping
data in Mn-crust covered seamounts. Further, the possibility
of characterization of the seafloor using multibeam data is
investigated by classifying the multibeam data using transfer
learning of a classifier trained on visual mapping data. It is
advantageous because co-located visual data can be used as a
ground truth for multibeam classification. Mn-crust volumetric
estimation methods, currently limited to visually mapped regions,
can be extended further using these results.

I. INTRODUCTION

Cobalt-rich manganese crusts (Mn-crust) are gaining pop-
ularity as a potential source of valuable minerals including
Cobalt, Nickel, and rare earth elements. These are hydroge-
netic deposits found mainly on the slopes and shoulders of
seamounts ranging from 800m to 2400m [1]–[5]. In order to
explore these resources, the International Seabed Authority has
assigned exploration slots to several countries. One third of the
exploration area will be eventually allotted for seabed mining
of Mn-crusts [6].

In order to estimate the resource potential of these areas,
several methods have been attempted and used by stakehold-
ers. Most of these are based on core drills, for assessing
the Mn-crust thickness and chemical composition. Towed
camera or Remotely Operated Vehicles (ROV) surveys are
used for visually inspecting and confirming the Mn-crust
covered areas. Ship based multibeam data is used for large area
resource estimation, when combined with either core samples,
seafloor videos, image surveys or sub-bottom profiles [7]–
[10]. Since none of these methods could provide a continuous
thickness measurement, an acoustic sub-bottom probe for in-
situ contactless thickness measurement was developed by the
Institute of Industrial Science of the University of Tokyo [11].

By combining thickness measurements with a high resolution
3D color mapping system, volumetric estimations of Mn-crust
were performed [12]. However, since thickness measurements
require low attitude surveys, the swath of the visually observed
area is limited to about 1.5m.

In order to cover larger areas, the authors attempted to use a
multibeam sonar in conjunction with the thickness and visual
mapping system. Since the multibeam sonar used has a swath
of 120◦, an area 4 times that of visual mapping systems can be
covered, albeit at a lower resolution. In addition, multibeam
backscatter information is useful for seafloor characteriza-
tion [13], [14]. While there were attempts to quantify the
distribution of Mn-nodules using multibeam surveys [15], [16]
or side scan sonar surveys [17], [18], this is the first such
attempt for Mn-crusts. Mn-crusts are distinguished from Mn-
nodules by the highly varying terrain and the necessity to
measure the crust thickness. Therefore, it provides a challenge
for low-altitude surveying and creates multipath reflections
interfering with the sonar data analysis.

Fig. 1. Illustration of the mapping scenario



TABLE I
SPECIFICATIONS OF THE SYSTEMS USED IN THE SURVEY

Delta-T Multibeam sonar
Frequency 260 kHz
Transducer Beam Width 120◦ × 3◦

Number of beams 120
Beam resolution 1◦
Horizontal opening angle 120◦
Min. Range 0.5 m
Range resolution 0.02 % of range
Frame rate 15 fps
Visual mapping system
Camera 1328× 1048
Horizontal opening angle 65◦

Vertical opening angle 53◦

Laser to camera baseline 1.22 m
Frame rate 15 fps
Acoustic Probe
Frequency 2 MHz (carrier), 200kHz (signal)
-3 dB footprint < 2 cm (dynamic focusing)
Ping rate 20 Hz

Rest of this paper is organized as follows. A description
of the systems used in the survey are described in section II.
Section III details the field survey, the data processing methods
and preliminary results from selected areas. Section IV investi-
gates the possibility of applying a machine learning system on
the multibeam data to estimate the Mn-crust coverage, using
visual data as a reference. Section V contains the concluding
remarks and future directions.

II. SYSTEM OVERVIEW

The different systems which are used in this work are
described in this section. The three systems used consist of a
wide swath multibeam sonar, a narrow swath visual mapping
system and a point measurement sub-bottom probe. They
are operated from an ROV to survey seafloor continuously.
Since all the data is collected simultaneously and co-located,
the output three systems can be cross-referenced without
localization errors and compared easily, which is very useful
for Mn-crust volumetric estimation purposes.

A. Multibeam sonar

The authors used an Imagenex Model 837B “Delta T”
multibeam profiling sonar for wide area acoustic observation
of the seafloor. Delta-T is an underwater imaging sonar with
120 beams resolved digitally. It is controlled from a dedicated
beamforming software running over an ethernet link. The
detailed specifications of the sonar are given in Table I. The
data is recorded using the Delta-T software in the 837 format
which contains reflection information for all range bins of
each of the beams. This data is post-processed to generate
bathymetry and intensity maps of the seafloor.

B. Visual mapping system

The visual mapping system is based on the light-sectioning
based seafloor 3D mapping system developed in [19]. It
consists of a sheet laser, LEDs for illumination, and a camera
which records the laser projection on the seafloor and generate

visual color reconstructions of the seafloor. Although the swath
of this system is narrower than the multibeam sonar, the
resolution is significantly higher at ~1.4 mm. Since this system
generates both bathymetry and colourmaps of the seafloor, it
can be used as ground truth for recognizing Mn-crusts [12],
and for referencing the multibeam data.

C. Acoustic sub-bottom probe

The acoustic probe is a parametric subsurface sonar that
records subsurface reflections of the seafloor for estimating the
Mn-crust thickness. The probe consists of a five-channel annu-
lar array of 2-MHz piezoelectric transducers for transmission
and a 200-kHz piezoelectric transducer to record reflections.
It is dynamically focused on the seafloor at ranges from 0.5
to 2.5 m. Details on the system can be found in [11]. The
thickness results are not included in this paper.

D. Overall setup

The above systems were attached as payload on the ROV
(Perry Slingsby Systems, Ltd.), a photograph of which is
shown in Fig. 2. The components were fixed onto a rigid
frame which allowed the distance between the multibeam
sonar, visual imaging system and the acoustic sub-bottom
probe to be kept constant. A Doppler Velocity Log (DVL),
depth sensor and interferometric fiber-optic gyroscope based
Inertial Measurement Unit (IMU) were also mounted on the
same frame for navigational purposes. The absolute location of
the ROV was measured from the mother ship using an Ultra
Short BaseLine (USBL) system. Combining the USBL data
with the dead reckoned position obtained by integrating the
depth, IMU measurements and velocity measurements from
the frame mounted sensors, an accurate position of the ROV
was estimated. Since all components were rigidly attached to
the same payload frame, the estimated positional data is used
for processing both visual and acoustic data.

Fig. 2. Photograph of the system mounted on the payload skid of ROV



TABLE II
A COMPARISON OF THE OUTPUT RESOLUTION FROM THE VARIOUS

SYSTEMS USED

System Parameter Value
Mapping ROV Altitude 1.5,m

Velocity 0.1 m/s
Multibeam Swath 6 m

Horizontal resolution 50 mm
Vertical resolution 3 mm
Forward resolution 6.7 mm

Visual system Swath 1.5 m
Horizontal resolution 1.4 mm

Vertical resolution 3.0 mm
Forward resolution 6.7 mm

III. FIELD SURVEYS AND DATA PROCESSING

A. Survey

The above system was deployed in field experiments con-
ducted at a Mn-crust covered seamount at depths ranging
between 1350 m to 1550 m. The ROV surveyed the seafloor
at a velocity of 0.2 kn (0.1 m/s). The target altitude of the
survey was set at 1.5 m. The resultant swaths and resolutions
obtained from the two systems are shown in Table II. It can
be seen that the multibeam sonar covers 4x area as that of the
visual subsystem at a significantly reduced lateral (horizontal)
resolution.

B. Data processing

1) Multibeam sonar: The Delta-T multibeam ping data is
recorded in 837 format containing the reflection information
for all 5000 bins of each of the 120 beams. The seafloor
is identified in each of the 120 beams as the bin with the
strongest reflection and exported into a single file containing
information for all the pings. For each ping, the bin locations
for 120 beams and their corresponding intensities are extracted
from this file along with the time when the ping was recorded.
Using the beam geometry and the range resolution set during
recording, the bin locations are converted into robot frame
coordinates. The position and orientation of the vehicle at the
time when the ping was recorded is then used to convert the
detected seafloor point cloud into earth frame coordinates.

The reflection intensity values are strongly affected by the
beam geometry with the central beams having a stronger value.
To compensate for this, the angular response of the sonar is
estimated by taking an average of the intensity values for each
beam across all the pings where the seafloor has been detected.
This angular response is then used to compensate for the beam
geometry while calculating the reflection intensity value for
the detected seafloor bins.

2) Visual mapping: The images with laser line projections
are recorded during the survey. The laser line is detected in the
images and converted into robot frame coordinates considering
the geometry of the system. The position and orientation of
the vehicle is then used to convert the point cloud into earth
coordinates. Color information is also obtained for the points
identified by the laser generating a visual color reconstruction
of the seafloor in 3D.

Fig. 3. Visual 3D map and bathymetry for a pillowy Mn-crust area with
sediment cover

C. Initial results

Data was collected over varying terrains consisting of Mn-
crusts, sediment patches and Mn-nodules. Patches of different
terrain were used for used for analyzing the multibeam data
and comparing it with the visual mapped data. Three example
sections showing different landscapes are shown below.

1) Pillowy Mn-crust with sediment cover: Figures 3 and 4
show an area with pillowy Mn-crust covered with sediment.
The top view of the color 3D reconstruction, hillshaded
bathymetric map, backscatter map generated by the multibeam
sonar and the bathymetric map generated by the multibeam
sonar are shown respectively. The texture of the seafloor is
clearly visible in visual and backscatter maps. Artifacts due
to the irregular motion of the ROV is visible in the visual
bathymetry maps.

Fig. 4. Multibeam backscatter and bathymetry for the area shown in Fig. 3

2) Mixed area: Fig. 5 shows an area with varying seafloor
for highlighting the advantage of multibeam surveys. Fig. 5a



shows the normalized backscatter intensity and Fig. 5b shows
the corresponding 3D color reconstruction of the seafloor.
Sediment deposits can be seen towards the left and the lower
middle sections of the graph. The other sections contains rocky
Mn-crusts of various sizes. The difference in the swath shows
clearly the variation of the Mn-crust distribution. Although the
visual map indicates three sediment covered sections, the third
section appears to be very small as seen in the backscatter map.
Artifacts due to saturation of the central beams of the sonar
are also visible in the sediment areas. It can also be seen that
the backscatter intensity shows variations similar to that of the
luminous intensity of the visual 3D map.

IV. VISUAL SEAFLOOR CLASSIFICATION

Being able to distinguish Mn-crust deposits from sediments
in Fig. 5, the possibility of automatic classification of the
multibeam data for seafloor characterization is investigated
below. The authors have developed a machine learning based
method for identifying Mn-crust from seafloor bathymetry and
color maps [20]. The seafloor is divided into uniform sized
kernels and parameters denoting the color, texture, bathymetry,
and roughness are extracted for each kernel. The kernels are
then classified into either Mn-crust, Mn-nodules, or sediments
based on this parameter vector using an SVM classifier with a
polynomial kernel. The choice of parameters and the effect on
the classification performance was investigated in detail [12].

Transfer learning is the method of utilizing the knowledge
gained in one domain in another familiar domain, by exploiting
the similarity in data [21]. This is beneficial in developing ma-
chine learning classifiers where labelled training data is limited
or unavailable. In the case of multibeam characterization, the
similarity of the backscatter intensity to the luminous intensity
of the visual 3D map is utilized. Since bathymetric information
is available from both sources, albeit at different resolutions,
it is also incorporated.

An SVM classifier was developed using expert labelled
seafloor 3D visual mapping data, classified into Mn-crusts,
sediments or Mn-nodules. For a kernel size of 30 cm, a total
of 11 parameters are calculated representing the texture, lumi-
nosity, roughness and slope. All parameters were normalized
to zero mean and unit standard deviation. An SVM classifier
is trained using the training data, with an accuracy of 90%,
measured on a separate testing dataset also generated from the
visual 3D data.

This classifier was then used to classify the multibeam
generated data, by replacing the luminosity of the visual
3D maps with the backscatter intensity of the multibeam.
The parameters were calculated using the same kernel size
of 30 cm. The density of points is, however, low due to
the lower resolution of the multibeam. Preliminary results
from classification is shown in Fig. 6. For seafloor section
from Fig. 5, the multibeam backscatter intensity and the
classification results are shown.

The results are promising, but require further tuning. Calcu-
lation of the accuracy of classification and confusion matrices
by referencing them to co-located visual 3D maps is necessary.

Further tuning the transfer learned classifier using co-located
data is not possible using an SVM classifier, but can be done
using deep learning methods in conjunction.

V. CONCLUSION

This paper presents the preliminary results from surveying
deep sea Mn-crust deposits using a multibeam sonar together
with a 3D mapping system. Data from selected regions are
presented and the results from the two systems were compared.
Further, using transfer learning, a machine learning classifier
trained on visual data is used to classify the multibeam gener-
ated data, with promising results. This is useful to compensate
for the lack of ground truth data for the multibeam systems.
The results can be further improved by tuning the parameters
and using alternate classifier methodologies. The co-located
data from these sources can be used to extend the area
coverage of visual 3D mapping systems and provide larger
area Mn-crust volumetric estimates.
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N. Huang, “Sedimentary characteristics based on sub-bottom profiling
and the implications for mineralization of cobalt-rich ferromanganese
crusts at Weijia Guyot, Western Pacific Ocean,” Deep Sea Research Part
I: Oceanographic Research Papers, vol. 158, p. 103223, Apr. 2020.

[9] D. Du, X. Ren, S. Yan, X. Shi, Y. Liu, and G. He, “An integrated
method for the quantitative evaluation of mineral resources of cobalt-
rich crusts on seamounts,” Ore Geology Reviews, vol. 84, pp. 174–184,
2017, publisher: Elsevier B.V.



Fig. 5. Multibeam backscatter and bathymetry for a seafloor section containing rocky Mn-crusts, pillowy Mn-crusts and sediment deposits

Fig. 6. Preliminary results from classification of multibeam data with an
SVM classifier. The classifier was trained on the 3D mapping data, but tested
using the multibeam data.

[10] D. Du, C. Wang, X. Du, S. Yan, X. Ren, X. Shi, and J. R. Hein,
“Distance-gradient-based variogram and Kriging to evaluate cobalt-rich
crust deposits on seamounts,” Ore Geology Reviews, vol. 84, pp. 218–
227, 2017, publisher: Elsevier B.V.

[11] B. Thornton, A. Asada, A. Bodenmann, M. Sangekar, and T. Ura,
“Instruments and methods for acoustic and visual survey of manganese
crusts,” IEEE Journal of Oceanic Engineering, vol. 38, no. 1, pp. 186–
203, Jan. 2013, iSBN: 0364-9059 VO - 38.

[12] U. Neettiyath, B. Thornton, M. Sangekar, Y. Nishida, K. Ishii, A. Bo-
denmann, T. Sato, T. Ura, and A. Asada, “Deep-Sea Robotic Survey and
Data Processing Methods for Regional-Scale Estimation of Manganese
Crust Distribution,” IEEE Journal of Oceanic Engineering, vol. 46,
no. 1, pp. 102–114, Jan. 2021.

[13] R. Michaelis, H. C. Hass, and S. Papenmeier, “Automated Stone
Detection on Side-Scan Sonar Mosaics Using Haar-Like Features,”
Geosciences, 2019.

[14] A. G. P. V. Dijk and D. G. Simons, “Geostatistical modelling of
multibeam backscatter for full- coverage seabed sediment maps,” Hy-
drobiologia, vol. 4, pp. 55–79, 2019, iSBN: 0123456789.

[15] E. Alevizos, T. Schoening, K. Koeser, M. Snellen, and J. Greinert,
“Quantification of the fine-scale distribution of Mn-nodules: insights
from AUV multi-beam and optical imagery data fusion,” Biogeosciences
Discussions, no. February, pp. 1–29, 2018.

[16] I. Z. Gazis, T. Schoening, E. Alevizos, and J. Greinert, “Quantitative

mapping and predictive modeling of Mn nodules’ distribution from
hydroacoustic and optical AUV data linked by random forests machine
learning,” Biogeosciences, vol. 15, no. 23, pp. 7347–7377, 2018.

[17] L. J. Wong, V. Pallayil, M. P, A. K, B. Kalyan, V. N. Hari, M
A Atmanand, and M. Chitre, “Acoustic Backscattering Properties of
Polymetallic Nodules from the Indian Ocean Basin : Results from a
Laboratory Measurement,” in UT Kaohsiung, 2019.

[18] L. J. Wong, B. Kalyan, M. Chitre, and H. Vishnu, “Acoustic Assessment
of Polymetallic Nodule Abundance Using Sidescan Sonar and Altime-
ter,” IEEE Journal of Oceanic Engineering, vol. 46, no. 1, pp. 132–142,
2020, publisher: IEEE.

[19] A. Bodenmann, B. Thornton, and T. Ura, “Generation of High-resolution
Three-dimensional Reconstructions of the Seafloor in Color using
a Single Camera and Structured Light,” Journal of Field Robotics,
vol. 34, no. 5, pp. 833–851, Dec. 2017, arXiv: 10.1.1.91.5767 ISBN:
9783902661623.

[20] U. Neettiyath, T. Sato, M. Sangekar, A. Bodenmann, B. Thornton,
T. Ura, and A. Asada, “Identification of manganese crusts in 3D visual
reconstructions to filter geo-registered acoustic sub-surface measure-
ments,” in OCEANS 2015 - MTS/IEEE Washington. IEEE, Oct. 2015,
pp. 1–6.

[21] A. Jain, S. Srivastava, and S. Soman, “Transfer learning using adaptive
SVM for image classification,” in 2013 IEEE Second International
Conference on Image Information Processing (ICIIP-2013). Shimla,
India: IEEE, Dec. 2013, pp. 580–585.


