
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying

data are retained by the author and/or other copyright owners. A copy can be downloaded

for personal non-commercial research or study, without prior permission or charge. This

thesis and the accompanying data cannot be reproduced or quoted extensively from

without first obtaining permission in writing from the copyright holder/s. The content of the

thesis and accompanying research data (where applicable) must not be changed in any

way or sold commercially in any format or medium without the formal permission of the

copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must

be given, e.g.

Thesis: Sébastien Lemaire (2023) "An Efficient and Accurate Overset Grid Technique

Applied to Maritime CFD", University of Southampton, Faculty of Engineering and

Physical Sciences, Department of Civil, Maritime and Environmental Engineering, PhD

Thesis, 1-182.

University of Southampton

Faculty of Engineering and Physical Sciences

Department of Civil, Maritime and Environmental Engineering

Maritime Engineering Research Group

An Efficient and Accurate

Overset Grid Technique

Applied to Maritime CFD

by

Sébastien Lemaire

PhD

ORCiD: 0000-0002-9959-2100

A thesis for the degree of

Doctor of Philosophy

March 2023

http://www.southampton.ac.uk
https://orcid.org/0000-0002-9959-2100

University of Southampton

Abstract

Faculty of Engineering and Physical Sciences

Department of Civil, Maritime and Environmental Engineering

Doctor of Philosophy

An Efficient and Accurate Overset Grid Technique

Applied to Maritime CFD

by Sébastien Lemaire

Ship maneuvering and other maritime applications pose complex challenges involving

the motion of multiple bodies. The overset method enables simulations of such cases

using computational fluid dynamics (CFD) by allowing arbitrary movement of any num-

ber of meshes. However, this versatility comes at a cost in terms of performance and

accuracy. This research, therefore, aims to provide a modern, efficient and accurate

overset method and study its reliability using advanced Verification techniques. To

this end, a novel overset method that includes a wide variety of interpolation schemes

has been implemented and is the basis for quantitative and qualitative error analysis

studies performed on several test cases, as well as an investigation on computational

performance.

Quantifying local and global errors, convergence orders, and mass imbalance for differ-

ent interpolation schemes on several test cases allows to draw guidelines for both overset

method users and developers. Moreover, the range of test cases used, such as a realistic

3D unsteady RANS manufactured solution of a recirculation bubble or a rudder-propeller

flow, allows to extend the conclusions to many maritime applications. The results show

that the choice of interpolation scheme has a significant impact on accuracy. 1st order

schemes lower the overall convergence order of the discretisation error, increasing the

amount of artefacts visible in the field and resulting in larger high-frequency tempo-

ral oscillations. Higher order schemes such as 2nd and 3rd order accurate ones help to

limit the error production and maintain 2nd order accuracy of the solver’s discretisation

scheme. However, the limitations of 1st order schemes do not come with a significant

reduction in computational overhead. In fact, the 2nd order Nearest cell gradient is even

cheaper than the 1st order Inverse distance scheme. Finally, the 3rd order Least squares

scheme, though more expensive, is still a viable option as it shows only a 8% performance

overhead after several sequential and parallel programming performance tuning opera-

tions. In addition to providing guidelines and analysis methodologies, this work has

also produced two opensource tools aimed at helping Verification, with the automatic

generation of manufactured solutions and the computation of statistical uncertainties.

http://www.southampton.ac.uk

v

Contents

List of Figures ix

List of Tables xv

List of Algorithms xvii

Declaration of Authorship xix

Acknowledgements xxi

Nomenclature xxv

1 Introduction 1

1.1 Origin of overset method . 1

1.2 Project background . 8

1.3 Aim & Objectives . 8

1.4 Publications . 9

1.5 Novelty . 10

1.6 Structure of the Thesis . 11

2 Fundamentals of finite volume CFD and overset method 13

2.1 Baseline CFD solver . 13

2.2 Governing equations . 14

2.2.1 Navier-Stokes . 14

2.2.2 General transport equation . 15

2.2.3 RANS approach to turbulence modelling 16

2.3 Numerical methods . 17

2.3.1 Finite volume method . 18

2.3.2 Gradient computation . 19

2.3.3 Time discretisation . 20

2.4 Resolution of equations and CFD code structure 21

2.4.1 Linear system of equations . 21

2.4.2 General structure of CFD solvers 22

2.4.3 HPC parallelisation . 23

2.5 The overset method . 24

2.6 Summary . 28

3 Verification and Validation 29

3.1 Error sources . 29

vi CONTENTS

3.1.1 Round off error . 29

3.1.2 Iterative error . 30

3.1.3 Discretisation error . 31

3.1.4 Overset interpolation errors . 32

3.1.5 Statistical error . 33

3.1.6 Additional errors . 34

3.1.7 Modelling error . 34

3.2 Method of Manufactured Solutions . 35

3.3 PyMMS: an opensource framework for generating Manufactured Solutions 36

3.4 PyTST: an opensource Transient Scanning Technique analysis tool 38

3.5 Summary . 39

4 The Overset method implementation 41

4.1 General workflow . 41

4.2 Overset in various CFD solvers . 42

4.3 Implementation of the overset method . 46

4.3.1 General design decisions . 46

4.3.2 Donor search implementation . 48

4.4 Interpolation methods . 49

4.4.1 Nearest Cell . 49

4.4.2 Nearest Cell Gradient . 49

4.4.3 Inverse Distance . 50

4.4.4 Polynomial . 50

4.4.4.1 Complete Polynomial . 50

4.4.4.2 Polynomial tensor . 52

4.4.5 Least squares . 52

4.4.6 Barycentric . 53

4.4.7 Interpolation schemes overview . 54

4.5 Summary . 56

5 Verification of interpolation schemes 57

5.1 Robustness of Polynomial based interpolations 57

5.1.1 Methodology . 58

5.1.1.1 Donor points locations 58

5.1.1.2 Error estimation . 59

5.1.2 Results . 60

5.1.3 Conclusions . 63

5.2 Code Verification of interpolation schemes 64

5.2.1 Methodology . 64

5.2.2 Results . 65

6 Code Verification and error analysis on flows with analytical solution 67

6.1 Poiseuille flow test case . 68

6.1.1 Case definition . 68

6.1.2 Error level analysis . 71

6.1.3 Mass imbalance study . 73

6.1.4 Flow behaviour and errors location 74

CONTENTS vii

6.2 Recirculation bubble URANS manufactured solution 78

6.2.1 Introduction . 78

6.2.2 Case definition . 78

6.2.3 Time evolution of errors . 81

6.2.4 Error level analysis . 81

6.2.5 Mass imbalance study . 84

6.2.6 Flow behaviour and error location 84

6.3 Concluding remarks . 87

7 Case study: Analysis of propeller-rudder interaction 89

7.1 Introduction . 89

7.2 Problem setup . 90

7.2.1 Experiments presentation . 90

7.2.2 Numerical setup . 91

7.2.2.1 Grid and Overset setup 91

7.2.2.2 Computational setup . 94

7.2.2.3 Analysed quantities . 95

7.3 Verification studies . 96

7.3.1 Iterative uncertainty . 96

7.3.2 Time discretisation uncertainty . 97

7.3.3 Statistical uncertainty . 98

7.4 Impact of interpolation schemes . 99

7.4.1 Integral quantities . 99

7.4.2 Pressure on the Rudder . 103

7.4.3 Velocity field . 106

7.5 Rudder flow Validation . 110

7.6 Concluding remarks . 112

8 Performance and scalability of the overset method 115

8.1 Introduction . 115

8.2 Overset method performance . 116

8.2.1 Methodology and setup . 116

8.2.2 DCI computation . 118

8.2.3 Donor search and interpolation . 120

8.2.3.1 Interpolation . 120

8.2.3.2 Donor search . 122

8.2.3.3 Combined performance 122

8.3 Iterative convergence . 123

8.4 Conclusion . 124

9 Concluding remarks 127

9.1 Conclusion . 127

9.2 Future work . 130

Appendix A Implicit formulation of Polynomial schemes 133

Appendix A.1 Polynomial and Polynomial Tensor schemes 133

Appendix A.2 Least Squares scheme . 135

viii CONTENTS

Appendix B Recirculation bubble manufactured solution equations 137

References 143

ix

List of Figures

1.1 Deforming meshes used to simulate a floating buoy by Ransley et al. [102]. 2

1.2 Propeller mesh rotating using sliding meshes by Lidtke et al. [67], the
limit of the two meshes is marked in red. 3

1.3 Sliding interface (in blue) used in combination with deforming meshes by
Toxopeus and Bhawsinka [118] to simulate a ship entering a lock. 3

1.4 Overset grid assembly for a fully appended ship with a horn rudder from
Mofidi and Carrica [77]. 4

1.5 Number of papers published per year containing the keywords ‘overset
cfd’ or ‘chimera cfd’. Data extracted from google scholar database and
normalised by the total number of papers per year in the database. 5

2.1 Example of cell acting as a control volume with the finite volume approach. 18

2.2 Example of 2D structured and unstructured meshes. 19

2.3 Summary of the different iterative processes appearing in a CFD compu-
tation. 23

2.4 Parallel domain decomposition with three processes showing ghost cells
and parallel communications. 24

2.5 Example of overset assembly with its nomenclature. Donor cells for the
top left fringe cell are displayed. 25

2.6 Explicit formulation of an overset coupling with two meshes (A and B).
ϕ is the quantity to be solved, nl the current outer iteration, i the index
of a fringe cell from Mesh B and j and k its associated donor cells from
Mesh A. Finally f is the overset interpolation function. 26

2.7 Implicit formulation of an overset coupling with two meshes (A and B).
ϕ is the quantity to be solved, nl the current outer iteration, i the index
of a fringe cell from Mesh B and j and k its associated donor cells from
Mesh A with wj and wk the interpolation weights. The interpolation is
then defined by ϕi = wjϕj + wkϕk. 27

2.8 Solution workflow with explicit overset coupling. Steps marked in blue
are specific to an overset computation. 28

3.1 Integral quantity convergence with residual decrease (hi being a metric
of the residuals level) and uncertainty computed as per Eça et al. [39]
methodology. 31

3.2 Example of statistical uncertainty analysis performed using the Transient
Scanning Technique by [12] on a lift coefficient signal over time. 33

3.3 Example window when running pyTST interactively. It shows the original
signal on the top and the statistical uncertainty on the bottom. Both plots
are synchronised so that moving the cut-off location manually on either
plot updates the other one. 39

x LIST OF FIGURES

4.1 Flow chart of the overset implementation. 47

4.2 Donor search algorithm presented in pseudocode. Steps circled in light
blue are parallel communications. Similarly, ‘local’ and ‘global’ refer to
the parallel domain decomposition. 48

5.1 Example of randomly selected donor points on a grid used in this study
using the Cartesian method. The orange dot is the reconstructed inter-
polation location. 58

5.2 Example of randomly selected donor points based on the Random
method. The reconstructed interpolation location is denoted by the
orange dot. 59

5.3 Function f to be interpolated. 59

5.4 Histogram of the log of errors when donor points are created using the
random method. The log of the median error is displayed with dotted lines
and the Least squares results were done with a donor point multiplier of
1.5. This means that, for the same degree, the Least squares results use
1.5 times more donor points than the Polynomial ones. 61

5.5 Influence of the donor point multiplier (Cmult) on the error distribution.
Histograms show the log of the errors for degree 2 Least squares inter-
polations. The leftmost histogram is a Polynomial interpolation as it is
mathematically equivalent to a Least squares interpolation with Cmult = 1
(and N = 6). 61

5.6 Example of donor point locations leading to low or high interpolation
errors. 62

5.7 Interpolation error against condition number κ of the system. Least
squares interpolation uses a Cmult of 1.5. Blue data points are using
the Random donor point location method and orange ones the Cartesian
method. 63

5.8 Locations of the interpolations. 500 different locations randomly picked
at a minimum distance of 0.1 to the domain boundary (the coarsest grid
of 16× 16 is displayed). 65

5.9 L∞ norm of the error and associated convergence order for the different
interpolation schemes. 66

6.1 Exact axial velocity field for the Poiseuille flow test case. 68

6.2 Coarsest grid used for each layout. The Background grid is displayed in
blue and the Foreground grid in green. 69

6.3 Cell status for the layout L3 and grid G3 computed by Suggar++. 70

6.4 Infinity norm of the velocity field error against grid refinement (G5 to G1)
for the layout L3. For readability reasons, only a selection of schemes is
displayed. 71

6.5 Infinity norm of the error and convergence order on the velocity for the
Poiseuille case. Cross marker denote the finest grid. 72

6.6 Difference between inflow and outflow mass fluxes for the Poiseuille case
measuring the mass imbalance caused by the overset method. 74

6.7 Velocity and pressure fields for the layout L3 and grid set G3, using the
Nearest cell gradient interpolation scheme. 75

LIST OF FIGURES xi

6.8 Log of the error between overset computations and exact solution for the
velocity field. Note that the scale is adapted for each plot with the max-
imum error always being the upper range of the scale. The Foreground
mesh is only half visible in order to visualise fringe cells of the Background
mesh. 75

6.9 Log of the error between overset computations and exact solution for the
pressure field. 77

6.10 Log of the difference in velocity between a computation done with and
without overset. 77

6.11 Recirculation bubble used as a manufactured solution, the slice is coloured
by the x axial velocity. On this representation, the inlet is on the left,
non-slip wall at the bottom and outlet on the right. 78

6.12 Coarsest grid (Grid 50) with the two different layouts used for the recir-
culation bubble test case. 79

6.13 Overset domain connectivity as computed by Suggar++ on the coarsest
grid setup (Grid 50). Black cells belong to the Foreground grid and white
cells belong to the Background grid. 80

6.14 L2 norm of the error on Ux over five flow periods on layout L1. In this
plot, the timetrace of each grid refinement is shown. Figure (a) shows a
proper converging trend when it is not as clear when Inverse distance is
used. 81

6.15 Comparison of error levels for each quantity depending on the interpo-
lation scheme used for the recirculation bubble test case. Errors plotted
are the time average of the L2 norm of the error for each quantity. Con-
vergence order is displayed above each quantity. 83

6.16 Mass imbalance for different interpolation schemes for the two tested grid
layouts on the recirculation bubble test case. 84

6.17 Velocity magnitude slice for the Inverse distance computation on Grid 80. 85

6.18 Velocity error magnitude shown with a side view of the domain (inlet on
the left, wall at the bottom) for layout L2. The slice is taken in the middle
of the domain (z = 0.5). 85

6.19 Velocity difference between overset and non overset computation shown
with a top view of the domain (inlet on the left) for layout L2. The slice
is taken in the middle of the domain (y = 0.2). 86

6.20 Pressure difference between overset and non overset computation shown
with a top view of the domain (inlet on the left) for layout L2. The slice
is taken in the middle of the domain (y = 0.2). 87

7.1 Photo of the propeller used during the experimental campaigns [80, 120]. 91

7.2 Computational domain dimensions replicating the cross section of the R.J
Mitchel wind tunnel. 92

7.3 Definition of the different coordinate and angle systems. AoA is the rud-
der angle of attack while βr defines the drift angle of the assembly. 92

7.4 Comparison of the propeller blade shapes used during the experimental
campaign [79] (black) and in this CFD study (red). 93

7.5 3D view of the different meshes coloured with IBLANK information for
the coarsest assembly G1. The wireframe of each mesh is also coloured
differently with the tunnel in white, the propeller in blue and the rudder
in red. 93

xii LIST OF FIGURES

7.6 Top view of the different meshes showing IBLANK information for the
coarsest grid assembly G1. Only the lower two thirds of the propeller
(blue) and top half of the rudder (red) meshes are displayed to reveal the
tunnel mesh in the background. 94

7.7 Overset meshes schematic highlighting (in orange) the faces where signed
mass fluxes are being summed up to compute mass imbalance. 95

7.8 Time averaged L2 and L∞ residuals for an increasing number of outer-
loops (nloop) per time-step. The second turbulence equation residuals are
omitted for clarity, but they are relatively constant and three orders of
magnitudes lower than the turbulence kinetic energy (k) residuals. 96

7.9 KT and CL convergence with the pressure correction residuals, hi =
||Pres i||∞
||Pres 0||∞

. Bars show the iterative uncertainty and in red the one cor-

responding to the number of outerloops selected for the rest of this work. 97

7.10 KT and CL convergence with time-step refinement. The error bars show
time discretisation uncertainties and are computed using Eça and Hoek-
stra [34] methodology. 98

7.11 Propeller (KT) and rudder (CL) forces coefficients time histories with the
rudder at 10 degrees angle of attack. The statistical uncertainty on the
mean is computed using the transient scanning technique [12] and shown
on the bottom plot for each quantity. The transient portion (orange) is
removed from the computation of the mean. T0 is the rotation period of
the propeller and T is the simulation time. 99

7.12 Propeller KT when the rudder is set at 20 degrees angle on the coarsest
(G1) and finest (G4) meshes. 99

7.13 Force coefficients time history for the three interpolation schemes tested
at 10 degrees rudder angle. The bottom plot is a comparison with the

Least squares scheme results, computed with: %ϕLS = 100 · ϕ−ϕLS

ϕLS 100

7.14 Fourier transforms ofKT and CL. Frequencies are normalised by the blade
passing frequency (4/T0) and spectra by the level of the first harmonic
(corresponding to the blade passing frequency). Plot 7.14c compares the
integration of the power spectra for high frequencies (higher than 4.5
times the blade passing frequency, denoted with the vertical dashed line
on the Fourier transform plots). 101

7.15 Time average force coefficients against grid refinement for the three in-
terpolation schemes tested at 10 degrees rudder angle. For each of them,
except CD, discretisation uncertainty (Udiscr) is displayed. For CD, sta-
tistical uncertainty (Ustat) is shown instead. 102

7.16 Sum of fluxes going through each overset interface (Qtunnel, Qprop and
Qrudder) and by the inlet and outlet of the domain (Qtotal) for the three
interpolation schemes tested on the finest mesh (G4) and at 10 degrees
rudder angle. Fluxes are normalised by the inlet mass flux. 103

7.17 Pressure coefficient on the rudder’s surfaces at 10 degrees angle of attack
for grids G4. The leading edge is shown on the left of the frame. The
first column shows Least squares results while the other two display its
difference with Inverse distance and Nearest cell gradient respectively,
normalised by the amplitude of Cp over the rudder surface. 104

LIST OF FIGURES xiii

7.18 Pressure coefficient on the rudder’s surfaces at 20 degrees angle of attack
for grids G4. The leading edge is shown on the left of the frame. The
first column shows Least squares results while the other two display its
percentage of difference with Inverse distance and Nearest cell gradient
respectively, normalised by the amplitude of Cp over the rudder surface. . 105

7.19 Pressure coefficient on the rudder’s surface at various height. The first
line at 10 degrees angle of attack, and the second one at 20. For each
section, the bottom plot is a comparison with Least squares results. 105

7.20 Space discretisation uncertainties for the local pressure coefficient. Data
for the Least squares computation at 10 degrees rudder angle. In line
plots, the pressure side is coloured in red when the suction side is in blue. 106

7.21 Iso-surface of Qcriterion coloured by velocity for the tested interpolation
schemes with a 10 degrees rudder angle on mesh assemblies G4. 107

7.22 Comparison of the different interpolation schemes flow. 7.22a and 7.22a
show iso-Qcriterion for the Least squares computations, 7.22c and 7.22d
show the velocity field for the same computation, and finally 7.22e to
7.22h compares Inverse distance and Nearest cell gradient velocity fields
to Least squares ones. In the last set of plots, fringe cells are highlighted
in white for the tunnel mesh, blue for the propeller one and finally red
for the rudder. 10 and 20 degrees rudder angles are shown in the left and
right columns respectively. 108

7.23 Top view of the domain showing a comparison of the time averaged ve-
locity fields with Least squares computation, at 10 degrees rudder angle.
fringe cells are highlighted in white for the tunnel mesh, blue for the
propeller and red for the rudder. 109

7.24 Pressure coefficients on both sides of the rudder surface, comparison of
CFD and experimental data from Molland and Turnock [79]. The first
two columns show the CFD results, both raw and downsampled to the
probes locations, then the third one show experimental data. Finally, the
last column compares the two data sets. 111

7.25 Pressure coefficient on the rudder’s surface at various span sections com-
paring CFD and experimental data from Molland and Turnock [79] 112

8.1 Time taken by Suggar++ when computing the DCI at every time-step
as a percentage of the CFD solver’s time when running the recirculation
bubble test case on Grid 160. 119

8.2 Wall clock time taken by Suggar++ to compute the DCI depending on
the grid cell count for two different sets of meshes assemblies. 119

8.3 Scalability and timing of different interpolation schemes compared to the
CFD computation without overset (dashed line on scalability plot). The
solid black line on shows ideal scalability. 121

8.4 Scalability of the Least squares interpolation and of the number of inter-
polation computed by the most loaded core. 121

8.5 Scalability and timing of the donor searching methods compared to a
CFD computation without overset (dashed line on scalability plot). The
solid black line on shows ideal scalability. 122

8.6 Time taken by both the donor searching and interpolation for all the
tested schemes. 123

xiv LIST OF FIGURES

8.7 Time spent in overset related functions as a percentage of the total com-
putation runtime for mesh G4 of the rudder propeller test case when using
500 cores. 123

8.8 Average number of outerloops needed to converge each time-step to L∞
residuals of 10−6 for each equation. Results are presented for layout L1
and L2 of the recirculation bubble manufactured solution on Grid 80. . . 124

xv

List of Tables

1.1 Summary of the characteristics of the different mesh methods presented. . 8

4.1 Summary of interpolation methods used in various overset implementations. 45

4.2 Number of donor cells N depending on the dimension of the problem and
the degree of the polynomial function n. 51

4.3 Number of donor cells N depending on the dimension of the problem and
the degree for the Polynomial tensor interpolation. 52

4.4 Summary of the different ways to get the values at the vertices of the
sub-cell. 54

4.5 Summary of the different interpolation schemes available for the current
overset implementation and their main characteristics. The number of
donor cells for the barycentric interpolation depends on the topology and
is here given as an example for a Cartesian mesh. 56

5.1 Percentage of interpolations resulting in errors higher than 1 for each
scheme. 62

6.1 Different grid sizes used for the Poiseuille flow test case. 70

6.2 Details of the different grids used for the recirculation bubble test case. . 79

7.1 Refinements ratio (hi) and cell counts for the different meshes generated. 94

7.2 Time-steps tested to compute time discretisation uncertainty. The right-
most two columns show the time-step compared to the propeller rotation
speed (J = 0.51 leading to 1460 RPM). 98

7.3 Comparison between CFD and experimental [79] integral quantities for
the KT equivalent Validation. 110

8.1 Average number of cells and fringe cells per process (for the recirculation
bubble case). Computations up to 20 cores are run on a single node.
Here, Nproc denotes the number of processes used for the parallelisation,
Ni is the total number of cells and Nfringe is the total number of fringe
cells. 117

8.2 Interpolation schemes and parameter tested in this study. 118

Appendix B.1 Variables being used in the recirculation bubble manufactured
solution (case A from [35]) . 139

xvii

List of Algorithms

3.1 Example of input file for running PyMMS, written in python. 37

3.2 Extract of the generated fortran module file created by the previous source
code showing the source term for the first component of the momentum
equation. 38

Appendix B.1 Source code for the definition of the recirculation bubble man-
ufactured solution using PyMMS [65]. 139

xix

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated

by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree

at this University;

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

3. Where I have consulted the published work of others, this is always clearly at-

tributed;

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:

• Sébastien Lemaire, Guilherme Vaz, and Stephen R. Turnock. Implementation and

Verification of an Explicit Overset Grid Method. In 21st Numerical Towing Tank

Symposium (NuTTS), Cortona, Italy, 2018

• Sébastien Lemaire, Guilherme Vaz, and Stephen R. Turnock. On the Need for Higher

Order Interpolation with Overset Grid Methods. In 22nd Numerical Towing Tank

Symposium (NuTTS), Tomar, Portugal, 2019

• Tiago Gomes, Sébastien Lemaire, and Guilherme Vaz. Code and Solution Verifica-

tion of Sliding and Overset Grid Methods on Wind Turbine Flows. In ASME 41th

International Conference on Ocean, Offshore and Arctic Engineering, Hamburg, Ger-

many, 2022

• Sébastien Lemaire, Guilherme Vaz, Menno Deij-van Rijswijk, and Stephen R.

Turnock. On the Accuracy, Robustness, and Performance of High Order Interpola-

tion Schemes for the Overset Method on Unstructured Grids. International Journal

for Numerical Methods in Fluids, 94(2):152–187, feb 2022. ISSN 0271-2091. doi:

10.1002/fld.5050

• Sébastien Lemaire, Guilherme Vaz, Menno Deij-van Rijswijk, and Stephen R.

Turnock. Influence of Interpolation Scheme on the Accuracy of Overset Method for

Computing Rudder-Propeller Interaction. Journal of Verification, Validation and

Uncertainty Quantification, 8(1), mar 2023. ISSN 2377-2158. doi: 10.1115/1.4056681

Signed:.. Date: March 2023

xxi

Acknowledgements

First and foremost, I would like to thank my three supervisors. I am very grateful for

their continuous help and guidance that shaped this work and allowed me to complete

this thesis:

Dr. Guilherme Vaz: Many thanks for introducing me to CFD seven years ago and for

trusting me ever since. Thank you also for your support inside and outside work and

for sharing your knowledge and vision that largely transpired in this thesis.

Prof. Stephen Turnock: Thank you for trusting me with this project, for your support,

guidance and writing feedback throughout this work. Your insights on the propeller-

rudder experiments were also very valuable.

Dr. Menno Deij - van Rijswijk: Thank you very much for always looking out for my well-

being and having my best interest at heart. I also greatly appreciated your availability

and for maintaining my connection with MARIN when I moved to Portugal.

I am very grateful for the fact that this thesis allowed me to work with a wide variety

of teams and I would like to thank each of them for welcoming me. Chronologically

starting with the NGCM team and the FSI department at the University of Southampton

in the UK, continuing with the R&D department of MARIN in the Netherlands, and

finishing with both WavEC and blueOASIS in Portugal. In particular I would like to

thank António Maximiano, Bénédicte Dommergues, Benôıt LeBlanc, Eduardo Lima,

Gem Rotte, João Muralha, Manuel Rentschler, Raphael Madureira, Rui Lopes, Soren

Schenke, Sophia Schillai and Stefano Levato. With special thanks going to Maarten

Klapwijk, Chiara Wielgosz and Artur Lidtke. Our weekly meetings and chats were

always very insightful and often a welcomed distraction. Artur Lidtke deserves a special

mention for his help and expertise with the mesh generation of the propeller used in

this work. Finally, I would also like to thank Tiago Gomes. Supervising you throughout

your thesis helped mine in many ways, and it has been a pleasure to work with you.

Lastly, I must mention and thank my parents, brothers, and friends for their support

and for always being there when I visit France.

xxiii

À mon grand-père Jacques Lemaire

xxv

Nomenclature

Symbols

Ω control volume [–]

µ dynamic viscosity [Pa.s]

µt turbulence eddy viscosity [Pa.s]

ν kinematic viscosity [J.s.kg−1]

ω vorticity [s−2]

ρ fluid density [kg.m−3]

CD drag coefficient [–]

CL lift coefficient [–]

Cmult donor point multiplier [–]

Cm moment coefficient [–]

Cpc centre of pressure [–]

Cp pressure coefficient [–]

Fk polynomial basis function [–]

J propeller advance ratio [–]

KQ torque coefficient [–]

KT trust coefficient [–]

N number of donor cells

Nproc number of processes

P/D propeller blade pitch ratio [–]

Qsurf mass flux going through surface surf [kg.m−2.s−1]

Re Reynolds number [–]

U∞ inlet velocity [m.s−1]

Udiscr space discretisation error uncertainty

Uexp experimental uncertainty

Uinput input uncertainty

Uitr iterative error uncertainty

Unum numerical uncertainty

Ustat statistical uncertainty

Utime time discretisation error uncertainty

c chord length [m]

k turbulence kinetic energy [m2.s−2]

xxvi NOMENCLATURE

m mass [kg]

p pressure [Pa]

s span length [m]

t time [s]

tstep time-step [s]

v velocity vector [m.s−1]

w interpolation weight [–]

y+ non-dimensional wall-normal distance [–]

Abbreviations

BEM boundary element method

BPF blade passing frequency

CFD computational fluid dynamics

CFL Courant-Friedrichs-Lewy number

DCI domain connectivity information

DNS direct numerical simulation

EPSRC engineering and physical sciences research council

FSI fluid structure interaction

GMRES generalised minimal residual algorithm for solving

nonsymmetric linear systems

HPC high-performance computing

LGPL GNU Lesser General Public License

MARIN maritime research institute Netherlands

MMS method of manufactured solutions

MPI message passing interface

QUICK quadratic upstream interpolation for convective

kinematics

RANS Reynolds-averaged Navier-Stokes equations

RBF radial basis functions

RPM revolution per minute

ReFRESCO reliable & fast RANS equations (solver for)

ships (and) constructions offshore

SIMPLE semi-implicit method for pressure linked equations

SPH smoothed-particle hydrodynamics

TST transient scanning technique

UKRI UK research and innovation

VoF volume of fluid

lhs left hand side

rhs right hand side

1

Chapter 1

Introduction

1.1 Origin of overset method

The challenge of designing modern ships that are capable of achieving complex ma-

noeuvres or hold dynamic positions within an ocean environment requires a detailed

understanding of the flow interactions between rotating propellers and moving control

surfaces. Historically, model tests have been used to perform manoeuvring studies. With

the increase of computational resources available to design groups and research insti-

tutes, CFD (computational fluid dynamics) is more and more used early on in the design

process. To perform such simulations, the CFD methods used need to allow relative mo-

tion of bodies, accurately capture boundary layers and be efficient enough to perform

the computations in a reasonable amount of time.

CFD solvers can be divided into two main families: Lagrangian and Eulerian. In most

cases, Lagrangian methods are ‘meshless’ and Eulerian methods are ‘meshed’ methods.

The Lagrangian approach models the fluid using particles and solves the fluid equations

(e.g. the Navier-Stokes equations) for each particle. The most common Lagrangian

method is called smoothed-particle hydrodynamics (SPH). With this approach, the mo-

tion of bodies such as ships, propellers, and rudders is straightforward to handle because

there is no theoretical limitation on their movement. Moreover, simulation of sharp and

accurate free surfaces, which is important in a maritime contexts, is one of the strength

of these methods. They, however, have more difficulties when capturing viscous effects

and are better suited for inertial ones such as sloshing [98, 112] or impacts problems [90].

Another drawback of Lagrangian methods is their performance; they are more costly to

use and are best suited for simulations in confined spaces or for short simulation times,

where their modelling strength can be fully utilised.

More conventional CFD uses the Eulerian approach, in which, instead of modelling the

fluid as particles, the domain containing the fluid is discretised on a mesh. The Navier-

Stokes equations are then solved for each cell of this mesh. This has a large performance

2 Chapter 1. Introduction

benefit, because, unlike particles that move with the flow and for which controlling their

density locally is not easy [26], the density of cells of the mesh can be tuned in advance

for the application. This means that the computational resources can be assigned to the

locations of interest or locations which will improve the accuracy of the simulation the

most. For example, for maritime applications, it is common to see meshes refined close

to the free surface, in the propeller vicinity and wake, and in general on any boundary to

accurately capture the boundary layer. This mesh structure also allows easier handling

of modern highly parallel high-performance computing (HPC) resources as the domain

can be split into smaller ones and the computation distributed evenly on each processing

core. Amongst others, these are the main reasons why the Eulerian approach is the most

widely used in the industry, and has applications in every aspect of maritime engineering

[96]. The need for a mesh as a support for the equation solving, however, prevents easy

relative motion of bodies as meshes are usually body fitted. Due to the high demand for

complex computation and body motion, several methods have been designed to solve

this shortcoming.

One of these methods is called deforming mesh. If an object needs to me moved, the mesh

around it needs to follow it, and as the name suggests this method deforms the mesh to

comply with the motion. This allows keeping a single mesh to perform the computation

and maintain the mesh’s topology which is good for performance and parallelisation

reasons. It is, however, limited to small relative motion. While it can be enough to

simulate a floating buoy [94, 102, 130] as shown in Figure 1.1, it cannot cope with more

complex movements like a propeller rotating.

Figure 1.1: Deforming meshes used to simulate a floating buoy by Ransley et al. [102].

For such cases, the most commonly used method is sliding grids. For simulating a

propeller, for example, instead of having only a single mesh to discretise the entire fluid

domain, two meshes are used; a cylindrical one around the propeller and another one

with a cylindrical hole in it where the propeller would sit. The cylindrical mesh can then

rotate inside the hole of the other mesh. Similarly to single mesh methods, equations are

solved for each cell of both meshes, the only difference lies in the interface between the

two meshes. There, interpolation is performed to transfer information from one mesh to

the other and the interpolated field data (like pressure, fluid velocity etc.) are treated as

boundary conditions on the meshes. While this method can be used in many situations

like rotating propellers [67, 99] as shown in Figure 1.2, airfoils changing their angle of

attack [50] or even roll decay of ships [69], the motion is limited to translation or rotation

1.1. Origin of overset method 3

only and needs to be known a priori. Moreover the requirement for a fixed interface can

also be a limiting factor as, for example, while both a rudder and a propeller only rely on

rotations, they are often located too close to each other to accommodate both circular

domains to be placed. Finally, the need for interpolation to transfer information adds

another source of error that needs to be studied and kept under control. It should be

noted that sliding and deforming grids can be used together in the same computation

allowing for a wider range of motion to be simulated. Toxopeus and Bhawsinka [118] for

example used them to compute the flow around a ship entering a lock as seen in Figure

1.3.

Figure 1.2: Propeller mesh rotating using sliding meshes by Lidtke et al. [67], the limit of the
two meshes is marked in red.

Figure 1.3: Sliding interface (in blue) used in combination with deforming meshes by Toxopeus
and Bhawsinka [118] to simulate a ship entering a lock.

Finally, the overset method, also called chimera or overlapping grid method, overcomes

the shortcomings of both the deforming and sliding grid methods by allowing arbitrary

motion of any number of bodies while still permitting good quality body fitted meshes to

be used. Like the sliding grid method, it relies on different meshes around each body but

does not need a predefined interface between them. The different meshes are overlapped

and the method disables cells that are under another mesh while using, like with sliding

grids, interpolation to transfer field data at the fringe of each mesh. Because the interface

cells (fringe cells) and disabled ones (hole cells) can be updated dynamically during the

4 Chapter 1. Introduction

computation, the method enables arbitrary motion of each mesh. As an example, Figure

1.4 shows a ship with rotating propeller, rudder, and six degrees of freedom on the hull

itself. It uses 30 structured meshes in total. One can note that even meshes that do not

move relative to each other are meshed with different grids, like the domain below and

above the free surface, or the left and right part of the hull. This is another benefit of the

overset method. Better mesh quality can be achieved by meshing parts of the domain

independently, which is also particularly interesting on structured grid CFD solvers as

it enables the meshing of complex geometries albeit at the cost of additional overset

interfaces.

Figure 1.4: Overset grid assembly for a fully appended ship with a horn rudder from Mofidi
and Carrica [77].

Historically, the overset mesh method was designed by NASA for aerospace application.

Benek et al. [4, 5] were the first to publish a detailed description of the method and

Dougherty et al. [31] applied it first to airfoils. At the time most CFD codes only used

structured meshes and, like for the ship example presented above, the overset method

was used primarily for its ability to mesh complex geometries even without motion.

In the early nineties, the first applications to the maritime field started. Cheng-Wen

et al. [25] used the NASA code OVERFLOW to simulate a submarine sail and sail plane

with an overset meshes to link the two meshes together. Even though no motion was used

during the computation, the overset mesh approach allowed to simulate the sail plane at

10 and 20 degrees angle of attack without the need to generate different meshes. At Texas

A&M University, HC Chen worked on various ship simulations requiring mesh motion

like in Chen and Chen [24] where a ship approaching and leaving a harbour quaywall

is simulated using two overset meshes, or Kang et al. [53] where prescribed ship motion

is computed to analyse the wave generation. The two-thousands saw a diversification

of overset implementations. Hadzic [47] wrote a thesis on the development of a 2D

overset method and R Noack started Suggar [86], an external library to be integrated

in already existing CFD solvers to add overset capability with the goal of being robust

and requiring minimal work for its integration on the CFD solver. It lead to several

successful integrations in CFDShip-IOWA [15] or OpenFOAM [7] and now ReFRESCO

with the present work [63]. It is only after 2010 that all the major commercial CFD

1.1. Origin of overset method 5

solvers used nowadays implemented overset capabilities. STAR-CCM+ [111] introduced

it in 2012 with version 7.02, FINE™/Marine [28] implementation started in 2016, same

year as Ansys Fluent [23] with version R17. Finally, an open source version is also

available in OpenFOAM since v1706, and foam-extend got it in 2018 [43]. Similarly

to Suggar, several other overset libraries appeared, like OPERA [19] tailored towards

OpenFOAM or TIOGA [107]. The latter is, contrary to Suggar or OPERA, opensource

released under the LGPL license (GNU Lesser General Public License), allowing its

integration for free in CFD solvers. All these implementations lead to the accessibility

of the overset mesh method to a larger number of researchers and engineers.

This broader accessibility has been accompanied by an increase in overset method related

publications as shown in Figure 1.5 displaying the number of overset papers in the

google scholar database against their publication year. Since both ‘overset’ and ‘chimera’

nomenclatures are used interchangeably the graph plots the number of paper returned

when searching for the keywords ‘overset cfd’ and ‘chimera cfd’. Finally, to compensate

for the overall increase in publication and other potential bias in the google scholar

database the data presented is normalised by the overall number of publication present

in the database each year following the methodology proposed in Orduna-Malea et al.

[93]. From this graph, two trends can be distinguished: from 1980 to around 2010, a

steady growth is observed while from 2010 onwards the number of paper increases more

drastically. It can also be noted that the terminology ‘chimera’, even though used as

much as ‘overset’ until 2000 appears to not be used as much afterwards and doesn’t

experience the same increasing trend as ‘overset’ does.

1980 1990 2000 2010 2020
Year

0

500

1000

#
of

re
su
lt
s

‘overset cfd’

‘chimera cfd’

Figure 1.5: Number of papers published per year containing the keywords ‘overset cfd’ or
‘chimera cfd’. Data extracted from google scholar database and normalised by the total number

of papers per year in the database.

The democratisation of the tools means that the overset method is, nowadays, used for

a wide variety of applications in the maritime field. From propeller rudder interactions

[132] to fully appended ships in waves [17] or submarines [71] to assess maneuverabil-

ity. Offshore structures and wind turbines also benefit from overset meshes with easier

meshing and motion like in [56].

6 Chapter 1. Introduction

The overset method is, however, not exempt from limitations as it has an impact on the

accuracy, performance and robustness of a computation. In such context, an accuracy

loss means that a new error source is introduced in the field that overpowers existing

ones. With the overset method, the accuracy loss is caused by the interpolation step

needed to transfer field data like velocity or pressure from one mesh to the other. Several

interpolation schemes can be used to achieve this, varying the number of donor cells

required in the other mesh, the theoretical order of accuracy, the robustness or even

the computational cost. As highlighted by Chandar et al. [23], the interpolation step is

crucial to the overset method as it directly influences the solution. Low order schemes, for

example, generating spurious oscillations on force coefficients. This step is however not

often studied in detail. Most research either doesn’t mention the interpolation method

used [6, 17, 24, 114, 130] or mention the name of the method without sufficient details

[126]. The lack of detail renders the reproducibility of the results difficult and makes

the choice of appropriate scheme harder. It is only in very recent years that a limited

number of more thorough research into the interpolation methods have been conducted.

Chandar et al., for example, compared the interpolation methods of StarCCM+, AnSYS

Fluent and OPERA in [23], although with a limited number of interpolation methods

tested. Chandar [20] [21] investigate the interpolation methods available in OPERA

(Inverse distance, and Least Squares Polynomial interpolation) on several test cases,

including manufactured solutions, in order to assess the error levels and interpolation

orders of each scheme. More recently, the library TIOGA was used to test several

interpolation schemes with varying order of accuracy on different test cases in Sharma

et al. [113]. This trend is, however, not large enough and shared only by a handful of

research groups. In view of the large increase of overset usage and application range

more thorough studies looking at the accuracy of the overset method are needed.

Besides solution accuracy, the overset method also degrades mass conservation. Indeed,

one of the key feature of the finite volume method used by most Eulerian CFD solvers is

its ability to conserve quantities, like mass, to a known level of accuracy (related to the

residual level of the associated transport equation). This is achieved by equilibrating

fluxes going in and out of each cell through its faces and is described in detail in Chapter

2. With the overset method, however, cells from different meshes do not share common

faces anymore consequently eliminating the theoretical inherited mass conservation trait

of the method. While mass defect is not often reported in the literature, it leads to

unphysical pressure fluctuations as reported by Völkner et al. [126]. To reduce these

effects and help accuracy, several methods were designed to enforce mass conservation in

overset computations. For example, Hadzic [47] proposed a global method for conserving

mass by modifying cells volume artificially to compensate for mass imbalance. It is

however not using any local information, but globally adds a fraction of the total mass

imbalance to all internal cells which limits it’s physical correctness. Völkner et al. [126]

proposed an improved method; instead of adding the total mass imbalance equally in

the entire domain, each fringe cell receiving an interpolated value get a mass variation

1.1. Origin of overset method 7

based on the divergence of the velocity between the donor cells and the fringe cell.

They show that their method manages to reduce the pressure fluctuations as well as

the mass imbalance. Finally, Chandar [21] presents an alternative method based on

fluxes correction within the iterative process. Even though these methods manage to

overcome some of the consequences of not conserving mass at the overset interface they

are not ubiquitous, likely because they are not always straightforward to implement,

easy to generalise and can be computationally expensive. More recently, Chandar and

Sitaraman [22], however, addresses these points by designing a new mass conservation

method that does not add performance overhead while being easy to implement which

may improve adoption in the future.

Finally, the overset method is known to lead to performance overhead. This is due to

the computation of the interpolation itself as well as the computation of the domain

connectivity (finding which cells are to be discarded etc.) requiring a lot of parallel

communication between the different processes. Even though performance of the overset

method is not often reported, Ohashi [91] show that 60% of the computation is dedicated

to overset tasks, meaning that a similar computation without overset would be 2.5 times

faster. For OpenFOAM, Gatin et al. [43] reports that a third of the computational time

is dedicated to the overset method. Moreover, besides needing computational time to

perform its own tasks, the overset method can also degrade the iterative convergence,

hence needing more iterations to reach the same level of residuals. However, like for

interpolation errors, performance and scalability of the different overset implementations

are almost never reported.

Table 1.1 outlines the characteristics of the three mesh methods presented in this section.

Even though it has some limitations, the overset method is the only one able to handle

arbitrary motion of multiple meshes and hence multiple bodies.

To summarise, the main challenges to overcome in any overset implementation are to

ensure the interpolation errors are minimised and predictable so that their influences on

the solution are quantifiable as well as being computationally performant enough to be

used in an engineering context.

8 Chapter 1. Introduction

Table 1.1: Summary of the characteristics of the different mesh methods presented.

Method Motion handled Limitation

Re-meshing
• Arbitrary motion of
multiple meshes

• Body deformation

• Accuracy loss (interpolation)
• Extremely expensive
• Hard to implement in a general way

Immersed boundary
• Arbitrary motion of
multiple meshes

• Body deformation

• No boundary layer
• High frequency noise with motion

Deforming grids
• Small amplitude
• Body deformation

• May worsen mesh quality

Sliding grids
• Predefined rotation and
translation

• Accuracy loss (interpolation)
• Loss of mass conservation

Overset grids
• Arbitrary motion of
multiple meshes

• Accuracy loss (interpolation)
• Loss of mass conservation
• Decrease of robustness
• Performance overhead

1.2 Project background

This PhD project is a collaboration between the University of Southampton in the

UK and MARIN (Maritime Research Institute Netherlands) in the Netherlands and

funded by MARIN and by the UKRI (UK Research and Innovation) more specifically

the EPSRC (Engineering and Physical Sciences Research Council). Its original impulse

was to add overset method capabilities to ReFRESCO, the finite volume CFD solver

developed by MARIN and its partners. As such, time was spent in the University of

Southampton, MARIN but also in WavEC and blueOASIS in Portugal, the later two

being development partners of MARIN and ReFRESCO.

1.3 Aim & Objectives

The aim of the project is to develop an efficient and accurate overset method, particularly

targeted towards maritime applications. As seen in the first section of this Chapter, the

overset method brings many possibilities in terms of computation complexity or ease

of mesh generation, but also comes with several challenges like performance overhead,

accuracy loss or robustness issues. The developed method should then be made more

reliable by quantifying and reducing the errors associated with it, and more efficient by

minimising its computational cost. Detailed objectives are as follow:

1.4. Publications 9

• Design and implement a novel overset method for unstructured grid

solvers targeted to maritime applications. This work should produce a de-

tailed description of the overset method architecture chosen and justify the design

choices made.

• Assess the robustness, accuracy and efficiency of overset methods. An

overset method should be robust to various mesh assemblies and reliably maintain

the accuracy of the underlying discretisation. Finally, this should be achieved

with minimal performance overhead. When analysing errors, emphasise should be

given to quantifying and qualifying error generation and propagations to better

understand the influence of the overset method on the solution.

• Draw guidelines on the usage and implementation of the overset method

for maritime applications. Overset capable solvers often implement several

interpolation methods though the impact of this choice is not often known well

enough. Guidelines should help users as well as advise overset method developers.

• Help the research community by producing opensource tools to assist

code Verification and uncertainty quantifications. As every new implemen-

tation needs to perform error assessment and uncertainty quantifications, tools

developed and used in the present research should be published to better help the

community.

• Push for higher error analysis standards in maritime CFD. Verification

and Validation should be done thoroughly to show how useful and efficient the

methodologies are at helping research.

1.4 Publications

As part of this research, two journal papers and four conference papers were published

or have been submitted:

• Lemaire S., Vaz G., Turnock S. Implementation and Verification of an Explicit

Overset Grid Method. 2018. 21st Numerical Towing Tank Symposium (NuTTS).

• Lemaire S., Vaz G., Turnock S. On the Need for Higher Order Interpolation with

Overset Grid Methods. 2019. 22nd Numerical Towing Tank Symposium (NuTTS).

• Lemaire S., Vaz G, Deij-van Rijswijk M., Turnock S. On the Accuracy, Ro-

bustness, and Performance of High Order Interpolation Schemes for the Overset

Method on Unstructured Grids. 2022. International Journal for Numerical Meth-

ods in Fluids. Volume 94, Issue 2. DOI: 10.1002/fld.5050

https://doi.org/10.1002/fld.5050

10 Chapter 1. Introduction

• Klapwijk M., Lemaire S.. And. . . Action! Setting the Scene for Accurate Visual

CFD Comparisons Using Ray Tracing. 2021. Journal of Marine Science and

Engineering. Volume 9, Issue 10: 1066. DOI: 10.3390/jmse9101066

• Gomes T., Lemaire S., Vaz G., Lau F. Verification Study of Sliding and Overset

Grid Methods using the Method of Manufactured Solutions on a Wind Turbine

flow. 2021. 23rd Numerical Towing Tank Symposium (NuTTS).

• Gomes T., Lemaire S., Vaz G. Code and Solution Verification of Sliding and

Overset Grid Methods on Wind Turbine Flows. 2022. ASME 41th International

Conference on Ocean, Offshore and Arctic Engineering.

• Lemaire S., Vaz G., Deij-van Rijswijk M., Turnock S. Influence of Interpola-

tion Scheme on the Accuracy of Overset Method for Computing Rudder-Propeller

Interaction. 2023. Journal of Verification, Validation and Uncertainty Quantifi-

cation. Volume 8, Issue 1: 011002. DOI: 10.1115/1.4056681

1.5 Novelty

This research brought several new aspects to the field of CFD and the study of overset

meshes in particular, namely:

• The usage of Verification procedure and in particular of complex RANS manufac-

tured solution for the analysis of overset mesh method errors.

• The thorough and systematic analysis of a wide range of overset interpolation

schemes, from first to fourth order accurate.

• The quantification of absolute errors as well as uncertainties on integral quanti-

ties, mass fluxes imbalance, instantaneous and time averaged coefficients and error

propagations on a variety of flows.

• The qualification of overset error sources and propagations patterns depending on

the scheme and the flow characteristics.

• The release of two opensource tools to help Verification; PyMMS [65] for the

generation of manufactured solutions, and PyTST [66] for the computation of

statistical uncertainties. Since their release, both of them have been used in the

literature, by Gomes et al. [44, 45] for PyMMS and by Lidtke et al. [67], Klapwijk

et al. [59] and Wang et al. [128] for PyTST.

• The design and publication of the code architecture of a novel overset method.

• The publication of a set of guidelines on overset interpolation schemes taking into

consideration their accuracy, robustness and performance [63, 64].

https://doi.org/10.3390/jmse9101066
https://doi.org/10.1115/1.4056681

1.6. Structure of the Thesis 11

1.6 Structure of the Thesis

After this introduction chapter, Chapter 2 establishes the main theoretical foundation

for the CFD computations used in this work. It presents the finite volume approach of

solving Navier-Stokes and highlights the connections with the overset method. It also

includes a description of the CFD solver used throughout this work.

Since the study of overset interpolation errors is critical to the accuracy quantification

of an implementation, it is important to also study the other error sources appearing

in CFD computation. To this end, Chapter 3 explains the principle of Verification,

Validation as well as the different error sources appearing in any CFD computation.

This Chapter then details the method used to perform code Verification on complex

test cases: the method of manufactured solutions. Lastly, two opensource tools to first

generate manufactured solutions and second to quantify statistical uncertainties are

presented.

The decisions made during the implementation of the overset method directly affect the

efficiency and accuracy of the computations. Chapter 4, then, explains in a literature

review some design choices made by other CFD solvers and goes into further details

with the implementation done as part of this work.

Next, the three following Chapters test the accuracy and robustness of the newly devel-

oped overset implementation with increasingly complex and realistic test cases. Chapter

5 assesses the implementation correctness of the different interpolation schemes in isola-

tion, outside of any overset or CFD computation. Moreover, this Verification step allows

to draw some preliminary conclusions on the robustness of some schemes. Then, Chap-

ter 6 performs code Verification on actual overset CFD computation of a Poiseuille flow

– a steady, 2D, low Reynolds number test case – followed by the study of a 3D unsteady

high Reynolds number RANS manufactured solution representing a recirculation bub-

ble. The Verification is enabled by the fact that, for both test cases, an exact analytical

solution is known, hence allowing for the errors to be probed in the entire domain. This

leads to a detailed understanding of their propagation and sources. Lastly, Chapter 7

studies the real life example of a rudder behind a propeller at a drift angle. This final

test case permits to draw conclusions more directly applicable to overset method users

helped with the knowledge gained by the previous Verification.

In each of the results chapters a wide range of interpolation schemes are tested, their

difference in terms of robustness and accuracy are, however, not enough to draw useful

guidelines as these need to be analysed in lights of their respective performance overhead.

This is the reason why Chapter 8 studies the performance and parallel scalability of all

the components composing any overset implementation, with a focus on the interpolation

schemes themselves to help decision making.

12 Chapter 1. Introduction

Finally, Chapter 9 draw concluding remarks on the methodology developed in this work

as well as precise guidelines for overset users and developers with a focus on maritime

CFD.

One can note that literature reviews are performed throughout the thesis covering areas

relevant for the discussion at hand.

13

Chapter 2

Fundamentals of finite volume

CFD and overset method

Mesh based CFD solvers are all built upon common principles, they, however, do not

exactly share the same methodologies. Some of them trade the versatility of unstructured

meshes for the potential increased accuracy of structured meshes for example. Simi-

larly, most solvers share the same overall solving mechanism without sharing exactly the

specifics of their discretisation methods.

Instead of providing an exhaustive list of methods to build a CFD solver, which is avail-

able in the literature [40], this Chapter details all the core steps common to any solvers as

well as some specific components particularly interesting for the overset method in gen-

eral, the implementation done as part of this work or the test cases and methodologies

that are part of this thesis.

This Chapter begins with details about the CFD solver used for this work with section 2.1.

Then, section 2.2 presents the governing equations solved by CFD codes followed with

section 2.3 detailing the methods used to numerically solve the previously mentioned

governing equations. Next, section 2.4 shows the structures of CFD solvers and how

equations are solved on HPC systems. Finally, section 2.5 gives an overview of the

overset method and how it is integrated with a CFD solver.

2.1 Baseline CFD solver

The research conducted in this work is done on an existing CFD solver: ReFRESCO

(REliable & Fast Rans Equations (solver for) Ships (and) Constructions Offshore) [122].

It is a research and commercial CFD code optimised, verified and validated for maritime

applications. It is being developed, verified and validated at MARIN1 in collaboration

1https://marin.nl

https://marin.nl

14 Chapter 2. Fundamentals of finite volume CFD and overset method

with several other organisations like IST (Instituto Superior Técnico in Lisbon, Portu-

gal), the University of Southampton in the UK, TU Delft (Technical University of Delft,

the Netherlands) or blueOASIS in Portugal.

ReFRESCO is a viscous-flow CFD code that solves multiphase (unsteady) incompress-

ible flows using the Navier-Stokes equations, complemented with turbulence models,

cavitation models and volume-fraction transport equations for different phases. The

equations are discretised using a finite volume approach with cell centered collocated

variables, in strong conservation form, and a pressure correction equation based on the

SIMPLE algorithm is used to ensure mass conservation [58]. Time integration is per-

formed implicitly with 1st or 2nd order backward schemes. At each implicit time-step,

the non-linear system for velocity and pressure is linearised with Picard’s method and

either a segregated or coupled approach is used. In the latter, the coupled linear system

is using a SIMPLE-type preconditioner. A segregated approach is always adopted for

the solution of all other transport equations. The implementation is face based, which

permits grids with elements consisting of an arbitrary number of faces (hexahedrals,

tetrahedrals, prisms, pyramids, etc.), and if needed h-refinement (hanging nodes).

Moving, sliding and deforming grids, as well automatic grid adaptation were available

before the current work and coupling with structural equations-of-motion (rigid-body

6DOF), and flexible-body FSI is possible. Code parallelisation is done using MPI (Mes-

sage Passing Interface) and domain decomposition computed by ParMETIS [110]. The

core of the code is mainly implemented in free form Fortran 2003 with some module

taking advantage of Fortran 2008 and 2016 standards.

2.2 Governing equations

This section presents the governing equations that dictate fluid behaviours, the notation

employed follows the one used in Ferziger and Peric [40].

2.2.1 Navier-Stokes

Fluid dynamics is based on conservation principles, stating that mass, momentum or

energy are conserved over time. In this section they are all applied to ‘control volumes’

which is a spacial region of the domain. First, the conservation of mass also called

continuity equation can be written as:

∂

∂t

∫

Ω
ρdΩ+

∫

S
ρv · ndS = 0. (2.1)

2.2. Governing equations 15

It can be interpreted as follow: for a control volume Ω, the evolution of its mass over

time (first term) is equal to the mass fluxes that go through the control volume surface

S (second term). Hence at any given time, in order to conserve mass, for any control

volume Ω, this equation has to be satisfied.

Then, the conservation of momentum is the second fundamental equation of CFD, it

is derived from Newton’s second law of motion: dmv
dt =

∑
f, and applied to a control

volume Ω results in:

∂

∂t

∫

Ω
ρvdΩ+

∫

S
ρvv · ndS =

∑
f. (2.2)

The right hand side is constituted by surface forces acting on the control volume like

pressure, normal and shear stresses etc. or volume forces like gravity. It can be shown

that these forces can be written as:

∑
f =

∫

S
T · ndS +

∫

Ω
ρbdΩ. (2.3)

With b representing the volume forces per unit mass and T defining the surface forces

due to pressure and stresses, it is the molecular rate of the transport of momentum. By

assuming that the fluid is Newtonian, T can be written as:

T = −
(
p+

2

3
µ div v

)
I+ 2νD, (2.4)

D =
1

2

[
grad v+ (grad v)T

]
, (2.5)

with p the static pressure, ν the dynamic viscosity, I the unit tensor and D is the strain

rate tensor.

The equations governing the conservation of mass and the conservation of momentum

are called the Navier-Stokes equations.

2.2.2 General transport equation

Besides mass and momentum, the concept of conservation can be applied to other scalar

quantities, and, in a similar fashion, a generic transport equation for a quantity ϕ can

be derived:

∂

∂t

∫

Ω
ρϕdΩ+

∫

S
ρϕv · ndS =

∑
fϕ. (2.6)

16 Chapter 2. Fundamentals of finite volume CFD and overset method

fϕ represents the transport of ϕ besides convection, this includes its production or de-

struction as well as its diffusion. Since diffusion is always present, a generic definition

of fd
ϕ is as follows, using a gradient approximation:

fd
ϕ =

∫

S
Γgradϕ · ndS. (2.7)

With Γ the diffusivity of ϕ.

2.2.3 RANS approach to turbulence modelling

Turbulent flows are very common in engineering applications and in maritime ones in

particular as they appear in wakes of hydrofoils, ships, propellers or offshore structures.

Turbulence itself is characterised by being a highly unsteady three dimensional flow be-

haviour, often used as an example for chaotic phenomena. However, it presents coherent

structures and a large range of time and length scales. Since fully resolving turbulence is

not yet a realistic approach for engineering problems due to the computational resources

required, modelling turbulence partially or entirely is needed.

Instead, because instantaneous fluctuating quantities are not always needed in engi-

neering context, the RANS (Reynolds Averaged Navier-Stokes) approach simplifies the

equations by considering time averaged and ensemble averaged quantities instead. Since

the complexity of turbulence lies in these unsteadinesses removing them simplifies the

requirements in terms of mesh densities and time-steps, hence decreasing the compu-

tational cost. When introducing ‘Reynolds averages’ in the Navier-Stokes equations

however, new terms appear that require modelling to be handled. The different RANS

turbulence models then differ from one another by the way and complexity these new

terms are coped with.

In detail, the RANS approach decomposes any quantity as the sum of a time averaged

or ensemble averaged one and a fluctuating one:

ϕ(x, t) = ϕ(x) + ϕ′(x, t) (2.8)

with ϕ(x) a time average in case of a steady flow, or an ensemble average (also called

‘Reynolds average’) for an unsteady flow, and ϕ′(x, t) the fluctuating part. For example,

it follows that ϕ′ = 0.

By replacing each term by the sum of its averaged and fluctuating components in the

Navier-Stokes equations presented in the previous section, and removing null terms, the

following equations are found for incompressible flows without body forces in Cartesian

coordinates:

2.3. Numerical methods 17

∂(ρui)

∂xi
= 0, (2.9)

∂(ρui)

∂t
+

∂

∂xj

(
ρuiuj + ρu′iu

′
j

)
= − ∂p

∂xi
+

∂τ ij
∂xj

, (2.10)

With τ ij the mean viscous stress tensor components:

τ ij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.11)

And for a generic scalar field ϕ:

∂(ρϕ)

∂t
+

∂

∂xj

(
ρujϕ+ ρu′jϕ

′
)
=

∂

∂xj

(
Γ
∂ϕ

∂xj

)
. (2.12)

In these equations, the Reynolds stresses, ρu′iu
′
j , and turbulent scalar flux, ρu′iϕ

′, ap-

pear and cannot be expressed by mean quantities or simplified. Therefore, a model is

needed to close the system of equations. One common approach is to use the Boussi-

nesq hypothesis, which introduces the following relation to approximate the Reynolds

stresses:

−ρu′iu
′
j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρδijk. (2.13)

This new equation, however, introduces two new quantities, the eddy viscosity, µt, and

turbulent kinetic energy, k, both requiring transport equations to be solved. The way

these new quantities are modeled is where most RANS turbulence models differ. One

equation models like the Spalart-Allmaras [117] and Menter [73] both focus on the eddy

viscosity ignoring the kinetic energy term. Then two equations models like the k−ω SST

from 2003 [74] or k −
√
kl [75] models for example introduce two transport equations

from which µt and k can then be deduced. Because approximations are made with the

use of models, each model has a range of applications for which it is designed and has

been validated and calibrated against.

2.3 Numerical methods

The governing equations presented in the previous section are partial differential equa-

tions for which exact solutions are most of the time unknown. Solving them numerically

is then the only possible option, and it relies on both space and time discretisation. To

achieve this, several methods can be employed. As seen in Chapter 1 a mesh based

18 Chapter 2. Fundamentals of finite volume CFD and overset method

Eulerian approach is used in this work, more particularly space discretisation follows

the finite volume method.

2.3.1 Finite volume method

The finite volume approach discretises the solution domain into control volumes or cells

forming a mesh. As seen in Figure 2.1, cells do not overlap and each cell face is shared by

two cells except on domain boundaries. That way, each point of the domain is inside one

and only one cell. In the method presented here, and used for this study, the cell centres

hold a computational node where each quantity is recorded (like p, v etc.), though other

implementations may choose cell vertices to assume this role.

n

Figure 2.1: Example of cell acting as a control volume with the finite volume approach.

Since each cell defines a control volume, the equations presented in the previous section

have to hold true for every single one of them. Taking as an example the integral form

of the conservation of a quantity ϕ for a steady flow:

∫

S
ρϕv · ndS =

∫

S
Γgrad(ϕ) · ndS +

∫

Ω
qϕdΩ. (2.14)

With S the surface area of the control volume, n the control volume normal pointing

outwards and Ω defining the control volume. In order to solve this equation each term

has to be analytically computed which is done by approximating the integrals.

The integral approximation can be done in many different ways and has an influence

on both the accuracy of the solution and the robustness of the solving mechanism.

Assuming the cell centre value is known, the simplest way to compute a volume integral

is to multiply the cell centre value by the cell’s volume:

∫

Ω
qdΩ ≈ qp∆Ω, (2.15)

where qp is the value of q at the cell centre and ∆Ω is the volume of the cell. Similarly,

surface integrals can be approximated using each face surface area and the value of the

2.3. Numerical methods 19

quantity of interest at its centre:

∫

S
fdS ≈

∑

faces

fcSf , (2.16)

with fc the value of f at the face centres and Sf the face’s area. Unlike with the

volume integral, however, face centre’s values are usually not known and need to be

reconstructed from the neighbouring cell centre’s values. Once again, a wide range of

schemes exist to perform face centre reconstructions and detailing them is out of the

scope of this Chapter.

As stated in Chapter 1, meshes can be structured or unstructured, and this has an

influence on the scheme that can be used. Figure 2.2 shows an example of both types,

in 2D. Structured meshes enforce each interior cell to have exactly four neighbouring

cells (and six in 3D). On the other hand, unstructured meshes do not have any formal

limitations on the number of faces or neighbours per cell, hence allowing for a greater

versatility in the mesh topology and easier mesh generation. By having a fixed number

of neighbours per cell and such cell organisation, structured meshes can, however, benefit

from more powerful schemes. This is mainly because, unlike with unstructured meshes,

each cell’s second, third, etc. layer of neighbours are trivially easy to gather and use

without storing any extra connectivity information. For this reason, on unstructured

meshes (and associated code), the accuracy of the surface integrals and face centre are

either 1st or 2nd order as higher order would require more knowledge than the direct

neighbours for each cell. 1st order schemes, albeit being less accurate, are still used for

their better robustness.

(a) Structured grid (b) Unstructured grid

Figure 2.2: Example of 2D structured and unstructured meshes.

2.3.2 Gradient computation

Either because it directly appears in the transport equation or because it is needed to

apply corrections (like cell excentricity or non-orthogonality) and approximate integrals,

20 Chapter 2. Fundamentals of finite volume CFD and overset method

the gradient of any quantity is needed when solving numerically the Navier-Stokes equa-

tions. One common way to compute them is to rely on the Gauss’s theorem which links

the surface integral of a quantity and the volume integral of its gradient:

∫

Ω
grad(f) dΩ =

∫

S
fndS (2.17)

with n the outward normal facing normal and f the quantity of interest. Taking the same

assumptions regarding volume and surface integrals as stated in the previous sections

results in:

grad(f) ≈ 1

∆Ω

∑

faces

fcnS. (2.18)

Then, if the face centre and volume integral approximations are 2nd order accurate, the

resulting gradient computation is also 2nd order accurate. Once again, several alternative

methods exist for computing the gradient of a quantity in a finite volume context.

2.3.3 Time discretisation

Similarly to space, for unsteady flows, time also needs to be discretised to solve Navier-

Stokes equations. This is usually done using a single, constant, time-step (tstep) through-

out the entire computation, and, each step, equations are solved taking into account

previous ones. In this work, the ‘Three time level Method’ is used and is presented in

this section. It is a fully implicit scheme meaning that, to compute time-step n+1, fluxes

and other quantities are also evaluated at time-step n+ 1, contrary to explicit schemes

for which the solution at time-step n + 1 directly depends on quantities computed at

time-step n. The implicit formulation allows the scheme to be unconditionally stable

regardless of the time-step size (tstep) picked, allowing for larger time-steps to be used.

For example, when taking the differential form of the transport equation for a generic

quantity ϕ:
∂ρϕ

∂t
= −div(ρϕv) + div(Γgrad(ϕ)), (2.19)

the three time level method would result in the following discretisation:

ρ
3ϕn+1 − 4ϕn + ϕn−1

2tstep
= −div(ρϕn+1v) + div(Γgrad(ϕn+1)), (2.20)

and, by re-arranging the terms:

ρ
3

2tstep
ϕn+1 + div(ρϕn+1v)− div(Γgrad(ϕn+1)) =

2ρ

tstep
ϕn − ρ

2tstep
ϕn−1. (2.21)

2.4. Resolution of equations and CFD code structure 21

With ϕn denoting the value of ϕ at time-step n. This means that, for this scheme, the

value of ϕ of the current (n) and previous (n− 1) time iterations are needed to compute

the next one (n + 1). Compared to an explicit scheme, this results in a larger storage

requirement, though, besides being stable due to its implicit nature, this scheme is also

2nd order accurate.

2.4 Resolution of equations and CFD code structure

Once all the equations are discretised in both time and space, as seen in the previous

section, the system of equations can be solved. In this section, details are given regarding

the solving mechanism, the general structure of a CFD solver and the challenges brought

by parallel resolution on HPC systems.

2.4.1 Linear system of equations

For each cell of the domain, a set of coupled algebraic equations needs to be solved.

Moreover, for each cell, its neighbouring cells centre values appear in its own equation,

effectively coupling all the algebraic equations together.

For each quantity, a matrix and its accompanying right hand side vector are built. The

matrix is square and has as dimension the number of cells in the domain. For example,

when considering cell i having two neighbouring cells j and k, the equation for the

quantity ϕ to be solved can be written as follow:

αiϕ
n+1
i + αjϕ

n+1
j + αkϕ

n+1
k = βnϕ

n
i + βn−1ϕ

n−1
i + q. (2.22)

Where αi, αj , αk, βn, βn−1 and q are coefficients that include a dependency to v, p,

etc. If a product of ϕ was present in the equation, a linearisation step is needed and it

would place one of the ϕ component inside the associated α or β coefficient. For each

quantity, the system of equation can be assembled into a matrix equation as shows here

for the quantity ϕ:

22 Chapter 2. Fundamentals of finite volume CFD and overset method




αj αk αi







ϕn+1
j

ϕn+1
k

ϕn+1
i




=



βnϕ

n
i + βn−1ϕ

n−1
i + q




, (2.23)

Aϕn+1 = b. (2.24)

It can be noted that, because each cell has a limited number of neighbours, matrix A is

sparse, moreover it has non zero diagonal elements. For efficiency reasons, and because

of the linearisation step, the system is solved iteratively using methods taking advantage

of such shape. If linearisation was needed the α and β coefficients are updated with the

latest ϕ value computed. At each step of the process, convergence can be monitored by

computing the residual vector ϵ defined by:

ϵ = Aϕ− b. (2.25)

This residual can then serve as a stopping criteria for the iterative resolution process. In

practice, the iterative resolution also often includes a pre-conditioning step that, with-

out changing the solution of the system, will modify A and b to improve robustness

and convergence. In this work, the B-Jacobi (for block-Jacobi) pre-conditioner is used

associated with GMRES (Generalised Minimal Residual Algorithm for Solving Nonsym-

metric Linear Systems) [109] method for solving all equations except the continuity one

for which the conjugate gradient method is used instead.

2.4.2 General structure of CFD solvers

Solving each quantity individually does not couple them, the pressure, for example, de-

pending on the velocity and vice versa. The coupling is done in a segregated way, solving

each equation in turn. More precisely, the momentum and continuity equation, solving

for the velocity and pressure correction, are solved first using, in this work, the SIM-

PLE (Semi-Implicit Method for Pressure Linked Equations) [40] algorithm. Then any

additional equation (for turbulence quantities for example) is solved subsequently. This

process then loops until a convergence stopping criteria is reached before advancing to

2.4. Resolution of equations and CFD code structure 23

the next time-step. This stopping criteria is either residual based, i.e. once each equa-

tion’s residuals reaches a user-defined threshold the time-step advances, or directly after

a set number of iteration has been performed. These set of loops are called outerloops.

Figure 2.3 summarises the structure of the different iterative processes involved in a

CFD computation.

Time step initialisation
Time step

Non-linear iteration (outerloop)

Iterative solver (innerloop)Solve momentum

Solve pressure correction

Solve turbulence quantities

Initialisation

Figure 2.3: Summary of the different iterative processes appearing in a CFD computation.

2.4.3 HPC parallelisation

Modern HPC architectures use an aggregation of compute nodes, each of which is com-

posed of one or multiple CPUs, each then with the capability of running multiple pro-

cesses in parallel. CFD solvers need some adaptation in their resolution to accommodate

for it. While such architecture allows great versatility in the raw performance that can

be assigned to a computation by modifying the number of CPU cores used, it has some

limitations. Namely, the memory is shared only amongst each node, and MPI (Message

Passing Interface) is needed for inter-node communication. In order to optimise the

available resources the load of the computation needs to be balanced evenly on each

processing core. This is achieved with domain decomposition. Instead of solving the

entire problem at once, the mesh supporting the computational domain is subdivided

and each processing core is assigned a partition of it. Good load balancing is achieved

when each processing core is assigned the same number of cells. To this end, parti-

tioning algorithms are utilised, in this work this step is handled by the external library

ParMETIS (Parallel Graph Partitioning and Fill-reducing Matrix Ordering) [110].

Effectively, with domain decomposition, a global matrix system as showed in equation

2.23 is never generated and solved, instead, each processing core assembles a matrix

containing the cells that are part of their domain. Communication between the different

sub-domains is achieved by adding ‘ghost cells’ at their border that duplicate the data

located on a neighbouring sub-domain like presented in Figure 2.4. Because inter-node

communication, which is at the core of the parallelisation, is an expensive step the

partitioning algorithm, besides maintaining load balancing, also tries to minimise the

24 Chapter 2. Fundamentals of finite volume CFD and overset method

amount of ghost cells needed. After each innerloop, ghost cells are updated to account

for the updated field of each domain. Further details can be found in Hawkes [48] and

Hawkes et al. [49] as they provide state of the art overviews of CFD performance on

HPC.

Ghost cell

Cell duplicated by a ghost cell

Parallel communication

Proc 1 Proc 2

Proc 3
Figure 2.4: Parallel domain decomposition with three processes showing ghost cells and parallel

communications.

2.5 The overset method

The overset grid method, also called chimera method, works by overlapping several

meshes in a single computation allowing easier mesh generation and their arbitrary rela-

tive motion, allowing in turns relative motion of bodies. The method dynamically assigns

status to particular cells to generate an interface where information can be exchanged

between meshes. On most cells, the finite volume method is solved as presented in the

previous sections, but, at the fringe of each mesh, cells receive interpolated information

from another mesh to ensure the continuity of the domain. Due to the overlap, other

cells need to be disabled. Overall, each cell in the domain is assigned a status with the

following nomenclature:

• Hole cell: a field cell that is outside the boundary of the domain. It can come

from a grid entirely embedded in another one (the background grid will have hole

cells), or from a grid being partially outside the boundary of the domain.

• Fringe cell (also called receptor cell in the literature): a fringe cell is a cell adjacent

to a hole or at the boundary of an embedded grid. It will act as boundary cell

2.5. The overset method 25

for its grid and get its field value from the interpolation of donor cells of another

mesh.

• Orphan cell: an orphan cell is a fringe cell that does not have enough donor

cells to compute its interpolated value. Orphan cells exist when grids don’t have

enough overlap or when the position of hole cells was not correctly computed.

As a fallback, its field value is usually then computed as the average of its direct

neighbouring cells.

• In cell: this is a traditional cell, every cell that is not a hole, a fringe or an orphan

cell will be an in cell. The finite volume method is solved conventionally without

any special treatment related to the overset grid assembly.

fringe
hole
donor
interpolation

Figure 2.5: Example of overset assembly with its nomenclature. Donor cells for the top left
fringe cell are displayed.

Figure 2.5 shows an example of a mesh assembly, with two cartesian meshes overlapped.

The background mesh contains hole cells as well as two layers of fringe cells around it to

act as the boundary and the foreground one also has two layers of fringe cells along its

boundary. Having two layers allows for the gradient to be computed accurately as the

fringe cells directly next to in cells are surrounded by either in or fringe cells. Finally, an

example of a set of donor cells is presented with the, here, six cells used to compute the

interpolated value of the top left fringe cell. Any in cell can be a donor cell and a donor

cell can be used for several fringe cells interpolations. The DCI (domain connectivity

information) is the name given to the specification of fringe, hole and orphan cells,

sometimes associated with interpolation weights and donor cells. It is computed only

based on the geometry and topology of the different grids using a ‘hole cutting’ algorithm

and hence needs to be recomputed each time there is grid motion, which is usually every

time-step. Details about how cells status are computed is out of the scope of this work

but detailed algorithms can be found in the literature [19, 86, 88, 107]. Finally, different

interpolation schemes used in an overset context are presented in Chapter 4 section 4.4.

26 Chapter 2. Fundamentals of finite volume CFD and overset method


 0 0 1 0

Mesh A 0

Mesh B 0





ϕnl

i




=


f(ϕnl−1

j , ϕnl−1
k)




Figure 2.6: Explicit formulation of an overset coupling with two meshes (A and B). ϕ is the
quantity to be solved, nl the current outer iteration, i the index of a fringe cell from Mesh B and
j and k its associated donor cells from Mesh A. Finally f is the overset interpolation function.

To incorporate the cell status information and interpolated data inside the solver and

perform the actual coupling between meshes two approaches can be used; either explicitly

or implicitly. In both cases, it involves modifying the matrix system of equation from

equation 2.23 as, for example, fringe cells do not depend on their neighbours anymore.

In an explicit form, the interpolated values are placed on the right hand side of the

system of equations and a unitary diagonal is used for fringe cells. This allows to

have minimal changes on the system of equations and matrices. The right hand side

interpolation is then updated every outerloop from the new data of the donor cells. This

coupling is presented in Figure 2.6, for the example using two meshes where cell i is a

fringe cell of Mesh B, cells j and k are its associated donor cells belonging to Mesh A

and f the interpolation function. If cells belonging to Mesh A and Mesh B are ordered

successively like it is the case here, because they do not share any ‘neighbours’ the top

right and bottom left corners of the system are filled with zeros. In this formulation, the

interpolation is lagging one outerloop (nl being the current outerloop index here) which

can slow down the iterative convergence. This has the benefits of large versatility in the

interpolation function f . Moreover, the structure of the matrix itself is not modified by

the method, when a cell becomes a fringe one (due to a mesh motion for example) the

modifications only affect the diagonal, right hand side and the locations associated with

the neighbours of the fringe (that need to be changed to zeros).

Contrary to an explicit coupling, with an implicit one, the interpolation is not computed

directly, instead interpolation weights are placed on the left hand side of the system

as shown with Figure 2.7. With this method, the interpolation has to be a linear

combination of the donor cells’ values, and is defined here by: ϕnl
i = wjϕ

nl
j + wkϕ

nl
k ,

with i the fringe cell index, j and k the donor cells ones and wj and wk the associated

interpolation weights. Because updated information is used for the interpolation, this

coupling improves the iterative convergence of the resolution. At the cost, however, of a

more complex implementation – the matrix layout being modified –, and more expensive

innerloops. This added computational cost comes from having to update donor cell data

2.5. The overset method 27


 −wj −wk 0 0 1 0

Mesh A

Mesh B







ϕnl
j

ϕnl
k

ϕnl
i




=


 0




Figure 2.7: Implicit formulation of an overset coupling with two meshes (A and B). ϕ is the
quantity to be solved, nl the current outer iteration, i the index of a fringe cell from Mesh B
and j and k its associated donor cells from Mesh A with wj and wk the interpolation weights.

The interpolation is then defined by ϕi = wjϕj + wkϕk.

within innerloops using parallel communications whenever the fringe and donor cells are

not stored and solved on the same processing core. In terms of accuracy, however, when

iteratively solved to the same residual levels, the two methods should give the same

solution within the margin of the iterative error.

Finally, the two approaches can be used together as some interpolation schemes may

have a linear component that would be implicitly handled (by modifying the matrix)

and non-linear ones that will be placed to the right hand side. Moreover, solver may

choose to handle some equations with implicit formulations and others explicitly to

improve iterative convergence only for the most challenging ones and benefit from the

performance gain for the other ones.

To summarise, Figure 2.8 shows the structure of a CFD solver with an explicit overset

implementation when mesh motion is performed every time-step. Details concerning

implementation decisions and interpolation methods are given in Chapter 4.

28 Chapter 2. Fundamentals of finite volume CFD and overset method

Mesh motion
Time step

Non-linear iteration (outerloop)

Iterative solver (innerloop)

Solve momentum

Solve pressure correction

Solve turbulence quantities

Hole cutting (DCI)

Compute interpolation

Update fringe cells

Initialisation

Figure 2.8: Solution workflow with explicit overset coupling. Steps marked in blue are specific
to an overset computation.

2.6 Summary

As seen in this Chapter, CFD solvers are complex pieces of software with many dif-

ferent components that interact with each other. For example, the construction of the

resolution matrix is influenced by the time and space discretisation schemes, the mesh

topology, parallelisation, and overset connectivity information. Additionally, all the dif-

ferent components must cope with domain decomposition and, if possible, rely only on

local information rather than integral quantities. In the process of developing a CFD

solver from the continuous Navier-Stokes equations, several approximations are made.

The next Chapter is dedicated to the analysis of these approximations and the errors

associated with them.

29

Chapter 3

Verification and Validation

Any numerical simulation comes with assumptions and approximations that lead to inac-

curacies affecting the produced results. In order to ensure the reliability of a computation

it is essential to study the error sources and their importance. Following Roache [104]

nomenclature an error is the signed difference between the computed solution and an

exact value. That exact solution might, however, not always exist, if so, uncertainties

can still be computed and used as they define an interval where the exact value should be

within a certain degree of confidence (usually 95%).

Verification is a purely mathematical study where numerical errors or uncertainties are

quantified. It does not depend on any experimental data but when possible an analyti-

cal exact solution might be used to compute errors, this is called code Verification. The

quantification of error uncertainties without the knowledge of an exact values is called so-

lution Verification. Validation, on the other hand, requires experimental data to compare

to as it is meant to quantify how physically accurate a computation is. Since numerical

errors are always present, Verification should always be performed prior to any Valida-

tion study. In this Chapter, the different error sources appearing in a CFD computation

are introduced together with methods designed to quantify errors and uncertainties. Fi-

nally, two open source tools developed to perform Verification studies in this work are

presented.

3.1 Error sources

3.1.1 Round off error

Round off errors relate to the number of digits or resolution available when manipulating

numbers due to the finite representation of numbers by computers. This type of error

cannot be measured as it would require infinite precision to reach the ‘exact’ solution, and

30 Chapter 3. Verification and Validation

therefore estimating the round off uncertainty is then only possible by running several

computations using different precisions (like single, double or quadruple precision) and

estimating the error. The single, double etc. precision refers to the number of bits used

to encode a float number in the computer memory. A single precision float, for example,

uses 32-bit when double precision one uses 64-bit.

As it is commonly accepted, for practical CFD applications, double precision arithmetic

errors should be suitably small to be negligible compared to other sources [34]. Hence, in

this work, double precision is used and the round off errors are not further investigated.

It should be noted, however, that as meshes get finer and higher order interpolations

are needed, double precision inaccuracies might start to become predominant [33].

3.1.2 Iterative error

As seen in Chapter 2, in CFD, iterative methods are used both in linear resolution of the

transport equations (innerloops) and, in segregated implementations, within non-linear

steps (outerloops). Both these iterative processes contribute to the iterative errors. In

theory they could be reduced to machine accuracy and reach the round off error. In

practice, however, the complexity of the problems prevents such convergence. Either

equations cannot be converged that low or it would require a number of iterative steps

too high making the computation not worth the accuracy gain. The iterative process

has to be stopped once a ‘satisfactory’ level of error is achieved. From Eça and Hoekstra

[33], the iterative error needs to be at least two or three orders of magnitude smaller

than the discretisation error to be considered negligible.

To quantify the iterative error, a computation reaching residuals of the order of the round

off error is needed. Because it is not practical for most engineering problems, methods

like the one presented in Eça et al. [39] are used. By running computations varying

the number of iterative steps (or of residuals), iterative uncertainty can be estimated.

Figure 3.1 shows the method described by Eça et al. [39] in which the quantity of interest

(here KT) is plotted against residual levels which are here controlled by the number of

outerloop (nloop) per time-step. From the error modelling an uncertainty estimation

can be computed for each residual level and is presented with the vertical bars. This

example is detailed in Chapter 7.

It should be noted that, even though there is a relation between the residual levels and

the iterative error, there is no quantitative law linking the two quantities. From a single

computation, the only conclusions that can be drawn are qualitative: lowering residuals

leads to a decrease in the iterative error.

3.1. Error sources 31

150 75 50 25
nloop per time-step

0 1 2 3 4 5
hi

0.269

0.270

K
T

Uitr = 0.19%

Figure 3.1: Integral quantity convergence with residual decrease (hi being a metric of the
residuals level) and uncertainty computed as per Eça et al. [39] methodology.

3.1.3 Discretisation error

The discretisation of partial differential equations in space and time is an approximation

to their continuous nature and the source of the discretisation errors. Its study is of

particular importance as it is usually (or should be) the predominant error source in

CFD computations. Space discretisation is governed by two aspects: the grid quality

which include cell sizes, their shape and the mesh topology (presence of hanging nodes

or highly skewed cells etc.) as well as the schemes used for the discretisation. In

unsteady computations, time discretisation is, similarly, governed by the time-step size

and the time discretisation scheme. In order to estimate it, systematical grid and time-

step refinements are often used, and, as an example, the method proposed by Eça and

Hoekstra [34] models the error using a truncated power series expansion. For space

discretisation the error is estimated by:

ei = αhpi + o(hp+1
i), (3.1)

with α a constant, p the observed order of convergence, and hi the typical cell size.

This model assumes that the set of grids used are in the asymptotic range to justify the

use of power series expansion and that the grid’s density can be represented by a single

parameter (the typical cell size). In practice, this translates to having geometrically

similar grids for which the grid refinement ratio is constant and cells from different

meshes have the same orthogonality, skewness, etc. On such meshes, hi can be defined

by: hi = 1/N
1/3
i in 3D or hi = 1/

√
Ni in 2D, with Ni the number of cells in grid i.

32 Chapter 3. Verification and Validation

By neglecting higher order terms, the order of convergence of two consecutively refined

grid is measured by:

ei
ei−1

=
α(hi)

p

α(hi−1)p

ei
ei−1

=
(hi
hi−1

)p

log
(ei
ei−1

)
= p log

(hi
hi−1

)

p =
log(ei

ei−1
)

log(hi
hi−1

)

(3.2)

If higher order terms can be neglected, the order p can be computed with any two

grids with different refinement. In practice, convergence studies are done with more

than two grids, and a least squares approach is used to compute the observed order

of convergence. Moreover, modelling the error using only equation 3.1 can be limiting

as real data may include noise and the fit not good enough to use the model. To this

end, Eça et al. [37] suggest additional fit functions of order below two to be used when

discretisation schemes are at most 2nd order. The methodology presented by Eça et al.

[37] is used to estimate the discretisation error, the observed order of convergence but

also an estimation of the uncertainty as an interval that contains the exact solution

with 95% confidence. Even though this section mainly mentioned space discretisation,

a similar procedure can be adopted with time discretisation by varying the time-step

instead of the typical cell size.

In this work, on cases where an exact solution is known, the exact discretisation error

can be computed directly and will be analysed, however, when such solution is not

known error estimations as well as uncertainties will be used following Eça and Hoekstra

[33], Eça et al. [37] methodology.

3.1.4 Overset interpolation errors

In an overset computation, the different meshes exchange information using interpola-

tion. Depending on the interpolation scheme used, the error generated varies and can

then propagate away from the overset interface. In itself, the overset interpolation error

should be part of the discretisation error, however, in this work, a distinction will be

made between the error generated by interpolation on fringe cells (called interpolation

error) and the space discretisation error common to any CFD computation related to

the use of cells in the rest of the domain.

3.1. Error sources 33

3.1.5 Statistical error

Because of the finite physical time of a computation, any time averaging is affected by

statistical errors. The longer the time averaging window, the smaller the statistical error.

However, the limit is often the available computational resources and simulation wall

clock time. Quantifying the error itself would need knowledge of the time average over

an infinite long period of time, hence only the statistical uncertainty can be computed.

In this work the method proposed by Brouwer et al. [11, 13] is used. It employs auto-

covariance and computes, from any time signal, a 95% confidence interval band around

the computed time average.

Any CFD computation is affected by startup effects, which are due to the unideal nature

of the initial conditions prescribed that pollute the first time-steps of the simulation.

When time averaging is needed, the signal has to be monotonous and this transient

portion discarded. Using its statistical uncertainty estimation, Brouwer et al. [12] devel-

oped a method to detect this transient portion called the Transient Scanning Technique

(TST). It works by computing the uncertainty on longer and longer portions of the entire

signal always including its end and displaying the successive uncertainties on a log-log

plot against the signal length. It is illustrated in Figure 3.2, where on the top a time

signal with an initial transient is present, and on the bottom, the TST analysis. The

-1 slope highlights a monotonous portion and the sudden rise of the uncertainty (called

hockey stick) corresponds to the initial transient that should be discarded.

0 2 4 6 8
t/T0

0.72

0.74

0.76

C
L

10−2 10−1 100 101

(T − t)/T0

10−3

10−2

U
95

%

Figure 3.2: Example of statistical uncertainty analysis performed using the Transient Scanning
Technique by [12] on a lift coefficient signal over time.

34 Chapter 3. Verification and Validation

3.1.6 Additional errors

Finally, additional error sources can be found:

• Programming errors: these come from bugs in the implementation of the CFD

solver itself and may affect the produced solution. Such errors can be checked

using code Verification. In this work it is performed in Chapters 6 using analytical

and manufactured solutions.

• Input errors: when two sets of data are produced in different ways (simulation

and experiments for example), some uncertainty is present in the input given to

the two sets. For example, the inlet velocity of a wind tunnel might have been

measured with its own uncertainty, hence, when replicating the setup in a CFD

computation, the inlet velocity cannot exactly replicate the experimental one. This

can be quantified using methods presented in Katsuno et al. [54] that estimates

the input uncertainty but is out of the scope of this thesis.

3.1.7 Modelling error

Modelling errors are due to physical approximations done when simplifying the models

to be implemented often to save computational resources. In this work, for example, the

RANS approach is used to perform turbulence modelling instead of solving it. Besides

the model themselves used to simplify physical phenomena, boundary conditions are

also approximated as physically accurate ones are not always obtainable.

Before analysing and assessing the modelling error via Validation, all the other numer-

ical error sources need to be contained or quantified using Verification. Validation is

then done by comparing computational results against either experimental data or more

accurate computations like DNS (direct numerical simulation). Following the ASME

V&V 20 standard [1] an procedure to estimate the interval that contains the modelling

error can be devised. It compares E = ϕCFD−ϕexp, the difference between the CFD and

experimental data for the quantity of interest ϕ with Uval the Validation uncertainty.

The latter is made of three components: Unum, the estimated numerical uncertainty

(from the CFD computation), Uexp the estimated experimental uncertainty and Uinput

the input uncertainty. [1] then proposes Uval =
√

U2
num + U2

input + U2
exp. The complex-

ity and potential cost of quantifying Uinput means that it is often assumed to be null

[33]. From these two quantities, different conclusions can be drawn:

• if |E| ≥ Uval: the modelling error is likely of similar magnitude to E, and, if

it is acceptably low for the practical purpose of the application, the model can

be accepted and considered good enough to capture the physics for the analysed

quantity.

3.2. Method of Manufactured Solutions 35

• if |E| ≤ Uval: if Uval is large no conclusion concerning the modelling error can

be drawn and the Validation uncertainty needs to be reduced (with improved

experiments or simulations). Otherwise, if Uval is small enough, then Validation

can be considered acceptable.

It should be noted that these conclusions mention ‘acceptably low’ quantities. These

need to be assessed in lights of the application and the precision required.

3.2 Method of Manufactured Solutions

The method of manufactured solutions or MMS is used to design (or manufacture) test

cases. The main benefit of this method is that an exact solution field is known for each

quantity (velocity, pressure etc.), hence the numerical errors can be probed in the entire

domain without modelling errors and without requiring estimations. On computations

that have negligible iterative and round off errors, the MMS allows direct access to

the discretisation error in the entire domain or, in an overset context, the sum of both

interpolation and discretisation errors.

MMS are traditionally used for code Verification [103, 105]: by checking that the con-

vergence order of the discretisation error is matching the discretisation scheme order,

one verifies that programming errors are, at most, also decreasing with the same order.

Gomes et al. [45] for example, designed a solution resembling a wind turbine flow to as-

sess interpolation errors when using either a sliding grid method or the overset method.

Lovato et al. [68] used the method for non-newtonian fluid code Verification of multi-

phase flows, allowing to highlight spurious velocities appearing at the free surface when

using the VOF (Volume of Fluid) method. Finally, Eça et al. [37] designed a RANS

turbulent manufactured solution of a recirculating bubble in a boundary layer also to

perform code Verification. This last solution is used in Chapter 6 to perform error anal-

ysis with overset meshes. Effectively, several code Verification studies have been done on

ReFRESCO using the method of manufactured solutions [33, 35–38, 44, 45, 68] which

give trust and credit to the tool on which the overset method is build upon.

The MMS works by adding a specific source term to each equation. Since the manufac-

tured fields are ‘user defined’ they do not verify the equations being solved. The source

term is needed to restore the equation balance. In practice, the design and use of a

Manufactured Solution is done in three steps:

• First, an analytical definition of each field quantity (velocity, pressure, eddy vis-

cosity, etc.) needs to be defined. In theory, the MMS is a purely mathematical

exercise, so the fields do not have to be physically realistic. However, testing the

models outside of their usual conditions can potentially lead to unexpected results

36 Chapter 3. Verification and Validation

[35]. Moreover, approaching real phenomena often results in stronger conclusions.

Therefore, fields are usually designed to be not too far from realistic physical

behaviours.

• Next, each equation being solved (momentum, continuity, turbulence model etc.)

needs to be analytically derived using the field quantities defined at the previous

step. This process can be done manually (like in [35]), or using a symbolic math-

ematics framework like Sympy [76] or Wolfram Mathematica [52]. The imbalance

in the equation is then equal to the source term.

• Finally, the source terms need to be added in the CFD solver system of equations,

they are placed on the right hand side of the system. As they are only a function of

space and time and, in particular, do not depend on the solution being computed

such source terms can often be easily added via the usercoding capabilities of the

CFD package.

By design, the MMS has some limitations though. Primarily, the analytical formulation

of each quantity used in the model equations needs to be differentiable in space and

time at least once, and twice for some quantities. Although some attempts were made

to overcome this limitation [105], these methods are not ubiquitous. Nathan Woods

and Starkey [83], for example, successfully designed an integral variant of the method

of manufactured solutions to perform Verification of shock-capturing codes. Then, the

models themselves need to be uniquely defined analytically. For example the use of

limiters (like the max() function) in some models is not compatible with the MMS, as

these functions are not differentiable since they do not have a unique definition of the

gradient. This was noticed by Eça et al. [35] when the CFD implementation of the

k − ω SST model was not producing the expected convergence order.

Even though the MMS is not widely used for maritime applications, it is, for example,

more common in aerospace engineering [9, 55, 84, 108, 123]. Its ability to perform code

Verification on very complex and realistic flows makes it a powerful tool for precisely

analysing errors and their behaviours.

3.3 PyMMS: an opensource framework for generating

Manufactured Solutions

As described in the previous section, one of the key steps when generating a manu-

factured solution is the generation of the source terms. To this end a framework was

developed and implemented in Python using the Sympy symbolic mathematics library

[76]. As no openly available framework was found with the needed capabilities, this code

was made opensource and libre under the MIT license in Lemaire [65].

3.3. PyMMS: an opensource framework for generating Manufactured Solutions 37

The framework allows the user to provide the analytical formulation of field quantities

like velocity, pressure, and eddy viscosity (when using a turbulence model). From them,

it will compute the source terms analytically and produce a compilable Fortran source

module file that contains the definition of each field quantity, its analytical derivatives

and the source terms of each equation. This module can then be integrated easily as

usercoding in the CFD solver. Besides the momentum and continuity equations, PyMMS

includes the Spalart Allmaras turbulence model [117] (both the original formulation

and the ‘noft2’ variant) as well as the one equation eddy viscosity model from Menter

[73]. Additionally, its object oriented structure makes it easy to implement new models

without having to modify the core of the code.

Since manufactured solutions are used to verify code implementation of other tools,

their own code correctness is essential to asses error sources. PyMMS was verified by

comparing its resulting source terms to another derivation of a similar MS done this

time by hand. The test case described in [35] was replicated using Sympy and its source

terms were generated with PyMMS. The original fortran code from the authors was

compared to the one PyMMS generated by probing it in thousands of random location

and time combinations and the difference between the two implementations was found

to be within the margin of the round off error of the two fortran codes. Hence verifying

the correctness of PyMMS.

As an example, a basic input file for PyMMS is presented in Algorithm 3.1. It defines

the velocity components as well as a constant pressure field and runs the fortran code

generation. Algorithm 3.2 is then a portion of the generated code. It can be noted that

some parameters are left in the source code for easier edition without requiring a new

generation of the source terms.

1 from sympy import *

2 from PyMMS import PyMMS

3

4 # Definition of parametric symbols and their default value

5 x, y, z, t = symbols(’x y z t’)

6 T = symbols(’Period ’)

7 A = symbols(’A’)

8 B = symbols(’B’)

9 global_vars = [(T, 1), (A, 10), (B, 5)]

10

11 # Definition of field functions

12 U = A*cos(2*pi*t/T)*cos(x)

13 V = B*cos(2*pi*t/T)*cos(y)

14 W = - Integral(diff(U, x)+ diff(V, y), (z, 0, z))

15 P = Integer (1)

16

17 # MMS generation and export to file

18 mms = PyMMS(Nu=1, rho=1, U=U, V=V, W=W, P=P, turbulence_model="none")

38 Chapter 3. Verification and Validation

19 mms.compute_sources ()

20 mms.export_module("module -basic -example.F90", global_vars=global_vars)

Algorithm 3.1: Example of input file for running PyMMS, written in python.

1 module MMS

2 implic it none

3 REAL*8, parameter :: Period = 1

4 REAL*8, parameter :: A = 10

5 REAL*8, parameter :: B = 5

6 contains

7 !...

8 REAL*8 elemental function source_MOM_U(x, y, z, t)

9 REAL*8, intent(in) :: x

10 REAL*8, intent(in) :: y

11 REAL*8, intent(in) :: z

12 REAL*8, intent(in) :: t

13 REAL*8, parameter :: pi = 3.1415926535897932 d0

14

15 source_MOM_U = -2*A**2* sin (x)*cos(x)*cos (6.2831853071795865 d0*t/Period) &

16 **2 - A*B* sin (y)*cos(x)*cos (6.2831853071795865 d0*t/Period)**2 - A &

17 *(-A* sin (x)*cos (6.2831853071795865 d0*t/Period) - B* sin (y)*cos(&

18 6.2831853071795865 d0*t/Period))*cos(x)*cos (6.2831853071795865 d0*t &

19 /Period) + A*cos(x)*cos (6.2831853071795865 d0*t/Period) - 2*pi*A* &

20 sin (6.2831853071795865 d0*t/Period)*cos(x)/Period

21 end function

22 !...

23 end module

Algorithm 3.2: Extract of the generated fortran module file created by the previous source

code showing the source term for the first component of the momentum equation.

3.4 PyTST: an opensource Transient Scanning Technique

analysis tool

To perform the Transient Scanning Technique developed by Brouwer et al. [12] a python

library and tool were developed under the MIT license [66]. They take as input either

an ASCII text file containing the signal data or any python arrays and produce the two

graphs needed to make the analysis: the signal itself, and the log-log plot of statistical

uncertainty against the window size. Moreover, for easier analysis, the two plots are

colour coded and interactive. Selecting part of the signal to discard will highlight the

corresponding uncertainty and vice versa.

3.5. Summary 39

Figure 3.3 shows the window when running the tool interactively. The mouse can be

used to zoom in and out as well as move the cut-off location to recompute the signal

mean and statistical uncertainty. For performance reasons, the code is parallelised to

run on shared memory computers. Moreover, a step-size parameter is introduced to

only compute the uncertainty each step-size sample. This has the effect of lowering

the resolution of the bottom uncertainty graph but drastically reduces the number of

calculation to run. It should be noted that the uncertainties themselves are not affected

by this parameter as they use the full length original input and not a downsampled

version of it.

Figure 3.3: Example window when running pyTST interactively. It shows the original signal
on the top and the statistical uncertainty on the bottom. Both plots are synchronised so that

moving the cut-off location manually on either plot updates the other one.

3.5 Summary

The error sources discussed in this Chapter are always present in CFD computations,

making their analysis difficult in isolation. To address this issue, methods have been

developed to either quantify the strength of these errors or reduce them to negligible

levels. In this work, tools developed in Eça and Hoekstra [33], Eça et al. [37], as well as

the Transient Scanning Technique by Brouwer et al. [13] and the method of manufac-

tured solutions are used to analyse the overset implementation and isolate interpolation

errors. These errors are directly influenced by the interpolation scheme used and its

implementation, which are described in the following Chapter.

41

Chapter 4

The Overset method

implementation

The overset method developed in this work was designed to allow the use of higher order

interpolation schemes and to be computationally performant. These two requirements

directly influenced the implementation. In this Chapter, details are given about overset

method implementations found in the literature and an overview of the architecture devel-

oped for this project. Furthermore, a detailed presentation of the different interpolation

schemes that can be used by this implementation is provided.

4.1 General workflow

Any overset implementation is composed of different steps. First the hole cutting algo-

rithm computes cells status like hole, in or fringe, from the geometry and topology of the

different meshes as well as user defined ‘rules’ (giving informations on boundaries roles

and sometimes grid priorities). The methods used can be complex and vary between

implementation, although two main methods can be distinguished, implicit or explicit

hole cuttings (not to be confused with the implicit or explicit coupling between meshes).

In an explicit formulation, the hole cutting is done directly using the mesh geometry,

the body surface mesh cutting a hole in the other meshes. On the other hand, with an

implicit approach, the decision to cut a grid is purely based on local grid information,

often the grid with the best resolution will cut a hole in all the other grids that are

locally overlapping it. The main drawback of implicit hole cutting being that it is more

complex to compute and more computationally demanding than explicit hole cutting,

but as it relies only on local information it is easier to parallelise.

Once the hole cutting is performed, donor cell(s) need to be searched for each fringe

cell. In most implementations on unstructured meshes, a first donor cell is found as

42 Chapter 4. The Overset method implementation

the cell directly overlapping its associated fringe cell (but from another mesh), and all

the direct neighbours of this first donor cell are also tagged as donor for this particular

fringe cell. This means that there is no control over the exact number of donor cells

collected per fringe cell. On structured meshes, donor searching methods can make use

of the mesh topology to easily and cheaply collect more than the first layer of neighbours

around the first donor cell.

It should be noted that the hole cutting and donor search method chosen do not have a

direct influence on the accuracy of the solution but their combination with an interpo-

lation method can. The selection of donor cells far from the fringe cell centre location

leading to extrapolation can, for example, be considered a poor selection and result in

large errors. Other examples donor selection leading to accuracy losses are given in

Chapter 5.

Subsequently, once donor cells are found, the interpolation itself can be performed.

Depending on the scheme used and the coupling implemented, this is done explicitly

or implicitly as presented in Chapter 2. When the interpolation can be formulated

as a linear combination of the donor information, besides being usable in an implicit

formulation, in an explicit implementation the weights associated to each donor cell can

be stored and reused when ever the donor values are updated for the new interpolated

value and the meshes did not move relative to each other. In practice weights can be

reused for each outerloop and when the motion is periodic. Hence saving the cost of

recomputing the weights themselves.

4.2 Overset in various CFD solvers

Depending on the implementation, the different components of the overset method are

either done by an external library or by the flow solver itself. The use of external libraries

or separate implementations is often justified by large requirement differences between

the CFD solver and the overset method. In terms of parallelisation for example, the

solver uses domain decomposition and relies mainly on local information for its operation,

while an explicit hole cutting step requires knowledge of the entire mesh geometry.

One of the libraries is called Suggar (renamed Suggar++ in 2009 after a major update)

and is mainly developed by R. Noack [86, 88]. The primary objective behind its develop-

ment is to facilitate the integration of overset capabilities in any CFD code. This is done

using several high level functions accessible via a Fortran or C interface, and the library

allows use of both structured and unstructured grids, cell and node centered solvers etc.

[87]. Several integrations of Suggar++ are reported in the literature, like CFDShip-Iowa

[16], or UNCLE with the work detailed in Boger and Dreyer [6]. More recently, two im-

plementations of the coupling were reported for the open source framework OpenFOAM,

the first one using Suggar++ by Boger et al. [8] called FoamedOver, the second one by

4.2. Overset in various CFD solvers 43

Shen et al. [114] coupling with Suggar this time. Another library implementing the

overset method is OPERA, contrary to Suggar it seems targeted towards OpenFOAM

only, it has, for example, been used in the foam-extend fork [46]. Both OPERA and

Suggar/Suggar++ are closed source, which is not the case for TIOGA (Topology Inde-

pendent Overset Grid Assembler) as it is published under the LGPL license. Its main

developers are from the University of Wyoming [10, 116] and, like Suggar/Suggar++ it

can also work with a wide range of mesh type (structured, unstructured, cell or node

centered etc.), though, unlike Suggar/Suggar++, it does not support polyhedra cells.

Finally, it has also been used for multi-solver simulations (using different CFD solver on

different meshes).

The libraries Suggar++ and Suggar are both using an explicit method hole cutting

method, though Suggar++ has a more accurate algorithm by using the exact geometry

of the surfaces instead of a simplified one in Suggar. This allows for tighter holes to be

cut and a minimisation of the overlap [88]. On the other hand, OPERA and TIOGA

are using implicit approaches described in Gopalan et al. [46] and Gopalan et al. [46]

respectively. For TIOGA, its implicit calculation overhead is compensated its capability

to run fully in parallel using MPI, whereas Suggar++ parallelisation is done either with

shared memory only or is limited to a single process per mesh. TIOGA’s parallelisation

and implementation has, however, the consequence of having its DCI influenced by the

domain decomposition [27].

In contrast, several implementations do not get their overset capability using external

libraries but the implementation is done within the flow solver itself. This is the case

of the ESI-openCFD fork of OpenFOAM since 2017, StarCCM+ has this feature since

version 2012 with version 7.02 [111], FINE/Marine (Isis CFD) since 2016 [28], FRESCO+

from HSVA since 2017 [126], ANSYS-Fluent since version R17 released in 2016 [23] or

INSEAN flow solver from the Italian Ship Model Basin Rome, Italy since 2006 [82].

Regardless of the way the overset method is implemented, interpolation is a core com-

ponent of any overset code as it has a direct impact on the accuracy of the solution. The

literature, however, does not always describe in detail the interpolation method used.

The donor cell collection method is not often mentioned, and the actual interpolation

scheme is either not mentioned, or not described in enough detail to be understood or

re-implemented [6, 17, 24, 114, 126, 130]. Table 4.1 summarises the data found in the

literature, and where possible, a nomenclature similar to the one used in the presented

work is used. Moreover, unstructured and structured solvers are distinguished as the

donor collection can be done very easily with a structured code, and the interpolation

schemes can take advantage of this. This is, for example, the case for UP GRID solver

[60], which generates a spline in the entire domain for the interpolation. Similarly, Sug-

gar++, when used with structured codes, can use a Polynomial tensor interpolation

requiring n3 donor cells, a search for these being trivial on a structured grid. It must be

noted that interpolation orders higher than two are only possible with OPERA library

44 Chapter 4. The Overset method implementation

using a Least squares approach. Overall, most of the other solvers implement a Nearest

cell and an Inverse distance scheme (both 1st order). Also, even though the donor cells

collection method is not always described, at least three of the six solvers are using the

closest cell’s direct neighbours. This means that the number of donor cells collected for

each fringe cell depends on the grid topology and can not be changed. Finally, several

schemes make use of the gradient at the donor cell centre locations to achieve 2nd or-

der interpolations. In 2012, Quon and Smith [100, 101] also tested the use of Radial

Basis Functions (RBF) for overset interpolation, but, even though positive conclusions

were drawn, it seems that no other overset implementation followed its trend, possibly

because most overset implementations rely on having only the direct neighbours of the

closest cell as donor cells, the RBF method, however, requires more donor cells, making

its implementation and parallelisation more challenging.

4.2. Overset in various CFD solvers 45

Table 4.1: Summary of interpolation methods used in various overset implementations.

Solver Type Scheme Number of donor cells Order

Fresco+ [126] Unstructured
Nearest cell 1 1
Inverse distance Neigha 1
Inverse Simplex Volumeb 4 1 or 2

StarCCM+ [111] Unstructured
Inverse distance 4 1
Shape Function 1
Gradien Least Squaresf Neigha 2

ANSYS-Fluent [23] Unstructured
Linear d 4 1
Inverse distance 1
Gradient Least Squaresf Neigha 2

foam-extend [43, 127] Unstructured
Nearest cell 1 1
Average 1
Inverse distance 1

ISIS CFD/FINE Marine [28] Unstructured Least squares Neigha 2

OPERA (OpenFOAM) [20, 21, 23, 46] Unstructured
Lineard 4 1
Inverse distance 1
Least squares -e 2-4

Suggar++c [86–89]
Both

Nearest cell 1 1
Inverse distance Neigha 1
Laplacian Neigha 2
Least squares Neigha 2
Dual grid - 2

Structured Polynomial tensor n3 n

LAVA [57]
Unstructured Least squares Neigha

Structured Polynomial tensor 8 2

Chimera Grid Tools (CGT) [18] Structured Polynomial tensor 8 2

UP GRID (NMRI) [60, 92] Structured Ferguson spline

Pusan University [85] Structured Barycentric

a The donor cells are the closest cell and its direct neighbours
b Interpolation weights based on the inverse simplex volumes, it is made 2nd order by
using donor cells gradients

c Suggar++ is a library being used by several solvers like CFD-Shipflow[72],
OVERFLOW[42] and some implementations of OpenFOAM[7, 114]

d Using vertices to construct a tetrahedron and perform the interpolation
e OPERA is not using a fixed number of donor cells and therefore the interpolation
order is not guaranteed, a pseudo-inverse method is used if not enough donor cells
are collected and the system is under-determined

f The least squares approach is not coupled with a polynomial function here. The gra-
dient at the donor cell centre is used to extrapolate a field value at the interpolation
location from each donor (like the Nearest cell gradient scheme), then a least squares
approach is used as an averaging method between the values

46 Chapter 4. The Overset method implementation

4.3 Implementation of the overset method

4.3.1 General design decisions

The goals of the implementation of the overset method in ReFRESCO done as part

of this research were to have a state of the art technique with the help of existing

implementations while still keeping maximum control over key components that are

relevant for the accuracy of the method. This goal was achieved by combining external

libraries and in-house code. Suggar++ [88] and its companion library DiRTlib [87]

were picked for their proven robustness and easy integration with various solvers. They

provide all the components needed to add overset capabilities to any CFD code with

hole cutting, donor search, interpolation (with and without weights), recomputation of

the DCI in case of mesh motion or change (due to deformation) and can be integrated

with structured and unstructured solvers written in C, C++ or Fortran. For this work,

however, to keep control over the interpolation steps and experiment with a wide variety

of schemes, only the hole cutting and cell status assignment are done by Suggar++

leaving the donor search and interpolation to ReFRESCO. In detail, Suggar++ is given

the meshes and a setup file and returns an IBLANK array. This integer array gives

for each cell in the domain its status: fringe, hole or in. Section 4.3.2 details the

implementation of the donor search, and the various interpolation schemes implemented

are presented in section 4.4.

The coupling with the flow solver is done explicitly for all equations. The pressure field

is also being interpolated on fringe cells. The interpolated values are directly placed in

the field together with a zero pressure correction on the right hand side of the pressure

correction system. It should be noted that, for the pressure correction equation, this

method is equivalent to an implicit coupling with null interpolation weights. Finally, for

schemes that allow it, interpolation weights are computed and stored in memory to be

re-used when grids are not moving to decrease computational cost.

Figure 4.1 presents the structure of the overset code. It includes a cache system for

IBLANK data. Indeed, as the computation of the DCI done by Suggar++ can be ex-

pensive and only relies on the mesh positions, computations with a periodic or prescribed

motion can take advantage of it by storing IBLANK data. With the cache system, every

time-step, if the position of the meshes has not been computed before, Suggar++ is

run and the cells statuses that it returns are stored to file for future use. The cache

file itself only stores the global cell id number of every fringe and hole cell in a binary

form and the file name encodes the mesh positions to avoid the use of look up tables.

This cache system allows to run Suggar++ a minimum amount of times. For example,

when running several computations changing only the interpolation scheme, a single set

of cache files can be used.

4.3. Implementation of the overset method 47

Once the IBLANK data is loaded the donor search is performed for each fringe cell, this

step is detailed in section 4.3.2. Then, if the interpolation scheme allows it, interpolation

weights are computed. Every outerloop, the field values of donor cells changes and the

interpolation needs to be recomputed. First, the donor values are transmitted to the

process that will perform the interpolation itself which is the process storing the first

donor cell. Then the interpolation is performed and the interpolated value is transferred

to the process that has the corresponding fringe cell. This methodology offers some load

balancing and minimises communications as donor cells mostly belong to the process

that computes the interpolation. All of the exchanges use point to point communications

as it allows versatility and data is only transferred between the processes that require

it, hence minimising the amount of data exchanged.

Perform donor search

Compute interpolation weights

Load cache file

Exchange donor values

Perform interpolation

Exchange interpolated values

Handle hole and orphan cells

Is IBLANK data outdated/inexistant?
yes

yes no

no

Does cache file exist for
the meshes positions?

Write new cache file

Run Suggar++

Every outerloop

Every timestep

Includes parallel
communication

Includes processing

Figure 4.1: Flow chart of the overset implementation.

48 Chapter 4. The Overset method implementation

4.3.2 Donor search implementation

The donor cell search was designed and implemented to minimise the number of parallel

synchronisation steps and the amount of data being communicated between MPI pro-

cesses. The algorithm is given in pseudocode in Figure 4.2. The general idea to select

donor cells is to first find the cell that contains the interpolation location (fringe cell

centre) and then gather its neighbours, followed by the neighbours of the neighbours

etc., until enough donor cells have been gathered for the scheme used. The order in

which neighbours of the same layer are gathered is based on their distance to the lo-

cation of fringe cell centre. This method is different from most overset donor search

because the number of cells being gathered is not limited to the first layer of neighbours

allowing to improve the robustness of some schemes as demonstrated in Chapter 5. The

performance of this approach is tested in Chapter 8.

For cell in global_fringe_cell list
 If donor cell found in local domain
 gather 1st donor cell ■
 add cell to local_fringe_cell list

fix duplicates & orphans

While nb_donor < requested_nb_donor
 For cell in local_fringe_cell list
 gather next layer of donor cells ■, ■, ■

 exchange neighbour domain cells

prepare future communication

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1

1

2

2

2

3

3

3

2

4

4

Figure 4.2: Donor search algorithm presented in pseudocode. Steps circled in light blue are
parallel communications. Similarly, ‘local’ and ‘global’ refer to the parallel domain decomposi-

tion.

In detail, first, the first donor cell is found for each point where the interpolation is

needed. This is done locally on each process and facilitated with an octree search. If

no local suitable donor cell is found for a particular fringe cell it means the donor cells

will be on another process and the loop continues. Once this is done, each fringe cell

should be associated with one and only one donor cell, this is checked with a parallel

communication. If it is not the case, either a fringe cell is on the edge of two donor cells

that belong to two different processes and both of them are gathered, this is easily fixed

by discarding one of them. Otherwise, if a fringe cell has no donor cell, the cell with

the closest cell center is gathered as donor cell as a fallback. This prevents the presence

of orphan cells at the cost of a potentially poorer donor selection. For each local donor

cell found at the previous step, its neighbours are gathered as donor cells themselves,

followed by the neighbours of the second donor cell etc. Parallel communication is needed

after each set of neighbours is gathered to allow the search to expand to the neighbouring

parallel domain when needed. Finally, once enough donor cells have been gathered for

each fringe cell, a last communication step is used to prepare future exchanges after

4.4. Interpolation methods 49

which each process will know on which sub domain their interpolation will be computed

to be able to retrieve it later on.

This implementation minimises the amount of data being exchanged and favours a few

larger parallel communications steps over many small ones. For example, in a 3D Carte-

sian mesh (each cell having 6 neighbours), if 20 donor cells are needed for each fringe

cell, the while loop will be run four times in total, leading to five exchange steps.

4.4 Interpolation methods

As part of this work, seven different interpolation schemes are implemented for overset

computations. This section details their mathematical characteristics. For consistency,

the location of the interpolation is denoted by x = (x, y, z), the cell centre of a fringe

cell. N is the number of donor points needed by the scheme, in an overset context, a

donor point is the cell centre of a donor cell. The donor cell centre locations are xi with

1 ≤ i ≤ N . Finally, ϕ is the field to be interpolated and the interpolated field is named

ϕ̃. The goal of the interpolation is then to get ϕ̃(x) using xi and ϕ(xi) for 1 ≤ i ≤ N .

4.4.1 Nearest Cell

This scheme has only a single donor cell and the interpolated value is equal to the donor

cell value. It is a 1st order scheme.

ϕ̃(x) = ϕ(x1). (4.1)

4.4.2 Nearest Cell Gradient

This scheme also uses a single donor with the addition, however, of its gradient at the

cell centre to correct the interpolated value. The gradient used here does not need to

be computed specifically for the interpolation as it is already computed and used by the

flow solver as mentioned in section 2.3.2. The use of the gradient makes it a 2nd order

scheme.

ϕ̃(x) = ϕ(x1) +∇ϕ(x1) · (x− x1). (4.2)

50 Chapter 4. The Overset method implementation

4.4.3 Inverse Distance

The Inverse distance interpolation scheme is sometimes called a weighted average

method. The number of donor cells N can be freely chosen and the interpolation is

defined as follow:

ϕ̃(x) =

∑N
i=1wiϕ(xi)∑N

i=1wi

. (4.3)

wi =
1

||x− xi||p
. (4.4)

The weights wi decay with the inverse of the distance to the interpolation location x

(||.|| being the 2-norm), and this decay is controlled by the power p. In other words, p

controls the smoothness of the resulting field, a lower p-value will produce a smoother

field as it decreases the relative difference between each weights. The extreme being with

p = 0 where the Inverse distance scheme is equivalent to a geometric average. Tests

made with this method show that the p value has little influence on the accuracy of the

scheme, as a balance p = 3.5 is used in this work. This is a 1st order scheme, and, as

the weights (wj/
∑N

i=1wi) are bounded between 0 and 1, the interpolated value will be

bounded between the minimum and maximum field value of its donor cells. Also, using

a single donor cell makes it equivalent to the Nearest cell scheme.

4.4.4 Polynomial

Polynomial interpolation schemes generate a polynomial function that will pass through

all the donor cells values and the evaluation of this polynomial function at the interpo-

lation location (x) is the interpolated value. A polynomial function can be expressed in

the form,

P (x) = P (x, y, z) =

N∑

k=1

αkFk(x), (4.5)

where N is the number of coefficients αk, and Fk are the polynomial basis functions.

Two different sets of basis functions are presented in the following sections. The first

one named Complete Polynomial will simply be called Polynomial interpolation in the

rest of the work, and the second one is called Polynomial tensor interpolation.

4.4.4.1 Complete Polynomial

This type of Polynomial interpolation, creates a degree n polynomial function that has

all the terms of degree n and below, hence the adjective complete. Therefore, in 2D,

4.4. Interpolation methods 51

for a polynomial of degree n, the basis functions will be all F = xrys, r + s ≤ n with

r, s ∈ N. Similarly, in 3D, F = xryszt, r + s+ t ≤ n with r, s, t ∈ N

To find the polynomial function that passes through all of the donor cell values, the αk

coefficients need to be found:

N∑

k=1

αkFk(xi) = ϕ(xi), 1 ≤ i ≤ N. (4.6)

Which can be rewritten as:

[Ak,m][αk] = [rhsk], 1 ≤ k,m ≤ N. (4.7)

With

[Ak,m] = Fk(xm) (4.8)

[rhsk] = ϕ(xk) (4.9)

Once the system is solved and the αk are obtained, the interpolated value is given by:

ϕ̃(x) =

N∑

k=1

αkFk(x) (4.10)

There is uniqueness in the polynomial function generated, however different basis func-

tions can be chosen to improve the conditioning of the system to be solved. Eça [32]

tested different sets of basis functions but did not experience major changes in the

results. Moreover, as there is uniqueness in the generated polynomial function, this

method is equivalent to the Lagrange polynomial interpolation sometimes found in the

literature.

For a polynomial of degree n, its interpolation order is n+1. Table 4.2 shows the number

of donor cells needed for the Polynomial interpolation.

Table 4.2: Number of donor cells N depending on the dimension of the problem and the degree
of the polynomial function n.

Dimension N (number of donor cells)
n (degree) n = 1 n = 2 n = 3

2D (n+1)(n+2)
2 3 6 10

3D
∑n

i=0
(i+1)(i+2)

2 4 10 20

52 Chapter 4. The Overset method implementation

4.4.4.2 Polynomial tensor

The Polynomial tensor interpolation is similar to the previously presented complete

polynomial interpolation; the only difference lies in the basis functions.

The basis functions used by the Polynomial tensor interpolation of degree n will be,

in 2D, all the terms of the product: (
∑n

r=0 x
r)(
∑n

s=0 y
s), and in 3D, the terms of

(
∑n

r=0 x
r)(
∑n

s=0 y
s)(
∑n

t=0 z
t). In other words, the basis functions in 2D are F = xrys

with 0 ≤ r, s ≤ n and in 3D F = xryszt with 0 ≤ r, s, t ≤ n. Compared with the

complete polynomial basis functions of the same degree, the Polynomial tensor adds

some crossterms of degree higher than n.

Table 4.3: Number of donor cells N depending on the dimension of the problem and the degree
for the Polynomial tensor interpolation.

Dimension N (number of donor cells)
n (degree) n = 1 n = 2 n = 3

2D (n+ 1)2 4 9 16

3D (n+ 1)3 8 27 64

In 2D and 3D the Polynomial tensor interpolation is sometimes called bi-linear (2D

degree 1), bi-cubic (2D degree 2), or tri-linear (3D degree 1), tri-cubic (3D degree 2),

etc. This kind of interpolation is often used in finite element methods. To interpolate

inside a square in 2D or a cube in 3D, the bi-linear or tri-linear interpolations allow the

use of the vertices as donor points.

4.4.5 Least squares

The Least squares interpolation also relies on complete polynomial functions but more

donor cells than the number of unknown coefficients αk are collected. The system is

solved by minimising the sum of the squares of the errors at each donor cells location.

Increasing the number of donor points improves the robustness of the method.

In this work, the number of donor cells collected is defined using the donor point mul-

tiplier Cmult, it is the ratio between the number of donor cells and the number of

unknowns in the polynomial function, formally defined with N = ⌈CmultNterms⌉, with
Cmult ∈ R, Cmult > 1, ⌈ ⌉ the ceil operator, N is the number of donor cells and Nterms

is the number of terms in the polynomial (number of unknown coefficients αk).

The polynomial function is then:

P (x) =

Nterms∑

k=1

αkFk(x). (4.11)

4.4. Interpolation methods 53

The Least squares approach is to find αk that minimise the sum of the squared errors S:

S =
N∑

i=1

(
ϕ(xi)−

Nterms∑

k=1

αkFk(xi)
)2

. (4.12)

The minimisation of S is computed by finding the roots of its derivative regarding each

αl

∂S

∂αl
= −2

N∑

i=1

Fl(xi)
(
ϕ(xi)−

Nterms∑

k=1

αkFk(xi)
)
= 0 (4.13)

Which is equivalent to the Nterms ×Nterms system:

[Al,m][αl] = [rhsl], 1 ≤ l,m ≤ Nterms (4.14)

With:

Al,m =
N∑

i=1

Fl(xi)Fm(xi) (4.15)

rhsl =
N∑

i=1

Fl(xi)ϕ(xi) (4.16)

4.4.6 Barycentric

The Barycentric interpolation goal is to assign to each donor point a weight that would

make the interpolation location the centre of gravity of the system and then use these

weights as interpolation weights. However, such weights can be found only if the in-

terpolation location is inside the convex polyhedron made by all the donor points. In

order to make sure the interpolation location is inside this polyhedron, the cell vertices

are used as donor points instead of donor cell centres.

First, the cell that contains the interpolation location is found. This cell is subdivided

into tetrahedrons formed by the cell centre and one triangulated face, and the tetrahe-

dron sub cell that contains the interpolation location is selected. Barycentric weights are

computed for the vertices of this sub cell. The Barycentric interpolation finds weights

wi associated with the vertices vi that will lead to the interpolation location x being the

barycentre or centre of mass of the system. With ϕ̄verti , the value at one vertex of the

sub-cell, one can compute the value at the interpolation location with:

ϕ̃(x) =

∑N
i=1wiϕ̄verti∑N

i=1wi

(4.17)

In order to get the values at the vertices of the sub-cell, four different methods can be

used. First, the values at the vertices of the cell can be obtained in two different ways:

54 Chapter 4. The Overset method implementation

ϕ̄vert =
1

Nadj

Nadj∑

j=1

ϕ(xj), (type 1 and 3) (4.18)

ϕ̄vert =
1

Nadj

Nadj∑

j=1

(ϕ(xj) +∇ϕ(xj) · (xj − xvert)) , (type 2 and 4) (4.19)

With Nadj the number of cells adjacent to the vertex and xj the cell centre location of

an adjacent cell.

Second, the value at the cell centre (which is the last vertex of the sub-cell) is already

known, and can be used directly (type 1 and 2), or it can be reconstructed by taking

the arithmetic average of the cell vertex values (type 3 and 4). Table 4.4 summarises

the different Barycentric interpolation types.

Table 4.4: Summary of the different ways to get the values at the vertices of the sub-cell.

Face vertices
cell centre only cell centre + gradient

Cell centre
cell centre type 1 type 2

reconstructed type 3 type 4

For this method, it is not trivial to derive an interpolation order, Chapter 5.2 however

shows a 2nd order for the tested case.

4.4.7 Interpolation schemes overview

Of the interpolation schemes presented, only the polynomial ones (Polynomial , Polyno-

mial tensor and Least squares) can be used with higher order as there is no limit in the

theoretical degree of the function they generate. It should, however, be noted that with

higher orders, the number of donor cells required increases drastically.

When performing an interpolation one can directly get the interpolated value ϕ̃(x).

Though, in order to perform an implicit coupling or to precompute interpolation weights,

explicitly computing these weights is required. ϕ̃(x) is then computed as a linear com-

bination of the ϕ(xi) for 1 ≤ i ≤ N . It can be written under the form:

ϕ̃(x) =

N∑

i=1

wiϕ(xi). (4.20)

The coefficients wi are the interpolation weights and are placed in the left hand side

of the system in an implicit coupling. The Nearest cell and Inverse distance schemes

yield a trivial implicit formulation. The Nearest cell gradient scheme, on the other

4.4. Interpolation methods 55

hand, cannot be written fully implicitly since the gradient at the donor cell is pre-

computed and does not directly depend on the neighbouring cell center values alone.

A semi-implicit formulation is however possible with the gradient term placed on the

right hand side and the rest on the left hand side in the matrix. Concerning polynomial

interpolations (Polynomial , Polynomial tensor and Least squares) one needs to express

the αk coefficients in terms of ϕ(xi) and reorganise the terms of the equation to get an

implicit form. To this end, the inverse of the matrix A (Equation 4.8 or Equation 4.15)

is explicitly needed. Appendix A details the construction of wi for both Polynomial and

Least Squares approaches.

For the Polynomial and Polynomial tensor , wi is expressed by:

wi =

N∑

k=1

Fk(x)A
−1
k,i . (4.21)

And for the Least squares approach, wi can be expressed as:

wi =

Nterms∑

k=1

Fk(x)

(Nterms∑

l=1

Fl(xi)A
−1
k,l

)
. (4.22)

The barycentric interpolation could also be rewritten in an implicit form since the

weights wi only depend on the interpolation location x and the value at the vertices

is a linear combination of the cell centre values, though the implementation used in this

work does not use this and only direct interpolation is available.

Finally, some schemes will always result in bounded interpolation, meaning that the

interpolated value lies between the minimum and maximum values of the donor cell

values. Such a characteristic is useful as it guaranties the robustness of the scheme,

though only low order schemes have such a feature. Table 4.5 summarises the different

schemes presented in this Chapter and their main characteristics.

56 Chapter 4. The Overset method implementation

Table 4.5: Summary of the different interpolation schemes available for the current overset
implementation and their main characteristics. The number of donor cells for the barycentric
interpolation depends on the topology and is here given as an example for a Cartesian mesh.

Scheme Number of donor cells Order (theoretical) Boundedness

2D 3D

Nearest Cell 1 1 1 yes

Nearest Cell gradient 1 1 2 no

Inverse Distance N N 1 yes

Polynomial (degree = 1) 3 4 2

no
Polynomial (degree = 2) 6 10 3

Polynomial (degree = 3) 10 20 4

Polynomial (degree = n) (n+1)(n+2)
2

∑n
i=0

(i+1)(i+2)
2 n+ 1

Polynomial Tensor (degree = 1) 4 8 2

no
Polynomial Tensor (degree = 2) 9 27 3

Polynomial Tensor (degree = 3) 16 64 4

Polynomial Tensor (degree = n) (n+ 1)2 (n+ 1)3 n+ 1

Least Squares (degree = 1) > 3 > 4 2

no
Least Squares (degree = 2) > 6 > 10 3

Least Squares (degree = 3) > 10 > 20 4

Least Squares (degree = n) > (n+1)(n+2)
2 >

∑n
i=0

(i+1)(i+2)
2 n+ 1

Barycentric (type 1) 6 18 yes

Barycentric (type 2) 6 18 no

Barycentric (type 3) 9 27 yes

Barycentric (type 4) 9 27 no

4.5 Summary

The design choices made when developing this overset method have a direct impact on

the accuracy of the resulting computations because interpolation errors made on fringe

cells affect the rest of the solution through their neighboring in cells. In addition to

accuracy, the code architecture and parallelisation decisions also impact performance.

Chapters 5 to 7 focus on the accuracy and robustness of the method, while Chapter 8

analyses performance results. It is important to consider both accuracy and performance

when providing useful guidelines.

57

Chapter 5

Verification of interpolation

schemes

The first step in assessing the accuracy of the overset method, and of interpolation

schemes in particular, is to test them in isolation outside of any CFD computation.

This allows for better control over the input to verify their good behavior and ensure

that they follow their theoretical order of convergence. Furthermore, polynomial based

interpolation schemes are known to suffer from robustness issues with certain cell ar-

rangements, leading to ill-conditioned systems that are difficult to solve. Therefore, the

robustness of polynomial based schemes is first tested in section 5.1, and the error lev-

els and convergence orders of all the schemes implemented in this work are analysed in

section 5.2.

5.1 Robustness of Polynomial based interpolations

The robustness of a scheme is defined by how likely the interpolation is to result in very

large errors for a set of donor cells. A more robust scheme will also have a narrower error

distribution for a given function to interpolate. In summary, the interpolation error of

a robust interpolation scheme is not influenced by the locations of the donor cells nor

the underlying mesh, making it more predictable.

In this section, the robustness of polynomial based interpolation is tested. This includes

the Polynomial , Polynomial tensor and Least squares schemes, all of which are exam-

ined at degrees 1 to 3, resulting in 2nd order to 4th order interpolations. Furthermore,

concerning the Least squares scheme, since the number of donor points is not fixed by

the method, several Cmult values are tested. Finally, this section focuses only on poly-

nomial based schemes as they are the only ones known to present potential robustness

58 Chapter 5. Verification of interpolation schemes

issues, all the other ones being intrinsically bounded (or bounded with an added gradient

correction for Nearest cell gradient).

5.1.1 Methodology

5.1.1.1 Donor points locations

In a finite volume cell centred CFD solver, the overset interpolation donor points are

located at the cell centres of donor cells associated to a fringe cell. In this study, because

the interpolation itself is not affected by the underlying mesh but only by the cell centre

locations, in order to test thousands of donor point arrangements quickly, no mesh is

used. Instead, donor points are placed in a partially random way in the 2D [0, 1]× [0, 1]

square domain. Two different methods were designed and implemented to mimic what

different cell centre locations on a CFD mesh could look like. The first method is meant

to replicate a Cartesian or structured grid and will be called Cartesian in this section.

If N donor points are needed for the interpolation, a ‘virtual’ Cartesian grid of size

⌊
√
N + 1⌋ + 1 is created in the [0, 1] × [0, 1] domain. For example, for 6 donor points,

the Cartesian grid is 4× 4. Then N different cells are randomly selected in the grid and

the cell centres are taken as donor point locations. Figure 5.1 shows some examples for

the selection of six donor points.

0.0 0.5 1.0

0.5

(a)

0.0 0.5 1.0

0.5

(b)

0.0 0.5 1.0

0.5

(c)

Figure 5.1: Example of randomly selected donor points on a grid used in this study using the
Cartesian method. The orange dot is the reconstructed interpolation location.

The second method is meant to replicate non Cartesian, unstructured meshes and will

be referred to as Random in the following. The same process for generating a ‘virtual’

grid is done, but this time instead of taking the grid cell centre as donor point, a random

point at a minimum distance of 1/3 of the faces is taken. This method is purposefully

not completely random in the donor point placement because cell centres in a real CFD

mesh are, for example, never clustered close together. Figure 5.2 shows the result of this

method when the chosen cells on the grid are the ones from Figure 5.1.

5.1. Robustness of Polynomial based interpolations 59

0.0 0.5 1.0

0.5

(a)

0.0 0.5 1.0

0.5

(b)

0.0 0.5 1.0

0.5

(c)

Figure 5.2: Example of randomly selected donor points based on the Random method. The
reconstructed interpolation location is denoted by the orange dot.

5.1.1.2 Error estimation

Instead of solving fluid equations, the field to interpolate is describe by f as follows:

f(x, y) = sin (−2x) + cos

(
3y

2

)
(5.1)

This function f was chosen because it is bounded between −1 and 1, it does not show any

oscillation in the [0, 1]× [0, 1] domain and is constructed from non-polynomial functions.

Figure 5.3 shows this function in 3D plot.

x

0.0
0.5

y
0.0

0.5

f

−1

0

1

Figure 5.3: Function f to be interpolated.

In order to compute the error of a particular scheme given a set of donor points, an

interpolation location is recreated from the donor point locations. To avoid extrapola-

tion the interpolation location is set as the centre of the donor points (mean x and y

values) plus a random offset between 0 and 0.05 in both directions. The error is then

the difference between the interpolated value at that location and the evaluation of f

also at that location as shown with Equation 5.2. The magnitude of the error for a

given scheme and set of donor points is not meaningful by itself because it depends on

the function f chosen. It is however used here to compare schemes and donor point

60 Chapter 5. Verification of interpolation schemes

locations relative to each other. Several functions f were tested and the conclusions

drawn in the following section were not affected by this change.

xloc = mean(xi) + rand(0, 0.05)

yloc = mean(yi) + rand(0, 0.05)

e = |f(xloc, yloc)− finterp(xloc, yloc)|
(5.2)

5.1.2 Results

Figure 5.4 summarises the error distributions for each scheme. For each histogram,

50 000 sets of donor points were generated using the Random method, and the distri-

bution of the log of the error is shown. The median error is also displayed by a vertical

line. Finally, the standard deviation of the log of the error as well as the percentage of

interpolation returning an error higher than 1 is displayed below each histogram.

From Figure 5.4, several observations can be made. Firstly, for each scheme, increasing

the polynomial degree decreases the error. Among the three schemes, the Least squares

interpolation performs the best, as the error median is either similar or lower, and the

distribution is more concentrated around the median. This can also be seen with the

lower standard deviation, indicating that interpolation errors higher than the median

are less likely. Furthermore, among all the random sets of donor points drawn, none

of them yield high errors, while a small percentage of the Polynomial and Polynomial

tensor ones result in errors greater than 1. One of the characteristics of the Least

squares method is the overdetermination of the interpolation, which means that the

number of donor points can be freely determined as long as it is larger than the number

of unknowns in the reconstructed polynomial function. To this end, the donor point

multiplier (Cmult) can be set. This study is shown in Figure 5.5, presenting, for a

range of donor point multipliers, the associated histogram of error for a degree 2 Least

squares scheme. Using more donor points tends to slightly reduce the median error

in this case, this conclusion cannot however be generalised to other support functions

f (not shown here). Nevertheless, a general conclusion can be drawn: by increasing

Cmult, the spreading of the errors higher than the median reduces leading to a more

robust interpolation. Moreover, using only one more donor point than the Polynomial

interpolation (N = 7) already shows some positive effects with median error reduced

from 10−2.03 to 10−2.19.

5.1. Robustness of Polynomial based interpolations 61

Degree 1 Degree 2 Degree 3

Polynomial

−4 −2 0

-1.27

−4 −2 0

-2.03

−4 −2 0

-2.83

Standard deviation 0.544 0.660 0.699
% of data with error > 1 0.3 % 0.4 % 0.1 %

Polynomial Tensor

−4 −2 0

-1.22

−4 −2 0

-1.99

−4 −2 0

-2.80

Standard deviation 0.682 0.720 0.751
% of data with error > 1 3.5 % 0.7 % 0.1 %

Least Squares

−4 −2 0

-1.24

−4 −2 0

-2.24

−4 −2 0

-2.93

Standard deviation 0.470 0.506 0.438
% of data with error > 1 0.0 % 0.0 % 0.0 %

Figure 5.4: Histogram of the log of errors when donor points are created using the random
method. The log of the median error is displayed with dotted lines and the Least squares results
were done with a donor point multiplier of 1.5. This means that, for the same degree, the Least

squares results use 1.5 times more donor points than the Polynomial ones.

−4 −2 0

-2.03

−4 −2 0

-2.19

−4 −2 0

-2.23

−4 −2 0

-2.24

−4 −2 0

-2.27

−4 −2 0

-2.27

Pol degree 2 Cmult = 1.2 Cmult = 1.3 Cmult = 1.5 Cmult = 2.0 Cmult = 2.5
N = 6 N = 7 N = 8 N = 9 N = 12 N = 16

Figure 5.5: Influence of the donor point multiplier (Cmult) on the error distribution. His-
tograms show the log of the errors for degree 2 Least squares interpolations. The leftmost
histogram is a Polynomial interpolation as it is mathematically equivalent to a Least squares

interpolation with Cmult = 1 (and N = 6).

When generating donor points using the Cartesian method, error histograms look sen-

sibly similar to the Random method but present a larger proportion of very high errors.

This is illustrated by Table 5.1 displaying the percentage of interpolations leading to er-

rors higher than 1. For instance, the Polynomial interpolation results in around 10% of

62 Chapter 5. Verification of interpolation schemes

high errors, and the percentage of high errors for the Polynomial tensor varies between

30% to 70%. Only the Least squares approach is robust when the donor point multiplier

is high enough. A value of 1.5 is, in this case, sufficient to prevent any divergent results,

though, even a donor point multiplier of 1.3 shows a very small percentage of high error

results.

Table 5.1: Percentage of interpolations resulting in errors higher than 1 for each scheme.

Method Degree 1 Degree 2 Degree 3

Polynomial
Rand 0.3 % 0.4 % 0.1 %
Cart 9.6 % 13.0 % 10.7 %

Polynomial tensor
Rand 3.5 % 0.7 % 0.1 %
Cart 29.8 % 53.2 % 68.1 %

Least squares Cmult = 1.5
Rand 0.0 % 0.0 % 0.0 %
Cart 0.0 % 0.0 % 0.0 %

Least squares Cmult = 1.3
Rand 0.0 % 0.0 % 0.0 %
Cart 0.5 % 0.1 % 0.0 %

To better understand the root of these high errors, Figure 5.6 shows examples of donor

point locations leading to either high or low errors when using the Random or the

Cartesian method. It then becomes clear that, in both cases, high errors are associated

with sets of donor points that show spacial collinearity. This also explains why the

random method leads to far less high errors when compared to Cartesian one.

Low error High error
Random Cartesian Random Cartesian

Polynomial

0.0 0.5 1.0

0.5

0.0 0.5 1.0

0.5

0.0 0.5 1.0

0.5

0.0 0.5 1.0

0.5

Interpolation error 2.52× 10−05 7.46× 10−06 2.13× 10+02 9.38× 10+44

Least squares

0.0 0.5 1.0

0.5

0.0 0.5 1.0

0.5

0.0 0.5 1.0

0.5

0.0 0.5 1.0

0.5

Interpolation error 5.03× 10−07 7.48× 10−07 7.76× 10−02 Singular matrix

Figure 5.6: Example of donor point locations leading to low or high interpolation errors.

In a real CFD context, it can be important to detect high interpolation errors. These

errors can be correlated with the condition number (κ) of the system of linear equations

used to perform the interpolation. The condition number measures the sensitivity of

the system to variations in the right-hand side of the equations. Figure 5.7 shows

the relationship between interpolation errors and the condition number. In all of the

plots, high interpolation errors are consistently associated with high condition numbers.

Furthermore, the distinct separation between low and high errors and low and high

condition numbers makes it easy to use the condition number as a criterion for detecting

5.1. Robustness of Polynomial based interpolations 63

high interpolation errors. There are only a few ‘false positives’ where low errors are

associated with relatively high condition numbers in the case of degree 3 polynomial

interpolation.

Degree 1 Degree 2 Degree 3

Polynomial

10−7 100 107 1014100

107

1014

κ
(A

)
10−7 100 107 1014100

107

1014

κ
(A

)

10−7 100 107 1014100

107

1014

κ
(A

)

Polynomial tensor

10−7 100 107 1014100

107

1014

κ
(A

)

10−7 100 107 1014100

107

1014

κ
(A

)

10−7 100 107 1014100

107

1014

κ
(A

)

Least squares

10−7 100 107 1014100

107

1014

κ
(A

)

10−7 100 107 1014100

107

1014
κ

(A
)

10−7 100 107 1014100

107

1014

κ
(A

)

Figure 5.7: Interpolation error against condition number κ of the system. Least squares
interpolation uses a Cmult of 1.5. Blue data points are using the Random donor point location

method and orange ones the Cartesian method.

5.1.3 Conclusions

Studying polynomial based schemes in isolation allowed to make statistical analysis of

the interpolation error and link it to donor point locations. Polynomial and Polyno-

mial tensor schemes are seen to have worse robustness compared to the Least squares

approach, showing both larger median errors as well as a larger spread of the errors.

Moreover, particularly on structured meshes, they more often lead to very high errors

due to poor system conditioning. With the Least squares scheme, on the other hand,

robustness can be controlled by the number of donor points used for the interpolation,

increasing it resulting in smaller spread of the errors. In the cases presented in this

section, a donor point multiplier of 1.5 is enough to remove any diverging results, but

adding a single donor point (Cmult = 1.2) is already enough to improve the robustness

over a Polynomial interpolation.

The robustness is directly linked with the donor point locations, their alignment wors-

ening the conditioning and leading to higher errors. In a CFD context, cell centre

alignments are quite common, with structured meshes or in the prism layer for exam-

ple. Since the interpolation method has to be resilient to such cases the Least squares

is the best candidate amongst the three polynomial based schemes tested. Finally, the

64 Chapter 5. Verification of interpolation schemes

condition number of the system to solve could be used to detect, prior to computing the

interpolation, whether the error will be high or not.

5.2 Code Verification of interpolation schemes

Prior to making overset computations, it is important to test interpolation schemes and

the donor search method implementation to verify the error produced and their order of

convergence. In this section, like in the previous one, analytical fields are interpolated,

but, this time, real meshes are used together with the complete CFD solver. The donor

search as well as the interpolation scheme computations are the ones used in the overset

implementation even though overset meshes are not used here.

5.2.1 Methodology

The domain is a 2D square of size 2 × 2 and five Cartesian meshes (16 × 16, 32 × 32,

64 × 64, 128 × 128 and 256 × 256 named G1 to G5) were generated. The field to

interpolate represents a Taylor-Green vortex solution. This set of equations are often

used in Verification studies because they are solutions to the Navier-Stokes equations,

though, in this section, such property is not required as no simulation is performed,

instead, the fields have been selected only as example fields for the velocity and pressure

components. The analytical equations are set up in each cell centre as per Equation 5.3.

Ux = − cos(πx) sin(πy)

Uy = sin(πx) cos(πy)

P = −1

4
(cos(2πx) + cos(2πy))

(5.3)

The interpolations are performed in 500 pre-determined randomly picked locations of the

grid, and used for each scheme tested and each of the five grids. Moreover, a minimum

distance to the boundaries of the domain of 0.25 was prescribed when generating the

interpolation locations to prevent the donor cell search to be affected by the boundaries.

Figure 5.8 shows the coarsest grid and the interpolation locations.

Each scheme presented in Chapter 4 section 4.4 is tested, Polynomial and Least squares

up to a degree 5 and Polynomial tensor up to degree 4. Finally, the Least squares

schemes used Cmult = 1.5, and the Inverse distance scheme used 10 donor cells.

For each grid and interpolation scheme, Nj = 500 interpolations are performed and the

L∞ norm of the error is recorded.

5.2. Code Verification of interpolation schemes 65

0 1 2
0.0

0.5

1.0

1.5

2.0

Figure 5.8: Locations of the interpolations. 500 different locations randomly picked at a
minimum distance of 0.1 to the domain boundary (the coarsest grid of 16 × 16 is displayed).

5.2.2 Results

Figure 5.9 shows the L∞ norm of the error and the grid convergence order for each

scheme. It is worth noting that the Polynomial tensor scheme produced unreliable

results due to its lack of robustness, ranging from a lack of grid convergence (degree 1) to

diverging results and very high errors for degree 2 to degree 4. In this case, the Cartesian

nature of the mesh used is a worst-case scenario for this type of scheme. In contrast,

all of the other schemes showed converging trends with grid refinement, each achieving

the convergence order predicted by their mathematical description. Furthermore, the

Barycentric interpolation behaved like a 2nd order scheme regardless of its type. It

is also worth mentioning that schemes with the same order of convergence tend to

produce similar error levels, with the Polynomial scheme resulting in slightly lower

errors compared to the Least squares scheme.

Overall, this study verifies the correct implementation of the schemes used in this work,

and provides further insight into the poor robustness of the Polynomial tensor interpo-

lation.

66 Chapter 5. Verification of interpolation schemes

N
ea

re
st

C
el

l

N
ea

re
st

C
el

l G
ra

d

In
ve

rs
e

D
ist

an
ce

Po
ly

no
m

ia
l 1

Po
ly

no
m

ia
l 2

Po
ly

no
m

ia
l 3

Po
ly

no
m

ia
l 4

Po
ly

no
m

ia
l 5

Po
ly

no
m

ia
l T

en
so

r
1

Po
ly

no
m

ia
l T

en
so

r
2

Po
ly

no
m

ia
l T

en
so

r
3

Po
ly

no
m

ia
l T

en
so

r
4

Le
as

t
Sq

ua
re

s
1

Le
as

t
Sq

ua
re

s
2

Le
as

t
Sq

ua
re

s
3

Le
as

t
Sq

ua
re

s
4

Le
as

t
Sq

ua
re

s
5

B
ar

yc
en

tr
ic

1

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

B
ar

yc
en

tr
ic

4

Interpolation scheme

0
1
2
3
4
5
6
7

O
rd

er

Velocity Pressure
N

ea
re

st
C

el
l

N
ea

re
st

C
el

l G
ra

d

In
ve

rs
e

D
ist

an
ce

Po
ly

no
m

ia
l 1

Po
ly

no
m

ia
l 2

Po
ly

no
m

ia
l 3

Po
ly

no
m

ia
l 4

Po
ly

no
m

ia
l 5

Po
ly

no
m

ia
l T

en
so

r
1

Po
ly

no
m

ia
l T

en
so

r
2

Po
ly

no
m

ia
l T

en
so

r
3

Po
ly

no
m

ia
l T

en
so

r
4

Le
as

t
Sq

ua
re

s
1

Le
as

t
Sq

ua
re

s
2

Le
as

t
Sq

ua
re

s
3

Le
as

t
Sq

ua
re

s
4

Le
as

t
Sq

ua
re

s
5

B
ar

yc
en

tr
ic

1
B

ar
yc

en
tr

ic
2

B
ar

yc
en

tr
ic

3
B

ar
yc

en
tr

ic
4

Interpolation scheme

0.0

2.5

5.0

7.5

10.0

G1

G2

G3

G4

G5

N
ea

re
st

C
el

l

N
ea

re
st

C
el

l G
ra

d

In
ve

rs
e

D
ist

an
ce

Po
ly

no
m

ia
l 1

Po
ly

no
m

ia
l 2

Po
ly

no
m

ia
l 3

Po
ly

no
m

ia
l 4

Po
ly

no
m

ia
l 5

Po
ly

no
m

ia
l T

en
so

r
1

Po
ly

no
m

ia
l T

en
so

r
2

Po
ly

no
m

ia
l T

en
so

r
3

Po
ly

no
m

ia
l T

en
so

r
4

Le
as

t
Sq

ua
re

s
1

Le
as

t
Sq

ua
re

s
2

Le
as

t
Sq

ua
re

s
3

Le
as

t
Sq

ua
re

s
4

Le
as

t
Sq

ua
re

s
5

B
ar

yc
en

tr
ic

1

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

B
ar

yc
en

tr
ic

4

Interpolation scheme

10−16

10−11

10−6

10−1

E
rr

or

Velocity Pressure

N
ea

re
st

C
el

l

N
ea

re
st

C
el

l G
ra

d

In
ve

rs
e

D
ist

an
ce

Po
ly

no
m

ia
l 1

Po
ly

no
m

ia
l 2

Po
ly

no
m

ia
l 3

Po
ly

no
m

ia
l 4

Po
ly

no
m

ia
l 5

Po
ly

no
m

ia
l T

en
so

r
1

Po
ly

no
m

ia
l T

en
so

r
2

Po
ly

no
m

ia
l T

en
so

r
3

Po
ly

no
m

ia
l T

en
so

r
4

Le
as

t
Sq

ua
re

s
1

Le
as

t
Sq

ua
re

s
2

Le
as

t
Sq

ua
re

s
3

Le
as

t
Sq

ua
re

s
4

Le
as

t
Sq

ua
re

s
5

B
ar

yc
en

tr
ic

1
B

ar
yc

en
tr

ic
2

B
ar

yc
en

tr
ic

3
B

ar
yc

en
tr

ic
4

Interpolation scheme

0.0

2.5

5.0

7.5

10.0

G1

G2

G3

G4

G5

Figure 5.9: L∞ norm of the error and associated convergence order for the different interpo-
lation schemes.

67

Chapter 6

Code Verification and error

analysis on flows with analytical

solution

After testing the different interpolation schemes in isolation in Chapter 5, overset com-

putations are here run to perform code Verification and analyse errors generated by the

overset interface and their influence on the results. As seen in Chapter 3, in a CFD

computation, discretisation and interpolation errors are only accessible when the exact

solution of the problem is known. To achieve this objective the present Chapter uses

two methods on two distinct test cases; the first one is a 2D steady computation of the

Poiseuille flow, a low Reynolds number pipe flow for which an analytical solution to

the Navier-Stokes equations is known. The second case is more complex and closer to

real-life maritime applications as it resembles a high Reynolds number flat-plate flow

together with a pulsating recirculation bubble. This test case, designed by Eça et al. [35],

involves an unsteady RANS manufactured solution including a one equation turbulence

model [117]. In both cases, errors can be probed in the entire domain and mass im-

balance quantified. Besides testing the different interpolation schemes, several meshes

and cell types, and meshes relative orientations are considered. Always having in mind

space and time refinements, as it is crucial for a proper Verification study. Finally, as it

is possible for the cases studied, overset grid solutions will be compared to computation

done on single grids, without overset.

68 Chapter 6. Code Verification and error analysis on flows with analytical solution

6.1 Poiseuille flow test case

6.1.1 Case definition

The Poiseuille flow analytical formulation can be derived directly from the Navier-Stokes

equations. Considering a 2D domain of length L in the x direction and height h in the

y direction with the inlet at x = 0, outlet at x = L and walls at y = 0 and y = h. After

taking into account the different boundary conditions (non slip walls, and P = 1 at the

outlet), the analytical solution is presented in Equation 6.1.

Ux (y) =
Ph

2µ
y
(
1− y

h

)
, Uy = 0 ,

∂p

∂x
= −P , p (x) = −P (x− L) + 1 .

(6.1)

In this study, the constant pressure gradient is ∂p/∂x = −8µ, the domain height is

unity (h = 1), the length of the domain is two (L = 2) and the kinematic viscosity is

ν = 0.1, resulting in a height based Reynolds number of Reh = 10. Figure 6.1 shows Ux

as defined by Equation 6.1.

Figure 6.1: Exact axial velocity field for the Poiseuille flow test case.

In order to test the interpolation in different conditions, six overset mesh layouts were

designed. These are meant to represent various aspects of real overset meshes, with

variation in refinement, relative positioning of the meshes and grid topology. For each

layout, five grid assemblies were generated with different refinements. Each grid assem-

bly is composed of two grids:

1. a Background grid common to all layouts, which is a Cartesian grid of ratio 2:1,

as per Table 6.1

2. and a Foreground grid, also a 2:1 rectangular grid but four times smaller than the

Background grid. Its position and type is different for each layout:

• L1: the Foreground grid is a Cartesian grid on which the cell size is the same

as the one of the Background grid, it is also centred in both directions relative

6.1. Poiseuille flow test case 69

to the Background grid. In the overlap region there is a one-to-one match

between cells of both grids.

• L2: the Foreground grid is similar to layout L1 but the global positioning of

the grid is offset by about 0.694 cells in the x-direction and 0.416 cells in the

y-direction (the absolute offset depending on the grid refinement).

• L3: the Foreground grid is similar to layout L1 but it is rotated by about

18.65 degrees around the centre of the domain (the decimals were randomly

chosen in order to avoid cell alignments).

• L4: The Foreground grid is still Cartesian but the cells are 1.6 times larger

in each direction compared to the Background grid. The grid has the same

offset from the centre of the domain as L2.

• L5: The Foreground grid is 1.5 times finer in both directions than the Back-

ground grid. The grid has the same offset from the centre of the domain as

L2.

• L6: The Foreground grid is unstructured composed of triangles, and its cell

count is kept close to the cell count of L1. The Foreground grid has the same

offset from the centre of the domain as L2.

It can be noted that, even if some of them are structured, the CFD solver considers them

as unstructured and does not take advantage of their topology with the donor search or

interpolation as presented in Chapter 4.

(a) L1 (b) L2 (c) L3

(d) L4 (e) L5 (f) L6

Figure 6.2: Coarsest grid used for each layout. The Background grid is displayed in blue and
the Foreground grid in green.

In this test case, steady computations are performed where only the momentum equation

and the pressure correction (via the SIMPLE method) are solved. At the inlet, the

analytical velocity profile is set, and the analytical pressure is enforced at the outlet.

The top and bottom of the domain use non-slip wall boundary conditions. Iterative

convergence is ensured by letting the infinity norm of the residuals fall below 10−14 and

convective and diffusive fluxes are discretised using 2nd order schemes.

70 Chapter 6. Code Verification and error analysis on flows with analytical solution

Table 6.1: Different grid sizes used for the Poiseuille flow test case.

Background Foreground
L{1-6} L1 - L2 - L3 L4 L5 L6

Ni Ni Ni Ni Ni

G1 32× 16 512 16× 8 128 9× 4 36 23× 11 253 unstr 112
G2 64× 32 2 048 32× 16 512 19× 9 171 47× 23 1 081 unstr 518
G3 128× 64 8 192 64× 32 2 048 39× 19 741 95× 47 4 465 unstr 2 232
G4 256× 128 32 768 128× 64 8 192 79× 39 3 081 191× 95 18 145 unstr 9 234
G5 512× 256 131 072 256× 128 32 768 159× 79 12 561 383× 191 73 153 unstr 37 944

(a) Background grid (b) Foreground grid

Figure 6.3: Cell status for the layout L3 and grid G3 computed by Suggar++.

Figure 6.3 shows the IBLANK array for the L3 layout computed by Suggar++. Two

layers of fringe cells are used at each boundary for the CFD solver to reconstruct gradi-

ents properly on neighbouring in cells. Since the test case does not strictly require the

use of overset meshes (there is no moving body, etc.) for each refinement, a computation

using only the Background grid was additionally done for comparison purposes, it will

be called no overset in the following.

In this study, all the interpolation schemes presented in section 4.4 were tested: Nearest

cell and Inverse distance using 4 and 10 donor cells as well as Barycentric interpolation

of type 2. For polynomial based interpolation, Least squares and Polynomial interpo-

lation of degree 1, 2 and 3, as well as Polynomial tensor interpolation of degree 1 were

used. It should be noted that since the Poiseuille flow solution is a degree 2 polynomial

function, a degree 2 or higher polynomial based interpolation method should be able to

interpolate the field exactly.

As seen in Chapter 5, the robustness of polynomial based interpolation is heavily influ-

enced by donor cell locations and is particularly sensitive to cell centre alignments. In

this test case, Polynomial interpolation of order 3 and the Polynomial tensor interpola-

tion lead to diverging computations due to their high errors. Subsequently, results from

these computations are not shown in the following study.

6.1. Poiseuille flow test case 71

6.1.2 Error level analysis

Figure 6.4 shows the infinity norm of the error on the velocity field for a selection of

schemes (and the layout L3) against grid refinement. For the no overset computation,

this error is only the space discretisation error, that, as expected with 2nd order dis-

cretisation, also decreases in 2nd order when refining the grid. On overset computations,

however, the error shown is a combination of discretisation and overset interpolation

errors. With the Least squares 2 scheme (a 3rd order scheme), the error level is similar

to the no overset computation, suggesting that the interpolation error is lower than the

discretisation error. To analyse errors on all of the schemes and the different layouts,

Figure 6.5 shows a different representation of the same data with the infinity norm of

the error for each grid per scheme as well as the order of convergence.

100 101

hi/h5 =
√
N5/Ni

10−5

10−4

10−3

10−2

‖U
O
S
−
U
ex
a
ct
‖ ∞

Nearest cell

Inverse distance 4

Polynomial

Nearest cell gradient

Least squares 2

No overset

Figure 6.4: Infinity norm of the velocity field error against grid refinement (G5 to G1) for the
layout L3. For readability reasons, only a selection of schemes is displayed.

• Layout L1: each scheme shows a converging trend with errors similar to the case

run without overset except for the degree one Least squares and Barycentric type

3, which both result in higher errors. This is because neither of them guarantee

that an interpolation computed on a cell centre returns the cell centre value. Even

though only the velocity error is shown here, the error on the pressure has a similar

behaviour.

• Layouts L2 to L5 show very comparable results for each scheme, giving confidence

that the conclusions drawn here are not specific to the mesh layout. Every sin-

gle scheme shows a converging trend when refining the grid with the exception of

Inverse distance and Nearest cell on layouts L3 and L4 (both of them being only

1st order). Increasing the number of donor cells for the Inverse distance scheme

slightly helps to reduce the error but not to the level of other, higher order, interpo-

lation schemes. Then, 2nd order schemes (Nearest cell gradient , Polynomial 1 and

Least squares 1), as well as the Barycentric ones, show intermediate results, with

proper convergence when refining the grids, but still showing errors higher than

the discretisation error alone (no overset case). The convergence order computed

from this error varies between 1 and 1.5. Furthermore, degree 1 Least squares

computations show slightly higher errors than the degree 1 Polynomial on these

72 Chapter 6. Code Verification and error analysis on flows with analytical solution

0
1
2

O
rd

er
N

o
ov

er
se

t
N

ea
re

st
ce

ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−6

10−4

10−2

‖U
O
S
−
U
ex
a
ct
‖ ∞ G1

G2

G3

G4

G5

(a) L1

0
1
2

O
rd

er
N

o
ov

er
se

t
N

ea
re

st
ce

ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−6

10−4

10−2

‖U
O
S
−
U
ex
a
ct
‖ ∞ G1

G2

G3

G4

G5

(b) L2

0
1
2

O
rd

er
N

o
ov

er
se

t
N

ea
re

st
ce

ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−6

10−4

10−2

‖U
O
S
−
U
ex
a
ct
‖ ∞ G1

G2

G3

G4

G5

(c) L3

0
1
2

O
rd

er
N

o
ov

er
se

t
N

ea
re

st
ce

ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−6

10−4

10−2

‖U
O
S
−
U
ex
a
ct
‖ ∞ G1

G2

G3

G4

G5

(d) L4

0
1
2

O
rd

er
N

o
ov

er
se

t
N

ea
re

st
ce

ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−6

10−4

10−2

‖U
O
S
−
U
ex
a
ct
‖ ∞ G1

G2

G3

G4

G5

(e) L5

0
1
2

O
rd

er
N

o
ov

er
se

t
N

ea
re

st
ce

ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−6

10−4

10−2

‖U
O
S
−
U
ex
a
ct
‖ ∞ G1

G2

G3

G4

G5

(f) L6

Figure 6.5: Infinity norm of the error and convergence order on the velocity for the Poiseuille
case. Cross marker denote the finest grid.

layouts, which can be explained by the fact that the Least squares approach uses

more donor cells, thereby using field information further away from the interpola-

tion location. Finally, schemes with theoretical order of 3 or higher (Polynomial

3 and Least squares 2 and 3) are the only ones to show error levels similar to the

case without overset grids, suggesting that the interpolation error is lower than

the discretisation error.

• Layout L6 is the only case introducing an unstructured grid for the Foreground

mesh. Since triangular cells reduce the grid quality and increase the intrinsic dis-

cretisation error on in cells, the comparison with the non-overset case is harder

to make. Nevertheless, Nearest cell gradient and Least squares have both similar

error levels for the finest grids, though degree 2 and 3 Least squares are better for

coarser grids.

6.1. Poiseuille flow test case 73

The schemes showing the lowest error overall (Least squares 2 and 3) have worse

convergence order on this layout. As mentioned, this convergence order combines

both discretisation errors and overset interpolation errors, each having their own

order of convergence. On these computations, the discretisation error is likely to

have a lower order than the interpolation one, thereby lowering the overall order

of convergence. However, the Nearest cell gradient computation shows a different

behaviour as the interpolation error is dominating (with an order of 1.5 like seen

on the other layouts). The combined convergence order is 1.5. Upon refining the

grids, the discretisation error will likely become dominant, lowering the combined

convergence order.

As stated previously, Polynomial based interpolation schemes are sensitive to

donor cells location. On this layout, both Polynomial computations resulted in

poor robustness with very high interpolation errors leading to the computation

divergence.

6.1.3 Mass imbalance study

Upon convergence of the SIMPLE algorithm, mass imbalance, which is the difference

between the inflow and outflow mass fluxes, is of the same order of magnitude as the

iterative error. When using overset grids, however, the global mass conservation that is

inherent to the finite volume method is lost due to the overset interpolation happening

on fringe cell centres and breaking the uniqueness of fluxes going in and out of every

single cell faces. This source of mass imbalance does not depend on iterative error but

is rather related to the interpolation error and the overset method itself.

Figure 6.6 shows the mass imbalance for each scheme. It was previously observed that

on layout L1, overset computations did not show errors higher than the ones without

overset. It is visible here, however, that this does not imply that the mass is fully

conserved. It can be noted that for each scheme, the mass imbalance decreases with

grid refinement.

The layout L2 is a translation of L1. Therefore the Nearest cell scheme is computing

exactly the same solution for the two layouts since the donor and fringe cells are the

same, explaining the similar mass imbalance on these two layouts. Furthermore, the

mass imbalance is several orders of magnitude lower than the error levels shown in the

previous section, which implies that schemes with comparable error magnitudes can

have a different mass imbalance. This is, for example, the case for the degree 2 Least

squares scheme. Even if Figure 6.5 shows similar trends for layouts L2 and L3, the mass

imbalance is three orders of magnitude lower on L2 for the finest grids. Similarly to the

error plots, it can be seen that schemes with a theoretical order strictly higher than two

behave similarly on all grid layouts.

74 Chapter 6. Code Verification and error analysis on flows with analytical solution

N
o

ov
er

se
t

N
ea

re
st

ce
ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−14

10−10

10−6

10−2

|Q
O
u
t
−
Q
I
n
| G1

G2

G3

G4

G5

(a) L1

N
o

ov
er

se
t

N
ea

re
st

ce
ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−14

10−10

10−6

10−2

|Q
O
u
t
−
Q
I
n
| G1

G2

G3

G4

G5

(b) L2

N
o

ov
er

se
t

N
ea

re
st

ce
ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3
10−14

10−10

10−6

10−2

|Q
O
u
t
−
Q
I
n
| G1

G2

G3

G4

G5

(c) L3
N

o
ov

er
se

t
N

ea
re

st
ce

ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−14

10−10

10−6

10−2

|Q
O
u
t
−
Q
I
n
| G1

G2

G3

G4

G5

(d) L4

N
o

ov
er

se
t

N
ea

re
st

ce
ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−14

10−10

10−6

10−2

|Q
O
u
t
−
Q
I
n
| G1

G2

G3

G4

G5

(e) L5

N
o

ov
er

se
t

N
ea

re
st

ce
ll

N
ea

re
st

ce
ll

gr
ad

ie
nt

In
ve

rs
e

di
st

an
ce

4

In
ve

rs
e

di
st

an
ce

10
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l 3

Le
as

t
sq

ua
re

s

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

B
ar

yc
en

tr
ic

3

10−14

10−10

10−6

10−2

|Q
O
u
t
−
Q
I
n
| G1

G2

G3

G4

G5

(f) L6

Figure 6.6: Difference between inflow and outflow mass fluxes for the Poiseuille case measuring
the mass imbalance caused by the overset method.

6.1.4 Flow behaviour and errors location

In this section, only the Nearest cell , Nearest cell gradient , and degree 2 Least squares

schemes will be analysed as they can be considered representative of 1st, 2nd and 3rd order

interpolation schemes respectively. Field visualisation for the degree 1 Least squares

being relatively similar to the Nearest cell gradient one for example. Figure 6.7 shows

the velocity and pressure fields for layout L3 and Nearest cell gradient scheme, though,

from it no artefact can be observed. For analysing errors and the effects of interpolation

schemes, comparison with the exact solution is needed. Hence, Figure 6.8 shows, for the

layout L3 and set of grids G3, the log of the difference between the exact solution and

the overset computation for the velocity field. On these figures, only the bottom half

of the Foreground mesh solution is displayed to visualise fringe cells of the Background

grid that the Foreground mesh would otherwise overlap.

Firstly, outside of the overlap region a couple of error patterns can be discussed. As the

velocity is prescribed at the inlet, it is where its error is minimal. Then, the two ‘blue

6.1. Poiseuille flow test case 75

(a) Axial velocity field (b) Pressure field

Figure 6.7: Velocity and pressure fields for the layout L3 and grid set G3, using the Nearest
cell gradient interpolation scheme.

(a) Nearest cell (1st order) (b) Nearest cell gradient (2nd order)

(c) Least squares degree 2 (3rd order) (d) Computation without overset

Figure 6.8: Log of the error between overset computations and exact solution for the velocity
field. Note that the scale is adapted for each plot with the maximum error always being the
upper range of the scale. The Foreground mesh is only half visible in order to visualise fringe

cells of the Background mesh.

76 Chapter 6. Code Verification and error analysis on flows with analytical solution

lines’ appearing on the visualisation without overset only show a change of sign of the

error which is maximal close to the walls and in the centre of the domain.

When focusing on the overset method and comparing the different interpolation schemes,

Nearest cell and Nearest cell gradient show similar error patterns: fringe cells have

higher errors and can clearly be distinguished from the rest of the flow even if the

computation using the Nearest cell gradient scheme has lower errors than the one using

the Nearest cell scheme. With the degree 2 Least squares scheme, on the other hand,

no discontinuities are visible even in the overlap region. The highest errors are at the

top and bottom boundaries and not close to the overset interface. For this scheme,

the errors are quite similar in terms of magnitude and location to a computation done

without overset suggesting that the interpolation error is lower than the discretisation

one in the entire domain. When looking at the pressure field, Figure 6.9, comparable

conclusions can be drawn as degree 2 Least squares scheme does not display any artefact

related to the overset process. It can be noted that the errors generated by the Nearest

cell gradient scheme on the pressure result in a smoother field than for the velocity, but

a step is still present between fringe and in cells. Visible on both the Foreground and

the Background mesh. Finally, the Nearest cell scheme shows point-to-point oscillations

on fringe cells for both grids and presents higher errors.

The Background grid data can also be directly compared to the computation done

without overset as shown in Figure 6.10 for the velocity field. For the Nearest cell and

Nearest cell gradient , the maximum difference is similar to the error analysed above.

In contrast, the Least squares 2 figure shows differences one order of magnitude lower

than the error (computed when comparing against the analytical solution) and still has

a smooth field without visible effects of the overset method. This suggests that the

interpolation error is one order of magnitude lower than the discretisation error.

To summarise, artefacts of the overset method, specifically of the interpolation step, are

visible for interpolation schemes of order 2 or lower. When using higher order schemes,

the error made with overset grids is negligible compared to discretisation error without

overset grids.

6.1. Poiseuille flow test case 77

(a) Nearest cell (1st order) (b) Nearest cell gradient (2nd order)

(c) Least squares degree 2 (3rd order) (d) Computation without overset

Figure 6.9: Log of the error between overset computations and exact solution for the pressure
field.

(a) Nearest cell (1st order) (b) Nearest cell gradient (2nd order)

(c) Least squares degree 2 (3rd order)

Figure 6.10: Log of the difference in velocity between a computation done with and without
overset.

78 Chapter 6. Code Verification and error analysis on flows with analytical solution

6.2 Recirculation bubble URANS manufactured solution

6.2.1 Introduction

This test case, designed by Eça et al. [35], is a 3D unsteady manufactured solution of

a high Reynolds number (Re = 107) recirculation bubble. Even though no constrains

formally exist in the design of a manufactured solution, Eca et al. focused on designing

a realistic unsteady high Reynolds number boundary layer to assess the discretisation

errors and turbulence models in conditions close to real engineering problems. In the

present work, the Verification of the CFD solver discretisation is not the goal, however,

the use of this particular manufactured solution allows a detailed study of interpolation

error generations and propagations in a realistic engineering context and at Reynolds

numbers the method encounters in maritime applications.

6.2.2 Case definition

The manufactured solution defines the velocity, pressure and ν̃t turbulent eddy viscosity

in the entire domain and the bubble grows and disappears periodically following a sine

wave with a period T = 5. A slice of the velocity field can be seen in Figure 6.11 with the

inlet on the left and outlet on the right. Finally, a detailed description of the solution

can be found in Appendix B and Eça et al. [35] should be read for an explanation of the

design choices that lead to the different fields.

Figure 6.11: Recirculation bubble used as a manufactured solution, the slice is coloured by
the x axial velocity. On this representation, the inlet is on the left, non-slip wall at the bottom

and outlet on the right.

The domain is an empty box of size x = [0.1; 1], y = [0; 0.4], and z = [0; 1]. The bottom

boundary is a non-slip wall, the inlet a Dirichlet boundary condition with each quantity

set to their analytical formulation, and every other boundary uses a Neumann boundary

condition with the exact analytical gradient set for each quantity.

For this test case, two different overset mesh layouts were tested. In both of them

the Background grid of the size of the entire domain is used together with a smaller

6.2. Recirculation bubble URANS manufactured solution 79

Foreground grid. The Foreground grid is a Cartesian mesh of size 0.3 × 0.25 × 0.8 and

the Background grid is a structured mesh with a refinement towards the wall to reach a

y+ below 1 for all grids. In this study, five different refinements were used for both the

Background and Foreground meshes, and Table 6.2 summarises their dimensions and

cell counts. The name of each grid layout (Grid n) can be seen as the number of cells

in the x-direction for the Background grid, and every other dimension scales with it in

order to have a set of geometrically similar grids.

The difference between the two overset layouts is only in the rotation of the Foreground

grid, on layout L1, the Foreground grid is in the centre of the domain, and aligned with

the global axis. When on layout L2, the Foreground grid is also centred in the domain

but two rotations are applied to it. First in the y-direction of 18.90 degrees and then

of 12.89 degrees in the z-direction. Figure 6.12 shows the coarsest mesh for both layout

and Figure 6.13 displays the associated IBLANK information. Similarly to the Poiseuille

test case, two layers of fringe cells are placed at the boundary of the Foreground mesh

and outside hole cells on the Background mesh.

Table 6.2: Details of the different grids used for the recirculation bubble test case.

Background Foreground
nx × ny × nz Ni nx × ny × nz Ni

Grid 50 50× 80× 55 220 000 30× 25× 80 60 000
Grid 60 60× 96× 66 380 160 36× 30× 96 103 680
Grid 70 70× 112× 77 603 680 42× 35× 112 164 640
Grid 80 80× 128× 88 901 120 47× 40× 128 240 640
Grid 90 90× 144× 100 1 296 000 53× 45× 144 343 440

Grid n n× 0.4n
0.25 × n

0.9 ≈ 16
9 n

3 0.6n× 0.5n× 1.6n ≈ 0.48n3

(a) L1 (b) L2

Figure 6.12: Coarsest grid (Grid 50) with the two different layouts used for the recirculation
bubble test case.

80 Chapter 6. Code Verification and error analysis on flows with analytical solution

(a) L1 (b) L2

Figure 6.13: Overset domain connectivity as computed by Suggar++ on the coarsest grid setup
(Grid 50). Black cells belong to the Foreground grid and white cells belong to the Background

grid.

For this study, turbulence is modelled by the Spalart-Allmaras model [117] and the

pressure-velocity coupling is done by the SIMPLER algorithm as it showed better it-

erative convergence characteristics than SIMPLE. Time integration is performed by an

implicit three time level scheme (2nd order) and the 2nd order QUICK scheme is used

for convective fluxes discretisation.

The period of the manufactured solution is set to T = 5 and the time-step is tstep = 0.01,

leading to a maximum Courant number of 0.3 for the coarsest grid (Grid 50) and 0.7 for

the finest grid (Grid 90). The validity of this time-step was checked by doing a time-step

refinement study with tstep = 0.05, tstep = 0.01 and tstep = 0.001. With a time-step of

tstep = 0.01, a period is modeled by 500 time-steps.

The statistical uncertainty for any measured quantity is kept below 2% by simulating

5000 time-steps (10 periods) and the first two periods of any computation is discarded

to remove the startup transient effect (according to the transient scanning technique

results).

For this study, the two Layouts L1 and L2, and all the five grid setups were computed

using overset. For each grid combination, Inverse distance (using seven donor cells),

Nearest cell gradient , Least squares of degree 1, 2 and 3, and Barycentric interpolation

of type 2 were used. For comparison purposes, a set of computations was also done using

only the Background grid without overset grids.

Iterative error was controlled by performing enough outerloops to keep the infinity norm

of the residuals for all equations below 10−6. The same computations were performed

with infinity norm of residuals below 10−7 but no changes were seen on the computed er-

ror fields suggesting that the iterative error was negligible compared to the discretisation

one, therefore 10−6 was kept for the remainder of the study.

6.2. Recirculation bubble URANS manufactured solution 81

6.2.3 Time evolution of errors

For this test case, the error norms were calculated every time-step for each field quantity.

As an example, Figure 6.14a shows them for the Nearest cell gradient on layout L1. On

this graph, the five different grid refinements are plotted and all show similar behaviours

with the error decreasing with mesh refinement. In time, the error is oscillating with

a period equal to the solution period (T = 5). As suggested by the low statistical

uncertainty, the differences between each period are negligible. Finally, it should be

noted that the maximum error occurs just after the middle of the period when the

amplitude of the recirculation bubble reaches its maximum size. These observations hold

for the two layouts and all the quantities as well as the set of computations done without

overset meshes. However, when observing the results coming from the computation using

the Inverse distance interpolation scheme on layout L1 in Figure 6.14b, the convergence

behaviour is less clearly visible. For example, Grid 60 and 70 show similar error levels

and the amplitude is also not consistent throughout the refinements.

25 30 35 40 45 50
Time

10−3

‖U
O
S

x
−
U
ex
a
ct

x
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

(a) Nearest cell gradient

25 30 35 40 45 50
Time

10−3

10−2

‖U
O
S

x
−
U
ex
a
ct

x
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

(b) Inverse distance

Figure 6.14: L2 norm of the error on Ux over five flow periods on layout L1. In this plot, the
timetrace of each grid refinement is shown. Figure (a) shows a proper converging trend when it

is not as clear when Inverse distance is used.

6.2.4 Error level analysis

Figure 6.15 plots the time averaged L2 norm of the error for each quantity, each in-

terpolation scheme, each grid setup and both layouts. In this study, the L2 norm is

used as it was found to be more representative of the situation compared to the L∞

norm because the maximum error was often linked to a domain boundary and not the

overset assembly. Considering the error regarding Ux for layout L1 (first column and

first line), each scheme shows grid convergence, with finer grids leading to lower errors,

except for the Inverse distance scheme (in green). Computations done without overset

show error levels similar to the Nearest cell gradient , degree 2 and 3 Least squares , and

Barycentric interpolation approaches. It is noticeable that the errors without overset

are even slightly higher than when using the Nearest cell gradient on layout L1. This is

because the Foreground grid is more refined than the Background grid. Hence the over-

set computations lead to lower discretisation errors when compared to the non overset

ones. Though this is not as true anymore for layout L2, where the Foreground grid is

82 Chapter 6. Code Verification and error analysis on flows with analytical solution

rotated, resulting with part of it within the lower boundary layer. In this region, the

Background grid is finer than the Foreground one, leading to larger discretisation errors.

Overall, for layout L2, the two effects cancel each other out, and the error levels are

similar without overset and with a Nearest cell gradient scheme.

Consistently for each quantity and both layouts, the Nearest cell gradient and Barycen-

tric schemes perform as well as the non-overset computations. The degree 2 and 3

Least squares interpolation perform here, at best, as well as the Nearest cell gradient

in layout L1, but slightly worse in layout L2. As mentioned before, on layout L1, the

Inverse distance scheme shows the highest error levels and no clear grid convergence

trend. This implies that the interpolation error is higher than the discretisation error.

For layout L2, however, the Inverse distance scheme performs better, with lower errors

and a converging trend, suggesting that the scheme is more sensitive to the donor cells’

location than the other tested ones. The degree 1 Least squares scheme always performs

worse than the degree 2 one, and the degree 2 and 3 Least squares schemes perform

comparably. Summarising, from the error plots only, the Nearest cell gradient , degree

2 and 3 Least squares and Barycentric schemes are the best candidates as they add no

or a minimal amount of error in the field compared to the case without overset. This

suggests that the interpolation error is lower than the discretisation error.

Regarding the convergence order, the computations done without overset show a 2nd

order convergence for each quantity, as expected from the theoretical order of discretisa-

tion of the schemes used, and therefore verifying the non-overset solution. The Nearest

cell gradient , degree 2 and 3 Least squares and Barycentric computations also show a

2nd order convergence as well. However, the Inverse distance scheme shows, depending

on the quantity and layout, between 1st and 2nd order convergence. Finally, the degree

1 Least squares results in 2nd order convergence for layout L1 but slightly lower order

on L2.

6.2. Recirculation bubble URANS manufactured solution 83

Ux

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

. 10−3

‖U
O
S

x
−
U
ex
a
ct

x
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

. 10−3

6× 10−4

2× 10−3

3× 10−3
4× 10−3

‖U
O
S

x
−
U
ex
a
ct

x
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

Uy

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2
. 10−3

‖U
O
S

y
−
U
ex
a
ct

y
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

. 10−3

‖U
O
S

y
−
U
ex
a
ct

y
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

Uz

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

. 10−3

‖U
O
S

z
−
U
ex
a
ct

z
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

. 10−3

3× 10−4
4× 10−4

6× 10−4

‖U
O
S

z
−
U
ex
a
ct

z
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

P

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

. 10−3

‖P
O
S
−
P
ex
a
ct
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2
. 10−3

‖P
O
S
−
P
ex
a
ct
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

ν̃t

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

. 10−6

‖ν̃
tO
S
−
ν̃ t
ex
a
ct
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

0
1
2

O
rd

er
N

o
ov

er
se

t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

. 10−6

2× 10−7

3× 10−7
4× 10−7

6× 10−7

‖ν̃
tO
S
−
ν̃ t
ex
a
ct
‖ 2 Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

L1 L2

Figure 6.15: Comparison of error levels for each quantity depending on the interpolation
scheme used for the recirculation bubble test case. Errors plotted are the time average of the L2

norm of the error for each quantity. Convergence order is displayed above each quantity.

84 Chapter 6. Code Verification and error analysis on flows with analytical solution

6.2.5 Mass imbalance study

Figure 6.16 shows the mass imbalance for the different computations. Without overset

meshes, the imbalance is capped by the iterative error and is around 10−7 for every grid.

When using overset meshes, if, like in this study, no particular treatment is done to

the overset interface, mass imbalance is introduced. Independently of the scheme being

used, the relation between cell sizes and mass imbalance is complex: finer meshes not

always leading to lower errors. For the two 2nd order schemes (Nearest cell gradient and

Least squares 1), Grid 50 to 80 show a converging trend on layout L1, but Grid 90 has

higher mass imbalance. This trend is also not present on layout L2. None of the other

schemes show monotonic convergence trend and Inverse distance has, in general, the

highest errors.

N
o

ov
er

se
t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

10−7

10−4

‖Q
O
u
t
−
Q
I
n
‖ Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

(a) L1

N
o

ov
er

se
t

In
ve

rs
e

di
st

an
ce

7

N
ea

re
st

ce
ll

gr
ad

ie
nt

Le
as

t
sq

ua
re

s
1

Le
as

t
sq

ua
re

s
2

Le
as

t
sq

ua
re

s
3

B
ar

yc
en

tr
ic

2

10−7

10−4

‖Q
O
u
t
−
Q
I
n
‖ Grid 50

Grid 60

Grid 70

Grid 80

Grid 90

(b) L2

Figure 6.16: Mass imbalance for different interpolation schemes for the two tested grid layouts
on the recirculation bubble test case.

6.2.6 Flow behaviour and error location

Snapshots of the entire field solution were saved at t = 497.5 when the recirculation

bubble is largest and, as seen in the previous section, when errors are also higher. In

this section only the layout L2 is being analysed in detail, though similar conclusions

can be drawn from layout L1.

Figure 6.17 shows the velocity field when using the Inverse distance scheme, where no

artefacts from the overset interpolation are visible in the field. When looking at the error

field for the velocity, however, the effects of the overset meshes become apparent. In

Figure 6.18, the log of the velocity error is plotted for each computation using Grid 80.

The lowest errors are visible upstream of the overset region for all of the computations.

When using the Inverse distance scheme, it is particularly visible that the error made in

the overset region is being convected downstream with the flow. Some artefacts of the

overset interpolation are also visible downstream of the Foreground mesh when using

the Nearest cell gradient interpolation, but less than with Inverse distance. On the

6.2. Recirculation bubble URANS manufactured solution 85

Figure 6.17: Velocity magnitude slice for the Inverse distance computation on Grid 80.

(a) No overset (b) Inverse distance
1st order

(c) Nearest cell gradient
2nd order

(d) Least squares degree 1
2nd order

(e) Least squares degree 2
3rd order

(f) Least squares degree 3
4th order

Figure 6.18: Velocity error magnitude shown with a side view of the domain (inlet on the left,
wall at the bottom) for layout L2. The slice is taken in the middle of the domain (z = 0.5).

Foreground mesh itself, both the Inverse distance and Nearest cell gradient computa-

tions show a chequerboard error pattern following the flow streamlines. This is because

the interpolation error created at the upstream fringe cells of the Foreground grid is

being convected downstream. Neither scheme produce a smooth field, meaning that

two neighbouring fringe cells can hold very different interpolated data creating artefacts

still visible downstream of the layer of fringe cells. The Least squares computation,

on the other hand, produces a much smoother interpolation, and higher order method

makes the field even smoother. This leads to less visible artefacts of the interpolation

even though the error levels are comparable to the Nearest cell gradient scheme. When

comparing the Least squares and non-overset computation, one can notice that, in the

area where the Foreground grid is, the error is lower in the overset computation, which

confirms that having a finer overset mesh helps with decreasing the discretisation error

despite the overset method. Moreover, the fact that the inlet part of the Foreground

grid is better aligned with the flow streamlines may also help lower the errors for the

86 Chapter 6. Code Verification and error analysis on flows with analytical solution

overset computations in this region. Finally, even when no overset meshes are used, the

recirculation bubble region is where the highest errors are located.

In order to analyse only the overset method error on the Background grid, Figure 6.19

shows the difference between overset and non overset computations. Compared to previ-

ous error plots, what stands out is that, even with the degree 2 Least squares interpola-

tion, interpolation errors are being convected. Even though the Least squares produces

a smoother field compared to the Nearest cell gradient one, errors are still present.

Interpolation artefacts are also visible on the fringe cells upstream of the Foreground

mesh.

(a) Inverse distance
1st order

(b) Nearest cell gradient
2nd order

(c) Barycentric type 2

(d) Least squares degree 1
2nd order

(e) Least squares degree 2
3rd order

(f) Least squares degree 3
4th order

Figure 6.19: Velocity difference between overset and non overset computation shown with a
top view of the domain (inlet on the left) for layout L2. The slice is taken in the middle of the

domain (y = 0.2).

Finally, Figure 6.20 shows the pressure difference between the overset and non overset

computations. Similarly to the velocity comparison, 1st order Inverse distance scheme

shows higher errors also convected downstream with a clear chequerboard pattern. No

large differences are, however, visible between Nearest cell gradient and Least squares

schemes. The latter only displaying smoother fringe cells region though the error con-

vection is not apparent.

6.3. Concluding remarks 87

(a) Inverse distance
1st order

(b) Nearest cell gradient
2nd order

(c) Least squares degree 2
3rd order

Figure 6.20: Pressure difference between overset and non overset computation shown with a
top view of the domain (inlet on the left) for layout L2. The slice is taken in the middle of the

domain (y = 0.2).

6.3 Concluding remarks

From this work, several preliminary conclusions can be drawn from two distinct but com-

plementary test cases. As expected, higher order schemes produce lower interpolation

errors than lower order ones. In both cases, 1st order schemes like the Inverse distance

generate errors that significantly affect the underlying discretisation scheme of the flow

solver. At the other end of the spectrum, 3rd order schemes were always sufficient to

maintain the 2nd order convergence of the global discretisation. This means that the

interpolation error produced by the overset interface is lower than the discretisation er-

ror. In addition to resulting in different error levels, the interpolation schemes influence

the ‘smoothness’ of the error field. This is partly due to the number and location of the

donor cells. The Nearest cell gradient or Barycentric schemes, for example, only use

very local information (with a single donor cell) whereas the Least squares interpolation

can use more than 10 donor cells. As a result, the Least squares approach was found

to produce smoother fields among all the schemes tested. Its robustness, which can be

controlled by increasing the number of donor cells used, and its accuracy make it an

ideal candidate for interpolation in an overset context.

The two test cases were designed to study different features and test the overset imple-

mentation and interpolation schemes under different conditions. First, the recirculation

bubble manufactured solution is a high Reynolds test case (Re = 107) compared to

the Poiseuille flow one (Re = 10). As a result, convection plays a predominant role

in the recirculation bubble case, and interpolation errors produced by the overlap are

convected downstream. However, on diffusion dominant flows like the Poiseuille test

case, the overset assembly perturbed the entire domain (even upstream of the overlap).

This difference in the transport of the errors also impacts the smoothness of the field.

88 Chapter 6. Code Verification and error analysis on flows with analytical solution

In fact, a low Reynolds number leads to a smooth field regardless of the interpolation

scheme. In contrast, at high Reynolds number, the wake of the overset meshes is as

smooth as the interpolation on fringe cells. The two test cases also differ in how 2nd

order interpolation schemes perform. With the recirculation bubble test case, 2nd order

interpolation results in interpolation errors lower than the discretisation ones. On the

other hand, on the Poiseuille flow test case, a 3rd order or higher interpolation scheme

is required to achieve accurate results.

89

Chapter 7

Case study: Analysis of

propeller-rudder interaction

Studies on analytical or manufactured solutions, such as those presented in the previous

Chapter, are essential for gaining detailed knowledge on error propagation and the overall

effect of the overset method on accuracy. However, these solutions are not as complex as

the engineering applications the overset method is often used for. Therefore, conclusions

drawn from these solutions are insightful, but must be checked on real-life problems. It

is, for example, difficult to deduce quantitative conclusions in terms of integral quantities

for real engineering problems. For this reason, this Chapter focuses on the complex and

realistic problem of a rudder behind a propeller subjected to a drift angle, replicating

experiments from Molland and Turnock [79]. It includes three overset meshes and mesh

motion for the propeller rotation.

7.1 Introduction

Molland and Turnock [79, 81], Turnock [120] conducted a series of experiments testing a

variety of rudder designs, rudder positions relative to the propeller while also applying

a drift angle to the entire system. Their goal was to assess maneuverability, and the

change of propeller and rudder characteristics under different conditions. Now that CFD

has become more ubiquitous by getting more accessible and more accurate, such test

cases can be replicated computationally. Phillips et al. [97] and Villa et al. [125] both

did it by using RANS-BEM coupling, which requires no moving objects in the domain

and uses a single mesh. Such coupling, allows the propeller to be only modelled hence

lowering the cell count and making the computation a lot faster at the cost of higher

modelling errors. In order to simulate the propeller instead of modelling it, Badoe

et al. [3] used sliding meshes for its rotation. While this approach is commonly used

for propeller flows, rudders, often, cannot use it due to the lack of space to account

90 Chapter 7. Case study: Analysis of propeller-rudder interaction

for two cylindrical domains. Hence requiring a new mesh for each rudder angle, or the

use of mesh deformation when possible. As such limitations are lifted with the overset

grid method, it is often used on rudder-propeller assemblies. Replicating another set of

experiments, Yilmaz et al. [132] used an overset grid on the rudder while the propeller

was simulated with a sliding mesh. Di Mascio et al. [29] also used overset grids, but

this time for both the rudder and every single propeller blade, resulting in a total of six

overset grids.

Rudder-propeller flows are not only simulated in isolation, but are an inherent part of

any full ship computation, making the conclusion drawn in this Chapter applicable for

a wider range of computations. Zhirong et al. [133], for example, simulated a complex

manoeuvre of a ship with two propellers using six degrees of freedom with six over-

set grids, one per propeller, one per rudder, one for the rest of the ship and finally a

background one. Similarly, Carrica et al. [17] simulated the same vessel but this time

combining a total of 37 meshes. Because the CFD solver used, CFDShip-IOWA, is lim-

ited to structured grids, even non-moving components had to be meshed independently

and the overset grid method used to assemble them.

To optimise computational resource usage, in this Chapter, three interpolation schemes

are tested: Inverse distance, Nearest cell gradient and Least squares degree 2 as they

are considered representative of 1st, 2nd and 3rd order interpolation schemes. Besides

analysing the differences of these schemes on integral quantities, mass imbalance, flow

features and pressure distribution, a detailed solution Verification study is performed to

estimate the time and space discretisation uncertainties, and the iterative and statisti-

cal uncertainties. Finally, Validation of the rudder flow is performed against a set of

experiments done in similar conditions by Molland and Turnock [79].

7.2 Problem setup

7.2.1 Experiments presentation

Molland and Turnock [78, 79, 81] conducted a series of experiments to study propeller -

rudder interactions in various realistic ship manoeuvring conditions. Done in Southamp-

ton R.J. Mitchell’s wind tunnel, the experiments included a centre board upstream of the

propeller, the propeller itself and a rudder. Besides varying the rudder angle of attack,

the entire assembly could be rotated to replicate different ship drift angles. Overall, air

inlet speed, propeller rotation speed, rudder and drift angles were varied, and several

centre board and rudder shapes were tested. The propeller used was a four bladed mod-

ified B4.40 Wageningen propeller, an 800 mm diameter, 0 degree rake and 0.95 mean

pitch ratio propeller for which design details are found in Turnock [119] and can be

seen in Figure 7.1. The rudder used in the present work is named rudder n◦2 in the

7.2. Problem setup 91

experiments description: a NACA0020 profile straight rudder with a chord of 667 mm

and a span of 1000 mm. Finally, the long centre board, the one used in this work, is

2690 mm long and 1018 mm high. Load cells on the rudder assembly and propeller

allowed the recording, amongst other quantities, of lift, drag and moment coefficients

for the rudder and torque and moment coefficients for the propeller. Furthermore, for

some runs, pressure was recorded on the rudder and centre board surfaces.

The present work focuses on replicating a subset of the input conditions done experimen-

tally: a drift angle of -7.5 degrees, a propeller advance ratio of J = 0.51, an inlet velocity

of 10 m/s with rudder angles of 10 and 20 degrees. This set of conditions was picked

for their flow behaviour complexity and the larger amount of experimentally recorded

quantities.

Figure 7.1: Photo of the propeller used during the experimental campaigns [80, 120].

7.2.2 Numerical setup

7.2.2.1 Grid and Overset setup

As stated in section 7.2.1, the numerical setup replicates the long centre board and rudder

n◦2 from Molland et al. To accommodate each component, three sets of meshes were

generated, a first one containing the empty tunnel and centre board, then a cylindrical

domain containing the propeller geometry and, finally, a body-fitted rudder mesh. With

the overset method, the propeller can rotate and rudder can be set to any angle of

attack without the need for re-meshing. Figure 7.2 shows the domain geometry and

dimensions and Figure 7.3 defines the different angles used (angle of attack and drift

angle) and shows the outline of the propeller and rudder domains. It should be noted

92 Chapter 7. Case study: Analysis of propeller-rudder interaction

that, compared to Molland et al.’s experiments, the propeller is rotating in the opposite

direction. Corresponding changes in drift and rudder angle sign conventions were made

when comparing CFD with Experimental data.

10 m (12.5D)

2.4 m (3D)

3.6 m (4.5D)

10 m (12.5D)

1 m
2.69 m

Inlet

Outlet

y
x

z

Figure 7.2: Computational domain dimensions replicating the cross section of the R.J Mitchel
wind tunnel.

1 m
 (1.25D)

0.667 m
(0.83D)

0.39D

y

z
x

βr

AoA

Propeller/Centre board axis
Rudder axis
Tunnel axis

Figure 7.3: Definition of the different coordinate and angle systems. AoA is the rudder angle
of attack while βr defines the drift angle of the assembly.

The tunnel mesh is fully structured, made with Pointwise [14]. Its cross section is at

the R.J Mitchel wind tunnel’s dimension, 3.6 m wide, 2.4 m high. It is also 20 m long

with the rudder leading edge in the centre of the domain. The centre board’s y+ was

kept below 30, and refinements were made where the propeller and rudder would be

positioned to have enough cells in the overlap region.

The propeller mesh, also fully structured, was generated using GridPro [95] with some

custom preprocessing tools made by MARIN [41] using Rhino [106]. To ease the meshing,

especially at the blade root, the geometry of the propeller itself does not exactly replicate

the shape used in the experiments. Instead of the modified B series propeller, the CFD

analysis done with a conventional Wageningen B4.40 [121] with a constant pitch ratio

of P/D = 0.95. Figure 7.4 compares both geometries. Because of this difference,

Validation is performed for KT -equivalent computations to produce a similar flow wake

on the rudder. The detailed procedure is explained in section 7.5. y+ is kept below three

7.2. Problem setup 93

on the blades with a mean y+ below 1, and below 100 on the hub. The mesh diameter

of 1 m or 1.25D allows for sufficient clearance at the blade tip for overset fringe cells.

−0.2 0.0 0.2
c/D

0.30

0.40

0.50

0.60

0.70

0.80

0.90
0.95

2
r/

D CFD propeller

Exp propeller

Figure 7.4: Comparison of the propeller blade shapes used during the experimental cam-
paign [79] (black) and in this CFD study (red).

Finally, the rudder mesh, also fully structured, was generated with Pointwise. It is an

O-grid that extends above the rudder tip. Refinements at the leading and trailing edges

were made and a y+ below 1 was maintained.

The original tunnel mesh was designed without drift angle with the centre board aligned

with the tunnel inlet-outlet. To prevent re-meshing, meshes with drift angles were

generated using deforming grids by rotating the centre board part of the tunnel mesh.

For each component, a set of geometrically similar meshes with different refinements

was generated, Table 7.1 summarises the different cell counts. As seen in Figure 7.5

and 7.6, the overset cell status generated by Suggar++ places two layers of fringe cells

distributed on each side of the interface. Moreover, hole cells are placed in the propeller

mesh (due to the rudder overlap) and in the tunnel mesh where the propeller and rudder

meshes are positioned.

Figure 7.5: 3D view of the different meshes coloured with IBLANK information for the coarsest
assembly G1. The wireframe of each mesh is also coloured differently with the tunnel in white,

the propeller in blue and the rudder in red.

94 Chapter 7. Case study: Analysis of propeller-rudder interaction

Table 7.1: Refinements ratio (hi) and cell counts for the different meshes generated.

hi Total Tunnel Propeller Rudder

G1 1.51 10.8 · 106 6.6 · 106 3.2 · 106 1.0 · 106
G2 1.36 14.8 · 106 9.8 · 106 3.4 · 106 1.6 · 106
G3 1.21 21.4 · 106 13.1 · 106 6.2 · 106 2.1 · 106
G4 1.0 37.4 · 106 23.1 · 106 10.8 · 106 3.6 · 106

Figure 7.6: Top view of the different meshes showing IBLANK information for the coarsest
grid assembly G1. Only the lower two thirds of the propeller (blue) and top half of the rudder

(red) meshes are displayed to reveal the tunnel mesh in the background.

7.2.2.2 Computational setup

In this study, turbulence modelling is done with the k −
√
kL two equations turbulence

model [75], chosen for its better robustness compared to k − ω SST models. Momen-

tum and pressure correction equations are coupled using the SIMPLE methods and all

equations are solved in a segregated way. Convective fluxes for the momentum and tur-

bulence equations are discretised by the 2nd order QUICK scheme (with limiters), and

a three-time level scheme is used for 2nd order in time discretisation.

The side walls of the tunnel are modeled using a slip boundary condition to account for

their blockage effect without the need to refine the boundary layer, as would be required

for a non-slip wall, in order to reduce computational cost. The rudder, propeller and

centre board surfaces are modeled using a non-slip wall boundary condition. Automatic

wall functions are used, where for y+ < 5 (viscous-layer) a fully resolved boundary layer

treatment is employed, for y+ > 30 (log-layer) wall functions are used, and in-between

(in the buffer layer) a blending between the two approaches is used. At the outlet a

pressure boundary condition is used and the inflow velocity (U∞ = 10 m/s) is set at the

7.2. Problem setup 95

inlet of the tunnel (aligned with the tunnel itself) together with an eddy viscosity ratio

of 0.01.

Three interpolation schemes are used for the overset grid method interpolation. 1st order

Inverse distance, 2nd order Nearest cell gradient , and a 3rd order polynomial-based Least

squares schemes. The latter uses 25 donor cells per fringe cell to overdetermine the

system of linear equations and help robustness (Cmult = 2.5).

7.2.2.3 Analysed quantities

In this study, integral quantities related to both the propeller and rudder are assessed,

which are defined in the following equations,

J =
U∞
nD

, KT =
T

ρn2D4
, KQ =

Q

ρn2D5
, CL =

L
1
2ρU

2
∞cs

,

CD =
D

1
2ρU

2
∞cs

, Cm =
My

1
2ρU

2
∞c2s

, Cpc = 100×


 Cm√

C2
L + C2

D

+
0.2

c


 . (7.1)

J is the propeller’s advance ratio, KT its thrust coefficient, computed from the thrust

T , and KQ its torque coefficient computed from the propeller torque Q. Concerning

the rudder, CL is the lift coefficient, CD the drag coefficient, Cm its moment coefficient,

here calculated at 30% chord and Cpc the location of the centre of pressure along the

chord. Also, U∞ is the inlet velocity (U∞ = 10 m/s), n the propeller rotation speed

in revolution per second, D the propeller diameter (D = 0.8 m), ρ the air density

(ρ = 1.225 kg/m3), c the chord length (c = 0.667 m) and s the rudder span (s = 1 m).

For each quantity, time averaging is done over an integer number of blade passing periods

and statistical uncertainty is quantified in section 7.3.3 using Brouwer et al. [12, 13]

methodology. Time averaged velocity and pressure fields are also recorded.

fringe
hole
interface for flux sum

Figure 7.7: Overset meshes schematic highlighting (in orange) the faces where signed mass
fluxes are being summed up to compute mass imbalance.

96 Chapter 7. Case study: Analysis of propeller-rudder interaction

Finally, given that the overset grid method implementation used in this study does not

guarantee total mass flux conservation, monitoring the mass imbalance is of particu-

lar importance. To this end, signed mass fluxes between fringe cells and in cells are

summed and recorded over time for each mesh individually, thereby effectively measur-

ing the mass imbalance on each mesh. The cells where the summation is performed are

shown in Figure 7.7. In total four quantities are analysed: total mass fluxes going in

and out of the domain via the inlet and outlet (Qtotal), and fluxes going through each of

the overset ‘interfaces’ on the tunnel (Qtunnel), propeller (Qprop) and rudder (Qrudder)

meshes. One should note that, besides overset grid interpolation, mass fluxes are gov-

erned by the pressure correction equation, hence a non-zero value is a marker of overset

grid interpolation errors and/or iterative errors for that particular equation.

7.3 Verification studies

7.3.1 Iterative uncertainty

Iterative uncertainty quantification has been done following the method presented in

Eça and Hoekstra [34], Eça et al. [39]. For this, a set of five computations on grid

G2 with the rudder at 10 degrees angle of attack was done with a varying number of

outerloops per time step of 25, 50, 75, 100 and 150. Each computation resulted in

different residuals iterative convergence, and Figure 7.8 shows, for each equation solved,

the time averaged residual level at the end of each time-step depending on the number

of outerloop per time-step. First, apart from the pressure correction equation (denoted

P), all the equations are not affected by the number of outerloops per time-step. This

is mainly because their convergence stall within the first 25 outerloops each time-step.

25 50 75 100 150
nloop per time-step

10−4

||r
es
|| 2

Ux
Uy

Uz
P

k

25 50 75 100 150
nloop per time-step

10−1

||r
es
|| ∞

Ux
Uy

Uz
P

k

Figure 7.8: Time averaged L2 and L∞ residuals for an increasing number of outerloops (nloop)
per time-step. The second turbulence equation residuals are omitted for clarity, but they are
relatively constant and three orders of magnitudes lower than the turbulence kinetic energy (k)

residuals.

Following Eça et al. [39], a least squares fit is performed on the quantities of interest

against their relative residuals levels. In this study, the L∞ norm of residuals levels for

the pressure correction equation were selected as they are the only one affected by the

number of outerloops. The proposed fit function is:

7.3. Verification studies 97

ϕ(ϵi) = ϕ0 + αeF (ϵi)β , (7.2)

with ϕ the quantity of interest and ϵi the residuals level achieved. Both functions

F (ϵ) = ln(ϵ) and F (ϵ) = −1/ϵ were tested and the first one is selected for its better

fit to the data. Results are shown in Figure 7.9 for the propeller’s KT and rudder’s

CL. A converging trend is clearly achieved for the residuals as a function of the number

of outerloops, and iterative uncertainty can be computed. In the rest of this work,

75 outerloops per time-step will be used as a balance between iterative error (here its

uncertainty is estimated at 0.2% for KT and 0.02% for CL) and computational cost. It

has to be noted, however, that because only the pressure correction equation residuals

are reduced with more outerloops, this study only partially evaluates iterative error. In

fact, reduction of all the other residuals would be needed to fully assess the iterative

uncertainty. Moreover, iterative error is here studied on a single mesh, but Eça et al. [39]

showed that iterative error can influence the study of discretisation errors. Nonetheless,

given the relatively low uncertainties found for integral quantities further study was

considered outside of the scope of this work.

150 75 50 25
nloop per time-step

0 1 2 3 4 5
hi

0.269

0.270

K
T

Uitr = 0.19%

150 75 50 25
nloop per time-step

0 1 2 3 4 5
hi

0.7560

0.7565

C
L

Uitr = 0.02%

Figure 7.9: KT and CL convergence with the pressure correction residuals, hi = ||Pres i||∞
||Pres 0||∞

.

Bars show the iterative uncertainty and in red the one corresponding to the number of outerloops
selected for the rest of this work.

7.3.2 Time discretisation uncertainty

To assess time discretisation errors, a set of five computations with varying time-steps

was used (see Table 7.2). The number of time-steps ranged from 400 per propeller rev-

olution to 50, leading to an average Courant number from 0.7 to 5. For computational

resources reasons, this test has been performed on mesh G2 only even though some vari-

ations should be expected with finer meshes and the increase of Courant number. Figure

7.10 plots KT and CL against time-step refinements, each quantity showing convergence

trends. Using Eça and Hoekstra [34] method, the time-step uncertainty on KT is esti-

mated at 0.15% when using 1.8◦ rotation per time-step, and 2% for CL. This time-step

is selected to be used in the rest of the current study. One should note, however, that for

98 Chapter 7. Case study: Analysis of propeller-rudder interaction

the finest mesh assembly (G4) this choice leads to an average Courant number of around

2.2 which would result in similar KT uncertainty but, likely, a higher CL uncertainty,

looking at the trend of each convergence plot.

Table 7.2: Time-steps tested to compute time discretisation uncertainty. The rightmost two
columns show the time-step compared to the propeller rotation speed (J = 0.51 leading to

1460 RPM).

hi tstep CFL tstep/rot
◦/tstep

1.00 1.027 · 10−4 s 0.66 400 0.9◦

1.33 1.370 · 10−4 s 0.89 300 1.2◦

2.00 2.055 · 10−4 s 1.33 200 1.8◦

2.67 2.740 · 10−4 s 1.77 150 2.4◦

4.00 4.110 · 10−4 s 2.66 100 3.6◦

8.00 8.219 · 10−4 s 5.32 50 7.2◦

0.9 1.8 3.6 7.2
◦rot/tstep

0 2 4 6 8
hi = tstep i/tstep 1

0.2694

0.2696

0.2698

K
T

Utime = 0.03%

0.9 1.8 3.6 7.2
◦rot/tstep

0 2 4 6 8
hi = tstep i/tstep 1

0.700

0.725

0.750

0.775

C
L

Utime = 2.09%

Figure 7.10: KT and CL convergence with time-step refinement. The error bars show time
discretisation uncertainties and are computed using Eça and Hoekstra [34] methodology.

7.3.3 Statistical uncertainty

To speed up simulations, each computation presented in this work is initialised from a

fully developed computation on a coarser mesh. After this initialisation, each compu-

tation is run for at least nine propeller rotations. The transient scanning technique is

then used on each quantity to detect and discard the transient portion of the results

and compute the statistical uncertainty. As shown in Figure 7.11, computations done

with 10 degrees rudder angle converge quickly to a steady state and show a clear os-

cillatory behaviour in sync with the blade passing frequency (four times per rotation).

Rudder forces (like CL) additionally display secondary oscillatory behaviour about 10

times larger than the blade passing one (or 2.5 propeller period). Figure 7.11 shows that

the statistical uncertainty is below 0.5% for this set of computations and analysed quan-

tities. While not displayed here, this conclusion holds for the other mesh refinements,

overset grid interpolation schemes and quantities.

When setting the rudder at 20 degrees, this behaviour changes for grid assemblies G1 to

G3 (the coarsest ones) as they introduce an extra long transient phase lasting more than

7.4. Impact of interpolation schemes 99

0 2 4 6 8
t/T0

0.2675

0.2700

0.2725

K
T

10−2 10−1 100 101

(T − t)/T0

10−4

10−3

U
95

%

(a) KT = 0.26960± 2.6 · 10−5

0 2 4 6 8
t/T0

0.72

0.74

0.76

C
L

10−2 10−1 100 101

(T − t)/T0

10−3

10−2

U
95

%

(b) CL = 0.7525± 4.7 · 10−4

Figure 7.11: Propeller (KT) and rudder (CL) forces coefficients time histories with the rudder
at 10 degrees angle of attack. The statistical uncertainty on the mean is computed using the
transient scanning technique [12] and shown on the bottom plot for each quantity. The transient
portion (orange) is removed from the computation of the mean. T0 is the rotation period of the

propeller and T is the simulation time.

40 propeller periods seen in Figure 7.12. As this transient portion needs to be simulated

but discarded this set of computations was deemed too expensive to be computed. As

a result, at 20 degrees rudder angle, only the results for mesh G4 (the finest one) will

be shown and discussed. These were run for 12 propeller rotations and lead to similar

statistical uncertainties as the 10 degrees rudder angle ones.

0 10 20 30 40 50 60 70
t/T0

0.24

0.26

0.28

K
T G1

G4

0 5 10 15

0.265

0.270

0.275

Figure 7.12: Propeller KT when the rudder is set at 20 degrees angle on the coarsest (G1) and
finest (G4) meshes.

7.4 Impact of interpolation schemes

7.4.1 Integral quantities

As seen in section 7.3.3, propeller forces coefficients KT or KQ have a clear oscillatory

behaviour in sync with the blades rotation. These oscillations are also consistent over

time, likely because the propeller inlet, even in the wake of the angled centre board, is

100 Chapter 7. Case study: Analysis of propeller-rudder interaction

steady. The results obtained when using the three interpolation schemes tested share

this characteristic, and, overall, have very close behaviour as seen in Figure 7.13. Rudder

forces, however, exhibit larger differences and seem less smooth. Being in the wake of the

propeller and having the flow cross at least one more overset interface brings more time

variation and greater changes between the different interpolation schemes. The Inverse

distance shows up to 1% difference on CL and 2.5% on CD compared the Least squares

computation, but only 0.05% on KT . The same trend is also true for the Nearest cell

gradient , albeit with smaller differences. Apart from different amplitudes and general

shape of the oscillation, it appears that using the Inverse distance scheme results in

‘noisier’ forces, once again, specially on the rudder lift and drag.

0.2675

0.2700

0.2725

K
T

Inverse distance

Nearest cell gradient

Least squares

0.0 0.5 1.0 1.5 2.0
t/T0

−0.1

0.0

0.1

%
K
T
L
S

(a) KT

0.03875

0.03900

0.03925

K
Q

Inverse distance

Nearest cell gradient

Least squares

0.0 0.5 1.0 1.5 2.0
t/T0

−0.025

0.000

0.025

%
K
Q
L
S

(b) KQ

0.03875

0.03900

0.03925

K
Q

Inverse distance

Nearest cell gradient

Least squares

0.0 0.5 1.0 1.5 2.0
t/T0

−0.025

0.000

0.025

%
K
Q
L
S

0.72

0.74

0.76

C
L

Inverse distance

Nearest cell gradient

Least squares

0.0 0.5 1.0 1.5 2.0
t/T0

−1
0
1

%
C
L
L
S

(c) CL

0.11

0.12

C
D

Inverse distance

Nearest cell gradient

Least squares

0.0 0.5 1.0 1.5 2.0
t/T0

−2.5
0.0
2.5

%
C
D
L
S

(d) CD

0.03875

0.03900

0.03925

K
Q

Inverse distance

Nearest cell gradient

Least squares

0.0 0.5 1.0 1.5 2.0
t/T0

−0.025

0.000

0.025

%
K
Q
L
S

Figure 7.13: Force coefficients time history for the three interpolation schemes tested at 10
degrees rudder angle. The bottom plot is a comparison with the Least squares scheme results,

computed with: %ϕLS = 100 · ϕ−ϕLS

ϕLS

To quantify these differences, and in particular the spurious oscillations between the

interpolation schemes, a spectral analysis is shown in Figure 7.14. First, doing a Fourier

transform on the force coefficients time histories confirms that, overall, propeller force

coefficients have fewer higher-frequency harmonics than rudder coefficients. Moreover,

the high frequencies are mainly harmonics of the blade passing frequency. In addition

to having more harmonics, the rudder quantities have higher white noise levels too.

Differences between the interpolation schemes can also be observed. The Inverse distance

computation appears to have more harmonics than the other two tested, as well as overall

higher intensities outside of harmonics.

Computing the power spectral density of high frequencies (higher than 4.5 times the

blade passing frequency) highlights the energy stored in these high frequencies and

is here used as a measure of the overall ‘smoothness’ of the signals. Such quantity,

7.4. Impact of interpolation schemes 101

normalised by the Least squares density, is plotted in Figure 7.14c. It shows the Nearest

cell gradient computation having very similar levels to the Least squares one. The

Inverse distance computation, on the other hand, regardless of the quantity has two to

five times more energy in these high frequencies. These results are here displayed for

10 degrees angle of attack on grid G4 but are similar to the 20 degrees rudder angle or

other grid refinements.

0 10 205 15

f [T0

4 Hz]

10−5

10−3

10−1

K̂
T

(f
)/
K̂
T

(1
)

Inverse distance

Nearest cell gradient

Least squares

(a) Fourier transform of KT

0 10 205 15

f [T0

4 Hz]

10−5

10−3

10−1

Ĉ
L
(f

)/
Ĉ
L
(1

)

Inverse distance

Nearest cell gradient

Least squares

(b) Fourier transform of CL

KT KQ CL CD
0
1

3

5

∫
P
/
∫
P
L
S

Inverse distance

Nearest cell gradient

Least squares

0 10 205 15

f [T0

4 Hz]

10−5

10−3

10−1

K̂
T

(f
)/
K̂
T

(1
)

Inverse distance

Nearest cell gradient

Least squares

(c) Power spectral density of high frequencies (higher
than 4.5 BPF) normalised by the Least squares com-

putation ones.

Figure 7.14: Fourier transforms of KT and CL. Frequencies are normalised by the blade
passing frequency (4/T0) and spectra by the level of the first harmonic (corresponding to the
blade passing frequency). Plot 7.14c compares the integration of the power spectra for high
frequencies (higher than 4.5 times the blade passing frequency, denoted with the vertical dashed

line on the Fourier transform plots).

Time averaging the force coefficient eliminates these high frequencies and leads to very

similar results for the three interpolation schemes. This is observed in Figure 7.15,

where each quantity is plotted against grid refinement. KT , for example, tends to be

only marginally over-predicted on the Nearest cell gradient results compared to the

other two schemes but with a difference of less than 0.03% it can be considered as an

insignificant change in an engineering context. For propeller forces, the convergence

with grid refinement is clear and monotonic which leads to low uncertainty of 0.5% and

2.2% for KT and KQ respectively. In comparison, the rudder forces show non-monotonic

behaviours with less clear convergence trends. On CL the ‘bell shaped’ convergence leads

to 48% uncertainty. CD, on the other hand, has a different behaviour. In fact, in Figure

7.15d, the statistical uncertainty is this time plotted as it is of similar magnitude to

the mesh refinements changes, which then confounds the fitting and computation of the

discretisation uncertainty. Even though the three schemes show very close trends, the

uncertainty varies from 0.5% to 11% and this results in very different fitting functions.

This issue could be solved by either running the simulation for longer to decrease the

102 Chapter 7. Case study: Analysis of propeller-rudder interaction

0.0 0.5 1.0 1.5
hi/h4

0.268

0.269

0.270

0.271

K
T

UG4 = 0.5%Udiscr

Inverse distance

Nearest cell gradient

Least squares

Udiscr

(a) KT

0.0 0.5 1.0 1.5
hi/h4

0.0380

0.0385

0.0390

0.0395

K
Q

UG4 = 2.2%Udiscr

Inverse distance

Nearest cell gradient

Least squares

Udiscr

(b) KQ

0.0 0.5 1.0 1.5
hi/h4

0.4

0.6

0.8

1.0

C
L

UG4 = 48.0%

Udiscr

Inverse distance

Nearest cell gradient

Least squares

Udiscr

1.0 1.5
0.73

0.74

0.75

(c) CL

0.8 1.0 1.2 1.4 1.6
hi/h4

0.109

0.110

0.111

0.112

0.113

C
D

Ustat

Inverse distance

Nearest cell gradient

Least squares

Ustat

(d) CD

0.03875

0.03900

0.03925

K
Q

Inverse distance

Nearest cell gradient

Least squares

0.0 0.5 1.0 1.5 2.0
t/T0

−0.025

0.000

0.025

%
K
Q
L
S

Figure 7.15: Time average force coefficients against grid refinement for the three interpolation
schemes tested at 10 degrees rudder angle. For each of them, except CD, discretisation uncer-

tainty (Udiscr) is displayed. For CD, statistical uncertainty (Ustat) is shown instead.

statistical uncertainty, or by using more meshes with different refinements to make the

fit less influenced by small variations1.

Overall, this shows that the spurious oscillations shown in the previous section mainly

lead to zero mean noise, and do not lead to sustained changes to forces as the three

interpolation schemes result in very similar time averaged values. Also, propeller forces

show monotonic 2nd order converging trends whereas rudder ones are non-monotonic.

The discretisation uncertainty estimation, however, is one order of magnitude larger

than the difference between the three schemes suggesting that the discretisation error is

higher than the interpolation error made on overset interfaces.

As explained in section 7.2.2.3, mass fluxes are not explicitly conserved by the overset

grid method, and consequently, a mass imbalance is introduced and influenced by the

interpolation scheme. Figure 7.16 shows the sum of mass fluxes going through each

mesh over time and for each scheme. First, once again, the blade passing frequency is

discernible on each of the quantities, even though it is not the only frequency component.

The comparison of the different schemes shows that, for the total mass imbalance (Figure

7.16a), the Least squares scheme shows results an order of magnitude lower than the

other two, but they all share similar oscillation amplitudes (albeit not obvious due to

the log scale). The tunnel interface mass imbalance has, then, levels similar or slightly

higher than the total ones but with extra frequencies components. Next, the prop

1Eça et al. methodology is known to be pessimistic and highly sensitive to small spread of refinements
and small number of refinement levels.

7.4. Impact of interpolation schemes 103

interface shows a drastically different behavior with higher flux imbalance and only

minor differences between the interpolation schemes. Finally, the rudder mesh has a

behavior close to the tunnel one with, however, larger oscillations amplitudes.

The difference in smoothness and higher frequency components between the total mass

imbalance and those on the tunnel or rudder is explained by the direct proximity of

the latter two to fringe cells. The inlet and outlet of the domain are further away

from overset meshes, which means that the oscillations are dampened due to numerical

diffusion and iterative errors. The higher imbalance seen on the propeller mesh is either

related to the iterative error, the highest pressure correction residuals being close to the

blade tips, or due to the fact that the propeller mesh is the only one moving. Regardless

of the reason, the error source driving this phenomenon appears to be different from the

one seen on the other three quantities as it is not influenced by the interpolation scheme,

it has a different level and it is not influenced in the same way by mesh refinements (not

shown here). The interpolation made on the propeller mesh still deteriorates the mass

imbalance, but its effect is overshadowed by another error source. Overall, it is, however,

not clear how and if errors made on fluxes propagate through an overset interface. Here,

for example, the high flux imbalance of the propeller mesh does not seem to affect

the other two ones. One beginning of explanation resides with the fact that fluxes are

computed on cell faces while the interpolation uses exclusively cell centre information

partially dissociating the different meshes.

0 1
t/T0

10−5

10−4

10−3

|Q
to
ta
l| Inverse distance

Nearest cell gradient

Least squares

(a) Qtotal

0 1
t/T0

|Q
tu
n
n
el
| Inverse distance

Nearest cell gradient

Least squares

(b) Qtunnel

0 1
t/T0

|Q
pr
op
| Inverse distance

Nearest cell gradient

Least squares

(c) Qprop

0 1
t/T0

|Q
ru
d
d
er
| Inverse distance

Nearest cell gradient

Least squares

(d) Qrudder

0 1
t/T0

10−5

10−4

10−3

|Q
to
ta
l| Inverse distance

Nearest cell gradient

Least squares

Figure 7.16: Sum of fluxes going through each overset interface (Qtunnel, Qprop and Qrudder)
and by the inlet and outlet of the domain (Qtotal) for the three interpolation schemes tested on
the finest mesh (G4) and at 10 degrees rudder angle. Fluxes are normalised by the inlet mass

flux.

7.4.2 Pressure on the Rudder

The time averaged pressure coefficient on the rudder surface is shown in Figure 7.17

at 10 degree rudder angle and in Figure 7.18 at 20 degrees. In both figures, the Least

squares results are displayed in the first column, and the subsequent two plot differences

with Inverse distance and Nearest cell gradient respectively. Since the height or span of

the rudder is s = 1 m, no distinction will be made between the height of a section and

its span-wise ratio (y/s) here.

104 Chapter 7. Case study: Analysis of propeller-rudder interaction

At both 10 and 20 degrees, from 0.2 m to 1 m height, the leading edge of the rudder sees

high and low pressure regions directly related to the propeller rotation. At 0.6 m height

the impact of the hub vortex is clearly visible and creates a lower pressure trail. On the

suction side, this trail goes down due to the high pressure region above it and goes up

on the pressure side, again due to the higher pressure region this time in the lower part

of the rudder. Being in the wake of the propeller, the high pressure regions have levels

higher than the stagnation pressure. Moreover, as expected, a higher rudder angle leads

to higher pressure differences between the two sides of the rudder, generating more lift.

When comparing the different interpolation schemes the main variations are in the hub

vortex region with at most 3% differences at 10 degrees angle of attack. In comparison,

at 20 degrees, differences are lower with maximum around 1% or lower. Surprisingly,

however, in both cases, the Inverse distance results look closer to Least squares than

Nearest cell gradient are. These differences, being very localised and of relatively small

magnitude, have likely a marginal contributions to the overall pressure lift and drag. For

a finer comparison, line plots along the rudder’s chord are shown in Figure 7.19. They

highlight the fact that, outside the hub vortex region, Least squares results are actually

closer to Nearest cell gradient ones than they are to Inverse distance, though, again, the

overall small differences explain the minimal variation in lift and drag observed in the

previous section.

(a) Least squares (CpLS),
pressure side

(b) CpInvDist −
CpLS

(c) CpNCGrad −
CpLS

0.0

0.2

0.4

0.6

0.8

1.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

%
∆
C
p

(d) Least squares (CpLS),
suction side

(e) CpInvDist −
CpLS

(f) CpNCGrad −
CpLS

0.0

0.2

0.4

0.6

0.8

1.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

%
∆
C
p

Figure 7.17: Pressure coefficient on the rudder’s surfaces at 10 degrees angle of attack for grids
G4. The leading edge is shown on the left of the frame. The first column shows Least squares
results while the other two display its difference with Inverse distance and Nearest cell gradient

respectively, normalised by the amplitude of Cp over the rudder surface.

7.4. Impact of interpolation schemes 105

(a) Least squares (CpLS),
pressure side

(b) CpInvDist −
CpLS

(c) CpNCGrad −
CpLS

0.0

0.2

0.4

0.6

0.8

1.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

%
∆
C
p

(d) Least squares (CpLS),
suction side

(e) CpInvDist −
CpLS

(f) CpNCGrad −
CpLS

0.0

0.2

0.4

0.6

0.8

1.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

%
∆
C
p

Figure 7.18: Pressure coefficient on the rudder’s surfaces at 20 degrees angle of attack for grids
G4. The leading edge is shown on the left of the frame. The first column shows Least squares
results while the other two display its percentage of difference with Inverse distance and Nearest

cell gradient respectively, normalised by the amplitude of Cp over the rudder surface.

−1

0C
p

Least squares 2

Inverse distance 7

Nearest cell gradient

0 50 100
% chord

−0.1

0.0

%
∆
C
p Suction side

Pressure side

(a) 10 degrees, y =
0.15

0.0

2.5

C
p

Least squares 2

Inverse distance 7

Nearest cell gradient

0 50 100
% chord

−0.1

0.0

0.1

%
∆
C
p Suction side

Pressure side

(b) y = 0.30

0.0

2.5

C
p

Least squares 2

Inverse distance 7

Nearest cell gradient

0 50 100
% chord

−1
0
1

%
∆
C
p Suction side

Pressure side

(c) y = 0.55

−5

0

C
p

Least squares 2

Inverse distance 7

Nearest cell gradient

0 50 100
% chord

−0.5

0.0

%
∆
C
p Suction side

Pressure side

(d) y = 0.70

y = 0.15

y = 0.30

y = 0.55

y = 0.70

−2

0

C
p

Least squares 2

Inverse distance 7

Nearest cell gradient

0 50 100
% chord

−0.5

0.0

%
∆
C
p Suction side

Pressure side

(e) 20 degrees, y =
0.15

−2.5

0.0

2.5

C
p

Least squares 2

Inverse distance 7

Nearest cell gradient

0 50 100
% chord

−0.1
0.0

%
∆
C
p Suction side

Pressure side

(f) y = 0.30

−2.5

0.0

C
p

Least squares 2

Inverse distance 7

Nearest cell gradient

0 50 100
% chord

−0.5

0.0

%
∆
C
p Suction side

Pressure side

(g) y = 0.55

−10

0

C
p

Least squares 2

Inverse distance 7

Nearest cell gradient

0 50 100
% chord

−0.25

0.00

%
∆
C
p Suction side

Pressure side

(h) y = 0.70

0.0

2.5

C
p

Least squares 2

Inverse distance 7

Nearest cell gradient

0 50 100
% chord

−1
0
1

%
∆
C
p Suction side

Pressure side

Figure 7.19: Pressure coefficient on the rudder’s surface at various height. The first line at
10 degrees angle of attack, and the second one at 20. For each section, the bottom plot is a

comparison with Least squares results.

106 Chapter 7. Case study: Analysis of propeller-rudder interaction

Finally, similarly to the integral quantities, using the four sets of meshes space discreti-

sation uncertainties can be computed for the rudder’s pressure distribution. Figure 7.20

displays it at several slices and on the rudder’s pressure side. On average, the uncer-

tainty is 0.6 Cp overall, but it is a lot higher in the hub vortex region. This means that,

regardless of the interpolation scheme, a reduction of cell sizes in this region would be

needed to reduce discretisation errors, and doing so would likely contribute to lowering

the lift and drag errors as well. Finally, the differences between the schemes may also

be reduced in this region with further grid refinements.

0 50 100
% chord

−10

0

10

C
p Suction side

Pressure side

(a) y = 0.20

0 50 100
% chord

−20

0

20

C
p Suction side

Pressure side

(b) y = 0.55

0 50 100
% chord

−10

0

10

C
p Suction side

Pressure side

(c) y = 0.70 (d) Discretisation
uncertainty on the

pressure side

Figure 7.20: Space discretisation uncertainties for the local pressure coefficient. Data for the
Least squares computation at 10 degrees rudder angle. In line plots, the pressure side is coloured

in red when the suction side is in blue.

7.4.3 Velocity field

To better understand the error patterns and their influence on the flow field, this section

focuses on the analysis of the velocity field. Figure 7.21 shows, for the different interpo-

lation schemes, iso-surfaces of Qcriterion [51]. This quantity is a scalar field computed

from the velocity components following equation 7.3, where Ω is the vorticity tensor and

S strain rate tensor. It is used to highlight coherent structures in a turbulent flow by

displaying shear layer vortices.

Q =
1

2
(||Ω||2 − ||S||2) (7.3)

For such flow, it renders some features clearly identifiable like helices formed by blade tip

vortices or the hub vortex. The later being split in two vortices by the rudder’s leading

edge. At 10 degrees angle of attack, the rudder also generates two vortices at the leading

edge and the trailing edge of its tip section, the one on the leading edge then blends with

the wake of the centre board placed upstream of the propeller. Finally, flow acceleration

in the propeller wake is visible by the higher velocity (in red), but also, by the increase of

helix pitch for vortices closer to the hub vortex. Besides these flow features, visualisation

artefacts from the overset meshes are also visible. On blades’ tip vortices, for example, a

‘step’ is seen wherever the vortex crosses an overset boundary. These discontinuities are

7.4. Impact of interpolation schemes 107

intrinsic to the overset method as separate iso-surfaces are constructed for each mesh.

The difference in sizes and cell locations on both sides of the overset interface means

that the iso-surfaces do not perfectly match across the boundary.

When comparing the different interpolation schemes, however, only marginal changes

can be seen with such visualisation. The three schemes all show the same main flow

features as described in the previous paragraph. Moreover, lower order schemes (like

Inverse distance) are not excessively diffusing vortices at the overset interface compared

to higher order ones like is sometimes the case for free surface flows [70]. In fact, only

the wake and hub vortex are slightly different, but this is likely due to the chaotic

characteristics of the flow in these regions rather than to the interpolation method itself.

(a) Least squares

(b) Inverse distance (c) Nearest cell gradient

Figure 7.21: Iso-surface of Qcriterion coloured by velocity for the tested interpolation schemes
with a 10 degrees rudder angle on mesh assemblies G4.

In order to analyse the flow more quantitatively, Figure 7.22 shows a top view of the

domain with, from top to bottom, iso-Qcriterion, the velocity field at the propeller hub

height with Least squares interpolation scheme, and a comparison with Inverse distance

and Nearest cell gradient computations, the left column showing 10 degrees rudder angle

and the right ones 20 degrees.

From the iso-Qcriterion and velocity slices, Figures 7.22a to 7.22d, the flow features

highlighted in the previous section are still noticeable. Furthermore, at 20 degrees,

flow separation can be observed at the rudder’s trailing edge, the wake being diverted

towards the suction side even more. In both cases this wake orientation is not only due

to the rudder angle but also to the entire system orientation the propeller and centre

board being at a drift angle of 7.5 degrees and therefore misaligned with the tunnel and

108 Chapter 7. Case study: Analysis of propeller-rudder interaction

(a) Least squares iso-Qcriterion, 10 degrees (b) Least squares iso-Qcriterion, 20 degrees

(c) Least squares , 10 degrees (d) Least squares , 20 degrees

(e) Inverse distance: log(|UInvDist−ULS |/U∞), 10
degrees

(f) Inverse distance, 20 degrees

(g) Nearest cell gradient : log(|UNCGrad −
ULS |/U∞), 10 degrees

(h) Nearest cell gradient , 20 degrees

Figure 7.22: Comparison of the different interpolation schemes flow. 7.22a and 7.22a show
iso-Qcriterion for the Least squares computations, 7.22c and 7.22d show the velocity field for
the same computation, and finally 7.22e to 7.22h compares Inverse distance and Nearest cell
gradient velocity fields to Least squares ones. In the last set of plots, fringe cells are highlighted
in white for the tunnel mesh, blue for the propeller one and finally red for the rudder. 10 and

20 degrees rudder angles are shown in the left and right columns respectively.

7.4. Impact of interpolation schemes 109

(a) Inverse distance (b) Nearest cell gradient

Figure 7.23: Top view of the domain showing a comparison of the time averaged velocity fields
with Least squares computation, at 10 degrees rudder angle. fringe cells are highlighted in white

for the tunnel mesh, blue for the propeller and red for the rudder.

domain inlet. When comparing the other interpolation schemes with the Least squares

computation, the hub vortex area shows the largest differences, once again likely due to

the chaotic property of the flow at that location. Larger differences are also noticeable

on each propeller tip vortex also coinciding with the rudder fringe cells region. These

differences are finally convected downstream. On fringe cells themselves, the difference

field is not as smooth as elsewhere because of interpolation errors, the Inverse distance

computation showing more interpolation artefacts than the Nearest cell gradient one

with larger cell-to-cell variations.

Finally, it is interesting to notice that the comparison of time averaged velocity fields,

as seen in Figure 7.23, intensifies these cell-to-cell variations. Indeed, while other dif-

ferences seem to average out, the differences located on fringe cells are still present and

emphasised. This can be explained by the fact that the rudder and tunnel meshes are

not moving, fringe cells then always have the same set of donor cells, leading to con-

sistently over or under predicting their interpolated field values. These differences then,

once again, follow streamlines and propagate downstream. This effect, however, affects

less the Nearest cell gradient plot as it has both overall lower differences and smoother

fringe cells regions compared to the Inverse distance one.

Even though these plots do not directly show interpolation or discretisation errors, the

large difference in methodology between the three schemes demonstrates that the Nearest

cell gradient and Least squares methods create fewer artefacts, produce overall smoother

interpolated fields and have lower interpolation errors compared to the Inverse distance

scheme. This conclusion is in line with the work done in Chapter 6 using manufactured

solution for which errors could be probed directly. With only the rudder-propeller flow

study, however, it is not possible to state which of Nearest cell gradient or Least squares

computations have less interpolation errors and lead to a smoother interpolated fields.

110 Chapter 7. Case study: Analysis of propeller-rudder interaction

7.5 Rudder flow Validation

In this section, the validation is focussed on the rudder because as long as the thrust

loading generated by the propeller is correct [81] then the rudder’s performance is the

most sensitive to errors induced by the interpolation scheme as onset flow goes through

propeller and then into rudder overset mesh itself.

As discussed in section 7.2, the propeller geometry used in the CFD analysis is different

from the experimental one, as a result, direct Validation of the entire setup is not possi-

ble. Rudder characteristics can however be validated using KT equivalent computations.

Experiments done at J = 0.51 with a -7.5 degrees drift angle and a 10 degrees rudder

angle led to KT = 0.242 [79]. Thus, in order to replicate the propeller wake, albeit

with a different propeller geometry, a CFD computation has been done at J = 0.61

with similar drift and rudder angles which resulted, on grid G4, in KT = 0.235. This

is less than 3.5% away from the experimental value and, considering the Verification

study done at J = 0.51, it was deemed close enough for the purpose of this Validation.

The rest of this section, then, compares experimental data with this CFD computation

done at J = 0.61, starting with Table 7.3 showing integral quantities. As said, KT is,

by design, close to the experimental one, KQ is, however, quite far off with 20% dif-

ference. Which could be expected when using such methodology. On the other hand,

rudder force coefficients are within 10% of the experimental ones, with CL even below

1%. These values justify the KT -equivalent methodology and considering the Verifica-

tion study and resulting numerical uncertainties concur in the Validation of the rudder

flow. The moment coefficient taken at 30% chord sees a larger difference which led to a

4.3% chord length offset in the centre of pressure Cpc.

Table 7.3: Comparison between CFD and experimental [79] integral quantities for the KT

equivalent Validation.

CFD Exp comp

J 0.61 0.51
KT 0.2350 0.243 -3.28%
KQ 0.0354 0.045 -21.32%

CL 0.5903 0.587 0.56%
CD 0.1055 0.114 -7.46%
Cm -0.0520 -0.078 -33.37%
Cpc

(in % chord)
21.3174 17.02 4.29

In the experimental campaign, the rudder was equipped with pressure probes. This

pressure was, however, recorded only on cases without the upstream centre board which

can have some effects on the pressure distribution. The comparison of the rudder pres-

sure, then, should be taken with care and is here only qualitative as it compares data

with a centre board (CFD) and without (Exp). Figure 7.24 displays the pressure on

the rudder for both CFD and experimental results. The first column shows raw CFD

7.5. Rudder flow Validation 111

(a) CFD, pressure
side

(b) CFD: down-
sampled (like Exp)

(c) Exp, pressure side (d) CpCFD − CpExp

(e) CFD, suction
side

(f) CFD: down-
sampled (like Exp)

(g) Exp, suction side (h) CpCFD − CpExp

Figure 7.24: Pressure coefficients on both sides of the rudder surface, comparison of CFD and
experimental data from Molland and Turnock [79]. The first two columns show the CFD results,
both raw and downsampled to the probes locations, then the third one show experimental data.

Finally, the last column compares the two data sets.

pressure coefficient on both sides when the second one downsamples it at the locations

where the experimental pressure probes were placed for easier comparison with the third

column, i.e. the experimental results. Finally, the last column compares the two sets of

results.

Due to the low amount of pressure probes, some features disappear from the experi-

mental and downsampled plots like the distinct lower pressure region of the hub vortex

or the extent of the higher pressure region at the trailing edge. Overall, however, both

the CFD and experimental plots show a high pressure region at the top of the pressure

side, a similar low pressure region on the suction side etc. The CFD computation has

lower Cp amplitude with high Cp regions not as high as experimental ones, and, in gen-

eral, higher Cp in low pressure regions. These observations are highlighted in Figure

7.25 which shows chord-wise slices of Cp at various span heights. From them, it is more

clearly visible that the top part of the rudder shows better correlation with experimental

data and the hub vortex section (y = 0.53) significantly underestimate the pressure side

Cp while the rest of the slope is better predicted.

The differences seen on the pressure profile can have various origins. Firstly, it can

be related to the lack of match between the experimental and CFD setups, with the

difference in propeller geometry, the KT equivalent methodology or the lack of centre

board in this sets of results in the experiments. Secondly, it can also come from modelling

errors directly as the CFD simulations use unsteady RANS approach to model turbulence

112 Chapter 7. Case study: Analysis of propeller-rudder interaction

(using the k −
√
kL model). Thirdly, it can come from discretisation errors, as seen in

section 7.4.2, the hub vortex region is where the discretisation uncertainty is the largest.

Finally, it can also come from the overset interpolation upstream, and interpolation

errors combined with the hub vortex could here create larger differences. It should also

be noted that the literature related to this set of experiments did not provide uncertainty

quantifications on the measurements, though it would likely be below the differences seen

here.

To conclude, even though some differences can be originating from the KT -equivalent

methodology and different geometries, the very close correlation of rudder coefficients

like CL, CD or the centre of pressure as well as the overall good capture of the features

present on the rudder surface lead toward a favorable Validation of the flow. The

circumstances of this study, however, make it harder to quantify the degree of confidence

of this Validation.

0 50 100
% chord

0

2

C
p

Exp

CFD

Suction side

Pressure side

(a) y = 0.23

0 50 100
% chord

0.0

2.5

C
p

Exp

CFD

Suction side

Pressure side

(b) y = 0.40

0 50 100
% chord

−2

0

2

C
p

Exp

CFD

Suction side

Pressure side

(c) y = 0.53

y = 0.23

y = 0.40

y = 0.53

y = 0.70

y = 0.83
y = 0.94

0 50 100
% chord

−2.5

0.0

2.5

C
p

Exp

CFD

Suction side

Pressure side

(d) y = 0.70

0 50 100
% chord

−2.5

0.0

2.5

C
p

Exp

CFD

Suction side

Pressure side

(e) y = 0.83

0 50 100
% chord

−2

0

2

C
p

Exp

CFD

Suction side

Pressure side

(f) y = 0.94

0 50 100
% chord

−2

0

2

C
p

Exp

CFD

Suction side

Pressure side

Figure 7.25: Pressure coefficient on the rudder’s surface at various span sections comparing
CFD and experimental data from Molland and Turnock [79]

7.6 Concluding remarks

In this Chapter, a comprehensive solution Verification and error source analysis as well

as Validation allowed to confirm and expand the conclusions drawn on analytical and

manufactured solutions done in Chapter 6. Indeed with the simulation of a rudder-

propeller interaction flow, a problem of direct importance for any ship computation,

this Chapter also introduces mesh motion with the propeller rotation.

Similarly to the manufactured solution study, the 1st order Inverse distance continues

to produce more artefacts on fringe cells compared to the 2nd order Nearest cell gradi-

ent and 3rd order Least squares schemes. Moreover, these interpolation errors are not

cancelled out when time averaging the velocity field, highlighting the fact that errors

on non moving fringe cells are consistently over- or under-predicted. These artefacts,

7.6. Concluding remarks 113

then convect downstream, and are the cause, together with the mesh motion, of high

frequencies oscillations on the different force coefficients on the propeller and rudder. A

temporal spectral analysis quantified these oscillations as having more than twice the

energy as the ones produced by the 2nd order Nearest cell gradient or 3rd order Least

squares schemes. Besides impacting the accuracy, those spurious oscillations can be an

error source when doing common propeller acoustics studies, and cavitation flow simula-

tions. It is important to note, however, that these oscillations do not result in significant

changes in time averaged force coefficients as the differences produced is far smaller than

the discretisation uncertainty. Similarly, time averaged rudder pressure coefficients were

also comparable for the three tested schemes, with the largest difference in the hub

vortex region which is also where the space discretisation uncertainty is maximum.

Another source of error of the overset method is its lack of mass flux conservation be-

tween grids that have been overset, even in a theoretically conservative finite volume

discretisation. By inspecting each mesh individually, it was observed that the 3rd order

accurate Least squares interpolation achieved mass flux imbalance one order of magni-

tude lower than the other two schemes, and the Nearest cell gradient performed better

than the Inverse distance scheme. Here lies one of the difference with the recirculation

bubble manufactured solution, for which the different interpolation schemes had minor

to no effects on the flux conservation. It can be related to the complexity of the flow

leading to higher differences in mass conservation or the addition of mesh motion with

this test case.

Finally, the Validation of the rudder flow, done with KT -equivalent computations,

showed promising results. Integral quantities were found within 10% of the experi-

mental ones and Cp on the rudder surface captured the main complex flow features such

as the hub vortex, high and low pressure regions due to the propeller rotation. The un-

certainties related to the different propeller geometries and KT -equivalent computation

should be lifted to fully perform the Validation study.

115

Chapter 8

Performance and scalability of

the overset method

The accuracy of the overset method and the influence of interpolation schemes has been

thoroughly studied in Chapter 5, 6 and 7. This is, however, not enough to give guidelines

as the performance aspect of the overset method also needs to be considered. In this

Chapter, the different components of the overset implementation are analysed in terms

of performance and parallel scalability.

8.1 Introduction

In the literature, performance is sometimes discussed, though not often with a lot of

detail. The general consensus, however, is that the overset method can be expensive.

Gatin et al. [43] for example reports that a third of the computational time is dedicated

to the overset method and Ohashi [91] observes 60% with their implementation. Windt

et al. [129] compares the early overset implementation done in OpenFOAM (v1706) to

the deforming mesh method in the same CFD solver and concludes that the overset

method is 3.7 times more expensive in serial and also does not scale as well as the

deforming mesh method, which makes the overset method very expensive in this case.

Besides measuring the overall computational time of the method, looking at the different

interpolation schemes can be informative. This is what Verma and Hemmati [124] did

for the OpenFOAM implementation. They tested the Inverse distance scheme available

for the overset method in this version against Least squares and ‘CellVolumeWeight’ a

conservative interpolation method. They found the Least squares to be 1.4 times slower

than the Inverse distance but more than two times faster than the conservative method.

Though, given the limited difference found on integral quantities they considered the

Inverse distance scheme to be sufficient. In the literature, papers describing ‘new’ inter-

polation schemes often compare their performance with more traditional ones. Like in

116 Chapter 8. Performance and scalability of the overset method

Sharma et al. [113] where a RBF implementation is compared to a Polynomial scheme

or in Noack et al. [89] where a Dual-grid interpolation method is compared to the Least

squares scheme already available in Suggar++. It should be noted, however, that these

comparisons are often not made in view of the overall computational time, which can

be deceiving. Indeed, having a scheme 1.4 times more expensive than another one is

relevant only if the interpolation computation itself takes a significant amount of the

overall computational time or if it does not scale well. Finally, besides comparing dif-

ferent interpolation schemes, some studies look at ways to improve performance overall,

regardless of the interpolation method being used. Shen et al. [115] or Martin et al. [71]

for example, designed a lagged method for a coupling with Suggar++ (with OpenFOAM

and CFDShip-Iowa respectively). Since Suggar++ does not scale well with core count,

several independent instances are run in serial working on different time-steps ahead of

time effectively limiting the idle time of the solver at the cost of some inaccuracies in the

DCI computation (due to the prediction of the mesh locations). Finally, Djomehri et al.

[30] and Wissink and Meakin [131] looked at MPI asynchronisation and load balancing

respectively to reduce idle time due to the parallel execution.

In contrast to the analysis of a scheme’s accuracy, for which it’s mathematical expression

is enough to allow reproducibility, performance is highly implementation dependant. It

is, however, still relevant to study it thoroughly to see the effects of implementation

decisions, isolate bottlenecks, compare the different schemes between each other, and

overall give achievable timing and scaling for other implementations to compare to.

In this Chapter, the raw performance and scalability of each of the steps forming the

overset method as implemented in this work are analysed; always in light of the overall

computational time. After a presentation of the methodology used, the DCI compu-

tations done by Suggar++ are examined in section 8.2.2, then the donor search and

interpolation are studied in section 8.2.3. Finally, very few studies discuss the impor-

tance of the iterative convergence in a performance context, because an explicit overset

coupling will affect the iterative convergence, as more outerloops are required to reach

the same level of iterative error. Section 8.3 of this Chapter discusses this aspect of

performance by comparing computations with and without overset.

8.2 Overset method performance

8.2.1 Methodology and setup

Computations done in this Chapter were run on MARIN’s cluster Marclus4, a 4200

cores machine hosted in-house. Each computational node is composed of a dual-socket

Intel Xeon (E5-2660 v3 @ 2.60GHz) 10 cores CPU, leading to 20 cores per node and

Infiniband HBA is used for inter-node communications. The code is compiled using Intel

8.2. Overset method performance 117

compiler and Intel MPI for the parallelisation (2018.4). For each computation, the time

of each routine was recorded using PETSc [2] solver logging capabilities, and, on parallel

runs, the time of the slowest process is used.

Most of the measurements were run on Grid 160 of the recirculation bubble test case,

a 1M cells mesh assembly composed of two grids presented in section 6.2.2. Some

results also come from the grid G4 of the rudder propeller test case, a 37M cells mesh

assembly made of three grids. In both cases, the computation purposefully requires

a new DCI computation, donor search and interpolation every time-step, even on the

recirculation bubble test case, to emulate the performance with mesh motion. Finally,

the interpolation is updated every outerloop, using 90 outerloops per time-step.

To have sufficient statistical convergence on the timing results, each function was run

at least 500 times and the timing includes the computation itself as well as the parallel

communication required. Moreover, to prevent data caching between consecutive runs,

functions are not run in isolation but inside the real CFD computation. Each computa-

tion is repeated using 1-1000 processes as summarised in Table 8.1 for cases using the

recirculation bubble assembly.

Table 8.1: Average number of cells and fringe cells per process (for the recirculation bubble
case). Computations up to 20 cores are run on a single node. Here, Nproc denotes the number
of processes used for the parallelisation, Ni is the total number of cells and Nfringe is the total

number of fringe cells.

Nproc Ni/Nproc Nfringe/Nproc

1 9 216 000 259 837
2 4 608 000 129 918

10 921 600 25 983
20 460 800 12 991
40 230 400 6 495
80 115 200 3 247
160 57 600 1 623
300 30 720 866
460 20 034 564
620 14 864 419
800 11 520 324

1000 9 216 259

For comparison purposes, individual timings of functions are expressed as a percentage of

a baseline set of computations for which the timing of overset and interpolation methods

has been subtracted. The ratio between the interpolation time (Tinterpolation) and the

time taken by the rest of the computation (Toverall − Tinterpolation) is used. This means

that this number could be higher than 100 if the time taken by the interpolation is higher

than the time taken by the rest of the computation. Similar measures are computed for

the donor searching method.

118 Chapter 8. Performance and scalability of the overset method

% of total time = 100× Tinterpolation

Toverall − Tinterpolation
(8.1)

Table 8.2 shows the interpolation schemes and parameters used in this analysis. Least

squares , Inverse distance and Nearest cell interpolation use interpolation weights that

are computed once per time-step and reused within each outerloop, while other schemes

need the interpolation to be fully recomputed every outerloop (note that the donor

search is done only once per time-step).

Table 8.2: Interpolation schemes and parameter tested in this study.

Scheme Nb donor cells

Nearest cell 1
Nearest cell gradient 1

Inverse distance
7

15

Least squares degree 1 6
Least squares degree 2 20
Least squares degree 3 34

Barycentric type 2 1

In this section, strong scalability results are presented. Strong scalability shows how

the timing of a computation evolves when more processing power (here more cores) are

used. It is opposed to weak scalability for which a constant processing power is used on

increasingly more expensive problems (in CFD this would be done with increasing the

cell count). Strong scalability has been chosen because it is more relatable and useful in

an engineering context where the cell count is dictated by the desired accuracy and the

core count is then selected based on the efficiency of the particular solver and hardware.

8.2.2 DCI computation

In the present implementation, the DCI and IBLANK information are computed by the

external library Suggar++ in serial. In a computation with mesh motion, the DCI needs

recomputing at every time-step and Figure 8.1 shows the time taken as a percentage

of the CFD computation depending on the number of cores used for the flow solver

(Suggar++ always using a single core).

The lack of scalability is apparent from the increasing relative time compared to the

CFD computation, and goes up to 30% when 1000 cores are used. On such a mesh,

due to the scalability of the CFD solver itself, simulations are usually run on 500 to 750

cores leading to an overhead of around 20 to 25%. Then, Figure 8.2 shows the library

runtime relative to the grid cell count for both the recirculation bubble case and the

rudder behind propeller one. Besides the different cell counts between the two cases, the

complexity of the assembly also increases with the rudder propeller case having three

8.2. Overset method performance 119

grids and the presence of bodies (centre board, propeller and rudder). In both cases, the

library seems to scale linearly with the cell count but with a steeper gradient on more

complex cases. Finally, on the rudder behind propeller case running on grid G4 (37M

cells) on only 500 cores, the DCI computation running each time-step takes about 30%

of the total runtime.

In both cases, the DCI computation takes a significant amount of time relative to the

CFD solver itself and is increasingly more expensive as the number of cells increases,

because, unlike the solver, it won’t benefit from using more cores. In practice, however,

when the meshes motion is periodic, like in this work, the DCI does not need to be

computed as part of the CFD computation. Here, as explained in section 4.3, IBLANK

cache files are used to isolate the DCI computation from the CFD one. The DCI is then

run on a minimal amount of cores and for only a single period. When the motion is not

pre-determined, other methods like presented in Martin et al. [71] or Shen et al. [115]

can be used to reduce the CFD solver idle time.

0 250 500 750 1000
Nproc

0

10

20

30

%
of

to
ta

l
ti

m
e

Figure 8.1: Time taken by Suggar++ when computing the DCI at every time-step as a per-
centage of the CFD solver’s time when running the recirculation bubble test case on Grid 160.

0 1 2 3 4
Number of cells ×107

0

10

20

30

W
al

l
cl

oc
k

ti
m

e
(s

)

Grid 50 Grid 160 G3 G4

Recirculation bubble case

Rudder+Prop case

Figure 8.2: Wall clock time taken by Suggar++ to compute the DCI depending on the grid
cell count for two different sets of meshes assemblies.

120 Chapter 8. Performance and scalability of the overset method

8.2.3 Donor search and interpolation

In this implementation, after the computation of the DCI, which provides the location

of fringe, hole and in cells, the donor search is performed by the CFD solver, then

followed by the computation of the interpolation itself. In this section, the performance

of the interpolation is discussed before the donor search method as, depending on the

interpolation scheme, a different amount of donor cells are required influencing the

performance of the search.

8.2.3.1 Interpolation

For the interpolation performance, the timing considers the parallel exchange of donor

cells field data and the interpolation computation itself, either by computing inter-

polation weights, computing the interpolated value directly or just using the already

computed interpolation weights depending on the scheme. The interpolation step is

concluded with the parallel exchange of the interpolated values to the process that re-

quires them.

Figure 8.3a shows the strong scalability of interpolation schemes computation. The

wall clock time is scaled based on the serial computation (using a single core). And,

apart from the scalability of the different schemes themselves, the Total time line shows

the scaling of the rest of the CFD code. With the solid black line denoting an ideal

scalability, the CFD code scalability is seen to degrade slightly faster when using more

than 600 cores.

Amongst the schemes tested, the Barycentric interpolation is the one that scales the

best, with constant scalability even at a high core count. All the other schemes show

similar levels of poor parallel scalability. This scalability behaviour is explained by the

way the parallelisation is implemented. Like most finite volume method CFD codes, the

solver uses domain decomposition where each core gets only a part of the full grid. In

the current implementation, when using overset meshes, the interpolation is computed

by the process that stores the first donor cell to minimise parallel communications.

Since the donor cells are not scattered evenly in the entire domain, different loads are

experienced by different cores, thereby affecting the scalability. This is shown in Figure

8.4 where the scalability of the most loaded core (in number of interpolations to perform)

is plotted against the number of cores and compared with the scalability of the Least

squares computation. This ‘Max core load’ number depends only on the mesh, the layout

and the domain decomposition but not on anything hardware specific. From this plot,

a close relation between the most loaded core and the scalability of the interpolation is

seen. This suggests that the poor scalability is mainly related to the load balancing of

the interpolation but to the parallel communication, for example. However, a different

load balance method spreading the load over a wider range of cores should improve

8.2. Overset method performance 121

0 250 500 750 1000
Nproc

0

500

1000

S
ca

lin
g

(t
1
/t
N

)

Total time

Barycentric 2

Least squares 3

Least squares 2

Least squares 1

Inverse distance 15

Inverse distance 7

Nearest cell gradient

(a) Strong scalability

0 250 500 750 1000
Nproc

0

5

10

15

%
of

to
ta

l
ti

m
e

Barycentric 2

Least squares 3

Least squares 2

Least squares 1

Inverse distance 15

Inverse distance 7

Nearest cell gradient

(b) Timing relative to Total time

0 250 500 750 1000
Nproc

0

500

1000

S
ca

lin
g

(t
1
/t
N

)

Total time

Barycentric 2

Least squares 3

Least squares 2

Least squares 1

Inverse distance 15

Inverse distance 7

Nearest cell gradient

Figure 8.3: Scalability and timing of different interpolation schemes compared to the CFD
computation without overset (dashed line on scalability plot). The solid black line on shows

ideal scalability.

scalability but also increase communications of donor cells field data. From this zoomed

in plot, one can also note that the scalability is quite consistent over the range of process

used as it forms a straight line.

The Barycentric interpolation is using a slightly different parallelisation method com-

pared to the other schemes. It makes it scale very well, but it also makes it more

time-consuming. Figure 8.3b shows the relative time each interpolation takes compared

to the full CFD computation. The Barycentric interpolation is the most expensive out

of all the tested schemes, especially at low core counts. Furthermore, the poor scalability

of all the other schemes does not have a large influence on their timing. Overall, the

timing degrades from 1 to about 50 cores, but stagnates when using more. Once again

this is related to the domain decomposition, once the domain is subdivided enough to

have some cores filled with donor cells, using more cores will keep a good scalability

only reducing the amount of work done by each core.

To summarise, except for the Barycentric interpolation, the interpolation does not need

more than 8% of the total time, with a minimum of 2% for the Nearest cell gradient ,

making the use of 2nd or 3rd order schemes affordable and in some case even cheaper

than 1st order Inverse distance.

0 250 500 750 1000
Nproc

0

25

50

75

S
ca

lin
g

(t
1
/t
N

)

Total time

Least squares 2

Max core load

Figure 8.4: Scalability of the Least squares interpolation and of the number of interpolation
computed by the most loaded core.

122 Chapter 8. Performance and scalability of the overset method

8.2.3.2 Donor search

For the donor cell searching, the timing includes the entire algorithm detailed in section

4.3.2 with the search for donor cells themselves plus a final parallel communication step

to prepare the future interpolation. Similar to the interpolation performance analysis,

Figure 8.5a shows the strong scalability of the donor search. This time, the scalability

is worse than earlier as it is only 20 times faster on 1000 cores compared to 1. The

scalability itself, however, is not really influenced by the amount of donor cells needed.

Nonetheless, similar to the interpolation, even though the scalability is not ideal, the

actual time taken by the algorithm is not dramatically high as shown in Figure 8.5b with

a maximum below 3% of the total CFD computational time. It is also important to note

that, once the first donor cell is gathered, the subsequent donor cells are a lot cheaper

to collect. For example, requesting 15 donor cells is only about 20% more expensive

than requesting a single donor cell. This again makes schemes that need more donor

cells affordable.

0 250 500 750 1000
Nproc

0

20

40

S
ca

lin
g

(t
1
/t
N

)

Total time

34 Cloud points

25 Cloud points

18 Cloud points

10 Cloud points

1 Cloud points

(a) Strong scalability

0 250 500 750 1000
Nproc

0

1

2

3

%
of

to
ta

l
ti

m
e 34 Cloud points

25 Cloud points

18 Cloud points

10 Cloud points

1 Cloud points

(b) Timing relative to Total time

0 250 500 750 1000
Nproc

0

20

40

S
ca

lin
g

(t
1
/t
N

)

Total time

34 donor cells

25 donor cells

18 donor cells

10 donor cells

1 donor cell

Figure 8.5: Scalability and timing of the donor searching methods compared to a CFD com-
putation without overset (dashed line on scalability plot). The solid black line on shows ideal

scalability.

8.2.3.3 Combined performance

Finally, Figure 8.6 shows the combined time taken by both the donor searching and

the interpolation itself taking into account the differences in donor cells requirements of

each scheme. Overall, the fastest scheme is the Nearest cell gradient since it needs only a

single donor cell and is trivially easy to compute, i.e. no system to solve like polynomial

based schemes. More complex schemes like Least squares , however, only take 8% of the

total time at most for a degree 2 (3rd order scheme). The Inverse distance scheme, is

seen to take between 5 and 7% of the total time depending on the number of donor cells

required making it more expensive than the Nearest cell gradient but a cheaper option

compared to the Least squares scheme. Even though this scalability study was done

on the recirculation bubble test case, the rudder propeller one present similar results as

shown with Figure 8.7, extending the findings to a largely different mesh assembly and

cell counts.

8.3. Iterative convergence 123

0 250 500 750 1000
Nproc

0

5

10

15

%
of

to
ta

l
ti

m
e

Barycentric 2

Least squares 3

Least squares 2

Least squares 1

Inverse distance 15

Inverse distance 7

Nearest cell gradient

Figure 8.6: Time taken by both the donor searching and interpolation for all the tested
schemes.

0 2 4 6 8 10
% of total runtime

Least squares

Nearest cell gradient

Inverse distance

7.9%

4.4%

5.3%

Donor search

Interpolation

Donor search + Interpolation

Figure 8.7: Time spent in overset related functions as a percentage of the total computation
runtime for mesh G4 of the rudder propeller test case when using 500 cores.

8.3 Iterative convergence

The coupling between the different meshes modifies the system of equations as, for ex-

ample, fringe cells do not depend on their direct neighbours. In this implementation the

coupling is done explicitly, meaning that, as explained in Chapter 4, interpolated values

are placed on the right hand side of the system corresponding to each fringe cell. While

being easier to implement and requiring less parallel communications than an implicit

coupling, it degrades the iterative performance of the solver by less tightly coupling the

different meshes. In fact, interpolated data is updated only once per outerloop. In this

section, the number of outerloops for reaching a L∞ norm of 10−6 for all the equations

residuals for the recirculation bubble test case is analysed. In this work, the momentum

and turbulence equations were solved using the GMRES algorithm, and the pressure

correction was solved with a CG solver. A block Jacobi pre-conditioner was used for all

equations. It has to be noted that every computation done here uses the same under-

relaxation parameters which may not be optimal, and individual runs could potentially

be optimised to have better convergence behaviour.

Figure 8.8 shows the average number of outerloops needed for each computation as

well as the difference with the non-overset run. Overall, layout L1 has better iterative

convergence as, consistently, the different schemes need fewer outerloops to converge

than on layout L2. Based on these results though, it is hard to draw a clear conclusion

for each scheme. It appears that the convergence order or accuracy of the scheme does

not play a significant role in the iterative convergence. This can be observed as the

124 Chapter 8. Performance and scalability of the overset method

Inverse distance scheme converges as well as a degree 2 Least squares . The degree 1

Least squares on layout L2 here shows a poorer convergence though, it was also having

higher errors as presented in section 6.2.

Compared to the case without overset, however, it is clear that the coupling requires,

in this case, about 50% more outerloops to achieve similar convergence. Since there is

no reason for an implicit overset coupling to perform better than a single mesh com-

putation, this means that, at most, the wall clock time could be reduced by around

30%. Concerning the comparison of the different schemes, it is safe to say that they do

not affect meaningfully the iterative convergence unless a clear divergence behaviour is

witnessed (like with layout L2 and Least squares 1).

0 50 100 150 200
% relative to No overset

0 20 40 60 80
Number of outer-loops

Barycentric 2

Least squares 3

Least squares 2

Least squares 1

Nearest cell gradient

Inverse distance 7

No overset

L1

L2

Figure 8.8: Average number of outerloops needed to converge each time-step to L∞ residuals
of 10−6 for each equation. Results are presented for layout L1 and L2 of the recirculation bubble

manufactured solution on Grid 80.

8.4 Conclusion

In this Chapter, the different components affecting the performance of an overset com-

putation were analysed. In this implementation, the lack of parallel scalability of the

DCI computation resulted in an overhead of 20 to 30%, which could increase on more

complex cases or if more cores are used. This means that any method to either reduce

the amount of calls to the DCI or to reduce the idle time can have a large impact on the

overall wall clock time. This is the reason why the IBLANK cache system was designed

and used in all the test cases of this work, allowing to precompute the cell status data

whenever the mesh motion can be predicted (like the periodic motion of the propeller’s

rotation).

Next, the interpolation and donor search, even with their non-ideal parallel scalability,

has less than 8% overhead for the 3rd order Least squares scheme. 1st order Inverse

distance is slightly cheaper with 5% to 7% overhead, and the 2nd order Nearest cell

8.4. Conclusion 125

gradient only has a 3% to 5% overhead. These differences, below 5% of a computation

runtime, are small enough to justify the use of high order schemes for any overset

computation. The benefits in terms of accuracy, reduce spacial and temporal noise and

better mass conservation give them a clear advantage over their 1st order counterparts.

Interestingly, using only a single donor cell, the Nearest cell gradient scheme is both

cheaper than the Inverse distance and more accurate (2nd order versus 1st order for

Inverse distance). Higher order Least squares , due to the larger number of donor cells

required and more complex scheme itself is more expensive with 10% to 12% overhead,

close to the Barycentric interpolation. Though in both these cases the added cost

does not give improved accuracy compared to 3rd order Least squares making them less

relevant for CFD solvers with 2nd order spacial discretisation.

Finally, regardless of the interpolation scheme used, the explicit coupling of the meshes

means that iterative convergence is affected, and, with the recirculation bubble test case,

leads to 50% more outerloops compared to the same case without using overset. This

performance hit can be partially compensated by using implicit coupling, at the cost of

more expensive innerloops.

127

Chapter 9

Concluding remarks

9.1 Conclusion

Design and implement a novel overset method for unstructured grid solvers

targeted to maritime applications.

The overset method is a powerful and essential feature of modern CFD software. It

enables complex motions of multiple bodies, which is not feasible with other techniques.

This project aimed to develop a new, efficient, and accurate method specifically for mar-

itime applications. This was achieved by combining the reliability of external libraries for

hole cutting computation and in-house development for integration, donor search, and

interpolation. This architecture allowed for state-of-the-art features and versatility in

interpolation methods. The accuracy and reliability of the overset method were tested

on a variety of test cases, from academic examples like a low Reynolds 2D Poiseuille

flow to complex industry applications like rudder-propeller interactions. Additionally,

efforts were made to improve the method’s performance, and both serial and parallel

performance were measured.

Assess the robustness, accuracy and efficiency of overset methods.

In details, the robustness of the method, and of the interpolation schemes in particular

was assessed first on a dedicated isolated test for polynomial schemes, and through-

out the work by varying the mesh topologies and test cases. It was found that the

Polynomial and Polynomial tensor schemes often resulted in high errors due to the res-

olution of an ill-conditioned system, particularly at high interpolation order. The Least

squares scheme, on the other hand, even if also based on polynomial functions, could

be made robust by using a larger number of donor cells. Depending on the meshes and

interpolation order, from 1.5 to 2.5 more donor cells than the number of unknowns were

required to guarantee its accuracy. All the other interpolation schemes tested were either

bounded by construction, meaning that they cannot present large errors, ensuring their

128 Chapter 9. Concluding remarks

robustness, or were based directly on the solver’s gradient computations, also offering

good robustness.

Interpolation always introduces errors. In the context of a computation using the overset

method, these interpolation errors are directly present in the domain on fringe cells

and affect the solution. Studying them is an essential step in any simulation involving

the overset method. In this work, the different interpolation schemes were tested on

three main test cases. The first two, a Poiseuille flow and a high Reynolds number

manufactured solution of a recirculation bubble, allowed for code Verification as the

exact solution for each of the fields was known. These test cases permitted to quantify

and qualify accurately the errors present in the solution, allowing for discretisation and

overset interpolation errors to be isolated and studied. From these, it can be determined

whether or not the overset interpolation errors are higher than the intrinsic discretisation

error coming from the mesh discretisation. Moreover, the convergence characteristics of

the different errors can be specified using different cell sizes. Having an exact solution

also allowed for the direct visualisation of errors, their propagation, pattern, smoothness

etc. These findings from the first two test cases allowed for a better analysis of the final

test case of this thesis, the interaction between a rudder and a propeller, for which, like

in any industrial test case, no exact solution is known.

The importance of the method of manufactured solutions was highlighted by the fact

that most conclusions drawn from the rudder-propeller test case were already known

from the recirculation bubble test case. Because they can be designed to be realistic

and close to particular problems and conditions they are an ideal tool to generalise and

investigate errors in detail.

Finally, performance and efficiency of the implementation is essential for industrial use.

For this reason, development efforts were focused at minimising parallel communications

both in terms data being exchanged and number of communication steps, reducing cache

misses, and optimising serial performance. In this work, the external library Suggar++

was used for the hole cutting to get cell status and the donor search and interpolations

are both done inside the CFD solver. This architecture allowed to rely on the proven

robustness of the library in terms of mesh assembly for complex cases and to keep

complete control over the interpolation itself, which is a core component of the method’s

accuracy. While the library’s parallel performance could be seen as a bottleneck, the

donor search and interpolation computations were measured to take at most 8% of the

total runtime for a 3rd order Least squares interpolation or 4% for the 2nd order Nearest

cell gradient scheme. These low relative performance overheads allow to recommend

these interpolation methods.

9.1. Conclusion 129

Draw guidelines on the usage and implementation of the overset method for

maritime applications.

From the analysis of the robustness, error quantification and qualification, and perfor-

mance as well as the variety of test cases used general guidelines concerning the overset

method usage and its development in the context of finite volume unstructured grid

discretisation CFD codes can be drawn. They are presented here:

• 1st order interpolation schemes, such as Inverse distance, should be avoided. They,

most of the time, provide worse accuracy without being faster than some of their

2nd or 3rd order counterparts. In cases where the interpolation error can be mea-

sured, they do not maintain the 2nd order convergence of the code spacial discreti-

sation scheme. In addition to generating larger errors, they produce more noise in

both space and time, which, with moving meshes, translates to the production of

high frequency variations of integral quantities that can be particularly detrimen-

tal when acoustic data is required (or absolute values of the pressure, in general).

However, the results from 1st order interpolation schemes should not be completely

discarded. On complex flows, such as the rudder-propeller interaction, comparing

time averaged integral quantities like force coefficients does not show a signifi-

cant difference with other, higher order, schemes. This is because, on such cases,

the discretisation error is higher than the overset interpolation error, and time

averaging reduces the effect of the high frequency oscillations.

• 2nd and 3rd order interpolation schemes are both viable options for overset in-

terpolation. The choice between them should then be directed by their different

accuracy-performance balance. The 2nd order Nearest cell gradient , by using a

single donor cell, is the most affordable option as it requires only around 3-4%

performance overhead for the donor search and interpolation. However, it does

not perform as well as 3rd order schemes at low Reynolds number and, in general,

shows slightly worse mass conservation properties. To overcome these limitations,

the 3rd order Least squares scheme is the best option tested in this work. By us-

ing an overdetermined system with more donor cells than unknowns, it maintains

good robustness compared to other polynomial based approaches, especially when

the donor search cannot take advantage of the topology of a structured mesh.

Moreover, it is still a viable option with only about 8% performance overhead. It

also resulted in interpolation errors one order of magnitude lower than the dis-

cretisation error (for the recirculation bubble test case), making its impact on the

solution’s accuracy minimal.

• 4th order and higher interpolation schemes are not necessary for overset interpola-

tion when the solver’s discretisation is 2nd order, as they do not improve accuracy

and are more expensive than 3rd order schemes. Using the 4th order Least squares

scheme, however, resulted in a slightly ‘smoother’ field.

130 Chapter 9. Concluding remarks

• Limiting the donor search to only the first layer of neighbours, as it is done in

most implementations, can be detrimental to the robustness of Least squares in-

terpolation. Allowing to gather more donor cells reduces the probability of high

errors without being much more expensive. Indeed, since the search for the first

donor cell is the bottleneck, subsequent new donor cells can be gathered using the

mesh’s topology at a minimal cost, even on unstructured grids.

• Parallel performance limitations of explicit hole cutting computations can be par-

tially circumvented by using a cache system when possible (e.g. on periodic mo-

tion). Otherwise, a well parallelised explicit approach or other bypass mechanism

(such as the lagged system presented in [115]) should be considered. Without scal-

ability, the DCI computation in this implementation can accounts for 30% runtime

overhead and increases with core count.

Help the research community by producing opensource tools to assist code

Verification and uncertainty quantifications.

Verification has been a core component of this research and the source of most of the

conclusion drawn. For this reason, the tools developed and used as part of it were

made open source to help future research, not necessarily aimed at the overset method.

This includes PyMMS [65], a python library that generates compilable code for the

source terms of manufactured solution. The Navier-Stokes equations, as well as Spalart-

Allmaras and one equation eddy viscosity model by Menter, are implemented, and the

architecture allows for easy addition of extra models. Then, PyTST [66] is a library

and interactive graphical interface that implements the Transient Scanning Technique

to assess statistical uncertainty and detect transient portion of a signal.

Push for higher error analysis standards in maritime CFD.

In addition to the findings and conclusions, this work also aims to showcase the benefits

and capabilities of Verification and Validation for CFD in the hope that more compara-

tive studies will be done in the future. Additionally to analysing errors, they help build

trust in the methods and provide a clearer path for further investigations as bottlenecks

and shortcomings are identified.

9.2 Future work

The findings of this work lead to several ways to continue the research. First, the

tool made to generate manufactured solution can be used more extensively. Following

the collaboration with Gomes et al. [45], which lead to the production of a wind tur-

bine manufactured solution, more realistic manufactured solution could be designed and

published to serve as baseline cases for the study of overset or CFD solvers in general.

Then, it would be worthwhile to investigate the use of an implicit coupling instead of an

9.2. Future work 131

explicit one, as it should improve iterative convergence at the cost of more expensive in-

nerloops. An implicit coupling can reduce wall clock time and since most of the schemes

were designed to use interpolation weights, they would not need any adaptation.

The work on error analysis and the influence of different interpolation methods should

be continued for free surface flows. Manufactured solution could also be designed for

these cases and used to test the implementation and behaviours of the interpolation

schemes. The donor search might also require some adaptation as donor cells from

one phase should not be used for the interpolation of another phase. Constraining the

donor search to a single phase is a possibility to explore. Lastly, the large difference in

density between the different fluids (1000:1 for water-air free surface) means that mass

conservation can become a more important issue. Therefore, mass conservation methods

should be investigated for such cases.

Over the years, several method for conserving mass with overset computations have

been published, but no ubiquitous method seems to have emerged. Each publication

designing and testing a new method. A study comparing different methodologies in

terms of accuracy, spurious oscillation dampening, performance and ease of integration

into existing solvers should be undertaken.

As seen in Chapter 8 on performance, the parallelisation of the interpolation could be

improved with better load balancing at the cost of more inter-process communication.

A balance between load balance and communication could be found to improve overall

performance. Moreover, implicit hole cutting libraries should be further investigated or

developed as they benefit from better parallel performance.

Finally, Validation should be continued and performed on a larger variety of industrial

cases to potentially expand the conclusions of this work.

133

Appendix A

Implicit formulation of

Polynomial schemes

To be able to use an implicit coupling, the interpolated value need to be a linear com-

bination of the donor cell values, therefore under the form:

ϕ̃(x) =
N∑

i=1

wiϕ(xi), (A.1)

with wi the interpolation weights.

A.1 Polynomial and Polynomial Tensor schemes

In section 4.4.4.1, the system to be solved is:

[Ak,m][αk] = [rhsk], 1 ≤ k,m ≤ N. (A.2)

With

Ak,m = Fl(xm)

rhsk = ϕ(xk)
(A.3)

By inverting the matrix A, one can get explicitly the α coefficients:

αk =

N∑

i=1

A−1
k,iϕ(xi) (A.4)

134 Chapter A. Implicit formulation of Polynomial schemes

And reconstruct the polynomial function:

ϕ̃(x) =

N∑

k=1

αkFk(x)

=
N∑

k=1

(N∑

i=1

A−1
k,iϕ(xi)

)
Fk(x)

=

N∑

i=1

ϕ(xi)

(N∑

k=1

Fk(x)A
−1
k,i

)

=
N∑

i=1

wiϕ(xi)

(A.5)

With

wi =
N∑

k=1

Fk(x)A
−1
k,i (A.6)

A.2. Least Squares scheme 135

A.2 Least Squares scheme

In section 4.4.5, the Nterms ×Nterms system needed to be solved is:

[Al,m][αl] = [rhsl], 1 ≤ l,m ≤ Nterms (A.7)

With:

Al,m =

N∑

i=1

Fl(xi)Fm(xi)

rhsl =

N∑

i=1

Fl(xi)ϕ(xi)

(A.8)

By inverting the matrix A, one can get explicitly the α coefficients:

αk =

Nterms∑

l=1

A−1
k,l rhsl

=

Nterms∑

l=1

A−1
k,l

(
N∑

i=1

Fl(xi)ϕ(xi)

) (A.9)

Then the complete polynomial function can be reconstructed:

ϕ̃(x) =

Nterms∑

k=1

αkFk(x)

=

Nterms∑

k=1

[
Nterms∑

l=1

A−1
k,l

(N∑

i=1

Fl(xi)ϕ(xi)

)]
Fk(x)

=
N∑

i=1

ϕ(xi)

[
Nterms∑

k=1

Fk(x)

(Nterms∑

l=1

Fl(xi)A
−1
k,l

)]

=
N∑

i=1

wiϕ(xi)

(A.10)

With

wi =

Nterms∑

k=1

Fk(x)

(Nterms∑

l=1

Fl(xi)A
−1
k,l

)
(A.11)

137

Appendix B

Recirculation bubble

manufactured solution equations

This appendix presents the manufactured solution designed by Eça et al. [35] for a high

reynolds recirculation bubble.

The domain is an empty box, with a wall at the bottom (y = 0) and the flow going in

the x direction. The inlet is at x = 0.1 and outlet at x = 1. The domain expands in

the z direction from z = 0 to z = 1. Each quantity is composed of two parts, a base

flow, and a perturbation flow. The base flow defines a typical turbulent boundary layer

flow and stays constant over time and throughout the domain in the z direction while

the perturbation flow represents the recirculation bubble, and evolves in time and in the

z-direction.

ftime defines the time variation of each quantity. As presented in Equation B.1, it is a

sine wave oscillating between 0.2 and 1 with a period T .

ftime (t) = 0.2 + 0.4

(
1 + sin

(
π

(
2t

T
− 0.5

)))
. (B.1)

The base flow for the x component of the velocity is defined in ubx (Equation B.2) and

represents a boundary layer flow. The shape of the recirculation bubble itself is defined

using three parameters, a1, a2 and a3 describing respectively the magnitude of the

bubble, the location of centre of the bubble (x = 0.5, y = 1/a2) and finally the decay

of the bubble with distance to x = 0.5. upx (Equation B.3) defines this 2D recirculation

bubble.

ubx (x, y) =

3∑

i=1

αu
i · tanh

(
aui yx

−bui Re1−bui

)
(B.2)

138 Chapter B. Recirculation bubble manufactured solution equations

upx (x, y) =
(
1− tanh

(
a3
(
x2 − x+ 0.25

)))
a1ye

−a2y (B.3)

The x component of the velocity ux is defined in Equation B.4. uz is defined in Equation

B.5. And finally, uy (Equation B.6) is defined from ux and uz to satisfy the continuity

equation.

ux(x, y, z, t) = ubx(x, y) + upx(x, y) · sin2(πz) · ftime(t) (B.4)

uz(x, y, z, t) =
∂upx
∂x

· sin
2(2πz)

4π
· ftime(t) (B.5)

uy(x, y, z, t) = −
∫ y

0

∂ux
∂x

+
∂uz
∂z

dy (B.6)

The pressure field is defined in order to have a zero gradient normal to each domain

boundary, and a pressure of 0 at the outlet (x = xmax). Equation B.9 defines Cp,

similarly to ux, a base flow is added to a fluctuating in time and in the z direction

component.

Px(x) = x

(
x

(
x

3
− xmin + xmax

2

)
+ xminxmax

)
+ 1 +

x3max

6
− xminx

2
max

2
(B.7)

Py(y) = y2
(y
3
− ymax

2

)
+ 1 +

y3max

6
(B.8)

Cp (x, y, z, t) = P · log (Px) · log (Py)+

Pb · cos
(
3π

2
· x− xmin

xmax − xmin

)2

· cos2
(
π

2
· y

ymax

)
· sin2(πz) · ftime(t) (B.9)

Finally, the eddy viscosity is defined to have a near wall behaviour close to the wall

(y = 0) and decays exponentially in the outer region as defined in Equation B.12. One

can note that Equation B.12 is different from the one found in Eça et al. [35]. The one

implemented in this work follows the source code used by the solution’s authors.

pptm =
(
1 +

(
ad1 + ad2 · tanh

(
ad3
(
x2 − x+ 0.25

))
− 1
)) sin2(π · z)

x0.8
ftime (t) (B.10)

139

y+(x, y, z, t) =

√
Re · ∂ux

∂y

∣∣∣
y=0

· y (B.11)

ν̃t(x, y, z, t) =
((
κy+ − ν̃out

)
+ ν̃out

) e−y·pptm·Re0.2

Re
(B.12)

The different variables being used in the current study are shown in Table B.1, they

follow case A from [35].

Table B.1: Variables being used in the recirculation bubble manufactured solution (case A
from [35])

Variable Value

T 5
Re 107

P 500
Pb 0.25
xmin 0.1
xmax 1
ymin 0
ymax 0.4

ν̃out 1
κ 0.41

i 1 2 3

ai -140 40 16
αu
i 0.35 0.4 0.25

aui 0.0792 0.000063 0.005
bui 0.2 0.2 0.2
adi 0.4 0.6 10

The following source code implements the equations presented in this section in Sympy

and runs PyMMS [65] to generates the fortran source file containing the source terms of

this manufactured solution.

1 from sympy import *

2 from PyMMS import PyMMS

3

4 i = symbols(’i’, integer = True)

5 x, y, z, t = symbols(’x y z t’)

6

7 ##

8 # Case initialisation

9 ##

10 # user defined variables:

11 T = symbols(’Period ’)

12 Re = symbols(’Re’)

13 As_1 , As_2 , As_3 = symbols(’As_1 As_2 As_3’)

14 Acp_1 , Acp_2 = symbols(’Acp_1 Acp_2 ’)

15 rho = symbols(’Rho’)

16

17 # Definition of default values

18 global_vars = [(Re, 10**7) ,

19 (As_1 , -140),

140 Chapter B. Recirculation bubble manufactured solution equations

20 (As_2 , 40),

21 (As_3 , 16),

22 (Acp_2 , 0.25),

23 (Acp_1 , 500),

24 (T, 5),

25 (rho , 1)]

26

27 # Common variable for the test case

28 Nu = 1/Re # L=1 and V=1

29

30 # Domain start

31 Xmin = 0.1

32

33 # Domain end

34 Xmax = 1

35

36 # Domain height (Ymin =0)

37 Ymax = 0.4

38

39 # Eddy viscosity at outlet

40 Emext = 1

41

42 As = [As_1 , As_2 , As_3]

43 Al = Array ([0.0792 , 0.000063 , 0.005])

44 Bl = Array ([0.2, 0.2, 0.2])

45 Alf = Array ([0.35 , 0.4, 0.25])

46 Aem = Array ([0.4, 0.6, 10])

47 A1 = Al[i]*Re**(1-Bl[i])

48

49 ##

50 # Definition of field functions

51 ##

52

53 ###############################

54 # time component

55 Ftime = 0.2 + 0.4*(1+ sin(pi*(2*t/T -0.5)))

56

57 ###############################

58 # Ums

59 A1 = Al[i]*Re**(1-Bl[i])

60 T1 = A1*y/x**Bl[i]

61 Upms = tanh(T1)

62 Byus = As[0]*y/exp(As[1]*y)

63 Bxus = 1-tanh(As[2]*(x**2-x+0.25))

64 Usms = Bxus*Byus

65

66 Ums = Sum(Alf[i]*Upms , (i, 0, 2)) + Usms*sin(pi*z)**2* Ftime

67

68 ###############################

69 # Wms

70 Wms = Derivative(Usms , x)*sin (2*pi*z)**2/(4* pi)*Ftime

141

71

72 ###############################

73 # Vms = - Integral(Derivative(Ums , x)+ Derivative(Wms , z), (y, 0, y))

74 Byvs = As[0]*(y+1/As[1])/As[1]/ exp(As[1]*y)

75 Vsms = (Byvs -As[0]/As [1]**2)*Derivative(Bxus , x)

76 Vpms = Bl[i]*x**(Bl[i]-1)/A1*log(Upms +1) + Bl[i]*y*(Upms -1)/x

77 Vms = Sum(Alf[i]*Vpms , (i, 0, 2)) + Vsms*(sin (2*pi*z)*cos (2*pi*z)+sin(pi*

z)**2)*Ftime

78

79 ###############################

80 # Cp

81 Pcpx = x*(x*(x/3-(Xmin+Xmax)/2)+Xmin*Xmax)+1+ Xmax **3/6 -0.5* Xmin*Xmax **2

82 Pcpy = y*y*(y/3 -0.5* Ymax)+1+ Ymax **3/6

83 Pcpsx = 1.5*(x-Xmin)*pi/(Xmax -Xmin)

84 Pcpsy = 0.5*pi*y/Ymax

85

86 Cpms = Acp_1*log(Pcpx)*log(Pcpy) + Acp_2 *(cos(Pcpsx)**2 * cos(Pcpsy)**2)*

sin(pi*z)**2* Ftime

87

88 ###############################

89 # Nu_t_tild

90 Gx = tanh(Aem [2]*(x**2-x+0.25))

91 Fx = (1+(Aem [0]+ Aem [1]*Gx -1)*Ftime*sin(pi*z)**2)/x**0.8

92 Pdl = Fx*y*Re **0.2

93 TWMS = diff(Ums , y).subs ([(y, 0)])

94 Yplms = sqrt(Re)*sqrt(TWMS)*y

95

96 Nu_t_tildms = (exp(-Pdl)*(0.41* Yplms -Emext)+Emext)/Re

97

98

99 ##

100 # MMS generation and export

101 ##

102 mms = PyMMS(Nu=Nu ,

103 rho=rho ,

104 U=Ums ,

105 V=Vms ,

106 W=Wms ,

107 P=Cpms ,

108 Nu_t_tild=Nu_t_tildms ,

109 wall_dist=y,

110 turbulence_model="SA -noft2")

111

112 mms.compute_sources ()

113 mms.export_module("MMS -SA -noft2.F90",

114 global_vars=global_vars)

Algorithm B.1: Source code for the definition of the recirculation bubble manufactured

solution using PyMMS [65].

143

References

[1] Standard for Verification and Validation in Computational Fluid Dynamics and

Heat Transfer. ASME, 2009. ISBN 9780791832097.

[2] Shrirang Abhyankar, Jed Brown, Emil M. Constantinescu, Debojyoti Ghosh,

Barry F. Smith, and Hong Zhang. PETSc/TS: A Modern Scalable ODE/DAE

Solver Library. arXiv, V(212):1–29, jun 2018. ISSN 23318422.

[3] Charles Erzan Badoe, Alexander B. Phillips, and Stephen R. Turnock. Influence

of Drift Angle on the Computation of Hull–Propeller–Rudder Interaction. Ocean

Engineering, 103(0):64–77, jul 2015. ISSN 00298018. doi: 10.1016/j.oceaneng.

2015.04.059.

[4] John A Benek, Joseph L Steger, and F Carroll. Dougherty. A Flexible Grid Em-

bedding Technique with Application to the Euler Equations. In 6th Computational

Fluid Dynamics Conference Danvers, Danvers, MA ,U.S.A., jul 1983. American

Institute of Aeronautics and Astronautics. doi: 10.2514/6.1983-1944.

[5] John A Benek, Pieter G Buning, and Joseph L Steger. A 3-D Chimera Grid

Embedding Technique. In 7th Computational Physics Conference, page 10, Reston,

Virigina, jul 1985. American Institute of Aeronautics and Astronautics. doi: 10.

2514/6.1985-1523.

[6] David A Boger and James Dreyer. Prediction of Hydrodynamic Forces and Mo-

ments for Underwater Vehicles Using Overset Grids. In 44th AIAA Aerospace

Sciences Meeting, number January, pages 1–13, Reston, Virigina, jan 2006. Amer-

ican Institute of Aeronautics and Astronautics. ISBN 978-1-62410-039-0. doi:

10.2514/6.2006-1148.

[7] David A Boger, Ralph W. Noack, and E.G. Paterson. Dynamic Overset Grid Im-

plementation in OpenFOAM. In 5th OpenFOAM Workshop, volume 21, page 24,

Gothenburg, Sweden, 2010.

[8] David A Boger, E.G. Paterson, and Ralph W. Noack. FoamedOver: a Dynamic

Overset Grid Implementation in OpenFOAM. In 10th Symposium on Overset

Composite Grids and Solution Technology, Moffet Field, CA, USA, 2010.

144 REFERENCES

[9] Ryan Bond, Patrick Knupp, and Curtis Ober. A Manufactured Solution for Verify-

ing CFD Boundary Conditions, Part II. In 43rd AIAA Aerospace Sciences Meeting

and Exhibit, Reston, Virigina, jan 2005. American Institute of Aeronautics and As-

tronautics. ISBN 978-1-62410-064-2. doi: 10.2514/6.2005-88.

[10] Michael J. Brazell, Jayanarayanan Sitaraman, and Dimitri J. Mavriplis. An Over-

set Mesh Approach for 3D Mixed Element High-Order Discretizations. Jour-

nal of Computational Physics, 322:33–51, oct 2016. ISSN 00219991. doi:

10.1016/j.jcp.2016.06.031.

[11] Joris Brouwer, Jan Tukker, and Martijn van Rijsbergen. Uncertainty Analysis

of Finite Length Measurement Signals. The 3rd International Conference on Ad-

vanced Model Measurement Technology for the EU Maritime Industry, (February),

2013.

[12] Joris Brouwer, Jan Tukker, and Martijn van Rijsbergen. Uncertainty Analysis and

Stationarity Test of Finite Length Time Series Signals. In 4th International Con-

ference on Advanced Model Measurement Technology for the Maritime Industry,

2015.

[13] Joris Brouwer, Jan Tukker, Yvette Klinkenberg, and Martijn van Rijsbergen. Ran-

dom Uncertainty of Statistical Moments in Testing: Mean. Ocean Engineering, 182

(April):563–576, jun 2019. ISSN 00298018. doi: 10.1016/j.oceaneng.2019.04.068.

[14] Cadence. Pointwise. URL https://www.pointwise.com.

[15] Pablo M. Carrica, Robert V. Wilson, Ralph W. Noack, and Frederick Stern. Ship

Motions Using Single-Phase Level Set with Dynamic Overset Grids. Computers

& Fluids, 36(9):1415–1433, 2007. ISSN 00457930. doi: 10.1016/j.compfluid.2007.

01.007.

[16] Pablo M. Carrica, A Castro, J. Ezequiel Martin, and Ralph W. Noack. Overset

Grid Technology Applied to Maneuvers of Marine Vehicles Background for ship

hydrodynamics applications. In 11th Symposium on Overset Composite Grids and

Solution Technology, number October, Dayton, Ohio, 2012.

[17] Pablo M. Carrica, Farzad Ismail, Mark Hyman, Shanti Bhushan, and Frederick

Stern. Turn and Zigzag Maneuvers of a Surface Combatant using a URANS Ap-

proach with Dynamic Overset Grids. Journal of Marine Science and Technology,

18(2):166–181, jun 2013. ISSN 0948-4280. doi: 10.1007/s00773-012-0196-8.

[18] William M Chan. Overset grid technology development at NASA Ames Research

Center. Computers & Fluids, 38(3):496–503, 2009. ISSN 0045-7930. doi: 10.1016/

j.compfluid.2008.06.009.

https://www.pointwise.com

REFERENCES 145

[19] Dominic D.J. Chandar. Development of a Parallel Overset Grid Framework for

Moving Body Simulations in OpenFOAM. Journal of Applied Computer Sciences

& Mathematics, 9(2):22–30, 2015. doi: 10.4316/JACSM.201502004.

[20] Dominic D.J. Chandar. Assessment of Interpolation Strategies and Conservative

Discretizations on Unstructured Overset Grids in OpenFOAM. In 2018 AIAA

Aerospace Sciences Meeting, number January, pages 1–15, Reston, Virginia, jan

2018. American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-524-

1. doi: 10.2514/6.2018-0828.

[21] Dominic D.J. Chandar. On Overset Interpolation Strategies and Conservation

on Unstructured Grids in OpenFOAM. Computer Physics Communications, 239:

72–83, jun 2019. ISSN 00104655. doi: 10.1016/j.cpc.2019.01.009.

[22] Dominic D.J. Chandar and Jayanarayanan Sitaraman. A Flux Correction Ap-

proach for the Pressure Equation in Incompressible Flows on Overset Meshes in

OpenFOAM. Computer Physics Communications, 273:108279, apr 2022. ISSN

00104655. doi: 10.1016/j.cpc.2021.108279.

[23] Dominic D.J. Chandar, Bharathi Boppana, and Vasanth Kumar. A Comparative

Study of Different Overset Grid Solvers Between OpenFOAM, StarCCM+ and

Ansys-Fluent. In 2018 AIAA Aerospace Sciences Meeting, Reston, Virginia, jan

2018. American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-524-

1. doi: 10.2514/6.2018-1564.

[24] Hamn-Ching Chen and Miaomou Chen. Chimera RANS Simulation of a Berthing

DDG-51 Ship in Translational and Rotational Motions. International Journal of

Offshore and Polar Engineering, 8(3):182–191, 1998. ISSN 10535381.

[25] Lin Cheng-Wen, Scott Percival, and Eugene Gotimer H. Application of Chimera

Composite Grid Scheme to Ship Appendages. Technical report, Naval Surface

Warfare Center, Bethesda Maryland, USA, Bethesda, Maryland, USA, 1995.

[26] L. Chiron, G. Oger, M. de Leffe, and D. Le Touzé. Analysis and Improvements of

Adaptive Particle Refinement (APR) through CPU time, Accuracy and Robust-

ness Considerations. Journal of Computational Physics, 354:552–575, feb 2018.

ISSN 00219991. doi: 10.1016/j.jcp.2017.10.041.

[27] Menno Deij-van Rijswijk and Auke van der Ploeg. 80259-5-RD: Interpolation and

Overset Grids. Technical report, MARIN, Wageningen, NL, 2021.

[28] Garbo Deng, Alban Leroyer, Emmanuel Guilmineau, Patrick Queutey, Michel

Visonneau, and J Wackers. CFD Simulation of PMM Motion in Shallow Water

for the DTC Container Ship. In 4th International Conference on Ship Manoeuvring

in Shallow and Confined Water with Special Focus on Ship Bottom Interaction,

146 REFERENCES

pages 93–98, Hamburg, Germany, 2016. ISBN 9783939230380. doi: 10.18451/

978-3-939230-38-0.

[29] Andrea Di Mascio, Giulio Dubbioso, Roberto Muscari, and Mario Felli. CFD

Analysis of Propeller-Rudder Interaction. In International Ocean and Polar Engi-

neering Conference, number June 21-26, pages 946–950, Kona, Big Island, Hawaii,

USA, 2015. International Society of Offshore and Polar Engineers (ISOPE). ISBN

978-1-880653-89-0.

[30] M.J. Djomehri, R. Biswas, Mark A. Potsdam, and R.C. Strawn. An Analysis of

Performance Enhancement Techniques for Overset Grid Applications. In IEEE,

editor, Proceedings International Parallel and Distributed Processing Symposium,

page 9, Nice, France, 2003. IEEE Comput. Soc. ISBN 0-7695-1926-1. doi: 10.

1109/IPDPS.2003.1213158.

[31] F Carroll. Dougherty, John A Benek, and Joseph L Steger. On Applications of

Chimera Grid Schemes to Store Separation. Technical report, NASA, 1985.

[32] Lúıs Eça. Polynomial Interpolation in Unstructured Grids. Technical Report

September, IST, 2009.

[33] Lúıs Eça and Martin Hoekstra. Verification and Validation for Marine Applica-

tions of CFD. International Shipbuilding Progress, 60(1-4):107–141, 2013. ISSN

0020868X. doi: 10.3233/ISP-130083.

[34] Lúıs Eça and Martin Hoekstra. A Procedure for the Estimation of the Numerical

Uncertainty of CFD Calculations Based on Grid Refinement Studies. Journal of

Computational Physics, 262:104–130, apr 2014. ISSN 00219991. doi: 10.1016/j.

jcp.2014.01.006.

[35] Lúıs Eça, Martin Hoekstra, and Guilherme Vaz. Manufactured Solutions for

Steady-Flow Reynolds-Averaged Navier-Stokes Solvers. International Journal

of Computational Fluid Dynamics, 26(5):313–332, 2012. ISSN 10618562. doi:

10.1080/10618562.2012.717617.

[36] Lúıs Eça, Guilherme Vaz, and Martin Hoekstra. Assessing Convergence Properties

of Rans Solvers With Manufactured Solutions. European Congress on Computa-

tional Methods in Applied Sciences and Engineering, (Eccomas), 2012.

[37] Lúıs Eça, Guilherme Vaz, and Martin Hoekstra. Code Verification of ReFRESCO

With a Statistically Periodic Manufactured Solution. In ASME 33rd Interna-

tional Conference on Ocean, Offshore and Arctic Engineering, page V002T08A015.

American Society of Mechanical Engineers, jun 2014. ISBN 978-0-7918-4540-0. doi:

10.1115/OMAE2014-23258.

REFERENCES 147

[38] Lúıs Eça, Christiaan M. Klaij, Guilherme Vaz, Martin Hoekstra, and Filipe

Pereira. On Code Verification of RANS Solvers. Journal of Computational Physics,

310(January):418–439, apr 2016. ISSN 00219991. doi: 10.1016/j.jcp.2016.01.002.

[39] Lúıs Eça, Guilherme Vaz, and Martin Hoekstra. On the Role of Iterative Errors in

Unsteady Flow Simulations. In 21st Numerical Towing Tank Symposium (NuTTS),

pages 2–7, Cortona, Italy, 2018.

[40] Joel H Ferziger and Milovan Peric. Computational methods for fluid dynamics.

Springer Science & Business Media, 2020. ISBN 3540420746.

[41] Evert-jan Foeth and Menno Deij-van Rijswijk. Remodeling the B-series Geometry

in a CAD Environment. In Mario Felli and Cecilia Leotardi, editors, 6th Inter-

national Symposium on Marine Propulsors, number May, Rome, 2019. National

Research Council of Italy, Institute of Marine Engineering (CNR-INM), Via di

Vallerano 139, 00128 Rome, Italy.

[42] Norman Foster and Ralph W. Noack. High-Order Overset Interpolation Within

An OVERFLOW Solution. In 50th AIAA Aerospace Sciences Meeting including

the New Horizons Forum and Aerospace Exposition, number January, pages 1–8,

Reston, Virigina, jan 2012. American Institute of Aeronautics and Astronautics.

ISBN 978-1-60086-936-5. doi: 10.2514/6.2012-728.

[43] Inno Gatin, Vuko Vukcevic, Hrvoje Jasak, and I Lalovic. Manoeuvring Simulations

using the Overset Grid Technology in FOAM-extend. In 32nd Symposium on Naval

Hydrodynamics, number August, page 10, Hamburg, Germany, 2018.

[44] Tiago Gomes, Sébastien Lemaire, Guilherme Vaz, and Fernando Lau. Verification

Study of Sliding and Overset Grid Methods using the Method of Manufactured

Solutions on a Wind Turbine flow. In 23rd Numerical Towing Tank Symposium

(NuTTS), Mülheim an der Ruhr, Germany, 2021.

[45] Tiago Gomes, Sébastien Lemaire, and Guilherme Vaz. Code and Solution Verifica-

tion of Sliding and Overset Grid Methods on Wind Turbine Flows. In ASME 41th

International Conference on Ocean, Offshore and Arctic Engineering, Hamburg,

Germany, 2022.

[46] Harish Gopalan, Rajeev Jaiman, and Dominic D.J. Chandar. Flow Past Tandem

Circular Cylinders at High Reynolds Numbers using Overset Grids in OpenFOAM.

In 53rd AIAA Aerospace Sciences Meeting, pages 1–20, Reston, Virginia, jan 2015.

American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-343-8. doi:

10.2514/6.2015-0315.

[47] H. Hadzic. Development and Application of a Finite Volume Method for the Com-

putation of Flows Around Moving Bodies on Unstructured, Overlapping Grids.

PhD thesis, Technische Universitat Hamburg, 2005.

148 REFERENCES

[48] James Hawkes. Chaotic Methods for the Strong Scalability of CFD. PhD thesis,

University of Southampton, 2017.

[49] James Hawkes, Guilherme Vaz, Alexander B. Phillips, S. J. Cox, and Stephen R.

Turnock. On the Strong Scalability of Maritime CFD. Journal of Marine Sci-

ence and Technology, 23(1):81–93, mar 2018. ISSN 0948-4280. doi: 10.1007/

s00773-017-0457-7.

[50] Guanghua He, Weijie Mo, Yun Gao, Zhigang Zhang, Jiadong Wang, Wei Wang,

Pengfei Liu, and Hassan Ghassemi. Modification of Effective Angle of Attack

on Hydrofoil Power Extraction. Ocean Engineering, 240:109919, nov 2021. ISSN

00298018. doi: 10.1016/j.oceaneng.2021.109919.

[51] J. C. R. Hunt, A. A. Wray, and P. Moin. Eddies, streams, and convergence zones

in turbulent flows. In Center for Turbulence Research Proceedings of the 1988

Summer Program, number 1970, pages 193–208, 1988.

[52] Wolfram Research, Inc. Mathematica, Version 13.1. URL https://www.wolfram.

com/mathematica. Champaign, IL, 2022.

[53] Chang-Ho Kang, Hamn-Ching Chen, and Erick T Huang. Chimera RAN-

S/LAPLACE Simulation of Free Surface Flows Induced by 2D Ship Sway, Heave,

and Roll Motions. In 8th International Offshore and Polar Engineering Confer-

ence, pages 320–327, Montreal, Canada, 1998. International Society of Offshore

and Polar Engineers.

[54] Eduardo Tadashi Katsuno, Artur K. Lidtke, Bülent Düz, Douwe Rijpkema,

João L.D. Dantas, and Guilherme Vaz. Estimating Parameter and Discretization

Uncertainties using a Laminar–Turbulent Transition Model. Computers & Fluids,

230:105129, nov 2021. ISSN 00457930. doi: 10.1016/j.compfluid.2021.105129.

[55] Aaron Katz and Venkateswaran Sankaran. Mesh Quality Effects on the Accuracy

of CFD Solutions on Unstructured Meshes. Journal of Computational Physics,

230(20):7670–7686, aug 2011. ISSN 00219991. doi: 10.1016/j.jcp.2011.06.023.

[56] Andrew C. Kirby, Michael J. Brazell, Zhi Yang, Rajib Roy, Behzad R. Ahrabi,

Michael K. Stoellinger, Jayanarayanan Sitaraman, and Dimitri J. Mavriplis.

Wind Farm Simulations using an Overset HP-Adaptive Approach with Blade-

Resolved Turbine Models. The International Journal of High Performance Com-

puting Applications, 33(5):897–923, sep 2019. ISSN 1094-3420. doi: 10.1177/

1094342019832960.

[57] Cetin C. Kiris, Jeffrey A. Housman, Michael F. Barad, Christoph Brehm, Emre

Sozer, and Shayan Moini-Yekta. Computational Framework for Launch, Ascent,

and Vehicle Aerodynamics (LAVA). Aerospace Science and Technology, 55:189–

219, 2016. ISSN 12709638. doi: 10.1016/j.ast.2016.05.008.

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

REFERENCES 149

[58] Christiaan M. Klaij and C. Vuik. SIMPLE-type Preconditioners for Cell-Centered,

Colocated Finite Volume Discretization of Incompressible Reynolds-Averaged

Navier-Stokes equations. International Journal for Numerical Methods in Fluids,

71(7):830–849, mar 2013. ISSN 02712091. doi: 10.1002/fld.3686.

[59] Maarten Klapwijk, Thomas P. Lloyd, Guilherme Vaz, M. van den Boogaard,

and Tom van Terwisga. Exciting a Cavitating Tip Vortex with Synthetic In-

flow Turbulence: A CFD Analysis of Vortex Kinematics, Dynamics and Sound

Generation. Ocean Engineering, 254:111246, jun 2022. ISSN 00298018. doi:

10.1016/j.oceaneng.2022.111246.

[60] Hiroshi Kobayashi and Yoshiaki Kodama. Developing Spline Based Overset

Grid Assembling Approach and Application to Unsteady Flow Around a Mov-

ing Body. Journal of Mathematics and System Science, 6(9):339–347, sep 2016.

ISSN 21595291. doi: 10.17265/2159-5291/2016.09.001.

[61] Sébastien Lemaire, Guilherme Vaz, and Stephen R. Turnock. Implementation and

Verification of an Explicit Overset Grid Method. In 21st Numerical Towing Tank

Symposium (NuTTS), Cortona, Italy, 2018.

[62] Sébastien Lemaire, Guilherme Vaz, and Stephen R. Turnock. On the Need for

Higher Order Interpolation with Overset Grid Methods. In 22nd Numerical Towing

Tank Symposium (NuTTS), Tomar, Portugal, 2019.

[63] Sébastien Lemaire, Guilherme Vaz, Menno Deij-van Rijswijk, and Stephen R.

Turnock. On the Accuracy, Robustness, and Performance of High Order Inter-

polation Schemes for the Overset Method on Unstructured Grids. International

Journal for Numerical Methods in Fluids, 94(2):152–187, feb 2022. ISSN 0271-

2091. doi: 10.1002/fld.5050.

[64] Sébastien Lemaire, Guilherme Vaz, Menno Deij-van Rijswijk, and Stephen R.

Turnock. Influence of Interpolation Scheme on the Accuracy of Overset Method

for Computing Rudder-Propeller Interaction. Journal of Verification, Validation

and Uncertainty Quantification, 8(1), mar 2023. ISSN 2377-2158. doi: 10.1115/1.

4056681.

[65] Sébastien Lemaire. PyMMS: Generation of RANS Manufactured Solution for

CFD using Sympy. January 2021. doi: 10.5281/zenodo.4428181. URL https:

//github.com/nanoseb/pymms.

[66] Sébastien Lemaire and Maarten Klapwijk. PyTST: Python Library and Command

Line Tool Performing the Transient Scanning Technique. January 2021. doi:

10.5281/zenodo.4428158. URL https://github.com/nanoseb/pytst.

https://github.com/nanoseb/pymms
https://github.com/nanoseb/pymms
https://github.com/nanoseb/pytst

150 REFERENCES

[67] Artur K. Lidtke, Thomas P. Lloyd, Frans Hendrik Lafeber, and Johan Bossch-

ers. Predicting Cavitating Propeller Noise in Off-Design Conditions using Scale-

Resolving CFD Simulations. Ocean Engineering, 254:111176, jun 2022. ISSN

00298018. doi: 10.1016/j.oceaneng.2022.111176.

[68] Stefano Lovato, Serge L. Toxopeus, Just W. Settels, Geert H. Keetels, and Guil-

herme Vaz. Code Verification of Non-Newtonian Fluid Solvers for Single- and

Two-Phase Laminar Flows. Journal of Verification, Validation and Uncertainty

Quantification, 6(2), jun 2021. ISSN 2377-2158. doi: 10.1115/1.4050131.

[69] A Lungu. A Sliding Grid Based Method for the Roll Decay Simulation. IOP

Conference Series: Materials Science and Engineering, 591(1):012052, aug 2019.

ISSN 1757-8981. doi: 10.1088/1757-899X/591/1/012052.

[70] Marin Lauber and Pandeli Temarel. Acquisition of Maneuvring Characteristics of

Ships using RANS CFD. In 22nd Numerical Towing Tank Symposium (NuTTS),

pages 1–6, Tomar, Portugal, 2019.

[71] J. Ezequiel Martin, Thad Michael, and Pablo M. Carrica. Submarine Maneu-

vers Using Direct Overset Simulation of Appendages and Propeller and Coupled

CFD/Potential Flow Propeller Solver. Journal of Ship Research, 59(1):31–48, mar

2015. ISSN 00224502. doi: 10.5957/JOSR.59.1.140053.

[72] J. Ezequiel Martin, Ralph W. Noack, and Pablo M. Carrica. Overset Grid Assem-

bly Approach for Scalable Computational Fluid Dynamics with Body Motions.

Journal of Computational Physics, 390:297–305, aug 2019. ISSN 00219991. doi:

10.1016/j.jcp.2019.04.009.

[73] Florian R Menter. Eddy Viscosity Transport Equations and Their Relation to

the k-ϵ Model. Journal of Fluids Engineering, 119(4):876–884, dec 1997. ISSN

0098-2202. doi: 10.1115/1.2819511.

[74] Florian R Menter, M Kuntz, and Robin Blair Langtry. Ten Years of Industrial Ex-

perience with the SST Turbulence Model. In K Hanjalic, Y Nagano, and M Tum-

mers, editors, Turbulence, Heat and Mass Transfer 4, pages 625 – 632. Begell

House, Inc., 2003.

[75] Florian R Menter, Yury Egorov, and D. Rusch. Steady and Unsteady Flow Mod-

elling Using the k-skL Model. In Proceedings of the International Symposium

on Turbulence, Heat and Mass Transfer, pages 403–406, New York, 2006. Begell

House. ISBN 1-56700-229-3. doi: 10.1615/ICHMT.2006.TurbulHeatMassTransf.

800.

[76] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B.

Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-

taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,

REFERENCES 151

Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-

dregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo,

Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. SymPy:

Symbolic Computing in Python. PeerJ Computer Science, 3(1):e103, jan 2017.

ISSN 2376-5992. doi: 10.7717/peerj-cs.103.

[77] Alireza Mofidi and Pablo M. Carrica. Simulations of Zigzag Maneuvers for a

Container Ship with Direct Moving Rudder and Propeller. Computers & Fluids,

96:191–203, jun 2014. ISSN 00457930. doi: 10.1016/j.compfluid.2014.03.017.

[78] Anthony F. Molland and Stephen R. Turnock. Wind tunnel test results for a

model ship propeller based on a modified Wageningen B4.40. Technical report,

University of Southampton, Southampton, UK, 1990.

[79] Anthony F. Molland and Stephen R. Turnock. Wind Tunnel Tests on the Effect of a

Ship Hull on Rudder-Propeller Performance at Different Angles of Drift. Technical

report, University of Southampton, Southampton, UK, 1995.

[80] Anthony F. Molland and Stephen R. Turnock. A Propeller Thrust and Torque

Dynamometer for Wind Tunnel Models. Strain, 38(1):3–10, 2002. ISSN 00392103.

doi: 10.1046/j.0039-2103.2002.00001.x.

[81] Anthony F. Molland and Stephen R. Turnock. Marine Rudders, Hydrofoils and

Control Surfaces. Elsevier, butterwort edition, 2022. ISBN 978-0-12-824378-7. doi:

10.1016/C2020-0-01238-7.

[82] Roberto Muscari, Riccardo Broglia, and A Di Mascio. An Overlapping Grids

Approach for Moving Bodies Problems. 16th International Offshore and Offshore

and Polar Engineering Conference Proceedings, 4:243–248, 2006. ISSN 1098-6189.

[83] C. Nathan Woods and Ryan P. Starkey. Verification of Fluid-Dynamic Codes

in the Presence of Shocks and Other Discontinuities. Journal of Computational

Physics, 294:312–328, aug 2015. ISSN 00219991. doi: 10.1016/j.jcp.2015.03.055.

[84] Chris Nelson and Christopher Roy. Verification of the Wind-US CFD Code Using

the Method of Manufactured Solutions. In 42nd AIAA Aerospace Sciences Meeting

and Exhibit, Reston, Virigina, jan 2004. American Institute of Aeronautics and

Astronautics. ISBN 978-1-62410-078-9. doi: 10.2514/6.2004-1104.

[85] Van Tu Nguyen, Duc Thanh Vu, Warn Gyu Park, and Chul Min Jung.

Navier–Stokes Solver for Water Entry Bodies with Moving Chimera Grid Method

in 6DOF Motions. Computers & Fluids, 140:19–38, 2016. ISSN 00457930. doi:

10.1016/j.compfluid.2016.09.005.

[86] Ralph W. Noack. SUGGAR: a General Capability for Moving Body Overset Grid

Assembly. In 17th AIAA Computational Fluid Dynamics Conference, volume 5117,

152 REFERENCES

pages 1–21, Toronto, Ontario, Canada, 2005. ISBN 9781624100536. doi: 10.2514/

6.2005-5117.

[87] Ralph W. Noack. DiRTlib: A Library to Add an Overset Capability to your

Flow Solver. In 17th AIAA Computational Fluid Dynamics Conference, number

June 2005, pages 1–20, Toronto, Ontario, Canada, jun 2005. American Institute of

Aeronautics and Astronautics. ISBN 978-1-62410-053-6. doi: 10.2514/6.2005-5116.

[88] Ralph W. Noack and David A Boger. Improvements to SUGGAR and DiRTlib for

Overset Store Separation Simulations. In 47th AIAA Aerospace Sciences Meeting,

number January, pages 5–9, Orlando, Florida, 2009. ISBN 978-1-60086-973-0. doi:

10.2514/6.2009-340.

[89] Ralph W. Noack, Nicholas J. Wyman, Greg McGowan, and Cameron Brown.

Dual-Grid Interpolation for Cell-Centered Overset Grid Systems. In AIAA Scitech

2020 Forum, volume 1 PartF, pages 1–32, Reston, Virginia, jan 2020. American

Institute of Aeronautics and Astronautics. ISBN 978-1-62410-595-1. doi: 10.2514/

6.2020-1407.

[90] G. Oger, A. Vergnaud, B. Bouscasse, J. Ohana, M. Abu Zarim, M. De Leffe,

A. Bannier, L. Chiron, Y. Jus, M. Garnier, S. Halbout, and D. Le Touzé.

Simulations of Helicopter Ditching using Smoothed Particle Hydrodynamics.

Journal of Hydrodynamics, 32(4):653–663, aug 2020. ISSN 1001-6058. doi:

10.1007/s42241-020-0044-y.

[91] Kunihide Ohashi. A New Approach for Handling Body Motion by Combining a

Grid Deformation Method and an Overset Grids Technique. Ocean Engineering,

213(August):107836, oct 2020. ISSN 00298018. doi: 10.1016/j.oceaneng.2020.

107836.

[92] Kunihide Ohashi, Takanori Hino, Hiroshi Kobayashi, Naoyuki Onodera, and

Nobuaki Sakamoto. Development of a Structured Overset Navier–Stokes Solver

with a Moving Grid and Full Multigrid Method. Journal of Marine Science

and Technology, 24(3):884–901, sep 2019. ISSN 0948-4280. doi: 10.1007/

s00773-018-0594-7.

[93] Enrique Orduna-Malea, Juan M. Ayllón, Alberto Mart́ın-Mart́ın, and Emilio Del-

gado López-Cózar. Methods for Estimating the Size of Google Scholar. Scientomet-

rics, 104(3):931–949, sep 2015. ISSN 0138-9130. doi: 10.1007/s11192-015-1614-6.

[94] Johannes Palm and Claes Eskilsson. Facilitating Large-Amplitude Motions of

Wave Energy Converters in OpenFOAM by a Modified Mesh Morphing Approach.

Proceedings of the European Wave and Tidal Energy Conference, pages 2107–1–

2107–8, 2021. ISSN 27066940.

[95] PDC. Gridpro. URL https://www.gridpro.com.

https://www.gridpro.com

REFERENCES 153

[96] Milovan Peric and Volker Bertram. Trends in Industry Applications of Computa-

tional Fluid Dynamics for Maritime Flows. Journal of Ship Production and Design,

27(04):194–201, nov 2011. ISSN 2158-2866. doi: 10.5957/jspd.2011.27.4.194.

[97] Alexander B. Phillips, Stephen R. Turnock, and Maaten Furlong. Accurate Cap-

ture of Propeller-Rudder Interaction using a Coupled Blade Element Momentum-

RANS Approach. Ship Technology Research, 57(2):128–139, apr 2010. ISSN 0937-

7255. doi: 10.1179/str.2010.57.2.005.

[98] C. Pilloton, A. Bardazzi, A. Colagrossi, and S. Marrone. SPH Method for Long-

Time Simulations of Sloshing Flows in LNG Tanks. European Journal of Mechanics

- B/Fluids, 93:65–92, may 2022. ISSN 09977546. doi: 10.1016/j.euromechflu.2022.

01.002.

[99] Patrick Queutey, Garbo Deng, Jeroen Wackers, Emmanuel Guilmineau, Alban

Leroyer, and Michel Visonneau. Sliding Grids and Adaptive Grid Refinement for

RANS Simulation of Ship-Propeller Interaction. Ship Technology Research, 59(2):

44–57, apr 2012. ISSN 0937-7255. doi: 10.1179/str.2012.59.2.004.

[100] Eliot W. Quon and Marilyn J. Smith. Advanced Interpolation Techniques for Over-

set CFD. In 50th AIAA Aerospace Sciences Meeting including the New Horizons

Forum and Aerospace Exposition, number January, Reston, Virigina, jan 2012.

American Institute of Aeronautics and Astronautics. ISBN 978-1-60086-936-5.

doi: 10.2514/6.2012-305.

[101] Eliot W. Quon and Marilyn J. Smith. Advanced Data Transfer Strategies for

Overset Computational Methods. Computers & Fluids, 117:88–102, aug 2015.

ISSN 00457930. doi: 10.1016/j.compfluid.2015.04.023.

[102] E.J. Ransley, D. Greaves, A. Raby, D. Simmonds, and M. Hann. Survivability of

Wave Energy Converters using CFD. Renewable Energy, 109:235–247, aug 2017.

ISSN 09601481. doi: 10.1016/j.renene.2017.03.003.

[103] Patrick J. Roache. Code Verification by the Method of Manufactured Solutions.

Journal of Fluids Engineering, 124(1):4–10, mar 2002. ISSN 0098-2202. doi: 10.

1115/1.1436090.

[104] Patrick J. Roache. Fundamentals of Verification and Validation. Hermosa Pub-

lishers, 2009. ISBN 978-0913478127.

[105] Patrick J. Roache. The Method of Manufactured Solutions for Code Verifi-

cation. In Claus Beisbart and Nicole J. Saam, editors, Computer Simulation

Validation, Simulation Foundations, Methods and Applications, pages 295–318.

Springer International Publishing, Cham, 2019. ISBN 978-3-319-70765-5. doi:

10.1007/978-3-319-70766-2 12.

154 REFERENCES

[106] Robert McNeel & Associates. Rhinoceros. URL https://www.rhino3d.com.

[107] Beatrice Roget and Jayanarayanan Sitaraman. Robust and Efficient Overset Grid

Assembly for Partitioned Unstructured Meshes. Journal of Computational Physics,

260:1–24, mar 2014. ISSN 00219991. doi: 10.1016/j.jcp.2013.12.021.

[108] Christopher Roy, Curtis Ober, and Tom Smith. Verification of a Compressible

CFD Code Using the Method of Manufactured Solutions. In 32nd AIAA Fluid Dy-

namics Conference and Exhibit, Reston, Virigina, jun 2002. American Institute of

Aeronautics and Astronautics. ISBN 978-1-62410-113-7. doi: 10.2514/6.2002-3110.

[109] Youcef Saad and Martin H. Schultz. GMRES: A Generalized Minimal Residual

Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific

and Statistical Computing, 7(3):856–869, jul 1986. ISSN 0196-5204. doi: 10.1137/

0907058.

[110] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel Static and Dynamic

Multi-Constraint Graph Partitioning. Concurrency and Computation: Practice

and Experience, 14(3):219–240, mar 2002. ISSN 1532-0626. doi: 10.1002/cpe.605.

[111] Eberhard Schreck and Milovan Peric. Overset Grids in STAR-CCM+: Method-

ology, Applications and Future Developments. In STAR Japanese Conference,

2012.

[112] J.R. Shao, H.Q. Li, G.R. Liu, and M.B. Liu. An Improved SPH Method for

Modeling Liquid Sloshing Dynamics. Computers & Structures, 100-101:18–26, jun

2012. ISSN 00457949. doi: 10.1016/j.compstruc.2012.02.005.

[113] Ashesh Sharma, Shreyas Ananthan, Jayanarayanan Sitaraman, Stephen Thomas,

and Michael A. Sprague. Overset Meshes for Incompressible Flows: On Preserving

Accuracy of Underlying Discretizations. Journal of Computational Physics, 428:

109987, mar 2021. ISSN 00219991. doi: 10.1016/j.jcp.2020.109987.

[114] Zhirong Shen, Decheng Wan, and Pablo M. Carrica. Dynamic overset grids in

OpenFOAM with application to KCS self-propulsion and maneuvering. Ocean

Engineering, 108:287–306, nov 2015. ISSN 00298018. doi: 10.1016/j.oceaneng.

2015.07.035.

[115] Zhirong Shen, Decheng Wan, and Pablo M. Carrica. Dynamic Overset Grids in

OpenFOAM with Application to KCS Self-Propulsion and Maneuvering. Ocean

Engineering, 108:287–306, nov 2015. ISSN 00298018. doi: 10.1016/j.oceaneng.

2015.07.035.

[116] Jayanarayanan Sitaraman, Matthew Floros, Andrew M. Wissink, and Mark A.

Potsdam. Parallel Domain Connectivity Algorithm for Unsteady Flow Computa-

tions using Overlapping and Adaptive Grids. Journal of Computational Physics,

229(12):4703–4723, 2010. ISSN 0021-9991. doi: 10.1016/j.jcp.2010.03.008.

https://www.rhino3d.com

REFERENCES 155

[117] Philippe R Spalart and S. Allmaras. A One-Equation Turbulence Model for

Aerodynamic Flows. In 30th Aerospace Sciences Meeting and Exhibit, Reston,

Virigina, jan 1992. American Institute of Aeronautics and Astronautics. doi:

10.2514/6.1992-439.

[118] Serge L. Toxopeus and K Bhawsinka. Calculation of Hydrodynamic Interaction

Forces on a Ship Entering a Lock Using CFD. In 4th International Conference

on Ship Manoeuvring in Shallow and Confined Water with Special Focus on Ship

Bottom Interaction, pages 305–314, Hamburg, Germany, 2016. doi: 10.18451/

978-3-939230-38-0 34.

[119] Stephen R. Turnock. Computer Aided Design and Numerically Controlled Manu-

facture of a Split Mold for a Composite Model Ship Propeller. Technical report,

University of Southampton, 1990.

[120] Stephen R. Turnock. A Test Rig for the Investigation of Ship Propeller/Rudder

Interactions. Technical report, University of Southampton, Southampton, UK,

1990.

[121] WPA van Lammeren, J D van Manen, and MWC Oosterveld. The Wageningen

B-screw Series. Schip en Werf, 5:88–103, 1970.

[122] Guilherme Vaz, Frederick Jaouen, and Martin Hoekstra. Free-Surface Viscous

Flow Computations: Validation of URANS Code FreSCo. In Volume 5: Polar

and Arctic Sciences and Technology; CFD and VIV, pages 425–437. ASMEDC,

jan 2009. ISBN 978-0-7918-4345-1. doi: 10.1115/OMAE2009-79398.

[123] Subrahmanya Veluri, Christopher Roy, Shelley Hebert, and Edward Luke. Verifi-

cation of the Loci-CHEM CFD Code Using the Method of Manufactured Solutions.

In 46th AIAA Aerospace Sciences Meeting and Exhibit, Reston, Virigina, jan 2008.

American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-128-1. doi:

10.2514/6.2008-661.

[124] Suyash Verma and Arman Hemmati. Performance of Overset Mesh in Modeling

the Wake of Sharp-Edge Bodies. Computation, 8(3):66, jul 2020. ISSN 2079-3197.

doi: 10.3390/computation8030066.

[125] Diego Villa, Andrea Franceschi, and Michele Viviani. Numerical Analysis of the

Rudder–Propeller Interaction. Journal of Marine Science and Engineering, 8(12):

990, dec 2020. ISSN 2077-1312. doi: 10.3390/jmse8120990.

[126] S. Völkner, Jörg Brunswig, and Thomas Rung. Analysis of Non-Conservative

Interpolation Techniques in Overset Grid Finite-Volume Methods. Computers &

Fluids, 148:39–55, apr 2017. ISSN 00457930. doi: 10.1016/j.compfluid.2017.02.010.

[127] Vuko Vukcevic and Hrvoje Jasak. Overset Mesh Library in Foam-Extend, 2018.

156 REFERENCES

[128] Yu Wang, Hamn-Ching Chen, Arjen Koop, and Guilherme Vaz. Hydrodynamic

Response of a FOWT Semi-Submersible Under Regular Waves using CFD: Verifi-

cation and Validation. Ocean Engineering, 258:111742, aug 2022. ISSN 00298018.

doi: 10.1016/j.oceaneng.2022.111742.

[129] Christian Windt, Josh Davidson, Benazzou Akram, and John V. Ringwood. Per-

formance Assessment of the Overset Grid Method for Numerical Wave Tank Ex-

periments in the OpenFOAM Environment. In ASME 37th International Confer-

ence on Ocean, Offshore and Arctic Engineering, volume 10, pages 1–10, Madrid,

Spain, 2018. ISBN 9780791851319. doi: 10.1115/OMAE2018-77564.

[130] Christian Windt, Josh Davidson, Dominic D.J. Chandar, and John V. Ringwood.

On the Importance of Advanced Mesh Motion Methods for WEC Experiments

in CFD-based Numerical Wave Tanks. In R. Bensow Ringsberg and J., editors,

VIII International Conference on Computational Methods in Marine Engineering

MARINE 2019, pages 145–156, Gothenburg, Sweden, 2019. International Center

for Numerical Methods in Engineering (CIMNE).

[131] Andrew M. Wissink and Robert L. Meakin. On Parallel Implementations of

Dynamic Overset Grid Methods. In Proceedings of the 1997 ACM/IEEE con-

ference on Supercomputing (CDROM) - Supercomputing ’97, volume 1, pages

1–21, New York, New York, USA, 1997. ACM Press. ISBN 0897919858. doi:

10.1145/509593.509608.

[132] Naz Yilmaz, Batuhan Aktas, Mehmet Atlar, Patrick A. Fitzsimmons, and Mario

Felli. An Experimental and Numerical Investigation of Propeller-Tudder-Hull In-

teraction in the Presence of Tip Vortex Cavitation (TVC). Ocean Engineering, 216

(May):108024, nov 2020. ISSN 00298018. doi: 10.1016/j.oceaneng.2020.108024.

[133] Shen Zhirong, Wan Decheng, and Pablo M. Carrica. RANS Simulations of Free

Maneuvers with Moving Rudders and Propellers Using Overset Grids in Open-

FOAM. In SIMMAN workshop on Verification and Validation of Ship Maneuver-

ing Simulation Methods, number December, Lyngby, Denmark, 2014.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Declaration of Authorship
	Acknowledgements
	Nomenclature
	1 Introduction
	1.1 Origin of overset method
	1.2 Project background
	1.3 Aim & Objectives
	1.4 Publications
	1.5 Novelty
	1.6 Structure of the Thesis

	2 Fundamentals of finite volume CFD and overset method
	2.1 Baseline CFD solver
	2.2 Governing equations
	2.2.1 Navier-Stokes
	2.2.2 General transport equation
	2.2.3 RANS approach to turbulence modelling

	2.3 Numerical methods
	2.3.1 Finite volume method
	2.3.2 Gradient computation
	2.3.3 Time discretisation

	2.4 Resolution of equations and CFD code structure
	2.4.1 Linear system of equations
	2.4.2 General structure of CFD solvers
	2.4.3 HPC parallelisation

	2.5 The overset method
	2.6 Summary

	3 Verification and Validation
	3.1 Error sources
	3.1.1 Round off error
	3.1.2 Iterative error
	3.1.3 Discretisation error
	3.1.4 Overset interpolation errors
	3.1.5 Statistical error
	3.1.6 Additional errors
	3.1.7 Modelling error

	3.2 Method of Manufactured Solutions
	3.3 PyMMS: an opensource framework for generating Manufactured Solutions
	3.4 PyTST: an opensource Transient Scanning Technique analysis tool
	3.5 Summary

	4 The Overset method implementation
	4.1 General workflow
	4.2 Overset in various CFD solvers
	4.3 Implementation of the overset method
	4.3.1 General design decisions
	4.3.2 Donor search implementation

	4.4 Interpolation methods
	4.4.1 Nearest Cell
	4.4.2 Nearest Cell Gradient
	4.4.3 Inverse Distance
	4.4.4 Polynomial
	4.4.4.1 Complete Polynomial
	4.4.4.2 Polynomial tensor

	4.4.5 Least squares
	4.4.6 Barycentric
	4.4.7 Interpolation schemes overview

	4.5 Summary

	5 Verification of interpolation schemes
	5.1 Robustness of Polynomial based interpolations
	5.1.1 Methodology
	5.1.1.1 Donor points locations
	5.1.1.2 Error estimation

	5.1.2 Results
	5.1.3 Conclusions

	5.2 Code Verification of interpolation schemes
	5.2.1 Methodology
	5.2.2 Results

	6 Code Verification and error analysis on flows with analytical solution
	6.1 Poiseuille flow test case
	6.1.1 Case definition
	6.1.2 Error level analysis
	6.1.3 Mass imbalance study
	6.1.4 Flow behaviour and errors location

	6.2 Recirculation bubble URANS manufactured solution
	6.2.1 Introduction
	6.2.2 Case definition
	6.2.3 Time evolution of errors
	6.2.4 Error level analysis
	6.2.5 Mass imbalance study
	6.2.6 Flow behaviour and error location

	6.3 Concluding remarks

	7 Case study: Analysis of propeller-rudder interaction
	7.1 Introduction
	7.2 Problem setup
	7.2.1 Experiments presentation
	7.2.2 Numerical setup
	7.2.2.1 Grid and Overset setup
	7.2.2.2 Computational setup
	7.2.2.3 Analysed quantities

	7.3 Verification studies
	7.3.1 Iterative uncertainty
	7.3.2 Time discretisation uncertainty
	7.3.3 Statistical uncertainty

	7.4 Impact of interpolation schemes
	7.4.1 Integral quantities
	7.4.2 Pressure on the Rudder
	7.4.3 Velocity field

	7.5 Rudder flow Validation
	7.6 Concluding remarks

	8 Performance and scalability of the overset method
	8.1 Introduction
	8.2 Overset method performance
	8.2.1 Methodology and setup
	8.2.2 DCI computation
	8.2.3 Donor search and interpolation
	8.2.3.1 Interpolation
	8.2.3.2 Donor search
	8.2.3.3 Combined performance

	8.3 Iterative convergence
	8.4 Conclusion

	9 Concluding remarks
	9.1 Conclusion
	9.2 Future work

	Appendix A Implicit formulation of Polynomial schemes
	Appendix A.1 Polynomial and Polynomial Tensor schemes
	Appendix A.2 Least Squares scheme

	Appendix B Recirculation bubble manufactured solution equations
	References

