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Abstract
Contact-tracing is one of the most effective tools in infectious disease outbreak
control. A capture–recapture approach based upon ratio regression is suggested
to estimate the completeness of case detection. Ratio regression has been recently
developed as flexible tool for count datamodeling and has proved to be successful
in the capture–recapture setting. The methodology is applied here to Covid-19
contact tracing data from Thailand. A simple weighted straight line approach is
used which includes the Poisson and geometric distribution as special cases. For
the case study data of contact tracing for Thailand, a completeness of 83% could
be found with a 95% confidence interval of 74%–93%.
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1 INTRODUCTION

This note is motivated by the effort in estimating the com-
pleteness of contact tracing (CT) in the Covid-19 epidemic.
Completeness is defined as the proportion of identified
cases out of the total of identified cases and cases that have
been missed. Completeness of CT is of high importance
in any disease outbreak and it is valuable to have meth-
ods at hand that help to determine how successful CT has
been (Doyle et al., 2002).We consider as case study the first
wave of the Covid-19 outbreak in Thailand. However, the
methodology developed here is in principal applicable to
any infectious disease outbreak involving CT.
Evaluating completeness of surveillance systems using

capture–recapture methods is nowadays an established
and accepted method. A recent example on HIV surveil-
lance is given in Wesson et al. (2018). Also, capture–
recapture methods are now widely applied in the social
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and medical sciences, beyond their origin in ecology and
wildlife (Böhning et al., 2018; McCrea and Morgan, 2015),
although applications in medicine have a long tradition
(McKendrick, 1926). However, completeness assessment
by means of capture–recapture is typically done using a
multiple systems approach. Different registers or sources
provide evidence on the registration of individuals with a
specific condition. Using the overlap of the different lists
an estimate of the number of missing individuals with the
condition can be constructed. In the case of CT, there is
only one list available, the list of cases with the count of
contacts they had. The number of contacts of an identified
case can be viewed as how often the case has been identi-
fied, and, in the capture–recapture terminology, how often
the individual has been recaptured. Cases with no contacts
could be those with truly no contacts or those cases where
contacts could not be traced and the frequency of the lat-
ter is the target of the inference to establish the magnitude
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F IGURE 1 Number of Covid-19 cases by day for Thailand in the period from January 2020 to June 2020.

of the completeness of CT. A review of uni-list capture–
recapture approaches is given inWilson and Collins (1992)
and an application to Scrapie surveillance in Böhning and
Del Rio Vilas (2008). In the following, we describe in a case
study of the Covid-19 outbreak in Thailand the uni-list CT
data source.
Covid-19 contact-tracing in Thailand. Covid-19 is an

infectious disease caused by a novel virus of the corona
family. It was first detected in Wuhan, China, in Novem-
ber 2019. A huge number of Covid-19 cases were observed
in various countries from December 2019 onward and the
World Health Organization (WHO) announced Covid-19 a
global pandemic in March 2020 (WHO, 2020). Thailand
became the second country in Asia to register cases of
Covid-19. The first confirmed case, who had traveled from
Hubei (China), was reported on 12 January 2020. As of 30
June 2020, Thailandhad 3,171 caseswith 58 deaths. Figure 1
shows confirmed cases reported per day since 12 January
2020 until the end of June 2020.
The infection spread rapidly and increased in themiddle

of March 2020 with the highest number of 188 patients per
day in the last week of March 2020. As of late May 2020,
the cases were less than 10 on average. A main reason that
Thailand could efficiently control the spreading of Covid-
19 in a short time was that the government announced a
lockdown of the entire country by the emergency decree
outright onMarch 26, 2020. The government also imposed
a nationwide curfew between 10 pm and 4 am from 3 to
30 April 2020. Extremely important approaches to prevent
transmission of the infection included social distancing,
quarantine, and use of face masks.
Not only the infection control measure, but CT is also a

crucial tool for effectively breaking chains of transmission.

CT for Covid-19 in Thailand during 2020 was an operation
that involved multiple institutions including the Depart-
ment of Disease Control (DDC), the Ministry of Public
Health (MOPH), the Rapid Response Teams (RRT), and
Village Health Volunteers who were trained during earlier
major infectious disease outbreaks such as H1N1, SARS,
and Avian Influenza (Kaweenuttayanon et al., 2021). Once
a person is confirmed by the polymerase chain reaction
(PCR) test as a Covid-19 confirmed case, teams inter-
viewed the confirmed case to collect information about
clinical history and close contacts. In general, CT meth-
ods include amixture of disease investigation form, patient
interviews, and contact verifications to map the social and
work encounters of an infected individual (Ferretti et al.,
2020). The identified contacts are classified as either high-
risk contacts (HRC) or low-risk contacts (LRC) following
investigation guidelines (MoPH, 2020). HRC is defined as
a contact who is more likely to contact the virus through
exposure to respiratory secretions of the confirmed case
while not wearing personal protective equipment (PPE)
according to standard precautionary guidelines. LRC is
defined as a contact who is less likely to contract the virus
from the confirmed case. This includes contacts who have
not met the definition for HRC. Only high-risk contacts
were quarantined in designated places. CT of a confirmed
case was closed 14 days after the last successful tracing
attempt and the completion of CT was marked as the date
when the last contact was successfully trace. During the
firstwave of theCovid-19 pandemic in Thailand, fromearly
January 2020 to June 30, 2020, 3,171 cases were confirmed.
According to Thailand’s regular Covid-19 CT operations,
for a total of 352 (11.1%) confirmed cases CT could be com-
pleted. These are the fully traced index cases. It should
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BÖHNING et al. 3

TABLE 1 Frequency 𝑓𝑥 of fully traced index cases with exactly
𝑥 contact-counts; there is also a frequency 𝑓0 = 11 of fully-traced
index cases with no contacts.

𝒙 1 2 3 4 5 6 7 8 9 10
𝑓𝑥 44 22 24 16 15 10 11 10 9 9
𝒙 11 12 13 14 15 16 17 18 19 20
𝑓𝑥 9 10 6 7 8 16 3 2 3 8

be noted that only HRCs were included in analysis. To be
clear, in total there were 3,171 cases, but only 352 cases
could be fully traced for their contacts. The reason for this
was that the authorities could not cope with the amount
of efforts required for tracing contacts. The 352 index cases
stem from the early phase of the epidemic where follow
up of contacts were still manageable. The 3, 171 − 352 =

2, 819 cases (from later phases of the first wave) are not
considered for this application. It is emphasized here that
interest is not in estimating the total number of index cases
but the completeness of CT for the population of index
cases it has been applied to.
It is appropriate to explain the use of the term index case

in this setting. During the epidemic period, we consider
here for Thailand Covid-19 cases occur and are brought
to the attention of the public health institutions (reported
cases of notifications). For each such reported case, a pro-
cess of investigation is started to determine to whom this
case had contacts. We call this case the index case but this
is not important, another name could be initial case. How-
ever, we need to separate this from the number of contacts
this case had (and some very few contacts were in fact also
cases, see also Section 9 on this point). This is simply the
reality that took place during the epidemic (or pandemic)
in Thailand, which defines our target population (notified
cases with their characteristics including the number of
contacts) and that we mirror here. For each of these iden-
tified cases, the number of contacts is determined and is
modeled. We then focus on how complete this process of
CT has been by considering index cases with no contacts.
These could be those with truly no contacts or those cases
where contacts could not be traced and the frequency of the
latter is the target of the inference. To accomplish this task,
we consider the count distribution as zero-truncated and
predict from the fitted model the number of index cases
with contacts which have not been traced.
Among these 341 index cases with non-zero contacts,

there were 44 index cases with one contact, 22 index cases
with two contacts, 24 index cases with three contacts,
and so on. Table 1 illustrates the frequency 𝑓𝑥 of index
cases with exactly 𝑥 contacts for 𝑥 = 1, 2, … , 20 (the entire
distribution is provided in Table S1).
The largest observed count was 𝑥 = 167 and in total

6,359HRCswere identified, indicating the enormous effort

of CT. Note that the 6,359 contacts arise from the 341 fully
traced index cases. Here, interest lies in determining the
completeness of CT. Capture–recapture approaches will be
applied to estimate the true number of index cases with
contacts missed by CT. This will be done by estimating the
frequency 𝑓0 of index cases with contacts which remained
unobserved. The observed number of 11 index cases with
zero contacts is not relevant for this purpose and is ignored
in the further analysis.
Estimating 𝑓0 will be accomplished by modeling the

count distribution of contacts by means of ratio regression
(RR) in Section 2. In Section 3, it will be shown how this
can be utilized for capture–recapture modeling. Section 4
discusses parameter estimation and upper truncation. Sec-
tion 5 considers potential one-inflation, Section 6 discusses
confidence interval (CI) estimation and Section 7 applies
the modeling to the case study. Section 8 adds a sim-
ulation study to investigate model misspecification and
variance and CI performance. The paper ends with a short
discussion in Section 9.

2 COUNT DISTRIBUTION AND RATIO
REGRESSIONMODELING

We consider a count random variable 𝑋 taking values
𝑥 ∈ {0, 1, … ,𝑚}. Here, 𝑚 is a positive integer or 𝑚 = ∞,
depending on the setting. Let 𝑝𝑥 denote the associated
probability mass function 𝑃(𝑋 = 𝑥) = 𝑝𝑥 for which we
seek an appropriate model. A key idea is that it frequently
be easier to develop an appropriate model for 𝑝𝑥 if we
consider ratios of neighboring probabilities

𝑅𝑥 =
𝑝𝑥+1
𝑝𝑥

,

for 𝑥 = 0,… ,𝑚 − 1. If 𝑝𝑥 = exp(−𝜃)𝜃𝑥∕𝑥! is the Poisson
distribution (𝜃 > 0) then 𝑅𝑥 = 𝜃∕(𝑥 + 1). If 𝑝𝑥 = 𝜃(1 −

𝜃)𝑥, where 𝜃 ∈ (0, 1), is the geometric distribution then
𝑅𝑥 = 1 − 𝜃. Given a sample 𝑋1,… , 𝑋𝑛 of size 𝑛, we can
estimate 𝑅𝑥 by 𝑟𝑥 = 𝑓𝑥+1∕𝑓𝑥 where 𝑓𝑦 is the frequency of
sample elements 𝑋𝑖 equal to 𝑦. This allows consideration
which models from a candidate list might be appropriate.
The ideas of using the ratios of neighboring frequen-
cies have some tradition. The Poissonness Plot of Hoaglin
(1980) is well-known and this has been also developed
in Hoaglin and Tukey (1985). There is also the work by
Friendly (2001) who discusses the Poissonness plot and
provides an SAS macro for it. A similar graphical idea
is provided by the so-called Ord plot (Ord, 1967). These
concepts can be developed for the binomial distribution
or geometric distribution among others. In fact, for any
member of the power series family log ratios of neighbor-
ing probabilities follow a straight line if considered as a
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4 BÖHNING et al.

function of the count 𝑥. These concepts have been fur-
ther graphically explored in Böhning et al. (2013). The
difference of the RR approach as suggested in Böhning
(2016) to these early more graphical ideas is that these are
now taken forward and developed into a more rigorous
modeling approach. In addition, the application to CT in
disease outbreak situations appears to be a novel devel-
opment. Furthermore, in contrast to Böhning (2016) 𝑓0 is
estimated on the basis of the entire model (hence using
all the data used for model fitting). The key equations are
Equations (6) and (7) in Section 4. In Böhning (2016), 𝑓0
was estimated using 𝑓1∕𝑟0 where 𝑓1 is observed and 𝑟0 is
arising from the model fit. We believe that it is advanta-
geous to base the estimate of 𝑓0 on the entire model fit
rather than on 𝑓1 and 𝑟0 alone. Note that the RR approach
is particularly suitable for zero-truncated distributions as
the zero-truncated and untruncated ratio are identical. It
is also suitable for distributional families, where the nor-
malizing constant is more difficult to compute as it cancels
out in the ratio.
Here, we elaborate on the connection between the

probability mass function 𝑝𝑥 and 𝑅𝑥. Suppose that
we consider a set of candidate probability mass func-
tions Π = {𝑝𝑥(𝜃)|𝜃 ∈ Θ}, where Θ is some real scalar-
or vector-valued interval. We call this the P-space.
Then, there is a unique associated space generated by
Ω = {𝑅𝑥(𝜃) = 𝑝𝑥+1(𝜃)∕𝑝𝑥(𝜃)|𝜃 ∈ Θ}. We call this the R-
space. To illustrate these spaces, we consider the two-
parameter Conway–Maxwell–Poisson (COM) distribution
as an example which is defined by

𝑝𝑥 =
𝜇𝑥∕(𝑥!)𝜆

𝑐(𝜇, 𝜆)
,

where 𝑐(𝜃) is the normalizing constant defined by 𝑐(𝜃) =
𝑐(𝜇, 𝜆) =

∑∞

𝑥=0
𝜇𝑥∕(𝑥!)𝜆 for 𝜇 and 𝜆 both positive, or 𝜇 ∈

(0, 1) for 𝜆 = 0. For 𝜆 = 1 the COM-distribution corre-
sponds to the Poisson and for 𝜆 = 0 it is the geometric
distribution.More details on the COM-distribution includ-
ing an illustration of its flexibility is given in Sellers
and Shmueli (2010). The corresponding R-space of the
COM-distribution is generated by

𝑅𝑥 =
𝜇

(𝑥 + 1)𝜆
. (1)

Here, we see a first benefit of moving into the R-space as
we reach a simplified model, where the normalizing con-
stant has canceled out. Taking logarithms on both sides of
Equation (1), we achieve

log 𝑅𝑥 = log 𝜇 − 𝜆 log(𝑥 + 1) = 𝛽0 + 𝛽1 log(𝑥 + 1). (2)

It is convenient to think of Equation (2) as regression of
𝑅𝑥 on log(𝑥 + 1) using a log-link function. Then, log 𝜇 cor-
responds to the intercept and 𝜆 to the slope. As shown
in Figure S1, the three distributions are illustrated. The
geometric distribution is characterized by a slope of zero,
whereas the Poisson distribution has a fixed negative slope
of −1. The COM-distribution has an arbitrary intercept
and arbitrary negative slope. From Equation (2), we have
𝜇 = exp(𝛽0) and no restriction on 𝛽0 as 𝜇 > 0 implies 𝛽0 ∈
(−∞,∞). However, wemust constrain 𝛽1 < 0 due to 𝜆 > 0.
Now, as𝑝𝑥 is unknown so is𝑅𝑥. However,we can replace

𝑅𝑥 by its estimate 𝑟𝑥 and then consider more general
models

log 𝑟𝑥 = 𝛽0 + 𝛽1𝑔1(log(𝑥 + 1)) +⋯+ 𝛽𝑝𝑔𝑝(log(𝑥 + 1)) + 𝜖𝑥,

(3)
where 𝑔𝑗(.) are known functions for 𝑗 = 1,… , 𝑝 and 𝜖𝑥 is a
random error. An example would be the simple extension
of the straight line model by a quadratic term such as

log 𝑟𝑥 = 𝛽0 + 𝛽1 log(𝑥 + 1) + 𝛽2 log(𝑥 + 1)2 + 𝜖𝑥.

If we allow arbitrary regression models such as in
Equation (3), the question arises if such a model cor-
responds to a discrete probability mass function. This
is answered by the following argument. Suppose we
have the fitted model 𝑟𝑥 = exp{𝛽0 + 𝛽1𝑔1(log(𝑥 + 1)) +

⋯+ 𝛽𝑝𝑔𝑝(log(𝑥 + 1))}, then we can use the recursive
relationship �̂�𝑥+1 = 𝑟𝑥�̂�𝑥 or

�̂�𝑥+1 = �̂�0

𝑥∏
𝑗=0

𝑟𝑗

for 𝑥 = 0,… ,𝑚 − 1. Finally, we need to find �̂�0. This can
be accomplished by noting that

1 =

𝑚∑
𝑥=0

�̂�𝑥 = �̂�0

(
1 + 𝑟0 + 𝑟0𝑟1 + 𝑟0𝑟1𝑟2 +⋯+

𝑚−1∏
𝑥=0

𝑟𝑥

)
,

so that �̂�0 can be found as the inverse of

1 +

𝑚−1∑
𝑗=0

𝑗∏
𝑥=0

𝑟𝑥. (4)

Hence, any regression model of the type given in Equa-
tion (3) can be related to a unique element in the P-space.
Note the importance of the link function as it guarantees
that all fitted ratios are positive. This argument could have
been made also using 𝑅𝑥 instead of 𝑟𝑥, but we prefer here
the latter as it illustrates the strategic concept.
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BÖHNING et al. 5

3 CAPTURE–RECAPTURE COUNT
MODELING

We are interested in applying the ideas of the previous
section to zero-truncated count modeling as it typically
arises in capture–recapture studies. Here, 𝑋𝑖 represents
the number of identifications of the 𝑖th member of the
target population within a given time period. It is assumed
that we have a sample 𝑋1,… , 𝑋𝑁 of these, where 𝑁 is the
size of the target population. However, as a count of zero
corresponds to the situation that the associated unit has
not been observed, only a reduced, zero-truncated sam-
ple 𝑋1,… , 𝑋𝑛 of positive counts has been observed with
𝑛 ≤ 𝑁. In the application, we have in mind, the target
population consists out of index cases (those with con-
firmed infections) who had contacts to other individuals.
The population of index cases with contacts of size 𝑁 can
be further partitioned into a group of size 𝑛 for which
we observe a positive count: 𝑋𝑖 is the number of contacts
for the 𝑖th member of this sub-population of index cases,
𝑖 = 1, … , 𝑛. Furthermore, we assume that there is a sec-
ond group of index cases with contacts but not identified
as such by the CT system. So, there are cases (counts of
zeros) with truly no contacts and there are cases (counts of
zeros) which had in fact some positive number of contacts.
In Figure S2, the setting is illustrated. It is assumed that
we have 𝑁 − 𝑛 index cases of the latter type. There might
be a number of reasons why these could not be success-
fully traced. Due to the mixing of zeros of different types,
we truncate these altogether. A different view would be
to consider this setting as a special one-point mixture and
it shown in Böhning and Ogden (2021) that these can be
dealt with by truncated the relevant point, here counts of
zero. Hence, we consider the distribution of positive con-
tact counts as zero-truncated as we want to estimate the
number of index cases which transmitted the infection but
were not successfully traced. Consequently, the focus is on
estimation of the completeness of CT.
RR is also very suitable for zero-truncated count data

modeling as the additional re-normalizing constant 1 − 𝑝0
cancels out. We have that

𝑅𝑥 =
𝑝𝑥+1
𝑝𝑥

=
𝑝𝑥+1∕(1 − 𝑝0)

𝑝𝑥∕(1 − 𝑝0)
,

so that the estimate 𝑟𝑥 refers to the same estimand 𝑅𝑥,
independent of whether 𝑓𝑥 arises from the zero-truncated
distribution or from the associated untruncated distribu-
tion. The only difference is that 𝑟0 will be a predicted ratio
as we have no observation for it in the zero-truncated case.
Having found 𝑟0, 𝑟1, … , 𝑟𝑚−1, we can find �̂�0 as the inverse
of Equation (4). This allows population size estimation by
means of a Horvitz–Thompson-type estimator

�̂� = 𝑛∕(1 − �̂�0), (5)

where 𝑛 is the observed sample size of members of the
target population with positive counts.
In Figure 2, an application to the CT data of Thailand

is given. This figure appears in color in the electronic ver-
sion of this paper, and any mention of color refers to that
version. For each case 𝑖 infected with Covid-19, the index
case 𝑖, its associated frequency of contacts𝑋𝑖 is used to cre-
ate Figure 2. The largest contact count was 167, 50% of all
index cases had less than 10 contacts and 75% had less than
23 contacts. Only index cases with contact counts less than
20 were used to generate Figure 2. The graph clearly indi-
cates that the Poisson distribution is not appropriate here
and that a straight line model seems feasible to capture
the structure as the embedded LOWESS smoother is not
substantially different from the straight line. The LOWESS
smoother uses the default values (a fraction of 50% for the
inclusion of data points and the tricube weight function;
for more details, see Cleveland (1979)). Note that the line
has a positive slope which means that the corresponding
distribution is not a COM-distribution, but the construc-
tion process of going back from the R-space to the P-space
will guarantee that it is a probability distribution.

4 PARAMETER ESTIMATION AND
UPPER TRUNCATION

We apply conventional least-squares estimation to find
estimates of the regression coefficients. As the variance
of log 𝑟𝑥 = log 𝑓𝑥+1 − log 𝑓𝑥 can be estimated by 1∕𝑓𝑥+1 +
1∕𝑓𝑥, assuming both frequencies are positive, we use
weighted least-squares estimation with weights as the
inverses of 1∕𝑓𝑥+1 + 1∕𝑓𝑥. The choice of the weights is
motivated by the common assumption in frequency table
modeling that the frequencies follow a Poisson distri-
bution, so that estimates of the asymptotic variances of
the log-frequencies are given by the inverse frequencies.
Figure S3 illustrates the difference between the weighted
and ordinary least squares in this case. Evidently, weighted
least-squares gives more weight to lower values of 𝑥.
With increasing value of 𝑥 the frequency 𝑓𝑥 becomes

small. This means that the variability of 𝑟𝑥 becomes large,
to the extent that it can no longer be estimated when 𝑓𝑥 =
0. For this reason,we limit regressionmodeling to an upper
truncation point 𝑥 = 𝑇, where 𝑇 < 𝑚. As a consequence,
we need to incorporate this limitation into the inference
which we do as follows. We have now that

1 −

𝑚∑
𝑥=𝑇+1

𝑝𝑥 =

𝑇∑
𝑥=1

𝑝𝑥 = 𝑝0

(
1 + 𝑅0 + 𝑅0𝑅1 + 𝑅0𝑅1𝑅2 +⋯+

𝑇−1∏
𝑥=0

𝑅𝑥

)
.

(6)
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6 BÖHNING et al.

3.02.52.01.51.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

log(x+1)

log
 r_

x

Poisson

geometric

LS-line

LOWESS smoother

F IGURE 2 Illustration of the fitted geometric, Poisson and COM-distribution in the R-space using a log-link for the contact-tracing data
from Thailand. The vertical axis represents log 𝑟𝑥 , where 𝑟𝑥 = 𝑓𝑥+1∕𝑓𝑥 and the horizontal axis shows log(𝑥 + 1) for positive integer values of
𝑥. The dashed curve represents the LOWESS smoother with the default values used in the software MINITAB which means that a fraction of
50% for the inclusion of data points is used as well as the tricube weight function. This figure appears in color in the electronic version of this
paper, and any mention of color refers to that version.

We replace the left-hand side of Equation (6) by �̂� = 1 −∑𝑚

𝑥=𝑇+1
𝑓𝑥∕𝑛 and𝑅𝑥 by the fitted value 𝑟𝑥 of the respective

regression model as before so that �̂�0 can be found as

�̂�0 =
�̂�

1 +
∑𝑇−1

𝑗=0

∏𝑗

𝑥=0
𝑟𝑥

. (7)

We will use then this value of �̂�0 in Equation (7) to pre-
dict the population size 𝑁 of the target population as �̂� =

𝑛∕(1 − �̂�0).

5 ONE-INFLATION

Recently, one-inflation in capture–recapture modeling has
attracted some attention. Here, one-inflation is defined
as the occurrence of substantially more counts of ones
(singletons) relative to what is predicted by the assumed
model. In the dataset of CT counts from Thailand, we
note that 𝑓1 is by far the highest frequency. This alone
does not speak for one-inflation. The question really is if
(1, log 𝑟1) is an influential point. Figure 3 shows an index
plot of Cook’s distance measure and there is no evidence
of any influential point for the range of data considered for
the RR.
Webriefly outline the process if therewere one-inflation.

After truncation of the singletons, the model under con-
sideration is fitted using log 𝑟2, …, log 𝑟𝑇−1. Removing the

singletons results in no loss of generality, as it has been
shown that one-inflation models can be fitted by truncat-
ing the counts of ones (Böhning and Ogden, 2021). This
leads then to fitted values 𝑟2, … , 𝑟𝑇−1 and predicted values
𝑟0 and 𝑟1. From these estimates, �̂�0, �̂�1, … , �̂�𝑇−1 can be con-
structed as previously. However, some modifications are
required for estimating the population size. In the case that
the observed sample will contain one-inflated singletons
and non-inflated singletons, it is not known which single-
ton belongs to the inflated and which to the non-inflated
part, so that the singletons are completely removed and
estimation is based on the remaining counts of size 𝑛 − 𝑓1.
This leads to a modified Horvitz–Thompson estimator

𝑓0 = (𝑛 − 𝑓1)
�̂�0

1 − �̂�1 − �̂�0
, (8)

from where the total population size estimator �̂� = 𝑛 +

(𝑛 − 𝑓1)
�̂�0

1−�̂�1−�̂�0
follows.

6 CONFIDENCE INTERVAL
CONSTRUCTION

We are also interested in providing a (1 − 𝛼)100% CI for
𝑁. This is accomplished by using the following version of
a semi-parametric bootstrap. Suppose we have a generic
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F IGURE 3 Index plot of Cook’s distance measure for detecting influential points. The vertical axis represents Cook’s distance measure
and the horizontal line shows positive integer values 𝑥..

estimator �̂� of the population size with an associated
estimator 𝑓0 = �̂� − 𝑛 of the expected value 𝐸(𝑓0) of 𝑓0.
Then, we can draw 𝐵 samples of size �̂� with replace-
ment from the discrete distribution given mass 𝑓0∕�̂� to
count 0 and mass 𝑓𝑥∕�̂� to 𝑥 for 𝑥 = 1,… ,𝑚. For each
of the 𝐵 samples, we can find �̂�𝑏, leading to a bootstrap
sample �̂�1, … , �̂�𝐵 fromwhichwe can derive a (1 − 𝛼)100%

CI using, for example, the percentile method. In the appli-
cation below we use a bootstrap replication size of 𝐵 =

10, 000. This form of semi-parametric bootstrap has been
investigated in Anan et al. (2017) (called imputed bootstrap
in the paper) and shown to perform well if the model is
correctly specified.
As an alternative to the semi-parametric bootstrap, an

analytic approximation might be considered. We look at
the zero-truncated one-inflated setting which can be han-
dled by means of truncating both, counts of zeros and
ones. In this case, the Horvitz–Thompson estimator for 𝑓0
is 𝑓0 = 𝑛1�̂�0∕(1 − �̂�1 − �̂�0) (see also Equation (8)), where
𝑛1 = 𝑛 − 𝑓1, and we need to find its variance. This can
be accomplished by using the technique of conditional
moments (see Böhning (2008)) and builds on the result
that Var(𝑓0) can be written as

Var(𝑓0) = 𝐸(Var(𝑓0|𝑛1)) + Var(𝐸(𝑓0|𝑛1)). (9)

The second term in Equation (9) can be estimated as

𝑝20∕(1 − 𝑝0 − 𝑝1)
2Var(𝑛1) = 𝑝20∕(1 − 𝑝0 − 𝑝1)

2

𝑁(1 − 𝑝0 − 𝑝1)(𝑝0 + 𝑝1)

which can be further estimated as 𝑝20∕(1 − 𝑝0 −

𝑝1)
2𝑛1(𝑝0 + 𝑝1). The first term in Equation (9) does

not have such a general form but will rather depend more
specifically on the parametric form of the distribution
𝑝𝑥. To give an illustration, we use the geometric distri-
bution which is supported by the study data (as seen in
the following section) and also is a special case of the
straight line RR (slope is zero). Following the conditioning
approach and the details in Böhning & Ogden (2021), we
can find for the zero-one truncated geometric distribution
that the variance of 𝑓0 can be estimated as

𝑛21
(1 + �̂�)2

(1 − �̂�)6
𝑉𝑎𝑟(�̂�) + 𝑛1

�̂�3(2 − �̂�)

{1 − �̂� − �̂�(1 − �̂�)}2
.

Here V̂ar(�̂�) = {𝑛1∕�̂�
2 + 𝑆∕(1 − �̂�)2}−1 and �̂� = 𝑛1∕(𝑛1 +

𝑆) is the maximum likelihood estimator under the zero–
one-truncated geometric model with 𝑆 =

∑𝑚−2

𝑥=0
𝑥𝑓𝑥+2.

Again, using the technique of conditional moments we
can estimate Var(�̂�) = Var(𝑓0 + 𝑛) as Var(𝑓0) + Var(𝑛)
with Var(𝑛) = 𝑁𝑞(1 − 𝑞), where 1 − 𝑞 = 𝑃(𝑋 > 0). Under
the geometric distribution, the latter can be estimated as
𝑛�̂�. In total, we achieve

𝑉𝑎𝑟(�̂�) = 𝑛21
(1 + �̂�)2

(1 − �̂�)6
𝑉𝑎𝑟(�̂�) + 𝑛1

�̂�3(2 − �̂�)

{1 − �̂� − �̂�(1 − �̂�)}2
+ 𝑛�̂�.

For the non-inflated zero-truncated geometric distribu-
tion, again following Böhning & Ogden (2021), the vari-
ance of 𝑓0 + 𝑛 = 𝑛�̂�∕(1 − �̂�) + 𝑛 = 𝑛∕(1 − �̂�) is simply
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8 BÖHNING et al.

TABLE 2 Estimated regression coefficients, estimated probability for observing a zero-count as well as the associated estimates for the
number of index cases with contacts.

Model 𝜷𝟎 (SE) 𝜷𝟏 (SE, p-value) �̂�𝟎 �̂� �̂�𝟎

Unweighted
All (with𝑚 = 167) −0.3045 (0.4184) 0.0788 (0.1319, 0.553) 0.0024 341.81 0.81
With upper truncation 𝑇 = 20 −0.5552 (0.4601) 0.2089 (0.1984, 0.307) 0.1753 413.47 72.47
With upper truncation 𝑇 = 40 −0.4556 (0.4993) 0.1430 (0.1706, 0.407) 0.1717 411.69 70.69
Weighted
All (with𝑚 = 167) −0.474I1 (0.1967) 0.1555 (0.0808, 0.060) 0.0 341 0
With upper truncation 𝑇 = 20 −0.6473 (0.2726) 0.2692 (0.1376, 0.067) 0.1684 410.07 69.07
With upper truncation 𝑇 = 40 −0.5287 (0.2242) 0.1871 (0.0962, 0.059) 0.1077 382.17 41.17

estimated as

𝑛2 ̂var(�̂�)∕(1 − �̂�)4 + 𝑛�̂�3∕(1 − �̂�)2,

where �̂� = 𝑛∕(𝑛 + 𝑆) with 𝑆 =
∑𝑚−1

𝑥=0
𝑥𝑓𝑥+1. The variance

of �̂� is found from the negative inverse observed Fisher
information as {𝑛∕�̂�2 + 𝑆∕(1 − �̂�)2}−1.
We find the bootstrap approach more appealing than

using an approach based on an asymptotic normal approx-
imation which depends on the derivation of an asymptotic
variance. Although possible as seen above, it usually
depends at least partly on the specific model and approx-
imations such as the 𝛿-method (Böhning, 2008). The
bootstrap suggested here is more generically applicable.

7 APPLICATION TO COVID-19
CONTACT-TRACING DATA FROM
THAILAND

We now apply these RR concepts to the data of Table 1. We
start by using weighted and unweighted linear regression
with upper truncation points of 𝑇 = 20 and 𝑇 = 40. There
are no strict rules for the choice of 𝑇. However, a guiding
principle should be to obtain a stable estimate of the ratio,
stable in the sense of a reasonable variance. We have been
choosing 𝑇 = 20 as frequencies start taking values smaller
than 5 and also 𝑇 = 40 as ratios become undefined. Table 2
presents estimated regression coefficients, estimated prob-
ability for observing a zero-count as well as the associated
population size estimate. Both, weighted and unweighted,
model estimates are included using the regression model
log 𝑅𝑥 = 𝛽0 + 𝛽1 log(𝑥 + 1). Columns 2 and 3 in Table 2
show that the weighted regression model produces the
smaller standard errors for the estimated regression coeffi-
cients.We see that for the unweighted regressionmodel the
population size estimates remain similar when 𝑇 changes
from 20 to 40, whereas there is a slight decrease in �̂� in the
weighted case.

In Table 3, various bootstrap statistics are provided
including the mean, median, standard error, and 95% CI
for 𝑁. We also provide, for comparison, these statistics for
the estimator of Chao (1989), also called Chao1-estimator,
as

�̂�𝐶 = 𝑛 + 𝑓21∕(2𝑓2). (10)

The estimator of Chao (Chao1) is developed under arbi-
trary heterogeneity for the parameter involved in the count
distribution which counts the number of identifications 𝑋
for a specific unit:

𝑝𝑥 = ∫
𝜃

𝑘(𝑥|𝜃)𝑞(𝜃)𝑑𝜃.
Here, 𝑞(𝜃) is an unspecified mixing distribution. However,
it is crucial to make an appropriate assumption for the
mixing kernel 𝑘(𝑥|𝜃). The estimator Chao1 was originally
developed for a Poisson kernel leading to Equation (10),
but Chao estimation can be generalized for any kernel
from the power series family (Böhning et al., 2019). If 𝑝𝑥 =∫
𝜃
𝑘(𝑥|𝜃)𝑞(𝜃)𝑑𝜃 holds, it can be shown that the Chao esti-

mator provides a lower bound for 𝑁. However, the Chao
estimator will depend on the form of the kernel assumed.
Here, as we think a geometric kernel is more appropriate
as contact counts show a long-tailed distribution and, in
addition, the RR analysis has provided evidence for a geo-
metric distribution. The Chao estimator for the geometric
kernel is given by

�̂�CG = 𝑛 + 𝑓21∕𝑓2, (11)

which is always larger than Equation (10) and also a
sharper bound if the geometric kernel is appropriate. We
call this estimator ChaoG. The estimator ChaoG was sug-
gested in Böhning et al. (2019) and specifically used for CT
data in Lerdsuwansri et al. (2022).
A further modified ChaoG estimator has been sug-

gested in Böhning et al. (2019), �̂�MCG = 𝑛 + 𝑓32∕𝑓
2
3 . The
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BÖHNING et al. 9

TABLE 3 Bootstrapped population size estimates of fully traced index cases with contacts; estimates are given with 95% confidence
intervals (CIs) based upon weighted ratio regression (RR) with upper truncation (𝑇 = 20) including and excluding singletons, and for
comparators Chao1, ChaoG, and modified ChaoG as well as the maximum likelihood estimates under the geometric distribution.

Bootstrap statistics
Estimator �̂� Mean Median SE 95% percentile CI Length of CI
RR 410 408.55 406.85 16.04 (365.97, 461.56) 95.59
ChaoG �̂�CG 429 435.68 429.49 22.56 (379.48, 528.06) 148.58
Modified ChaoG �̂�MCG 359 365.43 359.76 22.42 (341.15, 423.39) 82.24
Chao1 �̂�𝐶 385 388.14 385.35 11.65 (358.0, 435.10) 77.10
Geometric 360 360.01 360.13 3.15 (350.58, 368.67) 18.09

modified ChaoG estimation was sug-
gested in Böhning et al. (2019) to cope
with one-inflation as this could lead to an
overestimation of population size. The estimator �̂�MCG
avoids the use of 𝑓1 and is, hence, less prone to overes-
timation. If �̂�MCG and �̂�CG are close, this indicates lack
of evidence for one-inflation. Table 3 shows that there is
little evidence for one-inflation as all three estimators,
RR, maximum likelihood on the basis of the geometric
and ChaoG, and their counterparts addressing potential
one-inflation are quite close. Note that all lower bound
estimators including Chao1 and ChaoG are close to the RR
estimator. The latter has the benefit of providing a smaller
standard error.
As the RR modeling provides evidence for a slope zero

line, corresponding to a geometric distribution, we have
also included in Table 3 population size estimates based
upon the zero-truncated geometric distribution. Here, the
benefit is that no issue of upper truncation exists and all
data points can be included. It can be seen in Table 3 that
this leads to smaller standard errors in comparison to all
other approaches.
Using the proposed population size estimate (weighted

RR) we can conclude that CT based on the available Covid-
19 data reaches a completeness of 341/410 = 0.832, or
83.2%. In other words, only 16.8% of all cases with con-
tacts can be assumed to have been missed by CT. For the
zero-truncated geometric model estimate, we find a com-
pleteness of 341/360 = 0.947 or 94.7%. In other words, only
5.3% of all cases with contacts can be assumed to have been
missed by CT. In Figure 4, all five estimators with their
associated CIs are displayed. We see that they are fairly
close together with all CIs overlapping. This motivates the
question how these estimators compare and this will be
investigated in the next section.

8 SIMULATION STUDY

In this section, we take a closer look at the perfor-
mance of the population size estimators introduced in

Sections 3 and 4 by means of simulation. To be precise,
we consider the RR-based population size estimators �̂�RR
for the unweighted, 𝑤�̂�RR for the weighted case, and
both with upper truncation denoted as �̂�RR𝑇 and 𝑤�̂�RR𝑇 ,
respectively. For comparison, we also look at some other
well-known estimators, namely Chao’s lower bound esti-
mators �̂�𝐶 = 𝑛 + 𝑓21∕(2𝑓2) and �̂�CG = 𝑛 + 𝑓21∕𝑓2, and
the modified Chao estimator �̂�MCG = 𝑛 + 𝑓32∕𝑓

2
3 as well

as themaximum likelihood based estimator �̂�ztg = 𝑛∕(1 −

𝑛∕
∑
𝑥𝑓𝑥) based on the zero-truncated geometric (ztg)

model. For the design of this simulation, the data are gen-
erated using three settings. First, they are generated from
a Poisson distribution with mean 𝜃 = 1.5 and 3. Then, all
zero-counts are discarded so that zero-truncated Poisson
counts are obtained. Here, the population size parameter is
taken as 𝑁 = 500, 1000, and 5000. Second, the count data
are sampled from a geometric density 𝜃(1 − 𝜃)𝑥, where the
probability parameter 𝜃 = 0.1 and 0.25. Note that 𝜃 = 0.25

corresponds to the mean 𝜇 = (1 − 𝜃)∕𝜃 = 3 which is the
same as in the second Poisson case. So, here both cases
match the same mean, but they have quite different vari-
ances. Finally, we are interested in a setting where the data
are not generated under a model which is covered by this
simple form of RR 𝛽0 + 𝛽1 log(𝑥 + 1). A distributionwhich
meets this requirement is the negative binomial distribu-
tionwhich is also frequently used in the capture–recapture
context. It can be viewed as a Poisson distribution mixed
with a gamma distribution, hence adjusts already for some
potential heterogeneity in the Poisson parameter. Also, the
geometric and, as a limiting case, the Poisson are special
cases of the negative binomial distribution. To be more
precise, the data are generated from a negative binomial
distribution with 𝜇 = 1.5 and 3, where these settings are
corresponding to mean of the previous considered distri-
butions. The size parameter 𝑘 is given by 2, 3, and 5, and
the probability of success in each trial 𝜃 is computed by
𝜃 = 𝑘∕(𝑘 + 𝜇). Zero-truncated counts are again obtained
by discarding zeros.
We fit the RR using a straight line approach 𝛽0 +

𝛽1 log(𝑥 + 1) after all zero counts are truncated. Both
unweighted and weighted regression analyzes are applied.
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10 BÖHNING et al.

geometric

Chao1

ChaoMG

ChaoG

RR

estimator

360.00 (351.00, 369.00)

385.00 (358.00, 435.00)

359.00 (341.00, 423.00)

429.00 (379.00, 528.00)

410.00 (366.00, 462.00)

(95% CI)

population size estimate

341 400 450 500
population size

F IGURE 4 Illustration of all five estimators from Table 3 with their 95% confidence intervals.

From each generated dataset, the estimated 𝑝0 and pro-
posed 𝑁 are obtained from Equation (5) with the inverse
of Equation (4) or (7), depending whether the untruncated
(all) or upper truncation approach is used, respectively.
Under the truncation process, we truncate all counts
which have frequency equal to or less than 5. We come
back to this aspect again in Section 9. Furthermore, the
well-known estimators noted above are also computed in
all simulation settings. This means that a model misspec-
ification situation is studied in this work. For example,
Chao’s lower bound estimator (Chao1) for the Poisson
kernel is also provided although the data are simulated
under a geometric distribution and vice versa. Each sce-
nario is repeated for 10,000 times using theRprogramming
language. To evaluate the performance of the various pop-
ulation size estimators, the relative bias (RB), relative
standard deviation (RSd), and relative root mean squared
error (RRmse) are computed, defined as

RB(�̂�) = 1

𝑁
𝐸(�̂� − 𝑁) =

1

𝑁
Bias(�̂�),

RSd(�̂�) =
√

1

𝑁2
𝐸(�̂� − 𝐸(�̂�))2,

RRmse(�̂�) = 1

𝑁

√
𝐸(�̂� − 𝑁)2 =

1

𝑁

√
Var(�̂�) + {Bias(�̂�)}2.

These quantities are estimated by replacing expected
values with their corresponding simulation means.
The results under simulated data from the Poisson, the

geometric, and the negative binomial distributions are
presented in Tables S2–S4. Here, we first consider the sce-
narios of the first two models given in Tables S2 and S3.
Under the Poisson distribution, �̂�𝐶 has RBs closest to zero,
if compared to the other estimators. The RBs of �̂�ztg and
�̂�CG are close to zero under the geometric distribution in

all situations. This is not surprising as these estimators
are considered under the true distribution. However, the
estimators of Chao do less well if the model is misspeci-
fied, as �̂�𝐶 and �̂�CG (also �̂�MCG and �̂�ztg) have the large
RBs in the case of a geometric and Poisson count distri-
butions, respectively. 𝑤�̂�RR𝑇 behaves satisfactorily, as it
provides small biases in estimating 𝑁, no matter if a Pois-
son or a geometric distribution is assumed. In general, the
estimator using fitting RR with the weighted method per-
forms better than the one obtained from the unweighted
regression in terms of RB.However, their performances are
less affected in terms of RSd and RRmse. Another inter-
esting result refers to the estimator for 𝑁 based on RR
with upper truncation. As can be seen from these two
cases, 𝑤�̂�RR𝑇 shows quickly decreasing bias with increas-
ing population size and has small variance. Especially, its
RB is much smaller and close to zero than that of 𝑤�̂�RR,
while the variances do not differ much. Clearly, the pop-
ulation size estimator for 𝑁 based on the RR with upper
truncation is useful. These favorable results for the RR
shown here clearly depend on the fact that the Poisson
and the geometric are special cases of the RR model used.
This implies that any RR based analysis should carefully
check the validity of the model for the observed part of
the data.
Let us return to the case under simulated data from the

negative binomial distribution given in Table S4. �̂�MCG
and �̂�ztg show large biases in estimating 𝑁. The RBs of
𝑤�̂�RR and 𝑤�̂�RR𝑇 are slightly different and smaller than
those of the comparators. However, the two estimators
using unweighted RR are less satisfactory here as expected
(in contrast to the Poisson and geometric distributional
settings, where their performance was still acceptable).
The reason is that �̂�RR and �̂�RR𝑇 have large RBs, espe-
cially comparing to the well-known estimators �̂�𝐶 and
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�̂�CG which are studied under model misspecification as
well. Hence, we conclude that although the negative bino-
mial distribution is not covered by this simple form of RR
model, estimating population size using the weighted RR
approach performs still rather well.

9 DISCUSSION

We close with a few remarks. Completeness of outbreak
detection is a crucial task in outbreak control. Doyle
et al. (2002) had already pointed out the importance of
surveillance for infectious diseases as a critical element in
providing effective public health disease control and pre-
vention. They point out that completeness of reporting is
essential and emphasize the key role of capture–recapture
methods. However, the traditional application of capture–
recapture techniques in infectious disease surveillance lies
in correcting the undercount of prevalence and incidence.
In our case, we are not estimating the size of the outbreak
(the number observed plus the hidden or dark number),
we are targeting on the completeness of the tracing sys-
tem for cases that have been notified. Capture–recapture
methods provide a way of estimating the completeness
of outbreak detection. RR provides a suitable and flexible
class of count models and is particularly appropriate for
ratios of neighboring probabilities as these are invariant
with respect to zero-truncation.
CT of Covid-19 infections has been also considered in

Lerdsuwansri et al. (2022). The difference of the current
work to Lerdsuwansri et al. (2022) is that the latter is pre-
pared for an applied medical audience and as such is brief
on methodological issues. Modeling in Lerdsuwansri et al.
(2022) was limited in the sense that only certain para-
metric families were considered such as the Poisson and
geometric (and the negative binomial as the wider family),
whereas here we take a more general approach by means
of RR which allows modeling in a much wider class of dis-
tributions. As a result, the estimates for unobserved index
cases with contacts are slightly revised here: the total num-
ber of cases with contacts is estimated as 410 using RR,
whereas the best estimate in Lerdsuwansri et al. (2022) is
439 (based on the negative-binomial).
Even if RR estimators are not intended to be used,

RR can be helpful in choosing an appropriate kernel
in Chao-estimation as has been demonstrated in the
previous section.
One disadvantage with RR is that it needs large frequen-

cies to estimate ratios in a stable way. This may require
larger sample sizes as they are occurring typically in rou-
tinely collected data such as CT distributions. In addition,
for long-tailed distributions at some point 𝑇 the frequen-
cies 𝑓𝑥 become small. As a rule of thumb, one can use

𝑇 = 𝑥 for upper truncation if 𝑓𝑥 < 5. A sensitivity anal-
ysis by choosing different values for 𝑇 might be helpful
as well. However, we believe that the prediction for 𝑓0
depends much more on what is happening to the RR for
𝑥 close to zero than what is happening in the right tail.
Note that the procedure for upper truncation is not uncom-
mon in capture–recapture; for example, the Chao–Bunge
estimator uses this form of truncation (Chao and Bunge,
2002). In our case, we found that the geometric distribu-
tionwas suggested by RRmodelingwhich does not involve
any truncation at all.
The incorporation of covariate information can be useful

in providing more accurate population size estimates. One
of the disadvantages of RR is that it builds on aggregated
frequencies and not on individual case data which makes
the inclusion of covariate information difficult. Of course,
a stratified analysis could be done by running an RR sepa-
rately for the strata and adding up size estimates over the
strata, but this has its limitation as RR needs fairly sta-
ble frequency estimates. For the dataset at hand, we have
age and gender information on the case basis. We inves-
tigated fitting a standard zero-truncated geometric model
for these, but the two covariates were not significant.
Another issue is CT of infectious contacts as these are

responsible for the spread of the epidemic in the popula-
tion. Most of the contacts of an index case did not lead to a
further infection. However, if an index case had a contact
that turned out to be infected, we talk about an infectious
contact. We note in passing that the infectious contacts are
the basis from computing the reproduction number𝑅0, the
average number of people a case infects in a period of time.
For the Covid-19 CT data of Thailand from 341 index cases,
only 30 has infectious contacts. We have the following fre-
quencies: 𝑓1 = 16, 𝑓2 = 9, 𝑓3 = 4, 𝑓4 = 1. These need to
be interpreted as follows: there are 16 index cases with 1
infectious contact, 9 index cases with 2 infectious contacts,
4 with 3 and 1 with 4 infectious contacts. The question
arise how many unobserved index cases are there with
infectious contacts. The answer can be reached by utiliz-
ing RR. In Figure S5, we see a scattergram of log 𝑟𝑥 against
log(𝑥 + 1)with least-squares line. Here, the Poissonmodel
(the line with slope 𝛽1 = −1 in Figure S5) is quite close to
the least-squares line. The associated zero-truncated Pois-
son likelihood is maximized for 𝛽0 = 0.1189 which gives a
Horvitz–Thompson estimate of

�̂� =
𝑛

1 − exp{− exp(𝛽0)}
=

30

1 − exp{− exp(0.1189)}
= 44.4,

which corresponds of a completeness of detection of cases
with infectious contacts of 68%. The number is closely
matchedwith Chao’s estimate which is for the Poisson ker-
nel �̂�𝐶 = 𝑛 + 𝑓21∕(2𝑓2) = 30 + 162∕18 = 44.2. This shows
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that the majority of cases with infectious contacts have
been traced.
As a final point, we note the connection between

RR and Bayesian inference. Suppose that 𝑝𝑥 = ∫
𝜃
𝑎𝑥

𝜃𝑥∕𝜂(𝜃)𝑞(𝜃)𝑑𝜃 is given as a mixture of a power series dis-
tribution with arbitrary mixing density 𝑞(𝜃). Here, 𝑎𝑥 are
the known coefficients defining the power series and 𝜂(𝜃)
is the normalizing constant. Then, we have that

𝑎𝑥
𝑎𝑥+1

𝑅𝑥 =
𝑎𝑥
𝑎𝑥+1

∫
𝜃
𝑎𝑥+1𝜃

𝑥+1∕𝜂(𝜃)𝑞(𝜃)𝑑𝜃

∫
𝜃
𝑎𝑥𝜃𝑥∕𝜂(𝜃)𝑞(𝜃)𝑑𝜃

=
∫
𝜃
𝜃 × 𝑎𝑥𝜃

𝑥∕𝜂(𝜃)𝑞(𝜃)𝑑𝜃

∫
𝜃
𝑎𝑥𝜃𝑥∕𝜂(𝜃)𝑞(𝜃)𝑑𝜃

= ∫
𝜃

𝜃𝑝(𝜃|𝑥)𝑑𝜃,
the posterior mean with posterior density

𝑝(𝜃|𝑥) = 𝑎𝑥𝜃
𝑥∕𝜂(𝜃)𝑞(𝜃)

∫
𝜃
𝑎𝑥𝜃𝑥∕𝜂(𝜃)𝑞(𝜃)𝑑𝜃

.

Hence, 𝑎𝑥𝑟𝑥∕𝑎𝑥+1 can be viewed as an estimate of the
posterior mean of 𝜃, given 𝑋 = 𝑥. This result is closely
related to empirical Bayesian inference (Carlin & Louis,
2011). The connection between RR and Bayesian infer-
ence is interesting as it offers another interpretation of
the ratio as a posterior mean. However, it is not new
and probably goes back to Robbins (1955) and the genesis
of the nonparametric, empirical Bayes approach. Robbins
(1955) showed that the posterior mean for a Poisson likeli-
hood for 𝑋 and arbitrary prior could be estimated as (𝑥 +
1)𝑓𝑥+1∕𝑓𝑥 with several advantageous properties. Carlin
andLouis (2011) (see chapter on empirical Bayes approach)
gave a nice review of the idea. Again, the difference to
the approach considered here is that the ratio (or pos-
terior mean) is viewed in its functional dependence on
the count 𝑥. Finally, it is pointed out that the argument
for this connection works more generally for the power
series family.
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