The University of Southampton
University of Southampton Institutional Repository

Design of high efficiency loudspeakers for use in fire alarms

Design of high efficiency loudspeakers for use in fire alarms
Design of high efficiency loudspeakers for use in fire alarms
Much work has been carried out into the operation of loudspeakers for use in audio applications. This thesis examines loudspeaker operation from an alternative point of view. For use in fire alarms, the loudspeaker is required to produce as much sound power as possible at a particular frequency whilst being as efficient as possible.
The moving coil loudspeaker is used as a starting point due to its widespread use. Many papers describing its operation are available and as such is a good loudspeaker with which to examine modelling techniques. An impedance model of the moving coil loudspeaker is developed and shown to be a good simulation of its operation.
The loudspeaker currently used in fire alarm units is the balanced armature loudspeaker. A lumped parameter model of this loudspeaker is developed using SIMULINK. Results from this simulation are compared with experimental measurements to verify the accuracy of the model.
A new design of loudspeaker is then described. The modelling technique developed for the balanced armature loudspeaker is then applied to this design. The results again compare well to experimental measurements. The effect of varying the acoustic loading on each loudspeaker is considered along with an overview of the piezoelectric sounder. The thesis concludes with a discussion of the use of each loudspeaker in fire alarm units along with suggestions for possible design improvements implied by the models.
Anderson, Graeme
331bbcc5-5998-4d46-b24e-6e20d819c02d
Anderson, Graeme
331bbcc5-5998-4d46-b24e-6e20d819c02d

Anderson, Graeme (1997) Design of high efficiency loudspeakers for use in fire alarms. University of Southampton, School of Engineering Sciences, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

Much work has been carried out into the operation of loudspeakers for use in audio applications. This thesis examines loudspeaker operation from an alternative point of view. For use in fire alarms, the loudspeaker is required to produce as much sound power as possible at a particular frequency whilst being as efficient as possible.
The moving coil loudspeaker is used as a starting point due to its widespread use. Many papers describing its operation are available and as such is a good loudspeaker with which to examine modelling techniques. An impedance model of the moving coil loudspeaker is developed and shown to be a good simulation of its operation.
The loudspeaker currently used in fire alarm units is the balanced armature loudspeaker. A lumped parameter model of this loudspeaker is developed using SIMULINK. Results from this simulation are compared with experimental measurements to verify the accuracy of the model.
A new design of loudspeaker is then described. The modelling technique developed for the balanced armature loudspeaker is then applied to this design. The results again compare well to experimental measurements. The effect of varying the acoustic loading on each loudspeaker is considered along with an overview of the piezoelectric sounder. The thesis concludes with a discussion of the use of each loudspeaker in fire alarm units along with suggestions for possible design improvements implied by the models.

This record has no associated files available for download.

More information

Published date: 1997
Organisations: University of Southampton

Identifiers

Local EPrints ID: 47542
URI: http://eprints.soton.ac.uk/id/eprint/47542
PURE UUID: 5db9b1d3-0ad7-46d6-9c06-c4e4616ba007

Catalogue record

Date deposited: 07 Aug 2007
Last modified: 11 Dec 2021 16:41

Export record

Contributors

Author: Graeme Anderson

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×