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Pneumococcal disease caused by the bacterium Streptococcus pneumoniae is responsible for 
substantial mortality and morbidity worldwide, making it a global public health concern. S. 
pneumoniae has the exceptional ability to adapt to its surroundings to overcome selection 
pressures and maintain survival; this includes adaptation in response to host immune defences 
and antibiotics.  
  Increasing levels of resistance to commonly used antimicrobials have been identified in many 
countries and threaten the effectiveness of present and future treatment options. A longitudinal 
collection of S. pneumoniae isolates in Singapore offered the opportunity to track evolution. The 
serotypes most associated with invasive pneumococcal disease were serotypes 4, 8, 20 7A, 19A 
and 3, and many of these serotypes predominate in adult infection; serotype 6B predominates in 
paediatric infection. Resistance of isolates was highest to cotrimoxazole (63%), erythromycin 
(58%), tetracycline (58%) and doxycycline (58%).  
  While basic molecular epidemiology is a cornerstone of this analysis, the collection of ~2000 
isolates, accompanied with some basic clinical information and bacterial antibiotic resistance 
phenotypes, provided the opportunity to perform a genome wide association study (GWAS) on 
antimicrobial non-susceptibility. High levels of recombination were identified in this dataset 
therefore the impact of this on population structure was assessed to ensure an accurate 
correction for the GWAS. A comparison in the ability of Gubbins and ClonalFrameML to identify 
recombination from this dataset showed ClonalFrameML was more conservative and concise in 
recombination calls and could process larger numbers of isolates. These findings showed how it 
was possible to perform a complete recombination analysis on large, diverse datasets. The 
recombination sites identified by ClonalFrameML were not a major contributor in the population 
clustering of isolates.  
  GWAS’ were performed to identify single nucleotide polymorphisms (SNPs) associated with non-
susceptibility to penicillin, cotrimoxazole, erythromycin, clindamycin, chloramphenicol, 
tetracycline and doxycycline. This showed good association with drug resistance, with SNPs 
identified in genes involved in the peptidoglycan pathway, folate metabolism, protein synthesis 
and DNA synthesis. Many of these confirmed previous findings in the field. In addition, SNPs were 
associated with erythromycin resistance in new loci involved in DNA synthesis (dnaG, sigA). 
Although validation is required, these additional results provide a new opportunity to develop 
insights into the biological mechanisms that underlie the important clinical outcomes of drug 
resistance. 
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A ........................................... Adenine nucleobase of DNA 

AIDS ...................................... Acquired immunodeficiency syndrome 

ATP ....................................... Adenosine triphosphate 

BA ......................................... Blood agar plate 

BAPS ..................................... Bayesian Analysis of Population Structure 

Bp ......................................... Basepairs 

C ........................................... Cytosine nucleobase of DNA 

CC ......................................... Clonal complex clusters as determined by goeBURST analysis 

CI .......................................... Confidence intervals  

CMH ..................................... Cochran-Mantel-Haenszel 

Contig ................................... Overlapping segments of DNA representative of a consensus region 

of DNA 

Core genome ........................ Genes present in all isolates within the group analysed 

CPS ....................................... Capsular polysaccharides 

DHF ....................................... Dihydrofolic acid  

DHPS ..................................... Dihydropteroate synthase  

DHR ...................................... Dihydrofolate reductase  

DNA ...................................... Deoxyribonucleic acid 

ERGO .................................... University of Southampton Ethics and Research Governance Online 

G ........................................... Guanine nucleobase of DNA 

GC ......................................... Genomic control 

GEMMA ................................ Genome-wide efficient mixed model analysis for association studies  

GFF ....................................... General feature format 

GERMS .................................. GIS efficient rapid microbial sequencing 

GIS ........................................ Genome Institute of Singapore 

GWAS ................................... Genome wide association study 
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HIV ....................................... Human immunodeficiency virus 

IgG ........................................ Immunoglobulin G 

IPD ........................................ Invasive pneumococcal disease 

Kb ......................................... Kilobase 

KKH ...................................... KK Women’s and Children’s Hospital, Singapore 

LD ......................................... Linkage disequilibrium  

MDR ..................................... Multidrug resistant 

MEGA ................................... Macrolide efflux genetic assembly  

MGE ..................................... Mobile genetic elements  

MLSB phenotype.................. Resistance to macrolides, lincosamides and streptogramin B 

MLST .................................... Multi-locus sequence type 

MOH ..................................... Ministry of Health, Singapore 

MTB ...................................... Mycobacterium tuberculosis  

N50 ...................................... Shortest contig length necessary to cover 50% of the genome 

NGS ...................................... Next generation sequencing 

n-mers .................................. DNA words of ‘n’ length 

NPHL .................................... National Public Health Laboratory, Singapore 

NUH ..................................... National University Hospital, Singapore 

OR ........................................ Odds ratio 

PABA .................................... Para-aminobenzoic acid  

PBPs ..................................... Penicillin binding proteins  

PC ......................................... Principal component  

PCA ....................................... Principal component analysis  

PCV ....................................... Pneumococcal conjugate vaccine 

PCV7 ..................................... PCV which contained purified capsular polysaccharide of seven 

disease-causing serotypes of S. pneumoniae (PrevenarTM, Wyeth/Pfizer) 
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PCV10 ................................... PCV which contained purified capsular polysaccharide of 10 disease-

causing serotypes of S. pneumoniae conjugated to a non-typable Haemophilus influenzae protein 

D (SynflorixTM, GSK) 

PCV13 ................................... PCV which contained purified capsular polysaccharide of 13 disease-

causing serotypes of S. pneumoniae (Prevenar 13TM, Pfizer) 

PPV ....................................... Pneumococcal polysaccharide vaccine 

PPV23 ................................... Pneumococcal polysaccharide vaccine containing 23 serotypes 

QQ ........................................ quantile-quantile 

Recombination ..................... Bacterial DNA transfer from one organism (donor) to another 

organism (recipient) 

r/m ....................................... Recombination/mutation  

RNA ...................................... Ribonucleic acid 

rRNA ..................................... Ribosomal RNA 

SEER ...................................... Sequence element enrichment analysis  

SGH ....................................... Singapore General Hospital 

SNP ....................................... Single nucleotide polymorphism 

SOLiD .................................... Sequencing by Oligonucleotide Ligation and Detection 

SRST2 .................................... Short Read Sequence Typing for Bacterial Pathogens  

SvI ......................................... Sensitive vs intermediate resistance classification  

SvIR ....................................... Sensitive vs Intermediate resistance and resistant classification 

SvR ........................................ Sensitive vs resistant classification  

ST .......................................... Sequence types 

T ........................................... Thymine nucleobase of DNA 

THF ....................................... Tetrahydrofolic acid  

TSA ....................................... Tryptic soy agar 

TTSH ..................................... Tan Tock Seng Hospital, Singapore 
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WHO ..................................... World Health Organisation 
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Chapter 1 Introduction 

Streptococcus pneumoniae is a major cause of disease and the main approaches to disease control 

are via vaccination and treatment of symptomatic people with antibiotics. Treatment with 

antibiotics is compromised by the spread of resistance. Mechanisms of resistance involve genetic 

mutations which modify enzymes or proteins involved in vital bacterial functions such as cell wall 

synthesis, metabolic performance and proliferation, and DNA replication. Mutations are acquired 

both through replication and repair of DNA generating vertical transmission, but also via 

horizontal passing of DNA as plasmids or through recombination. It therefore becomes important 

to understand the epidemiology of resistance by detailed analysis of the mutations associated 

with resistance in the microbial populations. This can be done by harnessing the power of genome 

wide association studies (GWAS). Once the kinetics and geography of trends in phenotypes and 

resistance are mapped, strategies can be developed to modify both vaccine and antibiotic usage 

in large geographic areas.  

1.1 Genomic analysis of bacteria 

Prokaryotic taxonomy has historically been classified by phenotypic characteristics alone, and the 

addition of genetics has only come into use since the 1960’s. This began with the DNA-DNA 

hybridisation technique which measured genetic relatedness between bacteria (1). The 

development of the polymerise chain reaction and successful sequencing of the 16S rRNA gene 

which encodes the small subunit of ribosomal RNA in the 1980s transformed taxonomic 

classification. Following this, bacterial operational taxonomic units could be generated and 

compared with reference databases to infer taxonomy (2). This gene is relatively conserved 

therefore limits taxonomic determination at species level. A landmark in genomic analysis was the 

sequencing of the first bacterial genome in 1995. At this time bacterial genome sequencing was 

reserved to specialist centres as it was expensive and time consuming. The development of next 

generation sequencing (NGS) technologies introduced from 2005 allowed this approach to be 

more accessible and economic and therefore saw a rapid increase in the number of prokaryotic 

genomes being sequenced. There are now a number of NGS platforms developed including; 

Illumina/Solexa platform, SOLiD (sequencing by Oligonucleotide Ligation and Detection), 

pyrosequencing, Ion Torrent technology and single molecule real-time (SMRT) sequencing that 

have revolutionised DNA sequencing (3). This transformed the way in which microbiology was 

studied and has enabled researchers to accurately track the emergence and spread of pathogens 

as well as investigate virulence and antimicrobial resistance (4, 5). 
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1.2 Streptococcus pneumoniae 

The diverse genus Streptococcus consists of 159 species (6), some of which are commensals and 

others pathogens in a human host. One of the species clinically relevant in human disease is 

Streptococcus pneumoniae (S. pneumoniae) which causes pneumococcal disease. It is transmitted 

through respiratory secretions and microscopically, is a Gram-positive diplococcus.  

1.3 Pneumococcal disease 

S. pneumoniae is one of many organisms transiently carried as normal flora in the upper 

respiratory tract of humans (7). Colonisation, or carriage as it is often referred, can be high in 

certain populations (8) and children are known to exhibit higher carriage rates than adults (9). 

Although a precursor for disease, carriage is usually symptomless. Infection from S. pneumoniae 

occurs following colonisation (10) and there are well-investigated factors that influence transition 

from carriage to invasion within the nasopharynx, such as the microbiome composition of the 

host (11), cigarette smoking (12) and asthma (13). A number of proteins present on the bacterial 

surface enhance colonisation and aid in avoiding the immune response of the host (14). Children 

under the age of five years, the elderly, as well as immunocompromised individuals, are at highest 

risk of pneumococcal infection (15, 16). These groups may not be able to effectively mediate 

antibody-initiated complement opsonisation to activate the classic complement pathway to 

protect against infection (8, 17). Progression to non-invasive pneumococcal disease (non-IPD) 

occurs by contiguous spread from the nasopharynx to cause otitis media, sinusitis, bronchitis, or 

conjunctivitis (8). In invasive pneumococcal disease (IPD) the organism is able to enter the 

bloodstream leading to bacteraemia and disseminate through the body to infect an otherwise 

sterile site such as the lungs (pneumonia) or meninges (meningitis) (18). Pneumonia is a leading 

cause of death, responsible for 1.3 million child deaths in 2013 (19) and unfortunately the 

pneumococcus is the leading causative organism for both pneumonia and bacteraemia. In cases 

of pneumococcal meningitis, case fatality rates are as high as 20% and unfavourable outcomes 

occur in 38-50% of cases (20). This makes pneumococcal disease a major public health concern 

globally.  

1.4 Epidemiology 

S. pneumoniae normally has a capsule composed of chains of complex polysaccharide subunits 

(13) which, depending on differences in the capsule operon, are differentiated into 

immunologically distinct serotypes. To date, approximately 100 circulating serotypes have been 

described (21), which can be further differentiated into 46 immunologically similar serogroups 



Chapter 1 

27 

(22). Large collections of pneumococcus isolates from around the world show there to be 

differences in the proportion of circulating serotypes and those associated with infection differ 

with time, geographical location, age, and clinical disease (13, 22-28). Incidence of disease is 

highest in resource poor settings such as Sub-Saharan Africa, Asia and Latin America (29). This 

could be due to a number ofl contributory factors such as climate and overcrowding. Since the 

introduction of capsular serotypes as vaccine antigens, there has been the need to monitor the 

serotypes internationally. The case carrier ratio of serotypes has been compared to identify some 

strains associated with higher invasive potential, for example serotypes; 1, 5, 7, 14, 18C, 19A and 

6B (30, 31) and these serotypes are therefore commonly associated with IPD. Other serotypes, 

particularly those that lack the polysaccharide capsule, form normal commensal flora of the 

nasopharynx and rarely cause invasive disease in humans (32). These non-encapsulated forms 

however have been reported to be the most common cause of conjunctivitis (33).  

1.5 Prevention and treatment 

Pneumococcal infection is diagnosed by the presentation of clinical symptoms associated with 

disease and isolation of S. pneumoniae from the site of infection. Direct treatment against 

pneumococcal disease is with antimicrobials but, in order to control disease burden, prevention 

methods such as vaccination has also been implemented in many countries across the world. 

1.5.1 Vaccination 

It is well known that a major virulence determinant of S. pneumoniae is its anti-phagocytic 

polysaccharide capsule. The capsule locus (CPS) exhibits similar organisation in almost all strains 

in that the genes coding for the capsule are flanked by dexB and aliA and are transcribed by a 

single operon (34, 35). This capsule not only determines serotype but contributes significantly to 

invasive propensity (22, 32). Production of this capsule is essential for both virulence and 

colonisation, resulting in it becoming an early target antigen for vaccines. Vaccines were based on 

biochemical differences of the CPS from the most clinically relevant serotypes responsible for 

causing invasive disease. The pneumococcal capsular polysaccharide subunits are highly 

immunogenic (36) therefore the aim of vaccination is to induce polysaccharide specific IgG 

opsonophagocytic antibodies, required for bacterial clearance should infection occur (37, 38). 

Vaccines are of vital importance in reducing the worldwide burden of disease but are not 

available in all countries. The World Health Organisation (WHO) recommended the use of 

pneumococcal conjugate vaccine (PCV) in all countries, with the emphasis being on 

implementation into national immunization programmes of countries with mortality rates 

of >50/1000 live births, annual death rate in children of >50,000, and countries with high 
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prevalence of HIV and sickle cell disease (39). Organisations such as The Vaccine Alliance (GAVI), 

the Advance Market Commitment funding mechanisms and other international donors are 

providing the resources necessary to make these vaccines available and accessible in low-income 

countries (40). GAVI has supported the rollout of PCV in more than 25 countries since 2010 and, 

encouragingly, more than 50 countries have been approved for GAVI support to introduce PCV 

into their national childhood immunisation program. Increased education to the general public on 

pneumococcal disease and the risks and benefits of vaccines would greatly help reduce the 

burden of disease and increase uptake of this vaccine (18). 

1.5.1.1 Pneumococcal Polysaccharide Vaccine (PPV) 

PPV was the first vaccine against pneumococcal disease in the USA, licenced in 1977 and consisted 

of purified capsular polysaccharide antigens from 14 pneumococcal serotypes (13). In 1983, this 

was replaced by PPV23 (Pneumovax23TM, Merck), containing purified capsular polysaccharide 

antigens from 23 pneumococcal serotypes which at the time were responsible for 60-76% of 

invasive disease in the USA (13). In some countries, the USA for example, this vaccine is routinely 

given to immunocompetent adults over 65 years who also have cardiovascular or pulmonary 

disease, chronic liver disease, cirrhosis, alcoholism, diabetes, cochlear implant, leak of cerebral 

spinal fluid, or any other chronic illness (13). Since 2008 the Advisory Committee on Immunization 

Practices expanded this recommendation to include smokers and asthmatics. This vaccine 

generates a T-cell independent antibody response by the capsular polysaccharide directly 

stimulating an immune response in B-cells (37). It is not given to children <2 years as the T-cell 

receptor repertoires in the very young differs from that of older children and adults (41), and their 

immune system is too immature to respond to this vaccination (42). As no T-cell dependent immune 

response is induced by this vaccine, no memory B-cells are generated resulting in immunity of 

moderate duration, 5-10 years (43). In addition, PPV does not have the ability to extend protection 

benefits beyond the directly targeted population by interrupting pneumococcal carriage. This is 

referred to as ‘herd immunity’ where there is the indirect protection of unvaccinated individuals by 

decreasing overall circulation of infective agents within susceptible populations (44).  

1.5.1.2 Pneumococcal Conjugate Vaccine (PCV) 

The first PCV licenced in the USA since 2000 was PCV7 (PrevenarTM, Wyeth/Pfizer) which 

contained purified capsular polysaccharide of seven disease-causing serotypes of S. pneumoniae. 

Each polysaccharide is individually conjugated to the non-toxic diphtheria CRM197 carrier protein, 

which limits the number of serotypes able to be included in the vaccine (45). Due to the presence 

of the carrier protein, PCV is highly immunogenic in all age groups and able to induce a protective 

antibody response, recruit the help of T-cells, and stimulate immunological memory and mucosal 
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immunity (39, 46). The target population is children <2 years and the immunocompromised. 

Similar to the PPV vaccine, there have been later modifications to increase coverage of the 

vaccine by the inclusion of additional serotypes. The additional vaccines that became available 

included the 10-valent pneumococcal non-typable Haemophilus influenzae protein D vaccine 

(SynflorixTM, GSK) in 2008 (47), and a 13-valent PCV (Prevenar 13TM, Pfizer) in 2010 (48) providing 

coverage for 10 or 13 pneumococcal serotypes respectively.  

1.5.1.3 Effect of vaccination on circulating pneumococcus 

Vaccination has been successful at reducing pneumococcal colonisation of disease-causing 

serotypes in children (49), in adults (50), and at inducing herd immunity (51, 52). After 

implementation of PCV7 in the USA in 2000, the incidence of overall IPD declined by 45% and 

incidence of PCV7 serotypes declined by 94% (53). Reduction in PCV serotypes following vaccine 

implementation was also reported in Australia (54), Africa (55), Europe (56) and Asia (57), as well 

as significant change to the population of carriage isolates (58). The expansion of serotypes 

contained in the pneumococcal polysaccharide vaccine (PPV) and pneumococcal conjugate 

vaccine (PCV) was necessary to protect against important serotypes frequently isolated in areas of 

the world other than the United States, particularly Sub-Saharan Africa (59, 60) and Asia where 

95% of all pneumococcal infections occur (29).The elimination of previously dominant serotypes 

by the vaccine allowed non-vaccine serotypes in circulation to expand and fill the now vacant 

niche to cause disease, a process known as serotype replacement. This increase in non-vaccine 

serotypes was identified in both carriage (61, 62) and invasive disease (63-65), and of particular 

concern is the non-PCV13 serotype 35B in which incidence of IPD is increasing (66). This 

phenomenon of serotype replacement or emergence of non-vaccine serotypes may limit the 

overall benefit of the vaccine, and this could be particularly evident in low-income countries 

where generally there is a broader spectrum of serotypes causing disease (40).  

1.5.2 Antimicrobials 

Primary choices for treatment are dependent on clinical disease and the guidelines of the 

prescribing country. A range of antimicrobials are available to treat infection and mechanisms of 

action include interference with cell wall synthesis, protein synthesis or nucleic acid synthesis 

(Figure 1). In respiratory disease macrolides are prescribed which have a broad spectrum of 

activity against common and atypical respiratory pathogens. Macrolides are generally well 

tolerated by the patient and easily administered (67). Beta-lactam antibiotics are used for non-IPD 

cases and chloramphenicol is often used for eye or ear infections. Serious IPD is treated with 

ceftriaxone and additional antibiotics such as vancomycin can be given in addition depending on 
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the nature of infection. Alternative options in cases of disease from resistant strains may include 

imipenem, cefoperazone or cefotaxime (68).  

 

Figure 1 Site and mechanism of action for antibiotics used to treat S. pneumoniae infection. PABA 

(para-aminobenzoic acid) DHF (Dihydrofolic acid) THF (tetrahydrofolic acid) DHPS 

(dihydropteroate synthase) DHR (dihydrofolate reductase) 

 

1.6 Challenges arising from S. pneumoniae adaptation 

From a population genomics standpoint, the pneumococcus has been well studied through large 

sample studies (69-72). This has provided in-depth knowledge on how the organism has been able 

to respond to selection pressures, such as host immune system, vaccine introduction and 

treatment with antimicrobials (73). Studies like this allow the monitoring of how these pressures 

affect epidemiology and evolution. Despite this, the pneumococcus continues to thrive and 

remains the greatest causative organism of pneumonia, the infectious disease which results in the 

highest number of deaths every year. Variations in bacterial genomes are generated through 

point mutation and genetic rearrangement, the introduction of phages and plasmids, and by 

recombination. Challenges that remain in preventing and treating pneumococcal disease are 

dependent on the location and extent of these changes made to the genome. Although many 

serotypes of S. pneumoniae associated with invasive disease are currently covered by PCV13, the 

organism has the potential to carry out gene switching events between isolates with enhanced 

antibiotic resistance and capsule polysaccharide genes that are not targeted by the vaccine 

creating challenging treatment options for the future. 
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1.6.1 Evasion of Pneumococcal Conjugate Vaccine 

In the pneumococcal genome, the polysaccharide capsule locus (CPS) has a serotype specific 

region that encodes the capsule and is under strong selective pressure because of its high 

immunogenicity (74). As the CPS is flanked by conserved genes dexB and aliA, homologous 

recombination encompassing these flanking regions can lead to the replacement of vaccine 

targeted CPS in one genome with non-vaccine CPS from a different lineage, termed ‘capsule 

switching’ (75). Vaccines are, and will remain critical in controlling pneumococcal disease, 

however, they are complicated and expensive to manufacture (76). As vaccines only target a 

specific number of serotypes, this provides the potential for vaccine-escape variants and has been 

shown to occur in several populations (71, 77-80). This is particularly important when considering 

vaccine efficiency as the events result in invasive strains gaining a capsule that is no longer 

targeted by the vaccine. An aim of the present study was to assess the circulating serotypes in 

Singapore in relation to available vaccines. It had been previously identified that 30% of 

pneumococcal disease and 18.6% fatal cases in adults were infections by serotypes not covered 

by any of the currently available vaccine. 

1.6.2 Antimicrobial resistance 

The introduction of penicillin in the 1940s rapidly reduced the morbidity and mortality of 

pneumococcal disease as the organism was highly susceptible to the agent at this time (81). The 

first report of pneumococcal resistance to penicillin alone was described in 1967 in an adult 

patient in Australia (82). This was followed by the first multidrug resistant (MDR) strain, classified 

as showing resistance to 3 or more different antibiotics from a child in South Africa in 1977 (83). 

Since the 1970s, resistance to penicillin and other commonly used antibiotics has emerged and 

been reported in a large number of countries including Spain (84, 85), Hungary (86), South Africa 

(87), Iceland (88), France (89), United States (90, 91) and a number of Asian countries (40, 92). 

The availability and widespread use of antimicrobials are important in driving resistance in 

pneumococcus and resistance to a variety of classes of antimicrobials have now been described 

such as beta-lactams, chloramphenicol, tetracycline, cotrimoxazole (trimethoprim-

sulfamethoxazole), clindamycin, and erythromycin (93-95). Many of these are first line therapy 

options which creates concern about future treatment. Among the various types of antimicrobial 

resistance seen, macrolide resistance in pneumococcal isolates can range from 10-90% in 

populations (57, 96, 97) and has emerged to have the most marked increase in resistance in many 

parts of the world. 
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Antibiotic resistant organisms threaten modern medicine and burden healthcare systems as they 

often result in longer hospitalisation , are costlier to treat and have higher morbidity and 

mortality. Patterns of resistance change temporally and geographically in accordance with 

selective pressures (98). Antimicrobial resistance has been described in 43 clones of S. 

pneumoniae which include both vaccine and non-vaccine serotypes (38, 79, 90, 93, 99-103). 

Resistance occurs in pneumococcus by the transfer of genetic material between cells and/or 

through mutations occurring in single cells. Acquisition of drug resistance can affect the viability 

of the bacteria and can contribute to overall fitness of the cell (104). Compensatory mutations are 

secondary mutations that may reverse this effect therefore it is necessary to consider the overall 

phenotype of resistance as an evolutionary process occurring as a sequence of steps (105).  

1.6.2.1 Contribution of point mutation in generating resistance to antibiotics 

Alterations in nucleotide base sequence can arise following exposure to toxin or ultraviolet light, 

or alternatively by random mutations made by DNA polymerase during DNA replication and in the 

DNA mismatch repair system. Random fluctuations in the number of gene variants present in a 

population over time occurs naturally via a process known as genetic drift (106). Generally, those 

that are favoured by Darwinian positive selection will be maintained within the population and 

each year an average of 2-4 mutations are introduced into the genome of S. pneumoniae through 

this process (69). A popular choice of therapy to treat non-IPD is using a macrolide, examples 

include erythromycin, azithromycin and clarithromycin. The mode of action for the macrolide 

class of antibiotic is to inhibit bacterial protein synthesis. It does this by binding to the bacterial 

50S ribosomal subunit and causes dissociation of peptides from transfer RNA, disrupting bacterial 

protein elongation (107). In S. pneumoniae mutations in the ribosomal subunit 23S rRNA and in 

the ribosomal proteins L4 and L22 have been shown to confer resistance to macrolides (108-110). 

The mutation prevents effective macrolide binding to its ribosomal target site allowing protein 

synthesis to proceed. 

Another popular choice of therapy is beta-lactam antibiotics. Within this class there are four 

major subgroups to which specific antimicrobials belong: penicillins, cephalosporins, 

monobactams and carbapenems (Figure 1). S. pneumoniae has six penicillin binding proteins 

(PBPs), a family of enzymes involved in peptidoglycan metabolism. These enzymes catalyse the 

transpeptidation reaction that cross links cell wall peptidoglycan and several are essential to cell 

survival (111). The mode of action for beta-lactam antibiotics is to covalently bind to the serine 

active site of PBPs and inactivate enzyme activity and hence, cross linking. Resistance to beta-

lactams is mediated predominantly by variants in three of these PBPs; pbp2x, pbp2b and pbp1a 

where alteration of the antibiotic target site results in lower antibiotic binding affinities than in 
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the native versions (112). Bacteria with these can still adequately perform peptidoglycan synthesis 

required for cell wall construction. Penicillin non-susceptibility in pneumococcus has been 

identified from point mutations that lead to amino acid substitutions within the transpeptidase 

domain of the PBPs (112). In particular, it is alterations in the amino acids around the serine 

residue that substantially reduce the affinity for penicillin (113). The primary determinant of 

resistance is through the acquisition of a series of stepwise mutations in the PBP genes that 

reduce the amount of drug binding (114-122). As each of the PBPs have differences in their 

affinity for individual beta-lactams, the relationship between which PBP contain the variants is 

relevant for the level of resistance. The acquisition of variants in pbp2x and pbp2b modulate low 

level resistance and, once acquired, are a pre-requisite first step in the acquisition of pbp1a 

variants which then lead to high level B-lactam resistance (117, 123, 124). Penicillin resistance is 

primarily due to mutations in pbp1a, pbp2b and pbp2x, oxacillin resistance from mutations in 

pbp2x and pbp2b, and cephalosporin resistance from mutations in pbp1a and pbp2x (125).  

Resistance to fluroquinolones can also occur following chromosomal mutations in the 

pneumococcus (126). The main targets for this class of antibiotic are the type II topoisomerase 

enzymes DNA topoisomerase IV and DNA gyrase (127). Both of these enzymes are considered 

essential for bacterial growth as together they regulate chromosome supercoiling and 

decatenation (128). Gyrase introduces negative supercoils into DNA and controls super-helical 

tension by relieving torsional stress before transcription and replication (127). Topoisomerase IV 

performs unlinking activity of interlinked chromosomes during replication, enabling the 

segregation of chromosomes to daughter cells at cell division (127, 128). There are slight 

differences in the enzymes targeted by the fluroquinolone antibiotics, for example moxifloxacin 

mainly targets DNA gyrase (129) whereas ciprofloxacin and levofloxacin target both but with a 

preference of topoisomerase IV (130). The effect is the formation of a complex between the drug, 

enzyme and DNA which is converted into a lethal double stranded DNA break by collision with 

replication forks, resulting in cell death (128, 131). Both gyrase and topoisomerase IV are 

composed of two subunits respectively; gyrA, gyrB, parC, parE. Mutations that confer resistance 

can occur in any of these proteins but predominantly they occur in gyrA and parC (132, 133). As 

was seen for beta-lactams, the development of resistance requires a combination of at least two 

mutations with the genes described located in the quinolone resistance determining region.  

The antibiotic cotrimoxazole is composed of trimethoprim and sulfamethoxazole and can be 

routinely administered for the treatment of childhood respiratory infections (134). Consumption 

can drive resistance and high levels of resistance have been reported in several countries (135-

137). Its additional use as a prophylactic antibiotic for patients with HIV/AIDS can contribute to 

this. Both components of this antibiotic act in different stages of the tetrahydrofolate synthesis 
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pathway which reduces folate cofactors for the production of essential amino acid and nucleic 

acid metabolites such as purines, vitamins, amino acids and thymidylate (94, 138). The target for 

the sulphonamide is dihydropteroate synthase (DHPS) which is otherwise responsible for the 

conversion of para-aminobenzoic acid (PABA) and dihydropteroate diphosphate into dihydrofolic 

acid (DHF) (139, 140) (Figure 1). Sulphonamides competitively inhibit DHPS by acting as 

alternative substrates for the precursor PABA (138) and resistance has been attributed by both 

horizontal transfer of plasmid genes such as suII and sulIII (141, 142), as well as chromosomal 

mutations in the DHPS gene (sul/folP) (143). The role of trimethoprim is to block the reduction of 

DHF to tetrahydrofolic acid (THF) which is the final step in the tetrahydrofolate synthesis pathway 

(Figure 1). It does this by inhibiting the enzyme dihydrofolate reductase (DHR) and trimethoprim 

resistance has been identified through mutations that lead to amino acid substitution in the folA 

gene which encodes dihydrofolate reductase (94, 144).  

1.6.2.2 Contribution of horizontal transfer of genetic material in generating resistance to 

antibiotics 

Horizontal transfer of genetic material can occur from chromosomal homologous recombination 

or through the transfer of mobile genetic elements (MGE) such as insertion sequences, 

bacteriophages, plasmids, transposons and integrons (145). S. pneumoniae is naturally competent 

and autonomously mobile entities can be excised and integrated into genomes, either at a 

different position in the same cell, or within neighbouring cells. Resistance is largely driven by the 

expansion of clones that have acquired the resistant phenotype by horizontal genetic transfer (69) 

and the focus of this work addresses recombination of genetic material from another strain as the 

mode of horizontal transfer. In the pneumococcus, recombination occurs frequently in genes 

associated with antibiotic resistance for example pbp1a, pbp2b, pbp2x, folA (69, 146-148). 

Recombination events between S. pneumoniae and other species of the mitis group that co-

inhabit the nasopharynx, for example S. mitis, S.oralis, S. pseuodpneumoniae, are common and 

have been shown to be a major contributor in dispersing resistant determinants among 

pneumococcal genotypes (146, 149, 150). The mosaic structure of the PBPs is evidence of the 

dynamic interchange of genetic material in these genes. Recombination of the genetic material 

encompassing resistance mutations or, of genes associated with resistance can rapidly disperse 

resistance in populations. It is possible that multiple genes can be acquired in a single step and 

studies have shown penicillin binding protein genes pbp2x and pbp1a crucial in determining beta-

lactam susceptibility, have been acquired alongside a new capsule as they closely flank the CPS 

locus (151, 152). Recombination events such as these can have drastic effects as they 

simultaneously lead to antimicrobial non-susceptibility and vaccine escape making current 

treatment options no longer viable (153).  
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The erythromycin ribosomal methylase (erm) family of genes are resistance genes that are 

frequently transferred. In S. pneumoniae the ermB gene is the most common which provides high 

level resistance to macrolides, but there are others that are rarely found; ermA and ermTR (154, 

155). Although there have been reports of this gene only resulting in resistance to macrolides (M 

phenotype) (156), its presence usually results in a resistance phenotype characterised as the 

MLSB phenotype as it confers resistance not only to macrolides, but also lincosamides and 

streptogramin B by its ribosomal methylation activity (157, 158). The adenine specific N-

methyltransferase encoded by ermB dimethylates the target site of the 23S rRNA which prevents 

antibiotic binding (157). Another common mechanism of macrolide resistance in S. pneumoniae is 

through antibiotic efflux. For this, acquisition of the genes mefE (also known as mefA due to 90% 

sequence similarity with mefA in S. pyogenes) and mel are required which are carried on the 

macrolide efflux genetic assembly (MEGA) element (159). The MEGA element can be widely 

disseminated within populations through horizontal DNA exchange. There have been reports of 

mefE homologs such as mefI being identified in S. pneumoniae, but this is rare (160). The two 

genes operate as a two-component efflux pump that synergistically provides resistance. The gene 

mefE encodes a protein belonging to the major facilitator superfamily which expels molecules 

from cell by the utilisation of proton motive force, rather than ATP, as part of the pump 

mechanism (156). The gene mel encodes an ATP-binding cassette transporter protein that is 

predicted to interact with chromosomally encoded transmembrane complexes as the protein 

alone lacks typical hydrophobic membrane-binding domains (159). It may be that mel is able to 

displace ribosome bound macrolide and transfer molecules to mefE for efflux out of the cell (107). 

Both the methylation and efflux mechanisms of resistance are inducible by the presence of 

macrolides (161, 162). 

Conjugative transposons such as Tn916/Tn1545 commonly contain the gene tetM which confers 

resistance to tetracycline. These are distributed through horizontal transfer in pneumococcus and 

other Gram-positive organisms. Tetracycline resistance through the acquisition of tetM, or 

occasionally tetO, occurs as these genes encode proteins that offer ribosomal protection and 

GTPase activity that aids in the displacement of antibiotic from the bacterial ribosome (163). The 

conjugative transposons may also incorporate additional resistance determinants such as ermB 

and/or mefE as previously discussed to form a number of larger Tn916-like composite elements 

(164). Tn916 commonly inserts into a Tn5252 mobile element forming a composite TN5253 -like 

element (165). The Tn5252 can carry the cat gene which, if acquired, produces the enzyme 

chloramphenicol acetyltransferase resulting in resistance to chloramphenicol by acetylation of the 

antibiotic preventing its binding to the bacterial ribosome (165).  
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1.7 Identification of resistance mechanisms in pneumococcal 

populations 

In order to control disease, there is a need to be able to identify ways in which the organism has 

responded to interventions and use this information to anticipate future changes in circulating 

pneumococcal populations. It is known that the continued use of conjugate vaccines is likely to 

lead to on-going successive rounds of serotype replacement unless a vaccine that contains all 

circulating serotypes is created. In addition, it has been observed that high levels of genomic 

plasticity within the species means virulence and resistance determinants can be easily 

widespread throughout populations. Incidence of pneumococcal diseases across the world are 

still alarming and highlight that current methods of vaccine and antibiotic treatment alone are not 

a sustainable way to control infection. Horizontal transfer plays an important role in the 

acquisition of antibiotic non-susceptibility genes. Advances in technology facilitate the potential 

to look directly for these known genes and make subsequent changes to treatment based on this 

additional information. 

Significant health threats in the future are primarily from strains that are not covered by current 

vaccines, but which carry novel resistance determinants that result in treatment failure. The 

importance of mutation has been identified in the adaptation and evolution of lineages which 

may be slower and subtler than those seen from horizontal transfer. Research into non-

susceptibility testing has traditionally been carried out using techniques such as laboratory 

mutagenesis and genome sequence analysis (124, 166-168), however resolution of these methods 

is limited. Investigation using whole genome sequencing data may be able to identify novel 

resistance determinants other than those attributed to recombination which could influence 

prescribing policies or identify novel target treatments for the future. Resistance phenotypes may 

emerge through single or multiple mechanisms and are likely to be unique depending on 

pressures experienced at different geographical locations. This is the area yet to be investigated in 

many bacterial species and is extremely important considering how quickly this organism is able 

to respond to selection pressures. 

A new and more comprehensive way to identify novel alleles associated with resistance from 

populations is through a genome wide association study. This approach can assess the entire 

genome to identify the genetic basis for bacterial traits in an unbiased manner, without prior 

characterisation of candidate genes. They offer the potential to build a detailed understanding of 

causative variations attributed to phenotypes of interest and identify evolutionary responses to 

dynamic environmental conditions. Association studies have been frontiers in the identification of 

causal variants relating to a broad range of conditions for many years, for example conditions in 
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human health including height (169), diabetes (170) and inflammatory bowel disease (171); host 

factors contributing to infectious diseases (172, 173); and in agriculture (174). This approach has 

now been applied to bacterial datasets and has yielded some interesting and biologically relevant 

findings relating to virulence and antimicrobial resistance (175-181). 

1.8 Hypothesis  

S. pneumoniae continues to be a major cause of death worldwide even though there are both 

vaccines and antimicrobial therapies available for use. A major contributor to treatment failure is 

increasing levels of resistance to commonly used antimicrobials. This organism has the 

exceptional ability to diversify its genome by the uptake of DNA, and therefore, the exchange of 

genes continues to be a challenge for current and future treatment regimes. Many of the genes 

contributing to antimicrobial resistance are transferred by recombination in this highly competent 

organism, however, it is hypothesised that areas of the genome have also evolved over time that 

contribute to antimicrobial resistance. It could be that these mutations result in novel or 

secondary mechanisms of resistance but are overlooked as they may not contribute high levels of 

resistance as, for example, the erm(B) gene would. In addition, if a trend towards antimicrobial 

resistance emerges because of a single, or the accumulation of mutations, this may influence 

antimicrobial prescribing policies for the future. The hypothesis is that whole genome sequencing 

from a large dataset of clinically relevant S. pneumoniae can be used in a genome wide 

association study to describe the variations involved in generating resistance. Identification of 

these mutations would help to gain a more detailed understanding of antimicrobial resistance 

mechanisms and will provide insight into modification of the genome in response to antimicrobial 

pressure over time. This would help develop clear strategies for antibiotic regimes to stay ahead 

in disease management. 

Specific hypotheses:  

• There will be changes over time in epidemiological data regarding disease causing 

serotypes in Singapore. 

• There will be changes over time in the resistance profiles of disease-causing isolates in 

Singapore. 

• GWAS of these isolates will reveal significant associations between antibiotic resistance 

and single nucleotide polymorphisms that could contribute to antibiotic resistance to 

clinically used antibiotics. 
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1.9 Aims and Objectives  

Antimicrobial resistance has been emerging worldwide in S. pneumoniae and in many cases has 

resulted in treatment failures. The organism continues to evolve in response to pressures such as 

vaccines and antimicrobials, and the transfer of DNA between pneumococcal strains and other 

bacteria facilitates this. Resistance is more prominent in some geographical locations such as Asia. 

The aim of this project is to identify mutations in disease-causing strains of S. pneumoniae that 

are significantly associated with non-susceptibility to antimicrobials. 

1. Identify temporal changes in disease-causing S. pneumoniae isolates from Singapore using 

whole genome sequence data: 

a. Identify serotypes associated with invasive and non-invasive pneumococcal 

disease. 

b. Highlight changes in serotypes frequency responsible for disease over time. 

c. Assess disease causing serotypes in relation to available vaccines in Singapore. 

d. Identify current levels of antimicrobial resistance and highlight changes that may 

have occurred over time. 

e. Identify serotypes that are most associated with resistance. 

 

2. Prepare genome data from isolates to accurately account for population structure based 

on vertical inheritance: 

a. Identify recombination in isolate genomes and determine the influence of this on 

population structure.  

 

3. Through a GWAS approach mutations in the genome will be identified to highlight: 

a. Possible association with mutation and non-susceptibility to clinically relevant 

antimicrobials; penicillin, erythromycin, clindamycin, cotrimoxazole, doxycycline, 

tetracycline and chloramphenicol.
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Chapter 2 Methods 

2.1 Singapore Pneumococcal dataset 

2.1.1 Participating hospitals 

The participating hospitals are four of the largest in Singapore; Tan Tock Seng (TTSH) a multi-

disciplinary 1,700 bed hospital, National University Hospital (NUH) a 1,239 bed major referral 

centre and tertiary hospital, Singapore General Hospital (SGH) the largest in Singapore with 1,785 

beds and KK Women’s and Children’s Hospital (KKH) with 830 beds specialising in high risk 

conditions in women and children.  

2.1.2 Ethics 

Ethical approval was obtained from Singapore Centralised Institutional Review Board 

(Ref:2012/614/E) and National Healthcare Group Domain Specific Review Board (Ref: 

2012/00339) to collect pneumococcal isolates and, when possible, anonymous corresponding 

laboratory data described in Appendix Q from the named hospitals from 1970 – March 2016. 

Material transfer agreements were approved between Genome Institute of Singapore and all 

collaborating hospitals to transfer pneumococcal isolates and anonymous corresponding clinical 

data. University of Southampton ERGO approval was granted August 2016. All research was 

performed in accordance with relevant guidelines and regulations.  

2.1.3 Study isolates 

Short read Illumina sequencing data and anonymous corresponding laboratory data was available 

for 1,761 S. pneumoniae isolates as described previously (182). An additional 336 S. pneumoniae 

isolates stored as per routine diagnostic practice between July 2013-March 2016 were transferred 

from National University Hospital (n=68), Tan Tock Seng Hospital (n=135), Singapore General 

Hospital (n=50) and KK Women’s and Children’s Hospital (n=83) with anonymous corresponding 

laboratory data.  
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2.1.4 Laboratory methods 

2.1.4.1 Bacterial cultures 

Samples were transported to the Genome Institute Singapore either on 5% blood TSA agar (BD, 

New Jersey, USA) or in frozen microbank (Pro-Lab Diagnostics, Canada) vials. Upon receipt, S. 

pneumoniae identification was confirmed by characteristic growth on 5% sheep blood Columbia 

blood agar (BD, New Jersey, USA) and sensitivity to optochin (Thermo Fisher Scientific, 

Massachusetts, USA) following overnight incubation at 37oC, 5% CO2. Ten isolates did not grow on 

receipt or were contaminated and therefore were not used in the study. 

2.1.4.2 DNA extraction and sequencing library preparation 

Whole genome sequencing was carried out on 326 S. pneumoniae isolates. Each isolate was 

streaked to single colonies on Columbia blood agar agar (BD, New Jersey, USA). A single colony 

was inoculated into a Todd Hewitt broth (Thermo Fisher Scientific, Massachusetts, USA)  and 

cultured overnight at 37oC, 5% CO2. After vortexing, cells in 250μl of culture was transferred to a 

96x deep well plate and genomic DNA extracted using the Wizard SV 96 Genomic DNA Purification 

Kit (Promega, Wisconsin, USA). Quantification of DNA was performed using QUBIT 2.0 

fluorometer (Invitrogen,USA). Whole genome sequencing libraries were made from 1μl of 

genomic DNA using the Nextera XT Index Kit v2-dual 8bp (Illumina, California, USA). Finally, 10nM 

of the sequencing library for each sample was pooled together and sequencing performed by on a 

Hiseq 4000 (Illumina, California, USA) with a 2 x 151 run by the core sequencing team at the 

Genome Institute of Singapore. 

2.1.5 Genome sequence analysis 

All primary sequencing analysis was performed using the Efficient Rapid Microbial Sequencing 

(GERMS) platform at Genome Institute Singapore (183). Raw FASTQ files for 1,761 S. pneumoniae 

isolates generated in (182) and the 326 generated in section 2.1.4.2 were mapped onto the 

complete reference genome S. pneumoniae ATCC 700669 (European Molecular Laboratory 

accession FM211187.1 (145) using Burrows-wheeler Aligner (version 0.7.10) (184). Single 

nucleotide polymorphism calling, and insertion and deletion realignment performed from whole 

genome data using LoFreq (version 2.1.2) (185) with default parameters. Genomes of optimised 

kmer length were assembled using VelvetOptimiser (version 1.2.10) (186) and annotated by 

PROKKA (version 1.13.3) (187).  
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FASTQ reads, the 1,761 S. pneumoniae isolates generated in (182) and the 326 generated in 

section 2.1.4.2 were used to assign Multi Locus Sequence Types by the Short Read Sequence 

Typing for Bacterial Pathogens (SRST2) program (188) (version 0.2.0) with default settings. MLST 

data generated by SRST2 was used in goeBURST (PHYLOVIZ) (version 2.0) (189, 190) to determine 

allocation of isolates into clonal complexes (CC). The eBURST distance criteria was set as single 

locus variants which required all sequence types (ST) within the group to share identical alleles at 

six or seven MLST loci with at least one other ST in the group. FASTQ reads were used to 

determine serotype using the PneumoCaT (version 1.2.1) (191) tool with default settings. 

The odds ratio (OR) calculated in Table 6 estimated the probability of IPD for specific serotypes 

with reference to all other serotypes in the dataset using the equation (192): 

𝑂𝑂𝑂𝑂 =
𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

 

Where:  

a =  the number of IPD isolates for the given serotype 

b = the number of non-IPD isolates for the given serotype 

c = the total number of IPD isolates other than designated serotype 

d = the total number of non-IPD isolates other than the designated serotype. 

 

The OR calculation was used to calculate OR described in Table 7. OR statistic and 95% confidence 

intervals were calculated using the online tool (193), where: 

a = the number of specified serotype causing disease in the tested age range 

b =  the number of specified serotype causing disease in ages other than that tested 

c = the number of non-specified serotype causing disease in the tested age range 

d = the number of non-specified serotypes causing disease in ages other than that tested.  
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2.1.6 Assembly statistics and sample inclusion criteria 

A quality assessment of assemblies was performed to exclude poor data.  

Exclusion criteria was: 

• Species identification of <50% by Kraken (version 1.0) (194) underwent a secondary 

speciation using KmerFinder (version 3.1) (195-197). Confirmation of species other than S. 

pneumoniae resulted in removal from dataset (n=12); 

• Minimum assembled genome length of <1.5 Mbp (n=15); 

• Total number of contigs >1000 (n=1). 

The assembly pipeline for the remaining 2,059 isolates gave on average a total length of 2,055,333bp from 

19 - 830 contigs with average number of contigs of 95bp and average N50 of 67,742bp.  

A large spread in the number of contigs was identified in assemblies that otherwise did not fulfil the 

exclusion criteria. To assess whether this was an artefact of VelvetOptimiser (version 1.2.10) (186), or a 

consequence of sequence data, assemblies from FASTQ files were repeated for a subset of genomes using 

SPAdes (version 3.15.2) (198, 199) and QUAST (version 5.0.2) (200) used to generate summary statistics 

for each assembly (Table 1). Assemblies from isolates reported to have very high numbers of contigs by 

VelvetOptimiser was considerably reduced following the application of SPAdes, particularly for isolate 

WBB1351 which identified a reduction in the number of contigs from 830 to 241. SPAdes identified a 

slight increase in contig numbers from assemblies with <30 contigs identified by VelvetOptimiser. This is 

suggestive that the extremes in range for the number of contigs identified might be an artefact of using 

the program VelvetOptimiser, which is now considered to be a relatively outdated program, and that the 

identification of higher numbers of contigs is not an indicator of poor sequence data. Additional factors 

such as genome size could have affected total number of contigs reported by individual assemblers 

however, these were similar for both programs. Confirmation of high-quality assemblies from a subset of 

isolates by SPAdes gives confidence to the sequence data used in downstream analysis. 
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Table 1 Number of contigs and genome size identified by assemblers VelvetOptimiser and SPAdes  

Isolate ID Contigs identified 
by 

VelvetOptimiser 

Genome size identified by 
VelvetOptimiser (bp) 

Contigs identified 
by SPAdes 

Genome size identified by 
SPAdes (bp) 

WBB1351 830 1937602 241 2121989 

WBB2174 825 2045192 537 1902803 

WBB1332 717 1983951 478 1987381 

WBB2216 705 2000891 404 2098029 

WBB1344 650 1901693 346 2112107 

WBB1336 617 1955806 339 1983151 

WBB2230 614 1995132 339 1959602 

WBB2223 571 1913743 254 2072265 

WBB2150 562 1979208 275 2110427 

WBB2159 542 1908769 206 2015156 

WBB1293 413 1959379 201 2158467 

WBB2158 413 2029710 188 2013274 

WBB2144 408 1924426 223 2076742 

WBB2145 407 1990149 227 2019699 

WBB2195 401 2011793 189 2110378 

WSB379 264 2124570 149 2050963 

WBB2351 227 2068311 124 2079992 

WBB1289 215 1754535 149 2124834 

WBB2045 209 1923379 116 2058769 

WBB2110 201 1920768 145 1958180 

WSB1078 28 2024486 87 1993525 

WSB2015 28 2140680 77 1980731 

WSB1326 27 1954184 68 2057323 

WSB1187 25 2105065 91 1976063 

WSB1210 25 2045625 68 2052684 

WSB1114 25 2071088 66 1958383 

WSB1302 23 1998607 70 2026294 

WSB1335 23 2069465 68 2041906 

WSB1212 23 2053151 65 1978930 

WSB1329 19 2027748 112 2022467 
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2.1.7 Classification of metadata 

When classifying the metadata the ‘other’ category in ethnicity, combining individual groups of 

smaller numbers, included Bangladesh (n=2), Burmese (n=1), Caucasian (n=7), Eurasian (n=3), 

Filipino (n=1), Indonesian (n=2), Korean (n=1), Nepalese (n=1), Sikh (n=1) and other (n=98). When 

classifying site of infection into disease types, invasive disease included infection of ascitic fluid 

(n=1), blood (n=989), bone (n=2), brain (n=1), cerebral spinal fluid (n=19), joint fluid (n=2), knee 

(n=7), lung (n=2), ovary (n=1), pelvis (n=1), pericardium (n=1), pleura (n=63), submental space 

(n=1). Non-invasive disease included the following sites of infection; arm (n=2), bronchoalveolar 

lavage (n=14), back (n=1), bronchus (n=2), chest (n=2), eye (n=36), eyelid (n=1), ear (n=77), 

endotracheal tube (n=82), finger (n=1), hand (n=1), nasopharynx (n=3), neck (n=2), nipple (n=1), 

nose (n=35), peritoneum (n=5), portacath (n=1), sputum (n=565), throat (n=2), urine (n=2), vagina 

(n=11).  

2.2 Analysis of recombination programs 

Figure 2 summarises the processes undertaken in the analysis of recombination programs. 
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Figure 2 Flow diagram summarising the workflow involved in the recombination analysis of Gubbins and ClonalFrameML 
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2.2.1 Generation of sequences containing artificial recombination events and/or diversity 

The areas of true recombination present in the clinical isolates were unknown. Therefore, a 

simulated sequence was generated containing a known area of recombination to test detection 

by recombination programs. Previous research into the density of SNPs in recombination events 

of S. pneumoniae have shown a range of 1:150bp (S .pneumoniae JJA) – 1:81bp(S. pneumoniae 

Hungary 19A-6) (201). Croucher et al (2014) showed each recombination event imported a mean 

of 104 base substitutions and had a mean length of recombination to be 8.8kb (202),making the 

density approximately ~1:85bp. Based on this it was decided to create a simulated recombination 

event with a similar rate of mutation; 10kb genomic region with 100 base substitutions spaced 

1:100bp. 

The genotype used for the simulation of recombination within the sequence, referred to as 

‘wildtype’ was a clinical isolate with the accession code WSB1573. Single point mutations were 

uniformly introduced into the whole genome alignment of wildtype at a rate of 1:100bp from 

positions 101 – 2,221,301 (A=>C, T=>A, C=>G, G=>T) to produce the aligned ‘donor sequence’ in 

which recombination will be transferred from. An exchange of corresponding nucleotides 

between donor and wildtype sequence produced a sequence with known recombination 

coordinates referred to as ‘recombination sequence’ (Appendix A).  

An exchange of 10,000bp with no additional change to the wildtype sequence tested the 

performance of recombination programs to detect the simulated recombination when run within 

a subset of randomly selected clinical isolates. An additional five simulated wildtype sequences 

were created that incorporated background mutation rates reflecting diversity within the  

isolates; 0.001%, 0.01%, 0.1%, 1% and 2%. To do this single point mutations were uniformly 

introduced into wildtype sequence from bp position 102 onwards, so that further mutation did 

not interfere with the transfer of donor recombination. For 0.01% mutation rate, 222 SNPs are 

introduced at a ratio of 1:10,000; for 0.1% mutation 2,221 SNPs were introduced at a ratio of 

1:1,000; for 1% 22,213 SNPs were introduced at a ratio of 1:100 and for a 2% mutation rate 

44,426 SNPs introduced at a ratio 1:50bp. The 10kb recombination region with 100 base 

substitutions spaced 1:100 was transferred to these sequences and recombination analysis 

performed on datasets. 

Further recombination sequences that contained a second simulated recombination at varying 

distances upstream were constructed to test the distance required by programs to identify 

individual recombination events. The position of the first recombination remained constant and 

the distance to the second ranged from 100bp to 10,000bp, at intervals of 100bp (Appendix F). 
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Initially sequences were constructed, varying the size of simulated recombination events from 

1,000 to 10,000bp at 1000bp intervals to ensure recombination size did not affect the distance 

required by programs to identify them individually. The dataset in which this was run is shown in 

Appendix H. After this initial experiment, a series of recombination sequences with two 10kb 

recombination events of varying distance were constructed with an incorporated background 

mutation rate ranging from 0% to 2% as previously described (Appendix G).  

2.2.2 Datasets for recombination analysis using simulated sequence with a single 

recombination 

Recombination analysis was performed on 100 subsets containing 10, 20 or 30 whole genome 

alignments of randomly selected clinical isolates and the recombination sequence. These were 

selected independently of one another for each analysis. Computational resources allocated to 

run programs included four threads, 16G memory and run time of 100 hours. Detection of 

simulated recombination for completed runs and run time was documented.  

A basic dataset to test the effect of diversity on the detection of recombination was constructed 

(Appendix C). Five of these datasets were processed, each having a different background 

mutation rate described in section 2.2.1, and the detection of simulated recombination 

documented. Next, a dataset designed to test the effect of diversity on the detection of 

recombination, but which also included a sequence similar to the recombination sequence was 

constructed (Appendix D) and tested for each mutation background. The difference in the 

mutation rate between the chromosome and area of recombination within these datasets was 

shown in Appendix D. To test if recombination was detected as an area of no mutation in a 

chromosome containing high levels of mutation, a final dataset was constructed (Appendix E). 

This changed the mutation relationship of segments on the chromosome (Appendix E). To test the 

effect of background mutation on recombination detection from clinical isolates, 100 subsets 

containing 10 clinical isolates and the recombination sequence with each of the five mutation 

backgrounds was created and recombination analysis performed.  

2.2.3 Datasets for recombination analysis using simulated sequence with two 

recombination events 

Sequences containing two artificially introduced recombination events of varying distances apart 

(described in Section 2.2.1) were added to 100 subsets of 10 randomly selected clinical isolates. 

This was performed for each mutation background and recombination analysis performed with a 
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100 hour cut-off processing window. The distance at which programs can identify individual 

recombination events was recorded for each dataset.  

2.2.4 Calculating divergence value 

A dissimilarity matrix containing whole genomes of 2,059 S. pneumoniae isolates and the 

recombination sequence (section 2.2.1) was constructed using SNPRelate (203) in R (version 3.4.1) 

(204). The divergence value for a subset was determined from the dissimilarity matrix by 

calculating the pairwise distance between each isolate in the subset and the recombination 

sequence. The minimum divergence score was the smallest of these values.  

2.2.5 Recombination analysis 

An aligned genome sequence for each isolate included in recombination analysis was 

reconstructed as described in section 2.1.5. Gubbins (version 2.0.0) was used to call 

recombination on the set of aligned genomes using default settings (205). For ClonalFrameML, 

FastTree (version 2.1.10) was initially used to generate a maximum likelihood phylogenetic tree 

from the aligned genomes with the –gtr, and –nt command line options (206, 207), and then 

ClonalFrameML (version 1.0), used to call recombination using default parameters (208). The 

performance of individual programs was determined by successful detection of simulated 

recombination coordinates in output files. To compare total recombination between programs, 

the union of all combined segments called on the recombination sequence by individual programs 

was taken. 

2.2.6 False positivity rate of programs 

A major contributor of the signal for recombination is a high density of SNPs clustered in the 

genome relative to the level of background SNPs. It is these clusters that need to be removed in 

order to identify the false positivity rate of individual programs. This was achieved for each of the 

clinical isolates by scrambling the genome of all isolates so that each bp is randomly assigned a 

new position. The new positions of the bp remained constant for all isolates which maintained 

allele frequency in the population but broke up clusters of SNPs.  
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2.3 Background diversity in clinical isolates 

Diversity between clinical isolates (n=2,059) and the reference strain S. pneumoniae ATCC 700669 

(European Molecular Laboratory accession FM211187.1 (145) was calculated by counting the 

number of SNPs present between the two sequences. Based on the number of SNPs, the 

percentage of diversity can be calculated by ((number of SNPs/total number of bp)x100) for each 

clinical isolate.  

2.4 Construction of phylogenetic trees 

FastTree (version 2.1.10) was used to generate a maximum likelihood phylogenetic tree from 

concatenated whole genome alignments of the 2,059 S. pneumoniae isolates (generated in 

section 2.1.5) with the –gtr, –nt and –boot 100 command line options (206, 207), Figure 9. 

FastTree (version 2.1.10) was used to generate a maximum likelihood phylogenetic tree from 

concatenated whole genome alignments of the 2,059 S. pneumoniae isolates (generated in 

section 2.1.5) and the alignments of five additional wildtype sequences with mutation 

backgrounds of 0.001%, 0.01%, 0.1%, 1% and 2% incorporated. The –gtr, –nt and –boot 100 

command line options (206, 207) were used, Figure 3. FastTree (version 2.1.10) was used to 

generate a maximum likelihood phylogenetic tree from concatenated genome alignments that 

had all areas of recombination identified by ClonalFrameML removed (as described in Section 

2.5). The –gtr, –nt and –boot100 command line options (206, 207) were used, Figure 19. FastTree 

(version 2.1.10) was used to generate a maximum likelihood phylogenetic tree from core gene 

alignments (generated in section 2.8) with the –gtr, –nt and –boot100 command line options 

(206, 207), Figure 20. All phylogenetic trees were visualised using Interactive Tree of Life (209). A 

quantitative assessment of similarity between phylogenies of whole genome and recombination 

free genome, and between whole genome and core gene phylogenies was performed using the 

Environment for Tree Exploration toolkit (version 3.0) (210) which calculated the Robinson Foulds 

metric (Table 11). 
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Figure 3 Maximum-likelihood phylogenetic trees constructed by FastTree using whole genomes of 

2,059 isolates of S. pneumoniae and 5 artificial sequences with varying levels of 

background mutation incorporated (not including known recombination region). The 

red arrows show the position of sequences with incorporated background mutation; 

(a) 0.001% mutation; (b) 0.01% mutation; (c) 0.1% mutation; (d) 1% mutation; (e) 2% 

mutation. 
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2.5 Recombination analysis on Singapore dataset of 2,059 S 

pneumoniae isolates 

A total of 400 datasets consisting of 100 randomly selected isolates were generated and 

recombination analysis using ClonalFrameML was performed (as described in Section 2.2.5). 

Recombination coordinates from individual datasets were merged using Bedtools merge (Version 

2.29.2) (211). The bp in these recombinogenic areas of the aligned genome were replaced with ‘N’ 

using Bedtools maskfasta (Version 2.29.2) (211) to create recombination-free genomes. 

2.6 Comparing population structure of 1,828 S. pneumoniae isolates.  

Isolates that did not have antimicrobial susceptibility data for at least one antibiotic were 

removed from the dataset intended for GWAS analysis leaving 1,828 isolates. PopPUNK (version 

1.2.2) (212) was used to determine the population structure from sequence assemblies of whole 

genomes generated in section 2.1.5 and assemblies of recombination-free genomes generated in 

section 2.5 using the --easy-run function. Quality checks showed the '--min-k' was appropriately 

set as no random probabilities were greater than 0.05 and there was a good network score of 0.9. 

To perform the PCA, a binary matrix was constructed for all 1,828 isolates. For this, bases were 

called from mapped sequences as described in section 2.1.5, each base was denoted by a single 

numeric value, 1 or 0 to designate the presence or absence of a SNP respectively when compared 

to the reference sequence. Areas of recombination removed in the recombination-free dataset 

were denoted by NA. Distance data was calculated and PCA plots were constructed using 

cmdscale and ggplot2 in R (version 3.5.2). Corresponding scree plots showing the cumulative 

variation for the first 10 principal components (PC) was generated using barplot in R (version 

3.5.2). 

2.7 Genome wide association studies for an antimicrobial resistant 

phenotype.  

Phenotypes of antimicrobial susceptibility were determined in the microbiology laboratories for 

1828/2059 pneumococcus isolates during routine clinical care and were described as sensitive (S), 

intermediately resistant (I) or resistant (R). The disk diffusion method was used by the hospital 

laboratories to determine antibiotic susceptibility (182). Here, a disk impregnated with antibiotic 

is placed on an inoculated agar plate.  After overnight incubation, the radius of the zone of 

inhibition is determined to classify susceptibility status. Confirmation of resistant isolates was 

performed with Etest which uses predefined gradients of antimicrobials on a test strip to 
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determine the minimum inhibitory concentration of antibiotic for that isolate. A sensitive 

phenotype means bacterial growth is inhibited by the antibiotic, and a resistant phenotype would 

result in bacterial growth in the presence of antibiotic. Intermediate resistance would result in 

some, but not all inhibition of growth. The intermediate resistance profile from GWAS analysis 

was excluded for all but penicillin as numbers were small. There were suitable numbers of cases 

and controls to perform a GWAS on penicillin, cotrimoxazole, erythromycin and chloramphenicol, 

clindamycin, doxycycline and tetracycline. A kinship matrix was initially created in GEMMA 

(genome-wide efficient mixed model analysis for association studies ) (version 0.98.1) (213) which 

was used to account for population structure in the following test of association. A minor allele 

frequency cut-off of 0.01 was used for all analyses and reported SNPs with a p value <0.01. The 

threshold for significance was set after incorporating a Bonferroni adjustment for multiple 

comparisons. A Manhattan plot was created for each analysis to visualise the P-value (-log10) of 

each variant against its position in the genome using plot in R (version 3.5.2) and the significance 

threshold applied. Manhattan plots showing individual gene regions and significant SNP were 

created using ggplot2 in R (version 3.5.2). The quantile-quantile (QQ) plots were created using 

qqman in R (version 3.5.2) and the lambda GC value (genomic inflation factor) was derived to give 

a measure of the inflation within the sample by dividing the median value of the observed chi-

squared statistic by the median expected chi-squared statistic (p=0.5). This will be one in the case 

of the null.  

2.8 Identification of core genome from 2,059 S. pneumoniae isolates 

Annotated assemblies of 2,059 pneumococcal isolates in GFF3 format produced by PROKKA 

(version 1.11) (187) (section 2.1.5) were inputted into the pan genome pipeline ROARY (version 

3.11.2) (214) to calculate the pan genome. Here a multi-FASTA alignment of all the core genes was 

generated using PRANK (version 140603) (215).
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Chapter 3 Pneumococcal disease in Singapore 

3.1 Introduction 

The pneumococcal polysaccharide capsule is an important pathogenic factor that acts as a barrier 

to inhibit binding of host’s complement to the bacterial surface (216). This allows bacterial escape 

from opsonisation and contributes to the varying pathogenicity of different serotypes by 

influencing invasiveness, drug resistance profile, severity of disease and colony forming abilities of 

the cell. There are known differences between countries in both the global distribution of 

serotypes and the levels of antimicrobial resistance. Two contributors that impact on this are the 

effect of vaccine implementation and antimicrobial use. 

3.1.1 Difference in disease capabilities between serotypes 

Capsular polysaccharides (CPS) are composed of repeating units of simple saccharides that are 

polymerised into a polysaccharide chain. Diversity of serotypes is due to variation in the chemical 

structure of CPS and this could be in the oligosaccharide units themselves, or in the attached side 

groups (34). The designated serotype of the pneumococcus can profoundly affect certain abilities 

such as its capacity to cause invasive disease (32). A considerable amount of research has been 

carried out to identify serotypes that are more associated with invasive pneumococcal disease 

(IPD). Serotypes that have been statistically implicated in invasive disease, and are rarely seen in 

carriage, include serotypes 1, 3, 4, 5, 6B, 7F, 8, 14, 18C, 19A, and there has been much crossover 

and consistency in findings between studies that use populations from various geographical 

locations (30-32, 217-221). Many of these studies also consistently find serotypes 6A, 11A, 19F, 

23F, 35F to be less invasive (30-32, 217, 219).  

In addition to invasive potential some serotypes are associated with increased mortality. Serotype 

3 appears to dominate in fatal cases in (24, 222) and these, along with the additional serotypes 

6B, 19F (19) and 1, 7F (223, 224) are all associated with higher mortality rates. Others implicated 

with a high mortality rate include serotypes 23A, 17F, 9N and 18C (225), 11A (222). The impact of 

the exact serotype is likely to be based on geography; for example in the African meningitis belt 

pneumococcal meningitis caused by serotype 1 has been shown to have a high fatality rate (226). 

Also serotypes 1, 5 and 7 have been shown across the world to result in serious or complicated 

disease, however these serotypes did not have a higher prevalence in IPD cases than serotypes 

6B, 23F or 19 in South East Asia (28). 
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Prolonged carriage duration and high acquisition rate are other factors which may contribute to 

the invasive potential of the pneumococcus (192). The expectation is that more invasive serotypes 

cause disease shortly after acquisition and the less invasive serotypes require a longer duration of 

carriage to result in disease (32). This was investigated using data from nasopharyngeal carriage 

and IPD isolates from children (32). Serotype 3 isolates did not have a high odds ratio for invasive 

disease, however, neither did it have a long carriage duration. Isolates were only recovered at 1/3 

of the timepoints sampled, suggesting it is the potential of the serotype or genotype to cause 

disease at the point of acquisition that is important, rather than carriage duration (32). 

Some additional serotypes to those commonly associated in IPD have been described to cause IPD 

in single studies, for example, serotype 12F (218), 2, 9, 16 (192), 20, 9N, 9L, 12B (217), 9V (219), 

18 (220), 22F and 33F (221) showing there is some variability in the ability of serotypes to cause 

IPD. Of particular concern is the finding from two independent studies that show serotypes 1, 5, 

and 7 with a high invasive potential in children (225) and serotypes 1 and 7F (222) have a high 

potential to act in an opportunistic manner and cause IPD in otherwise healthy individuals. There 

has however been discrepancies between studies, for example (217) found serotype 3 to have a 

high odds ratio (OR) for invasive disease whereas (219) found the serotype to be statistically 

associated with disease that is less invasive. Both studies use data that encompasses a range of 

age groups, and both use IPD isolates. The additional inclusion of carriage isolates in (217) and the 

different geographical locations of Portugal and Switzerland between studies may be affecting the 

invasive potential exhibited by serotype 3 between datasets. 

3.1.2 Pneumococcal disease in Singapore 

Pneumococcal disease contributes considerably to the overall burden of disease in Singapore as it 

is the predominant cause of pneumonia which is the second most common cause of death (227). 

Between 1995 – 2004 the mean annual hospitalisation rate for pneumococcal disease was 10.9 

per 100,000 population, in elderly patients this was between 16 – 61 per 100,000 for those aged 

65 – 75 and between 53 – 173 per 100,000 population for patients aged ≥ 75 years (228). More 

recently, incidence of disease in children under five has been described as slightly higher than the 

mean at 13.6 per 100,000 population (229). Locally reported case fatality rates ranged from 13.1 – 

21.4% (230) and are highest in the senior age group (228).  

IPD was made a legally notifiable disease in 2010 (231) and pneumococcal vaccines are available 

and intended to prevent IPD and pneumonia. The PCV7 vaccine has been available since 2005 

within the private market (232) but was not added to the National Childhood Immunisation 

program until 2009. This was superseded by PCV13 in December 2011 and is recommended for 
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use in children over six weeks old (233). Despite the availability of PPV23 since 1988, and the 

national recommendation from Singapore’s Ministry of Health to vaccinate all adults over 65 

years, vaccination rates among seniors remains low at <8% (234, 235). The identification of 

serotypes causing disease allows estimation of coverage provided by the respective vaccinations. 

This was performed in 2014 and described coverage in adult populations as 34.6%, 58.5% and 

69.1% for PCV7, PCV13 and PPV23 respectively (182). From child populations coverage by PCV7 

and PCV13 was much higher at 64.5% and 79.1% respectively (182).  

Before PCV vaccine was available the predominant circulating serotypes causing disease were 

19F, 6B, 23F and 14 (236). Now, the main serotypes causing disease in the over 65 years are 

serotypes 3, 14, and 19A , in the 19-64 years age range are 3, 6B, 7F, 8, 19A, 14 19F and 23F (72, 

224, 237), and finally in paediatrics are 14, 23F, 19F and 6B (28, 224).  

The prevalence of antimicrobial resistance in S. pneumoniae is monitored in Asia due to the 

concern of increasing resistance (238). In Singapore, early studies in 1990 revealed penicillin 

resistance was as low as 0.5% (239). More recently, studies have described resistance to 

numerous antimicrobials in carriage and disease isolates (Table 2) and show the variability in data. 

Higher prevalence of resistance was identified in carriage rather than disease isolates, however 

the dramatic increase described between 1997 (240) and 2007 (232) is concerning because of the 

potential of transferring resistance determinants during colonisation to isolates that then go on to 

cause disease. Encouragingly, the most recent of these studies described lower proportions of 

resistance in disease isolates (237). Serotypes that have been associated with resistant 

phenotypes in Singapore include 14, 19F and 19A phenotypes (224, 229). 

Levels of resistance described in Table 2 are not from population-based studies and some were 

based on only small numbers of isolates. Due to this they may not accurately reflect the national 

status of antimicrobial resistance. Genome sequences of 2,059 S. pneumoniae isolates from 

Singapore generated for this study were used to obtain a detailed understanding of the changing 

epidemiology of pneumococci between 1997 – 2016. The determination of current disease-

causing serotypes and the identification of changes after vaccine implementation would help to 

assess the efficacy of current vaccines. The resistance profiles associated with disease isolates 

would also provide valuable data regarding current levels of antimicrobial resistance in the 

country and identify potential areas where antimicrobial prescribing policies might need to be 

reviewed.  
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Table 2 Proportion of resistance identified from pneumococcal populations in Singapore.                

n=number of isolates tested for susceptibility to antimicrobials 

Study 
period 
(year) 

Study 
isolates 

 

Antibiotic 
resistance 
penicillin 

(%) 

Antibiotic 
resistance 

ceftriaxone  
(%) 

Antibiotic 
resistance 

clindamycin 
(%) 

Antibiotic 
resistance 

tetracycline  
(%) 

Antibiotic 
resistance 

erythromycin 
(%) 

Antibiotic 
resistance  

cotrimoxazole 
(%) 

Reference 

1997 Carriage 

children 

n=102 

 

27.4 

 

- 

 

24.5 

 

48 

 

38.4 

 

- 

(240) 

1997 - 
2004 

Disease 

children 

n=147 

 

44 

 

15 

 

- 

 

- 

 

62 

 

- 

(229) 

1997 - 
2013 

Disease 

children 

adult 

n=472 

 

79 

35.4 

 

8 

3 

 

- 

- 

 

62.5 

55.1 

 

40.6 

83.2 

 

- 

- 

(224) 

2000 - 
2001 

Disease 

Exact 
ages not 

described 

n=35 

 

17.1 

 

0 

 

- 

 

- 

 

40 

 

67 

(238) 

2007 – 
2008 

Carriage 

children 

n=59 

 

69.5 

 

- 

 

45.8 

 

67.8 

 

78 

 

- 

(232) 

2012- 
2017 

Disease 

>50 years 

n=77 

 

6% 

 

- 

 

22.4 

 

- 

 

47 

 

34.3 

(237) 
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3.2 Results 

3.2.1 Descriptive Epidemiology of Singapore Pneumococcal dataset 

Epidemiological analysis of pneumococcal isolates helped to identify change in characteristics of 

disease over time. A total of 2,059 viable S. pneumoniae isolates that were successfully sequenced 

in the present study and in (182) were combined for analysis. The metadata associated with 

isolates was used to compare the distribution across hospital settings and age groups. 

The total number of isolates collected from each of the four participating hospitals varied due to 

differences in local policies for isolate storage. Of the 2,059 isolates suitable for downstream 

processing, 910 were from KKH (44%), 141 from NPHL (7%), 231 from NUH (11%), 330 from SGH 

(16%) and 447 were from TTSH (22%). The specialism of KKH is in women and children, therefore, 

isolates from this institution were predominantly from children. Similarly, TTSH is mainly an adult 

hospital and this is reflected by a large collection of adult isolates (Table 3). 

 

Table 3 Distribution of isolates across patient age groups collected by participating hospitals (KKH, 

NUH, SGH, TTSH and NHPL) between 1997 – 2016 

 

 

 

 

 

The specimen type was used to classify disease into IPD and non-IPD based on whether isolate 

collection was from a normally sterile site as described in section 2.1.6. Based on this 

classification, 1,089 isolates were associated with IPD (53%), 846 were associated with non-IPD 

(41%), and information was unknown for 123 samples (6%). From these, information on the 

Age 
(years) 

Frequency 
of isolates 

KKH 
(n=910) 

(%) 

Frequency 
of isolates 

NUH 
(n=231) 

(%) 

Frequency 
of isolates 

SGH 
(n=330) 

(%) 

Frequency 
of isolates 

TTSH 
(n=447) 

(%) 

Total (%) 

(n=2059) 

<1 275 (30%) 4 (2%) 6 (2%) 1 (1%) 289 (14%) 

2-5 368 (40%) 12 (5%) 2 (1%) 0 391 (19%) 

6-17 122 (13%) 7 (3%) 5 (2%) 2 (1%) 138 (7%) 

18-64 28 (3%) 93 (40%) 162 (48%) 250 (57%) 605 (29%) 

65+ 1 (1%) 54 (23%) 145 (44%) 183 (41%) 435 (21%) 

N/A 116 (13%) 61 (27%) 10 (3%) 0 201 (10%) 
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corresponding year of isolation was available for a total 1,756 isolates. The variation in the 

frequency of isolate collection across the years and how they were distributed between IPD and 

non IPD was shown for all collected isolates (Figure 4) and for isolates collected at specific 

hospitals (Figure 5). Isolates from National Public Health Laboratory (NPHL) were not included as 

all but one isolate was from IPD and samples only from the years 2009 and 2010 obtained. 

 

 

 

Figure 4 Total number of S. pneumoniae isolates collected and stored by all participating hospitals 

(KKH, NUH, SGH, TTSH and NHPL) each year between 1997 – 2016 (n=1,756). The red 

line represents isolates causing IPD (n=1,062) and the blue represents isolates 

causing non-IPD (n=833) 
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Figure 5 Total number of S. pneumoniae isolates collected and stored by specific hospitals; KKH 824 isolates (IPD=311, non-IPD=513), NUH 204 isolates (IPD=78, non-

IPD=126), SGH 317 isolates (IPD=279, non-IPD=38) and TTSH 411 isolates (IPD=256, non-IPD=155) that had both year and site of infection information 

between 1997 – 2016. The red line represents isolates causing IPD and the blue represents isolates causing non-IPD
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Figure 5 shows KKH contributed the highest number of IPD and non-IPD isolates from all hospitals 

and isolates were collected over a much longer timeframe 1997-2016. Although there is some 

fluctuation in the number of IPD specimens collected yearly this generally remained stable. For 

non-IPD isolates there was a surge in numbers collected between 1997-2001, then after this point 

numbers considerably decreased and thereafter remained stable and lower than that of IPD. No 

isolates were obtained by NUH until 2010 and rapid increase in both IPD and non-IPD in 2010 

reflects the time at which the hospital began collecting the pneumococcal isolates. Between 2010 

– 2012 numbers of IPD isolates collected continued to increase, then between 2012 – 2016 

numbers rapidly declined. The decline in non-IPD isolates fluctuated more between the years 

2010 – 2014 and this was followed by another sudden surge in isolate collection in 2015 which 

was not maintained. For NUH there is a gradual but constant decline in the numbers of IPD 

however, the opposite is seen in TTSH. Data from TTSH fluctuates far more than the other 

hospitals throughout the years. Isolates begin to be stored for IPD and non-IPD in 2002 and 2003 

respectively and the initial surge is reflective of study participation. For IPD isolates, there are 

three further spikes in isolate collection, but overall, there is an upward trend in collection over 

the period 2002 – 2015. This trend is not mirrored in non-IPD isolates where although there are a 

further two peaks in isolate collection in 2008 and 2013 , there is a general decrease in isolates 

collected. Isolate collection in SGH began in 2004 and this was the only hospital that reported a 

higher number of IPD than non-IPD isolates in the first year. The increase in IPD isolates continued 

until 2007 followed by a rapid decline in 2008 and plateau in 2009. A second peak in IPD isolates 

collected occurred in 2010 and after this point a gradual decline in numbers was witnessed. For 

non-IPD isolates, a second peak was identified in 2007 and after this point very little non-IPD was 

collected.  

The data from each of the hospitals was merged to identify trends of disease types across the 

years. Figure 4 shows the initial peak in non-IPD isolates in 1999 when sample collection was 

initiated by KKH followed by a dramatic drop when their sample collection waned. The second 

increase in numbers in 2003 and 2004 reflects the addition of samples from other hospitals but is 

considerably smaller as after the initial peak KKH contributes a very small number of isolates. 

After this point, levels of non-IPD consistently remained lower than IPD. Numbers of IPD isolates 

begin smaller than non-IPD however a sharp increase in numbers in 2004 changed this and it 

remained the case for the remainder of the collection period. A sharp increase in isolate 

frequency is present in 2009 and 2010 due to the addition of IPD isolates from NHPL but levels 

remained elevated even after this period between 2011 – 2015. For all isolates, values for the 

year 2016 is not directly representative of the year or comparable to the other years because data 

collection was only performed until March 2016.   
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Once IPD became notifiable in 2010, it became possible to determine how reflective the collected 

isolates were of total IPD rates in Singapore. Table 4 shows 98% of the total IPD was represented 

from the data in 2010, however thereafter the isolates collected represented only ~50% of total 

IPD.  

 

 

Table 4 Comparison in the number of IPD cases notified to Ministry of Health Singapore with the 

number of IPD isolates collected in the present study 

Year Number of IPD 
isolates collected 

from collaborating 
hospitals 

Number of IPD cases 
notified (241, 242) 

Proportion of total 
IPD cases 

represented by 
dataset (%) 

2010 162 166 98 

2011 77 148 52 

2012 87 163 53 

2013 69 167 41 

2014 77 147 52 

2015 71 146 49 

 

 

A total of 1,267 isolates (61%) were from male patients, 694 from female patients (34%) and the 

patient gender was not known for 98 isolates (5%). The ethnicity of the patients with 

pneumococcal disease was varied, 1,058 isolates were from Chinese patients (51%), 337 isolates 

from Malay patients (16%), 194 from Indian patients (10%), 117 isolates grouped in an ‘other’ 

classification (6%) as described in section 2.1.6, ethnicity metadata was not available for 353 

isolates (17%). The most common syndrome in IPD was bacteraemia (91%) and in non-IPD was 

pneumonia (79%) Table 5. 
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Table 5 Site of infection and frequency of isolate collection in IPD (n=1089) and non-IPD (n=846) 

IPD site of infection Frequency (n) Non-IPD site of 
infection 

Frequency (n) 

Blood 988 Chest 665 

Pleura 63 Ear 77 

Cerebral spinal fluid 19 Nose 38 

Knee 7 Eye 36 

Lung 2 Skin 15 

Bone 2 Vagina 11 

Joint fluid 2 Urine 2 

Ascitic fluid 1 Throat 2 

Brain 1   

Ovary 1   

Pelvis 1   

Pericardium 1   

Submental space 1   
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3.2.2 Serotypes associated with disease 

There were 64 different serotypes identified within the dataset, the most common being 19F 

(n=365, 18%) followed by 23F (n=244, 12%), 14 (n=196, 10%), 19A (n=161, 8%), 3 (n=158, 8%), 6E 

(n=143, 7%) and 6A (n=97, 5%). Of those tested, 17 isolates did not result in serotype allocation 

using PneumoCaT. An empirical OR was calculated for the most common serotypes to compare 

the probability of disease outcome due to the serotype. An OR of 1 indicated an equal probability 

that the serotype will be identified from IPD or non-IPD. Serotypes in which the 95% confidence 

intervals (CI) spanned 1 were not associated with just one disease group. Serotypes with an OR >1 

indicated it had an increased probability of being isolated from IPD and examples of serotypes 

attributed to this were serotypes 14 (OR 3.29, CI 2.28 – 4.76), 19A (OR 2.49, CI  1.71 – 3.62), 3 (OR 

1.63, CI 1.15 – 2.31), 8 (OR 5.65, CI 2.54 – 12.53), 7A (OR 4.2, CI 1.96 – 9), 4 (OR 5.89, CI 2.5 – 13.9)  

and 20 (OR 4.54, CI 1.56 – 13.18). An OR <1 indicated an increased probability of it being 

associated with non-IPD and examples include serotypes 19F (OR 0.11, CI 0.08 – 0.15), 23F (OR 

0.53, CI 0.4 – 0.7) and 15A (OR 0.37, CI 0.2 – 0.66) (Table 6). 

The serotypes that appeared to be specifically associated with a distinct age group were 

summarised in Table 7. An OR greater than 1, whose 95% CO were also greater than 1 indicated 

an increased probability of infection within the age range. Serotypes that showed increased 

probability of infection in the 18-64 years age range included serotype 1 (OR 10.69, CI 3.08-37.07), 

8 (OR 4.51, CI 1.62-12.85), 7A (OR 3.1, CI ), 12F (OR 2.71, CI ), and serotype 4 (OR 2.54, 1.42-4.51). 

Serotypes that showed increased probability of infection in the ≥65 years age group were 

serotype 6D (OR4.0, CI1.71-9.32), 7A (OR 2.31, CI 1.29-4.29), 4 (OR 2.39, CI 1.33-4.29) and 

serotype 20 (OR 2.43, CI 1.11-5.33). An increased probability for infection in the ≤ 5 years group 

was seen for serotype 6B (OR 4.56, CI 1.62-12.85). An OR that was <1 and where the 95% CI 

remained <1 indicated a reduction in the probability of infection within that age group. Examples 

of these were present in the ≤ 5 years group for serotype 6D (OR 0.27, CI 0.08-0.91), 4 (OR 0.005-

0.26) and serotype 20 (OR 0.07, CI 0.009-0.5).  
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Table 6 Serotype distribution of 2,059 S. pneumoniae isolates (IPD=898) and (non-IPD=733) for 

the most frequently identified serotypes. Rank ordered by serotype specific odds 

ratio (OR). Serotypes associated with specific allocation to a disease classification 

highlighted in bold.  

Serotype (n) Proportion of 
total disease 

caused by 
serotype (%) 

Total IPD (n=898) Total non-IPD 
(n=733) 

OR (95% CI) 

4 (51) 2 44 6 5.89 (2.5 – 13.9) 

8 (57) 3 49 7 5.65 (2.54 – 12.53) 

20 (27) 1 23 4 4.54 (1.56 – 13.18) 

7A (53 ) 3 42 8 4.2 (1.96 – 9) 

14 (196) 10 146 38 3.29 (2.28 – 4.76) 

19A (161) 8 117 39 2.49 (1.71 – 3.62) 

6D (22) 1 15 6 1.96 (0.76 – 5.06) 

23A (32) 2 19 8 1.86 (0.81 – 4.27) 

3 (158) 8 101 50 1.63 (1.15 – 2.31) 

6E (143) 7 85 49 1.38 (0.96 – 1.98) 

6A (97) 5 53 39 1.06 (0.69 – 1.62) 

15B (31) 2 16 12 1.04 (0.49 – 2.2) 

6C (21) 1 11 9 0.95 (0.39 – 2.3) 

11D (23) 1 9 13 0.53 ( 0.23 – 1.26) 

23F (244) 12 95 130 0.53 (0.4 – 0.7) 

15A ( 57) 3 17 35 0.37 (0.2 – 0.66) 

19F (365) 18 56 280 0.11 (0.08 – 0.15) 
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Table 7 Serotypes associated with specific allocation to an age group rank ordered by odds ratio (OR). Significant OR where 95% CI do not span 1 are highlighted in bold. 

 

Serotype (n) 

Frequency of 
serotype in ≤ 5 

years (%) 

OR (95% CI) 

Frequency of 
serotype in 6-17 

years (%) 

OR (95% CI) 

Frequency of 
serotype in 18-64 

years (%) 

OR (95% CI) 

Frequency of 
serotype in ≥65 

years (%) 

OR (95% CI) 

Frequency of 
serotype in 

unknown age 
group (%) 

1 (20) 0 2 (10)               
1.55 (0.35-6.81) 

15 (75)             
10.69 (3.08-37.07) 

1 (5)                    
0.19 (0.03-1.43) 

2 (10) 

6B (19) 13 (68)             
4.56 (1.62-12.85) 

0 4 (21)                  
0.59 (0.19-1.81) 

1 (5)                    
0.19 (0.03-1.43) 

1 (5) 

8 (57) 1 (2)                 
0.03 (0.004-0.22) 

0 37 (65)                
4.51 (2.55-7.99) 

17 (30)                
1.48 (0.83-2.65) 

2 (4) 

6D (22) 3 (14)               
0.27 (0.08-0.91) 

1 (5)                 
0.58 (0.08-4.38) 

6 (27)                  
0.78 (0.3-2.0) 

12 (55)                  
4.0 (1.71-9.32) 

0 

7A (53) 0 0 29 (55)                  
3.1 (1.76-5.59) 

20 (38)                  
2.31 (1.29-4.13) 

4 (8) 

12F (18) 0 1 (6)                 
0.82 (0.11-6.27) 

9 (50)                  
2.71 (1.00-7.32) 

6 (33)                  
1.97 (0.71-5.45) 

2 (11) 

4 (51) 1 (2)                 
0.04 (0.005-0.26) 

1 (2)                 
0.26 (0.04-1.88) 

26 (51)                
2.54 (1.42-4.51) 

20 (39)               
2.39 (1.33-4.29) 

3 (6) 

20 (27) 1 (4)                 
0.07 (0.009-0.5) 

2 (7)                 
1.03 (0.24-4.4) 

12 (44)                
1.81 (0.83-3.93) 

11 (41)               
2.43 (1.11-5.33) 

1 (4) 
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3.2.3 Change in serotype distribution over time 

The seven most common serotypes associated with disease were described in section 3.2.2. As 

the total number of samples was highly variable across the study period, serotypes were 

expressed as a proportion of total isolates each year to identify change over the period 1997 – 

2016 (Figure 6). Although fluctuations are present, the serotypes covered by the PCV7 vaccine 

23F, 19F and 14 saw a decreasing trend over the entire study period. This began before PCV7 

vaccine was introduced. Two serotypes, 3 and 19A that were not covered by PCV7, but which 

were later included in PCV13 saw an opposite trend. Initially, the proportion of infection was low 

from these serotypes, and increased over time, even after implementation of PCV13. The 

proportion of disease caused by the third additional serotype present in PCV13 was maintained at 

similar levels throughout. The final serotype commonly identified in the dataset, serotype 6E, 

showed a constant decline in the proportion of overall disease it caused. 
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Figure 6 Proportion of total disease caused by the seven serotypes most isolated from 2,059 S. 

pneumoniae isolates. Of these serotypes, (a) shows serotypes 23F, 19F, 14 present in 

PCV7, (b) shows serotypes 3, 19A, 6A present in PCV13, (c) shows serotype 6E not 

included in either PCV7/13. The dashed vertical line illustrated the respective years 

PCV7 and PCV13 was implemented into national immunisation programs.  
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3.2.4 Proportion of vaccine serotypes responsible for disease 

Pneumococcal vaccines offer protection against disease organisms whose serotype is 

encompassed by the vaccine. Changes in the proportion of disease from some of these serotypes 

has been shown in Figure 6 however, to assess efficacy of current and future vaccines, the 

proportion of disease from isolates containing all serotypes targeted by the vaccine must be 

determined. Figure 7 shows vaccine efficacy by describing the proportion of disease attributed by 

isolates that contain the serotype covered by the PCV7, PCV13 and PPV23 vaccines.  

Vaccine coverage of PCV7 between 1997 – 2016 ranged from 21% - 76%, and across the study 

period, the proportion of disease caused by vaccine serotypes decreased. To replace this, non-

PVC7 serotypes caused increasing proportions of infection, and after 2004, were responsible for 

the predominance of disease. At the time of PCV7 implementation into vaccination schedules, 

34% of the disease isolates collected contained serotypes present in the vaccine. The range of 

vaccine coverage seen from PCV13 was 50% - 86% and, at the time of implementation, 50% of 

disease isolates contained serotypes covered by PCV13. Coverage offered by PPV23 ranged from 

59% - 89% across the study period (Figure 7). 
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Figure 7 Proportion of total isolates that contain a serotype present in the vaccines PCV7 (top), 

PCV13 (middle) and PPV23 (bottom). The dashed vertical line illustrated the respective years PCV7 

and PCV13 was implemented into national immunisation programs. 
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3.2.5 Levels of antimicrobial resistance in S. pneumoniae 

Antimicrobial data coupled with the S. pneumoniae isolate was used to estimate levels of 

resistance within the dataset (Table 8). The largest proportion of isolates had phenotypic 

resistance to cotrimoxazole (63%, 690/1095), followed closely by erythromycin (58%, 1045/1808), 

doxycycline (58%, 63/109) and tetracycline (58%,212/367). No resistance to vancomycin (n=744) 

or linezolid (n=16) was present in any isolates however only a small number of isolates were 

tested for the latter antibiotic. Of the isolates with penicillin resistance, 88% were also resistant to 

erythromycin (462/523), 82% to cotrimoxazole (429/523), and 74% were resistant to both 

erythromycin and cotrimoxazole (389/523). Serotype 19F had the highest proportion of resistance 

than any other serotype to penicillin (41%, 212/523), cotrimoxazole (34%, 232/690), oxacillin 

(32%, 8/25), erythromycin (29%, 299/1045), tetracycline (26%, 56/212) and clindamycin (15%, 

40/266). Serotype 19A had the highest proportion of resistance to doxycycline (16%, 10/63). 

Due to the fluctuations in isolate collection across the years, isolates with data regarding year of 

collection and antimicrobial susceptibility were used to calculate the proportion of isolates with a 

resistant phenotype across the study period (Figure 8). Although overall higher numbers of 

isolates had cotrimoxazole resistance (63%), the decrease in the proportion of isolates with 

resistance across the years was identified. A decrease in resistance across the years was also 

identified for penicillin and chloramphenicol. The proportion of isolates with resistance to 

erythromycin declined initially between 2001 – 2004 however after this point it was maintained at 

similar levels. Overall similar proportions of tetracycline resistance were identified across the time 

period. An increase in the proportion of collected isolates with clindamycin resistance was 

identified between 2002 and 2016, with approximately 30- 40% of the collected isolates showing 

resistance by the end of the study period (Figure 8).  
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Table 8 Total number of isolates with antimicrobial susceptibility data showing the proportions 

classified as sensitive, intermediately resistant or resistant  

Antibiotic (n) Resistant (%) Intermediate 
resistance (%) 

Sensitive (%) 

Cotrimoxazole 
(1095) 

690 (63) 22 (22) 383 (35) 

Erythromycin 
(1808) 

1045 (58) 17 (1) 746 (41) 

Doxycycline 
(109) 

63 (58) 2 (2) 44 (40) 

Tetracycline 
(367) 

212 (58) 11 (3) 144 (39) 

Oxacillin         
(81) 

32 (40) 0 49 (60) 

Penicillin   
(1670) 

523 (31) 145 (9) 1002 (60) 

Clindamycin 
(958) 

266 (28) 3 (30) 689 (72) 

Chloramphenicol 
(180) 

45 (25) 2 (1) 133 (74) 
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Figure 8 Change in the proportion of total isolates with resistance to the described antibiotics 

between 1997 – 2016. Total number of isolates with supporting antibiotic resistance 

data for the specified year was (a) n=939, (b) n=1045, (c) n=1491, (d) n=177, (e) 

n=1751, (f) n=356.  
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3.2.6 Level of diversity in the dataset 

Whole genome sequencing data from 2,059 S. pneumoniae isolates was used to construct a 

phylogenetic tree (section 2.4) to show the relationship within the species in the data (Figure 9). 

The pattern of branching within the tree is complex. Many branch points represent the 

divergence event for a large number of descendant groups. In some cases, these go on to form 

many more internal branches representing the vast diversification of isolates, and others result in 

a much smaller number of descendants. The branch lengths between some nodes can be quite 

long showing there to be a high number of changes occurring in the sequences prior to the next 

level of separation and this is indicative of high diversity.  

 

 

Figure 9 A maximum-likelihood phylogenetic tree constructed by FastTree using whole genomes 

of 2,059 isolates of S. pneumoniae  
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Multi-locus sequence typing (MLST) identified 385 individual sequence types from 2,059 isolates, 

the most common of which was ST81 (10%, 208/2059). Sequence types were not found for 261 

isolates (13%) as they were novel combinations of alleles absent in the MLST database. Analysis 

performed by goeBURST identified 250 clonal clusters within the dataset. Of these, 64 clonal 

clusters (CC) consisted of more than one sequence type (ST) and encompassed 1,336 of the study 

isolates (65%). The largest of these was made up of 264 isolates from 11 STs, the predominant 

being ST81 (79%). The remaining 186 CC consisted of singleton groups that were made up of only 

one ST.  

 

 

 

Figure 10 goeBURST analysis of 2,059 S. pneumoniae isolates showing 250 clonal complexes. The 

largest CC group 0 (n=264) is showing ST81 as the predominant strain. The other 

main group CC1 (n=249) has the predominant strain ST236. CC69 (n= 261) 

encompassed all the NF strains. 
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3.3 Discussion 

The isolates included within the study were from the four main hospitals of Singapore. Obtaining 

samples from a range of institutions not only provides the opportunity to collect the greatest 

number of samples associated with pneumococcal disease, but it also generates a more accurate 

perspective of the bacterial population than if samples were collected from a single location.  

3.3.1 Analysis of sample collection 

Demographic analysis was performed to determine whether one group was overrepresented in 

the dataset which could lead to interpretive biases between clinical and patient data, 

antimicrobial resistance, and strain. The identification of isolates contributed by each of the 

individual hospitals showed KKH overall provided the highest number of samples and that these 

were mostly representative of child isolates < 5 years. The other participating hospitals TTSH, SGH 

and NUH did not commence data collection until later, in 2002, 2004 and 2010 respectively, and 

therefore early IPD infection is more reflective of childhood infections presenting at KKH. 

The breakdown of isolates by disease type provided some insight into how rates of both IPD and 

non-IPD have changed over the years, however due to notable fluctuations in numbers between 

the years, this is likely to be more of a reflection of hospital storage policies. Comparisons in the 

numbers of IPD isolates collected by hospitals and those notified to MOH Singapore show that a 

large proportion of IPD was not accounted for by the collected isolates. Due to this, it was not 

possible to correctly assess disease incidence or prevalence across the study years using this data. 

Despite this, there was still a high number of both IPD and non-IPD isolates available for analysis 

which provided a reasonable representation of pneumococcal disease and specific characteristics 

of disease within Singapore.  

3.3.2 Epidemiological interpretation based on pneumococcal dataset of 2,059 

All of the isolates in this study have some level of invasive potential as they have transitioned 

from colonisation to cause disease. Many of the earlier studies that identified serotypes to have 

an increased invasive potential in IPD compared them to carriage isolates however, this study 

uses non-IPD as a reference. The serotypes identified to be more associated with IPD rather than 

non IPD agreed with other studies in the field (28, 72, 224, 237) when carriage was the baseline 

reference. Serotypes with a high odds ratio for disease in certain age groups were also identified 

from the dataset and of these, serotype 8 associated with adult disease and serotype 6B 

associated paediatric disease was also seen in other studies (72, 224). 



Chapter 3 

76 

Proportions of isolates causing disease with serotypes that are covered by PCV7 vaccine 

decreased over the time period, and interestingly this occurred before implementation of PCV7. 

The expansion of serotypes 3 and 19A which are later included in the protection of PCV13, 

showed justification for increasing the serotype coverage of this vaccine. Vaccine implementation 

in 2011 did not cease or reduce the proportion of disease caused by the additional three 

serotypes absent in PCV7, however, as more of the population are receiving the PCV13 rather 

than PCV7, it would be expected for the frequency of disease caused by these serotypes to 

gradually decrease.  

The proportion of disease covered by PCV7 serotypes was 76% at the beginning of the study 

period in 1997. However, by 2015 serotype coverage of disease isolates was as little as ~20%. Low 

level coverage of PCV7 vaccine was also identified in Singapore by (224) which covered only 37% 

of adult IPD. The decreasing coverage offered by PCV7 evidenced the need to expand the number 

of serotypes covered in the vaccine. This was confirmed by the increase in coverage of disease-

causing serotypes by PCV13 which continues to predominate infection. Serotype replacement has 

been described in other countries (243) but as an increase in disease caused by non-PCV7 

serotypes was identified before vaccine implementation, there was no evidence of this. Similar 

proportions of disease caused by PCV13 and non-PCV13 serotypes were described after vaccine 

implementation, again showing no evidence of serotype replacement. The proportion of infection 

that was not covered by any of the vaccines was ~30%, similar to the findings in (224), however 

this did rise to 41% in 2011. This is cause for concern because it had occurred despite poor 

vaccine uptake being described in the elderly population of Singapore largely brought about 

through misconceptions in the benefits and effects of the pneumococcal vaccination and in the 

cost (234). This highlights the limitations of current vaccines and the need to monitor and improve 

upon the coverage capacity of current vaccines.  

A range of resistance rates have been described in previous studies from collections of S. 

pneumoniae isolates in Singapore (Table 2). Penicillin resistance is commonly tested and, between 

2004 – 2020 resistance has been identified in 6 – 44% of the disease isolates tested (229, 237, 

238). The most recent of these studies only identified 6% of bacteria as resistant (237) and this 

along with a decrease in the proportion of isolates with resistance in the present study, implies 

penicillin resistance is not increasing. Resistance to erythromycin has been reported to range from 

40 – 62% in disease isolates (229, 237, 238) and the resistance level of 58% seen in this study 

again falls within these levels and is generally maintained across the study period. The highest 

proportion of resistance seen in this dataset and (238) was to cotrimoxazole (63%) however, the 

most recent findings by (237) described much lower resistance levels of 34.5%. This reduced 

resistance may be reflective of the adult population tested in (237). The proportion of isolates 
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with cotrimoxazole resistance has been shown to be decreasing over time in this study however, 

as resistance to both erythromycin and cotrimoxazole remain relatively high, treatment with 

these should be used with caution in suspected pneumococcal disease. Levels of clindamycin 

resistance between this study and (237) are similar 28% and 22% respectively, however, the 

proportion of isolates with resistance has been identified as increasing over the study period and 

therefore this should continue to be monitored over time. Higher levels of resistance have been 

described for pneumococcal isolates associated with carriage rather than disease for penicillin 

(70%), clindamycin (46%), and erythromycin (78%) (240) and could be due to the increased 

repertoire of resistance determinants transferred between organisms during asymptomatic 

colonisation. Antimicrobial resistance data was not complete for all isolates in this dataset, 

therefore the proportion of isolates with the resistant phenotypes are only estimations of the 

whole pneumococcal population. For some antimicrobials such as oxacillin where there are only a 

small number of isolates with corresponding data, the proportion of resistant and sensitive 

phenotypes might change significantly. Serotype 19F was responsible for the highest proportion 

of resistance for all antimicrobials, with the exception of doxycycline, where 19A had higher 

proportions. The high frequency of non-susceptibility in serotype 19F was also present in (224). A 

major limitation in the interpretation of the observed change in resistance patterns over time is 

there is no data available to allow analysis of how antimicrobial prescribing rates in Singapore 

relate to these observed changes. 

Within this dataset, a considerable level of diversity has been shown by large numbers of 

serotypes, sequence types and novel MLSTs. This reflects findings shown previously (72) and as 

isolates are collected over many years and levels of recombination are high in the species, some 

degree of variation was expected. In addition, Singapore is an area of high urbanisation with a 

dense population existing in close proximity. There are many ethnic backgrounds and easy 

mobility of individuals between countries. All these factors could assist in the genetic exchange of 

DNA between organisms and contribute to the high levels of diversity within this specific 

ecological area. 

3.4 Conclusion and Future work 

The large collection of S. pneumoniae isolates and supporting laboratory data provided the 

opportunity to perform a comprehensive study into changing epidemiology and resistance. As 

isolate collection was limited by differences in hospital policies, the serotype distribution 

represented here cannot be representative of total prevalence. In addition, resistance to 

antimicrobials can only be based on the available corresponding data. Despite these limitations it 

nevertheless remained one of the most representative studies performed from a single country. 
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Some serotypes showed an increased OR to IPD when compared to non-IPD and many of these, 

for example serotype 8, 4, 20 and 7A also appear to predominate in adult IPD. Of particular 

concern are serotypes 19A and 3 as, in addition to being more associated with IPD, they also 

appear to be increasing in the proportion of disease despite their inclusion in PCV13. Vaccine 

coverage of PCV13 was maintained at ~60% and PPV23 at ~70%. The majority of resistance was 

from serotype 19A which has shown a decreasing trend in the proportion of infection over time. 

This serotype however, was identified to be more associated with non-IPD therefore, the 

decrease could be affected by a reduction in non-IPD isolates collected during the latter period of 

the study. In the Singapore study (224) serotype 19A was identified to be largely responsible for 

drug non-susceptibility and has also been identified in other countries with predominantly 

penicillin non-susceptibility (223). Although not the case here, serotype 19A was shown to be 

increasing in the proportion of disease it was causing across the study period therefore, resistance 

in this serotype must be monitored.
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Chapter 4 Detection of recombination from clinical 

isolates 

4.1 Introduction 

Tests for association between specific genetic features and particular phenotypes are based on 

differences in genetic variation which can be introduced through mutation or by horizontal 

transfer of genetic material, for example recombination. Specific genotypes are causally and 

statistically associated with a phenotypic trait when samples taken from a natural population are 

analysed by association mapping (244). Genome wide association studies (GWAS) have been used 

since 2004 in human association studies however, it is a relatively new method in molecular 

bacterial research. The GWAS approach to identify bacterial resistance determinants is limited 

because of inherent factors attributed to bacteria rather than humans; bacterial genomes are 

clonal as a result of mitosis at every generation, which results in substantial linkage across the 

genome referred to as linkage disequilibrium. Other than an increase in alleles maintained by 

positive selection, some genotypes present in populations increase due to their linkage to these 

loci, a process known as genetic hitchhiking (245). 

The pneumococcus has shown its success in being able to perform rapid and considerable 

adaptation through horizontal transfer of genetic material, and this can occur through 

transformation, transduction and/or conjugation. Genetic transformation is the phenomenon in 

which cells are able to take up DNA from the environment and incorporate it into their genome 

(201), and was first observed in the bacterium S. pneumoniae (246). It involves the acquisition of 

exogenous DNA from the surroundings, followed by integration into the host genome (247). 

Recombination in the form of acquisition and incorporation of genetic elements is not restricted 

to its own species in the naturally competent S. pneumoniae, and differences in DNA sequence 

between donor and recipient can be as much as 25-30% (247), substantially amplifying the 

heterogeneity of the common gene pool. During recombination, double-stranded exogenous DNA 

binds to the cell membrane of the competent cell where it undergoes single stranded nicks (248). 

Using the endonuclease EndA, one of the single stranded DNA molecules is transported across the 

membrane with 3’ – 5’ polarity while the other strand is degraded (249, 250). Fragments of 

internalised DNA are then embedded in a nucleoprotein complex (251) and become integrated 

into the host chromosome at regions of similar sequence.  
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Some species of bacteria such as helicobacter, have high levels of pan-genomic variation (252) 

which can lead to the sub-structuring of distinct strains within the population (244, 247). In 

pneumococcal populations, there is variation in the population structure of individual genes 

across the genome, including the most essential genes (253, 254). Although these variable 

population structures reflect their evolutionary histories, it supports the observations that high 

rates of recombination are present in all genes including the most conserved, and therefore, 

recombination may dilute or eliminate the phylogenetic signal necessary to identify relationships 

between strains of a population (253). Although many phylogenies rely on estimations from core 

alignments, these observations show that at any one genome region, it is not clonal descent that 

is represented, it is the average of highly variable population structures at specific loci (253). A 

GWAS identifies association with a phenotype by the comparison of cases which lack the 

phenotype, with controls that exhibit the phenotype. Population structures can influence the 

identification of variation attributed to phenotypes in GWAS because allele frequencies occurring 

naturally between cases and controls could be due to systematic ancestry differences. In these 

cases, if a GWAS was performed, they would be identified as spurious associations. Minimisation 

of the spurious associations by controlling for population stratification, maximises power to 

detect true associations. Previous GWAS studies have tried to reduce the effect of spurious 

associations by using a hierarchical and spatial clustering model to identify clusters within 

datasets and then account for this in the association test (179, 255). This study aims to identify 

SNPs associated with antimicrobial resistance in a population of S. pneumoniae isolates from 

Singapore, however the influence of recombination in doing this remains unknown. To investigate 

the effect of recombination on population structures critical in GWAS, areas of the genome in 

which recombination has occurred must first be identified. 

4.2 Recombination in bacteria 

Recombination occurs despite the potential risk of disrupting existing regulatory and protein 

interaction networks in the recipient cell (256). Recombination rate is in part attributed to the 

level of environmental stress encountered by the organism as transformation of DNA has been 

shown as beneficial in stressful environments, but costly in otherwise benign environments (257). 

The inherent differences in the rate of recombination influence the overall effect that 

recombination has on the population structure of bacterial species. The ‘r/m’ 

(recombination/mutation) value is the proportion of polymorphisms accumulated from the 

import of sequence by recombination relative to natural mutation (71). This can be calculated and 

used to compare differences in bacteria. Mycobacterium tuberculosis (MTB) have a low r/m value 

for example, 0.486 as recombination occurs rarely (258). In organisms where recombination is 
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more frequent, the r/m value for an isolate can encompass a wider range as some lineages within 

the species are known to have higher rates of recombination than others (71, 259-261). In 

Helicobacter pylori this has been described as 0.3 – 109.7 (259) and in S. pneumoniae 0.06 – 34.06 

(71, 202, 262). Unlike MTB, which is contained within the macrophage for much of the infection 

cycle, S. pneumoniae is a commensal of the nasopharynx and therefore inhabits the same niche as 

many other taxa facilitating inter and intra species mobilization of genes (263). Recombination in 

S. pneumoniae can occur not only during colonisation of the respiratory tract, but also during 

polyclonal infection (264) or during biofilm formation (265). This has led to S. pneumoniae having 

the potential for highly variable genomes and diverse populations (266). This is thought to be 

advantageous in some organisms as it allows long-term survival of clones and rapid adaptation in 

response to environmental changes (77). 

4.2.1 Recombination in S. pneumoniae 

In the pneumococcus, recombination is the main method for horizontal transfer of genetic 

material. Recombination occurs whilst the organism is exhibiting a ‘competent’ state early in 

logarithmic growth (267). Proteins involved in this process are regulated by quorum sensing, 

responding to changes in pneumococcal population density (268). The extracellular hormone 

competence stimulating peptide initiates cells to coordinate a number of processes including; 

their entry into competence which can last up to 40 minutes; differential regulation of genes 

responsible for uptake and integration of DNA; and finally the production and release of autolytic 

enzymes to kill neighbouring cells, a process known as fratricide (269, 270). The dedicated system 

responsible for the acquisition of environmental DNA in the pneumococcus is highly coordinated 

and regulated.  

Within subpopulations of the same species, the rate of recombination is variable (69, 247), and 

does not seem to correlate with genetic relatedness of isolates (271). Information from a large 

Massachusetts, USA dataset of S. pneumoniae has shown sequence type ST320 to have the 

highest recombination (77). Some lineages have the propensity to either donate or receive DNA 

more than others, and generally organisms that lack a capsule show a higher rate of both 

compared to encapsulated isolates (69). Although there is variation between pneumococcal 

lineages (69), an average of 72 mutations are introduced into the genome in every recombination 

event (73). The size of the recombination fragments imported into cells have been shown to differ 

through the literature, but generally shorter fragments of similar sequence are optimal for 

transformation (201). These micro-recombination events ranging from 0.03-3kb (201, 270, 272) 

up to ~6-8kb (73, 202, 273-275) are transferred more frequently. The pneumococcus can also 

carry out macro-recombination involving much larger fragments of DNA ranging from ~30kb up to 
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235kb (73, 78, 151, 264, 276, 277). The occurrence of these events are rarer in comparison but 

can be associated with major phenotypic change such as serotype switching to evade vaccine 

(272).  

Recombination does not occur uniformly across the genome but instead occurs in hotspots 

around genes involved in responses to selection pressures such as antibiotic utilisation, host 

immune responses and vaccine evasion (69, 73, 146, 149, 150, 278). Examples of genes include 

those that encode cell surface antigens; pspA, pspC, those associated with increased 

pathogenicity; LytA, Ply, nanA (279, 280), and those that are associated with antibiotic resistance; 

pbp1a, pbp2b, pbp2x, folA (69, 146-148). These can have long-term evolutionary consequences 

that alter resistance profiles. S. pneumoniae isolates have been shown to be capable of hyper-

recombination (150), and it is believed the significantly higher levels of recombination in the 368 

isolates tested was responsible for elevated levels of resistance to penicillin, erythromycin, 

tetracycline, chloramphenicol and cefotaxime (150). It is likely the transfer of short fragments 

from S. mitis and S. oralis are vital in facilitating the generation of mosaic genes seen in 

pneumococci, such as in the genes encoding penicillin binding proteins (281, 282). With high rates 

of recombination present in the pneumococcus, recombination is likely to be present in most 

pneumococcal populations, however, the extent of change to the genome may vary. The genomes 

of six isolates collected from a single patient over a seven month period had recombined 7.8% of 

its genome (264) whereas 74% of the genome had been altered by recombination in a global 

sample of 240 PMEN1 (ST81) isolates (73). 

4.3 Detection of recombination 

Developments in next generation sequencing now allow rapid generation of whole genome 

sequence data, which can be used to reconstruct phylogenetic patterns and provide insight into 

the mechanisms of evolutionary change. Recombination is a dominant force of genetic variation 

and therefore, it is crucial to have bioinformatic approaches with sufficient ability to detect 

genomic regions affected by recombination.  

4.3.1 Programs available for recombination analysis 

There are a number of publicly available software programs that identify areas of recombination 

in bacterial genomes. When the current study commenced (2015), popular methods included 

ClonalFrameML (208)  and Gubbins (205). None of these programs were able to overcome 

fundamental problems with recombination detection. For example, it is likely that true levels of 

recombination will be underestimated because some events occur between highly similar loci 
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making them undetectable using such techniques. In addition ancient recombination events that 

occurred before divergence to species level will be underestimated due to the accumulation of 

additional point mutations over time (283). 

4.3.1.1 The Genealogies Unbiased by Recombination in Nucleotide Sequences (GUBBINS) 

This software is designed to identify recombination events in closely related species, for example 

strains of S. pneumoniae belonging to the same sequence cluster that have been densely sampled 

(205), but its use has extended to successfully study other bacteria (284). Isolates within the same 

sequence cluster would normally result in isolates sharing serogroup or clones as defined by 

MLST. The program estimates the ‘background SNP density’ as the probability that a SNP occurs at 

a single genomic location within such similar organisms. This is the total number of SNPs 

identified in whole genome sequencing, divided by the overall size of the genome. Following this, 

a sliding window approach is employed to scan and evaluate nucleotides across the whole 

genome. The SNP density in each sliding window is compared to background SNP density to 

identify regions containing a significantly higher number than is expected by chance (205). These 

regions will be described as recombination regions in the program output as the elevation in SNPs 

would not have been generated by spontaneous mutations. Phylogenetic and sequence 

reconstruction methods such as FastTree and/or RAxML can be incorporated and further 

flexibility of the algorithm is that it can be applied to full genome alignments without the need to 

remove accessory loci (205). 

4.3.1.2 ClonalFrameML 

This software performs inference of recombination within bacterial genomes. The initial step is to 

construct a maximum likelihood tree from the dataset which is taken to be the initial clonal 

genealogy (208). At internal nodes generated from clonal genealogy, the ancestral sequences and 

any missing base calls in the observed sequences are reconstructed by maximum likelihood (285). 

Following this, to obtain maximum likelihood estimates of recombination parameters and branch 

lengths of clonal genealogy, a Baum-Welch Expectation –Maximisation algorithms is used. At all 

sites the maximum likelihood importation status is inferred using a Viterbi algorithm, and finally 

bootstrap methods quantify any uncertainty in the parameters (208).  
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4.4 Application of recombination programs on 2,059 S. pneumoniae 

isolates 

The majority of datasets in which isolates undergo recombination analysis in the literature are 

small and/or consist of isolates that are closely related which requires no prior consideration 

regarding processing. For species that are naturally more diverse, or for larger datasets of 

bacterial populations, many studies adopt the method of subgrouping the dataset into closely 

related isolates and then perform recombination analysis individually on these groups (69, 286). 

This is because none of the described programs can handle very large or highly diverse datasets. 

This methodology does give useful insight into what recombination is present in the dataset, 

however, may not necessarily capture all recombination events if present between subgroups 

analysed separately. The study performed here aimed to identify all recombination within the 

dataset. As none of the described programs can perform recombination analysis from all isolates 

it was instead necessary to analyse subsets and then combine results to assess all recombination. 

Isolates were randomly assigned to subgroups to capture and analyse different combinations of 

isolates.  

Although the Gubbins algorithm recommends the processing of similar isolates, the program 

claims to remain specific in the detection of recombination even when these conditions are not 

met (205). This was proved by similar recombination events being found by both ClonalFrame and 

Gubbins following the analysis of eight H. pylori isolates, an organism well known for its diversity, 

despite no prior processing into individual groups (205). A comparison of recombination analysis 

of 11 S. pneumoniae PMEN1 (Spain23F ST81) isolates was also performed and found only slight 

discrepancies in the number of identified recombination events, and a very similar phylogeny 

reconstruction between Gubbins and ClonalFrame (205). Both examples suggest no real 

difference in recombination events identified between programs. The capacity of the program 

may be linked to the test organism and the level of diversity within the dataset. Neither of the 

previous comparisons are reflective of this dataset in terms of size or diversity, therefore it 

remains unknown whether one program may perform better or is more suited to perform 

recombination analysis on the dataset of Singapore isolates. The success of Gubbins being able to 

process the H. plylori isolates (205) gives confidence that the methodology implemented will 

allow the comparison of programs in the detection of recombination from a large, and diverse 

dataset.  

One way that genome wide association studies are used is to identify associations between 

mutation and phenotypes such as antimicrobial resistance, with phylogeny being used to account 

for the effect of population structure. As evolution of pneumococcal populations are dominated 
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by recombination, phylogenies using whole genome data will be heavily distorted in favour of 

representing the effect of recombination rather than mutation. Deep rooted phylogenetic signal 

present in S. pneumoniae datasets can be eliminated when recombination levels are high (247) 

and this may affect associations identified during the GWAS. The aim of this study is to generate a 

phylogeny based on mutation alone, therefore it is necessary to remove this confounder from all 

isolates to accurately cluster the population based on vertical inheritance alone. No detailed 

comparison of recombination detection has been performed on a clinical dataset as large and 

diverse as this thus far and this will form the initial investigation. 
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4.5 Results 

4.5.1 Determining dataset size to compare Gubbins and ClonalFrameML 

In order to use either program to run recombination analysis, it was necessary to divide the 

dataset of 2,059 S. pneumoniae isolates into smaller subsets. Once the upper limit in subset size 

was determined, output between programs was compared. A simulated sequence containing a 

region of artificially introduced recombination was constructed for inclusion into subsets. This was 

included in all subsets and detection of the known region indicated program performance. 

Recombination analysis by Gubbins and ClonalFrameML was performed on identical subsets of 

increasing size until a difference was seen in the processing capacity of one of the programs (see 

section 2.2.2). Figure 11 shows ClonalFrameML recombination analysis completed for all subset 

sizes within 10 hours. Gubbins on the other hand required a much longer run time to carry out 

recombination analysis on the same datasets. It was only the smallest subset size of 11 isolates 

that completed in the allocated run time. Only 4/100 runs containing subsets of 21 isolates 

completed and no subsets of 31 isolates completed. 

 

 

 

 

Figure 11 Duration of recombination analysis for subset sizes of 11, 21 and 31 isolates for Gubbins 

(red) and ClonalFrameML (blue). All ClonalFrameML results are representative of 100 

runs for each subset size. Subsets of 11 isolates for Gubbins are representative of 100 

runs. Subsets of 21 isolates for Gubbins is only representative of four runs, the rest 

did not complete. No runs of 31 completed with Gubbins 
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4.5.2 Comparison of program output 

Reliable comparison of recombination programs can be performed by testing the ability to detect 

a known region of artificial recombination located on a sequence present in all subsets. Subsets of 

11 randomly selected isolates completed recombination analysis in both programs therefore, this 

was the subset size used for all future analysis in the comparison of Gubbins and ClonalFrameML. 

4.5.2.1 Detection of artificial recombination from datasets consisting of clinical isolates 

Of the 100 subsets processed by each program (section 2.2.2), both ClonalFrameML and Gubbins 

were able to identify recombination in 77/100 subsets. In most cases, when recombination was 

recognised, the exact position was correctly identified. The first SNP of the recombination region 

was missed in three subsets, but this was consistent between programs. Investigation of the 23 

subsets in which recombination was not found revealed that these consisted only of isolates 

located in the outer clade of the phylogenetic tree highlighted in Appendix B. 

The level of divergence between each clinical isolate in the subset and the recombination 

sequence was calculated (section 2.2.4). This value represented how similar the isolates in the 

subset were to the recombination sequence, and the most similar sequence with the lowest 

divergence score was the representative minimum dissimilarity value for each subset plotted 

(Figure 12). In subsets with a high divergence score of >0.6, both programs were not able to 

identify the known area of recombination, whereas when the divergence score was low <0.2 

recombination was found (Figure 12). The minimum dissimilarity score was also plotted against 

recombination outcome following analysis of 21 and 31 isolates by ClonalFrameML. The same 

relationship of recombination being detected in subsets with a low divergence score of <0.2, and 

not detected in subsets with a comparatively high divergence score of >0.7 was identified (Figure 

13). 
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Figure 12 Minimum dissimilarity value of the closest isolate to wildtype in 100 subsets of 11 

processed by ClonalFrameML and Gubbins. Symbol represents the outcome of 

recombination detection. Same result seen in both Gubbins and ClonalFrameML 

 

 

 

 

 

Figure 13 Minimum dissimilarity value of the closest isolate to wildtype in 100 subsets of 21 

isolates (red) and 31 isolates (green). Outcome of recombination detection 

represented by symbol. Datasets of 21 and 31 isolates were selected independently 

of one another and results presented are only for ClonalFrameML.  
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4.5.2.2 Detection of artificial recombination in different mutation backgrounds 

To test whether the diversity of isolates within subsets affected the ability to detect 

recombination, a background mutation rate was incorporated into the recombination sequence 

(section 2.2.1), and the ability of programs to detect this region assessed. The degree of diversity 

between each isolate in the dataset and the reference sequence was calculated (section 2.3) and 

showed a difference of 0.005% - 1.3% (average = 0.75%). To encompass this, the range of 

mutations incorporated in simulations was between 0.001% and 2%. The position of the newly 

mutated sequences in relation to other isolates within the phylogenetic tree is shown in Figure 3. 

The sequence with 0.001% mutation rate was located in the very centre of the inner clade of the 

phylogenetic tree. As the mutation rate of the sequences increased further to 0.01% and 0.1%, 

sequences became positioned at a greater distance from the centre of the inner clade but remain 

within it. Sequences with a mutation rate of 1% and 2% are different enough to result in them 

diversifying on another branch from the rest of the isolates in the dataset. The sequence with 1% 

mutation rate was located halfway up this branch, and the sequence with 2% mutation was 

located at the very tip ( Figure 3). 

Table 9 shows ClonalFrameML successfully detects recombination in all mutation backgrounds, 

but that Gubbins loses the ability to detect recombination in a 1% and 2% mutation background. 

To better understand why Gubbins was not able to detect recombination when this level of 

mutation was present, minimum dissimilarity values of subsets were calculated for all mutation 

backgrounds. Figure 14 illustrated at 1% and 2% mutation there is no longer a similar sequence 

present in the subset, shown by the rise in dissimilarity values from 0.001 to 0.01 and 0.02 

respectively.  

A similar sequence was added to the simulated dataset to test whether recombination became 

detectable in a sequence of 1% and 2% diversity when this was included. This proved to be the 

case and both programs detected recombination in all mutation backgrounds (Table 9). The 

dissimilarity values for the subsets were calculated and found that the presence of a similar 

sequence maintained low minimum dissimilarity scores at 1% and 2% of 0.001 (Figure 14).  

In all subsets tested so far, the area of recombination had a higher mutation rate than what was 

present on the rest of the genome (Appendix D). To test if programs were also able to detect 

recombination as an area of low mutation relative to the chromosome, recombination analysis 

was performed on a final simulated dataset (Appendix E). It was known that a similar sequence 

was required in the dataset for recombination to be detected in the higher background mutation 

rates therefore, this was accounted for in dataset construction. Recombination was detected from 

all mutation backgrounds by both programs (Table 9). 
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Table 9 Summary of recombination detection by Gubbins and ClonalFrameML from simulated and clinical datasets. Simulated datasets1 have no similar sequence 

present. Simulated datasets2 have a similar sequence present and recombination is seen as high mutation in a chromosome of no mutation (Appendix D). 

Simulated datasets3 have similar sequence present and recombination is seen as no mutation in chromosome of high mutation (Appendix E) 

Background 
mutation rate 

(%) 

Detection of 
artificial 

recombination 
from 

simulated 
datasets1 

(n=100) by 
Gubbins  

Detection of 
artificial 

recombination 
from simulated 

datasets1 (n=100) 
by ClonalFrameML 

Detection of 
artificial 

recombination 
from simulated 

datasets2 
(n=100) by 

Gubbins 

Detection of 
artificial 

recombination 
from simulated 

datasets2 
(n=100) by 

ClonalFrameML 

Detection of 
artificial 

recombination 
from 

simulated 
datasets3 

(n=100) by 
Gubbins 

Detection of 
artificial 

recombination 
from simulated 

datasets3 
(n=100) by 

ClonalFrameML 

Detection of 
artificial 

recombination 
from datasets 
composed of 

clinical 
isolates 

(n=100) by 
Gubbins  

Detection of 
artificial 

recombination 
from datasets 
composed of 

clinical isolates 
(n=100) by 

ClonalFrameML 

0.001 Yes Yes Yes Yes Yes Yes 100 77 

0.01 Yes Yes Yes Yes Yes Yes 100 77 

0.1 Yes Yes Yes Yes Yes Yes 92 0 

1 No Yes Yes Yes Yes Yes 0 0 

2 No Yes Yes Yes Yes Yes N/A 0 
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Figure 14 Minimum dissimilarity values in subsets containing simulated sequences of increasing 

background mutation rate. Blue values are from subsets that do not contain a similar 

sequence in the recombination analysis. Red values are subsets with a similar 

sequence to the recombination sequence. Blue data points are present under the red 

in 0%, 0.001% and 0.1% background mutations. 

 

 

The final test which determined whether there was an effect on recombination detection when 

mutation was present in the sequence was to extend recombination analysis to datasets of real 

rather than simulated isolates (section 2.2.2). Table 9 showed ClonalFrameML was able to detect 

recombination in 77/100 subsets in the lower mutation backgrounds of 0.001% and 0.01%. This 

was the same 77/100 subsets that positively identified recombination when there was no 

mutation present in section 4.5.2.1. Further increase in the mutation background resulted in 

recombination not being detected. Gubbins was able to identify the artificial recombination in all 

subsets when there was a mutation rate of 0.001% or 0.01% present. The complete 

recombination was identified in 77/100 runs, which was also true for ClonalFrameML, and the 

remaining 23/100 runs were able to identify approximately 8.4kb of the 10kb area. In a 0.1% 

background Gubbins identified recombination in 91/100 subsets. Again, the complete block is 

identified in 77/91 subsets, and the remaining 14 found between 5kb and 7kb of the 

recombination. Like ClonalFrameML, Gubbins was not able identify recombination from any 

subset when the level of background mutation reached 1%. At 2% no results could be obtained as 

processing was not completed within the designated 100 hour run time.
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4.5.2.3  Internal consistency in recombination calls between Gubbins and ClonalFrameML 

Internal consistency between programs can be assessed by comparing output of recombination 

analysis from identical datasets. The data in Table 10 described the combined recombination 

analysis of all recombination from 100 subsets processed by both Gubbins and ClonalFrameML 

and compared them to a study that previously used Gubbins for recombination analysis on S. 

pneumoniae (73). Gubbins identified recombination in 99% of the reference genome which was 

considerably higher than the 71% identified by ClonalFrameML. In the comparative study (73), 

Gubbins called 74% of the genome in recombination which was much closer to the proportion 

ClonalFrameML identified in these combined subsets. The average size of recombination also 

notably differed by roughly 10-fold between programs. ClonalFrameML identified a higher 

number of smaller recombination events averaging ~300bp whereas Gubbins identified fewer 

recombination overall, but they were much larger at ~3500bp (Table 10). 

Internal consistency was further investigated by specifically identifying recombination called on 

the artificial recombination sequence. This was the internal control and was present in the 

analysis of all subsets. Combined data from the analysis of 100 subsets identified recombination 

in 86% (1,911,701bp) of the sequence from Gubbins whereas recombination was only identified in 

15% (336,930bp) from ClonalFrameML. Of the genome proportion called in recombination by 

ClonalFrameML, only 555bp were not also called by Gubbins showing a very good overlap 

between programs (Figure 15). The recombination identified included the 10kb region artificially 

introduced. To assess the false positivity rate of programs all-natural recombination was removed 

(as described in section 2.2.6), which left only the artificial region, and analysis repeated. 

ClonalFrameML saw a reduction in bp called in recombination from 336,930bp to 10,003bp and 

Gubbins a reduction from 1,911,701bp to 11,840bp. Excluding the artificial region of 

recombination, this meant ClonalFrameML incorrectly identified only 3bp in recombination and 

Gubbins 1,840bp.  
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Table 10 Summary statistics following recombination analysis by Gubbins and ClonalFrameML of 

100 subsets consisting of 10 randomly selected clinical S. pneumoniae isolates and 

the artificial recombination sequence. Gubbins results from a comparative study by 

Croucher et al (2011) (73) also included for reference 

 ClonalFrameML 
recombination 

analysis 

Gubbins 
recombination 

analysis 

Gubbins 
recombination 

analysis of 240 S. 
pneumoniae PMEN1 

strains (73) 

Proportion of reference genome 
that has undergone 

recombination in at least one 
isolate 

71% 99% 74% 

Number of recombination events 275,636 

(average per 
run = 2,756) 

83,636 

(average per 
run = 836) 

702 

Size of recombination events 
(bp) 

1-19,080 

(mean = 372) 

3-119,300 
(mean = 3,695) 

3 - 72,038 

 

 

 

Figure 15 Venn diagram illustrating level of internal consistency in recombination calls (bp) 

between Gubbins and ClonalFrameML from 100 subsets consisting of 10 randomly 

selected clinical S. pneumoniae isolates and the artificial recombination sequence. A 

total of 1,911,701bp was identified as recombination in Gubbins and 336,930bp in 

ClonalFrameML 
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Figure 16 Example of recombination called across the genome by Gubbins and ClonalFrameML. 

The total number of recombination bp called by ClonalFrameML for all six 

recombination events was 4,633bp. The total number of recombination bp called by 

Gubbins in the recombination even shown was 24,820bp. 

 

 

 

4.5.2.4 Determining the distance at which recombination programs distinctly identify two 

adjacent recombination events 

The pattern of recombination calls between programs is illustrated by Figure 16. ClonalFrameML 

identified multiple smaller recombination events positioned across the genome, whereas Gubbins 

identified a single larger recombination event. To test program ability to distinguish between 

adjacent recombination events, a new recombination sequence was created that systematically 

varied the distance between two recombination events and assessed the distance at which 

programs identified them individually (section 2.2.1). Simulations were performed using a range 

of recombination block sizes and Figure 17 shows that the size of recombination does not affect 

the distance in either program. Gubbins overall required a much greater distance of ~9kbp to 

separate adjacent recombination events whereas ClonalFrameML required only ~2.6kbp. To 

further this, analysis was carried out on simulated datasets that had varying levels of background 

mutation to test whether diversity in the sequence affected the distance required between 

recombination events (section 2.2.1). As it had already been confirmed that the size of 

recombination had no effect on distance, only recombination events of 10kbp were tested and 

the range of diversity matched that previously tested. Figure 18 showed ClonalFrameML 

continued to require ~3kbp to identify adjacent recombination blocks until the background 

mutation rate reached 1%. At 2%, ClonalFrameML was not able to separate recombination events 

within the distances tested. The distance required by Gubbins also remained at approximately 
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9kbp in background mutation rates up to 0.1%. There was a slight reduction in distance in the 

latter mutation background to ~8kbp and any further mutation resulted in no recombination 

being detected by Gubbins.  

The final scenario in which to test the distance required to distinguish between recombination 

events was to use a subset of clinical isolates rather than simulated sequences (section 2.2.3). 

Recombination analysis by ClonalFrameML identified recombination events in 77/100 subsets and 

a distance of 300bp was required by all subsets to distinguish between individual recombination 

events. Gubbins was only able to complete processing in 70/100 subsets within the allocated 

time. Recombination was identified in 56/70 subsets and identified distinct recombination events 

at a distance ranging from 8.8-9.3kbp (mean=9.2). The 14/70 subsets in which recombination was 

not identified was consistent with those not identified in ClonalFrameML. 



Chapter 4 

96 

 

Figure 17 Illustration of the distances required by programs to distinguish between two 

recombination events when the size of the recombination event ranged from 1kbp to 

10kbp 

 

 

 

Figure 18 Distance between recombination events required by programs to identify two 

recombination events in the presence of background mutation. Size of recombination 

event in all subsets is 10kb. Gubbins was not able to identify recombination events in 

a 1% or 2% mutation rate (not plotted). ClonalFrameML could not separate 

recombination events within the tested ranges at 2% (not plotted) 
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4.6 Discussion 

Diverse sets of bacterial isolates pose issues for recombination programs, which have been 

previously overcome by splitting datasets into related subgroups prior to analysis. In this study, 

isolates were randomly allocated into subsets prior to recombination analysis so that analysis was 

not limited within specified groups and maximum recombination could be identified between all 

isolates. However, to do this it was necessary to compare the utility of widely used tools for the 

detection of recombination, namely Gubbins and ClonalFrameML under the parameters that 

would eventually be used. The program BratNextGen (287) was not included in the comparison of 

recombination programs as it required some manual processing steps and therefore complete 

automation was not possible. To compare these tools, both simulated isolate sets with and 

without seeded known recombination, and clinical datasets were used. ClonalFrameML was able 

to process larger subsets of isolates, and this is preferable as the presence of a similar sequence 

to that containing recombination is required for detection. Results presented here also show that 

Gubbins connects recombination events over much larger proportions of the genome, which 

results in more recombination being identified in comparison to ClonalFrameML. If Gubbins was 

used to identify recombination, and recombination was removed to estimate the effect on 

population structure, then a greater proportion of the genome will unnecessarily be excluded. 

This could include important information regarding phylogeny required to determining population 

structure. 

4.6.1 Capacity of program to detect recombination from a diverse dataset 

A simulated sequence containing a region of known recombination was used as a positive control 

to compare programs and validate the method as the regions of ‘true’ recombination remained 

unknown in the clinical isolates. The sequence was a good representation of isolates within the 

dataset as it was the most frequently isolated serotype/MLST (23F/ST81). After subsets of various 

sizes were tested (section 4.5.1), the only size capable of tandem analysis for program comparison 

was subsets of 11 isolates, as Gubbins was not able to complete processing of larger subsets in 

the allocated run time. Previous comparison of recombination analysis run-time does not find this 

same limitation, in fact the opposite was seen. In Croucher et al (2014), Gubbins completed in 

48.4 seconds, whereas it took ClonalFrame 705.4 hours to complete analysis (205). The dataset 

tested was drastically different to the dataset used in the current study in that it analysed closely 

related isolates. This clearly demonstrated that the processing capabilities of recombination 

programs can be greatly affected by the level of diversity within the dataset. 
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Initial recombination analysis on clinical isolates showed each program performed equally well 

with both identifying recombination in 77/100 subsets. When recombination was not detected in 

a subset of 11 strains, the 10 clinical strains were not closely related to the 11th strain carrying the 

recombination. This was evidenced by the 10 strains being placed in the outer clade of the 

phylogenetic tree, whereas the 11th strain was placed in the inner clade. This observation led to 

the hypothesis that a similar sequence to that containing the recombination was required to be 

present within the subset for the artificial recombination to be found. To test this, values of the 

dissimilarity matrix used to make the phylogenetic tree were used as a covariant of recombination 

called, against recombination not called. These dissimilarity values represented divergence as 

greater distance on the tree is because of a higher divergence. The smallest of these values, 

termed the minimum dissimilarity value, was plotted in Figure 12 and Figure 13. This showed a 

clear distinction in the minimum dissimilarity value between subsets in which neither program 

was able to identify recombination and those in which both programs were able to identify 

recombination. The probability that a similar sequence is included in a subset is related with 

dataset size. The more strains present in the subset, the more likely a similar sequence would be 

present, and this in turn could lead to the detection of recombination. Figure 13 supports this 

theory as when ClonalFrameML was run on subsets of 30 isolates rather than 10, the minimum 

dissimilarity value remained low and recombination was detected in all 100 subsets. 

The natural diversity of sequences within the dataset was known to be as much as 1.3% therefore, 

simulations on subsets with differing degrees of diversity was run to test its effect on 

recombination detection. In a basic test dataset Gubbins lost the ability to detect recombination 

in a 1% and 2% mutation background and it was hypothesised this was because the sequence 

containing recombination became too different to others in the subset. The location of the 

mutated sequences supported this theory as they formed a separate branch and were no longer 

positioned in the inner clade (Figure 3). Once a similar sequence was added to the subset, and a 

low dissimilarity score maintained, Gubbins was then able to detect recombination in these 

mutation backgrounds. ClonalFrameML performed better in simulated datasets as the level of 

background mutation did not affect the ability to detect recombination. Due to the range of 

diversity within isolates, it is biologically plausible for DNA to be transferred from a sequence with 

high diversity to a sequence of low diversity, or from a sequence of low diversity to a sequence 

that is more diverse. The ability of programs to detect recombination events from both scenarios 

were tested and programs performed equally well. 

Until this point the ability of recombination programs to detect known recombination from 

datasets containing clinical isolates (section 4.5.2.1), and in simulated datasets with an 

incorporated background mutation rate (section 4.5.2.2) had been tested. These were then 
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combined to ensure recombination could be detected in sequences with a background mutation 

rate when run with subsets of randomly selected clinical isolates. This was reflective of the true 

relationship between isolates in subsets when recombination analysis was performed on the 

Singapore dataset. In this scenario ClonalFrameML was only able to detect recombination when 

present in a mutation background of 0.001% and 0.01%. Gubbins was able to detect 

recombination from datasets in a 0.001%, 0.01% and 0.1% mutation background. The complexity 

in the relationship between clinical isolates within a subset was greater than that of simulated 

sequences as each clinical isolate had unique and varying levels of diversity from one another. 

Due to this, the minimum dissimilarity parameter cannot be used alone to predict recombination 

detection in these datasets. 

4.6.2 Comparison of internal consistency between recombination programs 

It was shown that there was high internal consistency of recombination calls between 

ClonalFrameML and Gubbins, which gave more confidence to the recombination events being 

true. Far more recombination was called by Gubbins than ClonalFrameML and this occurs not just 

in a single subset but in multiple subsets. In Gubbins the identification of recombination as 

regions of elevated densities of base substitutions can be confounded in datasets containing a 

high diversity of sequences, and this could be the reason for the comparably elevated levels of 

recombination in Gubbins. It has been shown that diversity can affect recombination detection, 

and that a similar sequence was required for detection. Therefore, specificity was tested by 

randomising base positions to remove clustering of mutations, while still maintaining the overall 

tree topology, overall nucleotide sequence divergence and overall allele frequencies at each 

polymorphic position. Such a decrease in recombination found outside of the known area showed 

that the signal for recombination was successfully removed. There may have been a slight 

reduction of specificity in the calls made by Gubbins rather than ClonalFrameML because it did 

still identify some excess recombination (1,840bp). Results from both programs showed <0.1% 

recombination called outside the artificially introduced area proving the increase in calls by 

Gubbins was not a consequence of it having a higher false positivity rate.  

Further investigation comparing recombination output by Gubbins and ClonalFrameML illustrated 

major differences in size and number of recombination events between programs (Table 10). 

Gubbins data produced here was compared  to that following the analysis by Croucher et al 

(2011) of a different pneumococcal dataset (73) to understand whether results are simply 

reflective of Gubbins analysis or if they are dependent on the dataset tested (Table 10). The 

comparative dataset (73) contained 240 isolates PMEN1 isolates, which were likely to be more 

similar to one another than the 10 randomly selected isolates in each of the subsets tested in this 
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study. A much higher level of recombination was witnessed from this dataset (99%) than in (73) 

(74%), and the higher diversity between isolates could be responsible for this. In addition, the 

frequency and size of recombination events encompassed a much larger range in this dataset 

than described in (73). A study that directly compared recombination output in a similar fashion 

to that performed here showed Gubbins identified a smaller number of recombination events 

than ClonalFrame; 28 rather than 48 (205) and a stark difference in the frequency of 

recombination events was not identified. The isolates in which recombination analysis was 

performed in (205) were closely related to one another which was very different to that studied 

here. These differences imply it is likely recombination statistics are related to the diversity of the 

dataset tested, which makes accurate comparison of recombination data between studies 

difficult. 

The difference in recombination block size between Gubbins and ClonalFrameML in this analysis 

prompted the exploration into the positions of recombination events in relation to one another. 

The example in Figure 16 represented findings throughout the data and showed overcall could be 

from the connection of multiple adjacent blocks from Gubbins, whereas ClonalFrameML identified 

these distinctly. Gubbins has been previously shown to identify irregular mosaic recombination 

events rather than the individual segments (205) and this may be the reason for this finding 

within the dataset. Incorrect definition of recombination boundaries is an important source of 

error and could account for why the size of recombination events in Gubbins were so much larger 

than those seen in ClonalFrameML. This hypothesis was tested in simulated datasets by 

identifying the number of bp required by each program to identify individual recombination 

events when they are closely positioned in the genome (section 4.5.2.4). Figure 17 confirmed 

Gubbins required a much larger distance to distinguish between recombination events, and until a 

distance of ~9kbp was reached Gubbins inaccurately called a much larger area of recombination 

than was present in the genome. ClonalFrameML identified the separation of recombination 

events across a much shorter distance and was therefore more accurate in recombination calls. 

Analysis was extended to include simulated datasets with varying levels of background mutation 

as it was a better representation of the clinical isolates within the dataset and results would be 

more applicable to real recombination analysis. The effect of mutation on distance required to 

identify individual recombination events was similar to the dataset with no similar sequence 

present. Recombination was identified and there was very little difference in distances for either 

program as mutation rate increased to 0.1%. As was seen previously, a further increase in 

mutation lead to recombination not being identified in Gubbins and this was likely due to the lack 

of a similar sequence being present. ClonalFrameML was able to detect individual recombination 
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events in a 1% mutation background, however at 2% mutation recombination it was no longer 

possible for ClonalFrameML to identify the two separate recombination events.  

It was identified that Gubbins called more of the genome in recombination than ClonalFrameML 

and confirmed using simulated datasets that this could be due to Gubbins connecting areas of 

recombination over much larger distances.  It has also been shown that the detection of 

recombination can be influenced by mutation rate, and the similarity of other sequences within 

the dataset. Although the distance required to distinguish between recombination events in the 

range of mutation backgrounds present within our dataset was tested, results from this may not 

be applicable to datasets containing only clinical isolates. In real rather than test datasets, each 

isolate will be unique in terms of mutation and this could affect the distances at which 

recombination events are connected. Analysis on clinical isolates saw that once again 

ClonalFrameML identified recombination in the same 77/100 subsets identified in Section 4.5.2.1 

but that the distance required to call individual recombination events in these clinical subsets 

reduced from ~2,800bp seen in simulated subsets to 300bp. This reduction was consistent in all 

77 subsets showing an improvement in the ability to accurately distinguish between adjacent 

recombination events when processing real datasets. Gubbins was only able to identify 

recombination in 56/70 subsets because analysis for 30 subsets did not complete in the 

designated 100 hour run time. The reduction in distance required by ClonalFrameML following 

the processing of clinical samples was not mirrored in Gubbins. As was the case in simulated 

datasets, the distance required to separate adjacent recombination events in clinical datasets 

remained at ~9kbp. The findings support the theory that if natural recombination events are 

positioned in close proximity in the genome, it is far more likely that Gubbins will connect these 

over much greater distances than ClonalFrameML, resulting in more of the genome being 

incorrectly called in recombination. 

4.7 Conclusion and future work 

The practicalities and suitability of using two well described recombination programs to perform 

analysis on a large clinical dataset of diverse isolates was investigated. The method chosen to 

perform this comparison is novel in that it randomly selected isolates for analysis rather than 

relying on prior classification from MLST, serotype or phylogeny data. It is the first in-depth 

comparison of Gubbins and ClonalFrameML using this method and encompasses both simulated 

and clinical sequences. 

The performance of recombination analysis was investigated in relation to diversity in both 

simulated and real datasets and analysis highlighted the requirement of a similar sequence to 
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successfully identify recombination in ClonalFrameML and Gubbins. If at least one similar 

sequence was not present in a randomly selected clinical dataset, recombination may be missed. 

In some instances, Gubbins could use low level mutation in clinical datasets to increase levels of 

recombination detection, however, the program may not be as accurate in its recombination calls 

from these datasets. It has also been demonstrated that ClonalFrameML can overcome this 

limitation by its ability to perform recombination analysis on larger, randomly selected datasets, 

increasing the likelihood of sequence inclusion. For Gubbins, dataset size remained a limitation 

when isolates were selected in this way.  

In comparable datasets Gubbins calls recombination across more of the genome than 

ClonalFrameML. It has been shown that this was not due to a lack of specificity in Gubbins, but 

instead was due to the connection of adjacently positioned recombination events over larger 

areas in both simulated and clinical datasets. Results presented here show that if Gubbins is used 

to generate a recombination-free phylogeny, then a greater proportion of the genome will be 

unnecessarily excluded. This could include important information regarding phylogeny. 

Consequently, ClonalFrameML was deemed the more suitable program for application to the 

Singapore S. pneumoniae clinical isolate dataset. 

Since the comparison between Gubbins and ClonalFrameML was initiated the program FastGEAR 

was released which described the ability to detect recombination from both external origins and 

between the inferred lineages (253). Although this was not included in program analysis, 

Mostowy et al (2017) compared recombination analysis between FastGEAR (253), Gubbins, 

ClonalFrameML and STRUCTURE. Results showed FastGEAR detected recombination events in 

simulated datasets well, particularly from full alignments and that it was able to detect ancestral 

recombination well (253). There was a simulated range of diversity tested in the comparison, 

however, the performance of individual programs was not compared following analysis of clinical 

samples. The diversity of some isolates may contribute to errors in recombination calls therefore 

it cannot be said with certainty that the same level of accuracy would be seen in real datasets. 

Also, the simulated datasets in (253) consisted of 30 sequences, however when Gubbins was used 

to perform recombination analysis on a dataset of that size in this work, it became too 

computationally demanding. This is suggestive that the diversity within the Singapore dataset is 

considerably higher than that tested in (253) and therefore the ability of recombination detection 

may not be comparable. FastGEAR (253) would need to be performed on both simulated datasets 

and subsets of clinical isolates to test its ability to detect recombination events. This additional 

comparative analysis would provide information regarding its suitability of detecting 

recombination from large datasets of diverse clinical isolates.  
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Chapter 5 Antimicrobial resistance phenotypes analysed 

by Genome Wide Association study 

5.1 Introduction 

Studies of phylogeny often suggest horizontal transfer of genetic material to be the main way that 

clinically relevant antimicrobial resistance determinants are acquired, a theory supported by 

much experimental evidence (69, 73, 288). However, the study by Lehtinen et al (2020) showed 

that this was not the only contributor that determined the frequency of antimicrobial resistance, 

and the origin of some mechanisms of resistance in S. pneumoniae have been demonstrated from 

one, or the accumulation of a number, of spontaneous mutations likely to have arisen as a 

consequence of environmental selection (289). Mutations that result in variants of proteins can 

remain in populations, providing the amino acid substitution does not negatively affect survival. 

The use of antimicrobials provides a selective pressure for mutations associated with resistance 

and this phenomenon highlights dangers in antimicrobial overuse. The work in this chapter aimed 

to investigate the genetic signatures in the populations of S. pneumoniae isolates from Singapore 

to map the patterns and distributions of single nucleotide polymorphisms (SNPs) that generate 

the antimicrobial resistance phenotype, by performance of a genome wide association study. To 

do this accurately, areas of the genome in which recombination occurred were identified and 

their influence in defining population structure prior to GWAS determined.  

5.1.1 Application of genome wide association studies outside a human host 

Methods adopted in human GWAS have been adapted for application in bacterial genomes to 

facilitate the discovery of novel mutations associated with phenotypes. Results from such studies 

have helped to inform disease management and treatment for many human pathogens. For 

example, much research has been performed to identify pathogen genetic determinants related 

to clinical phenotypes of pathogens. Virulence is a complex trait and studies have used a genome 

wide approach to identify loci that directly affects toxicity, as well as epistatically interacting loci, 

in S. aureus (178). Specific loci such as Panton-Valentine leucocidin locus have been associated 

with increasing the odds of generating the specific type of disease known as pyomyositis from S. 

aureus (290). Associations with disease traits in other organisms include extra-intestinal virulence 

determinants in Escherichia coli (291), and novel factors associated with invasiveness in 

Streptococcus pyogenes (292). Another complex trait investigated from bacterial genotypes is 

antimicrobial resistance. Again this has been performed for a number of different clinically 
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important organisms in which resistance is a cause for concern such as Mycobacterium 

tuberculosis (177, 180, 181, 293-296), S. aureus (175, 294), Plasmodium falciparum (297), E. coli 

(294, 298), Klebsiella pneumoniae (294) and HIV (299).  

In addition to bacteria, variation in the host genome that contributes to disease has been 

investigated through the application of a genome wide approach. Host variation that effects the 

host-pathogen interaction has been investigated in HIV infection to identify significant SNPs 

associated with HIV-1 variants and mapped to the human leukocyte antigen regions (172, 300, 

301). Application of GWAS has been useful in understanding farm animal host specificity of 

Campylobacter jejuni infection and highlighted association genes involved in the biosynthesis of 

vitamin B5 (176). Finally the host genetic factors that contribute to Neisseria meningitis have been 

identified such as variants in complement factor H, that offers protection in childhood infection 

(302), and in carbonic anhydrase X (303). 

Previous GWAS applied specifically to pneumococci have highlighted a variety of factors 

contributing to disease. Investigation of both bacterial and human variation in pneumococcal 

meningitis identified pneumococcal genetic variation contributed 70% to the invasive potential of 

the organism, and variations in the genes pspC and zmpD contributed significantly to this (173). 

Identification of genes or gene variants that are involved in invasiveness is extremely useful as this 

reveals alternative candidates for future pneumococcal vaccines. Interestingly, it was shown that 

the bacterial genotype had no effect on the severity of disease and that, instead, human genetics 

contributed one third in determining disease severity and half to the susceptibility to 

pneumococcal meningitis. (173). Additional studies identified human host-associated variants in 

long intergenic non-coding RNAs have been associated with pneumococcal bacteraemia (304). It 

is well established that pneumococcal carriage is a prerequisite for disease (305) and therefore, a 

detailed understanding of the factors that affect carriage and/or duration of carriage has the 

potential to provide opportunities to interrupt this stage in infection and reduce the burden of 

disease. A study into this highlighted 63% of the variation in carriage duration in the nasopharynx 

is dependent on bacterial genomic variation rather than previous carriage by the host or age of 

the host (306). Pneumococcal associations which impact mortality as a clinical endpoint include 

arginine biosynthesis genes (307), and the phage derived gene pblB, which is involved in platelet 

binding (308). Finally, GWAS have identified genetic variation associated with serotype 1 

pneumococci to modulate tropism to central nervous system tissues, increasing virulence for 

meningitis (309). 
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5.1.2 Considerations of microbial GWAS 

The aim of association studies is to identify significant associations between single nucleotide 

polymorphisms (SNPs) and a measured phenotype, and GWAS does this across the entire 

genome. These studies require three elements: a sufficiently large study population that 

effectively provides genetic information regarding the research question (310); single 

polymorphic alleles which can be genotyped to adequately cover the whole genome (311); and 

appropriate and accurate analytical methods which have sufficient power to allow identification 

of the statistically significant genetic associations in an unbiased fashion (312). Population 

structures within bacterial populations of interest may contain subgroups of isolates that are on 

average more related to each other than to other members of the wider population (58). Bacterial 

population structure has the potential to increase the false positivity rate in tests of association 

and to decrease power of GWAS (313). This is because bacterial population structure and kinship 

indicate covariance between individuals based on genetic similarities and heritability of the 

phenotype. However, tests of association assume statistical independence between individuals. 

Ignoring this covariance results in a deflated p-value that does not form a uniform distribution 

under the null hypothesis in the test for association (314). Standard practice to account for these 

confounding factors is to infer population structure and kinship based on genome wide SNP data, 

and then, either to account for the effect in the test of association, or alternatively, to remove 

problematic individuals from the analysis (313). This stratification for population structure should 

minimise falsely positive associations that could be obtained by chance.  

Generally, SNPs in core genome are used as units of measurement in GWAS (175, 177-179), 

however other methods available use gene presence or absence or the measurement of ‘n-mers’ 

to study both the core and flexible genome simultaneously (176, 315-317). Association techniques 

are broadly broken down into allele counting or homoplasy counting. Allele counting methods 

generate association signals from over-representation of an allele at a particular site in cases 

relative to controls. This method can be limited due to strong population structure and linkage 

disequilibrium (LD) in bacterial populations, as overall phylogeny is not considered when 

generating the association. There are a number of ways to correct for population structure. One 

method is to use an analytical test such as that used in the program Genomic Control to normalise 

all inflated p-values by single inflation factor λ (314). However, this approach may overcorrect, 

resulting in removal of all statically significant GWAS hits (180). Other less conservative methods 

identify subpopulations present within the overall population and then test for associations 

conditional on these defined subpopulations. This method of using ancestry to correct for 

population stratification is a popular approach and a variety of programs can infer 

subpopulations. Such programs include; BAPS (318), principle component analysis in EIGENSTRAT 
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(319) or multi-dimensional scaling in PLINK (320). These epi-clusters are then used as covariates in 

association testing, for example Cochran-Mantel-Haenszel test. If this approach is adopted, 

thousands of genomes are required as, with small sample size, this correction can reduce GWAS 

power significantly (180). A homoplasy is a shared characteristic between isolates that did not 

arise from a common ancestor and results in convergent evolution. Homoplasy counting methods 

count repeated and independent convergent mutations emerging at a higher rate on branches of 

cases relative to controls to generate evidence of association (180). Software that implements this 

method that is available to use in association studies includes PhyC (177) and ROADTRIPS (321). 

Population stratification, and linkage disequilibrium to some extent, is intrinsically accounted for 

using this method by its phylogenetic convergence criterion. Homoplasy counting requires a 

smaller number of events than allele counting to reach statistical significance, therefore, the 

decision of which to use could be based on available sample size. Homoplasy counting for 

example, would produce a much stronger signal than allele counting from a small sample size that 

contained a strong phylogenetic structure. Allele-counting methods theoretically are able to 

detect all convergent sites that would be detected from homoplasy counting, as well as non-

convergent sites with a sufficiently large sample size. The review by San et al (2020) details well 

the wide range of tools used in bacterial GWAS and highlights there is not yet a standardised 

methodology (322). There is variation in phenotype classification, statistical tests to detect 

associations, methods to account for population structure and within the input for analysis.  

5.1.3 GWAS studies of pneumococcal antimicrobial resistance 

GWAS that have been performed in S. pneumoniae in order to identify areas of the genome 

associated with antimicrobial resistance have previously been performed (179, 255, 292). Results 

obtained offer a platform against which findings from this study can be compared. The study by 

Chewapreecha et al (2014) performed two independent association analyses on datasets of 

carriage isolates to identify SNPs associated with beta-lactam resistance (179). The datasets 

analysed comprised 3,085 and 616 isolates collected from Maela, Thailand and Massachusetts, 

USA respectively. Population structures within datasets were defined using a Bayesian clustering 

approach; Bayesian Analysis of Population Structure (BAPS) software (318, 323). The test of 

association was performed using the Cochran-Mantel-Haenszel (CMH) statistic to identify 

associations between specific variants and beta-lactam non-susceptibility conditional on the 

population structure clusters. Analysis was performed independently for the two datasets and 

associations commonly identified from both (301 SNPs) were selected for further analysis. 

Although these attempts were made to reduce genomic inflation factor and control for intrinsic 
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population structure of bacteria, this was not fully achieved because inflation values of 2.56 and 

3.76 were identified after the reduction (179) rather than the desired value of 1. 

The study by Mobegi et al (2017) analysed four datasets: 1,680 disease and carriage isolates, 

1,013 isolates from (179), a dataset from Nijmegen, the Netherlands (n=349) and the final one 

from children with sickle cell anaemia, USA (n=318) (255). The population clusters used to control 

for population stratification were again determined using BAPS software (318, 323) and the CMH 

correction statistic to test for associations between SNP and resistance phenotype based on these 

clusters. Non-susceptibility to a wider range of antimicrobials was tested including penicillin, 

cotrimoxazole, erythromycin, trimethoprim, ofloxacin and ciprofloxacin. Both studies (179, 255) 

used a threshold of >0.01 for the minor allele frequency, reported associations with p-value <0.01 

and incorporated the Bonferroni correction for multiple comparisons. Both  (179, 255) also use a 

single reference genome S. pneumoniae ATCC 700669.  

The final study that previously performed a GWAS to determine resistance determinants in S. 

pneumoniae was by Lees et al (2016) (292). However, the methods adopted vary significantly to 

those described for (179, 255). Instead of adopting a SNP-based method which uses clustering 

algorithms based on core alignments and then stratify association tests based on groups of 

samples, it used sequence element enrichment analysis (SEER) using n-mers to discover 

associations with antibiotic resistance (292). The same isolates analysed in (179) were used for 

application of this method to measure mechanisms associated with resistance to beta lactams, 

tetracycline, trimethoprim, erythromycin and chloramphenicol. Population structure was 

corrected for by the generation of a distance matrix from a random subsample of n-mers. Metric 

multi-dimensional scaling was then performed which is equivalent to using principal components 

of the SNP matrix. This removed the need for SNP calling or core genome alignment (319, 324) 

and gave the same results as clustering core alignments SNPs using hierBAPS (292).  

High levels of recombination have been shown to occur in S. pneumoniae which can be beneficial 

in GWAS as it may result in areas of the genome that are in linkage disequilibrium being broken 

up, potentially reducing false positive associations and boosting the potential power to discover 

causal variants. However, such high proportions of the genome being affected by recombination 

might also change how isolates are clustered within population structures and therefore the 

genetic associations identified may arise from recombination rather than mutation. Accurately 

accounting for bacterial population structures is critical in reducing spurious associations in 

GWAS, therefore, prior to performing the GWAS on antimicrobial resistance, this study aims to 

perform an accurate population correction independent of recombination, to cluster isolates 

based only on vertical inheritance. This can then be compared with population structures 
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determined from whole genome data to determine the effect recombination had on the 

population structure of the Singapore dataset. Some programs like Gubbins claim to be able to 

generate a correct phylogeny taking into account the recombination, but it has been shown 

through the comparison of programs described in Chapter 4, that Gubbins was not able to process 

large or diverse datasets and results may contain some inaccuracies depending on the dataset 

analysed.  

Following this, the present study aimed to perform an accurate GWAS to determine SNPs 

associated with antimicrobial resistance using a large dataset that should provide sufficient power 

to detect associations if they are present. This GWAS to identify associations to a range of 

clinically relevant antimicrobials was performed on a dataset of ~2,000 S. pneumoniae isolates, 

only collected from disease from a single geographical location. To date, analysis such as this has 

not been performed. Previous studies have used carriage only isolates, combined carriage and 

disease isolates, and combined isolates from a range of geographical locations in their analysis . 

Many of the same genes were identified to contain associations with antimicrobial resistance in 

the previous studies (179, 255, 292), and offer a platform against which findings from this study 

can be compared. Analysis of datasets from different geographical locations or from 

predominantly disease rather than carriage isolates could highlight rare or unique SNPs 

determined only in these populations.  
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5.2 Results 

5.2.1 Defining population structure for genome wide association study 

5.2.1.1 Recombination analysis of 2,059 clinical S. pneumoniae isolates 

Of the recombination programs tested in Chapter 4, ClonalFrameML was deemed to be the most 

suitable program to carry out recombination analysis on this dataset. Recombination analysis was 

performed on 400 subsets of 100 randomly selected S. pneumoniae as described in section 2.5. 

The frequency at which individual isolates were present in the subsets analysed ranged from 7-35 

and within this dataset 86% of the genome was called as recombinogenic within at least one 

isolate. The mean size of recombination was 359bp (range 1-21,058bp). Regions of recombination 

identified by ClonalFrameML were removed from the genomes of all isolates as described in 

section 2.5 and the phylogeny for the recombination-free genomes is shown in Figure 19. 

Comparison of this phylogeny to that from whole genome sequences (Figure 9) showed the two 

phylogenies are very similar in their structure and pattern of branching. Both show the right side 

to have far more branch points diverging into many descendants, and less branching and shorter 

branches on the left side of the phylogeny. The axis of one of the branches had been flipped in 

Figure 19 but both showed a single section of tightly structured decedents. The distance between 

the recombination-free and the whole genome phylogenetic trees were calculated using the 

Robinson Foulds (RF) metric which showed a similarity of 71%. A total of 366 core genes were 

identified from the dataset (section 2.8) and the subsequent phylogeny (Figure 20) shows a 

similarity of 70% to the whole genome phylogenies (Table 11). 

Table 11 Quantitative assessment of similarity between phylogenies using the Robinson Foulds 

(RF) metric calculated by the Environment for Tree Exploration toolkit (210) 

 
Whole genome 

phylogeny 
Whole genome 

phylogeny Whole genome phylogeny 
 

Recombination free 
phylogeny 

Normalised RF 
distance  

0.61 

RF symmetric 
distance 

2245 

Frequency of edges found 
in both phylogenies (%) 

71 

Core gene phylogeny Normalised RF 
distance  

0.61 

RF symmetric 
distance 

2491 

Frequency of edges found 
in both phylogenies (%) 

70 
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Figure 19 A maximum-likelihood phylogenetic tree constructed by FastTree using recombination-

free genomes (14% of the genome) of 2,059 isolates of S. pneumoniae.  

 

Figure 20 A maximum-likelihood phylogenetic tree constructed by FastTree using core genomes 

(366 genes) of 2,059 isolates of S. pneumoniae. 
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5.2.1.2 Application of programs to compare population structure between whole genome 

and recombination-free genome datasets 

Supporting antimicrobial susceptibility data for a total of 1,828 isolates was available for use in 

the association study. The population structure of these isolates, based independently on both 

whole genomes and recombination-free genomes, was determined using popPUNK which 

clustered datasets into 226 components and 247 components respectively. The largest group 

present in both datasets consisted of 298 isolates.  

Principal component analysis (PCA) was performed independently on datasets consisting of whole 

genome data and recombination-free genomes (section 2.6) to obtain larger clusters of isolates 

than identified by PopPUNK in which to compare isolate cluster allocation. Six clusters were 

identified from whole genome data and four clusters from recombination-free genome data 

(Figure 21). The isolates present in specific clusters were compared between datasets to identify 

the influence of recombination and high levels of consistency was seen in how they were 

grouped. Isolates present in individual clusters one, two and three of the recombination-free PCA 

correspond to clusters six, five and four of the whole genome PCA respectively. Isolates present in 

cluster four of the recombination-free PCA correspond to isolates present in clusters one, two and 

three of the whole genome PCA. Scree plots associated with individual PCAs (Figure 22) showed in 

both datasets the first 10 principal components (PCs) account for less than 60% of the variation in 

the dataset.
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Figure 21 Principal component analysis showing PC1 and PC2 of 1,828 isolates of S. pneumoniae. Clusters of isolates are labelled 1-6 for the whole genome dataset and 

1-4 for the recombination-free dataset. In whole genome data, cluster 1 (n=119), cluster 2 (n=171), cluster 3 (n=13), cluster 4 (n=1113), cluster 5 (n=164), 

cluster 6 (n=248). In recombination-free genome data, cluster 1 (n=249), cluster 2 (n=85), cluster 3 (n=1190), cluster 4 (n=304).
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Figure 22 Cumulative scree plots of the proportion of variation for the first 10 principal 

components in the PCA analysis of whole and recombination-free genome datasets 

 

 

Metadata associated with isolates was used to colour PCA plots to highlight factors that could 

attribute to cluster allocation. Variables in age (Figure 23) and disease type (Figure 24) were well 

distributed amongst clusters. Figure 25 highlighted the position of isolates corresponding to the 

three main clonal cluster (CC) groups as designated by goeBURST and showed these are localised 

within specific clusters of the PCA. Isolates allocated to CC0 were present only in a single cluster 

of the PCA in both datasets. Similarly isolates of CC1 were separated from the main cluster and it 

is likely that differences in MLST loci were contributing to population clustering in the PCA.  
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Figure 23 Principal component analysis showing PC1 and PC2 of 1,828 isolates of S. pneumoniae. The plot is coloured by age groups and corresponding tables show the 

proportion of isolates within each of the clusters described in Figure 21. 
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Figure 24 Principal component analysis showing PC1 and PC2 of 1,828 isolates of S. pneumoniae. The plot is coloured by disease type and corresponding tables show the 

proportion of isolates within each of the clusters described in Figure 21. 
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Figure 25 Principal component analysis showing PC1 and PC2 of 1,828 isolates of S. pneumoniae. The plot is coloured by the three main clonal clusters (CC) found within 

the dataset. Corresponding tables show the proportion of isolates within each of the clusters described in Figure 21 
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5.2.2 Genome wide association study of 1,828 isolates 

The number of isolates present in clusters determined by popPUNK were too small to perform a 

meaningful GWAS. The grouping of isolates based on population structures using PCA provided 

larger clusters and allocation of isolates to the main cluster did not dramatically differ between 

whole genome and recombination-free datasets. The first few PCs however, did not account for 

the majority of variation within the dataset therefore, the use of these to correct for population 

structure was not suitable.  

Given the failure of both PCA and popPUNK in cluster differentiation, a different approach was 

undertaken. Here, a genome-wide efficient mixed model analysis for association studies 

(GEMMA) was used to look for associations between SNPs and a non-susceptible phenotype 

which accounts for population structure by the production of a kinship matrix within the program 

(section 2.7). The inclusion of all isolates with supporting antimicrobial data, rather than individual 

analysis on smaller clusters identified in the PCA, was performed to increase power and to 

identify variants truly causative of the phenotype rather than those that are uniquely isolated 

with a single clonal lineage or cluster. Supporting antimicrobial susceptibility data for a total of 

1,828 isolates was available and antibiotics with suitable numbers of cases and controls included 

penicillin, erythromycin, cotrimoxazole, clindamycin, chloramphenicol, doxycycline, and 

tetracycline.  

5.2.2.1 Identification of SNPs associated with penicillin non-susceptibility from whole 

genome dataset 

Penicillin susceptibility data was available for 1,670 isolates broken down into 1,002 sensitive 

(60%), 145 intermediate (8%) and 523 resistant (32%). This was the largest group of isolates with 

the intermediate phenotype therefore a GWAS using a range of phenotype classifications was 

conducted. The sensitive vs resistant classification (SvR) would identify SNPs with an association 

to the resistant antimicrobial phenotype, and the sensitive vs intermediate classification (SvI) 

would identify SNPs associated with an intermediate resistance phenotype. Combining the data 

for isolates with either an intermediate resistance or resistant phenotype in the classification 

sensitive vs Intermediate and resistant (SvIR) would identify SNPs associated with either an 

intermediate or resistant phenotype, and the increased numbers would maximise statistical 

power on the analysis.  
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5.2.2.1.1 Penicillin non-susceptibility associations from a sensitive vs intermediate and 

resistant (SvIR) GWAS classification  

A GWAS to identify associations from the SvIR classification consisted of 1,002 controls with a 

sensitive phenotype (60%) and 677 cases (40%) with either an intermediate or resistant 

phenotype. A total of 63,570 SNPs was identified, and 120 significant SNPs associated with an 

intermediate or resistance phenotype. These were located in genes involved in peptidoglycan 

biosynthesis pathway (pbpX, ponA, penA), genes associated with the recombination pathway 

(recU), genes of the cell division pathway (gpsB), and transferases for cell wall biogenesis (rlmL, 

rsmH) (Figure 26). A QQ plot of p-values (Appendix I) showed the population stratification was 

successful using the kinship matrix as the p-values mostly follow the reference line and inflation 

only occurs for SNPs with high -log10 (p-values). The associated lambda GC score of 0.72 

(Appendix I) however, revealed the study was underpowered, therefore it might not be possible 

to identify all associations present in the dataset.
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Figure 26 Manhattan plots showing the statistical significance and genome coordinate of genome wide associations between SNPs and penicillin non-susceptibility in 

SvIR analysis. Genes that are specifically associated with penicillin resistance are labelled and their position represented by vertical lines in the top panel. 

The bottom panels show the genes in more detail, gene areas are shaded in grey show the position and significance of association SNPs in red. The dotted 

horizontal line in both panels represent the significance cut-off after Bonferroni correction 
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5.2.2.1.2 Penicillin non-susceptibility associations from a sensitive vs intermediate (SvI) 

GWAS classification  

To identify SNPs only associated with an intermediate resistance phenotype to penicillin, a GWAS 

using the SvI classification was performed consisting of 1,002 controls with a sensitive phenotype 

(87%) and 145 cases with an intermediate phenotype (13%). In total 67,699 SNPs were identified, 

of which 138 were significant. The QQ plot (Appendix I) showed good control of population 

structure and even though the number of cases was smaller, the lambda GC of 0.75 was slightly 

better than seen for the SvIR classification (Appendix I). Like in the SvIR classification, association 

SNPs were located in genes involved in peptidoglycan biosynthesis pathway (pbpX, ponA, penA), 

two genes associated in the recombination pathway were identified (recU and recR), along with 

transferases for cell wall biogenesis (rsmH and mraY). Additional SNPs not found in the SvIR or the 

SvR classification were identified in the genes mraY and recR (Figure 27). 
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Figure 27 Manhattan plots showing the statistical significance and genome coordinate of genome wide associations between SNPs and penicillin non-susceptibility in SvI 

analysis. Genes that are specifically associated with penicillin resistance are labelled and their position represented by vertical lines in the top panel. The 

bottom panels show the genes in more detail, gene areas are shaded in grey show the position and significance of association SNPs in red. The dotted 

horizontal line in both panels represent the significance cut-off after Bonferroni correction 
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5.2.2.1.3 Penicillin non-susceptibility associations from a sensitive vs resistant (SvR) GWAS 

classification  

To get a further understanding of whether some SNPs were associated only with the resistant 

phenotype independent of the intermediate resistant phenotype, a GWAS was performed using 

the SvR classification. For this, 1,002 sensitive isolates were used as controls (66%) and 523 

resistant isolates were cases (34%). The analysis identified 63,307 SNPs of which 152 were 

significant. The genes in which the SNPs were identified is shown in Figure 28 and with two 

exceptions they are the same genes identified in the SvIR GWAS classification. Significant 

association SNPs are present in genes involved in peptidoglycan biosynthesis pathway (pbpX, 

ponA, penA), genes associated with the recombination pathway (recU), the cell division pathway 

(gpsB), and transferases for cell wall biogenesis (rlmL). An association SNP identified in the gene 

rhaB unique to this SvR analysis is involved in carbohydrate metabolism (rhaB). The QQ plot 

(Appendix I) showed a good control for population structure however the lambda GC score of 

0.62 revealed analysis was further underpowered than the SvIR classification.
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Figure 28 Manhattan plots showing the statistical significance and genome coordinate of genome wide associations between SNPs and penicillin non-susceptibility in SvR 

analysis. Genes that are specifically associated with penicillin resistance are labelled and their position represented by vertical lines in the top panel. The 

bottom panels show the genes in more detail, gene areas are shaded in grey show the position and significance of association SNPs in red. The dotted 

horizontal line in both panels represent the significance cut-off after Bonferroni correction 
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5.2.2.2 Comparison of penicillin non-susceptibility between association studies 

It has been shown that the inclusion of the intermediate resistance phenotype in GWAS can 

identify additional genes associated with non-susceptibility in this dataset (rsmH, mraY, recR). A 

comparison of results from the SvIR classification with others in the field (179, 255) was 

performed to identify consistency and give additional strength to findings. Differences in 

methodology by Lees et al (2016) (292) excluded it from the comparison as the exact association 

SNPs were not generated in the same manner. The 120 significant association SNPs generated in 

the SvIR analysis was compared with the 301 and 426 association SNPs identified by Mobegi et al 

(2017) and Chewapreecha et al (2014) (179, 255) respectively. Appendix J showed that between 

all three studies, association SNPs were identified in a total of 163 genes, in hypothetical genes or 

in intergenic regions. Of these 163 genes, 150 were unique to the Mobegi et al (2017( (255) study 

with a range of 1-14 SNPs present in each association gene. One gene dexB with five association 

SNPs was only identified in Chewapreecha et al (2014) (179).  

A total of four and five SNPs respectively were identified in the gene rlmL common between this 

study and that of Mobegi et al (2017) (255) (Appendix J). A single SNP in the gene rsmH identified 

in this analysis was only otherwise present in Chewapreecha et al (2014) (179) who described ten 

association SNPs (Appendix J). An additional five genes were common only in Mobegi et al (2017) 

and Chewapreecha et al (2014) (179, 255); mraY, clpX, dhfR, clpC_1 and ftsL, and for all but one of 

these genes (179) identified a higher frequency of SNPs (Table 12). A total of five genes associated 

with penicillin non-susceptibility were common to all studies gpsB, pbpX, polA, recU and penA and 

the frequency of association SNPs between studies described in Table 12.  
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Table 12 Frequency of genome wide association SNPs associated with penicillin non-susceptibility 

identified in SvIR analysis (section 5.2.2.1.1), Mobegi et al (2017) (255) and in 

Chewapreecha et al (2014) (179)  

Gene Number of 
association SNPs 
identified in this 

analysis 

Number of 
association SNPs 

identified by Mobegi 
et al (2017) 

Number of 
association SNPs 

identified by 
Chewapreecha et aI 

(2014) 

polA 42 6 23 

pbpX 36 4 134 

penA 22 9 50 

gpsB 11 3 6 

recU 3 7 5 

mraY 0 1 37 

clpC_1 0 12 19 

dhfR 0 3 5 

ftsL 0 1 2 

clpX 0 2 1 

 

 

Consistency in many genes associated with penicillin resistance has been shown by three 

independent studies (Table 12). A total of 774 SNPs were identified amongst the three studies and 

Figure 29 highlighted the proportion of SNPs that overlap between them. There were a large 

number of unique SNPs called in each study, 408 in Mobegi et al (2017) (255), 237 in 

Chewapreecha et al (2014) (179) and 62 in this SvIR analysis. Despite some SNPs being located in 

common genes, there were only six SNPs identified in all three (Table 13). The Mobegi et al (2017) 

and Chewapreecha et al (2014) studies (179, 255) have nine common SNPs not identified in this 

analysis, and there were nine and three SNPs shared between analysis performed here and that 

of Chewapreecha et al and Mobegi et al (179, 255) respectively (Figure 29). 
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Figure 29 A Venn diagram summarising the number of significant association SNPs in each of the 

studies, and the number of those that are co detected in this study, in Chewapreecha 

et al (2014) (179) and Mobegi et al (2017) (255) 

 

Table 13 Description of six SNPs co-detected in this study, in Chewapreecha et al (2014) (179) and 

Mobegi et al (2017) (255) 

SNP position Gene Product 

293661 pbpX Penicillin binding protein 2X 

333792 recU Holliday junction specific 
endonuclease 

334107 recU Holliday junction specific 
endonuclease 

335104 gpsB Cell cycle protein 

1613503 penA Penicillin binding protein 2b 

1613770 penA Penicillin binding protein 2b 
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5.2.3 Identification of SNPs associated with cotrimoxazole non-susceptibility from whole 

genome dataset 

A GWAS for cotrimoxazole resistance was conducted using 383 isolates with a sensitive 

phenotype as controls (36%) and 690 isolates with a resistant phenotype as cases (64%). In total 

61,443 SNPs were identified with 44 SNPs significantly found to be associated with cotrimoxazole 

resistance. Of these, 36 SNPs were located in genes encoding enzymes with roles in folate 

metabolism (dhfR, fpgS and sulA) (Figure 30). The remaining SNPs were identified in intergenic 

regions (n=3) and in a single hypothetical protein (n=5). The associated QQ plot (Appendix K) 

mostly followed the expected line showing the GWAS accounted for population structure, and the 

lambda GC score of 0.86 revealed the analysis was marginally underpowered (Appendix K). A 

GWAS to identify SNPs associated with cotrimoxazole resistance was performed by Mobegi et al 

(2017) (255) and SNPs in common genes between studies is described in Appendix L. 
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Figure 30 Manhattan plots showing the statistical significance and genome coordinate of genome 

wide associations between SNPs and cotrimoxazole non-susceptibility. Genes that are specifically 

associated with cotrimoxazole resistance are labelled and their position represented by vertical 

lines in the top panel. The bottom panels show the genes in more detail, gene areas are shaded in 

grey show the position and significance of association SNPs in red. The dotted horizontal line in 

both panels represent the significance cut-off after Bonferroni correction. 
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5.2.4 Identification of SNPs associated with erythromycin non-susceptibility from whole 

genome dataset 

Erythromycin resistance data was available for 1,791 S. pneumoniae isolates, 746 were classified 

as controls with a sensitive phenotype (42%) and the remaining 1,045 isolates with a resistant 

phenotype were cases (58%). In total 64,129 SNPs were identified but only ten were significant. 

Significant SNPs were located in genes associated with peptidoglycan synthesis (pbpX, glmU), 

thiamine biosynthesis (ykoD, apbE), and in genes associated with DNA synthesis (sigA, dnaG). An 

additional association was seen in the insertion sequence ISSpn2 (Figure 31). The QQ plot shown 

in Appendix K showed normal distribution of p-values and a lambda GC value of 0.85 again 

reflects an underpowered analysis. A GWAS to identify SNPs associated with erythromycin 

resistance was performed by Mobegi et al (2017) (255) and a comparison of SNPs detected in 

common genes between studies (pbpX, ykoD, glmU, apbE) demonstrated that although there was 

an overlap in association genes detected, no common SNPs were identified (Appendix M).  
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Figure 31 Manhattan plots showing the statistical significance and genome coordinate of genome wide associations between SNPs and erythromycin non-susceptibility. 

Genes that are specifically associated with erythromycin resistance are labelled and their position represented by vertical lines in the top panel. The bottom 

panels show the genes in more detail, gene areas are shaded in grey show the position and significance of association SNPs in red. The dotted horizontal line 

in both panels represent the significance cut-off after Bonferroni correction
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5.2.5 Identification of SNPs associated with clindamycin non-susceptibility from whole 

genome dataset 

The association test of non-susceptibility for clindamycin consisted of 689 sensitive isolates as 

controls (72%) and 266 resistant isolates as cases (28%). Analysis identified 66,015 SNPs but only 

six SNPs reached significance. Association SNPs were located in the genes pbpX and mraY involved 

in peptidoglycan synthesis and in the gene lepA involved in translation (Figure 32). The QQ plot of 

p-values (Appendix K) showed population structure was accounted for successfully and the 

lambda GC score of 0.86 showed analysis was slightly underpowered. 
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Figure 32 Manhattan plots showing the statistical significance and genome coordinate of genome 

wide associations between SNPs and clindamycin non-susceptibility. Genes that are 

specifically associated with clindamycin resistance are labelled and their position 

represented by vertical lines in the top panel. The bottom panels show the genes in 

more detail, gene areas are shaded in grey show the position and significance of 

association SNPs in red. The dotted horizontal line in both panels represent the 

significance cut-off after Bonferroni correction 
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5.2.6 Identification of SNPs associated with chloramphenicol, doxycycline and tetracycline 

non-susceptibility from whole genome dataset 

The GWAS for chloramphenicol resistance consisted of 133 controls with a sensitive phenotype 

(75%) and 45 cases exhibiting a resistant phenotype (25%). In total 65,104 SNPs were identified 

however only four of these were significant. Two SNPs were located in a hypothetical protein, and 

the remaining two were located in the clpX gene encoding for an ATP dependant protease (Figure 

33). The step wise pattern seen in the QQ plot and the lambda GC of 1.09 (Appendix N) show that 

population structure had not been appropriately accounted for in this analysis and remained so 

even after p-values had been corrected by inflation γ (Appendix N). 

The GWAS to identify SNPs associated with doxycycline resistance consisted of 44 controls with a 

sensitive phenotype (41%) and 63 cases exhibiting a resistant phenotype (59%). Following analysis 

63,105 SNPs were identified however none exceeded the significance threshold. QQ plots 

(Appendix O) showed p-values in the doxycycline GWAS deviate under the line of best fit slightly, 

and that there is slight inflation as the lambda GC score is 1.12 indicating the population structure 

may not have been fully corrected. 

The GWAS for tetracycline resistance consisted of 144 sensitive controls (40%) and 212 (60%) 

resistant cases. An initial 64,416 SNPs were identified however no SNPs were identified to be 

significantly associated. Tetracycline population structure was correctly accounted for, it strongly 

adhered to the line of best fit and had a good lambda GC score of 1.02 (Appendix O). 
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Figure 33 Manhattan plot showing the position of significant associations in the genome and their 

relative p-value in chloramphenicol GWAS. Manhattan plots showing the statistical 

significance and genome coordinate of genome wide associations between SNPs and 

chloramphenicol non-susceptibility. Genes that are specifically associated with 

chloramphenicol resistance are labelled and their position represented by vertical 

lines in the top panel. The bottom panels show the genes in more detail, gene areas 

are shaded in grey show the position and significance of association SNPs in red. The 

dotted horizontal line in both panels represent the significance cut-off after 

Bonferroni correction. 
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5.2.7 GWAS of penicillin non-susceptibility using recombination-free genomes 

To determine whether the SNP changes in genes implicated in non-susceptibility to penicillin 

occurred as a result of recombination or mutation, the GWAS using the SvIR classification was 

performed using the recombination-free dataset generated in section 5.2.1.1. Following analysis, 

1,798 association SNPs were identified only a single significant SNP located in the ftsK gene was 

identified (Figure 34). The QQ plot (Appendix P) showed successful correction of population 

structure and the lambda GC score of 0.89 revealed analysis was slightly underpowered.  
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Figure 34 Manhattan plot showing significant association SNP in SvIR classification of GWAS from 

recombination-free datasets. Manhattan plot showing the statistical significance and 

genome coordinate of genome wide associations between SNPs and penicillin non-

susceptibility in SvIR analysis of recombination-free genomes. The gene specifically 

associated with penicillin resistance is labelled and its position represented by the 

vertical line. The significant association SNP is coloured red and the dotted horizontal 

line represents the significance cut-off after Bonferroni correction. 
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5.3 Discussion 

It has been shown that high proportions of the S. pneumoniae genome can be altered by 

recombination. This work aimed to identify how recombination impacted the population 

structure of S. pneumoniae isolates from Singapore. The purpose of this was to ensure population 

structure was correctly determined prior to performing a GWAS on antimicrobial resistance. This 

was done through the initial identification and removal of recombination from 2,059 S. 

pneumoniae isolates to generate a recombination-free dataset. The population structures 

between this, and the S. pneumoniae dataset consisting of whole genome data, was compared 

using phylogeny and PCA. Phylogenetic trees created for both datasets visually looked very similar 

and their similarity to a phylogeny representative of core genes suggests core genes remained the 

predominant influence to determine phylogeny. In addition, the same isolates composed the 

main population cluster of PCA in both datasets suggesting areas of recombination were not used 

in population clustering by PCA.  

Sufficient laboratory data was available to independently identify SNPs associated with the 

phenotypes of antimicrobial sensitivity, intermediate resistance, and resistance to penicillin. 

Results revealed SNPs associated with an intermediate resistant only phenotype were present in 

genes involved in recombination and cell wall synthesis. SNPs associated with a resistant 

phenotype to penicillin, clindamycin, and erythromycin were identified in genes involved in 

peptidoglycan and cell wall synthesis. Additional resistant determinants to erythromycin were 

identified in genes involved in thiamine biosynthesis and DNA synthesis, and, in clindamycin 

resistance, in genes involved in translocation. 

The GWAS identifying penicillin non-susceptibility determinants using the recombination-free 

dataset saw the removal of all previous significant associations. This is conclusive that all these 

SNPs were located in areas of the genome which at some point had recombined in at least one of 

the 2,059 S. pneumoniae isolates. 

5.3.1 The effect of recombination on population structure 

Analysis in Chapter 4 showed ClonalFrameML was the most suitable recombination program to 

apply to this dataset of S. pneumoniae isolates. Interpretation following recombination analysis 

showed a large proportion of the genome was identified as recombination in at least one isolate 

(86%). The large number of subsets processed provided good representation of each isolate in the 

analysis.  
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Phylogenies from whole genomes, recombination-free genomes and core genes were similar by 

approximately 70%, which showed construction of all three must be largely based on the core 

genome. Despite these similarities, it was hypothesised that population structure may differ 

between whole genome and recombination-free genomes which may influence the downstream 

association test. The program popPUNK was specifically designed to determine population 

structure of S. pneumoniae isolates and hence, was used initially to define population structure 

from datasets. Isolates were clustered into components based on similarities in both core and 

accessory genomes relative to the rest of the population (212). PopPUNK clustered both whole 

genome and recombination-free datasets into a large number of components, too many to use in 

the population structure corrections and with too few isolates within the component to provide 

power to discover associations. Due to this, principal component analysis (PCA) was used to 

identify sub-structures in the datasets. PCA captures the inferred genetic ancestry of individuals 

into principal components which can then be used as fixed effects in a regression based test for 

association to account for population structure (319). The PCA plots showed there was far more 

divergence in the whole genome dataset as the scale of the PC1 and PC2 axes was much greater 

than that of the recombination-free dataset (Figure 21). Although there were far fewer SNPs to 

represent variance in the recombination-free dataset, it showed that much of the variance within 

the population is described by recombination sites. There was a large amount of similarity in the 

isolates that were grouped together to make up PCA clusters between datasets. This shows that 

removal of recombination areas did not affect the inclusion of isolates within clusters and further 

reinforces initial observations seen in the phylogeny comparison, that it was largely core genes 

that informed clustering.  

5.3.2 Genome wide association studies to identify SNPs associated with antimicrobial 

resistance 

Optimally, in PCA the first few principal components (PCs) encompass most of the variation in the 

data however, in these datasets the first 10 PCs only accounted for <60% of total variance (Figure 

22). Rather than including a large number of principle components as fixed effects in the 

regression model, the linear mixed model software GEMMA (213) was used to test for 

association. This method has shown good performance in modelling the dependence structure of 

the dataset as it is able to capture both population structure and kinship (313, 325, 326). It 

explicitly models pairwise relatedness between all individuals to determine covariance and 

regresses the phenotype on principal components of the genotype matrix as random rather than 

a fixed effect (327). QQ plots were generated following each analysis to check the correction for 

population stratification as deviation from the reference line can reflect systemic inflation of the 
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test statistic (328). QQ plots of p-values from the penicillin, cotrimoxazole, erythromycin, and 

clindamycin association studies showed population stratification was accounted for as there was 

an excess of low p-values across all SNPs which have not reached significance and largely follow 

the reference line. The point at which the p-values depart from this distribution showed inflation 

only of the SNPs with high p-values, which were considered to be associated with the phenotype 

of interest. The lambda GC calculation gave a direct measure of the inflation in the sample and 

should be 1 in the case of the null. Inflation would be indicated for values >1.05 (328) but the 

majority of association studies performed here proved to be underpowered. Selection of an 

appropriate statistical significance threshold to differentiate between true positives, false 

positives or false negatives is critical in GWAS. Although there have been many statistical tests 

proposed to account for multiple testing (329-331), the Bonferroni correction is considered the 

most conservative in its selection of a threshold p-value. This is because it maintains the 

assumption that every genetic variant tested is independent of one another (332). Correcting for 

multiple testing does limit type 1 errors however, it is not without limitation as it also inflates type 

2 errors (333). 

5.3.2.1 Penicillin 

Penicillin susceptibility data was available for 1,670 pneumococcal isolates and phenotypes were 

classified as sensitive, intermediate or resistant by hospital providers. As reasonable numbers of 

each category were present, a novel approach was implemented which performed the GWAS 

using different combinations of phenotypes to classify cases and controls. This provided the 

opportunity to identify SNPs associated with an independent intermediate resistant phenotype as 

well as the resistant phenotype. 

The mode of action for penicillin is inhibition of cell wall biosynthesis, therefore it was 

encouraging to identify significant associations in genes that contribute to this pathway such as 

pbpX, penA, ponA (also referred to as pbp2x, pbp2b, pbp1a) in all classifications of GWAS 

performed (SvR, SvIR and SvI). Many penicillin binding proteins (PBPs) are present in S. 

pneumoniae. A higher number of association SNPs were identified in these genes than any other, 

which could signify them to be the primary determinant of penicillin resistance (115-117). As 

penicillin has historically been given as first line treatment, SNPs associated with resistance in 

these genes could be reflective of prescribing policies. Associations in these genes were also 

identified by the independent studies (179, 255, 292) giving strong evidence to their role in 

resistance. Mutations in PBP that result in structural changes may impact drug binding and 

subsequently be beneficial to the organism by resulting in varying levels of resistance.  
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 Association SNPs were identified in the gene rsmH which functions upstream of the PBPs to 

encode transferases of the peptidoglycan biosynthesis pathway during cell wall biosynthesis. 

Associations within this gene were only identified in the SvIR and SvI classification of cases and 

controls, and therefore could be indicative of an association to an intermediate resistance 

phenotype within this dataset. Chewapreecha et al (2014) also identified associations in this gene 

(referred to as mraW) (179). However, they were associated with a resistant rather than 

intermediate resistant phenotype. It may be that the modification to the pathway was slightly 

different between pneumococcal populations and that SNPs within this gene could result in either 

an intermediate or a resistant phenotype. Further research would be required to support this 

theory. The identification of significant SNPs in additional genes that encode transferases of 

peptidoglycan synthesis were mraY and rlmL, and these reinforce SNPs in the same genes also 

identified in (179, 255) respectively. The present study identified association with mraY only in the 

SvI classification of cases and controls. The reason why the SNPs were not also identified in the 

SvIR analysis could be that the SNPs from resistant phenotypes are potentially reducing the p-

value of SNPs in the SvIR classification resulting in them not exceeding the threshold for 

significance. Associations in the gene rlmL were only present above significant thresholds in the 

SvR and SvIR classification of cases and controls and not the SvI classification, indicating it could 

have been associated only with a resistant rather than an intermediate resistant phenotype. 

Association SNPs were also found in a range of genes involved in other processes including the 

recombination pathway, cell division and in carbohydrate metabolism.  

The gene gpsB is important in cell wall growth and viability (334). Like with rlmL, a considerable 

number of SNPs were identified in this gene in the SvIR and SvR classification of cases and 

controls, and the absence of SNPs in the SvI classification suggested an association with a 

resistant rather than intermediate phenotype. Associations were identified in this study and in the 

studies by Chewapreecha et al (2014) and Mobegei et al (2017) (179, 255), giving additional 

confidence to the association seen in this gene. GpsB is putatively essential in S. pneumoniae and 

experimental evidence has shown division defects following gene depletion, and significant cell 

elongation and cessation of growth similar to cell deformation following methicillin use (335). 

Associations in the gene ftsL which has similar function to gpsB, was also identified in the studies 

by Chewapreecha et al (2014) and Mobegei et al (2017) (179, 255). There may be some additional 

interactions occurring between the genes gpsB, ftsL and the PBPs that have a direct or an indirect 

effect on penicillin susceptibility. 

The link between recombination and the acquisition of non-susceptibility to antimicrobials has 

been well investigated and described, and the associations present in genes of the recombination 

pathway could be modifications that enhance or facilitate this process. Significant association 
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SNPs were identified in the recU gene of the recombination pathway in this study and by 

Chewapreecha et al (2014) and Mobegei et al (2017) (179, 255) which again gives confidence to 

the validity of this association with penicillin non-susceptibility. A number of SNPs were identified 

in an additional gene of the recombination pathway recR but only from the SvI analysis. This could 

indicate an association to an intermediate phenotype only, which does not reach significance in 

the SvIR analysis. Another gene with significant associations novel to the SvR classification of 

cases and controls is in rhaB. The gene is involved in carbohydrate degradation but in this case as 

only a single SNP was identified, which barely reached the threshold for significance, validity 

would need to be confirmed.  

5.3.2.1.1 Further comparison between the present study and Chewapreecha et al and 

Mobegi et al  

Both studies by Chewapreecha et al (2014) and Mobegei et al (2017) performed a GWAS on 

penicillin non-susceptibility and found associations in other genes outside the peptidoglycan 

pathway not detected in this analysis (Table 12) (179, 255). The genes clpC_1 and clpX (clpC_1 

referred to as clpL in original studies) are a major heat shock protein and chaperone which have 

the capacity to interact and stabilize pbp2x. This could aid in resistance and experimental 

evidence showed mutants lacking this gene can be more susceptible to penicillin (166). 

Associations in the metabolic gene dhfR (referred to as dyr) involved in resistance to trimethoprim 

and cotrimoxazole was identified from both studies (179, 255). This gene affects the DNA 

synthesis pathway rather than cell wall synthesis which is the mode of action for penicillin. 

Association identified in this gene could be from the misuse of antimicrobials in Thailand and the 

USA where the pneumococcal populations originated. The most common antimicrobials for 

treating upper respiratory tract infections in Thailand are beta lactams and cotrimoxazole, and if 

both are used in a short time frame there is the potential to drive the co-selection of resistance to 

different classes of antimicrobials (179). The same findings were not identified from this study 

however, it was slightly under powered and therefore possible additional associations may be 

present but not captured with the applied level of significance. 

The overlap in genes and SNPs between independent studies validates and gives confidence in 

results. There were only 6 SNPs that were common in all studies even though associations in 

many of the same genes were identified. As the same isolates were used in the Mobegi et al 

(2017) analysis (255) and Chewapreecha et al (2014) (179) it was un expected to see only 15 SNPs 

commonly identified between them and 55 SNPs commonly identified between this analysis and 

Chewapreecha et al (2014) (179) (Figure 29). The total number of SNPs associated with penicillin 

resistance in this analysis was much higher than that reported from other studies (179, 255). 
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Before significance thresholds were applied >60,000 SNPs were identified in this analysis whereas 

in the Massachusetts cohort (255) 4,317 SNPs were reported and in the Maela cohorts (179) 

1,721 and 858 SNPs were reported. The differences might be reflective of the differences in 

methodology as (179, 255) use the Cochran-Mantel-Haenszel to test for associations between 

antibiotic resistance phenotypes and SNPs whereas the genome-wide efficient mixed-model for 

association was used in this study. Alternatively, it could be due to inherent characteristics of the 

isolates tested as cohorts comprise of carriage, disease, or a mixture of these from different 

geographical locations which are likely to have differing levels of genotypic variance. In all three 

studies it is likely that some of the association SNPs identified are not causative of antimicrobial 

non-susceptibility but rather they are linked to causative SNPs.  

It has been shown that the classification of phenotypes that constitute cases and controls can 

alter the subsequent association SNPs that are identified. Using different classifications in this 

penicillin GWAS has shown consistencies in association genes but has also highlighted the 

addition or loss of associations in genes between the classifications. In this analysis, there is no 

evidence that the phenotype is dependent on the number of SNPs as in both the ponA and penA 

genes there was a greater number of SNPs present in the SvI classification than the SvR. When an 

association SNP is identified only in the SvI classification of this analysis and the SvR classification 

of the work of others (179, 255), it could be due to the independent evolution of individual 

datasets. Depending on the specific mechanisms of resistance that have evolved, what might 

result in full resistance in one pneumococcal population may constitute only intermediate 

resistance in another. Over time it may be these SNPs are associated only with the resistant rather 

than the intermediate phenotype. Depending on what antimicrobial data is available for 

populations, different classifications of cases and controls might be beneficial in determining 

novel or emerging resistance mechanisms within specific populations.  

For the remaining antimicrobials tested, the genome wide association analysis did not include 

isolates with an intermediate phenotype because numbers were small and the effect of these on 

the p-values for the resistant phenotype was not fully understood. 

5.3.2.2 Cotrimoxazole 

 Cotrimoxazole targets bacterial DNA synthesis by sequential blockade of folic acid enzymes in the 

synthesis pathway. SNPs associated with cotrimoxazole resistance were predominantly present in 

the genes sulA, fpgS and dhfR that produces enzymes dihydropteroate synthase, 

folypolyglutamate synthase and dihydrofolate reductase respectively; all of these are involved in 

folate metabolism. Associations in these genes were also identified by the independent study 

performed by Mobegi et al (2017) (255) (Appendix L) and changes on target enzymes dhfR (also 
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referred to as dyr) and sulA (also referred to as folP) have been shown to enhance resistance to 

cotrimoxazole (336, 337) giving confidence to results. 

5.3.2.3 Macrolides 

Macrolides act by inhibiting protein synthesis of bacteria. Therefore, common mechanisms of 

resistance are to alter the ribosomal target site to prevent macrolide binding or to export 

antibiotic via an efflux pump. The analysis performed in this study identified significant 

associations in genes involved in the biosynthesis of thiamine ykoD and apbE. The ykoD cistron of 

the ykoFEDC operon putatively encodes the ATPase component of a unique thiamine-related ABC 

transporter (338) and apbE encodes the thiamine biosynthesis lipoprotein. SNPs in genes affecting 

this pathway could be associated with resistance as thiamine is an important nutrient for the 

synthesis of bacterial capsular polysaccharide. Changes could affect the ability of the enzyme to 

penetrate the bacterial cell membrane and therefore block subsequent binding to its internal 

ribosome. The identification of associations in genes outside this pathway and in genes of 

peptidoglycan synthesis were also observed. They included the glmU gene which encodes for a 

bifunctional enzyme with acetyltransferase and uridyltransferase activity (339), and in the gene 

pbpX previously described to be associated with penicillin resistance. The mode of action for 

erythromycin differs to that of penicillin and does not rely on disrupting the peptidoglycan 

pathway. Therefore, the effect of these mutations on erythromycin resistance was not fully 

understood. Mutations in these genes have however, been independently identified by both this 

study and in Mobegi et al (2017) (255) suggesting an association to the resistant phenotype might 

be true. Significant association SNPs in genes involved in DNA replication (sigA, dnaG) and in the 

insertion sequence ISSpn2 were identified, and associations in these genes are unique to this 

study. SigA encodes RNA polymerase major sigma factor involved in bacterial transcription, and 

mutations in this could affect the binding of the macrolide to its target site on the ribosome. The 

gene dnaG encodes DNA primase, which if inhibited by mutation, is expected to halt DNA 

replication and, as a result, cell proliferation (340). Although erythromycin targets protein 

synthesis, there may be some benefit in the modification of genes associated in the DNA synthesis 

for the organism. Another explanation could be that it is a result of an epistatic relationship with 

another antibiotic, for example fluroquinolones that have a direct effect on bacterial DNA 

synthesis. An insertion sequence is a bacterial mobile DNA element and pneumococcal genomes 

often have an over distribution of these elements which can affect antimicrobial resistance (341, 

342).  
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5.3.2.4 Clindamycin 

Clindamycin is an antibiotic active against Streptococci and indicated for use in a range of 

infections including septicaemia, peritonitis and intra-abdominal infection. It is part of the 

lincomycin class of antibiotics and binds to bacterial 50s ribosomal subunit to interfere with 

bacterial protein synthesis (343). This was the first association study performed which identified 

associations with clindamycin resistance and genes such as pbpx and mraY. These genes are not 

involved in the protein synthesis pathway but instead are involved in the peptidoglycan 

biosynthesis pathway and a transferase respectively. Associations in these genes were seen for 

other antibiotics such as penicillin. Therefore, they could be linked or have some indirect effect in 

clindamycin resistance. The association was identified with a novel gene lepA encoding elongation 

factor 4 (344), a ribosomal dependent GTPase essential in translation elongation. The gene is 

required for protein synthesis and therefore, adaptation may support its association with a non-

susceptible phenotype. With only one association SNP present in the gene, and no reinforcement 

from other studies, it is difficult to determine the validity of this association with the resistance 

phenotype. 

5.3.2.5 Chloramphenicol 

The mode of action of Chloramphenicol is to inhibit the peptide transferase activity of the 

bacterial ribosome which prevents protein chain elongation and therefore protein synthesis. It is a 

widely prescribed antimicrobial used to treat ear and eye infections. Only two significant 

associations in the gene clpX, a class of ATPases that aid in tolerance to environmental stresses 

and cell survival (345), were identified from the GWAS. Interpretation of the QQ plot generated 

from association p-values highlighted that population structure had not successfully been 

accounted for in the analysis, therefore it is not possible to determine whether these were real 

associations with resistance. This remained the case even after the attempt to rectify results by 

correction of the inflamed population statistic. Further investigation as to why the population 

stratification was not successful only for this antibiotic showed that 30/45 isolates with the 

resistant phenotype were clustered together in cluster 6 of the whole genome PCA (Figure 21). 

This is one of the caveats to performing a GWAS, sometimes cases intrinsically group together in 

the population which makes it very difficult to correct for in the methodology. No significant SNPs 

associated with doxycycline or tetracycline were identified in this study. These two analyses had 

the smallest number of cases for all those tested however, neither study showed it to be 

underpowered by a lambda GC score <1. It is likely that based on the isolates included in the cases 

no SNPs present had a strong enough association with the non-susceptible phenotype.  
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5.3.2.6 The role of recombination in the genetic association of penicillin non-susceptibility 

Performing genome wide association analysis to determine associations to a range of clinically 

relevant antimicrobials resulted in the identification of a number of significant SNPs in genes 

essential to bacterial pathways. Many of these have the potential for contributing to the non-

susceptible phenotype and these observations confirm findings of previous work in the field. To 

further the knowledge of whether the association SNPs identified are present as a result of 

mutation or recombination, a final GWAS on penicillin non-susceptibility was performed on the 

recombination-free genomes generated in section 5.2.1.1. Results from the analysis showed 

removal of the majority of signal previously identified in the penicillin GWAS as only 1,798 rather 

than 63,570 associations were identified. After significance thresholds were applied, only a single 

SNP remained in the gene ftsK which is known to produce a multifunctional protein that acts in 

cell division and chromosome segregation in E. coli (346). The direct involvement of this gene in 

penicillin resistance was questionable as it was a single SNP with a relatively low p-value and 

therefore would need validation. Results following this final analysis showed most of the genes 

found to have associations with a non-susceptible phenotype to penicillin are also sites of 

recombination. This implicates the importance of recombination in determining the resistance 

profile of pneumococcus because mechanisms of resistance can be transferred as whole genes, 

mosaic segments within genes, and as we have seen from this analysis can also transfer single 

mutations in a larger area of recombination that could be implicated in novel mechanisms of 

resistance. Some resistance-causing mutations were previously known and result in ‘mosaic 

genes’ such as the PBP. This research has highlighted the potential of a wider range of genes that 

exhibit a mosaic appearance through recombination, and which potentially contain resistance 

conferring mutations. 

The true effect of some of these resistance conferring mutations is hard to determine because 

through epistasis, cell fitness is dependent on the genetic background of the individual strain and 

additional mutations or compensatory adaptations present within the cell could be affecting 

overall fitness (347). It is possible that combinations of some of the mutations are commonly 

detected and required for the non-susceptible phenotype. Other mutations might be not 

associated with the phenotype at all and instead have some compensatory role affecting cellular 

fitness.  

 



Chapter 5 

146 

5.4 Conclusions and future work 

A comparison of population structures generated from whole genome data and recombination-

free genome data showed that both cluster similar isolates together. Phylogenies of these 

datasets and that of the core genome shared 70% similarity showing that the areas of the genome 

affected by recombination are not the drivers that determine phylogenies, and rather its variation 

in core genes.  

Genome wide associations were performed using GEMMA to identify significant SNPs associated 

with a non-susceptible phenotype to a variety of antibiotics including penicillin, cotrimoxazole, 

erythromycin, doxycycline, clindamycin, chloramphenicol and tetracycline. SNPs associated with a 

resistant phenotype were identified for all these antimicrobials except doxycycline and 

tetracycline. It was not possible to correctly account for the population structure in the analysis 

for chloramphenicol resistance due to the intrinsic similarity of cases. Separate analysis for 

penicillin using case classifications as intermediate resistance, resistant, and a combination of 

intermediate resistance and resistant, highlighted significant association SNPs in slightly different 

genes, and this might be a consideration for future analysis in bacterial GWAS if the necessary 

antimicrobial data is available. For penicillin, the genes, when mutated, that are suggested to 

convey full resistance are gpsB and rlmL as they were not detected in the SvI GWAS classification. 

Those that could convey an intermediate resistance phenotype include mraY, recR and rsmH. 

Genes associated with either an intermediate resistant, or resistant phenotype were pbpX, penA, 

ponA, and recU. 

Associations in genes associated with folate metabolism sulA, fpgS and dhfR were identified 

following the GWAS for cotrimoxazole resistance and modifications in this essential pathway are 

logical as in order for bacteria to survive they still need to perform these processes even in the 

presence of the antibiotic. GWAS for both clindamycin and erythromycin identified association 

SNPs in genes that are not directly involved in the mode of action of the antimicrobial, for 

example in genes of the peptidoglycan pathway or in DNA synthesis, and these could be 

representative of compensatory mutations acting indirectly on the phenotype. It is hard to 

determine complex interactions that occur between genes directly from genome sequences as 

association SNPs identified could be interacting epistatically with the resistant phenotype. In 

addition epistasis is known to occur between the PBP genes and that the effect of a single 

mutation, for example the resistant phenotype, is dependent on the presence or absence of 

mutations in other PBP (348). 

The final aim of the analysis was to identify whether the SNPs associated with the non-susceptible 

phenotype originated purely from evolution rather than recombination. The additional GWAS for 
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penicillin non susceptibility on recombination-free genomes showed previously identified 

associations were lost. From this it could be concluded that although specific mutations can 

contribute to the resistance phenotype, they are present on areas of the genome that have also 

undergone recombination by at least one isolate within the dataset. Weighting the associations 

by the frequency that the loci are also seen within a recombination block will be useful to 

determine whether the SNP is associated more with natural mutation or recombination. 

Growing knowledge in the field has led to the development of new programs and tools that claim 

to be able to detect associations whilst correctly accounting for bacterial population structures 

such as PYSEER (349) and BUGWAS (294). In addition to using SNPs to identify associations, these 

can use Kmers which allows the identification of multiple forms of genetic variation such as genes, 

INDELS, copy number variants and sequence insertions. This method would also capture multi-

allelic SNPs/genes that might be responsible for a particular phenotype. Methodologies that use 

kmers however may require additional computational resources as they are less compact than 

SNPs. Longer kmer length increases sensitivity of the tests, but in turn significantly increases the 

requirement of memory and processor usage. Results following Kmer based analysis can be 

complex and hard to interpret, therefore an alternative option which also captures multiple types 

of variation could be the program DBGWAS. This implements De Bruijn graphs in its GWAS and 

claims easy interpretation and visualisation of results. Further work applying such programs to 

large datasets of clinical isolates like this one could prove useful in further confirming or 

identifying new mechanisms associated with resistance or virulence. A kmer based rather than 

SNP based approach performed in future work would allow the comparison of results from 

different methodologies on the same dataset. If kmers incorporated a number of SNPs this may 

collectively enhance power of previously individual SNPs and highlight areas most suitable for 

further investigation. This could give more confidence, or see the removal of, some of the single 

borderline significant SNPs identified, such as rsmH, lepA and rhaB. As all the GWAS with 

significant associations to antimicrobial non-susceptibility were underpowered, another way 

more power could be generated would be to use a larger dataset, with Singapore data combined 

with datasets used by other authors Chewapreecha et al (2014) and Mobegi et al (2017) (179, 

255). It would be necessary to ensure population structure was correctly accounted for in what is 

likely to be an even more diverse dataset, and whether analysis should be extended only to 

disease-causing isolates would need to be considered. Estimations as to whether the effect size of 

a single variant would be strong enough to change the phenotype could be made from this 

analysis to identify which candidate SNPs/loci should be prioritised for future functional 

characterisation. Six SNPs were identified to be associated with penicillin resistance from critical 

processes such as the cell cycle pathway, recombination pathway and cell wall biosynthesis from 
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this study and two independent studies (179, 255), which gives a high degree of confidence to 

these results. Functional verification of candidates could be performed by knock-out experiments 

to establish causality or by using transposon insertion mutations and then testing the 

susceptibility profile of the mutants. This would identify the false positivity rate of the 

methodology and functionally characterise candidate SNPs/loci. 
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Chapter 6 Discussion 

6.1 Introduction 

Pneumococcal disease caused by the bacterium S. pneumoniae is a major cause of morbidity and 

mortality, especially in the young and elderly. It remains a leading cause of death worldwide even 

with the availability of antibiotics and vaccines. This highlights the need to monitor vaccine 

efficacy within specific populations and to explore potential new mechanisms of drug resistance 

to effectively control future disease. Geographic heterogenicity in serotype and resistance is 

known, therefore an investigation of these from a local collection is very valuable. This work used 

whole genome data from a large collection of disease-causing S. pneumoniae isolates (n=2,059) 

from Singapore to obtain insight into the serotype distribution responsible for disease, and to 

estimate levels of vaccine efficacy. In addition, data regarding susceptibility to antimicrobials for 

the S. pneumoniae isolates allowed levels of resistance to be determined within this collection. 

Data generated proved the first and second specific hypotheses to be true as there were both 

epidemiological changes, and changes in the resistance profile of disease-causing isolates over 

time in Singapore. The paired whole genome data and antimicrobial susceptibility data provided 

the opportunity to perform a genome wide association study to identify single nucleotide 

polymorphisms (SNPs) associated with a phenotype of resistance to clinically relevant 

antimicrobials. To date, a study such as this that utilises a large collection of disease only isolates, 

from a single geographic location has not yet been performed. The third specific hypothesis was 

also proved to be true as this work identified SNPs with significant associations to antimicrobial 

resistance to numerous clinically used antibiotics.  

6.2 Key findings 

Isolates of disease-causing S. pneumoniae were collected retrospectively from major hospitals in 

Singapore and sequenced as described in (182) and in Section 2.1. This resulted in a dataset 

consisting of 2,059 isolates responsible for causing pneumococcal disease between 1997-2016 

which included isolates that infected an otherwise sterile site, resulting in invasive pneumococcal 

disease (IPD), and those that caused infection in a non-sterile site, resulting in non-invasive 

pneumococcal disease (non-IPD).  
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6.2.1 Epidemiology 

Differences in the polysaccharide capsule of S. pneumoniae enable its differentiation into 

serotypes. This study identified a total of 64 different serotypes from the disease-causing isolates; 

the most frequently identified serotypes were 19F (n=365, 18%), 23F (n=244, 12%), and 14 

(n=196, 10%), which is consistent with findings from other studies from Singapore (224). These 

serotypes, covered by the PVC7 vaccine, all followed a decreasing trend in the proportion of 

infection they caused across the study period. Other commonly isolated serotypes were serotype 

3 (n=158, 8%) and 19A (n=161, 8%) which are present in the PCV13 vaccine but not the PCV7 

vaccine. These showed an increasing trend across the study years and justify the need to extend 

coverage from PCV7 to PCV13. Serotype 6E (n=143, 7%), also frequently identified from this 

dataset, is not included in the PCV vaccines. Over the study period the proportion of disease 

caused by this serotype decreases, however, as it is still frequently associated with infection this 

should continue to be monitored. Serotypes found to have a high odds ratio (OR) in causing 

disease in the adult population relative to the paediatric population included serotypes 1, 8, 7A, 

12F, 4, 6D, and 20. Serotype 6B had a higher OR for disease in paediatric relative to adult 

populations, and similar findings for the age differentiation in serotype 6B and serotype 8 were 

also reported globally from (224) and (72) respectively. 

Certain serotypes are known to be associated with an increased invasive potential, and this study 

showed that serotypes 4, 8, 20, 7A, 14, and 19A  had a high OR for IPD relative to non-IPD. These 

findings are consistent with those from datasets of other geographical locations including 

England, Portugal, Switzerland, USA, and Finland (31, 32, 217, 219, 221). In contrast, serotypes 

23F, 15A, and 19F were associated with not causing IPD. Generally, the proportion of total 

infections caused by serotypes with a higher invasive potential was low (≤3%); in contrast, 

serotypes 14 and 19A caused 10% and 8% of total infections, respectively. Vaccine coverage 

provided by PCV7 ranged across the study duration from 21% - 76%, for PCV13 from 50 – 86%, 

and for PPV23 at 56% - 89%. This shows that these vaccines, which were originally designed for 

the US and European markets, are at present predominantly targeting the correct serotypes 

responsible for causing a large proportion of disease in Singapore. 

Resistance data to a number of antimicrobials was provided by hospital laboratories which was 

consistent with previous reports of resistance in Singapore (Table 2). Overall resistance to 

cotrimoxazole was highest (63%), followed by erythromycin (58%), tetracycline (58%), and 

doxycycline (58%). Although resistance to cotrimoxazole and erythromycin show comparatively 

higher proportions of isolates with resistance than clindamycin (28%), when the proportion of 

isolates was compared between the study years, it was shown that resistance was decreasing for 
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cotrimoxazole and erythromycin but increasing for clindamycin (Figure 8). Of the 31% of isolates 

with penicillin resistance, 74% exhibited additional resistance to both cotrimoxazole and 

erythromycin. The serotype that is most commonly identified with a resistance phenotype to all 

but doxycycline was serotype 19F. This again reinforced findings from Chong et al (2008) who also 

identified serotype 19F as a predominantly resistant serotype (229). Antibiotic use is known to 

drive antibiotic resistance and therefore antibiotic prescribing data for the same period in 

Singapore could have provided context for the changes in resistance over time. If a reduction in 

prescribing of cotrimoxazole or erythromycin for example was observed, this could highlight the 

success of effective antibiotic stewardship efforts.  

6.2.2 Identification of recombination from clinical isolates 

One of the main ways that this organism remains such a considerable burden to healthcare is due 

to the genomic plasticity of S. pneumoniae. Being naturally competent, it can acquire exogenous 

DNA by horizontal transfer and incorporate genetic material into its genome. The acquisition of 

such material, particularly of genes associated with drug resistance or capsular polysaccharide 

genes, can have a direct effect on the current preventative measures used to control disease such 

as vaccines and/or antimicrobials. Recombination is a major contributor to this and can result in 

capsule switching events between organisms, leading to a loss of protection from the vaccine or 

the transfer of resistance genes, such as ermB, which result in resistance to antimicrobials used to 

treat infection. Other resistance determinants have been identified from single, or the 

accumulation of, mutations. Such mutations associated with resistance to antimicrobials can be 

identified through a genome wide association study. However, to avoid spurious results, it is 

necessary to separate mutations that cause a phenotype from non-causal linked mutations. To do 

this, inherent similarities and differences between isolates resulting from clonal expansion must 

be accounted for by determination of and controlling for the population structure. It was 

hypothesised that as these mutations are examples of vertical inheritance, the best way to 

identify SNPs associated with antimicrobial resistance was to base the population structure on 

vertical inheritance. High levels of recombination described in S. pneumoniae may influence 

estimations of population structures, therefore, the initial investigation was to determine the best 

way of identifying areas of recombination from genomes, and then compare allocation of isolates 

to population clusters based on recombination-free genome data.  

One of the main aims was to compare the output following recombination analysis by Gubbins 

and ClonalFrameML to select the program most suitable to identify all areas of recombination in 

the dataset of 2,059 clinical S. pneumoniae isolates. Once identified, these areas were to be 

removed to compare population structures of isolates based only on vertical inheritance, with 
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that of whole genome data which included horizontal inheritance from recombination. Results 

following analysis showed ClonalFrameML to be the most appropriate program to use. Firstly, it 

was shown that a similar sequence to that containing recombination was required to be present 

in the dataset to successfully detect an artificially introduced recombination event. As there was a 

range of diversity in the isolates this may pose some limitation to recombination detection. 

ClonalFrameML was able to process larger datasets which increased the likelihood of the inclusion 

of a similar sequence and successful recombination detection. In addition, ClonalFrameML was 

shown to be able to distinguish between smaller recombination sites as opposed to Gubbins 

where this was grouped into one recombination event, which consequently reduces the 

proportion of the genome incorrectly identified as recombination. This larger proportion of the 

genome that would remain after the removal of recombination events may contain valuable data 

which influences determination of population structure. 

6.2.3 GWAS to identify SNPs association with antimicrobial resistance 

Following recombination analysis of the clinical isolates, recombination events were removed, 

and these recombination-free genomes used to perform a principal component analysis. The 

population structures between isolates in the dataset could then be visualised and compared with 

clustering generated from whole genome data. The same isolates were predominantly clustered 

together in both datasets which suggested data present in the sites of recombination was not 

used to inform isolate allocation a specific cluster. Although isolate allocation to the cluster 

remained the same between both the whole genome and the recombination-free datasets, a 

large proportion of the total variance was not captured in the first ten principal components in 

either, therefore it was not appropriate to perform the GWAS based on these clusters. Instead, a 

kinship matrix was generated using GEMMA, a genome wide efficient mixed model analysis 

program to identify and account for population structure in its subsequent test for association 

and this was possible from the complete dataset. GWAS to identify SNPs associated with non-

susceptibility to penicillin, erythromycin, cotrimoxazole, doxycycline, clindamycin, tetracycline, 

and chloramphenicol was performed using GEMMA. Additional classifications of cases and 

controls were used in the penicillin GWAS to identify SNPs specifically associated with an 

intermediate resistant, resistant phenotype or both. Many of the SNPs identified were located in 

genes involved in the target site for the specific antimicrobial. For penicillin this included genes in 

the cell wall and peptidoglycan biosynthesis (pbpX, ponA, penA, gpsB, rlmL, rsmH, mraY) however, 

SNPs were also present in other genes such as those involved in the recombination pathway 

(recU, recR). SNPs in some of the genes involved in peptidoglycan synthesis were also present for 

other antimicrobials such as erythromycin and clindamycin. Reasons for this could be due to 
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linkage within the genome, co-evolution of resistance mutations or alternatively could be 

examples of compensatory mutations. The GWAS for cotrimoxazole resistance identified SNPs in 

genes involved in folate metabolism (dhfR, fpgS, sulA) which coincides with the antimicrobial 

target of action on DNA synthesis. Additional SNPs identified in the erythromycin GWAS were 

present in genes associated with thiamine biosynthesis (ykod, abpE) and DNA synthesis (sigA, 

dnaG). Further investigation into these could identify them as contributors to the resistant 

phenotype in the dataset of pneumococcal isolates from Singapore.  

6.2.4 Limitations 

The isolates used in this study are only from clinical cases of disease in Singapore. Due to this, the 

findings and conclusions presented are only representative of pneumococcus in this geographical 

location. Isolates were obtained retrospectively from archived stores from the four major 

hospitals in Singapore. Comparison of the number of IPD cases collected with figures notified to 

the Ministry of Health Singapore after mandatory reporting was implemented in 2010 showed 

that, after 2011, this dataset captured approximately half of the total number of IPD cases (Table 

4). In addition, the large fluctuation in numbers of non-IPD isolates collected in different study 

years was also indicative of discrepancies in the storage of pneumococcal isolates for inclusion in 

this study. Due to this, a full epidemiological investigation of disease-causing isolates from 

Singapore was not possible, and instead data was used to estimate characteristics of disease-

causing isolates in the wider population. This limitation in the number of isolates available also 

limited power for analysis. The program used for genome assembly, VelvetOptimiser, was suitable 

for use at the time but is now considered to be outdated. It was recognised that an artefact of this 

program resulted in a large spread of contigs which can be an indicator of poor sequencing data. 

The large spread of contigs previously observed was reduced after processing a subset of isolates 

using the more up-to-date assembler SPAdes (198, 199). The recombination analysis performed 

was limited to the two programs available at the time: Gubbins and ClonalFrameML. The 

programs used were not capable of processing the dataset in its entirety, therefore 

recombination analysis had to be performed on subsets. Additional programs such as FasTGEAR 

(253) are now available for inclusion in future analysis. This study used SNPs in the test for 

association which excludes other forms of genetic variation. Future work could implement 

recently developed tools that use kmer based (349) or De Bruijn graph methodology (350) to 

encompass these additional forms which may increase power in the GWAS. 
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6.2.5 Concluding remarks 

Of considerable concern to the management and prevention of future S. pneumoniae infection is 

new emerging variants that have novel or enhanced virulence properties and/or the emergence 

of isolates with resistance mechanisms not currently combated by the present repertoire of 

antimicrobials. Data presented has proved that very high levels of recombination are present 

within pneumococcal populations and these affect areas of the genome associated with drug 

resistance. Recombination cannot be prevented but increased understanding and application of 

detection methods to clinical datasets is a vital step that has been addressed through this work. 

Accurate identification of recombination is of considerable importance as serotype switching 

events, as well as the emergence of non-vaccine serotypes, have been described in pneumococcal 

populations. Until there are new vaccine targets, the current vaccine needs to adequately cover 

disease from emerging variants. In addition to the need to identify new vaccine targets for the 

future, it is of paramount importance to continue to monitor local and international levels of 

vaccine coverage. This study identifies serotypes associated with disease and follows resistance 

levels to a range of antimicrobials across the study duration. This provided the data to map 

characteristics of disease to this geographical location which could be used to inform local 

policies. At present, reasonable levels of vaccine coverage was shown from this data. Although 

the findings here are only representative of Singapore, they can be compared with those found 

from different geographical locations. Consistency in findings from independent datasets 

regarding the serotypes responsible for causing invasive disease, the serotypes responsible for 

disease in distinct age groups, and serotypes most associated with antimicrobial resistance 

phenotypes adds confidence to the data. 

As evidenced through the recent SARS-CoV-2 pandemic, techniques such as those used in this 

study to identify mutations and understand their implications are vital in counterbalancing threats 

from emerging variants (351-353). Better still, predicting the effects of potential mutations before 

they occur could result in a significant reduction in the morbidity and mortality caused by this 

organism. This study showed utilisation of a GWAS was successful in identifying SNPs that are 

potentially associated with antimicrobial resistance to a number of clinically relevant 

antimicrobials. Findings from this confirmed associations in genes also identified in other 

pneumococcal populations, as well as identifying SNPs in some new, and potentially novel genes. 

These findings are exciting as they could be examples of new mechanisms of resistance not 

identified by previous methods. Future GWAS could help to prospectively search for mechanisms 

of resistance to additional antibiotics used in infectious diseases. This would be particularly 

beneficial for the beta-lactam class of antibiotic to closely monitor the mutations as it is known 

that the accumulation of these can result in differing levels of resistance. This emerging field of 
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molecular medicine can have a direct impact on clinical cases of disease by directing treatment 

offered to patients by the identification of specific molecular changes as well as providing useful 

information to help anticipate resistance in the future. 
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Appendix A Constructing simulated sequence 

containing one recombination 

Illustration of how the recombination sequence was generated, as described in section 2.2.1. The 

red lines represent artificially incorporated SNPs within the sequences (not to scale). The 

recombination sequence is wildtype with a 10kb region transferred from donor. Recombination 

programs should detect the central region with increased diversity as recombination. 
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Appendix B Phylogenetic tree of 2,059 S. pneumoniae 

isolates specifying ‘inner’ and ‘outer’ clades 
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Appendix C  Basic dataset to investigate the effect of 

background mutation on the detection of artificial 

recombination 

Illustration of the sequences included in the basic dataset. 
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Appendix D Dataset containing a similar sequence to 

investigate the effect of background mutation on 

recombination detection 

Illustration of the sequences included in dataset. 

 

The genomic difference between chromosome with specified mutation and the recombination 

event. 
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Appendix E  Dataset to investigate the effect of 

background mutation on recombination detection when 

the recombination event has a low mutation rate 

compared to the rest of the chromosome 

Illustration of the sequences included in dataset. 

 

The genomic difference between chromosome with specified mutation and the recombination 

event. 
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Appendix F  Construction of sequence containing two 

recombination events with no background mutation 

Illustration of how the sequence containing two recombination events was generated as 

described in section 2.2.1. The red lines represent artificially incorporated SNPs within the 

sequences (not to scale). The recombination sequence is wildtype with recombination events 

transferred from donor. The distance between the two recombination events ranges from 100 – 

10,000bp. 
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Appendix G Construction of sequence containing two 

recombination events with incorporated background 

mutation 

Illustration of how the sequence containing two recombination events were generated as 

described in section 2.2.1. The red lines represent artificially incorporated SNPs within the 

sequences (not to scale). The blue lines represent artificially incorporated SNPs to achieve the 

desired background mutation rate to the wildtype sequence. Mutation rates tested were 0.001%, 

0.01%, 0.1%, 1% and 2%. Recombination events are transferred from donor sequence and the 

distance between the two recombination events ranges from 100 – 10,000bp. 
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Appendix H Basic dataset for analysis of simulated 

sequence with two recombination events 

Sequences included in the basic dataset testing the effect of recombination size on distance 

required by programs to identify individual recombination events 
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Appendix I  QQ plots for the GWAS of penicillin non-

susceptibility 

(a) QQ plot for SvIR analysis (b) QQ plot for SvI GWAS analysis (c) QQ plot for GWAS SvR analysis. 

Each plot compares the distribution of -log(p-values) observed in the analysis with the expected 

distribution under the null hypothesis. The red line is the y=x reference line and lambda GC values 

(λgc) shown for each. 
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Appendix J  Summary of SNP frequencies in genes 

associated with penicillin resistance between studies  

Summary table of SNPs in genes combing the results of SvIR GWAS analysis with that of Mobegi et 

al (2017) (255) and Chewapreecha et al (2014) (179).  

Gene Total SNPs SvIR 
analysis 

Mobegi et 
al (2017) 

Chewapreecha 
et al (2014) 

pbpX 150 36 4 134 

Hypothetical protein 75 1 73 1 

Intergenic SNP 69 0 67 3 

penA 65 22 9 50 

polA 60 42 6 23 

mraY 37 0 1 37 

clpC_1 28 0 12 19 

tsf 14 0 14 0 

gpsB 11 11 3 6 

rsmH 11 1 0 10 

recU 10 3 7 5 

rlmL 9 4 5 0 

dhfR 6 0 3 5 

mreC 6 0 6 0 

rpsB 6 0 6 0 

dexB 5 0 0 5 

luxS 5 0 5 0 

priA 5 0 5 0 

xseA 5 0 5 0 

metE 4 0 4 0 

prfB 4 0 4 0 

rpoC 4 0 4 0 

ybbH_2 4 0 4 0 

clpX 3 0 2 1 

ecsA_1 3 0 3 0 

gabR 3 0 3 0 

lacG 3 0 3 0 

nagB 3 0 3 0 

udk_2 3 0 3 0 

agaA_1 2 0 2 0 

amyS 2 0 2 0 

bglK_2 2 0 2 0 

btuD_1 2 0 2 0 

ddl 2 0 2 0 
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dnaN 2 0 2 0 

ftsL 2 0 1 2 

glgB 2 0 2 0 

glgX_1 2 0 2 0 

glmM 2 0 2 0 

ileS 2 0 2 0 

lepA_1 2 0 2 0 

licT_2 2 0 2 0 

lptB 2 0 2 0 

manZ_1 2 0 2 0 

map 2 0 2 0 

mapZ 2 0 2 0 

metF 2 0 2 0 

mshD_1 2 0 2 0 

nrdE1 2 0 2 0 

nrdF 2 0 2 0 

nrdH 2 0 2 0 

pox5 2 0 2 0 

thrS 2 0 2 0 

truB 2 0 2 0 

yccU 2 0 2 0 

yesO 2 0 2 0 

addA 1 0 1 0 

aguA 1 0 1 0 

apaH 1 0 1 0 

araQ_1 1 0 1 0 

arcB 1 0 1 0 

artM_1 1 0 1 0 

bbmA 1 0 1 0 

bfmBAB 1 0 1 0 

bglF 1 0 1 0 

btuD_4 1 0 1 0 

btuD_5 1 0 1 0 

clcA 1 0 1 0 

comEA 1 0 1 0 

cpoA 1 0 1 0 

ctpE 1 0 1 0 

cysM 1 0 1 0 

cysS 1 0 1 0 

dapA 1 0 1 0 

dnaA 1 0 1 0 

dnaG 1 0 1 0 

dnaK 1 0 1 0 

ettA_1 1 0 1 0 
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exoA 1 0 1 0 

femA 1 0 1 0 

fmt 1 0 1 0 

fruA 1 0 1 0 

fucI 1 0 1 0 

gap 1 0 1 0 

gatA 1 0 1 0 

glgD 1 0 1 0 

glmS 1 0 1 0 

glpO 1 0 1 0 

gmuE 1 0 1 0 

gmuR 1 0 1 0 

gnd 1 0 1 0 

gph_1 1 0 1 0 

graS 1 0 1 0 

gyrB 1 0 1 0 

hisS 1 0 1 0 

hit 1 0 1 0 

ilvD 1 0 1 0 

lacX 1 0 1 0 

lacZ 1 0 1 0 

licA_1 1 0 1 0 

lrp 1 0 1 0 

malQ 1 0 1 0 

mepA 1 0 1 0 

metI 1 0 1 0 

miaA 1 0 1 0 

mro 1 0 1 0 

msmE 1 0 1 0 

mtcA1 1 0 1 0 

murD 1 0 1 0 

murF 1 0 1 0 

murl 1 0 1 0 

niaR 1 0 1 0 

nimT 1 0 1 0 

nusG 1 0 1 0 

pcrA 1 0 1 0 

pdg 1 0 1 0 

pepF1_2 1 0 1 0 

pepN 1 0 1 0 

pepO 1 0 1 0 

pepV 1 0 1 0 

pepX 1 0 1 0 

pfbA 1 0 1 0 
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pnp 1 0 1 0 

potA_2 1 0 1 0 

potB 1 0 1 0 

psaA 1 0 1 0 

pucK 1 0 1 0 

pyrB 1 0 1 0 

pyrC 1 0 1 0 

pyrDA 1 0 1 0 

pyrK_1 1 0 1 0 

recO 1 0 1 0 

relA 1 0 1 0 

ribF 1 0 1 0 

rplF 1 0 1 0 

rplJ 1 0 1 0 

rplM 1 0 1 0 

rsgA 1 0 1 0 

rsmB 1 0 1 0 

ruvB_2 1 0 1 0 

sacA 1 0 1 0 

salL 1 0 1 0 

sarA_1 1 0 1 0 

sasA_1 1 0 1 0 

secY 1 0 1 0 

sorB_1 1 0 1 0 

spo0J 1 0 1 0 

stkP 1 0 1 0 

tag 1 0 1 0 

tdk 1 0 1 0 

trkA 1 0 1 0 

trpF 1 0 1 0 

trpS2 1 0 1 0 

tuf 1 0 1 0 

whiA 1 0 1 0 

xpt 1 0 1 0 

ybhL 1 0 1 0 

yhdG 1 0 1 0 

yheI 1 0 1 0 

yicL_1 1 0 1 0 

yqeN 1 0 1 0 

yteP_1 1 0 1 0 

yumC 1 0 1 0 

yxdL_1 1 0 1 0 

znuA 1 0 1 0 
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Appendix K QQ plots for the GWAS of cotrimoxazole, 

erythromycin and clindamycin resistance  

QQ plots showing p-values from respective GWAS analysis (a) cotrimoxazole (b) erythromycin (c) 

clindamycin. Each plot compares the distribution of -log(p-values) observed in the analysis with 

the expected distribution under the null hypothesis. The red line is the y=x reference line and 

lambda GC (λgc) values shown for each. 
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Appendix L  Summary of SNPs in common genes 

identified in this GWAS for cotrimoxazole resistance and 

the GWAS for cotrimoxazole resistance by Mobegi et al 

(2017) (255) 

SNP position P value-(log10) 
in this GWAS 

P value(log10) 
in Mobegi et al 

(2017) 

Gene Product 

264869 17.2 NA folP/sulA dihydropteroate synthase 

264912 11.8 75.0 folP/sulA dihydropteroate synthase 

264975 11.6 NA folP/sulA dihydropteroate synthase 

264978 13.6 NA folP/sulA dihydropteroate synthase 

264981 8.6 NA folP/sulA dihydropteroate synthase 

264987 21.7 NA folP/sulA dihydropteroate synthase 

265071 10.4 NA folP/sulA dihydropteroate synthase 

265128 14.0 NA folP/sulA dihydropteroate synthase 

265159 24.6 NA folP/sulA dihydropteroate synthase 

265242 12.1 NA folP/sulA dihydropteroate synthase 

265251 8.6 NA folP/sulA dihydropteroate synthase 

265257 10.1 NA folP/sulA dihydropteroate synthase 

265281 10.4 NA folP/sulA dihydropteroate synthase 

265293 8.5 NA folP/sulA dihydropteroate synthase 

265349 10.4 NA folP/sulA dihydropteroate synthase 

265373 12.7 NA folP/sulA dihydropteroate synthase 

265375 12.1 NA folP/sulA dihydropteroate synthase 

265404 24.6 NA folP/sulA dihydropteroate synthase 

265406 36.0 NA folP/sulA dihydropteroate synthase 

265407 11.0 NA folP/sulA dihydropteroate synthase 

265424 22.5 NA folP/sulA dihydropteroate synthase 

265452 9.8 NA folP/sulA dihydropteroate synthase 

265482 9.6 NA folP/sulA dihydropteroate synthase 
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265485 8.8 NA folP/sulA dihydropteroate synthase 

265536 9.6 66.4 folP/sulA dihydropteroate synthase 

265554 10.3 NA folP/sulA dihydropteroate synthase 

265608 11.7 NA folP/sulA dihydropteroate synthase 

265779 NA 23.2 folP/sulA dihydropteroate synthase 

265910 10.2 NA fpgS/folC folylpolyglutamate synthase 

265927 9.5 NA fpgS/folC folylpolyglutamate synthase 

265930 9.6 NA fpgS/folC folylpolyglutamate synthase 

266035 NA 9.7 fpgS/folC folylpolyglutamate synthase 

267011 NA 36.9 fpgS/folC folylpolyglutamate synthase 

1532230 NA 20.3 dhfR/dyr dihydrofolate reductase 

1532245 NA 80.6 dhfR/dyr dihydrofolate reductase 

1532301 13.5 NA dhfR/dyr dihydrofolate reductase 

1532326 NA 131.8 dhfR/dyr dihydrofolate reductase 

1532371 12.6 NA dhfR/dyr dihydrofolate reductase 

1532406 19.2 NA dhfR/dyr dihydrofolate reductase 

1532410 8.4 NA dhfR/dyr dihydrofolate reductase 

1532458 9.4 NA dhfR/dyr dihydrofolate reductase 

1532608 9.7 NA dhfR/dyr dihydrofolate reductase 

1532689 NA 23.2 dhfR/dyr dihydrofolate reductase 
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Appendix M Summary of SNPs in common genes 

identified in this GWAS for erythromycin resistance and 

the GWAS for erythromycin resistance by Mobegi et al 

(2017) (255) 

SNP position P value-(log10) 
in this GWAS 

P value(log10) 
in Mobegi et al 

(2017) 

Gene Product 

291982 NA 15.9 pbpX Penicillin-binding protein 

292017 NA 15.5 pbpX Penicillin-binding protein 

293251 8.9 NA pbpX Penicillin-binding protein 

293640 10.2 NA pbpX Penicillin-binding protein 

293646 13.6 NA pbpX Penicillin-binding protein 

293685 10.5 NA pbpX Penicillin-binding protein 

636304 NA 8.7 ykoD ABC transporter ATP-binding 
protein 

636402 11.0 NA ykoD ABC transporter ATP-binding 
protein 

637379 NA 9.9 ykoD ABC transporter ATP-binding 
protein 

884979 NA 11.1 glmU Bifunctional protein 

885289 NA 13.2 glmU Bifunctional protein 

885387 11.0 NA glmU Bifunctional protein 

1392986 10.1 NA apbE ApbE family protein 

1393408 NA 11.3 apbE ApbE family protein 
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Appendix N QQ plots for the GWAS of chloramphenicol 

resistance  

(a) QQ plot showing original p-values following the GWAS analysis of 178 isolates for 

chloramphenicol resistance. (b) QQ plot showing the p-values after they have been corrected by 

lambda GC. Each plot compares the distribution of -log(p-values) observed in the analysis with the 

expected distribution under the null hypothesis. The red line is the y=x reference line and lambda 

GC (λgc) values shown for each. 
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Appendix O QQ plots for the GWAS of doxycycline and 

tetracycline resistance 

(a) QQ plot showing original p-values following the GWAS analysis of doxycycline resistance. (b) 

QQ plot showing original p-values following the GWAS analysis of tetracycline resistance. Each 

plot compares the distribution of -log(p-values) observed in the analysis with the expected 

distribution under the null hypothesis. The red line is the y=x reference line and lambda GC (λgc) 

values shown for each. 
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Appendix P  QQ plots for the GWAS of penicillin non-

susceptibility using the SvIR classification from 

recombination-free genomes 

QQ plot compares the distribution of -log(p-values) observed in the analysis with the expected 

distribution under the null hypothesis. The red line is the y=x reference line and lambda GC (λgc) 

values shown. 
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Appendix Q Isolate laboratory data for 313 S. pneumoniae isolates collected 2013-2016 

Laboratory data for the isolates collected from collaborating hospitals 2013-2016. Data for isolates collected 1997-2013 is located in Jauneikaite (2014) (182). 

 

ID Hospital Age(yrs) Gender Ethnicity Site Disease Date Vaccination Outcome ST serotype goeBURST 

WBB1259 TTSH 59 M Chinese Blood IPD 23/05/2015 N/A Died 320 19A 1 

WBB1260 TTSH 65 F Chinese Blood IPD 18/03/2015 N/A Died 2211 12F 28 

WBB1261 TTSH 45 M Chinese Blood IPD 25/02/2015 N/A Survived 989 12F 28 

WBB1262 TTSH 73 M Chinese Blood IPD 13/02/2015 N/A Survived 4216 8 64 

WBB1263 TTSH 70 F Chinese Blood IPD 24/02/2015 N/A Survived 4216 8 64 

WBB1264 TTSH 68 M Chinese Knee IPD 19/05/2015 N/A Survived 433 22F 65 

WBB1265 TTSH 41 M Chinese Blood IPD 29/01/2016 N/A Survived 9 14 9 

WBB1266 TTSH 63 F Chinese Blood IPD 13/02/2016 N/A Survived 9 14 9 

WBB1267 TTSH 63 F Chinese Sputum non-IPD 16/02/2016 N/A Survived 81 23F 0 

WBB1268 TTSH 78 F Malay Sputum non-IPD 08/05/2015 N/A Survived 3791 19F 32 

WBB1269 TTSH 76 M Chinese Endotracheal tube non-IPD 02/12/2015 N/A Survived 236 19F 1 

WBB1270 TTSH 56 M Chinese Sputum non-IPD 21/12/2015 Yes Survived 81 19F 0 
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WBB1271 TTSH 66 M Chinese Endotracheal tube non-IPD N/A N/A Died 2758 07C 66 

WBB1273 TTSH 52 M Chinese Blood IPD 12/03/2016 N/A Survived 81 23F 0 

WBB1274 TTSH 65 M Chinese Blood IPD 30/08/2015 N/A Survived 5258 34 67 

WBB1275 TTSH 67 M Chinese Blood IPD 11/04/2015 N/A Survived 1233 18B 68 

WBB1276 TTSH 75 M Chinese Sputum non-IPD 02/11/2015 N/A Survived 81 23F 0 

WBB1277 TTSH N/A N/A N/A N/A N/A N/A N/A N/A NF 3 69 

WBB1278 TTSH 90 M Chinese Sputum non-IPD 14/05/2015 N/A Survived 320 19A 1 

WBB1279 TTSH 80 F Chinese Blood IPD 19/11/2015 N/A N/A 53 8 70 

WBB1280 TTSH 59 M Chinese Blood IPD 06/09/2015 N/A Died 320 19A 1 

WBB1281 TTSH 72 M Chinese Sputum non-IPD NA N/A Died 81 19F 0 

WBB1282 TTSH 34 F Malay Blood IPD 28/10/2015 N/A Survived 289 5 63 

WBB1283 TTSH 72 M Chinese Blood IPD 31/10/2015 N/A Survived 180 3 51 

WBB1284 N/A N/A N/A N/A N/A N/A N/A N/A N/A 383 16F 71 

WBB1285 TTSH 70 M Chinese Sputum non-IPD 29/02/2016 N/A Survived 5832 06D 72 

WBB1286 TTSH 58 F Chinese Blood IPD 26/03/2015 N/A Died 11916 16F 73 

WBB1288 TTSH N/A N/A N/A N/A N/A N/A N/A N/A 5407 38 24 

WBB1289 N/A N/A N/A N/A N/A N/A N/A N/A N/A 383 16F 71 

WBB1290 TTSH 66 M Chinese Blood IPD 18/03/2016 N/A Survived 4745 20 74 
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WBB1291 TTSH 88 F Chinese Blood IPD 14/09/2015 N/A Survived 6195 23F 53 

WBB1292 TTSH 86 M Chinese Blood IPD 18/08/2015 N/A Survived NF 34 69 

WBB1293 TTSH 31 F Other Nose non-IPD 08/03/2016 N/A Survived NF 19A 69 

WBB1294 N/A N/A N/A N/A N/A N/A N/A N/A N/A NF 06C 69 

WBB1295 TTSH 40 F Other CSF IPD 16/02/2016 N/A Survived 180 3 51 

WBB1296 TTSH 65 M Chinese BAL non-IPD 17/02/2016 N/A Survived NF 34 69 

WBB1297 TTSH 55 F Chinese Nose non-IPD 25/02/2016 N/A Survived 2572 23A 75 

WBB1298 TTSH 79 M Chinese Endotracheal tube non-IPD 08/03/2016 N/A Survived 2924 06C 76 

WBB1299 TTSH 40 F Other Blood IPD 16/02/2016 N/A Survived 180 3 51 

WBB1300 TTSH 60 M Chinese Blood IPD 26/01/2015 N/A Survived 146 06E 77 

WBB1301 TTSH 79 F Chinese Blood IPD 20/03/2016 Yes Survived 4745 20 74 

WBB1302 TTSH 50 M Indian Blood IPD 28/07/2015 N/A Survived NF 23F 69 

WBB1303 TTSH 50 M Bangladesh Blood IPD 28/07/2015 No Survived 8958 40 78 

WBB1304 TTSH 54 M Indian Blood IPD 28/12/2015 N/A Survived 9325 38 15 

WBB1305 TTSH 37 M Malay Blood IPD 01/01/2016 N/A Survived 695 19A 79 

WBB1306 TTSH 37 M Chinese Blood IPD 03/12/2015 N/A Survived 63 14 7 

WBB1307 TTSH 53 M Chinese Blood IPD 22/12/2015 N/A Survived 138 06A 33 

WBB1308 TTSH 60 M Chinese Blood IPD 26/11/2015 N/A Survived NF 8 69 
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WBB1309 TTSH 80 M Chinese Blood IPD 26/11/2015 Yes Survived 2234 8 80 

WBB1310 TTSH N/A N/A N/A N/A N/A N/A N/A N/A NF 19F 69 

WBB1311 TTSH 74 M Malay Blood IPD 10/08/2015 N/A Died 505 3 81 

WBB1313 TTSH 77 M Chinese Blood IPD 22/06/2015 Yes Survived 2213 4 41 

WBB1314 TTSH 65 M Chinese CSF IPD NA N/A Died 3544 07A 29 

WBB1315 TTSH 91 M Indian Sputum non-IPD 17/06/2015 N/A Survived 320 19A 1 

WBB1316 TTSH N/A N/A N/A N/A N/A N/A N/A N/A NF 23A 69 

WBB1317 TTSH 60 M Chinese Pleura IPD 19/05/2015 N/A Died 7479 15B 30 

WBB1318 TTSH 80 F Indian Endotracheal tube non-IPD 29/01/2015 N/A Survived 6028 15F 82 

WBB1319 TTSH 83 M Chinese Blood IPD 11/05/2015 N/A Survived NF 34 69 

WBB1320 TTSH 84 M Chinese Endotracheal tube non-IPD 27/01/2015 N/A Died 1591 15A 0 

WBB1322 TTSH 70 M Chinese Blood IPD 20/01/2015 N/A Survived 3500 8 83 

WBB1324 TTSH 69 M Indian Endotracheal tube non-IPD 06/01/2016 N/A Survived 143 14 49 

WBB1325 TTSH 72 F Chinese Sputum non-IPD 01/02/2016 Yes Survived 1591 15A 0 

WBB1326 TTSH 26 M Indian Blood IPD 05/01/2015 Yes Survived 12474 19A 84 

WBB1327 TTSH 70 M Indian Blood IPD 11/01/2015 N/A Died 180 3 51 

WBB1328 NUH N/A M N/A Blood IPD 11/11/2013 N/A N/A 6193 3 85 

WBB1329 NUH N/A F N/A Blood IPD 26/11/2013 N/A N/A NF 19A 69 
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WBB1330 NUH N/A F N/A Blood IPD 05/12/2013 N/A N/A 180 3 51 

WBB1331 NUH N/A M N/A Blood IPD 10/12/2013 N/A N/A NF 39 69 

WBB1332 NUH N/A F N/A Blood IPD 21/12/2013 N/A N/A 81 23F 0 

WBB1333 NUH N/A M N/A Blood IPD 22/04/2014 N/A N/A 7569 3 43 

WBB1334 NUH N/A F N/A Blood IPD 24/04/2014 N/A N/A 63 14 7 

WBB1335 NUH N/A M N/A Blood IPD 19/07/2014 N/A N/A NF 38 69 

WBB1336 NUH N/A F N/A Blood IPD 07/08/2014 N/A N/A 558 35B 86 

WBB1337 NUH N/A M N/A Blood IPD 02/09/2014 N/A N/A NF 22F 69 

WBB1338 NUH N/A M N/A Blood IPD 12/09/2014 N/A N/A 2854 19F 87 

WBB1339 NUH N/A M N/A Blood IPD 19/09/2014 N/A N/A 2234 8 80 

WBB1340 NUH N/A F N/A Portacath non-IPD 23/09/2014 N/A N/A NF 13 69 

WBB1341 NUH N/A M N/A Blood IPD 07/11/2014 N/A N/A 458 3 88 

WBB1342 NUH N/A M N/A Blood IPD 11/11/2014 N/A N/A 4745 20 74 

WBB1343 NUH N/A F N/A Blood IPD 01/12/2014 N/A N/A 193 17F 42 

WBB1344 NUH N/A F N/A Blood IPD 06/12/2014 N/A N/A 193 15C 42 

WBB1345 NUH N/A F N/A Blood IPD 15/12/2014 N/A N/A 439 23B 4 

WBB1346 NUH N/A F N/A Blood IPD 16/12/2014 N/A N/A 81 23F 0 

WBB1347 NUH N/A M N/A Sputum non-IPD 05/01/2014 N/A N/A 218 07A 29 



Appendix Q 

196 

WBB1348 NUH N/A F N/A Unknown N/A 30/01/2014 N/A N/A 3398 28F 89 

WBB1349 NUH N/A F N/A Unknown N/A 30/01/2014 N/A N/A 3398 28F 89 

WBB1350 NUH N/A M N/A Endotracheal tube non-IPD 23/04/2014 N/A N/A 7569 3 43 

WBB1351 NUH N/A M N/A Blood IPD 16/06/2014 N/A N/A 3804 11C 90 

WBB1352 NUH N/A F N/A Sputum non-IPD 25/06/2014 N/A N/A 320 19A 1 

WBB1353 NUH N/A F N/A Nose non-IPD 06/08/2014 N/A N/A 10106 15A 91 

WBB1354 NUH N/A M N/A Sputum non-IPD 08/09/2014 N/A N/A 5000 15A 92 

WBB2033 TTSH 64 M Malay Pleura IPD NA N/A Survived 5872 4 31 

WBB2034 NUH N/A F N/A Blood IPD 28/06/2015 N/A N/A 4127 4 20 

WBB2035 NUH N/A F N/A Sputum non-IPD 16/06/2015 N/A N/A 6030 16F 93 

WBB2036 NUH N/A F N/A Sputum non-IPD 03/12/2015 N/A N/A 320 19A 1 

WBB2037 TTSH 68 M Chinese Blood IPD 07/09/2014 Yes Survived 63 14 7 

WBB2038 TTSH 21 M Malay Sputum non-IPD 13/03/2014 N/A Survived 271 19F 1 

WBB2039 TTSH 67 M Chinese Blood IPD 17/07/2014 Yes Survived 989 12F 28 

WBB2040 TTSH 73 M Chinese BAL non-IPD 06/12/2013 N/A Survived 1262 15C 94 

WBB2041 NUH N/A M N/A Blood IPD 20/09/2014 N/A N/A NF 15B 69 

WBB2042 NUH N/A F N/A Blood IPD 01/08/2015 N/A N/A 63 15A 7 

WBB2043 NUH N/A M N/A Endotracheal tube non-IPD 06/07/2015 N/A N/A NF 4 69 
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WBB2044 NUH N/A M N/A Sputum non-IPD 21/03/2016 N/A N/A 458 3 88 

WBB2045 TTSH 71 F Chinese Blood IPD 06/12/2014 Yes Survived 876 14 5 

WBB2046 TTSH 34 F Other Ear non-IPD 11/08/2014 No Survived 320 19A 1 

WBB2047 TTSH 71 F Malay Blood IPD 23/05/2014 N/A Survived 989 12F 28 

WBB2048 TTSH 43 M Chinese Blood IPD 25/09/2013 N/A Survived 2674 19A 8 

WBB2050 NUH N/A M N/A Blood IPD 21/08/2015 N/A N/A 2754 13 61 

WBB2051 NUH N/A M N/A Endotracheal tube non-IPD 14/07/2015 N/A N/A 439 23B 4 

WBB2052 NUH N/A M N/A Sputum non-IPD 11/12/2015 N/A N/A 95 06E 2 

WBB2053 TTSH 76 M Chinese Blood IPD 21/11/2014 N/A Survived 338 23A 3 

WBB2054 TTSH 35 M Chinese Blood IPD 21/01/2014 Yes Survived NF 3 69 

WBB2055 TTSH 65 F Chinese Blood IPD 28/12/2013 Yes Survived 90 06E 2 

WBB2056 TTSH 52 M Malay Blood IPD 16/09/2013 No Died 311 23F 4 

WBB2059 NUH N/A M N/A Sputum non-IPD 29/07/2015 N/A N/A 180 3 51 

WBB2060 NUH N/A M N/A Sputum non-IPD 28/03/2016 N/A N/A 62 11D 17 

WBB2061 TTSH 49 M Chinese Blood IPD 17/11/2014 No Died 1263 09V 6 

WBB2062 TTSH 72 M Chinese Sputum non-IPD 31/07/2014 N/A Survived 320 19A 1 

WBB2063 TTSH 65 F Chinese Blood IPD 11/08/2013 No Survived 1518 06E 56 

WBB2064 TTSH 55 F Chinese Sputum non-IPD 22/11/2013 N/A Survived NF 23F 69 



Appendix Q 

198 

WBB2065 NUH N/A M N/A Sputum non-IPD 21/12/2014 N/A N/A 6441 48 95 

WBB2066 NUH N/A M N/A Blood IPD 13/10/2015 N/A N/A NF 06A 69 

WBB2067 NUH N/A F N/A Endotracheal tube non-IPD 04/08/2015 N/A N/A 1591 15A 0 

WBB2068 TTSH 56 M Malay Blood IPD 14/08/2014 Yes Survived 1518 06E 56 

WBB2069 TTSH 71 M Chinese Blood IPD 31/10/2014 No Died 6193 3 85 

WBB2070 TTSH N/A F Chinese Arm non-IPD 28/03/2014 No Survived 320 19F 1 

WBB2071 TTSH 61 M Chinese Endotracheal tube non-IPD 18/11/2013 No Survived 695 19A 79 

WBB2072 TTSH 40 M Indian CSF IPD 16/11/2013 No Survived 236 19F 1 

WBB2073 NUH N/A M N/A Blood IPD 01/01/2015 N/A N/A 3214 19A 96 

WBB2074 NUH N/A M N/A Endotracheal tube non-IPD 06/01/2015 N/A N/A NF 11A 69 

WBB2075 NUH N/A M N/A Nose non-IPD 06/08/2015 N/A N/A 902 06A 97 

WBB2076 TTSH 29 M Chinese Bronchus non-IPD 05/11/2014 N/A Survived 320 19A 1 

WBB2077 TTSH 30 M Malay Blood IPD 26/10/2014 No Survived 2754 33B 61 

WBB2078 TTSH 63 M Chinese Blood IPD 10/03/2014 No Survived 12902 3 98 

WBB2079 TTSH 64 F Chinese Eye non-IPD 10/09/2013 N/A Survived 320 19A 1 

WBB2080 KKH 5 M Malay Pleura IPD 08/07/2013 N/A N/A 320 19A 1 

WBB2081 NUH N/A M N/A Blood IPD 05/01/2015 N/A N/A 236 19F 1 

WBB2083 NUH N/A F N/A Throat non-IPD 21/08/2015 N/A N/A 446 35F 39 



Appendix Q 

199 

WBB2084 TTSH 49 M Indian Hand non-IPD 17/11/2014 N/A Survived 5407 25A 24 

WBB2085 TTSH 55 F Chinese Blood IPD N/A No Survived 876 14 5 

WBB2087 TTSH 60 M Chinese Blood IPD 26/10/2013 No Survived NF 23F 69 

WBB2088 KKH 7 F Chinese Blood IPD 02/08/2013 N/A N/A NF 17F 69 

WBB2089 NUH N/A M N/A Blood IPD 06/01/2015 N/A N/A 180 3 51 

WBB2090 NUH N/A M N/A Nose non-IPD 25/02/2015 N/A N/A 236 19F 1 

WBB2091 NUH N/A M N/A Sputum non-IPD 22/08/2015 N/A N/A 1553 23F 99 

WBB2092 TTSH 57 F Chinese Blood IPD 14/08/2014 N/A Survived 310 38 15 

WBB2093 TTSH 74 M Chinese Blood IPD NA No Survived 6202 15F 100 

WBB2094 TTSH 85 M Chinese Sputum non-IPD 14/05/2014 No Survived 320 19F 1 

WBB2095 TTSH 80 M Chinese Nose non-IPD 08/10/2013 N/A Survived 338 23A 3 

WBB2096 KKH 4 M Malay Ear non-IPD 07/08/2013 N/A N/A 4908 09V 101 

WBB2097 NUH N/A M N/A Blood IPD 14/02/2015 N/A N/A 6202 15F 100 

WBB2100 TTSH 80 M Chinese Blood IPD 30/12/2014 N/A Died NF 07A 69 

WBB2101 TTSH 75 M Chinese Blood IPD 15/10/2014 No Died 180 3 51 

WBB2102 TTSH N/A N/A N/A N/A N/A N/A N/A N/A 271 19F 1 

WBB2104 KKH 4 M Indian Ear non-IPD 07/09/2013 N/A N/A 1464 19F 1 

WBB2105 NUH N/A M N/A Blood IPD 21/04/2015 N/A N/A 6197 8 102 
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WBB2106 NUH N/A F N/A Unknown N/A 10/04/2015 N/A N/A 6025 11D 103 

WBB2107 NUH N/A M N/A Sputum non-IPD 04/11/2015 N/A N/A 11454 3 104 

WBB2108 TTSH 67 M Chinese Blood IPD 11/09/2014 N/A Survived 5246 06D 3 

WBB2109 TTSH 86 M Chinese Sputum non-IPD 11/08/2014 Yes Survived 320 19A 1 

WBB2110 TTSH 45 M Chinese Blood IPD 01/02/2014 No Survived 3544 07A 29 

WBB2111 TTSH 68 M Chinese Blood IPD 15/12/2013 No Survived NF 4 69 

WBB2112 KKH 10 M Indian Blood IPD 18/10/2013 N/A N/A 81 23F 0 

WBB2113 NUH N/A F N/A Blood IPD 23/05/2015 N/A N/A 191 07A 105 

WBB2114 NUH N/A M N/A Sputum non-IPD 14/04/2015 N/A N/A 880 23F 11 

WBB2115 NUH N/A M N/A BAL non-IPD 23/11/2015 N/A N/A 1379 06C 106 

WBB2116 TTSH 56 M Chinese Blood IPD 21/09/2014 N/A Survived NF 3 69 

WBB2117 TTSH 68 M Chinese Blood IPD 22/01/2014 Yes Survived 99 11F 107 

WBB2118 TTSH 55 F Malay Blood IPD 06/02/2014 No Survived 9192 19F 108 

WBB2119 TTSH 46 M Malay Blood IPD 07/09/2013 N/A Died 989 12F 28 

WBB2120 KKH 8 F Chinese Blood IPD 25/10/2013 N/A N/A 63 15A 7 

WBB2121 NUH N/A F N/A Blood IPD 05/06/2015 N/A N/A 338 23A 3 

WBB2122 NUH N/A M N/A Endotracheal tube non-IPD 22/04/2015 N/A N/A 199 15B 5 

WBB2123 NUH N/A F N/A Nose non-IPD 03/12/2015 N/A N/A 1464 19F 1 
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WBB2124 TTSH 68 M Chinese Blood IPD 07/09/2014 Yes Survived 63 14 7 

WBB2125 TTSH 15 M Chinese Nose non-IPD 06/03/2014 No Survived 320 19A 1 

WBB2126 TTSH 63 M Chinese Blood IPD 19/01/2014 Yes Died 855 06A 109 

WBB2127 TTSH 34 M Other Blood IPD 16/08/2013 No Survived 81 06A 0 

WBB2128 KKH 8 F Chinese Pleura IPD 08/11/2013 N/A N/A 320 19A 1 

WBB2144 TTSH 50 M Indian Blood IPD 16/06/2015 N/A Survived 4216 8 64 

WBB2145 KKH 7 M Indian Blood IPD 05/02/2014 N/A N/A 320 19A 1 

WBB2146 KKH 5 M Chinese Pleura IPD 02/07/2014 N/A N/A 4154 19A 1 

WBB2147 KKH 5 M Chinese Blood IPD 17/05/2015 N/A N/A 338 23A 3 

WBB2148 KKH 4 F Indian Blood IPD 27/09/2015 N/A N/A 193 15B 42 

WBB2149 KKH 7 M Chinese Blood IPD NA N/A N/A 62 11D 17 

WBB2150 KKH 8 F Chinese Blood IPD NA N/A N/A 386 06C 110 

WBB2151 TTSH 51 M Chinese Blood IPD 18/11/2013 No Died 311 23F 4 

WBB2153 KKH 5 F Chinese Blood IPD 09/02/2014 N/A N/A 63 19A 7 

WBB2154 KKH 5 M Malay Ear non-IPD 12/07/2014 N/A N/A 320 19A 1 

WBB2155 KKH 9 F Malay BAL non-IPD 01/06/2015 N/A N/A 62 11D 17 

WBB2156 KKH 5 M Chinese Blood IPD 15/10/2015 N/A N/A 320 19A 1 

WBB2157 KKH 1 F Chinese Ear non-IPD NA N/A N/A 320 19A 1 
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WBB2158 KKH 3 M Malay Blood IPD NA N/A N/A 320 19A 1 

WBB2159 TTSH 92 M Chinese Blood IPD 19/12/2013 N/A Died 416 19A 111 

WBB2161 KKH 5 M Malay Lung IPD 23/02/2014 N/A N/A 320 19A 1 

WBB2162 KKH 8 M Chinese Ear non-IPD 16/07/2014 N/A N/A 180 3 51 

WBB2163 KKH 10 F Chinese BAL non-IPD 03/06/2015 N/A N/A 282 06C 0 

WBB2164 KKH 7 F Chinese Blood IPD 20/10/2015 N/A N/A 695 19A 79 

WBB2165 KKH 8 M Chinese Blood IPD NA N/A N/A 320 19A 1 

WBB2166 KKH 4 F Indian CSF IPD NA N/A N/A 3280 15B 30 

WBB2167 TTSH 79 M Chinese Blood IPD 10/09/2013 Yes Survived 1518 06E 56 

WBB2168 TTSH 34 F Other Blood IPD 22/05/2014 No Survived 289 5 63 

WBB2169 KKH 12 M Indian Blood IPD 05/03/2014 N/A N/A 320 19A 1 

WBB2170 KKH 5 F Chinese Pleura IPD 06/08/2014 N/A N/A 320 19A 1 

WBB2171 KKH 4 M Indian Blood IPD 21/06/2015 N/A N/A 5068 18B 38 

WBB2172 KKH 4 M Chinese Blood IPD 03/12/2015 N/A N/A NF 3 69 

WBB2173 KKH 6 F Malay Blood IPD NA N/A N/A 338 23A 3 

WBB2174 KKH 54 F Other Unknown N/A NA N/A N/A 172 23F 3 

WBB2175 TTSH 61 M Malay Blood IPD 17/02/2014 N/A Survived NF 4 69 

WBB2176 KKH 6 M Chinese Pleura IPD 14/03/2014 N/A N/A 180 3 51 
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WBB2177 KKH 5 F Chinese BAL non-IPD 24/09/2014 N/A N/A 7786 N/A 48 

WBB2178 KKH 2 F Malay Ear non-IPD 20/06/2015 N/A N/A 3017 19A 112 

WBB2179 KKH 43 F Chinese Nipple non-IPD 16/01/2016 N/A N/A 558 35B 86 

WBB2180 KKH 3 F Chinese Blood IPD NA N/A N/A 9 14 9 

WBB2181 KKH 4 F Chinese Blood IPD NA N/A N/A 180 3 51 

WBB2182 TTSH N/A N/A N/A N/A N/A N/A N/A N/A 4127 4 20 

WBB2183 KKH 3 M Malay Ear non-IPD 10/03/2014 N/A N/A 15 06B 9 

WBB2184 KKH 7 F Malay Blood IPD 10/10/2014 N/A N/A 8202 19A 1 

WBB2185 KKH 15 M Malay Blood IPD 26/06/2015 N/A N/A 104 06E 2 

WBB2186 KKH 1 M Caucasian Ear non-IPD 12/02/2016 N/A N/A 1451 19A 1 

WBB2187 KKH 9 F Chinese Blood IPD NA N/A N/A NF 06D 69 

WBB2188 KKH 7 M Chinese Pelvis IPD NA N/A N/A 7768 15B 113 

WBB2189 TTSH 64 M Chinese Sputum non-IPD 11/11/2013 N/A Survived 386 06C 110 

WBB2190 KKH 17 F Chinese Unknown N/A 11/03/2014 N/A N/A 6945 12F 114 

WBB2191 KKH 5 F Chinese Blood IPD 23/10/2014 N/A N/A 9 14 9 

WBB2192 KKH 2 F Chinese Ear non-IPD 07/07/2015 N/A N/A 6011 3 6 

WBB2193 KKH 2 M Malay Ear non-IPD 19/02/2016 N/A N/A 180 3 51 

WBB2194 KKH 39 F Chinese CSF IPD NA N/A N/A 4532 14 7 
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WBB2195 KKH 3 F Malay Blood IPD NA N/A N/A 2854 19F 87 

WBB2196 KKH 7 M Chinese Blood IPD 17/11/2013 N/A N/A 695 19A 79 

WBB2197 KKH 6 M Malay Blood IPD 01/04/2014 N/A N/A 62 11D 17 

WBB2198 KKH 3 M Caucasian Blood IPD 24/12/2014 N/A N/A 439 23B 4 

WBB2199 KKH 7 F Chinese Blood IPD 13/07/2015 N/A N/A 458 3 88 

WBB2200 KKH 6 M Malay Ear non-IPD 20/02/2016 N/A N/A 320 19F 1 

WBB2201 KKH 27 M Burmese Blood IPD NA N/A N/A 338 23A 3 

WBB2202 KKH 5 M Malay Blood IPD NA N/A N/A NF 06E 69 

WBB2203 KKH 5 M Chinese Blood IPD 11/12/2013 N/A N/A 63 15A 7 

WBB2204 KKH 4 F Malay Ear non-IPD 09/04/2014 N/A N/A 9 14 9 

WBB2205 KKH 6 F Chinese Blood IPD 06/02/2015 N/A N/A 180 3 51 

WBB2206 KKH 3 M Chinese Blood IPD 21/07/2015 N/A N/A 338 23A 3 

WBB2207 KKH 3 F Chinese Blood IPD 29/02/2016 N/A N/A 9 14 9 

WBB2208 KKH 19 M Chinese Blood IPD NA N/A N/A NF 19F 69 

WBB2209 KKH 12 F Nepalese Endotracheal tube non-IPD NA N/A N/A 6040 39 115 

WBB2210 KKH 7 M Malay Ear non-IPD 28/12/2013 N/A N/A 320 19A 1 

WBB2211 KKH 4 M Malay Blood IPD 17/04/2014 N/A N/A 902 06A 97 

WBB2212 KKH 4 M Malay Pleura IPD 18/03/2015 N/A N/A 8202 19A 1 
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WBB2213 KKH 4 M Chinese Ear non-IPD 14/08/2015 N/A N/A 320 19A 1 

WBB2214 KKH 5 M Chinese Blood IPD 05/03/2016 N/A N/A 63 15A 7 

WBB2215 KKH 8 F Chinese Blood IPD NA N/A N/A 6011 3 6 

WBB2216 KKH 2 F Malay Ear non-IPD NA N/A N/A 193 15C 42 

WBB2217 KKH 8 F Malay Blood IPD 28/01/2014 N/A N/A 695 19A 79 

WBB2218 KKH 15 M Malay Pleura IPD 10/05/2014 N/A N/A 320 19A 1 

WBB2219 KKH 6 F Malay Blood IPD 07/05/2015 N/A N/A 5242 23A 3 

WBB2220 KKH 2 M Malay Ear non-IPD 15/09/2015 N/A N/A 236 19F 1 

WBB2221 KKH 3 M Chinese Ear non-IPD 23/03/2016 N/A N/A 320 19A 1 

WBB2222 KKH 34 F Malay Blood IPD NA N/A N/A 7479 15B 30 

WBB2223 KKH 2 F Chinese Ear non-IPD NA N/A N/A 62 11D 17 

WBB2224 KKH 12 F Chinese Pleura IPD 31/01/2014 N/A N/A 320 19A 1 

WBB2225 KKH 3 F Chinese Blood IPD 28/06/2014 N/A N/A 97 10A 27 

WBB2226 KKH 1 M Chinese Ear non-IPD 06/05/2015 N/A N/A 62 11D 17 

WBB2227 KKH 6 M Chinese Blood IPD 21/09/2015 N/A N/A 320 19A 1 

WBB2228 KKH 7 M Chinese CSF IPD NA N/A N/A 62 11D 17 

WBB2230 TTSH 43 F Chinese Eye non-IPD 10/09/2013 N/A Survived 62 11A 17 

WBB2336 SGH 59 M Chinese Blood IPD 02/10/2013 N/A N/A 8259 8 116 
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WBB2337 SGH 31 M Bangladesh Blood IPD 29/07/2014 N/A N/A 4745 20 74 

WBB2338 SGH 84 M Chinese Blood IPD 09/11/2014 N/A N/A 6202 15A 100 

WBB2339 SGH 1 M Malay Blood IPD 13/04/2015 N/A N/A 3111 19A 58 

WBB2340 SGH 57 M Malay Blood IPD 23/02/2016 N/A N/A NF 4 69 

WBB2342 SGH 68 M Chinese Blood IPD 21/10/2013 N/A N/A 386 06C 110 

WBB2343 SGH 75 M Chinese Blood IPD 15/08/2014 N/A N/A 458 3 88 

WBB2344 SGH 72 F Chinese Blood IPD 16/11/2014 N/A N/A 6011 3 6 

WBB2345 SGH 73 M Chinese Blood IPD 24/05/2015 N/A N/A 386 3 110 

WBB2346 SGH 78 M Chinese Blood IPD 05/03/2016 N/A N/A 62 11D 17 

WBB2348 SGH 80 F Chinese Blood IPD 25/10/2013 N/A N/A NF 11D 69 

WBB2349 SGH 56 F Chinese Blood IPD 19/08/2014 N/A N/A 8202 19A 1 

WBB2350 SGH 73 M Chinese Blood IPD 09/12/2014 N/A N/A 260 3 117 

WBB2351 SGH 76 F Malay Blood IPD 14/05/2015 N/A N/A NF 06A 69 

WBB2353 SGH 70 M Chinese Nose non-IPD 29/10/2013 N/A N/A 2697 19F 1 

WBB2354 SGH 33 M Indian Blood IPD 20/08/2014 N/A N/A 303 1 10 

WBB2355 SGH 70 M Indian Blood IPD 14/12/2014 N/A N/A 36 23F 118 

WBB2356 SGH 31 M Indian Blood IPD 03/06/2015 N/A N/A 303 1 10 

WBB2358 SGH 79 M Chinese Blood IPD 11/11/2013 N/A N/A 90 06E 2 
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WBB2359 SGH 81 F Chinese Blood IPD 29/08/2014 N/A N/A 62 11D 17 

WBB2360 SGH 75 F Chinese Blood IPD 16/12/2014 N/A N/A 36 23F 118 

WBB2361 SGH 63 F Malay Blood IPD 20/06/2015 N/A N/A 4745 20 74 

WBB2363 SGH 61 M Indian Blood IPD 18/11/2013 N/A N/A 386 06C 110 

WBB2364 SGH 78 F Chinese Blood IPD 11/09/2014 N/A N/A 180 3 51 

WBB2365 SGH 73 M Chinese Blood IPD 17/12/2014 N/A N/A 199 15C 5 

WBB2366 SGH 60 F Indian Blood IPD 09/07/2015 N/A N/A 4908 09V 101 

WBB2368 SGH 69 M Chinese Blood IPD 27/11/2013 N/A N/A 386 06C 110 

WBB2369 SGH 63 M Chinese Blood IPD 22/09/2014 N/A N/A 12209 23F 119 

WBB2370 SGH 46 M Malay Blood IPD 28/12/2014 N/A N/A 74 2 46 

WBB2371 SGH 77 M Chinese Blood IPD 13/07/2015 N/A N/A 6011 3 6 

WBB2373 SGH 38 M Malay Blood IPD 04/12/2013 N/A N/A 3111 19A 58 

WBB2374 SGH 80 M Chinese Blood IPD 24/09/2014 N/A N/A 81 23F 0 

WBB2375 SGH 77 M Chinese Blood IPD 12/01/2015 N/A N/A 1591 23F 0 

WBB2376 SGH 60 M Chinese Blood IPD 15/07/2015 N/A N/A 1553 19A 99 

WBB2378 SGH 65 F Chinese Blood IPD 03/02/2014 N/A N/A 199 15B 5 

WBB2379 SGH 35 M Indonesian Blood IPD 07/10/2014 N/A N/A 217 1 10 

WBB2380 SGH 68 F Chinese Blood IPD 02/02/2015 N/A N/A 7479 15C 30 
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WBB2381 SGH 55 F Chinese Blood IPD 21/10/2015 N/A N/A 386 06D 110 

WBB2383 SGH 39 M Chinese Blood IPD 25/02/2014 N/A N/A 124 14 16 

WBB2384 SGH 64 M Chinese Blood IPD 12/10/2014 N/A N/A 4352 09V 6 

WBB2385 SGH 62 F Chinese Blood IPD 17/02/2015 N/A N/A 199 15C 5 

WBB2386 SGH 69 M Filipino Blood IPD 23/12/2015 N/A N/A 782 14 7 

WBB2388 SGH 62 M Malay Blood IPD 03/03/2014 N/A N/A 4127 4 20 

WBB2389 SGH 74 M Chinese Blood IPD 28/10/2014 N/A N/A 6908 41A 120 

WBB2390 SGH 26 M Indian Blood IPD 18/02/2015 N/A N/A 4745 20 74 

WBB2391 SGH 54 M Chinese Blood IPD 14/01/2016 N/A N/A 3173 06A 62 

WBB2393 SGH 87 M Chinese Blood IPD 29/05/2014 N/A N/A 320 19A 1 

WBB2394 SGH 29 M Indian Blood IPD 08/11/2014 N/A N/A 1518 06E 56 

WBB2395 SGH 78 F Chinese Blood IPD 21/02/2015 N/A N/A 1591 23F 0 

WBB2396 SGH 62 F Indian Blood IPD 31/01/2016 N/A N/A 473 06B 26 
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Appendix R Isolate antimicrobial susceptibility data for 

313 S. pneumoniae isolates collected 2013-2016 

Laboratory data for the isolates collected from collaborating hospitals 2013-2016. Data for 

isolates collected 1997-2013 is located in Jauneikaite (2014) (182). The described phenotypes are 

sensitive (S), resistant (R) and intermediate resistance (I). 

 

ID Penicillin Erythromycin Cotrimoxazole Clindamycin Vancomycin Doxycycline 

WBB1259 R R N/A R S R 

WBB1260 S S N/A S S R 

WBB1261 S R N/A R S R 

WBB1262 S S N/A S S S 

WBB1263 S S N/A S S R 

WBB1264 S S N/A S S S 

WBB1265 S R N/A S S S 

WBB1266 S R N/A R S R 

WBB1267 S R N/A R S R 

WBB1268 S R N/A R S S 

WBB1269 S R N/A S S N/A 

WBB1270 S S N/A S S N/A 

WBB1271 S R N/A R S R 

WBB1273 S R N/A R S R 

WBB1274 S S N/A S S S 

WBB1275 S S N/A S S S 

WBB1276 S I N/A S S R 

WBB1277 N/A N/A N/A N/A N/A N/A 

WBB1278 S R N/A R S R 

WBB1279 S S N/A S S S 

WBB1280 R R N/A R S R 

WBB1281 S R N/A S S R 
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WBB1282 S S N/A S S R 

WBB1283 S S N/A S S R 

WBB1284 N/A N/A N/A N/A N/A N/A 

WBB1285 S S N/A S S S 

WBB1286 S S N/A S S R 

WBB1288 N/A N/A N/A N/A N/A N/A 

WBB1289 N/A N/A N/A N/A N/A N/A 

WBB1290 S R N/A R S R 

WBB1291 S S N/A S S I 

WBB1292 S S N/A S S S 

WBB1293 S S N/A S S S 

WBB1294 N/A N/A N/A N/A N/A N/A 

WBB1295 S S N/A S S S 

WBB1296 S S N/A S S R 

WBB1297 S R N/A R S R 

WBB1298 S R N/A R S R 

WBB1299 S S N/A S S N/A 

WBB1300 S S N/A S S S 

WBB1301 S R N/A R S R 

WBB1302 S S N/A S S S 

WBB1303 S S N/A S S R 

WBB1304 s R N/A S S R 

WBB1305 S R N/A S S S 

WBB1306 R S N/A S S R 

WBB1307 S S N/A S S S 

WBB1308 S S N/A S S S 

WBB1309 S S N/A S S S 

WBB1310 N/A N/A N/A N/A N/A N/A 

WBB1311 S S N/A S S S 

WBB1313 S R N/A S S R 

WBB1314 S S N/A S S S 

WBB1315 S R N/A R S S 
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WBB1316 N/A N/A N/A N/A N/A N/A 

WBB1317 S R N/A S S R 

WBB1318 S S N/A S S R 

WBB1319 S S N/A S S S 

WBB1320 S R N/A S S R 

WBB1322 S S N/A S S R 

WBB1324 S R N/A R S R 

WBB1325 S R N/A S S R 

WBB1326 S R N/A S S I 

WBB1327 S S N/A S S S 

WBB1328 S I R S N/A N/A 

WBB1329 I R R R S N/A 

WBB1330 S S S S N/A N/A 

WBB1331 S S R S N/A N/A 

WBB1332 R R R S S N/A 

WBB1333 S S S S N/A N/A 

WBB1334 I R R S N/A N/A 

WBB1335 I R I S N/A N/A 

WBB1336 I R S S N/A N/A 

WBB1337 S S S S N/A N/A 

WBB1338 S S R S N/A N/A 

WBB1339 S S R S N/A N/A 

WBB1340 S S R S N/A N/A 

WBB1341 S S S S S N/A 

WBB1342 S R R R N/A N/A 

WBB1343 S S R S N/A N/A 

WBB1344 S R S R N/A N/A 

WBB1345 S S I S N/A N/A 

WBB1346 I R R R S N/A 

WBB1347 S S S S N/A N/A 

WBB1348 S R R R N/A N/A 

WBB1349 S R R R N/A N/A 
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WBB1350 S S S S N/A N/A 

WBB1351 S S S S S N/A 

WBB1352 I R R R N/A N/A 

WBB1353 I R R R N/A N/A 

WBB1354 S S R S N/A N/A 

WBB2033 S R N/A R S S 

WBB2034 S S S S N/A N/A 

WBB2035 S S S S N/A N/A 

WBB2036 I R R S N/A N/A 

WBB2037 S R N/A R S R 

WBB2038 S R N/A R S R 

WBB2039 S S N/A S S S 

WBB2040 S R N/A R S S 

WBB2041 I R R R N/A N/A 

WBB2042 S R S R N/A N/A 

WBB2043 S S S S N/A N/A 

WBB2044 S S S S N/A N/A 

WBB2045 S R N/A R S R 

WBB2046 S R N/A R S R 

WBB2047 S S N/A S S R 

WBB2048 S R N/A R S R 

WBB2050 S R S R N/A N/A 

WBB2051 S S S S N/A N/A 

WBB2052 I R R R N/A N/A 

WBB2053 R R N/A R S R 

WBB2054 S S N/A S S S 

WBB2055 S R N/A R S R 

WBB2056 S S N/A S S S 

WBB2059 S S S S N/A N/A 

WBB2060 S S S S N/A N/A 

WBB2061 S R N/A R S R 

WBB2062 S R N/A R S R 
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WBB2063 S R N/A S S S 

WBB2064 S R N/A S S S 

WBB2065 S S R S N/A N/A 

WBB2066 I R R R N/A N/A 

WBB2067 I R R S N/A N/A 

WBB2068 S R N/A S S S 

WBB2069 S S N/A S S S 

WBB2070 S R N/A S S S 

WBB2071 S R N/A S S S 

WBB2072 R R N/A S S R 

WBB2073 S R R S N/A N/A 

WBB2074 S S S S N/A N/A 

WBB2075 S R I R N/A N/A 

WBB2076 R R N/A R S R 

WBB2077 S R N/A R S S 

WBB2078 S R N/A R S R 

WBB2079 S R N/A R S R 

WBB2080 I R R N/A N/A N/A 

WBB2081 I R R R N/A N/A 

WBB2083 S S S S N/A N/A 

WBB2084 S S N/A S S R 

WBB2085 S R N/A R S R 

WBB2087 S S N/A S S R 

WBB2088 S S S N/A N/A N/A 

WBB2089 S S S S N/A N/A 

WBB2090 N/A R S S N/A N/A 

WBB2091 I R R R N/A N/A 

WBB2092 S S N/A S S R 

WBB2093 S R N/A R S S 

WBB2094 I R N/A R S R 

WBB2095 S R N/A R S R 

WBB2096 I R R N/A N/A N/A 
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WBB2097 S R S R N/A N/A 

WBB2100 S S N/A S S R 

WBB2101 S S N/A S S S 

WBB2102 N/A N/A N/A N/A N/A N/A 

WBB2104 S S R N/A N/A N/A 

WBB2105 S S S S N/A N/A 

WBB2106 S S R S N/A N/A 

WBB2107 S S S S N/A N/A 

WBB2108 S R N/A R S R 

WBB2109 I R N/A R S R 

WBB2110 S S N/A S S S 

WBB2111 S S N/A S S R 

WBB2112 I R S N/A N/A N/A 

WBB2113 S S S S N/A N/A 

WBB2114 I R R R N/A N/A 

WBB2115 S R R S N/A N/A 

WBB2116 S R N/A R S S 

WBB2117 S R N/A R S R 

WBB2118 S S N/A S S R 

WBB2119 S S N/A S S R 

WBB2120 I R S N/A N/A N/A 

WBB2121 I R S R N/A N/A 

WBB2122 S R S R N/A N/A 

WBB2123 R R R R N/A N/A 

WBB2124 S R N/A R S R 

WBB2125 S R N/A R S R 

WBB2126 S R N/A R S R 

WBB2127 S R N/A R S R 

WBB2128 I R R N/A N/A N/A 

WBB2144 S S N/A S S S 

WBB2145 I R R N/A N/A N/A 

WBB2146 I R R N/A N/A N/A 
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WBB2147 I R S N/A N/A N/A 

WBB2148 S R S N/A N/A N/A 

WBB2149 S S S N/A N/A N/A 

WBB2150 S R S N/A N/A N/A 

WBB2151 S R N/A R S R 

WBB2153 S R S N/A N/A N/A 

WBB2154 I R R N/A N/A N/A 

WBB2155 S S S N/A N/A N/A 

WBB2156 R R R N/A N/A N/A 

WBB2157 R R R N/A N/A N/A 

WBB2158 R R R N/A N/A N/A 

WBB2159 S S N/A S S S 

WBB2161 I R R N/A N/A N/A 

WBB2162 S S S N/A N/A N/A 

WBB2163 R R S N/A N/A N/A 

WBB2164 S S S N/A N/A N/A 

WBB2165 R R R N/A N/A N/A 

WBB2166 R R R N/A N/A N/A 

WBB2167 S R N/A S S S 

WBB2168 S S N/A S S S 

WBB2169 R R R N/A N/A N/A 

WBB2170 I R R N/A N/A N/A 

WBB2171 S S R N/A N/A N/A 

WBB2172 S R S N/A N/A N/A 

WBB2173 I R S N/A N/A N/A 

WBB2174 S S S N/A N/A N/A 

WBB2175 S S N/A S S S 

WBB2176 S S S N/A N/A N/A 

WBB2177 S R S N/A N/A N/A 

WBB2178 S S S N/A N/A N/A 

WBB2179 I R S N/A N/A N/A 

WBB2180 S R S N/A N/A N/A 
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WBB2181 S R S N/A N/A N/A 

WBB2182 N/A N/A N/A N/A N/A N/A 

WBB2183 S S R N/A N/A N/A 

WBB2184 R R R N/A N/A N/A 

WBB2185 R R R N/A N/A N/A 

WBB2186 R R R N/A N/A N/A 

WBB2187 S S R N/A N/A N/A 

WBB2188 I R R N/A N/A N/A 

WBB2189 S R N/A R S R 

WBB2190 S S S N/A N/A N/A 

WBB2191 S R S N/A N/A N/A 

WBB2192 S R R N/A N/A N/A 

WBB2193 S S S N/A N/A N/A 

WBB2194 S S R N/A N/A N/A 

WBB2195 S R S N/A N/A N/A 

WBB2196 S S S N/A N/A N/A 

WBB2197 S S S N/A N/A N/A 

WBB2198 S S S N/A N/A N/A 

WBB2199 S S S N/A N/A N/A 

WBB2200 I R R N/A N/A N/A 

WBB2201 I R S N/A N/A N/A 

WBB2202 S S S N/A N/A N/A 

WBB2203 S R S N/A N/A N/A 

WBB2204 S R S N/A N/A N/A 

WBB2205 S S S N/A N/A N/A 

WBB2206 I R R N/A N/A N/A 

WBB2207 S R S N/A N/A N/A 

WBB2208 S S R N/A N/A N/A 

WBB2209 S S S N/A N/A N/A 

WBB2210 I R R N/A N/A N/A 

WBB2211 I R R N/A N/A N/A 

WBB2212 I R R N/A N/A N/A 
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WBB2213 I R R N/A N/A N/A 

WBB2214 I R R N/A N/A N/A 

WBB2215 S R R N/A N/A N/A 

WBB2216 S R S N/A N/A N/A 

WBB2217 S S S N/A N/A N/A 

WBB2218 I R R N/A N/A N/A 

WBB2219 I R S N/A N/A N/A 

WBB2220 I S S N/A N/A N/A 

WBB2221 I R R N/A N/A N/A 

WBB2222 I R R N/A N/A N/A 

WBB2223 S R S N/A N/A N/A 

WBB2224 R R R N/A N/A N/A 

WBB2225 S S S N/A N/A N/A 

WBB2226 S R S N/A N/A N/A 

WBB2227 I R R N/A N/A N/A 

WBB2228 S S S N/A N/A N/A 

WBB2230 S S N/A S S S 

WBB2336 S S N/A S S N/A 

WBB2337 S R N/A R S N/A 

WBB2338 S R N/A R S N/A 

WBB2339 R R N/A R S N/A 

WBB2340 S S N/A S S N/A 

WBB2342 S R N/A R S N/A 

WBB2343 S S N/A S S N/A 

WBB2344 S R N/A R S N/A 

WBB2345 R R N/A R S N/A 

WBB2346 S S N/A S S N/A 

WBB2348 S S N/A S S N/A 

WBB2349 R R N/A R S N/A 

WBB2350 S S N/A S S N/A 

WBB2351 S S N/A S S N/A 

WBB2353 R R N/A R S N/A 
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WBB2354 S S N/A S S N/A 

WBB2355 S S N/A S S N/A 

WBB2356 S S N/A S S N/A 

WBB2358 R R N/A R S N/A 

WBB2359 S S N/A S S N/A 

WBB2360 S S N/A S S N/A 

WBB2361 S R N/A R S N/A 

WBB2363 S R N/A R S N/A 

WBB2364 S R N/A R S N/A 

WBB2365 S S N/A S S N/A 

WBB2366 S R N/A S S N/A 

WBB2368 S R N/A R S N/A 

WBB2369 S S N/A S S N/A 

WBB2370 S R N/A S S N/A 

WBB2371 S R N/A R S N/A 

WBB2373 S R N/A R S N/A 

WBB2374 R R N/A S S N/A 

WBB2375 I R N/A R S N/A 

WBB2376 I S N/A S S N/A 

WBB2378 S S N/A S S N/A 

WBB2379 S S N/A S S N/A 

WBB2380 I R N/A S S N/A 

WBB2381 S R N/A R S N/A 

WBB2383 S S N/A S S N/A 

WBB2384 S S N/A S S N/A 

WBB2385 S R N/A R S N/A 

WBB2386 S S N/A S S N/A 

WBB2388 S S N/A S S N/A 

WBB2389 S R N/A R S N/A 

WBB2390 S R N/A R S N/A 

WBB2391 I R N/A R S N/A 

WBB2393 S R N/A R S N/A 
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WBB2394 S R N/A S S N/A 

WBB2395 R R N/A R S N/A 

WBB2396 R R N/A S S N/A 
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