
Link Prediction with Attention
Applied on Multiple Knowledge Graph Embedding Models

Cosimo Gregucci
∗

University of Stuttgart

Stuttgart, Germany

cosimo.gregucci@ipvs.uni-stuttgart.de

Mojtaba Nayyeri
∗

University of Stuttgart

Stuttgart, Germany

mojtaba.nayyeri@ipvs.uni-stuttgart.de

Daniel Hernández

University of Stuttgart

Stuttgart, Germany

daniel.hernandez@ipvs.uni-stuttgart.de

Steffen Staab

University of Stuttgart

University of Southampton

Stuttgart, Germany

ABSTRACT
Predicting missing links between entities in a knowledge graph is

a fundamental task to deal with the incompleteness of data on the

Web. Knowledge graph embeddings map nodes into a vector space

to predict new links, scoring them according to geometric criteria.

Relations in the graph may follow patterns that can be learned, e.g.,

some relations might be symmetric and others might be hierarchi-

cal. However, the learning capability of different embedding models

varies for each pattern and, so far, no single model can learn all

patterns equally well. In this paper, we combine the query represen-

tations from several models in a unified one to incorporate patterns

that are independently captured by each model. Our combination

uses attention to select the most suitable model to answer each

query. The models are also mapped onto a non-Euclidean manifold,

the Poincaré ball, to capture structural patterns, such as hierar-

chies, besides relational patterns, such as symmetry. We prove that

our combination provides a higher expressiveness and inference

power than each model on its own. As a result, the combined model

can learn relational and structural patterns. We conduct extensive

experimental analysis with various link prediction benchmarks

showing that the combined model outperforms individual models,

including state-of-the-art approaches.

CCS CONCEPTS
• Computing methodologies→ Knowledge Representation
and Reasoning; • Information systems → Entity relationship
models.

KEYWORDS
Knowledge graph embedding, link prediction, ensemble, geometric

integration

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9416-1/23/04.

https://doi.org/10.1145/3543507.3583358

ACM Reference Format:
Cosimo Gregucci, Mojtaba Nayyeri, Daniel Hernández, and Steffen Staab.

2023. Link Prediction with Attention Applied on Multiple Knowledge Graph

Embedding Models. In Proceedings of the ACM Web Conference 2023 (WWW
’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3543507.3583358

1 INTRODUCTION
In the last few years large knowledge graphs (KGs) (e.g. Wikidata

[36], YAGO [32], etc) have emerged to represent complex knowl-

edge in the form of multi-relational directed labeled graphs [15].

KGs attracted great attention in industry [7, 9, 10, 13, 25, 30, 31]

and academia [1, 14, 16, 32, 36], and became the core part of many

artificial intelligence systems, e.g., question answering, etc.

Knowledge graphs are typically stored using the W3C standard

RDF (Resource Description Framework) [4] which models graphs

as sets of triples (ℎ, 𝑟, 𝑡) where ℎ, 𝑟 , and 𝑡 represent resources that
are described on the Web. The link prediction community refers to

them as head entity, relation, and tail entity, respectively. Each triple
corresponds to a known fact involving entities ℎ and 𝑡 and relation

𝑟 . For example, the fact that Berlin is the capital of Germany is

modeled as the triple (Berlin, capitalOf,Germany).
A relevant problem for knowledge graphs, called link prediction,

is predicting unknown facts (links) based on known facts, and

knowledge graph embedding (KGE) is a prominent approach for

it. To predict links, KGEs map entities ℎ and 𝑡 and relations 𝑟 into

elements 𝒉, 𝒓 , and 𝒕 in a low-dimensional vector space, and score

the plausibility of a link (ℎ, 𝑟, 𝑡) using a score function on 𝒉, 𝒓 , and 𝒕 .
Most KGEmodels [5, 22, 33, 35, 46] score a link (ℎ, 𝑟, 𝑡) by splitting it
into the query 𝑞 = (ℎ, 𝑟, ?) and the corresponding candidate answer
𝑡 . The query is embedded to an element in the same space as the

candidate answers with a transformation function 𝒒 = 𝑔𝒓 (𝒉) that
depends on the relation 𝑟 and is applied to 𝒉. The score of a link is

then a measure of the similarity or proximity between 𝒒 and 𝒕 .
KGE models can learn logical and other patterns (example in

Figure 1) to predict links. For instance, the facts that co-author is a

symmetric relation and part-of is hierarchical can be learned from

the data. However, the capability of different KGE models to learn

and express patterns for predicting missing links varies widely and,

so far, no single model does it equally well for each pattern. Logical

patterns exhibit the form 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 −→ 𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 where 𝑃𝑟𝑒𝑚𝑖𝑠𝑒

is the conjunction of several atoms and 𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 is an atom.

https://orcid.org/0000-0002-9636-0996
https://orcid.org/0000-0002-9177-0312
https://orcid.org/0000-0002-7896-0875
https://orcid.org/0000-0002-0780-4154
https://doi.org/10.1145/3543507.3583358
https://doi.org/10.1145/3543507.3583358

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Cosimo Gregucci, Mojtaba Nayyeri, Daniel Hernández, and Steffen Staab

Figure 1: Subgraph exhibiting heterogeneous patterns [23].

Structural patterns refer to the arrangements of elements in a graph.

A relation forms a hierarchical pattern when its corresponding

graph is close to tree-like [6], e.g., (eagle, type-of, bird). For example,

RotatE defines transformations as rotations 𝑔RotatE𝑟 (𝒉) = 𝒉 ◦ 𝒓 in
Complex space (◦ is an element-wise complex product). In this way,

RotatE can enforce both 𝒉 ◦ 𝒓 = 𝒕, 𝒕 ◦ 𝒓 = 𝒉 if 𝒓2 = 1 and, thus, it
is able to model symmetric relations.

In Table 1, we present a summary of the query representation of

some state-of-the-art baselines. We indicate whether a KGE can or

cannot model a specific pattern. If it can model a pattern, we further

include the number of constraints they have to satisfy to express

this pattern. For instance, antisymmetry for RotatE requires two

constraints 𝒓 ≠ −1 and 𝒓 ≠ 1 to be expressed. Further explanation

of Table 1 can be found in Appendix A.4.

Beyond the KGEs surveyed in Table 1, further works have defined

query representations successfully dealing with different subsets of

patterns, such as 5*E [22], AttE/H [6], TransH [41], or ProjE [29].

However, there is neither a single transformation function that can

model all patterns nor a single approach that can take advantage

of all the different transformation functions.

In this paper, we tackle this problem and propose a general

framework to integrate different transformation functions from

several KGE models, M, in a low-dimensional geometric space

such that heterogeneous relational and structural patterns are well

represented. In particular, we employ spherical geometry to unify

different existing representations of KGE queries, (ℎ, 𝑟, ?). In our

framework, representations of KGE queries, 𝑔𝑖𝑟 (h) with 𝑖 ∈ M,

define the centers of hyperspheres, and candidate answers lie inside

or outside of the hyperspheres whose radiuses are derived during

training. Plausible answers mostly lie inside the convex hull formed

by the centers of the hyperspheres. Based on this representation, we

learn how to pay attention to the most suitable representations of

a KGE query. Thereby, attention is acquired to adhere to applicable

patterns (see Figure 1 and Figure 2).

For instance, given a KGE query (Leader1, coAuthor, ?), attention
will focus on the representation of this query defined by RotatE,

as our framework has learned about the symmetry of the rela-

tion coAuthor. Likewise, TransE and RotatE will be preferred for

KGE query (Student1, supervisedBy, ?) accounting for the pattern

(𝑋, isPhDIn, 𝑌), (𝑌, ledBy, 𝑍) → (𝑋, supervisedBy, 𝑌), while TransE
will be favored for KGE query (Leader1, supervisedBy, ?) due to the

anti-symmetry of supervisedBy.
Furthermore, we also project our model onto a non-Euclidean

manifold, the Poincaré ball, to also facilitate structural preservation.

In summary, our key contributions are as follows:

• We propose a spherical geometric framework for combining

several existing KGE models. To our knowledge, this is the

first approach to integrate KGE models taking advantage of

the different underlying geometric transformations.

• We utilize an attention mechanism to focus on query repre-

sentations depending on the characteristics of the underlying

relation in the query. Therefore, our method can support

various relational patterns. Furthermore, structural patterns

are captured by projecting the model onto the Poincaré ball.

• We present various theoretical analyses to show that our

model subsumes various existing models.

2 RELATEDWORK
We review the related works in three parts, namely the baseline

models we used for combination, the models which provide other

approaches for combinations, and models that combine spaces.

2.1 KGE Model Baselines
Various models [11, 17, 38] have been proposed for KGE in the last

few years. Each KGE defines a score function 𝑓 (ℎ, 𝑟, 𝑡) which takes

embedding vectors of a triple (𝒉, 𝒓, 𝒕) and scores the triple. In our

work we integrate and compare them to the following baselines:

• TransE [5] computes the score of a triple by computing the

distance between the tail and the translated head. Thanks to

the translation-based transformation, this KGE is particularly

suited for modeling inverse and composition patterns.

• RotatE [33] uses a relation-specific rotation r𝑖 = 𝑒𝑖\ to map

each element of the head to the corresponding tail. RotatE

can infer symmetrical patterns if the angle formed by the

head and tail is either 0 or \ . Besides, rotations are also effec-

tive in capturing antisymmetry, composition, or inversion.

• DistMult [45] represents each relation as a diagonal matrix.

Its score function captures pairwise interaction between

the same dimension of the head and tail embedding. Thus,

DistMult treats symmetric relations well, but scores so highly

inverse links of non-symmetric and antisymmetric relations.

• ComplEx [35] extends DistMult in the complex space to

effectively capture symmetric and antisymmetric patterns.

• AttH [6] combines relation-specific rotations and reflections

using hyperbolic attention and applies a hyperbolic transla-

tion. Rotation can capture antisymmetrical and symmetrical

patterns, reflection can naturally represent symmetrical rela-

tions, while the hyperbolic translation can capture hierarchy.

We also compared our models against AttE [6], a variant of

AttH with curvature set to zero.

Link Prediction with Attention
Applied on Multiple Knowledge Graph Embedding Models WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: Specification of query representation of baseline and state-of-the-art KGE models and respective pattern modeling and
inference abilities. AttE/H include both rotation (RotatE) and reflection (RefH), hence are not mentioned in the table to avoid
repetitions. ◦ is element-wise complex product together with relation normalization.

Model Query Embeddings Symmetry Antisymmetry Inversion Composition Hierarchy

TransE [5] 𝒒 = 𝒉 + 𝒓 𝒒, 𝒉, 𝒓 ∈ R𝑑 × ✓ − 0 ✓ − 0 ✓ − 0 ×

RotatE [33] 𝒒 = 𝒉 ◦ 𝒓 𝒒, 𝒉, 𝒓 ∈ C𝑑 ✓ − 2 ✓ − 2 ✓ − 2 ✓ − 2 ×

ComplEx [35] 𝒒 = 𝒉 × 𝒓 𝒒, 𝒉, 𝒓 ∈ C𝑑 ✓ − 2 ✓ − 2 ✓ − 2 × ×

DistMult [45] 𝒒 = 𝒉 · 𝒓 𝒒, 𝒉, 𝒓 ∈ R𝑑 ✓ − 0 × × × ×

RefH [6] 𝒒 = 𝑹𝒆𝒇 (𝜽𝒓)𝒉 𝒒, 𝒉 ∈ H𝑑 ✓ − 0 × × × ✓ − 0

2.2 KGEs Combination
Combinations between KGEs of the same kind. Authors in [44]

showed that, under some conditions, the ensemble generated from

the combination of multiple runs of low-dimensional embedding

models of the same kind outperforms the corresponding individual

high-dimensional embedding model. Unlike our approach, the en-

semble model will still be able to express only a subset of existing

logical patterns.

Combination between different KGE models. Prior works [20] pro-
posed to combine different knowledge graph embeddings through

score concatenation to improve the performance in link prediction.

[40] proposed a relation-level ensemble, where the combination

of individual models is performed separately for each relation. A

recent work [39], proposed to combine the scores of different em-

bedding models by using a weighted sum. Such methods combine

scores either per model or per relation, while we provide a query

attention mechanism for the combination.

A different approach has been proposed in MulDE [37], where

link prediction is improved by correcting the prediction of a “student”
embedding through the use of several pre-trained embeddings that

act as “teachers”. The student embedding can be considered to

constitute an ensemble model. However, this ensemble cannot steer

decisions towards the strengths of individual models but can only

decide randomly or based on majority guidance by teachers.

Further ensemble approaches between KGE and machine learn-

ing models can be found in the Appendix A.3

2.3 Combination Of Spaces
A different line of research aims at improving link prediction per-

formance by combining different geometrical spaces. [12] improves

link prediction by combining Hyperbolic, Spherical, and Euclidean

space. Similarly, [42] embedded knowledge graphs into an Ultra-

hyperbolic manifold, which generalizes Hyperbolic and Spherical

manifolds. On the other hand, we combine queries rather than

geometric spaces.

3 PROPOSED APPROACH
In this section, we present our geometric query integration model

using Euclidean and Hyperbolic geometries, and introduce our ap-

proach in the following four items: a) entity, relation, and query rep-

resentation, b) spherical query embedding, c) Riemannian attention-

based query combination, d) expressivity analysis.

Figure 2: The overall architecture of our proposed model
with spherical geometry. We combine query representations
of TransE, RotatE, AttE (with Reflection), and DistMult (per
dimension scaling). The left part shows query integration
with attention to TransE model. The right part represents
query combination without attention.

a) Entity, Relation and Query Embedding. Let E,R be the

entity and relation sets. We represent each entity 𝑒 ∈ E and relation

𝑟 ∈ R as 𝑑𝑒 and 𝑑𝑟 dimensional vectors which are denoted by 𝒆 and
𝒓 , respectively. Thus, each triple (ℎ, 𝑟, 𝑡) has a vector representation
(𝒉, 𝒓, 𝒕) where 𝒉, 𝒕 are the corresponding entity embeddings.

We split each triple (ℎ, 𝑟, 𝑡) into two parts, namely the tail query

𝑞 = (ℎ, 𝑟, ?) and the candidate answer 𝑡 , and represent their embed-

dings by 𝒒, 𝒕 respectively.
In our model, we aim at combining the queries from several

existing KGE models that are specified in Table 1. We denote the

query representation set by Q = {𝒒𝑖 |𝒒𝑖 = 𝑔𝑖𝑟 (𝒉), 𝑖 ∈ M} where
M is a set of several existing KGE models such as TransE, RotatE,

ComplEx, DistMult, etc, and the function 𝑔𝑖𝑟 (𝒉) is a relation-specific
transformation from a head embedding to a query representation

for model 𝑖 . Note that we assume that query representations by

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Cosimo Gregucci, Mojtaba Nayyeri, Daniel Hernández, and Steffen Staab

different models lie on the same space. In this paper, we stay in Eu-

clidean space for query combination. In this regard, we can combine

models lying either directly in Euclidean space (e.g., TransE and

DistMult) and models that can be rewritten to lie in the Euclidean

space (e.g., models lying in Complex or Hypercomplex spaces as

ComplEx, RotatE, and QuatE by assuming R4 = R2 ×R2 = C1 ×C1,
where C𝑑 ,R𝑑 are 𝑑-dimensional Complex and Euclidean spaces).

We then project such query vectors on a hyperbolic manifold to

handle hierarchical patterns.

b) Spherical Query Embedding. In this part, first, we propose

a spherical query embedding to represent each query as a sphere

whose center is the vector embedding of the query. This sphere

defines the answer space of the query. Second, we propose an ap-

proach to combine query representations of several already existing

embeddingmodels in one spherical query representation to enhance

the modeling of heterogeneous patterns. In “radius and ranking",
we will show that the spherical representation is connected to the

ranking metric Hits@k. In particular, the top k candidate answers

for a query 𝑞 are embedded in a sphere whose center is a combina-

tion of the vector embeddings 𝒒𝑖 of query 𝑞. To practically enforce

this, the radius in our spherical query embedding needs to be set.

Therefore, in “radius and loss", we will show that a loss function can

enforce the improvement of Hits@k by enforcing top k candidate

answers of a query inside the sphere.

Here, we formalize the combination of 𝑛 spherical KGEs. Let us

assume that 𝒒1, 𝒒2, . . . , 𝒒𝒏 ∈ Q be the 𝑛 vector query embeddings

of a query 𝑞 = (ℎ, 𝑟, ?) from 𝑛 distinct KGE models, and 𝒂 = 𝒕 be
the embedding of the candidate answer. We represent each query

as a hypersphere with a pair 𝒒𝑐
𝑖
= (𝒒𝒊, 𝜖𝑖), 𝒒𝑖 ∈ Q, where 𝒒𝒊 ∈ R𝑑

is the center of the 𝑖th sphere associated to the 𝑖th model and 𝜖𝑖 is

the radius. By using the function

𝑝 (𝒒𝑖 , 𝒂) = ∥𝒂 − 𝒒𝒊 ∥, 𝒒𝑖 ∈ Q, (1)

we define the answer spaceA and non-answer spaceN as decision

boundaries in the embedding space for each queries as follows:{
A𝑖 = {𝒆 ∈ R𝑑 | ∥𝒆 − 𝒒𝑖 ∥ ≤ 𝜖𝑖 },
N𝑖 = {𝒆 ∈ R𝑑 | ∥𝒆 − 𝒒𝑖 ∥ > 𝜖𝑖 }.

(2)

In this case, all embeddings of answers 𝑎 are supposed to lie on or

inside a sphere with a radius of 𝜖𝑖 and center 𝒒𝑖 , i.e., 𝒂 ∈ A𝑖 , and

the ones which are not answers lie outside of the sphere [24, 47].

We combine spherical query embeddings of several existing KGE

models in one spherical query embedding as follows:

Combination. Given the vector embeddings 𝒒1, 𝒒2, . . . , 𝒒𝒏 ∈ Q
we can set a radius 𝜖𝑘

𝑖
for each 𝒒𝒊 such that the answer space A𝑖

covers the top 𝑘 candidate answers.
A1 = {𝒆 ∈ R𝑑 | ∥𝒆 − 𝒒

1
∥ ≤ 𝜖𝑘

1
},

.

.

.

A𝑛 = {𝒆 ∈ R𝑑 | ∥𝒆 − 𝒒𝑛 ∥ ≤ 𝜖𝑘𝑛 }.

(3)

Summing up the above inequalities, we have ∥a − q1∥ + . . . + ∥a −
q𝑛 ∥ ≤ 𝜖𝑘

1
+ . . . + 𝜖𝑘𝑛 . Because of triangle inequality of the metric

| |.| |, this can be extended to the following inequality ∥a− q1 + . . . +
a − q𝑛 ∥ ≤ 𝜖𝑘

1
+ . . . + 𝜖𝑘𝑛 , that concludes ∥a −

q1+...+q𝑛
𝑛 ∥ ≤ 𝜖𝑘

1
+...+𝜖𝑘𝑛
𝑛 .

Therefore, the combined spherical query embedding is the spherical

embedding 𝒒𝑐
𝐸
= (𝒒𝐸 , 𝜖𝐸) where{

𝒒𝐸 =
𝒒
1
+...+𝒒𝑛

𝑛 ,

𝜖𝐸 =
𝜖𝑘
1
+...+𝜖𝑘𝑛
𝑛 .

(4)

This leads to the following top 𝑘 candidate answer space of the

combined spherical query embedding:

A𝐸 = {𝒆 ∈ R𝑑 | ∥𝒆 − 𝒒𝐸 ∥ ≤ 𝜖𝐸 }. (5)

Figure 2 (top right) shows the query representations, and candidate

answer spaces of TransE, RotatE, RefE, and DistMult, together with

the combined query (without attention to a particular model). The

combined query mainly lies inside the convex hull of all the models

within the answer space. We later show that most answers lie

within the convex hull covered by the combined query. Therefore,

the combined model takes the advantage of all models. Before

theoretically justifying this, we bridge the radius 𝜖 in spherical

query embedding and ranking metrics, as well as the practical way

of modeling radius using the loss function in the following parts.

Radius and Ranking. Most KGE models are evaluated based on

rankingmetrics such as Hits@k [5]. Here we explain the connection

between the ranking metrics and radius in our spherical query

embedding. Because the overall ranking is computed by taking the

average over ranks of all test triples, we explain the connection

between ranking and our model by considering an individual test

triple. During testing, for each given positive test triple (ℎ, 𝑟, 𝑡), the
tail 𝑡 is replaced one by one with all entities 𝑒 ∈ E. We denote T𝑒 =

(ℎ, 𝑟, 𝑒) the corrupted triple generated by replacing 𝑡 by 𝑒 . Therefore,
T = {T𝑒 |𝑒 ∈ E − {𝑡}} is the set of all corrupted triples generated

from the correct triple (ℎ, 𝑟, 𝑡). After computing the score of each

triple in T and sorting them based on their scores in descending

way, we select top 𝑘 high score samples and generate a new set

T𝑘 containing these samples. The spherical query embedding 𝒒𝑐
𝐸
=

(𝒒𝐸 , 𝜖𝐸) associated to a query𝑞 = (ℎ, 𝑟, ?) defines a spherical answer
space A𝐸 that contains the vector embeddings 𝒆 for the top 𝑘

entities 𝑒 ∈ T𝑘 . That is, T𝑘 contains top 𝑘 candidates for a query 𝑞,

and A𝐸 in Equation 5 is the candidate answer embedding space.

We want the vectors of answers in T𝑘 to lie inside A𝐸 , and to be as

close as possible to the query center to improve ranking results. To

enforce this, we define a loss function to optimize the embeddings,

as is explained below.

Radius and Loss Function. In this part, we show that the existing

loss functions implicitly enforce a particular (implicit) radius around

the vector query embedding 𝒒𝐸 . Let us focus on the widely used

loss function shown in the following [6]:

L =
∑︁
𝑒∈E

log(1 + exp(𝑦𝑒 (−𝑝 (𝒒𝑖 , 𝒆) + 𝛿ℎ + 𝛿𝑒)))), (6)

where 𝑦𝑒 = 1 if 𝑒 = 𝑎, and 𝑦𝑒 = −1 if 𝑒 ≠ 𝑎, and 𝛿ℎ and 𝛿𝑒 are

trainable entity biases. Minimization of this loss function leads to

maximizing the function −𝑝 (𝒒𝑖 , 𝒆) + 𝛿ℎ + 𝛿𝑒 . This can be approxi-

mately represented as −𝑝 (𝒒𝑖 , 𝒆) + 𝛿ℎ + 𝛿𝑒 ≥ 𝑀 where𝑀 is a large

number. Therefore, we have 𝑝 (𝒒𝑖 , 𝒆) ≤ 𝛿ℎ + 𝛿𝑒 −𝑀 = 𝛿ℎ𝑒 −𝑀 = 𝜖𝑖
which forms boundaries for classification as well as ranking. In the

next part, we theoretically show that 𝒒𝐸 lies within the convex hull

Link Prediction with Attention
Applied on Multiple Knowledge Graph Embedding Models WWW ’23, April 30–May 04, 2023, Austin, TX, USA

of the set of vectors {𝒒
1
, . . . , 𝒒𝑛}. Thus, the combined model takes

advantage of each model in ranking.

Theoretical Analysis. Equation 5 indicates that if the query is rep-

resented by (𝒒𝐸 , 𝜖𝐸), then the score given by the combined model

to a plausible answer is lower than the average of the scores given

by the individual models, and higher than the lowest individual

model score because, without loss of generality, we have

min(𝑝 (𝒒
1
, 𝒆), 𝑝 (𝒒

2
, 𝒆)) ≤ 𝑝 (𝒒𝐸 , 𝒆) ≤ max(𝑝 (𝒒

1
, 𝒆), 𝑝 (𝒒

2
, 𝒆)). (7)

This equation shows that for a particular 𝑘 , the combined model

gets a better score than the worst model, but it gets a lower score

than the best one. However, by increasing 𝑘 , the combined model

covers the answers provided by both models because most of the

answers lie in the convex hull between the queries (later it will

be proved), and the combined model with arbitrary large 𝑘 covers

the answers represented by each model. Therefore, the combined

model improves Hits@k with a sufficiently large 𝑘 . Later in this

section, we present the attention-based model which enables us to

improve Hits@k for small 𝑘 .

The following proposition states that the best embedding for an

answer to a query lies in the convex hull of the query embeddings

given by two models. This implies that if two models are trained

jointly with the combined model, the answers of each query lie

between the centers of the two spheres associated with the two

embeddings of the query. This facilitates the answer space of com-

bined spherical query embedding to cover the answer embedding

from each individual model. This can be generalized for an arbitrary

number of models.

Proposition 3.1. Let 𝒒
1
and 𝒒

2
be two query embeddings for a

query 𝑞. Then, the following two statements are equivalent for every
vector 𝒂 in the vector space:{

𝒂 = argmin𝒆 (𝑝 (𝒒1, 𝒆) + 𝑝 (𝒒
2
, 𝒆)),

𝒂 lies in the convex hull of vectors 𝒒
1
and 𝒒

2
.

(8)

c) Riemannian Attention-Based Query Combination.

Weighted Combined Query Embedding. One consequence of propo-
sition 3.1 is that the combined query embedding can improve the

performance when 𝑘 is sufficiently large (e.g., Hits@20). However,

for a low 𝑘 (e.g., Hits@1) the performance is degraded because

one model gets a better ranking, and the combined model with an

average query does not cover it. In addition, among several models,

there might be possible that some models return wrong answers

which might also influence the combined model. Therefore, allow-

ing the combined spherical query embedding 𝒒𝐸 to slide to 𝒒
1
or

𝒒
2
is beneficial. Hence, without loss of generality, we combine two

query embeddings as the convex combination of the inequalities:{
𝛼 ∥𝒂 − 𝒒

1
∥ ≤ 𝛼𝜖𝑘

1
,

𝛽 ∥𝒂 − 𝒒
2
∥ ≤ 𝛽𝜖𝑘

2
, 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1.

(9)

By computing this convex combination, we have 𝛼 ∥𝒂 −𝒒
1
∥ + 𝛽 ∥𝒂 −

𝒒
2
∥ ≤ 𝛼𝜖𝑘

1
+ 𝛽𝜖𝑘

2
. This inequality implies ∥𝛼𝒂 − 𝛼𝒒

1
+ 𝛽𝒂 − 𝛽𝒒

2
∥ ≤

𝛼 ∥𝒂 − 𝒒
1
∥ + 𝛽 ∥𝒂 − 𝒒

2
∥ ≤ 𝛼𝜖𝑘

1
+ 𝛽𝜖𝑘

2
, which subsequently leads to

∥𝒂 − (𝛼𝒒
1
+ 𝛽𝒒

2
)∥ ≤ 𝛼𝜖𝑘

1
+ 𝛽𝜖𝑘

2
. (10)

Therefore, the combined spherical query embedding is 𝒒𝑐
𝐸
= (𝒒𝐸 , 𝜖𝑘𝐸)

where 𝒒𝐸 = (𝛼𝒒
1
+ 𝛽𝒒

2
) and 𝜖𝑘

𝐸
= 𝛼𝜖𝑘

1
+ 𝛽𝜖𝑘

2
. This combination is

generalized for 𝑛 models:

∥𝒂 −∑
𝛼𝑖𝒒𝑖 ∥ ≤ ∑

𝛼𝑖𝜖
𝑘
𝑖
, (11)

Attention Calculation. Given a combined spherical query embed-

ding 𝒒𝑐
𝐸
= (𝒒𝐸 , 𝜖𝐸) with

𝒒𝑬 =
∑︁

𝛼𝑖q𝑖 , 𝜖𝑘𝐸 =
∑︁

𝛼𝑖𝜖
𝑘
𝑖 , (12)

we can compute 𝛼𝑖s by providing an attention mechanism [6]

𝛼𝑖 =
exp(𝑔(𝒘𝒒𝑖))∑
𝑗 exp(𝑔(𝒘𝒒 𝑗))

, (13)

where 𝑔(𝒙) = 𝒘𝒙 is a function with a trainable parameter 𝒘 . We

call this version of our model Spherical Embedding with Atten-

tion (SEA).

Riemannian Query Combination. We next extend our attention-

based query combination to Riemannian manifolds to model both

relational patterns (via various transformations used in different

models) and structural patterns as hierarchy via the manifolds (e.g.,

Poincaré ball). Similarly to [6], we perform attention on tangent

space. We consider all models in Euclidean space and combine their

query embeddings. The resulting query embedding on the tangent

space is then projected to the manifold via the exponential map.

This attention-based model combination is defined as follows:𝒒
𝑒𝑢𝑐
𝐸

=
∑
𝑖

exp(𝑔 (𝒒𝑖))∑
𝑗 exp(𝑔 (𝒒 𝑗))

𝒒𝑖 ,

𝒒𝑀
𝐸

= exp0 (𝒒𝑒𝑢𝑐𝐸
).

(14)

We compute the score as 𝑝 (𝑞, 𝑎) = 𝑑 (𝒒𝑀
𝐸

⊕ 𝒓, 𝒂) , where 𝒉, 𝒓, 𝒕, 𝒒
are points on a manifoldM, exp

0
(·) is the exponential map from

origin, and ⊕ is Möbius addition. In terms of the Poincaré ball, the

manifold, exponential map, and Möbius addition are defined as

follows [2, 6]:
M = {𝒑 ∈ R𝑑 |∥𝒑∥ ≤ 1

𝑐 },
exp0 (𝑣) = tanh(

√
𝑐 ∥𝒗∥) 𝒗√

𝑐 ∥𝒗 ∥ ,

𝑑𝑐 (𝒑, 𝒒) = 2

𝑐 tanh
−1 (

√
𝑐 ∥ − 𝒑 ⊕ 𝒒∥),

𝒑 ⊕ 𝒒 =
(1+2𝑐 ⟨𝒑,𝒒 ⟨+𝑐 ∥𝒒 ∥2)𝒑+(1−𝑐 ∥𝒑 ∥2)𝒒

1+2𝑐 ⟨𝒑,𝒒⟩+𝑐2 ∥𝒑 ∥2 ∥𝒒 ∥2 ,

(15)

where 𝑐 is the curvature, exp is the exponential map from a point

on tangent space to the manifold, 𝑑𝑐 is the distance function with

curvature 𝑐 , and 𝒗 is the point on the tangent space to be mapped to

manifold via the exponential map. We call the hyperbolic version

of our model Spherical Embedding with Poincaré Attention (SEPA).

d) Expressivity Analysis. In this section, we analyze ourmodels

in terms of expressive power as well as the subsumption of other

models. Our model is a generalization of various existing Euclidean

and non-Euclidean KGE models. We say that a model𝑚1 subsumes

a model𝑚2 if for every given KG𝐺 and scoring by model𝑚2, there

exists a scoring by model 𝑚1 such that the score of every triple

𝑡 ∈ 𝐺 by𝑚1 approximates the score of 𝑡 by𝑚2 [19, 22].

Proposition 3.2. SEPA subsumes AttH, and SEA subsumes TransE,
RotatE, ComplEx, DistMult and AttE.

Corollary 3.3. SEPA and SEA can infer anti-symmetry, symme-
try, composition, and inversion patterns.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Cosimo Gregucci, Mojtaba Nayyeri, Daniel Hernández, and Steffen Staab

Figure 3: Comparison between the importance given by each
model to a symmetric (in green) and antisymmetric (in blue)
relation.1

It is important to notice that a model can infer a pattern inherently

or infer a pattern under a certain condition (see Table 1). Our model

aims to take advantage of the inference power of multiple models

on heterogeneous patterns with minimum certain conditions by

providing attention mechanisms per relation type forming different

patterns. Note that our model is not influenced by incapable models

on particular patterns because the attention can be learned as zero

for those models. Overall, our combined model can inherit the

capabilities mentioned in Table 1 and ignore the incapability of

other models which is shown in Theorem 3.2 and Theorem 3.3.

Hence, if our model is executed on a dataset containing only a

single pattern, we do not expect to outperform the combinedmodels,

rather than achieving competitive performance to the best model.

Proof of propositions can be found in Appendix A.1.

4 EXPERIMENTS
In this section, we conduct extensive evaluations to show the ef-

fectiveness of our proposed approach. To do so, we first introduce

the utilized datasets, followed by the selected baseline for the com-

bination and the comparison. We then present the experimental

setup and hyper-parameter setting. The results and analysis are

presented in three folds: comparison with the individual baselines,

comparison with other combination models, and comparison with

models in the Ultrahyperbolic space. Finally, we provide several

analysis to show the role of attention on learning and inference

over various patterns for different kinds of relations and models.

4.1 Dataset
We use the following standard benchmark for the evaluation:

• Wordnet: WN18RR [8] is a subset of WN18, which contains

a mixture of symmetric and antisymmetric as relational pat-

terns, and hierarchical structural patterns. see also and hyper-
nym are examples of symmetry and hierarchy in this dataset.

WN18RR contains 11 relations, 86,835 training triples, and

40,943 entities. Compared to the other datasets in KGE liter-

ature, WN18RR is considered sparse;

1
E.g. ethics is a form that is derivationally related to ethicist.

• FreeBase: FB15k-237 [34] is the subset of FB15k from remov-

ing leakage of inverse relations [8]. FB15k-237 is less sparse

than WN18RR, and mainly contains composition patterns. It

contains 237 relations, 272,115 triples, and 14,541 entities.

• NELL: NELL-995 [43] contains 75,492 entities and 200 rela-

tions, having ∼ 22% hierarchical relations. We use a subset

of NELL-995 with 100% hierarchy, created in [2].

4.2 Baseline
In this section, we aim to show experimentally that the geometric

combination of several existing KGE models improve their per-

formance. To this end, we select a subset of KGEs in Euclidean,

Complex, and Hyperbolic space with different capabilities to show

we can combine a wide range of models. In particular, we select

a subset of TransE, DistMult, ComplEx, RotatE, AttE (only reflec-

tion), and AttH (hyperbolic projection operator) and compare our

combined models against such baselines.We also compare our mod-

els with two additional state-of-the-art KGEs: in high dimension,

TuckER [3], and in low dimension, MuRP [2], to show that our mod-

els can outperform models that were not combined. Furthermore,

we also compare our model with a recent top model for combining

several KGEs, namely MulDE [37] because it uses a similar set of

KGEs for the combination, similar dimensions, and some of the

benchmarks we used. Additionally, we will show that our model

gets comparable performance with UltraE [42], a model on the

Ultrahyperbolic space.

4.3 Experimental Setup
Evaluation Metrics. We use the popular ranking metrics [38]

namely Mean Reciprocal Rank (MRR), and Hits@k, k = 1,3,10. Given

a set of test triples T = {(ℎ, 𝑟, 𝑡)}, for each test triple 𝑝 = (ℎ, 𝑟, 𝑡),
we compute its rank as follows: we first corrupt the head entity by

replacement with all possible entities in the KG, say 𝑒 ′ ∈ E, and
generate a set of candidate corrupted triples for 𝑝 i.e., 𝑝𝑐 = {𝑝 ′ =
(𝑒 ′, 𝑟 , 𝑡)}. We filter 𝑝𝑐 by removing all generated candidates which

are already appeared in the train, validation, and test sets, together

with removing the cycle. After computing the score of the candidate

triples and sorting them, we find the rank of the candidate test 𝑝 ,

and call it 𝑟𝑝 . The same procedure is performed for computing the

right rank by corrupting the tail entity and computing the right

rank. The average of the left and right ranks will be considered the

final rank of the test triple. We then compute the average reciprocal

of all test triples and report it as MRR. Hits@k will be computed by

reporting the percentage of the test triples ranked less than 𝑘 .

Hyperparameters. The hyperparameters corresponding to our

model are embedding dimension 𝑑 , models to combine 𝑚, opti-

mizer 𝑜 , learning rate 𝑙𝑟 , number of negative samples 𝑛, batch size

𝑏, dtype 𝑑𝑡 , and double_neg 𝑑𝑛. We additionally used 𝛼2 as atten-

tion parameters (in place of 𝛼) playing the role of a simple kind of

regularization mechanism (𝑎𝑟), to further penalize the models with

less contribution in the attention. Following the common practice

of KGEs, we use both low 𝑑 = 32 and high dimensions 𝑑 = 500 for

the evaluation of our model. For the other hyperparameters, we

use the following ranges𝑚 = {TransE, DistMult, ComplEx, RotatE,

AttE (only reflection)}, 𝑜 = {Adam, Adagrad}, 𝑙𝑟 = {0.1, 0.05, 0.001},

Link Prediction with Attention
Applied on Multiple Knowledge Graph Embedding Models WWW ’23, April 30–May 04, 2023, Austin, TX, USA

𝑛 = {−1, 50, 100, 150, 200, 250} where -1 refers to full negative sam-

pling [21], 𝑏 = {100, 500}, 𝑑𝑡 = {𝑠𝑖𝑛𝑔𝑙𝑒, 𝑑𝑜𝑢𝑏𝑙𝑒}, 𝑎𝑟 = {𝑦𝑒𝑠, 𝑛𝑜},
𝑑𝑛 = {𝑦𝑒𝑠, 𝑛𝑜}. We also add reciprocal triples to the training set

as the standard data augmentation technique [21]. The optimal

hyperparameters for each dataset are specified in Appendix A.2.

Table 2: Comparison of H@1 for WN18RR relations. TE =
TransE, CE = ComplEx, DM = DisMult

Relation TE CE DM SEPA

member meronym 0.144 0.095 0.030 0.162
hypernym 0.060 0.064 0.024 0.121
has part 0.105 0.099 0.029 0.125
instance hypernym 0.246 0.242 0.139 0.242

member of domain region 0.269 0.077 0.096 0.327
member of domain usage 0.271 0.188 0.062 0.271
synset domain topic of 0.289 0.136 0.070 0.329
also see 0.161 0.580 0.598 0.571

derivationally related form 0.532 0.943 0.940 0.944
similar to 0.000 1.000 1.000 1.000
verb group 0.333 0.949 0.974 0.923

4.4 Link Prediction Results And Analysis
The result of comparing SEA and SEPA to the combined models

on FB15k-237, WN18RR and NELL-995-h100 are shown in Table 3

(𝑑 = 32) and in Table 4 (𝑑 = 500).

As expected, while the hyperbolic version of our combinedmodel

(SEPA) outperforms all baselines in low-dimensional settings, the

Euclidean one (SEA) is the best model in high-dimensional space.

Comparing SEPA and SEA, in low-dimensional space, we can see

the performance improvements on WN18RR and NELL-995-h100

are much more than FB15k-237. This is due to the presence of a

significant amount of hierarchical relations in WordNet and NELL

compared to Freebase. We still observe SEPA outperforms SEA on

FB15k-237 dataset. The main reason is that SEPA combines hyper-

bolic manifolds with various transformations used in queries of

different models, so it is capable of capturing the mixture of struc-

tural and logical patterns in a low dimension (e.g., compositional

patterns in Freebase). Even though we did not combine AttE and

AttH directly, but only used reflection and the hyperbolic projec-

tion, respectively, we were still able to outperform them. Similarly,

SEPA outperforms MuRP in low dimensions, and SEA outperforms

TuckER in high dimensions in all metrics apart from the H@1 of

FB15k-237. More details are available in Appendix A.6.

Our combination model increases the expressiveness of individ-

ual models (Proposition 3.2), having the best performance gain in

low-dimensional space. Besides, our model takes advantage of the

inference power of the base models with fewer constraints (Ta-

ble 1) by utilizing the attention mechanism. On the other hand, in

high-dimensional space, Euclidean models are proven to be fully

expressive [40]. Hence, even though SEA outperforms all baselines,

the performance gain is not as significant as in low-dimensions.

4.5 Further analysis
We additionally make a series of further analysis to evaluate the

performance of our attention-base combination function. First, we

want to show that our model is able to increase the precision of

predictions for both symmetric and antisymmetric relations. Table 2

shows the H@1 results in WN18RR, in the low-dimensional setting

of SEPA, compared to the individual combined KGE. Further results

on H@10 can be found in Appendix A.5. For example, if we look

at the symmetric relation derivationally related form, we can see

that the H@1 of TransE is very low when compared to the one of

ComplEx and DistMult, and yet, our model was able to improve this

metric. Similarly, when we look at an antisymmetric relation (e.g.,

member of domain usage) we have the opposite situation, having
high performance for TransE and a lower one for ComplEx and

DistMult. The intuition is that the attention base combination can

effectively give more importance to the best models for the specific

kind of relation involved in the query. Such intuition is reinforced

in Figure 3, which shows the (averaged) attention value among the

individual models for the above-mentioned relations. It shows that

the attention function can effectively select the correct proportion

among the models for the two different kinds of relations.

Besides, the importance of the attention function is highlighted

by our ablation study, which consists of turning off the attention

from our best models, SEPA at dimension 32, and SEA at dimension

500. We obtained two new versions of the models, namely SEP and

SE. Tables 3, 4 show that SEPA and SEA outperform SEP and SE.

Table 5: Comparison between our proposed models and the
ensemble models proposed in MulDE [37]. Values marked ‘-’
were not reported in the original paper.

Model WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

MulDE 1 0.481 0.433 0.574 0.328 0.237 0.515

MulDE 2 0.482 0.430 0.579 - - -

SEPA 1 0.481 0.441 0.562 0.332 0.243 0.509

SEPA 2 0.491 0.448 0.572 0.344 0.252 0.528

4.6 Comparison With Ensemble Models
We further compare our models to MulDE [37], which uses 64 to 512

dimensional embeddings for the teachers, and 8 to 64 dimensional

ones for the junior embedding. We selected the best version of their

model, MulDE1 having 32 and 64 as junior and teachers dimensions,

respectively, and, for a fair comparison, MulDE2, having dimen-

sion 64 for both junior and teachers embeddings. We brought our

models to their setting, testing SEPA at dimension 32 (SEPA1) and

64 (SEPA2) for both WN18RR and FB15k-237. Table 5 shows that

apart from the value of H@10 inWN18RR, our models substantially

outperform such baselines, having for MRR and H@1 up to 3,46%

relative improvements. Besides, we notice that when increasing

the number of dimensions the performance of MulDE on H@1

in WN18RR decreases, and the ones of MRR and H@10 slightly

increase. On the other hand, our models can substantially improve

their performance when increasing the number of dimensions.

4.7 Comparison With Models On
Ultrahyperbolic Space

Additionally, we compared our models against the best versions

of UltraE [42]. Even though we did not utilize Ultrahyperbolic

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Cosimo Gregucci, Mojtaba Nayyeri, Daniel Hernández, and Steffen Staab

Elements Model WN18RR FB15k-237 NELL-995-h100
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Individual Models

TransE 0.358 0.263 0.423 0.527 0.292 0.208 0.319 0.461 0.267 0.188 0.298 0.423

DistMult 0.383 0.370 0.385 0.405 0.299 0.209 0.330 0.477 0.279 0.207 0.308 0.419

RotatE 0.389 0.376 0.392 0.410 0.258 0.178 0.284 0.416 0.264 0.193 0.292 0.405

ComplEx 0.419 0.395 0.426 0.465 0.264 0.184 0.289 0.421 0.247 0.176 0.275 0.387

AttE 0.463 0.430 0.474 0.528 0.314 0.227 0.343 0.489 0.334 0.247 0.375 0.503

AttH 0.468 0.429 0.485 0.539 0.314 0.223 0.346 0.498 0.326 0.240 0.367 0.493

Our models

SEPA 0.481 0.441 0.496 0.562 0.332 0.243 0.363 0.509 0.346 0.261 0.385 0.508
SEA 0.468 0.430 0.485 0.538 0.326 0.238 0.356 0.504 0.333 0.245 0.376 0.504

Ablation SEP 0.478 0.437 0.493 0.556 0.329 0.239 0.361 0.509 0.340 0.254 0.380 0.505

Table 3: Link prediction evaluation on datasets for d = 32. The best score and best baseline are in bold and underlined, respectively.

Elements Model WN18RR FB15k-237 NELL-995-h100
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Individual Models

TransE 0.356 0.256 0.419 0.531 0.336 0.243 0.369 0.524 0.300 0.212 0.340 0.469

DistMult 0.443 0.412 0.453 0.504 0.343 0.249 0.380 0.533 0.322 0.238 0.359 0.486

RotatE 0.387 0.376 0.392 0.409 0.266 0.188 0.289 0.422 0.322 0.238 0.359 0.493

ComplEx 0.487 0.443 0.503 0.573 0.265 0.186 0.290 0.422 0.323 0.237 0.362 0.492

AttE 0.491 0.444 0.507 0.583 0.359 0.264 0.395 0.548 0.377 0.292 0.419 0.539

AttH 0.482 0.434 0.502 0.576 0.356 0.262 0.393 0.546 0.366 0.279 0.412 0.532

Our models

SEPA 0.480 0.436 0.498 0.570 0.354 0.259 0.390 0.545 0.347 0.260 0.387 0.520

SEA 0.500 0.454 0.518 0.591 0.360 0.264 0.398 0.549 0.384 0.294 0.432 0.554

Ablation SE 0.495 0.448 0.513 0.587 0.353 0.259 0.389 0.542 0.381 0.292 0.427 0.548

Table 4: Link prediction evaluation on datasets for d = 500.

Table 6: Comparison between our proposed models and the
best UltraE [42] in WN18RR. Best score in bold and second
best underlined.

Model WN18RR
MRR H@1 H@3 H@10

d=32

UltraE
(q=4)

0.488 0.440 0.503 0.558

SEPA 0.481 0.441 0.496 0.562
SEA 0.466 0.425 0.482 0.542

d=500

UltraE
(q=40)

0.501 0.450 0.515 0.592
SEPA 0.480 0.436 0.498 0.570

SEA 0.500 0.454 0.518 0.591

space as a sophisticated manifold containing several sub-manifolds,

our models get competitive results to the state-of-the-art in the

Ultrahyperbolic space (Table 6). In particular, SEPA gets competitive

results in low-dimensions, while SEA in high-dimensions.

One may consider using our idea to integrate approaches such as

[12, 42] with other baselines. However, due to their involved mul-

tiple geometric spaces, such integration will require a substantial

revision of combinations of transformations and, hence, is left for

future work.

5 CONCLUSION
In this paper, we propose a new approach that facilitates the com-

bination of the query representations from a wide range of pop-

ular knowledge graph embedding models, designed in different

spaces such as Euclidean, Hyperbolic, ComplEx, etc. We presented

a spherical approach together with attention to queries to capture

heterogeneous logical and structural patterns. We presented a the-

oretical analysis to justify such characteristics in expressing and

inferring patterns and provided experimental analysis on various

benchmark datasets with different rates of patterns to show our

models uniformly perform well in link prediction tasks on various

datasets with diverse characteristics in terms of patterns. Our ab-

lation studies, relation analysis on WN18RR and analysis of the

learned attention values show our models mainly take the advan-

tage of the best-performing models in link prediction tasks. By

doing that, we achieved state-of-the-art results in Euclidean and

Hyperbolic spaces.

In future work, we will combine various manifolds besides com-

bining the queries in knowledge graph embedding. Additionally,

the proposed approach could be applied to other tasks. For example,

it could be possible to use an attention mechanism to combine multi-

hop queries computed using different complex query answering

methods [27, 28].

ACKNOWLEDGMENTS
This work has received funding from the following projects: The

European Union’s Horizon 2020 research and innovation program

under the Marie Skłodowska-Curie grant agreement No: 860801;

BMWi Servicemeister (01MK20008F); DFG - COFFEE (STA 572_15-

2); and DFG Excellence Strategy in the Clusters of Excellence

IntCDC at the University of Stuttgart, RP 20.

Link Prediction with Attention
Applied on Multiple Knowledge Graph Embedding Models WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary G. Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In

ISWC/ASWC (Lecture Notes in Computer Science, Vol. 4825). Springer, 722–735.
[2] Ivana Balazevic, Carl Allen, and Timothy Hospedales. 2019. Multi-relational

poincaré graph embeddings. Advances in Neural Information Processing Systems
32 (2019), 4463–4473.

[3] Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. 2019. TuckER: Ten-

sor Factorization for Knowledge Graph Completion. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan (Eds.). Association for Computational Linguistics, 5184–5193.

https://doi.org/10.18653/v1/D19-1522

[4] D. Beckett. 2004. RDF/XML Syntax Specification. W3C TR.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. Advances in neural information processing systems 26 (2013).
[6] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christo-

pher Ré. 2020. Low-Dimensional Hyperbolic Knowledge Graph Embeddings.

In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 6901–6914.

[7] S. Chang. 2018. Scaling Knowledge Access and Retrieval at Airbnb. AirBnB

Medium Blog.

[8] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.

Convolutional 2d knowledge graph embeddings. In Thirty-second AAAI conference
on artificial intelligence.

[9] D. Devarajan. 2017. Happy Birthday Watson Discovery. IBM Cloud Blog.

[10] X. L. Dong, X. He, A. Kan, and et al. 2020. AutoKnow: Self-Driving Knowledge

Collection for Products of Thousands of Types. KDD (2020), 2724–2734.

[11] Genet Asefa Gesese, Russa Biswas, Mehwish Alam, and Harald Sack. 2021. A

survey on knowledge graph embeddings with literals: Which model links better

literal-ly? Semantic Web 12, 4 (2021), 617–647. https://doi.org/10.3233/SW-200404

[12] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. 2018. Learning mixed-

curvature representations in product spaces. In International Conference on Learn-
ing Representations.

[13] F. Hamad, I. Liu, and X. Xing Zhang. 2018. Food Discovery with Uber Eats:

Building a Query Understanding Engine. Uber Engineering Blog.

[14] Nicolas Heist and Heiko Paulheim. 2019. Uncovering the Semantics of Wikipedia

Categories. In ISWC. 219–236.
[15] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo,

Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,

Sebastian Neumaier, et al. 2021. Knowledge graphs. ACM Computing Surveys
(CSUR) 54, 4 (2021), 1–37.

[16] Wei Hu, Honglei Qiu, JiaCheng Huang, and M. Dumontier. 2017. BioSearch: a

semantic search engine for Bio2RDF. Database 2017 (2017).
[17] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. 2021.

A survey on knowledge graphs: Representation, acquisition, and applications.

IEEE Transactions on Neural Networks and Learning Systems (2021).
[18] Unmesh Joshi and Jacopo Urbani. 2022. Ensemble-Based Fact Classification with

Knowledge Graph Embeddings. In European Semantic Web Conference. Springer,
147–164.

[19] Seyed Mehran Kazemi and David Poole. 2018. SimplE embedding for link predic-

tion in knowledge graphs. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems. 4289–4300.

[20] Denis Krompaß and Volker Tresp. 2015. Ensemble solutions for link-prediction

in knowledge graphs. In Proceedings of the 2nd Workshop on Linked Data for
Knowledge Discovery, Porto, Portugal. 1–10.

[21] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical

tensor decomposition for knowledge base completion. In International Conference
on Machine Learning. PMLR, 2863–2872.

[22] Mojtaba Nayyeri, Sahar Vahdati, Can Aykul, and Jens Lehmann. 2020. 5*

Knowledge Graph Embeddings with Projective Transformations. arXiv preprint
arXiv:2006.04986 (2020).

[23] Mojtaba Nayyeri, Sahar Vahdati, Emanuel Sallinger, Mirza Mohtashim Alam,

Hamed Shariat Yazdi, and Jens Lehmann. 2021. Pattern-Aware and Noise-Resilient

Embedding Models. In European Conference on Information Retrieval. Springer,
483–496.

[24] Mojtaba Nayyeri, Chengjin Xu, Yadollah Yaghoobzadeh, Sahar Vahdati, Mirza Mo-

htashim Alam, Hamed Shariat Yazdi, and Jens Lehmann. 2021. Loss-aware pattern

inference: A correction on the wrongly claimed limitations of embedding models.

In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer,
77–89.

[25] N. Fridman Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. 2019.

Industry-scale knowledge graphs: lessons and challenges. CACM 62, 8 (2019),

36–43.

[26] Umair Qudus, Michael Röder, Muhammad Saleem, and Axel-Cyrille Ngonga

Ngomo. [n. d.]. HybridFC: A Hybrid Fact-Checking Approach for Knowledge

Graphs. ([n. d.]).

[27] Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020. Query2box: Reasoning over

Knowledge Graphs in Vector Space Using Box Embeddings. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. https://openreview.net/forum?id=BJgr4kSFDS

[28] Hongyu Ren and Jure Leskovec. 2020. Beta embeddings for multi-hop logical

reasoning in knowledge graphs. Advances in Neural Information Processing
Systems 33 (2020), 19716–19726.

[29] Baoxu Shi and Tim Weninger. 2017. Proje: Embedding projection for knowledge

graph completion. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 31.

[30] S. Shrivastava. 2017. Bring rich knowledge of people, places, things and local

businesses to your apps. BingBlogs.

[31] A. Singhal. 2012. Introducing the Knowledge Graph: things, not strings. Google

Blog.

[32] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of

semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. 697–706.

[33] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-

edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[34] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features

for knowledge base and text inference. In Proceedings of the 3rd workshop on
continuous vector space models and their compositionality. 57–66.

[35] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. 2016. Complex embeddings for simple link prediction. In International
conference on machine learning. PMLR, 2071–2080.

[36] D. Vrandecic andM. Krötzsch. 2014. Wikidata: a free collaborative knowledgebase.

Commun. ACM 57, 10 (2014), 78–85.

[37] Kai Wang, Yu Liu, Qian Ma, and Quan Z Sheng. 2021. Mulde: Multi-teacher

knowledge distillation for low-dimensional knowledge graph embeddings. In

Proceedings of the Web Conference 2021. 1716–1726.
[38] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph

Embedding: A Survey of Approaches and Applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

[39] Yinquan Wang, Yao Chen, Zhe Zhang, and Tian Wang. 2022. A Probabilistic

Ensemble Approach for Knowledge Graph Embedding. Neurocomputing (2022).

[40] Yanjie Wang, Rainer Gemulla, and Hui Li. 2018. On multi-relational link pre-

diction with bilinear models. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[41] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge

graph embedding by translating on hyperplanes. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 28.

[42] Bo Xiong, Shichao Zhu, Mojtaba Nayyeri, Chengjin Xu, Shirui Pan, Chuan Zhou,

and Steffen Staab. 2022. Ultrahyperbolic Knowledge Graph Embeddings. arXiv
preprint arXiv:2206.00449 (2022).

[43] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. Deeppath: A

reinforcement learning method for knowledge graph reasoning. arXiv preprint
arXiv:1707.06690 (2017).

[44] Chengjin Xu, Mojtaba Nayyeri, Sahar Vahdati, and Jens Lehmann. 2021. Multiple

Run Ensemble Learning with Low-Dimensional Knowledge Graph Embeddings.

In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.
[45] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-

bedding entities and relations for learning and inference in knowledge bases.

arXiv preprint arXiv:1412.6575 (2014).
[46] Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019. Quaternion knowledge graph

embeddings. arXiv preprint arXiv:1904.10281 (2019).
[47] Xiaofei Zhou, Qiannan Zhu, Ping Liu, and Li Guo. 2017. Learning knowledge

embeddings by combining limit-based scoring loss. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management. 1009–1018.

https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.3233/SW-200404
https://openreview.net/forum?id=BJgr4kSFDS

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Cosimo Gregucci, Mojtaba Nayyeri, Daniel Hernández, and Steffen Staab

A APPENDIX
This appendix includes the proof of the propositions proposed in the

paper, followed by optimal hyperparameter settings, additional re-

lated works, further explanation of Table 1, and more experimental

analysis.

A.1 Proofs
Proof of Proposition 3.1. This proposition states that a vector

𝒂1 is a solution of the minimization problem if and only if 𝒂1 lies
between of the vector query embeddings 𝒒

1
and 𝒒

2
of a query 𝑞.

Without loss of generality, we assume that 𝒒
1
and 𝒒

2
lie in the

x-axis. The equivalence is proved in both directions.

(1) If 𝒂1 is the solution of the minimization problem, we need to

prove that 𝒂1 lies between 𝒒1 and 𝒒2. Assume that 𝒂1 does not
lie between 𝒒

1
and 𝒒

2
. By the triangle inequality, 𝑝 (𝒒

1
, 𝒂1) +

𝑝 (𝒒
2
, 𝒂1) ≥ 𝑝 (𝒒

1
, 𝒒

2
). Since𝑝 (𝒒

1
, 𝒒𝐸)+𝑝 (𝒒2, 𝒒𝐸) = 𝑝 (𝒒

1
, 𝒒

2
),

it follows that 𝒂1 is not theminimum. This contraction comes

from assuming that 𝒂1 does not lie between 𝒒1 and 𝒒2. Hence,
𝒂1 lies between 𝒒

1
and 𝒒

2
.

(2) Let 𝒂1 be in between of 𝒒
1
and 𝒒

2
, and 𝒂2 be an arbitrary

vector that does not lie between 𝒒
1
and 𝒒

2
. By the triangle

inequality, 𝑝 (𝒒
1
, 𝒂2) + 𝑝 (𝒒

2
, 𝒂2) ≥ 𝑝 (𝒒

1
, 𝒒

2
). Since 𝒂1 lies

between 𝒒
1
and 𝒒

2
, it follows that 𝑝 (𝒒

1
, 𝒒

2
) = 𝑝 (𝒒

1
, 𝒂1) +

𝑝 (𝒒
1
, 𝒂1). Substituting 𝑝 (𝒒1, 𝒒2) with the right side of the last

equation in the last inequality, we conclude that 𝑝 (𝒒
1
, 𝒂2) +

𝑝 (𝒒
1
, 𝒂2) ≥ 𝑝 (𝒒

1
, 𝒂1) + 𝑝 (𝒒

2
, 𝒂1). Hence, 𝒂1 is a solution of

the minimization problem. □

Proof of Proposition 3.2. Here, we prove that our hyperbolic
version of our model SEPA subsumes AttH.We start with the sketch

of the proof on the example of AttH, and then present the complete

proof in detailed steps in a general case. Because every transfor-

mation used in AttH is also used in SEPA with attention values, if

we set the attention values corresponding to the transformations

used in AttH, and set the other attention values to zero, then SEPA

represents AttH scoring. Therefore, AttH is a special case of SEPA.

Similar points exist for ComplEx, TransE and DistMult.

Here we prove mathematically that SEPA can represent the same

query to AttH. let us assume that we combine the queries 𝒒𝑨𝒕𝒕𝑯 ,

𝒒𝑻𝒓𝒂𝒏𝒔𝑬 , 𝒒𝑫𝒊𝒔𝒕𝑴𝒖𝒍𝒕 , and 𝒒𝑪𝒐𝒎𝒑𝒍𝑬𝒙 , which are the query repre-

sentations of AttH, TransE, DistMult, and ComplEx respectively. Ac-

cording to Equation 12, we have 𝒒𝑺𝑬𝑷𝑨 = 𝒂1 𝒒𝑨𝒕𝒕𝑯 + 𝒂2 𝒒𝑻𝒓𝒂𝒏𝒔𝑬 +
𝒂3 𝒒𝑫𝒊𝒔𝒕𝒎𝒖𝒍𝒕 + 𝑎4 𝒒𝑪𝒐𝒎𝒑𝒍𝑬𝒙 . By setting relation embeddings of

ComplEx and DistMult to zero, we have 𝒒𝑫𝒊𝒔𝒕𝑴𝒖𝒍𝒕 = 𝒒𝑪𝒐𝒎𝒑𝒍𝑬𝒙 =

0. Now, we need to find a way to cancel the query of TransE by set-

ting the attention value of the TransE query to zero. 𝒂2 will be close
to zero if 𝒓𝑻𝒓𝒂𝒏𝒔𝑬 = −𝑀𝒘 (in Equation 13) (𝑀 > 0 is a sufficiently

large number). Therefore, the query of TransE will be canceled

in 𝒒𝑺𝑬𝑷𝑨, and we then have 𝒒𝑺𝑬𝑷𝑨 ≈ 𝒂1𝒒𝑨𝒕𝒕𝑯 . Note that 𝒂1 is

close to one if𝒘 (in Equation 13) is a large vector almost parallel

to 𝒒𝑨𝒕𝒕𝑯 . Therefore, we have 𝒒𝑺𝑬𝑷𝑨 ≈ 𝒒𝑨𝒕𝒕𝑯 . Because the query

is approximated, the score is also approximated. Similarly, we can

prove that SEPA can approximate the query of TransE, ComplEx,

and DistMult, thus their score as well. A similar process is also

applicable for proof of subsumption between SEA and AttE, where

AttE is a special case of SEA. Therefore, SEA can represent any

scoring presented by AttE, and this completes the proof.

Proof of Corollary 3.3. This is a direct conclusion of Proposition
3.2, thus it is a corollary. In Proposition 3.2, we prove that SEPA

and SEA subsume TransE, DistMult, RotatE, ComplEx and AttH

(AttE), and also we know from [22] that if a model A subsumes a

model B, then the model A can infer all patterns that the model

B can infer. Therefore, SEPA and SEA can infer the patterns that

TransE, DistMult, RotatE, ComplEx, and AttH (AttE) can infer. It

has been already proven in [33] that the models are capable of

inferring anti-symmetry, symmetry, composition, and inversion.

Table 7: Comparison of H@10 for WN18RR relations. TE =
TransE, CE = ComplEx, DM = DisMult

Relation TE CE DM SEPA

member meronym 0.427 0.223 0.130 0.409

hypernym 0.197 0.124 0.065 0.277
has part 0.334 0.227 0.142 0.323

instance hypernym 0.480 0.426 0.221 0.500
member of domain region 0.417 0.229 0.154 0.481
member of domain usage 0.423 0.231 0.104 0.458
synset domain topic of 0.447 0.241 0.162 0.461
also see 0.723 0.625 0.616 0.714

derivationally related form 0.958 0.957 0.946 0.966
similar to 1.000 1.000 1.000 1.000
verb group 0.962 0.974 0.974 0.974

A.2 Best hyperparameters per model and per
dataset

Table 8, 9, 10 specifies the hyperparameter lists corresponding to

the WN18RR, FB15k-237 and NELL-995-h100 respectively.

A.3 Related Work: combination between
machine learning models including KGE

We review the relatedwork corresponding to the general approaches

in machine learning, including embedding that combines different

models.

DuEL [18] exploits embedding models for classifying facts to be

either true or false, rather than ranking them. Starting from a tail

query (ℎ, 𝑟, ?), it uses an embedding model to obtain the top 𝑘 list of

predicted answers and feeds different classifiers (e.g., LSTM, CNN)

to label each answer as true or false. Finally, the predictions are

ensembled using different techniques. A similar approach [26], also

proposed an ensemble-based framework for fact-checking. Starting

from a triple (ℎ, 𝑟, 𝑡), it runs three different methods: (1) a text-

based approach, (2) a KGE model, and (3) a path-based approach.

It concatenates the outputs and lets a neural network compute a

final veracity score. On the other hand, in our work, we propose to

combine query representations of different KGE models.

A.4 Further Explanation of Table 1
Here, we present a further explanation of the results in Table 1, and

show how to compute the constraints.

Link Prediction with Attention
Applied on Multiple Knowledge Graph Embedding Models WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Model WN18RR
m lr o n b dt ar dn

SEPA (d=32) TCD 0.001 Adam 250 500 single yes yes

SEPA (d=500) TCD 0.001 Adam 250 500 single yes yes

SEA(d=32) TCD 0.001 Adam 250 100 single yes yes

SEA(d=500) ALL 0.001 Adam 250 100 single no no

Table 8: Best Hyperparameters for WN18RR. T = TransE, D
= DistMult, C = ComplEx, R = RotatE, AttH(Reflection) = A.
ALL = all models combined

Model FB15k-237
m lr o n b dt ar dn

SEPA (d=32) TCD 0.05 Adagrad 250 500 double yes no

SEPA (d=500) ALL 0.05 Adagrad 250 100 double no no

SEA(d=32) ALL 0.1 Adagrad 250 500 single no no

SEA(d=500) ALL 0.1 Adagrad 250 500 single no no

Table 9: Best Hyperparameters for FB15k-237.

Model NELL-995-h100
m lr o n b dt ar dn

SEPA (d=32) ALL 0.001 Adam 250 100 single no no

SEPA (d=500) ALL 0.001 Adam 250 500 single no no

SEA(d=32) ALL 0.001 Adam 250 500 single no no

SEA(d=500) ALL 0.001 Adam 250 500 single yes no

Table 10: Best Hyperparameters for NELL-995-h100.

• TransE/Symmetric: According to the Table 1, TransE cannot

model a symmetric pattern. To show this, we take a triple

(ℎ, 𝑟, 𝑡) and its symmetry (𝑡, 𝑟, ℎ). To model both triples in

the vector space by TransE, we need to have

𝒉 + 𝒓 = 𝒕, 𝒕 + 𝒓 = 𝒉.

Combining the two equations leads to 𝒓 = 0.Ṫhis is counted
as incapability for modeling symmetry by TransE because

a null vector for relation embedding leads to the same em-

beddings for all entities connected by the relation. This is in

contradiction with the assumption of embedding models to

assign unique vectors to each entity in the KG.

• TransE/AntiSymmetry: Lets 𝑟 be antisymmetry. Thus, if (ℎ, 𝑟, 𝑡)
is true, we have 𝒉 + 𝒓 = 𝒕 . This trivially leads to 𝒕 + 𝒓 ≠ 𝒉
without using further constraint. Note that we use the as-

sumption that entity embeddings are unique in the vector

space.

• TransE/Hierarchy: According to the Table 1, TransE cannot

model hierarchical patterns. To show this, we take a small

part of a tree as a hierarchical structure. We consider the

root (ℎ) and two children of the root node entity 𝑡1, 𝑡2. The

triples (ℎ, 𝑟, 𝑡1) and (ℎ, 𝑟, 𝑡2) are valid. To model both triples

in the vector space by TransE, we need to have

𝒉 + 𝒓 = 𝒕1, 𝒉 + 𝒓 = 𝒕2 .

Comparing the two equations, we conclude that 𝒕1 = 𝒕2 . This
is counted as incapability for modeling hierarchy by TransE

because all entities embeddings are assumed to be unique in

the vector space which is not the case for hierarchy.

A similar calculation is required for other patterns/models which

we do not go through because the process is similar to TransE.

Table 11: Comparison with MuRP, against models of dimen-
sion 32, and TuckER, againstmodels of dimension 500, which
results were taken from [6]. Best score in bold and second
best underlined.

Model WN18RR FB237
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

MuRP 0.465 0.420 0.484 0.544 0.323 0.235 0.353 0.501

SEPA 0.481 0.441 0.496 0.562 0.332 0.243 0.363 0.509
SEA 0.468 0.430 0.485 0.538 0.326 0.238 0.356 0.504

TuckER 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544

SEA 0.480 0.436 0.498 0.570 0.354 0.259 0.390 0.545

SEA 0.500 0.454 0.518 0.591 0.360 0.264 0.398 0.549

Given a pattern, a model with fewer constraints has better in-

ference capability compared to the models with more constraints.

According to the Theorem 3.2 and 3.3, our model can take advan-

tage of each model without being affected by their incapability due

to using a relation-specific attention mechanism.

A.5 H@10 per relation
Table 7 presents the performance of our model and different base

models considering the metric Hits@10 on each relation of the

WN18RR dataset. We have a similar observation to the results on

Hits@1. In most cases, our model outperforms the base models. For

a few relations, our model gets slightly lower performance than the

base models. We hypothesize that might be related to numerical

optimization, or our model aimed to increase the overall accuracy

for all relations, so for the relations with less frequencies, our model

gets slightly lower performance to have overall higher performance

in all relations when increase in performance of one relation leads

to decrease the performance of other relation.

A.6 Comparison with TuckER and MuRP
Here, we present further analysis of our models with MuRP and

TuckER. In particular, as shown in Table 11 we compared MuRP

with the low-dimensional versions of our models, and TuckER

with the high-dimensional ones. The reason is that MuRP is a

hyperbolic model, hence its best performances are shown in low-

dimensional space, while TuckER is a Euclidean one and shows the

best performances in a high-dimensional space.

We observe that SEPA outperforms MuRP in all metrics, having

for example a relative improvement of around 5% in the H@1metric

of the WN18RR dataset. Besides, SEA outperforms TuckER for all

metrics of WN18RR and most metrics of FB15k-237. In particular, it

obtains around 12% relative improvements in the H@1 of WN18RR.

On the other hand, it obtains around 0.75% relative worsening in

the H@1 of FB15k-237.

Overall, we observe that our models were able to outperform

such baselines even though they were not included in the combina-

tion.

	Abstract
	1 Introduction
	2 Related work
	2.1 KGE Model Baselines
	2.2 KGEs Combination
	2.3 Combination Of Spaces

	3 Proposed approach
	4 Experiments
	4.1 Dataset
	4.2 Baseline
	4.3 Experimental Setup
	4.4 Link Prediction Results And Analysis
	4.5 black Further analysis
	4.6 Comparison With Ensemble Models
	4.7 Comparison With Models On Ultrahyperbolic Space

	5 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Proofs
	A.2 Best hyperparameters per model and per dataset
	A.3 Related Work: combination between machine learning models including KGE
	A.4 Further Explanation of Table 1
	A.5 H@10 per relation
	A.6 Comparison with TuckER and MuRP

