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Abstract: The bone cancer osteosarcoma, found mainly in adolescents, routinely forms around the
growth plate/metaphysis of long bones. Bone marrow composition changes with age, shifting from a
more hematopoietic to an adipocyte-rich tissue. This conversion occurs in the metaphysis during
adolescence, implicating a link between bone marrow conversion and osteosarcoma initiation. To
assess this, the tri-lineage differentiation potential of human bone marrow stromal cells (HBMSCs)
isolated from the femoral diaphysis/metaphysis (FD) and epiphysis (FE) was characterized and
compared to two osteosarcoma cell lines, Saos-2 and MG63. Compared to FE-cells, FD-cells showed
an increase in tri-lineage differentiation. Additionally, differences were found between the Saos-2
cells exhibiting higher levels of osteogenic differentiation, lower adipogenic differentiation, and a more
developed chondrogenic phenotype than MG63, with the Saos-2 being more comparable to FD-derived
HBMSCs. The differences found between the FD and FE derived cells are consistent with the FD region
containing more hematopoietic tissue compared to the FE. This may be related to the similarities between
FD-derived cells and Saos-2 cells during osteogenic and chondrogenic differentiation. These studies
reveal distinct differences in the tri-lineage differentiations of ‘hematopoietic’ and ‘adipocyte rich’ bone
marrow, which correlate with specific characteristics of the two osteosarcoma cell lines.

Keywords: osteosarcoma; bone marrow; tri-lineage differentiation; human bone marrow stromal cells

1. Introduction

Osteosarcoma is a rare form of bone cancer with a peak of incidence found during
adolescence, roughly 10 to 20 years of age [1]. Development of this tumor occurs most
notably in the metaphysis of the long bones including the proximal humerus, distal femur,
and proximal tibia [2–4]. The exact mechanism of osteosarcoma development is still poorly
understood, although there is strong evidence suggesting that these tumors result from an
unidentified mutation in osteoblast precursor cells [5], which may occur during conversion
of the bone marrow.

Bone marrow is the main component in the medullary cavity of bone, which include
stem cell-like precursors known as mesenchymal stem cells (MSCs). Although MSCs
are not accurately defined they are known for their ability to differentiate into structural
bone, osteoblasts, adipocytes and chondrocytes [6], playing a fundamental role in bone
growth, regeneration, and repair. Bone marrow is routinely separated into two categories,
namely, ‘red’ and ‘yellow’, with the coloration resulting from their differing cellular com-
position. Nuclear magnetic resonance (NMR) imaging techniques have demonstrated
that red bone marrow is composed of approximately 60% hematopoietic tissue and 40%
adipose tissue [7,8]. Hematopoietic tissue contains a heterogenous population that is able
to differentiate into red blood cells and platelets, as well as white blood cells (both myeloid
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and lymphoid) required for an effective immune system. Hematopoiesis occurs within a
stromal cell framework that includes endothelial and mesenchymal cells, both of which
play a role in hematopoiesis regulation [9,10].

In comparison, ‘yellow’ bone marrow is composed of around 95% adipocytes [7,8],
and although their function is still not completely understood, there have been data to
suggest adipocytes can also regulate hematopoiesis, as well as a metabolism [11,12]. During
human fetal development ‘red’ bone marrow occupies all bones, and as the body develops
this gradually converts to ‘yellow’ bone marrow [7,8]. In the femur, this process starts
in the diaphysis and progresses both proximally and distally within the bone (Figure 1).
By adulthood, ‘red’ marrow is only found in the proximal metaphysis of the femur [8],
although an increase in demand for hematopoietic cells can result in the reconversion
of ‘yellow’ bone marrow to ‘red’. This can be caused by severe blood loss [13], chronic
anemia, as well as non-medical conditions associated with stress, including smoking and,
in some cases, it is associated with athletes [14]. Osteosarcoma typically forms around
the growth plates, which, during adolescence, are also the areas of ‘red’ to ‘yellow’ bone
marrow conversion [7].
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in vitro. Primary human bone marrow stromal cells (HBMSCs) were isolated from the 
femoral epiphysis (FE) and femoral metaphysis/diaphysis (FD) of patients undergoing hip 
replacement surgery. These cells underwent tri-lineage differentiation, resulting in 
distinct characteristics for the two subsets of bone marrow, which included increases in 
osteogenic and chondrogenic potential in the FD cells compared to the FE. Two 
osteosarcoma cell lines were also assessed for tri-lineage differentiation and compared 
against the HBMSCs. These data showed that the osteosarcoma cell lines had differing 
phenotypes from each other, which partially recapitulated characteristics shown by the 
FD and FE HBMSCs. This supports a possible link between the stage of bone marrow 
conversion and the development of osteosarcoma. 

  

Figure 1. The conversion of red to yellow bone marrow in the femur. The distribution of red and
yellow bone marrow in children, adolescents and in adulthood, showing structural components of
the femur including the diaphysis, metaphysis, and epiphysis (both sulphur proximal and distal) and
the growth plates during childhood and adolescence.

To consider the relationship between osteosarcoma initiation and bone marrow conver-
sion, differences between the ‘red’ and ‘yellow’ bone marrow were characterized in vitro.
Primary human bone marrow stromal cells (HBMSCs) were isolated from the femoral
epiphysis (FE) and femoral metaphysis/diaphysis (FD) of patients undergoing hip re-
placement surgery. These cells underwent tri-lineage differentiation, resulting in distinct
characteristics for the two subsets of bone marrow, which included increases in osteogenic
and chondrogenic potential in the FD cells compared to the FE. Two osteosarcoma cell
lines were also assessed for tri-lineage differentiation and compared against the HBMSCs.
These data showed that the osteosarcoma cell lines had differing phenotypes from each
other, which partially recapitulated characteristics shown by the FD and FE HBMSCs. This
supports a possible link between the stage of bone marrow conversion and the development
of osteosarcoma.

2. Results
2.1. Osteogenic Differentiation of HBMSCs

HBMSCs from the femoral diaphysis and femoral epiphysis were analyzed for their
ability to differentiate down the tri-lineage pathways. The cells were first assessed for both
early and late markers of osteogenic differentiation. Cells were cultured in Osteogenic I
media for seven days before the level of alkaline phosphatase (ALP), an early marker for
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osteogenic differentiation, was analyzed. Figure 2A shows representative images depicting
ALP expression across the two HBMSC sources.
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Figure 2. Early osteogenic differentiation of HBMSCs from two regions in the femur. (A) Representa-
tive images of ALP staining (pink/red) of HBMSCs from two femur regions, FD and FE. Cells were
cultured in basal or osteogenic I media for seven days. Scale Bar= 100 µm. (B) ALP analysis of HBM-
SCs, FD and FE. (C) ALP specific activity of HBMSCs, FD and FE. n = 5, symbols refer to individual
patients with three technical replicates. Results presented as mean +/- SD, statistics analyzed using a
one-way ANOVA, significance presented as * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001.

The Images show similar levels of ALP staining in the FD derived cells compared
to those from the FE, with comparable results across multiple donor samples (n = 5, age
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range 13–90, mixed sex). The HBMSCs were also quantified for ALP expression, which
showed that, while both FD and FE derived cells indicated an increase in ALP when
cultured in osteogenic media compared to basal (Figure 2B), the osteogenic FD cells were
elevated compared to the osteogenic FE cells, which was statistically significant in two of the
patient samples. This correlation was also seen in the specific activity of ALP (Figure 2C),
calculated by quantifying the level of DNA, which showed an increased expression in the
FD derived cells compared to the FE cells that was significant in two patient samples. As
cells from the FD region are known to have a higher percentage of hematopoietic cells than
the FE [7,8], this could explain the differences found, although this was at an early time
point and does not assess the effect on mature osteogenic differentiation and mineralization.

Following the differences seen in the early-stage osteogenic differentiation (Figure 2),
the two sources of HBMSCs were also analyzed for their ability to mineralize after 28 days
in osteogenic and mineralization media. The level of calcium deposit was detected using
alizarin red staining (representative images, Figure 3A), which was then quantified. While
the basal FD and FE derived HBMSCs demonstrated no alizarin red staining, the osteogenic
FD cells showed a significantly higher concentration than the corresponding osteogenic FE
cells in three donor samples (Figure 3B), indicating an increase in osteogenic differentiation.
To confirm this, gene expression for ALP (ALPL) and collagen I (COL1A1) were determined
by qPCR. COL1A1 is an extracellular protein expressed during all stages of osteoblast
differentiation [15]. When comparing gene expression on the HBMSCs, there was a high
level of variability between the different donor samples (Figure 3C). There was a lower
expression of ALPL in the FD derived cells compared with the FE. In contrast, there was an
increased expression of COL1A1 in the FD derived cells compared to the FE. This suggests
that the cells from the FD region had differentiated more towards a mature osteogenic
phenotype compared to the cells from the FE.
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(A) Alizarin red stains areas of mineralization red, demonstrating osteogenic differentiation.
Scale bar= 100 µm. (B) Alizarin red quantification was performed of the HBMSCs, absorbance
analyzed at 405 nm. (C) Gene expression analysis of ALPL and COL1A1 as a relative expression to
β-Actin for HBMSCs was performed by qPCR. n = 3–5, symbols refer to individual patient samples
with three technical replicates. Results presented as mean +/− SD. Significance determined using a
one-way ANOVA, significance presented as * < 0.05, ** <0.01, **** < 0.0001.

2.2. Adipogenic Differentiation of HBMSCs

The two sources of HBMSCs were then assessed for their ability to differentiate down
the adipogenic lineage. These cells were stained with oil red O after 14-day culture, which
stained lipid droplets secreted by the cells. As shown in Figure 4A, both FD and FE derived
cells differentiated into adipogenic cells with comparable morphology and similar levels
of staining. Gene expression for two markers of adipocyte differentiation, peroxisome
proliferator-activated receptor γ (PPARγ), an early marker, and fatty acid binding protein 4
(FABP4), a late marker, were determined by qPCR for five HBMSC donors (Figure 4B). For
three out of five donors, there was a higher level of PPARγ expression in the FE derived cells
compared to the FD, where two of these donors showed a significantly higher expression.
The remaining two donors demonstrated very similar, low levels of PPARγ in both FD and
FE derived cells. In contrast, the cells from the FE showed a lower level of FABP4 expression
compared with cells from the FD, although this was only significant in one of the donor
samples (F52). This suggests that the FD-derived HBMSCs had a more mature phenotype
compared to the FE derived HBMSCs, reflecting a higher number of hematopoietic cells
present in the FD region [7,8].
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which are stained by the oil red O (red). Scale bar = 100 µm. (B) Gene expression analysis of FABP4
and PPARγ in HBMSCs was performed by qPCR, n = 5, symbols refer to individual patient samples
with three technical replicates. Results are presented as mean +/− SD, significance determined using
a one-way ANOVA. For both statistical analysis significance presented as ** <0.01, **** < 0.0001.

2.3. Chondrogenic Differentiation of HBMSCs

The final tri-lineage differentiation pathway assessed was chondrogenic differentiation.
Figure 5A shows representative images of SRY-Box Transcription Factor 9 (SOX9) staining
in cell culture pellets, a transcription factor expressed in chondrocytes and linked to early
cartilage development. Chondrocytes are routinely generated in spheroid culture, as
monolayer culture has been shown to decrease chondrogenic potential [16]. An increase in
SOX9 staining was seen in the FD derived chondrogenic pellet compared to the FE. Gene
expression of three markers of chondrogenic differentiation, COL2A1, SOX9, and ACAN,
were also determined by qPCR. COL2A1 is one of the major components of the cartilage
matrix [17], while ACAN is present in articular cartilage and is important in the structure
and function of cartilage [18]. Figure 5B showed there was an increase in all three genes in
the FD derived chondrogenic pellets compared with the FE, although this was only significant
for ACAN. While a clear increase could be seen in all genes for FD derived chondrogenic
pellets compared with basal control, there was large patient variability, and no difference was
found in the FE-derived chondrogenic pellets compared to basal control. This suggested that,
while the FD pellet cultures resulted in a mature chondrogenic phenotype, there was only
very low levels of differentiation found in the FE samples.
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Figure 5. Chondrogenic differentiation of HBMSCs from two regions of the femur. Cell pellets of
FD and FE HBMSCs were cultured in basal or chondrogenic media for 28 days. (A) SOX9 staining
of basal and chondrogenic cultured cell pellets. SOX9 stained brown, proteoglycans stained blue with
alcian blue, Scale bar = 100 µm. (B) Gene expression analysis of SOX9, aggrecan (ACAN), and collagen
II (COL2A1) as a relative expression to β-Actin were performed by qPCR for FD and FE HBMSCs
(n = 4, symbols refer to individual patient samples with three technical replicates). Results presented
as +/− SD, significance determined using a one-way ANOVA, significance presented as * < 0.05.
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2.4. Osteogenic Differentiation of Osteosarcoma Cell Lines

Clear tri-lineage differences were found between HBMSCs taken from the FD and FE
regions of the femur. Osteosarcoma is known to develop near the growth plates of the bone
in adolescents [19]. This is also where bone marrow conversion occurs, which may affect
the initiation of the tumor itself. Osteosarcoma cell lines Saos-2 and MG63 were assessed
for tri-lineage differentiation and compared to the HBMSC characteristics to determine
whether there was a correlation between osteosarcoma lines and either ‘red’ (FD) or ‘yellow’
(FE) bone marrow. These two cell lines have been previously shown to have differing rates
of tumor growth and metastasis development in vivo [20] and have also been characterized
for tri-lineage differentiation [21], but they have not yet been compared to ‘red’ and ‘yellow’
HBMSCs.

Figure 6 shows the difference in early osteogenic potential of the osteosarcoma cell
lines Saos-2 and MG63. These cells were cultured for seven days in basal or osteogenic I
media, and then they were analyzed for ALP expression. The Saos-2 cell line had high levels
of ALP staining in both basal and osteogenic I media (Figure 6A), while, in contrast, the
MG63 cells had no ALP staining in either medium. This was supported by quantification
of ALP signaling, where ALP and the specific activity (Figure 6B) showed high levels in
the Saos-2 cells, but very low levels in the MG63 cells. The Saos-2 cells had an overall
higher level of ALP expression compared to the HBMSCs, with the exception of one
patient. This patient had a level of around 4000 ALP nmol pNNP/mL h−1 in their FD
derived HBMSCs (Figure 2B), which was similar to the average expression level of the
Saos-2 cells. The Saos-2 cells also had a similar specific activity to three of the FD derived
patient samples (Figure 2C), ranging between 10–15 nmols pNNP/ng DNA. In contrast,
the lack of ALP expression of the MG63 cells did not align with either of the HBMSC
sources, suggesting this cell line could have potentially already matured down a different
differentiation pathway.

The osteosarcoma cells were then assessed for late-stage osteogenic differentiation and
mineralization. The cells were cultured in osteogenic II media for two weeks, followed by
another two weeks incubation in mineralization media, and then they were either stained
for alizarin red or lysed for qPCR analysis (Figure 7). The alizarin red staining demonstrated
distinct differences, where the Saos-2 cells showed a high level of staining, while the MG63
cells were negative for alizarin red (Figure 7A). This pattern was also supported in the
alizarin red quantification (Figure 7B), which was statistically higher in the Saos-2 cells
compared to the MG63 cells. The concentration of the Saos-2 cells in Figure 7B (~1 mM)
was found to be in between the concentrations determined by the FD (~2.2 mM) and FE
(~0.5 mM) derived HBMSCs (Figure 3B). In contrast, the MG63 cells showed no staining,
which did not align with either of the HBMSC sources.

The gene expression for ALPL and COL1A1 (Figure 7C) was analyzed in the two
osteosarcoma cell lines. Here, the Saos-2 cells had a higher level of both ALPL and COL1A1
expression compared to the MG63 cells, although it was noted that the expression of
COL1A1 was higher in the basal incubated MG63 cells compared to the osteogenic incubated
cells. The Saos-2 ALPL expression was also higher than both the FD and FE derived cells
(Figure 3C), which showed a more similar expression in line with the MG63 cells. The
Saos-2 cells also had a higher expression of COL1A1 compared to the HBMSCs, which once
again corresponded to the basal MG63 expression. This suggested that the Saos-2 cells
showed increased levels of osteogenic differentiation compared to the two HBMSC sources.
However, although there was no alizarin red staining of the MG63 cells, they had a similar
gene expression profile to the two sources of HBMSCs.



Int. J. Mol. Sci. 2023, 24, 3667 8 of 16

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 17 
 

 

media, and then they were analyzed for ALP expression. The Saos-2 cell line had high 
levels of ALP staining in both basal and osteogenic I media (Figure 6A), while, in contrast, 
the MG63 cells had no ALP staining in either medium. This was supported by 
quantification of ALP signaling, where ALP and the specific activity (Figure 6B) showed 
high levels in the Saos-2 cells, but very low levels in the MG63 cells. The Saos-2 cells had 
an overall higher level of ALP expression compared to the HBMSCs, with the exception 
of one patient. This patient had a level of around 4000 ALP nmol pNNP/mL hr-1 in their 
FD derived HBMSCs (Figure 2B), which was similar to the average expression level of the 
Saos-2 cells. The Saos-2 cells also had a similar specific activity to three of the FD derived 
patient samples (Figure 2C), ranging between 10–15 nmols pNNP/ng DNA. In contrast, 
the lack of ALP expression of the MG63 cells did not align with either of the HBMSC 
sources, suggesting this cell line could have potentially already matured down a different 
differentiation pathway. 

 
Figure 6. Early osteogenic differentiation of two osteosarcoma cell lines Saos-2 and MG63. (A) 
Representative images of ALP staining (pink/red) of two osteosarcoma cell lines Saos-2 and MG63. 
Cells were cultured in basal or osteogenic I media for seven days. Scale Bar = 100 µm. (B) ALP 
analysis and ALP specific activity osteosarcoma cell lines. n = 3, symbols refer to individual patient 

Figure 6. Early osteogenic differentiation of two osteosarcoma cell lines Saos-2 and MG63.
(A) Representative images of ALP staining (pink/red) of two osteosarcoma cell lines Saos-2 and
MG63. Cells were cultured in basal or osteogenic I media for seven days. Scale Bar = 100 µm. (B) ALP
analysis and ALP specific activity osteosarcoma cell lines. n = 3, symbols refer to individual patient
samples with three technical replicates. Results presented as mean +/− SD, statistics analyzed using
a one-way ANOVA, significance presented as ** <0.01, **** < 0.0001.
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Figure 7. Osteogenic differentiation and mineralization of two osteosarcoma cell lines. Two osteosar-
coma cell lines Saos-2 and MG63 were cultured in basal or osteogenic II and mineralization media for
28 days. (A) Alizarin red stains areas of mineralization red, demonstrating osteogenic differentiation.
Scale bar = 100 µm. (B) Alizarin red quantification was performed on the osteosarcoma cell lines;
absorbance was analyzed at 405 nm. (C) Gene expression analysis of ALPL and COL1A1 as a relative
expression to β-Actin for osteosarcoma cell lines was performed by qPCR. n = 3–4, symbols refer
to individual patient samples with three technical replicates. Results are presented as mean +/-
SD. Significance determined using a one-way ANOVA, significance presented as * < 0.05, ** <0.01,
*** < 0.001, **** < 0.0001.

2.5. Adipogenic Differentiation of Osteosarcoma Cells

Next, the two osteosarcoma cell lines, Saos-2 and MG63, were assessed for adipogenic
differentiation by culturing in adipogenic media for 14 days and staining with oil red O
(Figure 8). The majority of Saos-2 cells were negative for oil red O staining (Figure 8A).
However, in rare areas of positive staining, the morphology of the individual cells was
comparable to the HBMSC, showing an increase in cell size. In contrast, the MG63 cells
had a high level of staining, which was equally distributed across the well. These patterns
of staining for both cell lines did not align with those found by the two HBMSC sources
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(Figure 4A), which both had higher levels compared to Saos-2 but lower than MG63. The
cells were also analyzed for their gene expression of PPARγ and FABP4. The MG63 cells
had a higher expression of both of these genes compared to the Saos-2 cells, which was
also lower than the HBMSC gene expression (Figure 4B). This suggests that neither of the
osteosarcoma cell lines aligned with the expression profile of the two sources of HBMSCs
when assessed for adipogenic differentiation.
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Figure 8. Adipogenic differentiation of two osteosarcoma cell lines. Two osteosarcoma cell lines
Saos-2 and MG63 were cultured in basal or adipogenic media for 14 days. (A) Adipogenic cells
produce lipid droplets, which are stained by the oil red O (red). Scale bar = 100 µm. (B) Gene
expression analysis of FABP4 and PPARγ in the osteosarcoma cell lines was performed by qPCR,
n = 3–4, symbols refer to individual patient samples with three technical replicates. Results are
presented as mean +/− SD, significance determined using a one-way ANOVA, no significance found.

2.6. Chondrogenic Differentiation of Osteosarcoma Cells

The final tri-lineage pathway assessed for the osteosarcoma cell lines was the chondro-
genic pathway. Cells were cultured as cell pellets in chondrogenic media for 21 days, then
either embedded, sectioned, and stained for SOX9 or lysed for qPCR analysis. In Figure 9A,
the Saos-2 osteosarcoma cells were negative for SOX9 staining, while the MG63 cells demon-
strated an increased level of staining in the chondrogenic cultured pellets compared to the
basal control. Similarly, gene expression of SOX9 (Figure 9B) was low in the Saos-2 cells,
but it was significantly higher in the MG63 cell line. In contrast, the COL2A1 expression was
significantly increased in the Saos-2 chondrogenic pellets compared with both the Saos-2
basal control and the MG63 chondrogenic pellets. ACAN expression was similar in both
Saos-2 and MG63 chondrogenic pellets, and, for both cell lines, there was an increased trend
in the chondrogenic pellet compared with the basal control. This suggests that both cell
lines can differentiate down the chondrogenic pathway, but at different rates, with Saos-2
cells showing higher expression of the later stage marker COL2A1, while MG63 cells had a
higher expression of the early marker SOX9. Compared to the chondrogenic differentiation
of the two HBMSC sources in Figure 5, the Saos-2 cells had a lower SOX9 expression, but a
similar COL2A1 expression to the FD derived cells, and a higher expression of ACAN. In
contrast, the MG63 cells had a higher expression of SOX9, but a similarly low expression of
COL2A1 aligned with the FE derived cells, and conversely a higher expression of ACAN.

The tri-lineage differentiation expression of ‘red’ (FD) and ‘yellow’ (FE) bone marrow
showed distinct differences. Disparities were also seen between the two osteosarcoma cell
lines, Saos-2 and MG63. While the Saos-2 cells aligned with the FD derived cells in terms
of osteogenic and chondrogenic potential, overall, the MG63 cell characterization did not
correlate with the FD or FE derived HBMSCs expression.
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Figure 9. Chondrogenic differentiation of two osteosarcoma cell lines. Cell pellets of two osteosar-
coma cell lines Saos-2 and MG63 were cultured in basal or chondrogenic media for 28 days. (A) SOX9
staining of basal and chondrogenic cultured cell pellets. SOX9 stained brown, proteoglycans stained
blue with alcian blue, Scale bar = 100 µm. (B) Gene expression analysis of SOX9, ACAN and COL2A1
as a relative expression to β-Actin were performed by qPCR for the osteosarcoma cell lines (n = 2–3,
symbols refer to individual patient samples with three technical replicates). Results are presented
as +/− SD, significance was determined using a one-way ANOVA, significance was presented as
* < 0.05, ** < 0.01.

3. Discussion

Osteosarcoma is most prevalent in children and adolescents, and it typically forms
around the growth plate in long bones [19]. Ongoing research has shown that the cellular
interactions within the tumor microenvironment of osteosarcoma, as in other cancers, are
important in the development and growth of this disease, with manipulation of the mi-
croenvironment potentially offering novel therapeutic targets [22]. Conversion from ‘red’ to
‘yellow’ bone marrow gradually occurs during aging, reaching the metaphysis and growth
plate during adolescence, which may play a key role in the initiation of osteosarcoma.
Within the HBMSC population are human mesenchymal stem cells, and, although they
are still not fully defined, they are characterized by the potential to differentiate into three
cell lineages: osteoblasts, adipocytes, and chondrocytes [23,24]. This stem cell population
has been previously compared in HBMSCs and adipose tissue [23], indicating differences
in osteogenic and adipogenic differentiation, but it has not yet been fully compared in
HBMSCs from differing skeletal locations, notably between ‘red’ and ‘yellow’ bone marrow.
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Similarities in tri-lineage differentiation between the HBMSCs and osteosarcoma cell lines
may support a role in tumor development. In this report, we have shown that skeletal loca-
tion in the femur affects the ability of the HBMSCs to differentiate down these tri-lineage
pathways, with similarities in osteogenic and chondrogenic phenotype occurring between
the ‘red’ bone marrow and the Saos-2 osteosarcoma cell line.

FD-derived cells were isolated from the diaphysis/metaphysis region of the femur,
which has been described as consisting of a higher level of ‘red’ bone marrow and conse-
quently has more hematopoietic cells than the FE derived. The HBMSCs from the FE were
isolated from the epiphysis of the femur and have been described as consisting of a larger
proportion of ‘yellow’ bone marrow and adipocytes [7,8]. In these studies, it was found that
the FD-derived cells showed a higher potential for osteogenic differentiation in both the
early and later stages compared to their corresponding FE derived cells (Figures 2 and 3),
although donor variability was evident. In the adipogenic analysis, oil red O staining
of these cells suggested there were similar levels of adipogenic differentiation between
the FD and FE derived cells (Figure 4). In contrast, gene expression of three out of five
donors showed FE cells had an increased level of PPARγ compared with FD cells, with a
corresponding decreased level of FABP4, suggesting the FD derived cells had progressed
further down the adipocyte differentiation pathway, containing more mature adipocytes,
while FE derived cells were still in the earlier stages of adipogenic differentiation. Chondro-
genic differentiation of these cells also demonstrated a higher chondrogenic potential in the
FD-derived cells compared to the corresponding HBMSCs from the FE region (Figure 5).

Osteogenic and chondrogenic differentiation are important for the continued repair
and growth of the bone [25], and this can explain the increased expression found in cells
from the hematopoietic region (FD), which is important in bone metabolism and the
production of red and white blood cells, compared to cells from the adipocyte region
(FE). It is important to note that these human bone marrow samples were received from
patients needing hip replacements, which means they likely suffered from osteoporosis
or osteoarthritis. This may have affected their tri-lineage ability, although the biological
impact was minimized by using matching patient samples between the FD and FE regions.

Osteosarcoma routinely occurs in the metaphysis region of long bones near the growth
plate [19]. This is the region that coverts from ‘red’ to ‘yellow’ bone marrow during
puberty, and it is possible that mutation occurring during this process is involved with
the development of osteosarcoma. The two osteosarcoma cell lines Saos-2 and MG63
have distinctly different tri-lineage differentiation abilities, with data showing the cell line
Saos-2 had a high level of osteogenic differentiation, both at early and late time points
(Figures 6 and 7), low level of adipogenic differentiation (Figure 8), and a more mature
chondrogenic differentiation expression (Figure 9). In contrast, the osteosarcoma cell
line MG63 showed no osteogenic differentiation (Figures 6 and 7), an increased level of
adipogenic differentiation (Figure 8), and an earlier stage chondrogenic differentiation
compared to the Saos-2 cells (Figure 9). High levels of serum ALP have been previously
linked to a poorer prognosis in osteosarcoma patients [26,27], suggesting that the Saos-2
cell line was more aggressive than the MG63 cell line [20]. Compared with the MG63
cell line, Saos-2 cells showed a more similar expression profile with the two sources of
HBMSCs, in particular with the FD derived cells, which had similar characteristics in
osteogenic differentiation including ALP specific activity and COL1A1 expression. The
largest differences seen between the osteosarcoma cell lines and the two sources of HBMSCs
was during adipogenic differentiation, with very different oil red O staining patterns
(Figures 4 and 8), as well as lower expression of adipogenic genes. MG63 cells specifically
showed a very high level of oil red O staining, which did correlate with an increase in
FABP4 and PPARγ, but the level of expression for both of these genes are lower than for
the HBMSCs. This could be due to high levels of Collagen III, which has been shown to be
deposited by MG63 cells [28], which has also been linked with adipogenesis [29].

As osteosarcoma is believed to mutate from cells along the osteoblast differentiation
pathway, this could explain the closer similarities between the Saos-2 cell line with the FD
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derived HBMSCs that underwent osteogenic differentiation, opposed to the FE-derived
HBMSCs. Unfortunately, this does not explain the large tri-lineage differences between
the Saos-2 and MG63 cell lines. These differences could be a result of using immortal-
ized cell lines, which do not always resemble the primary tumor from which they were
taken [30]. Future work characterizing the human bone marrow composition from the
primary osteosarcoma samples could be a potential step to overcome these limitations.
While this direction could further support the connection between bone marrow conversion
and osteosarcoma initiation, these studies show clear differences between the tri-lineage
differentiations of two sources of HBMSCs, which correlate with certain characteristics of
two osteosarcoma cell lines.

4. Materials and Methods
4.1. Cell Culture

HBMSCs were removed from bone marrow taken from the femoral diaphysis (FD)
and femoral epiphysis (FE), and they were isolated into a single cell suspension through
vigorous washes in alpha-MEM media. Two osteosarcoma cell lines were used in this study
(Saos-2 and MG63, both ATCC). All cell lines and primary cells were cultured in basal
media (Table 1), at 37 ◦C in a humidified 5% CO2 incubator.

Table 1. Media Supplements.

Name Media Supplements

Basal αMEM (Lonza) 10% FCS (Sigma, St. Louis, MO, USA), 1% P/S (100 U/mL Penicillin +100 µg/mL Streptomycin,
Life technologies)

Osteogenic I αMEM 10% FCS + 1% P/S +100 µM ascorbate acid 2-phosphate (Sigma) + 10 nM dexamethasone (Sigma)
Osteogenic II αMEM 10% FCS +1% P/S + 50 µM Ascorbic acid 2-phosphate + 10 nM Vitamin D3 (Sigma)

Mineralization αMEM 10% FCS +1% P/S + 50 µM Ascorbic acid 2-phosphate + 10 nM Dexamethasone + 2 mM
Beta-Glycerol phosphate (Sigma)

Adipogenic αMEM +10 % FCS +1% P/S +100 mM Dexamethasone +0.5 mM IBMX (Sigma) +3 µg/mL ITS solution
(Sigma) + 1 µM Rosiglitazone (Sigma)

Chondrogenic αMEM +1% P/S +100 µL ascorbic acid 2-phosphate +10 ng/mL TGF-β3 (Peprotech) +10 µg/mL ITS
solution +10 nM Dexamethasone

4.2. Osteogenic Differentiation

Cells were seeded in 12 well plates at 1–3 × 104 cells per ml and cultured in basal or
osteogenic I media (Table 1) for seven days. Cells were then fixed and stained for ALP, as
previously described [31], or lysed in CelLytic M and stored at −20 ◦C for further ALP
biochemical and specific activity analyses, as previously described [32].

To assess mineralization cells were seeded as above in osteogenic II media for 14 days
then mineralization media for a further 14 days (Table 1). Cells were then lysed for qPCR
analysis or stained for alizarin red, as previously described [33], and levels were quantified
by analyzing the absorbance at 405 nm [34].

4.3. Adipogenic Differentiation

To assess adipogenic differentiation, cells were seeded as described above and cultured
in basal or adipogenic media for 14 days (Table 1). Cells were then either lysed for qPCR
analysis or stained with oil red O, as previously described [32].

4.4. Chondrogenic Differentiation

For chondrogenic assays, all cells were re-suspended at a concentration of 5 × 105 cells
per ml in either basal or chondrogenic media (Table 1) and centrifuged in 1.5 mL centrifuge
tubes at 400 g for 10 min. Cell pellets were then cultured at 37 ◦C in a humidified 5%
CO2 incubator with 5% O2 for 21 days, before being either lysed for qPCR analysis or
fixed for staining. For histological staining, pellets were fixed in 4% PFA and dehydrated
through increasing concentrations of ethanol and histoclear before embedding in paraffin.
The chondrogenic cell pellets were sectioned (7 µm) then deparaffinized in histoclear
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and rehydrated through graded alcohols. Heat-induced antigen retrieval in citrate buffer
(pH6) was performed at 90 ◦C for 20 min. Sections were then stained for SOX9, using
the ImmPRESS Horse Anti-rabbit I IgG Plus polymer kit, following the manufacturer’s
instructions.

4.5. qPCR Analysis

RNA extraction was performed on pre-lysed samples stored at −80 ◦C, using the
ReliaPrep RNA Cell Miniprep System (Promega, Madison, WI, USA), according to the
manufacturer’s protocol. The resulting RNA was measured using a Nanodrop 100 V3.8.1
(ThermoFisher Scientific, Waltham, MA, USA), and then it was stored at −80 ◦C. RNA was
then reverse transcribed using a TaqMan Kit (Applied Biosystems, Waltham, MA, USA)
with either 20 µL or 40 µL total reaction volume. The cDNA was then generated using
a Verriti 96-well Thermal Cycler (ThermoFisher Scientific) using the following protocol:
10 min at 25 ◦C, 30 min at 48 ◦C then 5 min at 95 ◦C. The cDNA samples were stored at
−20 ◦C, then analyzed by qPCR, with a GoTaq qPCR Master Mix (Promega). Master mix:
10 µL Power Sybr Green MM, 0.75 µL of 5 µM forward primer, 0.75 µL of 5 µM reverse
Primer (Sigma, 100 µM stock), and 7.5 µL nuclease free water per well. 18 µL of the master
mix was combined with 2 µL of cDNA, and qPCR was performed in a 7500 Real-Time PCR
system (Applied Biosystems, Waltham, MA, USA), then it was analyzed using Applied
Biosystems 7500 System SDS Software v2.0.5. A list of primers is provided in Table 2.

Table 2. Primers used in qPCR analysis.

Gene Protein Forward 5′-3′ Reverse 5′3′

ACTB βActin GGCATCCTCACCCTGAAGTA AGGTGTGGTGCCAGATTTTC
PPARγ PPARγ GGGCGATCTTGACAGGAAAG GGGGGGTGATGTGTTTGAACTTG
FABP4 FABP4 TAGATGGGGGTGTCCTGGTA CGCATTCCACCACCAGTT
ALPL ALP GGAACTCCTGACCCTTGACC TCCTGTTCAGCTCGTACTGC

COL1A1 Collagen type I α1 GAGTGCTGTCCCGTCTGC TTTCTTGGTCGGTGGGTG
SOX9 SOX9 CCCTTCAACCTCCCACACTA TGGTGGTCGGTGTAGTCGTA

COL2A1 Collagen, type II α1 CCTGGTCCCCCTGGTCTTGG CATCAAATCCTCCAGCCATC
ACAN Aggrecan GACGGCTTCCACCAGTGT GTCTCCATAGCAGCCTTCC

4.6. Statistical Analysis

Results were represented as means ± standard deviations. Significance was assessed
using one-way analysis of variance (ANOVA) with Tukey’s post hoc test. Values of p ≤ 0.05
were considered significant. Significance was presented as * < 0.05, ** <0.01, *** < 0.001,
**** < 0.0001.
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