Integrative modules for efficient genome engineering in yeast
Integrative modules for efficient genome engineering in yeast
We present a set of vectors containing integrative modules for efficient genome integration into the commonly used selection marker loci of the yeast Saccharomyces cerevisiae. A fragment for genome integration is generated via PCR with a unique set of short primers and integrated into HIS3, URA3, ADE2, and TRP1 loci. The desired level of expression can be achieved by using constitutive (TEF1p, GPD1p), inducible (CUP1p, GAL1/10p), and daughter-specific (DSE4p) promoters available in the modules. The reduced size of the integrative module compared to conventional integrative plasmids allows efficient integration of multiple fragments. We demonstrate the efficiency of this tool by simultaneously tagging markers of the nucleus, vacuole, actin, and peroxisomes with genomically integrated fluorophores. Improved integration of our new pDK plasmid series allows stable introduction of several genes and can be used for multi-color imaging. New bidirectional promoters (TEF1p-GPD1p, TEF1p-CUP1p, and TEF1p-DSE4p) allow tractable metabolic engineering.
182-190
Amen, Triana
388dc540-e819-4d07-8f1e-ee0f3949a54b
Kaganovich, Daniel
ebb13f4e-e925-4aef-88e7-ddc25ef52d8f
5 June 2017
Amen, Triana
388dc540-e819-4d07-8f1e-ee0f3949a54b
Kaganovich, Daniel
ebb13f4e-e925-4aef-88e7-ddc25ef52d8f
Amen, Triana and Kaganovich, Daniel
(2017)
Integrative modules for efficient genome engineering in yeast.
Microbial Cell, 4 (6), .
(doi:10.15698/mic2017.06.576).
Abstract
We present a set of vectors containing integrative modules for efficient genome integration into the commonly used selection marker loci of the yeast Saccharomyces cerevisiae. A fragment for genome integration is generated via PCR with a unique set of short primers and integrated into HIS3, URA3, ADE2, and TRP1 loci. The desired level of expression can be achieved by using constitutive (TEF1p, GPD1p), inducible (CUP1p, GAL1/10p), and daughter-specific (DSE4p) promoters available in the modules. The reduced size of the integrative module compared to conventional integrative plasmids allows efficient integration of multiple fragments. We demonstrate the efficiency of this tool by simultaneously tagging markers of the nucleus, vacuole, actin, and peroxisomes with genomically integrated fluorophores. Improved integration of our new pDK plasmid series allows stable introduction of several genes and can be used for multi-color imaging. New bidirectional promoters (TEF1p-GPD1p, TEF1p-CUP1p, and TEF1p-DSE4p) allow tractable metabolic engineering.
This record has no associated files available for download.
More information
Published date: 5 June 2017
Identifiers
Local EPrints ID: 475599
URI: http://eprints.soton.ac.uk/id/eprint/475599
ISSN: 2311-2638
PURE UUID: 69f6ab89-f1fc-4539-b432-89a83cb4a33d
Catalogue record
Date deposited: 22 Mar 2023 17:36
Last modified: 17 Mar 2024 04:22
Export record
Altmetrics
Contributors
Author:
Triana Amen
Author:
Daniel Kaganovich
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics