The University of Southampton
University of Southampton Institutional Repository

Finding quadruply imaged quasars with machine learning: I. Methods

Finding quadruply imaged quasars with machine learning: I. Methods
Finding quadruply imaged quasars with machine learning: I. Methods
Strongly lensed quadruply imaged quasars (quads) are extraordinary objects. They are very rare in the sky and yet they provide unique information about a wide range of topics, including the expansion history and the composition of the Universe, the distribution of stars and dark matter in galaxies, the host galaxies of quasars, and the stellar initial mass function. Finding them in astronomical images is a classic 'needle in a haystack' problem, as they are outnumbered by other (contaminant) sources by many orders of magnitude. To solve this problem, we develop state-of-the-art deep learning methods and train them on realistic simulated quads based on real images of galaxies taken from the Dark Energy Survey, with realistic source and deflector models, including the chromatic effects of microlensing. The performance of the best methods on a mixture of simulated and real objects is excellent, yielding area under the receiver operating curve in the range of 0.86-0.89. Recall is close to 100 per cent down to total magnitude i ~ 21 indicating high completeness, while precision declines from 85 per cent to 70 per cent in the range i ~ 17-21. The methods are extremely fast: training on 2 million samples takes 20 h on a GPU machine, and 108 multiband cut-outs can be evaluated per GPU-hour. The speed and performance of the method pave the way to apply it to large samples of astronomical sources, bypassing the need for photometric pre-selection that is likely to be a major cause of incompleteness in current samples of known quads.
astronomical data bases: Surveys, gravitational lensing: Strong, methods: Statistical
1365-2966
2407-2421
Akhazhanov, A.
41f83022-4c0c-48ce-8e9f-c29447f13e53
More, A.
eadd68e9-bcbf-48f8-866b-7958857d7ff1
Amini, A.
38e902cc-ed64-4a6d-85cc-a5c4e9314542
Hazlett, C.
ba624994-0a4e-4626-95c5-80d39881da5d
Treu, T.
a4e357ff-459b-4869-acfc-761b784cd6f2
Birrer, S.
22d58390-a258-44c0-8377-a918a8c0bba4
Shajib, A.
8d665ac2-27e4-4e54-a5a8-11c773c7c925
Liao, K.
d98bba96-cf7c-4cdf-8b1d-1a150929e02d
Lemon, C.
e9a51ac8-6493-4ab9-88ce-57f1cd35250a
Agnello, A.
dfa56e08-00b6-4764-9e37-0fa4e07377f6
Nord, B.
1462cfe8-7c0e-4418-abda-703350e91b11
Aguena, M.
5a2ce5af-bd27-4b44-a1c0-d4ea339a59b2
Allam, S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Andrade-Oliveira, F.
689a58d6-1b0c-419e-8079-5098e6ae13f2
Annis, J.
b21af104-dcad-472a-8424-b49d41d41c06
Brooks, D.
dd2233ad-50c2-4df0-9ba6-a134bc128f8f
Buckley-Geer, E.
ad57a7c9-6dbf-4b3d-a69f-d6cc5bb4fb8a
Burke, D. L.
0d20fba0-9285-4cb4-b076-312166fc7ad7
Carnero Rosell, A.
d66191ef-a014-4029-bfe8-e9b3c653e3be
Carrasco Kind, M.
b569a608-55e3-4a2b-8875-d6602c32c980
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Choi, A.
d021c699-3c3d-4ef9-9469-d069fcdbf25a
Conselice, C.
4dcee95e-7364-4463-a5c9-e09f560a8e97
Costanzi, M.
400140cc-a71b-498f-890d-b08209fc5b17
da Costa, L. N.
b1ed9fd9-b99a-4012-8112-79cba46d8a23
Pereira, M. E. S.
31543982-a9f3-4226-be05-4a7583b27a1b
De Vicente, J.
f1d6022a-1d82-4b26-b421-4627aa5a5568
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Dietrich, J. P.
3eb1ee1f-9bd5-47c7-b116-85c6365becc1
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Everett, S.
7d8a68d2-6ef6-4710-9268-f6733a2e3b0b
Ferrero, I.
39cc50d6-f2ae-4faa-a2b5-21da164fe6e1
Finley, D. A.
a7f0e5a4-2e83-492f-98c9-584fa035a7e4
Flaugher, B.
cca72cda-37e5-4d1b-a792-c11946615fb5
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gerdes, D. W.
63df801a-6703-4911-902c-1115327d79dd
Gruen, D.
2117fe8b-f1bc-4e4b-a20c-91d3b2c90ba3
Gruendl, R. A.
81783218-3c05-4a4a-8f7b-d123d50ba027
Gschwend, J.
cfbbfd77-feea-4e19-91b7-f40b8969f453
Gutierrez, G.
78403287-6c1e-4238-9238-06c3a714f5cd
Hinton, S. R.
9e2f00d6-7026-4491-a28e-17d5880f65d1
Hollowood, D. L.
cc89dbc7-a510-41c7-8c1a-f630716ccf56
Honscheid, K.
c505a24c-7e4d-4761-a84d-5262868372ae
James, D. J.
6a92317e-9988-453b-b7ff-52f69afe8442
Kim, A. G.
ff0b30a1-124d-4a70-beaf-64126ca7791e
Kuehn, K.
c8275e43-4cd6-44f5-9cce-8475d0e5f7de
Kuropatkin, N.
328b5b5c-833e-4299-9914-578624826327
Lahav, O.
2e4e31a0-1b02-4b64-9d7d-fc7f81f56be8
Smith, M.
249373f1-07dd-4b66-9ebd-16c520b78492
et al.
Akhazhanov, A.
41f83022-4c0c-48ce-8e9f-c29447f13e53
More, A.
eadd68e9-bcbf-48f8-866b-7958857d7ff1
Amini, A.
38e902cc-ed64-4a6d-85cc-a5c4e9314542
Hazlett, C.
ba624994-0a4e-4626-95c5-80d39881da5d
Treu, T.
a4e357ff-459b-4869-acfc-761b784cd6f2
Birrer, S.
22d58390-a258-44c0-8377-a918a8c0bba4
Shajib, A.
8d665ac2-27e4-4e54-a5a8-11c773c7c925
Liao, K.
d98bba96-cf7c-4cdf-8b1d-1a150929e02d
Lemon, C.
e9a51ac8-6493-4ab9-88ce-57f1cd35250a
Agnello, A.
dfa56e08-00b6-4764-9e37-0fa4e07377f6
Nord, B.
1462cfe8-7c0e-4418-abda-703350e91b11
Aguena, M.
5a2ce5af-bd27-4b44-a1c0-d4ea339a59b2
Allam, S.
ddcc4444-2731-4ed7-b2f0-10dc1b54fa8c
Andrade-Oliveira, F.
689a58d6-1b0c-419e-8079-5098e6ae13f2
Annis, J.
b21af104-dcad-472a-8424-b49d41d41c06
Brooks, D.
dd2233ad-50c2-4df0-9ba6-a134bc128f8f
Buckley-Geer, E.
ad57a7c9-6dbf-4b3d-a69f-d6cc5bb4fb8a
Burke, D. L.
0d20fba0-9285-4cb4-b076-312166fc7ad7
Carnero Rosell, A.
d66191ef-a014-4029-bfe8-e9b3c653e3be
Carrasco Kind, M.
b569a608-55e3-4a2b-8875-d6602c32c980
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Choi, A.
d021c699-3c3d-4ef9-9469-d069fcdbf25a
Conselice, C.
4dcee95e-7364-4463-a5c9-e09f560a8e97
Costanzi, M.
400140cc-a71b-498f-890d-b08209fc5b17
da Costa, L. N.
b1ed9fd9-b99a-4012-8112-79cba46d8a23
Pereira, M. E. S.
31543982-a9f3-4226-be05-4a7583b27a1b
De Vicente, J.
f1d6022a-1d82-4b26-b421-4627aa5a5568
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Dietrich, J. P.
3eb1ee1f-9bd5-47c7-b116-85c6365becc1
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Everett, S.
7d8a68d2-6ef6-4710-9268-f6733a2e3b0b
Ferrero, I.
39cc50d6-f2ae-4faa-a2b5-21da164fe6e1
Finley, D. A.
a7f0e5a4-2e83-492f-98c9-584fa035a7e4
Flaugher, B.
cca72cda-37e5-4d1b-a792-c11946615fb5
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gerdes, D. W.
63df801a-6703-4911-902c-1115327d79dd
Gruen, D.
2117fe8b-f1bc-4e4b-a20c-91d3b2c90ba3
Gruendl, R. A.
81783218-3c05-4a4a-8f7b-d123d50ba027
Gschwend, J.
cfbbfd77-feea-4e19-91b7-f40b8969f453
Gutierrez, G.
78403287-6c1e-4238-9238-06c3a714f5cd
Hinton, S. R.
9e2f00d6-7026-4491-a28e-17d5880f65d1
Hollowood, D. L.
cc89dbc7-a510-41c7-8c1a-f630716ccf56
Honscheid, K.
c505a24c-7e4d-4761-a84d-5262868372ae
James, D. J.
6a92317e-9988-453b-b7ff-52f69afe8442
Kim, A. G.
ff0b30a1-124d-4a70-beaf-64126ca7791e
Kuehn, K.
c8275e43-4cd6-44f5-9cce-8475d0e5f7de
Kuropatkin, N.
328b5b5c-833e-4299-9914-578624826327
Lahav, O.
2e4e31a0-1b02-4b64-9d7d-fc7f81f56be8
Smith, M.
249373f1-07dd-4b66-9ebd-16c520b78492

Akhazhanov, A., More, A., Amini, A. and Smith, M. , et al. (2022) Finding quadruply imaged quasars with machine learning: I. Methods. Monthly Notices Of The Royal Astronomical Society, 513 (2), 2407-2421. (doi:10.1093/mnras/stac925).

Record type: Article

Abstract

Strongly lensed quadruply imaged quasars (quads) are extraordinary objects. They are very rare in the sky and yet they provide unique information about a wide range of topics, including the expansion history and the composition of the Universe, the distribution of stars and dark matter in galaxies, the host galaxies of quasars, and the stellar initial mass function. Finding them in astronomical images is a classic 'needle in a haystack' problem, as they are outnumbered by other (contaminant) sources by many orders of magnitude. To solve this problem, we develop state-of-the-art deep learning methods and train them on realistic simulated quads based on real images of galaxies taken from the Dark Energy Survey, with realistic source and deflector models, including the chromatic effects of microlensing. The performance of the best methods on a mixture of simulated and real objects is excellent, yielding area under the receiver operating curve in the range of 0.86-0.89. Recall is close to 100 per cent down to total magnitude i ~ 21 indicating high completeness, while precision declines from 85 per cent to 70 per cent in the range i ~ 17-21. The methods are extremely fast: training on 2 million samples takes 20 h on a GPU machine, and 108 multiband cut-outs can be evaluated per GPU-hour. The speed and performance of the method pave the way to apply it to large samples of astronomical sources, bypassing the need for photometric pre-selection that is likely to be a major cause of incompleteness in current samples of known quads.

Other
pdf
Download (9MB)

More information

Accepted/In Press date: 23 March 2022
Published date: 1 June 2022
Additional Information: Publisher Copyright: © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
Keywords: astronomical data bases: Surveys, gravitational lensing: Strong, methods: Statistical

Identifiers

Local EPrints ID: 475632
URI: http://eprints.soton.ac.uk/id/eprint/475632
ISSN: 1365-2966
PURE UUID: 4eeccb5e-258d-4010-bc58-bc829a7fc2d1

Catalogue record

Date deposited: 23 Mar 2023 17:31
Last modified: 16 Mar 2024 22:38

Export record

Altmetrics

Contributors

Author: A. Akhazhanov
Author: A. More
Author: A. Amini
Author: C. Hazlett
Author: T. Treu
Author: S. Birrer
Author: A. Shajib
Author: K. Liao
Author: C. Lemon
Author: A. Agnello
Author: B. Nord
Author: M. Aguena
Author: S. Allam
Author: F. Andrade-Oliveira
Author: J. Annis
Author: D. Brooks
Author: E. Buckley-Geer
Author: D. L. Burke
Author: A. Carnero Rosell
Author: M. Carrasco Kind
Author: J. Carretero
Author: A. Choi
Author: C. Conselice
Author: M. Costanzi
Author: L. N. da Costa
Author: M. E. S. Pereira
Author: J. De Vicente
Author: S. Desai
Author: J. P. Dietrich
Author: P. Doel
Author: S. Everett
Author: I. Ferrero
Author: D. A. Finley
Author: B. Flaugher
Author: J. Frieman
Author: J. García-Bellido
Author: D. W. Gerdes
Author: D. Gruen
Author: R. A. Gruendl
Author: J. Gschwend
Author: G. Gutierrez
Author: S. R. Hinton
Author: D. L. Hollowood
Author: K. Honscheid
Author: D. J. James
Author: A. G. Kim
Author: K. Kuehn
Author: N. Kuropatkin
Author: O. Lahav
Author: M. Smith
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×