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1 Introduction

Do competing sellers generate the efficient level of information about their

goods? We contribute to answering this fundamental question by examining

the case of a competitive market with vertically differentiated products. We

do so by considering a canonical model of price competition with vertically

differentiated products (as in Shaked and Sutton, 1982), in which consumers

and firms have identical beliefs regarding the products qualities. Our inno-

vation is to allow each firm, before setting its price, to generate a costly,

unbiased signal, informative about the quality of the products available on

the market, observed publicly by all consumers and all firms.

For example, a product’s technical specifications may be perfectly known

to all consumers and all firms. However, the consumption utility generated by

the product may depend on harder-to-measure attributes such as its aesthetic

appeal, its ergonomics and ease of use, the presence of unexpected bugs

or defects, both in absolute terms and relative to other products. These

attributes can be (partially) learned via informative public signals: industry

competitions, trade shows, industry classifications, reviews by experts in the

media (examples are Consumer Reports in the US or Which? in the UK),

quality tests and certification by professional agencies (e.g., rating agencies

for financial products, TÜV for industrial goods). These signals are often

commissioned by firms, either individually or via industry bodies tasked with

organizing industry competitions or maintaining classification systems.1

As a preliminary step we examine the pricing equilibrium in Shaked and

Sutton (1982)’s model. We show that under mild assumptions (separable

consumer preferences in taste and quality, log concavity of the distribution of

the taste parameter and sufficiently high minimum taste for quality ensuring

the market is covered) the equilibrium market shares are independent of

the distribution of qualities, and are determined exclusively by the taste

1A case in point are wine classification systems, usually maintained by associations of
vintners. See, for example, the Bordeaux wine classification of 1855, and its more recent
and regularly updated offshoot Cru Bourgeois. Similar systems in Burgundy, Champagne,
Douro, and other regions. While observable variables such as soil quality of the vineyard
and the weather of the vintage determine expected qualities, the true quality of a fine wine
often only realizes after years of storage.
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distribution. This is a convenient result, as it implies that the arrival of new

information affecting the quality distribution does not change the equilibrium

market shares.

We then turn to the benefit of generating information, in the form of

generating unbiased signals about the firms’ product qualities. Both from

the private and the social viewpoint new information is valuable if and only

if it is possible to reverse the quality ranking and thus alter equilibrium con-

sumption choices. However, its private value will, in general, differ from its

social value. The social value of new information depends on the difference

between the aggregate valuation of the quality leader’s customers and the

aggregate valuation of the quality follower’s customers. This difference mea-

sures the change in social welfare when the allocation of goods to consumers

changes.

By contrast, the private benefit from new information depends on the

market share of the quality follower. The reason is that, after drawing a

signal, either firm may become the quality follower or the quality leader. This

implies that each firms’ private benefit of information generation increases

with both firms’ profits. Moreover, under the market segmentation implied

by log-concavity, in equilibrium the market share of the quality follower is

always smaller than that of the quality leader, but the closer these shares are

the higher are aggregate profits. Hence, all else equal, firms’ market power

and aggregate profits increase in the market share of the quality follower,

and with it the private incentive to generate information.

Because the market share of the quality follower is endogenous, com-

paring social and private value of information generation is no trivial task.

Nonetheless, we can show that if the mass of consumers close to the taste

distribution’s lower bound is sufficiently large, the quality follower’s market

share will be close to zero. In this case the social benefit of information

generation exceeds the private benefit and firms underinvest in information

relative to the social optimum.2 This underinvestment is most severe when

2Interestingly, in the underinvestment case, consumers may benefit from generating
additional information. This paper focuses on firm behavior, see Terstiege and Wasser
(2019) for optimal information generation from the consumers’ perspective.

3



the quality leader captures the entire market and effectively becomes a mo-

nopolist.3

We provide comparative statics results linking the taste distribution to

information generation. We show that a change of the taste distribution

that preserves it locally around the threshold consumer (i.e. the consumer

who is indifferent between purchasing from either firm) only affects the social

benefits of information generation, but leaves the private benefit and the equi-

librium unchanged. For instance, a right tail spread of the taste distribution,

affecting only tastes above the median, increases the social value of informa-

tion, because the difference in aggregate valuations of consumers of the two

firms increases. Such a spread thus makes under-provision of information

more likely. Using a similar method, but focusing on the left tail of the taste

distribution, we can link inefficiencies in the pricing equilibrium to inefficien-

cies in information generation. We identify a family of taste distributions for

which under-investment (over-investment) in information generation is more

likely when the taste distribution generates less (more) inefficiencies in the

pricing equilibrium.

Interestingly, public information generates a positive externality among

firms, because drawing any signal increases a firm’s expected profits, in-

cluding signals about the competing product. Hence, even if prices are set

competitively, firms can soften competition by cooperating in generating un-

biased, publicly available information about product quality, for example, by

introducing a classification system or an industry-wide competition. Such co-

ordination may decrease consumer rent and aggregate surplus in our setting,

providing a novel perspective on the regulation of industry cooperation.

Finally we allow firms to achieve vertical differentiation also via costless

quality degradation. It is well known that, absent information generation, in

equilibrium firms will increase the expected quality distance in the product

market by way of quality degradation. We show that the possibility of gener-

ating public information mitigates strategic quality degradation, because new

information provides an alternative means to generate quality dispersion.

3We use the term monopoly as in Baumol (1982)’s contestable monopoly : there are two
competing firms and, in equilibrium, a single one serves the entire market.
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The remainder of the paper proceeds as follows. The next subsection

discusses the relevant literature. In Section 2 we present the model. In

Section 3 we derive the equilibrium in the pricing game for given expected

qualities. In Section 4 we solve the full game, in which firms can invest to

generate information before setting prices. Section 5 presents an extension

with quality degradation. All mathematical derivations missing from the text

are in the appendix.

Related literature.

We contribute to the literature studying information generation in monopoly

settings and in competitive settings. We also relate our results to the litera-

ture on information disclosure.

Public information generation in single-firm settings. Information

generation by a single seller has been extensively studied. As we consider

heterogeneous buyers, our paper is closely related to the auctions literature.

In their seminal paper Milgrom and Weber (1982) study the auctioneer’s

incentives to disclose signals affiliated with bidders’ valuations, which intu-

itively are those generating a symmetric reaction in the bidders’ valuations.

They show that the auctioneers should always commit to fully and publicly

disclose those signals. Ganuza and Penalva (2010) consider the auctioneer’s

incentive to generate private idiosyncratic signals that affect different bid-

ders asymmetrically. They show that the amount of information generated

by the auctioneer will fall short of the social optimum, because information

increases the dispersion in buyers’ valuations and information rents.4

4Also related is Ottaviani and Prat (2001), who consider an environment with a monop-
olist and a single buyer. They also find that a monopolist always benefits from generating
and disclosing signals that are affiliated to the buyer’s valuation. Roesler and Szentes
(2017) consider a monopolist and a single buyer, and identify the optimal information
environment from the buyer’s point of the view. There is also a literature studying the
incentive to acquire private information. For example, Bergemann and Välimäki (2002)
consider a mechanism design problem in which players can covertly obtain private infor-
mation at a cost. They show that if the mechanism is ex-post efficient (for example, an
auction), then information acquisition is also efficient.
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In our setup buyers are heterogeneous and signals are affiliated with the

consumers’ valuations, too, but while monopoly may be an equilibrium out-

come, the identity of the monopolist may depend on the realizations of the

information generated. Thus we provide an additional reason why a monop-

olist may invest in information generation, which complements those already

proposed in the literature. We also show that the equilibrium level of infor-

mation generation crucially depends on whether sellers generate information

independently from each other or coordinate (in particular, it will be higher

when firms can coordinate). As a consequence, despite the fact that sig-

nals are affiliated with consumers’ valuations, in our model information is

under-provided if there is a monopolist and firms act independently.

Information generation in competitive settings. The existing liter-

ature studying information generation in competitive settings has mostly

focused on horizontal competition (see, in particular, Anderson and Renault,

2000, 2009, Levin, Peck, and Ye, 2009). As in our setup, under horizontal

competition increasing the distance between quality levels via information

generation increases firms’ market power. However, the welfare implications

differ markedly between horizontal and vertical competition.5

Both Moscarini and Ottaviani (2001) and Armstrong and Zhou (2019)

study the problem of information generation by firms when the signal gen-

erated is privately observed by consumers. Armstrong and Zhou (2019) con-

sider a model of horizontal competition, derive both firms’ and consumers’

optimal information structures, and compare them with the efficient infor-

mation structure. They find that the firms’ optimal information structure is

socially efficient. By contrast, with public signals we find that firms may gen-

erate more or less information than efficient, depending on the distribution

of the taste parameter and whether they act independently or jointly.6

5There is, of course, the classical paradox that by construction fully revealing market
equilibrium prices will not provide incentives for costly information generation (Grossman
and Stiglitz, 1980), which has been resolved by allowing agents to take into account the
effect of their actions on prices and other agents’ beliefs (Milgrom, 1981; Verrecchia, 1982).

6Armstrong and Zhou (2019) consider a single consumer and firms’ joint decision on
information structure. By contrast in our setup the average consumer may have different
valuation for quality than the marginal consumer, which will matter because the social
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The small literature on public information generation with vertical dif-

ferentiation tends to rely on very specific informational environments. E.g.

Bouton and Kirchsteiger (2015) examine the role of reliable rankings of sell-

ers and show that their presence can reduce consumers’ welfare. Bergemann

and Välimäki (2000) consider a dynamic setting, in which information is

generated through repeated purchases, and find that information generation

increases firms’ market power and may reduce social welfare. By contrast we

consider a generic form of information generation (i.e., any unbiased signal

correlated with the quality distribution) and examine incentives for over- or

underinvestment in information generation and the role of coordination.

Information disclosure. A related problem is that of a privately informed

firm deciding how much information to disclose to consumers. Jovanovic

(1982) studies costly disclosure of information by a monopolist, and shows

that a monopolist will disclose too much information to consumers relative

to the social optimum. Also, Matthews and Postlewaite (1985) consider the

problem of costly information generation and subsequent (costless) disclosure

by a monopolist. They show that mandatory disclosure rules may decrease

the amount of information generated by the monopolist. Lewis and Sapping-

ton (1994) and Johnson and Myatt (2006) study the disclosure of information

by a monopolist who know the true quality of its good, and can choose the

precision of a signal observed by consumers (but not its realization). In

this case, information disclosure leads to a demand rotation. Typically, the

monopolist wants to disclose either everything or nothing.

With respect to information disclosure in competitive settings, to the best

of our knowledge, Meurer and Stahl (1994) are the first to point out that

information disclosure by one firm generates a positive externality on com-

peting firms. However, they only consider horizontal competition and a very

specific information structure (i.e., informative advertising).7 Ivanov (2013)

value of information will depend on the average consumer valuation, but its private value
on the marginal consumer’s valuation.

7See also Vives (1999), chapter 8, discussing incentives of firms to share (but not
generate) private information in different models of oligopolistic competition. Related to
our findings, both Meurer and Stahl (1994) and Vives (1999) argue that firms may benefit
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and Boleslavsky et al. (2019), also study competitive information disclosure

about horizontally differentiated goods. Finally, Board (2009) studies infor-

mation disclosure by firms under vertical competition. In his model, there

is always an equilibrium with full disclosure. Next to this equilibrium there

could also be an equilibrium with partial disclosure.8

2 Model

Our starting point is the canonical model of a duopoly with vertically dif-

ferentiated products (see Gabszewicz and Thisse, 1979, Shaked and Sutton,

1982, and Chapter 7 of Tirole, 1988’s textbook). The market consists of 2

firms and a mass 1 of buyers. Each firm produces a good of quality si ∈ [s, s]

for i ∈ {1, 2}. A buyer’s utility is given by

U =

θsi − pi if good i is purchased

0 in case of no purchase,

where pi is the price of the good produced and θ ∈ R+ is an i.i.d. taste

parameter with cumulative distribution function F (x) = pr(θ ≤ x) that is

continuous, differentiable, and has a continuous first derivative. We assume

that the support of θ has a minimum θ (so that F (x) = 0 for all x ≤ θ), but

may or may not have a maximum. If a maximum exists, we call it θ > θ,

otherwise we write θ =∞.

Each firm has zero marginal cost of production, so that profit is given by

price times quantity sold.

Information and Learning

We depart from the canonical model by assuming that the quality levels si

are unknown to both buyers and firms, who have common ex-ante beliefs

from organizing a trade association to gather information from their members and then
share it.

8It turns out that, unlike in Board (2009), in our model a standard unraveling argument
holds: if firms first generate information and then decide whether to disclose, in equilibrium
they always disclose fully (results available upon request).
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about si. Call qi = E[si] the initial expected quality of firm i’s product,

and assume, without loss of generality, that q1 ≥ q2.Firm i can generate

information by paying a cost k and drawing a signal σi, which is informative

with respect to si and may be informative with respect to s−i as well.9

We allow the two firms to differ in their information-generation technol-

ogy, so that σ1 and σ2 may have different distributions. We also allow for any

possible correlation between σ1 and σ2, except for perfect correlation (nega-

tive or positive) to avoid trivial cases. Information generated is public: all

market participants receive the signal and update their belief about quality.

We adopt the convention that σi = ∅, if firm i does not generate information.

We therefore write σ = (∅, ∅) if no firm generates information, σ = (∅, σi)
when firm i ∈ {1, 2} generates information but not firm −i, and σ = (σ1, σ2)

when both firms generate information.

Starting from a common prior over each firm’s quality si and a specific dis-

tribution of signals, each realization of σ corresponds to an ex-post expected

quality which we denote by q̂i. By iterating expectations E [q̂i|σ] = qi for

any signal configuration σ (where the expectation is taken over the possible

realizations of σ). Hence, ex ante, before any signal is drawn, the expected

ex-post quality is equal to the initial expected quality. Finally, since con-

sumption choices are based on expected qualities after signals are realized,

we can simply assume that each σ gives rise to an exogenous distribution of

q̂i with E [q̂i|σ] = qi (i.e., we do not need to derive explicitly the distribution

of q̂i from the prior and the distribution of signals).

Timing

To summarize, the timing of the game is as follows.

9We abstract away from the choice of precision of the signal (as in the Bayesian per-
suasion literature, see in particular Gentzkow and Kamenica, 2016) as well as from the
possibility of signal jamming. We will show below that both firms’ expected profits in-
crease in the precision of both signals. Hence, firms have no incentive to jam each other’s
signal, and, for given cost of drawing a signal, firms prefer the most precise signal available.
Hence, our results carry over to such a case. However, if signals of different precision differ
in their cost, firms will face a trade off. This trade off depends crucially on the details of
the cost function, and we prefer to leave this extension for future research.
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1. Given the initial beliefs about qualities, firms simultaneously decide

whether to acquire information at cost k, yielding a vector of signals σ.

2. Realizations of signals are publicly revealed, leading to a revision of the

beliefs about the products’ qualities and to q̂1, q̂2.

3. Firms announce prices simultaneously. Consumers decide if and from

whom to buy and consume. Payoffs are realized.

Solution Concept

We solve the model by backward induction. For a given signal realization,

firms simultaneously and independently choose a price. Anticipating this in

the previous stage firms simultaneously and independently choose whether to

draw signals. We thus derive the subgame perfect Nash equilibrium of signal

choices σ1 and σ2 and price choices p1 and p2 depending on the signals.

Assumptions

We conclude the model description by introducing some restrictions on the

distribution of the taste parameter θ, which will guarantee the existence and

uniqueness of a pure strategy Nash equilibrium in the pricing game (stage 3

in the timeline above).

Assumption 1 (Log-concavity). The density f(θ) is log-concave.

This assumption comes with only a very modest loss of generality, as log-

concavity is satisfied by a host of widely used distributions. Nonetheless, it

puts some useful structure on F (θ) and f(θ). For example, log concavity

implies that f(θ) is unimodal (see e.g. Dharmadhikari and Joag-Dev, 1988).

Hence, f(θ) is strictly positive for θ ∈ (θ, θ) (remember that if there is

no upper bound, we write θ = ∞). Furthermore, log concavity of f(θ)

ensures that both F (θ) and 1−F (θ) are log-concave (see Prékopa, 1973 and

Bagnoli and Bergstrom, 2005). This in turn implies that F (θ)/f(θ) increases,

(1−F (θ))/f(θ) decreases, and (1−2F (θ))/f(θ) also decreases, all facts that

we will use extensively in our derivations.
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Finally, we assume that there is enough potential revenue in the left tail

of the taste distribution, in the sense that θ is sufficiently high and the taste

distribution has enough mass at or near θ.

Assumption 2 (Covered Market). Either θ · f(θ) > 1, or

θ ·m ≥ s− s
s

, (A2)

where m ≡ minθ∈[θ,θ∗] f(θ) and θ∗ is implicitly defined as θ∗ = 1−F (θ∗)
f(θ∗)

.

Note that, because of log-concavity, 1−F (θ)
f(θ)

is strictly decreasing and hence

θ∗ exists and is unique as long as f(θ)θ ≤ 1.

Condition (A2) is a generalization of the standard covered market condi-

tion.10 As we will show, it guarantees that in equilibrium all consumers prefer

purchasing from one of the firms to not purchasing.11 Indeed, any distribution

that is bounded below with f(θ) > 0 satisfies (A2), if appropriately scaled

up. This is because increasing θ decreases θ∗ − θ and, therefore, (weakly)

increases m. If the new θ is sufficiently large relative to the maximum possi-

ble dispersion in quality s− s, then Condition (A2) will hold. Furthermore,

because a truncation of a log-concave distribution is also log-concave (Bag-

noli and Bergstrom, 2005, Theorem 7), any log-concave distribution that is

unbounded below or bounded below but with mass equal to zero at the lower

bound satisfies Assumptions 1 and 2, if appropriately truncated.

10For example, Chapter 7 of Tirole (1988)’s textbook uses a uniform distribution of the
taste parameter with θ− θ = 1, solving the model assuming the covered market condition
|q̂1−q̂2|

max{q̂1,q̂2} ≤ θ. Condition (A2) is a generalization of this condition, because it applies

to all possible distributions of the taste parameter, and to all possible quality levels (in
Tirole, 1988 the quality levels are given exogenously).

11To the best of our knowledge, (1)-(2) are the weakest conditions existing in the litera-
ture guaranteeing existence, uniqueness and full analytical characterization of the pricing
equilibrium with covered market. Studies examining the non covered-market case (Moor-
thy, 1988, Choi and Shin, 1992) or not imposing ex-ante whether the market will be covered
(Wauthy, 1996) restrict their attention to uniform taste distributions.
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3 The Pricing Game

Consider a given realization of the signal vector σ. Since information gen-

eration may reverse the initial quality ranking of firms, we will refer to the

quality leader by L and the follower by F , so that q̂L ≡ max{q̂1, q̂2} > q̂F ≡
min{q̂1, q̂2}.

Denote a firm i’s posted price by pi. We introduce two thresholds. The

first threshold X is the consumer type that is indifferent between purchasing

from either firm, if there is such a consumer, and by θ (θ) if all consumers

weakly prefer L (F ):

X ≡


pL−pF
q̂L−q̂F

if pL−pF
q̂L−q̂F

∈ (θ, θ)

θ if pL−pF
q̂L−q̂F

≤ θ

θ if pL−pF
q̂L−q̂F

≥ θ.

The second threshold Y is the consumer type that is indifferent between the

lower quality firm F and not consuming, if there is such a consumer, and by

θ (θ) if all consumers weakly prefer F (not to consume):

Y ≡


pF
q̂F

if pF
q̂F
∈ (θ, θ)

θ if pF
q̂F
≤ θ

θ if pF
q̂F
≥ θ.

Using these thresholds we can derive the two best responses in the pricing

game:

Lemma 1. The quality leader’s best response is implicitly defined as:

pL(pF ) = max

{
1− F (X)

f(X)
(q̂L − q̂F ), θ(q̂L − q̂F ) + pF

}
,

and is a continuous function. The quality follower’s best response is implicitly
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defined as:

pF (pL) =

[0,+∞) if pL ≤ θ(q̂L − q̂F )

min
{
F (X)
f(X)

(q̂L − q̂F ), θq̂F

}
otherwise.

and is an upper-hemicontinuous, compact valued, convex correspondence.

The proof of the Lemma uses Assumption 1 to establish existence and

uniqueness of the best responses. In addition, Assumption 2 implies that

the market is covered: for every pL the follower’s optimal price is such that

Y = θ.

Thus the demand faced by the quality leader is 1 − F (X) and the de-

mand faced by the quality follower is F (X) . Note that, if both firms’ profit

maximization problems have interior solutions, optimal prices are given by:

pL(pF ) =
1− F (X)

f(X)
(q̂L − q̂F ) and pF (pL) =

F (X)

f(X)
(q̂L − q̂F ).

These expressions have a straightforward intuition: firms’ market power un-

der vertical differentiation allows them to set prices to ensure that their own

price elasticity of demand equals −1.

A pure strategy Nash equilibrium is a pair p∗ such that pi(p−i(p
∗
i )) = p∗i

for i = L, F .

Proposition 1 (Market Equilibrium Outcome).

(i) If 1 ≤ θ · f(θ), then in the unique pure strategy Nash equilibrium X∗ =

Y ∗ = θ, i.e. the quality leader supplies the entire market, and prices are

p∗F = 0 and p∗L = θ(q̂L − q̂F ).

(ii) If instead 1 > θ ·f(θ), then in the unique pure strategy Nash equilibrium

Y ∗ = θ and X∗ > θ where

X∗ =
1− 2F (X∗)

f(X∗)
(1)

Equilibrium prices are p∗L = 1−F (X∗)
f(X∗)

(q̂L− q̂F ) and p∗F = F (X∗)
f(X∗)

(q̂L− q̂F ).
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For intuition, note that θ · f(θ) is a measure of the aggregate willingness

to pay at the bottom of the taste distribution. If it is sufficiently high the

quality leader will find it profitable to serve the entire market, leading to

a monopoly. If instead it is low (i.e., θ · f(θ) < 1) then the quality leader

will optimally serve only the high-valuation consumers and the remaining

consumers purchase from the quality follower, leading to a duopoly.

In case of a duopoly, by (1) the threashold cutoff X∗, separating con-

sumers buying from L from those buying from F , cannot be greater than

the median. This is a consequence of log concavity of the taste distribution,

which limits the degree to which the distribution can grow. Also, the equi-

librium demand faced by leader and follower does not depend on expected

qualities q̂L and q̂F . This is because the firms’ optimal prices ensure their

own price demand elasticity equals −1. Since these elasticities are linear in

q̂L − q̂F , the threshold X∗ at which they both equal −1 does not depend

on q̂L − q̂F .12 This fact will be very convenient, implying that the signal

realizations and thus also the signal configurations, only affect the identity

of quality leader and follower and market prices, but not demand.

For illustration of Proposition 1 suppose the taste parameter θ follows

a uniform distribution. In this case, the quality leader captures the market

if θ ≤ 2θ, otherwise there is a duopoly with X∗ = θ+θ
3

. Which case will

occur depends mainly on two intuitive effects. First, fixing either θ or θ, the

duopoly becomes more likely as θ−θ increases (and with it the variance of the

distribution). This is because lowering the price to attract the least quality

sensitive consumers will become more costly for the quality leader, leaving

demand for the follower. By contrast, for a given range of the support θ−θ an

increase in the mean makes a duopoly less likely, as the least quality-sensitive

consumer becomes more quality sensitive and accepts a higher relative price.

12Note that this result relies on separability of taste and quality in consumers’ utility and
a covered market, but does not require log concavity, which instead guarantees existence
and uniqueness of X∗.
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4 Information generation

Equipped with the properties of the pricing equilibrium we turn now to the

firms’ choices of information generation. Depending on the type distribution,

either the quality leader will corner the market (monopoly case) or both firms

will supply some consumers. Below we consider each case separately.

4.1 Case 1: Monopoly (1 ≤ θf(θ))

We start by considering the case 1 ≤ θf(θ), in which the quality leader

covers the entire market. Since all consumers consume the good with higher

expected quality, the pricing equilibrium is efficient.

Social value of information generation. Given the expected qualities

q̂1 and q̂2 the expected social welfare is given by:13

S(q̂1, q̂2) = max{q̂1, q̂2}E[θ] .

By the law of iterated expectation, the two expected qualities are inde-

pendent from σ. This implies that if new information cannot reverse the

quality ranking (i.e. if firm 1 remains the leader for any signal realization),

then the expected social welfare is the same with or without information

generation. If instead new information can reverse the quality ranking, then

a straightforward application of Jensen’s inequality implies social welfare is

higher with new information. The next lemma derives the exact expression

for the social value of information.

Lemma 2. For any two signal configurations σ′ and σ′′, the social benefit

generated from moving from σ′ to σ′′ is given by

E[S(q̂1, q̂2)|σ′′]− E[S(q̂1, q̂2)|σ′] = E[θ] (∆(σ′′, q1, q2)−∆(σ′, q1, q2)) ,

13We assume throughout the paper that the investment in information generation k by
itself is not socially valuable.
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where

∆(σ, q1, q2) ≡ pr{q̂2 ≥ q̂1|σ}E[q̂2 − q̂1|q̂2 ≥ q̂1, σ], (2)

is the expected quality gain.

That is, the expected social gain from changing the signal configuration

is just the expected welfare gain from replacing one product by the other,

conditional on a change in the product ranking. Hence, information is only

socially valuable, if it can lead to a change of optimal choice.

For intuition consider the case σ′ = ∅ but σ′′ 6= ∅, i.e. a move from

no information generation to some information generation. This move is

socially beneficial if and only if the quality ranking reverses for some signal

realizations. If positive, the social benefit increases in the expected quality

gain ∆(σ′′, q1, q2), which can be rewritten as

pr{q̂2 ≥ q̂1|σ′′} (E[θ]E[q̂2|q̂2 ≥ q̂1, σ
′′]− E[θ]E[q̂1|q̂2 ≥ q̂1, σ

′′]) .

That is, the value of information is the value of changing the allocation

following a reversal in the quality ranking. It is given by the difference

between social welfare when reallocation is possible (E[θ]E[q̂2|q̂2 ≥ q̂1, σ
′′])

and social welfare when reallocation is not possible (E[θ]E[q̂1|q̂2 ≥ q̂1, σ
′′]).

Note that ∆(σ, q1, q2) depends both on the signal σ and on the quality

distribution. For given σ 6= (∅, ∅), as the priors q1 and q2 get closer the

expected quality gain increases. Similarly, the next lemma shows that for

given q1 and q2, drawing more signals leads to higher expected quality gain.

Lemma 3. The expected quality gain increases in the number of signals:

∆((∅, ∅), q1, q2) ≤ ∆((∅, σi), q1, q2) ≤ ∆((σ1, σ2), q1, q2). for i ∈ {1, 2} (3)

Hence, more information (in form of two signals rather than one) increases

the dispersion in the posterior distribution.14 By doing so, it increases the

14This is because, as the proof exploits, the expected quality distribution for two signals
drawn is a mean preserving spread of the expected quality distribution for only one signal
drawn (independently from the signals’ correlation structure, as long as they are not
perfectly correlated). Drawing a second signal after the realization of the first one adds
“noise”, but the expected quality remains the same.

16



probability of a change in the quality ranking and the distance between

qualities in case of such quality ranking.

The socially optimal investment in information generation then solves

max
σ

E[S(q̂1, q̂2)|σ]−


2k if σ = (σ1, σ2),

k if σ = (∅, σi) for i ∈ {1, 2},

0 if σ = (∅, ∅).

Whether it is optimal to learn about only the quality leader, only the quality

follower, or both will depend on the two expected qualities, on the two signals,

and on the cost parameter k.

Private value of information generation. Given the outcome of the

pricing game in Proposition 1, firm i ∈ {1, 2} profits are

πi(q̂i, q̂−i) =

θ|q̂i − q̂−i| if q̂i > q̂−i

0 otherwise,

which increase in the distance between quality levels, strictly so for the qual-

ity leader.

Note that profits depend on the marginal consumer θ, who in equilibrium

is indifferent between buying from either firm. Thus each firm’s benefit from

generating information depends on θ, while the social value of information

depends on E[θ]. The next proposition shows that, as a consequence, the

private value of information generation is below its social value.

Proposition 2. Suppose there is a monopoly (i.e., 1 ≤ θf(θ)). Then for any

two signal configurations σ′ and σ′′ a firm i’s gain in payoffs from moving

from σ′ to σ′′ is given by

E[πi(q̂i, q̂−i)|σ′′]− E[πi(q̂i, q̂−i)|σ′]= θ (∆(σ′′, q1, q2)−∆(σ′, q1, q2)) , (4)

and is proportional to the gain in social welfare with a factor θ/E[θ] < 1.
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Proof. Rewrite firm i’s profits as

πi(q̂i, q̂−i) = θ(max{q̂i, q̂−i} − q̂−i) =
θ

E[θ]
S(q̂1, q̂2)− θq̂−i,

and use Lemma 2.

Again, information is beneficial if and only if it may alter the consumption

choice. For intuition, suppose that σ′ = ∅ but σ′′ 6= ∅, that is moving from

zero to some information generation. In this case the private benefit of

information generation for firm 1 can be rewritten as

E[π1(q̂1, q̂2)|σ′′]− π1(q1, q2) = θpr{q̂2 ≥ q̂1|σ′′} (−E[|q̂1 − q̂2||q̂2 ≥ q̂1, σ
′′]) ,

which is the difference between its equilibrium profits in case of a quality

ranking reversal (zero) and a counterfactual in which firm 1 remains serving

the whole market, despite having a worse quality than firm 2. To retain

demand firm 1 needs to set a negative price and hence has a negative profit,

see Figure 1 for an illustration. Similarly, the private benefit of information

generation for firm 2 can be rewritten as

E[π2(q̂2, q̂1)|σ′′]= θpr{q̂2 ≥ q̂1|σ′′} (E[|q̂2 − q̂1||q̂2 ≥ q̂1, σ
′′]) ,

which is the difference between its profit in case of a quality ranking reversal

and its counterfactual profit from remaining the follower. This reveals a

symmetry between the firms, in that the value of information is identical for

both firms, since firm 2’s gains from becoming a monopolist equals the loss

firm 1 avoids by not having to retain its demand at inferior quality.

Finally, note that by (3) the benefit will be non-negative, if σ′′ contains

strictly more signals than σ′. The proposition thus confirms that the pri-

vate benefit of information generation is lower than the social benefit, for

any increase in the number of signals and given any signal configuration.

Since social welfare is the sum of profits and consumer surplus, information

generation must increase consumer surplus.
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Figure 1: Value of information for firm 1. An illustration for the case in
which the signal is informative only about product 1 (monopoly case).

Subgame Perfect Nash Equilibrium A firm’s optimal choice of signal

acquisition, and thus the outcome of the two stage game, depends on whether

the expected increase in profits computed above outweighs the signal cost k.

That is, the subgame perfect Nash equilibrium of the information generation

cum pricing game depends on the quality distribution q1 and q2, the signal

technology, and the cost k. We list the pure strategy equilibria below:

• If k > θ (∆(σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) and θ∆((∅, σi), q1, q2) ≥
k, there is an equilibrium, in which only firm i ∈ {1, 2} generates

information. If the inequalities hold for both i = 1 and i = 2, there

are two equilibria (each corresponding to a different firm generating

information).

• if k ≤ θ (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) and θ∆((∅, σi), q1, q2) ≥
k for at least one i ∈ {1, 2}, there is a unique equilibrium in which both

firms generate information.

• if k ≤ θ (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)), but θ∆((∅, σi), q1, q2) ≤
k for both i = 1, 2, there are two equilibria: one in which no firm gen-
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erates information, and one in which both firms generate information.

• Otherwise, there is no information generation in equilibrium.

Therefore multiple equilibria are possible in two cases. First, if acquiring

a signal is profitable for each firm individually, but not jointly, there may be

two equilibria, one each for each firm to acquire a signal but not the other

one. Second, if the expected quality gain ∆(σ, q1, q2) increases in the number

of signals drawn, then the firms’ signal choices will be strategic complements.

Suppose, for instance, that acquiring signal is not profitable for one firm only,

but it is if the other firm does as well, say if one signal cannot perturb the

posterior quality distribution sufficiently to reverse the quality ranking, but

two signals can. If the cost k is sufficiently small, this case would produce a

familiar coordination failure: an equilibrium without information generation,

Pareto dominated by another one, in which both firms acquire information.

In what follows, if there are multiple equilibria that can be Pareto ranked,

we focus on the Pareto-preferred one.

Which of the different cases will emerge depends both on the signal struc-

ture and on the distance in expected qualities |q1 − q2|. If, for given signals,

this distance is sufficiently small, information generation by at least one firm

is more likely in equilibrium. For intermediate |q1 − q2|, there may be mul-

tiple equilibria, in which either both firms generate information or neither

does; the former equilibrium Pareto dominates the latter. If the distance is

sufficiently large, neither firm will acquire any signal.

The characterization of the Nash Equilibrium and Proposition 2 imply the

following proposition, derived in the appendix, stating that the equilibrium

level of information generation is inefficiently low.

Proposition 3. Suppose 1 ≤ θf(θ), i.e. there is a monopoly.

(i) There are values of k for which the number of signals drawn in equilib-

rium is strictly lower than socially optimal. For all other values of k

the efficient number of signals is drawn.15

15Note that for some k there could be coordination failure: there are multiple Nash equi-
libria, each with one firm drawing a signal, but not the other. The inefficient equilibrium
is the one in which the firm with the less informative signal generates information.
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(ii) Consider any two taste parameter distributions F (θ) and F ′(θ) that

either have equal mean but different lower bounds θ > θ′, or have equal

lower bounds but F (θ) has lower mean than F ′(θ). The set of k for

which there is an inefficient equilibrium under F ′(θ) contains the set of

k for which there is an inefficient equilibrium under F (θ).

Hence, firms are more likely to draw fewer signals in equilibrium than

efficient if the difference between private benefit (as measured by θ) and

social benefit (as measured by E(θ)) of information generation is large.

Coordination in information generation. An implication of Proposi-

tion 2 is that drawing a signal benefits both firms in the same way and there

is a positive externality in information generation across firms. Therefore

firms may wish to coordinate their choice of information generation, e.g. via

an industry body.16

When firms can coordinate in information generation, they will choose a

signal configuration that maximizes joint profits. By the previous derivations,

the joint benefit of information generation by firm i is:

2θ∆((∅, σi), q1, q2),

and the joint benefit of information generation by both firms is

2θ∆((σ1, σ2), q1, q2).

Because information generation by one firm imposes a positive externality

on the other one, the firms’ joint benefit from information generation is larger

than each firm’s individual benefit. Hence, there are cost parameters k, for

which no firm generates information in any equilibrium described above, but

information generation by one or both firms will occur when firms jointly

decide on information generation and share its cost. Similarly, for some

level of k only one firm generates information in equilibrium, and both firms

generate information when they can coordinate.

16As already noted, industry bodies are often responsible for creating and maintaining
public information generation mechanisms such as classifications and competitions.
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The increase in information generation is socially desirable, if the social

benefit of information generation remains higher than the joint private bene-

fits, that is, if 2θ ≤ E[θ]. In this case there is underinvestment in information

generation, both with and without coordination, but the underinvestment is

less severe when firms coordinate.17 These observations yield the following

corollary to our results above.

Corollary 1. Firms that coordinate their choice of information generation

generate more information than do individual choices in the Nash equilib-

rium. If 2θ ≤ E[θ], coordination increases social welfare and consumer sur-

plus.

4.2 Case 2: Duopoly (1 > θf(θ))

Turn now to the case of a duopoly, i.e., 1 > θf(θ) and thus both firms sell

to some consumers, jointly covering the market.

Social benefit of information generation. In contrast to the case above,

now the pricing equilibrium is inefficient and expected social welfare is:

S(q̂1, q̂2) = q̂L

∫ θ

X∗
θdF (θ) + q̂F

∫ X∗

θ

θdF (θ)

= max{q̂1, q̂2}(1−F (X∗))E[θ|θ>X∗]+min{q̂1, q̂2}F (X∗)E[θ|θ<X∗]

= max{q̂1, q̂2}E[θ]− |q̂1 − q̂2|F (X∗)E[θ|θ<X∗]. (5)

The first part of this expression is the first-best social welfare, (i.e. when

all consumers consume the higher quality good). The second part is the

deadweight loss generated by positive demand for the lower quality good.

Information generation therefore has two competing effects on social wel-

fare. Similar to the monopoly case, drawing a signal increases the expected

highest quality in the market, which increases social welfare. By contrast

to the monopoly case, information generation also increases the expected

17When 2θ > E[θ], coordination by firms may lead to overinvestment in information
generation and may reduce social welfare, see the next subsection.

22



quality distance, which in turn increases the deadweight loss. The strength

of the second effect depends on the quality follower’s market share (i.e., on

F (X∗)) and on the average taste for quality of the lower quality good con-

sumers (i.e., E[θ|θ < X∗]). Both quantities strictly increase in X∗, which is

therefore a sufficient statistics for the social cost of information generation.

The following lemma states the social benefit of information generation.

Lemma 4. For any two signal configurations σ′ and σ′′, the social benefit

generated from moving from σ′ to σ′′ is given by

E[S(q̂1, q̂2)|σ′′]−E[S(q̂1, q̂2)|σ′] =((1−F (X∗))E[θ|θ>X∗]−F (X∗)E[θ|θ<X∗])

× (∆(σ′′, q1, q2)−∆(σ′, q1, q2)) .

Recall that, by definition of X∗, the majority of consumers purchase the

high quality good (F (X∗) < 1/2), so that the above expression is positive. It

follows that increasing the number of signals increases social welfare, strictly

so when increasing the number of signals strictly increases the expected qual-

ity gain. The social value of information increases linearly in the difference

between the aggregate valuation of those consuming the higher quality good

((1 − F (X∗))E[θ|θ > X∗]) and those consuming the lower quality good

(F (X∗)E[θ|θ < X∗]). This is because the social benefit of information is

only driven by a reversal of the quality ranking, and the difference in welfare

resulting from the switch of consumption goods between lower and higher

valuation consumers.

Private benefit of information generation. To compare private and

social returns, recall the firms’ profits:

πi(q̂i, q̂−i) = |q̂i − q̂−i|


(1−F (X∗))2

f(X∗)
if q̂i ≥ q̂−i

F (X∗)2

f(X∗)
if q̂i ≤ q̂−i.

(6)

Both firms’ profits increase linearly in the quality distance, but because

F (X∗) < 1
2

this increase is steeper for the quality leader.

The next proposition shows that, as a consequence of positive and in-
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creasing profits of the quality follower, the private benefit of information

generation is larger than in the monopoly case.

Proposition 4. Suppose there is a duopoly (i.e., 1 > θf(θ)). Then for any

two signal configurations σ′ and σ′′ a firm i’s gain in payoffs from moving

from σ′ to σ′′ is given by

E[πi(q̂i, q̂−i)|σ′′]−E[πi(q̂i, q̂−i)|σ′]=
(
X∗+2

F (X∗)2

f(X∗)

)
(∆(σ′′, q1, q2)−∆(σ′, q1, q2)) .

(7)

As above the benefit will be non-negative, if σ′′ contains strictly more

signals than σ′. For intuition, suppose again σ′ = ∅ but σ′′ 6= ∅. In this case

each firm’s private value of information generation can be written as

pr {q̂2 > q̂1|σ′′}E [π1(q̂1, q̂2) + π2(q̂1, q̂2)|q̂2 > q̂1, σ
′′] .

The intuition is similar to the monopoly case. Each firm’s benefit from gener-

ating information stems from a possible quality ranking reversal. Conditional

on a quality ranking reversal, the private value of information is the difference

between profits if consumers switch suppliers and profits in a counterfactual

in which consumers stay put, which may require a negative price (and profit)

to ensure that demand remains constant. In this example profits for the

quality leader would be − (1−F (X∗))2

f(X∗)
E[|q̂1 − q̂2|q̂2 > q̂1, σ

′′], see Figure 2.

An interesting observation is that, for any σ′ and σ′′, if ∆(σ′′, q1, q2) >

∆(σ′, q1, q2), then the value of information is strictly increasing in

X∗ + 2
F (X∗)2

f(X∗)
=
π1(q̂1, q̂2) + π2(q̂1, q̂2)

|q̂1 − q̂2|

Hence, the sensitivity of each firm’s profits to new information is equal to the

sensitivity of aggregate profits to the quality distance. This is an intuitive

measure of firms’ market power and strictly increases in X∗ due to log con-

cavity. Recall that X∗ must be below the median of the taste distribution.

Hence, log-concavity implies a form of market segmentation: the closer each

firm is to serve half of the market, the higher are aggregate profits, given the
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Figure 2: Value of information for firm 1. An illustration for the case in
which the signal is informative only about product 1 (duopoly case).

quality distribution. Indeed firms’ aggregate profits determine each firm’s

individual benefit of information. This is because information is valuable if

and only if either firm may become leader or follower, implying that profits

both of leader and follower determine the benefit of drawing a signal.

The following corollary compares private and social benefits of informa-

tion generation.

Corollary 2. Each firm’s private benefit from generating information is

strictly higher than its social benefit if, and only if:

2
F (X∗)2

f(X∗)
+X∗ > (1− F (X∗))E[θ|θ > X∗]− F (X∗)E[θ|θ < X∗]. (8)

Note that condition (8) reduces to θ > E[θ], when there is a monopoly

(i.e., 1 ≤ θf(θ) and thus X∗ = θ), so that no qualifier is needed. The

condition becomes more likely to hold as X∗, F (X∗) and E[θ|θ < X∗] in-

crease, reflecting an increase in the follower’s market share. An important

takeaway is that the social benefit of information generation depends on the

global properties of the taste distribution (i.e. the two conditional expecta-
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tions), but the private benefit depends on the threshold X∗ and on the local

properties of the taste distribution around X∗.

The next proposition links Condition (8) to equilibrium information gen-

eration relative to the social optimum. Its proof contains the derivation of the

subgame perfect equilibria of the information generation and pricing game

(which is analogous to the monopoly case).

Proposition 5. Suppose 1 > θf(θ), i.e. there is a duopoly. If Condition

(8) holds, there are values of k for which the number of signal drawn in

equilibrium is strictly greater the socially optimal one. For all other values

of k the efficient number of signals is drawn. If condition (8) does not hold,

then Proposition 3(i) applies.18

Hence, whether a change in the taste distribution makes over- or invest-

ment in information generation more likely depends on whether the resulting

local change around X∗ dominates the resulting global change in the two

conditional expectations in Condition (8).

Comparative statics. To illustrate the mechanism at work, consider again

a uniform distribution. This allows for straightforward computation of the ef-

fects of distributional changes on Condition (8). We consider first an increase

in the mean, keeping the variance constant, increasing X∗ and decreasing

F (X∗), leading to an decrease in the market share of the quality follower.

While both private (LHS of (8)) and social (its RHS) benefits of information

generation increase, the social benefit increases by more, i.e. the aggregate

effect (increasing all consumers’ valuations) dominates the local effect (on

prices through the marginal consumer’s valuation), making underinvestment

more likely.

By contrast a mean-preserving spread of a uniform distribution keeps X∗

constant, decreases f(X∗) and increases F (X∗), so that the market share

of the quality follower increases. A mean-preserving spread also affects the

18Also here, for some k there could be coordination failure: there are multiple Nash
equilibria, one with each firm drawing a signal, but not the other. One of these equilibria
is inefficient, because the firm with the less informative signal generates information.
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social value of information. The overall effect is to increase the private more

(or decrease less) than the social benefit and the local effect, on prices and

profits through the change in own price elasticity of demand, dominates, and

overinvestment becomes more likely. We summarize these observations in

the following lemma, see appendix for the computations.

Lemma 5. Suppose the taste parameter is uniformly distributed. Increasing

its mean while keeping constant its variance decreases the follower’s mar-

ket share and makes underinvestment in information generation more likely.

Conversely, a mean preserving spread increases the follower’s market share

and makes overinvestment in information generation more likely.

Consider now any log-concave distribution F (θ) for which (A2) holds

strictly. A distribution F ′(θ) is an X∗ preserving spread (XPS) of F (θ) if

F ′(θ) = F (θ) for θ ∈ [X∗ − ε,X∗ + ε] for some ε > 0, while either EF ′ [θ|θ <
X∗] < EF [θ|θ < X∗] or EF ′ [θ|θ > X∗] > EF [θ|θ > X∗] or both. Since

F ′(X∗) = F (X∗) and f(X∗) = f(X∗) the LHS of (8) and market shares

remain constant when moving from F (.) to F ′(.). This implies that the

private incentive to generate information (and hence the Nash equilibrium)

is unaffected by an XPS. However, the RHS of (8) increases, because the

social value of information increases. Hence, an XPS may cause (8) to no

longer hold, as stated in the following lemma.

Lemma 6. Let two distributions F (θ) and F ′(θ) satisfy Assumptions 1 and

2. If F ′(θ) is a X∗-preserving spread of F (θ) then:

• If there is overinvestment in information generation under F ′(θ), then

there is overinvestment in information generation under F (θ) as well.

• If there is underinvestment in information generation under F (θ), there

is underinvestment in information generation under F ′(θ) as well.

• There could be overinvestment in information generation under F (θ)

and underinvestment in information generation under F ′(θ), but not

the other way around.
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Figure 3: Right-tail shift from a uniform distribution. Note that the two
shaded areas are equal.

For illustration consider an XPS that affects only the upper half of the dis-

tribution, that is, only consumers with valuation above the median. Formally,

let F ′(θ) be a right-tail spread (RTS) of F (θ) if they are identical below the

median taste θm, (that is, F ′(θ) = F (θ) for θ ≤ θm, which means X∗, f(X∗)

and F (X∗) all remain constant), but EF ′ [θ|θ > θm] > EF [θ|θ > θm]. Intu-

itively, an RTS increases the quality sensitivity of the more quality-sensitive

consumers (see Figure 3). Since an RTS is a version of XPS, by Lemma 6, it

will make underinvestment in information more likely.

As a second illustration consider the opposite, a left tail XPS (LXPS): an

XPS in which E[θ|θ > X∗ + ε] is constant and only E[θ|θ < X∗ − ε] changes

(see Figure 4). By contrast to an RTS, an LXPS affects not only incentives

for information generation (Lemma 6), but also the efficiency of the pricing

equilibrium, because an LXPS decreases the deadweight loss in the pricing

equilibrium for given q̂1, q̂2. At the same time, an LXPS increases the social

value of information generation, while keeping its private value (and hence its

equilibrium level) constant. An LXPS thus provides a connection between the

inefficiencies in the pricing equilibrium and the direction of the inefficiency

in information generation: the higher (lower) the inefficiencies in the pricing

equilibrium, the more likely becomes overinvestment (underinvestment) in

information generation.
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Figure 4: Left XPS from a uniform distribution. Note that the two shaded
areas are equal.

Coordination in information generation. The same logic as in the

monopoly case applies and information generation by one firm imposes a

positive externality on the other firm, because of (7). Hence, the firms’

joint benefit of information generation exceeds each firm’s private benefit.

Allowing firms to coordinate in information generation can thus only increase

the number of signals drawn. If condition (8) holds, the number of signals

drawn in a Nash equilibrium is already higher than socially optimal, and

thus coordination decreases social surplus, implying the following corollary.

Corollary 3. If (8) holds, then coordination in information generation de-

creases aggregate welfare and consumer surplus.

If instead (8) does not hold, then similarly to the monopoly case examined

above coordination in information generation may increase welfare.

5 Extension: Endogenous quality

In our model information generation is the only way for firms to differentiate

vertically. A relevant question is therefore whether and how the possibility

of vertical differentiation by other means changes our results.

In this extension firms can degrade the quality of their product at zero

cost before generating information. A standard result in the literature (see,
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for example, Tirole, 1988) is that, absent information generation, the quality

follower will degrade its quality as much as possible as to achieve maximum

distance from the quality leader. While quality degradation has been ob-

served,19 it is far from ubiquitous. We show that information generation

may act as a strategic substitute for quality degradation, and thus explain

why quality degradation is rarely observed. This also means that information

generation may have an added social benefit by preventing harmful quality

degradation.

Denote by q0i ∈ [s, s] firm i’s initial quality with the convention that

q01 > q02. Before the market opens both firms simultaneously can decrease

their expected quality at zero cost to any qi ∈ [s, q0i ].
20 Quality degradation

is publicly observable. Recall that firms’ profits increase in the distance

between their expected quality levels. Hence, absent information generation,

in the pure strategy Nash equilibrium of a quality degradation game the

quality leader will maintain the initial quality q1 = q01, but the follower will

degrade as much as possible to q2 = s.21

Turn now to a quality degradation and information generation game:

after deciding whether to degrade its quality each firm can acquire informa-

tion at a cost k. Introducing information generation may affect the choice

quality degradation, because information generation provides an alternative

means to increase the quality distance between firms. However, in contrast to

degradation, information generation allows for upward as well as downward

revisions of the expected quality, increasing the expected highest quality and

thus aggregate surplus.

19For example, several producers of electronic devices are known to intentionally reduce
the performance and functionality of their products; e.g. the case of IBM printers.

20For example, as discussed above, the “consumption utility” generated by consuming a
product si is unknown, but the product’s technical specifications are publicly known and
determine the expectation of si. With this interpretation in mind, quality degradation
can be achieved by designing a product with worse technical specifications.

21The pure-strategy Nash equilibrium in which the quality follower degrades always
exists. A second pure-strategy Nash equilibrium, in which the quality leader fully degrades
its quality, but the quality follower does not, exists for some q01 , q

0
2 . In case both equilibria

exist, they can be ranked in terms of efficiency, because the welfare loss is smaller when the
quality follower degrades than when the quality leader degrades. For ease of exposition,
we only discuss the Nash equilibrium in which the quality follower degrades.
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If at least one firm generates information, the quality follower’s profit is:

E[π2(q̂1, q̂2)|σ] =

(
X∗ + 2 · F (X∗)2

f(X∗)

)
∆(σ, q1, q2) + π2(q1, q2). (9)

Note that π2(q1, q2) decreases in q2, but ∆(σ, q1, q2) increases in q2, and strictly

so if ∆(σ, q1, q2) > 0. Hence, if ∆(σ, q1, q2) = 0 and information generation

has no value, the above result carries over and the quality follower is better

off by degrading as much as possible to maximize the distance to the quality

leader. When ∆(σ, q1, q2) > 0, however, it is possible that E[π2(q̂1, q̂2)|σ]

increases in q2, and hence that there is no incentive to degrade quality. That

is, quality degradation and information generation can be alternative ways

to achieve vertical differentiation.

To provide a sufficient condition for this case to occur note that

π2(q1, q2) =
F (X∗)2

f(X∗)
(q01 − q2),

is arbitrarily close to zero, if X∗ is close to θ, because then the demand for

the quality follower’s good is arbitrarily small. It is also arbitrarily close to

zero if q01 is close to s, because the maximum distance that can be achieved

between quality leader and follower is also arbitrarily small. In either of these

cases, we have that

E[π2(q̂1, q̂2)|σ] ≈
(
X∗ + 2 · F (X∗)2

f(X∗)

)
∆(σ, q1, q2),

so that the quality follower’s profit is strictly positive and strictly increases in

q2, if ∆(σ, q01, q
0
2) is strictly positive, that is, if q01 and q02 are sufficiently close

or if σ is sufficiently informative (in the sense of dispersion in the posterior

expected qualities). This observation implies the following lemma.

Lemma 7. For any X∗, there are q01, q
0
2 such that the quality follower will

fully degrade quality if no information is generated, but neither firm will

degrade quality if information is generated by at least one firm.

The lemma states that information generation can prevent harmful qual-
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ity degradation. Indeed, a sufficiently low cost k will guarantee some infor-

mation generation in equilibrium, which implies the following corollary.

Corollary 4. There are q01, q
0
2 and k such that information generation and

no quality degradation constitute a subgame perfect Nash equilibrium of the

quality degradation and information generation game.

If the case described in Lemma 7 and the following corollary do not ap-

ply, the quality follower may partially degrade, even though information is

generated in equilibrium. For example, if the signals σ1 and σ2 are discrete,

then the probability of a quality ranking reversal may be discontinuous in the

amount of quality degradation by the quality follower. That is, this probabil-

ity may be very small when the quality follower degrades by a small amount,

but jump discontinuously if the amount of quality degradation passes a given

threshold. If, at the same time, the benefit of increasing vertical distance is

large, the quality follower may prefer to partially degrade quality. We will

not consider this possibility here.

Turning to social welfare, assume the case described in Lemma 7, i.e.

information generation prevents quality degradation. The social benefit is:

E[S(q̂1, q̂2)]−S(q01, s) = E[S(q̂1, q̂2)]−S(q01, q
0
2)+S(q01, q

0
2)−S(q01, s)

= (E[θ]−2F (X∗)E[θ|θ<X∗]) ∆((∅, σi), q01, q02)+(q02−s)F (X∗)E[θ|θ<X∗].
(10)

The first term of this expression is the benefit of information generation given

initial quality levels. The second term stems from (5) and is the benefit from

preventing quality degradation. It increases in q02 − s (the amount of quality

degradation prevented by generating information), in the market share of

the quality follower and in the average valuation of these consumers. The

following proposition summarizes these observations.

Proposition 6. There are q01, q
0
2 and k such that the social benefit of infor-

mation generation with endogenous quality is strictly greater than the one

with exogenous qualities.

Proof. Immediate from Lemma 7, (10) and the following discussion.
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Since information generation can have an additional social benefit when

quality is endogenous rather than exogenous, Proposition 5 may no longer

apply. That is, when quality is exogenous, the efficient number of signals

may be zero, but in equilibrium at least one firm generates information.

Under endogenous quality choice the fact that a firm is expected to generate

information prevents quality degradation. If the social benefit of preventing

quality degradation (given by the second part of 10) is larger than the net

social cost of an additional signal (given by the second part of 10 minus k),

then one firm generating information is the socially optimal outcome with

endogenous quality levels. Similarly, with exogenous quality levels there are

situations in which the efficient number of signals is zero, which is also the

equilibrium outcome. With endogenous quality levels, however, the absence

of information generation leads to quality degradation and may, therefore,

be inefficient. The following corollary summarizes these observations.

Corollary 5. Suppose the case described in Lemma 7 holds. There are cases

in which there is over-investment in information generation with exogenous

quality, but the efficient level of information generation when quality levels

are endogenous. Similarly, there are cases in which there is the efficient level

of information generation with exogenous quality, but under-investment in

information generation when quality levels are endogenous.

6 Conclusion

We consider a standard duopoly with vertically differentiated products and

study firms’ incentives to generate information. Our main result is that firms

will under- or overinvest in information generation, depending on the distri-

bution of market shares in the pricing equilibrium. Taste distributions that

generate a low market share for the quality follower are associated with under-

provision of information, and vice versa. Since a higher market share of the

quality follower implies higher deadweight loss in the pricing the inefficiencies

in the pricing equilibrium and in information generation are connected. We

provide an ordering of taste distribution by the induced deadweight loss, and
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show that higher deadweight loss is associated to overinvestment in informa-

tion. We also show that information generation has a positive externality on

the other firm’s profit and thus firms benefit from coordinating their infor-

mation generation activities. Finally, we introduce the possibility of quality

degradation and show that quality degradation and information generation

are substitutes for increasing vertical product differentiation. Thus the pos-

sibility to generate information may reduce harmful quality degradation.

This last result implies that there are situations in which information

generation should be discouraged, if quality levels are exogenous—possibly

via a tax—but information generation should be encouraged, if quality levels

are endogenous—possibly via a subsidy. This insight carries over to whether

cooperation and coordination of competing firms ought to be allowed. In

some situations coordination in information generation should be prevented,

if quality levels are exogenous, but be allowed or even encouraged, if quality

levels are endogenous. This, however, suggests that the optimal policy may

be time inconsistent, because the policymaker may want to revise the policy

after quality levels are set; this is an intriguing question for future research.

Our analysis assumed a covered market: in equilibrium all consumers

purchase some product. Removing our Assumption 2 would potentially al-

low for equilibria in which some consumers do not purchase at all. If firms’

quality levels are sufficiently close, however, their profits are close to zero and

the market is covered. The logic laid out above continues to apply: informa-

tion generation by firms is privately valuable, because it increases expected

vertical distance and profits. From the social point of view, information gen-

eration may cause some consumers to stop consuming, which generates an

additional source of inefficiency relative to the case of a covered market con-

sidered above. If the initial quality distance between firms is large, so that

not all consumers purchase, our results may no longer apply: e.g. firms’ ben-

efits from information generation may become negative. A thorough analysis

of this case is deferred to future work.
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Appendix

Proof of Lemma 1

We start by deriving a useful lemma:

Lemma 8. In any pure strategy Nash equilibrium:

- The quality leader faces strictly positive demand: θ > X ≥ Y .

- If not all consumers purchase from the quality leader (X > θ), then

there is positive demand for the quality follower (X > Y ≥ θ).

Proof. Note first that X = Y = θ quickly leads to a contradiction: if both

prices are so high that no consumers purchase, then each firm can earn strictly

positive payoff by deviating to a small, but positive price, which will attract

a positive measure of consumers because F (θ) is continuous and θ > 0.

Suppose that X = θ, i.e. the quality leader faces zero demand. Then, by

the argument above, Y < θ and the quality follower faces positive demand.

This cannot be an equilibrium because the quality leader can set its price

equal that of the quality follower, generate positive demand and earn positive

profits.

Finally, suppose that θ < X < θ, i.e. the quality leader faces positive

demand, but does not capture the entire market. Then Y < X. To see this

suppose the contrary, i.e. Y = X. This cannot be an equilibrium because

the quality follower will earn strictly positive profits by setting a small, but

positive price, which will attract a positive measure of consumers because

F (θ) is continuous and θ > 0.

Hence, in any pure strategy Nash equilibrium the quality leader faces

demand 1 − F (X) and the quality follower faces demand F (X) − F (Y ).

Profits are given by:

πL(pL, pF ) = pL · (1− F (X)) and πF (pL, pF ) = pF · (F (X)− F (Y )).
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The best responses are defined as:

pL(pF ) = argmaxpL {πL(pL, pF )}

pF (pL) = argmaxpF {πF (pL, pF )} .

We first compute the leader’s best response and then move to the follower’s

best response. As we will see, computing the leader’s best response is quite

straightforward, while computing the follower’s best response is complicated

by a kink in the profit function.

Quality leader’s best response. Consider first the quality leader’s prob-

lem. For given pF the leader can out-price the follower and set pL ≤ θ(q̂L −
q̂F ) + pF , so that X = θ. In this case the leader serves the entire market and

its profit equals pL. Hence, conditional on X = θ the quality leader maxi-

mizes profits by setting pL = θ(q̂L− q̂F )+pF . If instead pL > θ(q̂L− q̂F )+pF ,

the leader serves only a fraction of the total market, and X > Y ≥ θ. Using

the definition of X the quality leader’s problem becomes:

max
pL≥θ(q̂L−q̂F )+pF

{
pL

(
1− F

(
pL − pF
q̂L − q̂F

))}
.

The first derivative of the objective function is

1− F (X)− pLf(X)

q̂L − q̂F

or (
1− F (X)

f(X)
− pL
q̂L − q̂F

)
f(X),

and equals zero at

pL =
1− F (X)

f(X)
(q̂L − q̂F ), (11)

which is unique due to log-concavity. Log-concavity also implies that the

second derivative of the objective function is negative at pL = 1−F (X)
f(X)

(q̂L−q̂F ).

The quality leader’s objective function therefore strictly increases for pL <
1−F (X)
f(X)

(q̂L − q̂F ) and strictly decreases for pL >
1−F (X)
f(X)

(q̂L − q̂F ).
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Quality follower’s best response. We now turn to the quality follower

F ’s best response. We first deal with the trivial case where the leader corners

the market. Suppose the quality leader chooses pL ≤ θ(q̂L − q̂F ). Then, for

any pF , the quality leader covers the entire market and the quality follower’s

profit is zero for any pL. Thus the quality follower’s best response is

pF (pL) = [0,∞) if pL ≤ θ(q̂L − q̂F ).

This establishes the first part of pF (pL) in the lemma.

Suppose now that pL > θ(q̂L − q̂F ) instead. Then there are pF > 0 such

that the follower has positive demand and profit. Note that the follower’s

profit function has a kink at price pF = θq̂F , but is well-behaved above and

below, which allows us to characterize the follower’s best response distin-

guishing the cases of pF ≤ θq̂F (in which case Y = θ and the market is

covered) and pF > θq̂F (in which case Y > θ and the market is not covered).

Covered market. If pF ≤ θq̂F , then all consumers purchase one of the

goods and Y = θ, so that a change in pF only affects X. Conditional on

Y = θ, the follower’s profit function is

max
pF≤θq̂F

{pFF (X)} .

The objective function’s first derivative is(
F (X)

f(X)
− pF
q̂L − q̂F

)
f(X).

The first derivative equals zero at pF = F (X)
f(X)

(q̂L − q̂F ), which is unique by

log-concavity. Again, conditional on Y = θ, the follower’s profit function is

strictly concave at pF = F (X)
f(X)

(q̂L − q̂F ), which in turns imply that profits

conditional on Y = θ are first increasing then decreasing in pF , reaching a

maximum at pF = F (X)
f(X)

(q̂L − q̂F ).

Non-covered market. If instead pF > θq̂F some consumers will not pur-

chase, so that a change in pF will affect both X and Y . Conditional on
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θ ≤ Y < X, the follower’s profit function is now

max
pF≥θq̂F

{pF (F (X)− F (Y ))} .

The objective function’s first derivative is

F (X)− F (Y )− pF
(

f(X)

q̂L − q̂F
+
f(Y )

q̂F

)
.

Now Condition (A2) becomes useful: it implies that the above expression is

always negative, which implies that the quality follower always sets a price

so that Y = θ and the market is covered.

To see why, note that 11 implies that X < 1−F (X)
f(X)

so that X ≤ θ∗. Hence,

by the definition of m (see Assumption 2) f(X) < m and f(Y ) < m. Recall

that the first order condition for the case Y > θ is

F (X)− F (Y )− pF
(

f(X)

q̂L − q̂F
+
f(Y )

q̂F

)
.

Because F (X) − F (Y ) ≤ 1, pF > θq̂F (whenever Y > θ), q̂F
q̂L
≥ s

s
, and

f(X), f(Y ) ≥ m, the above expression is always smaller than

1−mθ
(

1− s

s

)−1
,

which is negative under (A2). Hence the first order condition for the case

Y > θ is always negative, and the quality follower is always better off by

setting pF such that Y = θ.

Hence, pF > θq̂F cannot occur, implying the second part of pF (pL) in the

lemma.

Proof of Proposition 1

As a preliminary step, note that (A2) is equivalent to

1

mθ
− 1 ≤

(
s

s− s

)
− 1⇔

(
1

mθ
− 1

)(
s

s
− 1

)
≤ 1. (12)
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We prove each part of the proposition separately.

(i) Recall the quality leader’s best reply as derived above:

pL(pF ) = max

{
1− F (X)

f(X)
(q̂L − q̂F ), θ(q̂L − q̂F ) + pF

}
.

By log-concavity 1−F (X)
f(X)

decreases and is thus maximal for x = θ. Hence, if

(
θ − 1

f(θ)

)
(q̂L − q̂F ) + pF ≥ 0

the quality leader’s captures the entire market. If pF > 0, this cannot be

an equilibrium because the quality follower should lower its price and earn

positive profits. If instead pF = 0 and pL = θ(q̂L − q̂F ) then no firm can

make a profitable deviation, and these prices constitute a Nash equilibrium.

If θf(θ) ≥ 1, therefore, in equilibrium the leader captures the entire market.

(ii) Suppose instead 1 > θf(θ) from now on. The observations made

in the text above imply that in this case the quality leader’s best reply to

pF = 0 is pL = 1−F (pL/(q̂L−q̂F ))
f(pL/(q̂L−q̂F ))

(q̂L − q̂F ). Hence, by Lemma 8 the Nash

equilibrium will necessarily have X > θ (implying f(X) > 0) and pF =

min
{
F (X)
f(X)

(q̂L − q̂F ), θq̂F

}
> 0. Therefore there are two possible cases, de-

pending on whether the quality follower’s best response is a corner solution

(pF = θq̂F ) or an interior solution (pF = F (X)
f(X)

(q̂L − q̂F )).

Suppose first that the quality follower’s best response has an interior

solution:
F (X)

f(X)
(q̂L − q̂F ) ≤ θq̂F , (13)

so that pF = F (X)
f(X)

(q̂L − q̂F ). In this case, by definition of X, the equilibrium

cutoff X solves

X =
1− 2F (X)

f(X)
. (14)

This equation has a unique solution because, by log concavity, its RHS is

decreasing in X and we have assumed 1 > θf(θ). This constitutes a Nash
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equilibrium if indeed the solution X of equation (14) satisfies condition (13).

Condition (13) can be rewritten as

F (X)

f(X)θ

(
q̂L
q̂F
− 1

)
≤ 1.

Note that q̂L
q̂F

is at most s
s
, and that by (14) F (X)

f(X)
= 1

2

(
1

f(X)
−X

)
, which is

at most 1
2

(
1
m
− θ
)
.22 Therefore,

F (X)

f(X)θ

(
q̂L
q̂F
− 1

)
<

1

2

(
1

mθ
− 1

)(
s

s
− 1

)
< 1,

where the last inequality follows by (12). Hence, (13) holds and thus pF =
F (X)
f(X)

(q̂L − q̂F ) and pL = 1−F (X)
f(X)

(q̂L − q̂F ), with X defined implicitly by (14)

is a Nash equilibrium.

To conclude the proof, we show that there is no equilibrium in which 1 >

θf(θ), and hence the quality leader’s best response has an interior solution:

pL =
1− F (X)

f(X)
(q̂L − q̂F ),

but at the same time (13) is violated, and hence the quality follower’s best

response has a corner solution:

pF = θq̂F .

If such equilibrium exists, then by definition

X =
1− F (X)

f(X)
− θ

(
q̂L
q̂F
− 1

)−1
(15)

This is consistent with a Nash equilibrium if indeed for this X (13) is violated.

Note that by (15) F (X)
f(X)

is smaller than 1
f(X)
−X which, in turn, is smaller

22Here we make use again of a fact established in the proof of Lemma 1 (see its last
paragraph): that f(X) ≥ m.
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than 1
m
− θ. Also, q̂L−q̂F

q̂F
must be smaller than

(
s
s
− 1
)

. It follows that

F (X)

f(X)θ

(
q̂L − q̂F
q̂F

)
≤
(

1

mθ
− 1

)(
s

s
− 1

)
≤ 1,

where the last inequality follows by (12). Hence, (13) must hold and there

cannot be a Nash equilibrium with pF = θq̂F .

Proof of Lemma 2

Suppose that no firm acquires information; then q̂i = qi for i = 1, 2 and

(by assumption) firm 1 is the quality leader. The ex ante expected social

welfare is then S(q1, q2) = E[θ] q1 = E[θ]E[q̂1|σ], where the last equality

follows from the law of iterated expectation and holds for any σ. The social

benefit of acquiring information is therefore given by the difference between

expected social welfare given a chosen signal configuration σ and expected

social welfare when no information is acquired:

E[S(q̂1, q̂2)|σ]−S(q1, q2) = E[θ]E[max{q̂1, q̂2}|σ]− E[θ]E[q̂1|σ]

=E[θ]{E[q̂1|q̂1≥ q̂2, σ]pr{q̂1≥ q̂2|σ}+ E[q̂2|q̂2≥ q̂1, σ]pr{q̂2≥ q̂1|σ}

−E[q̂1|q̂1≥ q̂2, σ]pr{q̂1≥ q̂2|σ} − E[q̂1|q̂2≥ q̂1, σ]pr{q̂2≥ q̂1|σ}}

=E[θ]E[q̂2 − q̂1|q̂2 ≥ q̂1, σ]pr{q̂2 ≥ q̂1|σ} ≡ E[θ] ∆(σ, q1, q2).

The proposition follows by writing

E[S(q̂1, q̂2)|σ′′]−E[S(q̂1, q̂2)|σ′] = (E[S(q̂1, q̂2)|σ′′]− S(q1, q2))+(S(q1, q2)− E[S(q̂1, q̂2)|σ′])

Proof of Lemma 3

Consider the random variable x ≡ q̂2− q̂1. For any signal structure σ it must

hold that

∆(σ, q1, q2) = E[max{x, 0}|σ].

That is, the expected quality gain is equal to the expected value of a convex

function. Therefore, for any σ and σ′, such that the distribution of x given
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σ′ second order stochastically dominates the one given σ

∆(σ, q1, q2) ≥ ∆(σ′, q1, q2).

Note that the distribution of x for signal configuration (σ1, σ2) is a mean

preserving spread of the distribution of x for (∅, σi). This is a consequence

of the fact that beliefs are martingales: the expected value of the posterior

is always equal to the prior. To see this, note that given a realization of

the first signal yields ex-post expected value E[x|σ̂1]. By the law of iterated

expectations E[x|σ̂1, σ2] = E[x|σ̂1]. Hence, once the first signal is drawn,

drawing a second signal keeps constant the expected value of x, but only

adds noise and spreads out the distribution of x. This establishes the lemma.

Proof of Proposition 3

We distinguish three cases:

1. It is socially optimal to generate no information, that is

2k > E[θ]∆((σ1, σ2), q1, q2) and k > E[θ]∆((∅, σi), q1, q2) i ∈ {1, 2}.

By Proposition 2 each firm’s best reply to the other firm not generating

information is to not generate information either. Likewise, each firm

i’s best reply to the other firm −i generating information is not to

generate information, if

k ≥ θ (∆((σ1, σ2), q1, q2)−∆((∅, σ−i), q1, q2)) ,

which is always true, because

θ(∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2))

≤ E[θ]∆((σ1, σ2), q1, q2)−θ∆((∅, σi), q1, q2) ≤ 2k−θ∆((∅, σi), q1, q2) ≤ k.

Hence, in the case when no information generation is socially optimal

there is a unique Nash equilibrium, in which neither firm generates any
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information.

2. It is socially optimal for firm i to generate information, but not firm

−i, that is

E[θ]∆((∅, σ−i), q1, q2) ≤ E[θ]∆((∅, σi), q1, q2) ≡ k̂1 and

k̂4≡E[θ](∆((σ1, σ2)q1, q2)−∆((∅, σi), q1, q2))<k<E[θ]∆((∅, σi), q1, q2).
(16)

The second inequality immediately implies

k > θ [∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)] .

This means that if firm i generates information, then firm −i’s best re-

ply is to not generate information. Hence, there is no Nash equilibrium,

in which both firms generate information.

Suppose that

k > θ∆((∅, σi), q1, q2) ≡ k̂0. (17)

Then neither firm finds it profitable to generate information if the other

firm does not. Hence, in the unique Nash equilibrium there is no infor-

mation generation.

If instead

θ∆((∅, σ−i), q1, q2) < k ≤ θ∆((∅, σi), q1, q2),

then there is a unique equilibrium in which firm i generates information.

Finally, if

k ≤ θ∆((∅, σ−i), q1, q2) ≡ k̂5,

then there are multiple equilibria, in which each firm may generate

information, while the other one does not. In one of these equilibria

firm −i generates information, but not firm i. This is inefficient, be-

cause by assumption ∆((∅, σi), q1, q2) < ∆((∅, σ−i), q1, q2), i.e. firm i’s
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signal generates more information (as measured by the dispersion of

the posteriors) and higher social welfare than firm −i’s signal.

3. It is socially optimal for both firms to generate information, that is

2k ≤ E[θ]∆((σ1, σ2), q1, q2) and

E[θ]∆((σ1, σ2), q1, q2)−2k≥E[θ]max{∆((∅, σ1), q1, q2),∆((σ1, σ2), q1, q2)}−k.

That is, the net social benefit of drawing both signals is positive, and

exceeds the net social benefit of drawing either individual signal. The

above inequalities can be rewritten as

k ≤ E[θ] (∆((σ1, σ2), q1, q2)−

max

{
1

2
∆((σ1, σ2), q1, q2),∆((∅, σ1), q1, q2),∆((∅, σ2), q1, q2)

})
≡ k̂3.

A necessary condition for both firms to generate information in a Nash

equilibrium (including the case of multiple equilibria) is

k < θ (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) ,

for both firms i = 1, 2, or

k ≤ θ (∆((σ1, σ2), q1, q2)−max {∆((∅, σ1), q1, q2),∆((∅, σ2), q1, q2)}) ≡ k̂2.

Therefore, if

k > k̂2 and k ≤ k̂3, (18)

then the number of signals drawn in a Nash equilibrium is strictly

less than in the social optimum. Otherwise, there will be a (possibly

unique) Nash equilibrium that is efficient.

We therefore established that the number of signals drawn in equilibrium

is always smaller than the socially optimal number of signals, strictly so if

either both conditions (16) and (17) hold, or both conditions in (18) hold.
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Note also that, in both cases, the set of such k for which fewer signals than

optimal are drawn expands with E[θ]−θ and with the first difference of ∆(.).

We also established the possibility of a coordination failure: when the

efficient number of signals is 1, either firm generating one signal may be a

Nash equilibrium, and in particular only the firm with the less informative

signal generating information may be an equilibrium, which is inefficient.

Proof of Lemma 4

Simply note that social welfare can be written as

S(q̂1, q̂2) = max{q̂1, q̂2}E[θ]− |q̂1 − q̂2|F (X∗)E[θ|θ<X∗]

= max{q̂1, q̂2}E[θ]− (2 max{q̂1, q̂2} − q̂1 − q̂2)F (X∗)E[θ|θ<X∗]

= max{q̂1, q̂2} (E[θ]− 2F (X∗)E[θ|θ<X∗]) + (q̂1 + q̂2)F (X∗)E[θ|θ<X∗].

The statement follows from the same derivations detailed in the proof of

Lemma 2.

Proof of Proposition 4

For given σ, write

E[πi(q̂i, q̂−i)|σ] =
(1− F (X∗))2

f(X∗)
pr{q̂i ≥ q̂−i|σ}E[q̂i − q̂−i|q̂i ≥ q̂−i, σ

′′] +

F (X∗)2

f(X∗)
pr{q̂−i ≥ q̂i|σ}E[q̂−i − q̂i|q̂−i ≥ q̂i, σ]

Suppose q̂i ≥ q̂−i. By using the law of iterated expectation, write

πi(qi, q−i) = E [q̂i − q̂−i|σ]
(1− F (X∗))2

f(X∗)
=

(1− F (X∗))2

f(X∗)
(pr{q̂i ≥ q̂−i|σ}E[q̂i − q̂−i|q̂i ≥ q̂−i, σ] + pr{q̂−i ≥ q̂i|σ}E[q̂i − q̂−i|q̂−i ≥ q̂i, σ])
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Similarly, if q̂i ≤ q̂−i write

πi(qi, q−i) = E [q̂i − q̂−i|σ]
F (X∗)2

f(X∗)
=

F (X∗)2

f(X∗)
(pr{q̂i ≥ q̂−i|σ}E[q̂i − q̂−i|q̂i ≥ q̂−i, σ] + pr{q̂−i ≥ q̂i|σ}E[q̂i − q̂−i|q̂−i ≥ q̂i, σ])

Both when q̂i ≥ q̂−i and when q̂i ≤ q̂−i we can then write

E[πi(q̂i, q̂−i)|σ]− πi(qi, q−i) =

(
X∗+2

F (X∗)2

f(X∗)

)
∆(σ, q1, q2)

Writing

E[πi(q̂i, q̂−i)|σ′′]− E[πi(q̂i, q̂−i)|σ′] =

(E[πi(q̂i, q̂−i)|σ′′]− πi(qi, q−i))− (E[πi(q̂i, q̂−i)|σ′]− πi(qi, q−i)) =(
X∗+2

F (X∗)2

f(X∗)

)
(∆(σ′′, q1, q2)−∆(σ′, q1, q2)) ,

Concludes the proof.

Proof of Proposition 5

The pure strategy Nash equilibria of the information generation game in the

case of a duopoly are similar to the ones derived for the case of a monopoly,

modulo the different expression for the private benefit of information gener-

ation. We have:

• If k >
(
X∗ + 2F (X∗)2

f(X∗)

)
(∆(σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) and(

X∗ + 2F (X∗)2

f(X∗)

)
∆((∅, σi), q1, q2) ≥ k for at least one i ∈ {1, 2}, then

there is an equilibrium in which only firm i generates information.

• if k ≤
(
X∗ + 2F (X∗)2

f(X∗)

)
(∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2))

and
(
X∗ + 2 · F (X∗)2

f(X∗)

)
∆((∅, σi), q1, q2) ≥ k for at least one i ∈ {1, 2},

then there is a unique equilibrium in which both firms generate infor-

mation.
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• if k ≤
(
X∗ + 2F (X∗)2

f(X∗)

)
(∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)),

but
(
X∗ + 2F (X∗)2

f(X∗)

)
∆((∅, σi), q1, q2) ≤ k for both i = 1, 2, then there

are multiple equilibria: one in which no firm generates information,

and one in which both firms generate information.

• Otherwise there is no information generation in equilibrium.

Following the structure of the proof of Proposition 3 we consider different

cases. For ease of notation define the social value of information generation

as

S ·∆(σ, q1, q2) ≡ (E[θ]− 2F (X∗)E[θ|θ < X∗]) ∆(σ, q1, q2),

and the private value of information generation as

P ·∆(σ, q1, q2) ≡
(
X∗ + 2

F (X∗)2

f(X∗)

)
∆(σ, q1, q2).

Condition (8) implies that P > S, so that the private benefit of information

generation is higher than the social benefit. We distinguish three cases.

1. No information generation is socially optimal:

k > S∆((∅, σi), q1, q2) and 2k > S∆((σ1, σ2), q1, q2).

At least one firm i will invest if k < P∆((∅, σi), q1, q2), and thus the

number of signals generated in equilibrium is higher than socially op-

timal if

k̂0 ≡ Smax{∆((∅, σi), q1, q2),∆((σ1, σ2), q1, q2)} < k

< P∆((∅, σi), q1, q2) ≡ k̂1.

Otherwise, if the above condition does not hold, there may be an equi-

librium, in which both firms invest, if

k ≤ P (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) ∀i ∈ {1, 2}.

In this case there are two equilibria: one with both firms investing and
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one with neither firm investing.

2. It is socially optimal that firm i but not firm −i generates information:

S (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) < k < S∆((∅, σi), q1, q2) and

∆((∅, σ−i), q1, q2) < ∆((∅, σi), q1, q2).

Since P > S, at least one firm will invest in any Nash equilibrium, so

the number of signals is at least the socially optimal one. For both

firms to invest to be the unique Nash equilibrium it is necessary that

k < P (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) and k < P∆((∅, σi), q1, q2),

Since S < P the second condition holds. Hence, both firms will invest

and there will be overinvestment if

k̂2 ≡ S (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) < k

< P (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) ≡ k̂3.

If the above condition is violated, but

k̂4 ≡ P (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) < k < P∆((∅, σ−i), q1, q2) ≡ k̂5,

then in equilibrium only one firm invests. If firm i invests then the

equilibrium is efficient. If firm −i invests, then the equilibrium is in-

efficient. In this last case, in equilibrium the information generated in

equilibrium is less then the social optimum, because the firm with the

least informative signal generates information in equilibrium.

3. It is socially optimal that both firms to generate information:

2k < E[θ]∆((σ1, σ2), q1, q2) and

E[θ]∆((σ1, σ2), q1, q2)−2k>E[θ]max{∆((∅, σ1), q1, q2),∆((∅, σ2), q1, q2)}−k.

A necessary and sufficient condition for a Nash equilibrium, in which
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both firms generate information, is:

k < P (∆((σ1, σ2), q1, q2)−∆((∅, σi), q1, q2)) ,

for both firms i = 1, 2. Because P > S, there is always an equilibrium

in which both firms generate information. There may also be another

equilibrium, in which no firm generates information. But, as discussed

in the text, if both equilibria exist, the one in which both firms generate

information Pareto dominates the other.

Restricting our attention to equilibria that are not Pareto dominated, we

established that the number of signals drawn in equilibrium is always above

the efficient one, strictly so in some cases. It is again possible that both

the efficient and equilibrium number of signals is one, but the “wrong” firm

generates information in equilibrium.

Computations for Lemma 5

Recall that for a uniform distribution X∗ = (θ + θ)/3, and the conditional

expectations are E[θ|θ < X∗] = (4θ + θ)/6 and E[θ|θ > X∗] = (θ + 4θ)/6.

The private benefit (LHS of (8)) becomes:

5

9
(θ − θ) +

2θθ

9(θ − θ)
. (19)

The social benefits (its RHS) are given by:

7

18
(θ − θ) +

5θθ

9(θ − θ)
, (20)

An increase in the mean keeping the variance, i.e. θ − θ, constant increases

the private incentive to generate information by (19). However, by (20) the

social value of information increases faster than its private value.

Consider a mean-preserving spread (increasing θ and keeping expected

value µ = (θ+ θ)/2 constant). Rewriting the private benefit (19) in terms of
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mean µ and upper bound θ yields

10

9
(θ − µ) +

2θ(2µ− θ)
18(θ − µ)

.

The social benefit (20) becomes:

7

9
(θ − µ) +

5θ(2µ− θ)
18(θ − µ)

.

Increasing θ while keeping µ constant will increase the private benefit more

(or decrease less) than the social benefit.
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