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HOMOTOPY CLASSIFICATION OF 4-MANIFOLDS WHOSE FUNDAMENTAL

GROUP IS DIHEDRAL

DANIEL KASPROWSKI, JOHN NICHOLSON, AND BENJAMIN RUPPIK

Abstract. We show that the homotopy type of a finite oriented Poincaré 4-complex is deter-
mined by its quadratic 2-type provided its fundamental group is finite and has a dihedral Sylow
2-subgroup. By combining with results of Hambleton–Kreck and Bauer, this applies in the case
of smooth oriented 4-manifolds whose fundamental group is a finite subgroup of SO(3). An
important class of examples are elliptic surfaces with finite fundamental group.

Introduction

Recall that a finite oriented Poincaré 4-complex is a finite CW-complex with a fundamental
class [X ] ∈ H4(X ;Z) such that

− ∩ [X ] : C4−∗(X ;Z[π1(X)]) → C∗(X ;Z[π1(X)])

is a chain homotopy equivalence [Wal67]. Every closed topological 4-manifold has the structure
of a finite Poincaré 4-complex, but there are finite Poincaré 4-complexes which are not homotopy
equivalent to any closed topological 4-manifold [HM78].

In 1988, Hambleton and Kreck [HK88, Theorem 1.1] proved that an oriented Poincaré 4-complex
X with finite fundamental group π1(X) is determined up to homotopy equivalence by three invari-
ants, including the isometry class of its quadratic 2-type, i.e. the quadruple

[π1(X), π2(X), kX , λX ]

where π2(X) is considered as a Z[π1(X)]-module, kX ∈ H3(π1(X);π2(X)) is the k-invariant de-
termining the Postnikov 2-type of X and λX is the equivariant intersection form on π2(X).

Moreover, for oriented Poincaré 4-complexes whose fundamental group has 4-periodic cohomol-
ogy, the quadratic 2-type is actually a complete homotopy type invariant (see [HK88, Theorem A]).
This was improved upon by Bauer [Bau88] who showed this was true under the weaker assumption
that π1(X) is a finite group whose Sylow 2-subgroup has 4-periodic cohomology, i.e. is isomorphic
to a cyclic group Z/2n or a generalised quaternion group Q2n .

Recently, it was shown in [KPR20] that this is also true when the Sylow 2-subgroup of π1(X)
is abelian with two generators, i.e. of the form Z/2n × Z/2m. The aim of this article will be to
extend this to the case where the Sylow 2-subgroup of π1(X) is dihedral, i.e. is isomorphic to the
dihedral group D2n of order 2n for some n ≥ 2.

Theorem A. Let π be a finite group whose Sylow 2-subgroup is dihedral. Then the homotopy type
of a finite oriented Poincaré 4-complex with fundamental group π is determined by the isometry
class of its quadratic 2-type. That is, every isometry of the quadratic 2-types ofM and N is realized
by a homotopy equivalence M → N .

By [HK88, Theorem 1.1 and Remark 1.2] and Teichner [Tei92] (see [KT21, Corollary 1.6]), in
order to prove that the homotopy type of a finite oriented Poincaré 4-complex X is determined
by its quadratic 2-type, it suffices to show that Z ⊗Z[π1(X)] Γ(π2(X)) is torsion free as an abelian
group where Γ denotes Whitehead’s quadratic functor (see Section 1).
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For a finitely presented group π and n ≥ 1, recall that the nth stable syzygy Ωn(Z), which we
also write as Ωπn(Z), is the set of Zπ-modules J for which there exists an exact sequence

0 → J → Fn−1 → · · · → F0 → Z → 0

where the Fi are finitely generated free Zπ-modules. It follows from [Bau88] (see also Corollary 2.7
and Lemma 2.8) that Z⊗Z[π1(X)]Γ(π2(X)) is torsion free provided Z⊗Zπ Γ(J) and Z⊗Zπ Γ(J

∗) are
torsion free for some J ∈ Ωπ3 (Z) where π is the Sylow 2-subgroup of π1(X) and J∗ = HomZ(J,Z)
is the dual of J .

In order to prove that Z ⊗Z[π1(X)] Γ(π2(X)) is torsion free, it therefore suffices to accomplish
the following two tasks for the finite 2-group π which arises as the Sylow 2-subgroup of π1(X):

(1) Find a explicit parametrisation for Ωπ3 (Z), i.e. give an explicit description of a Zπ-module
J such that J ∈ Ωπ3 (Z)

(2) Show that Tors(Z⊗Zπ Γ(J)) = 0 and Tors(Z⊗Zπ Γ(J∗)) = 0.

Recall that, if K is a finite 2-complex with fundamental group π, then π2(K) ∈ Ωπ3 (Z). It is
still an open problem, though it is a consequence of an affirmative solution to Wall’s D2 problem
[Joh03], to determine whether or not every J ∈ Ωπ3 (Z) arises as π2(K) for a finite 2-complex K
with fundamental group π. It is therefore not surprising that the existing literature on Wall’s D2
problem contains many computations of Ωπ3 (Z) (see [Joh12]).

More specifically, the case of dihedral groups was explored by Mannan and O’Shea [MO13], and
also independently by Hambleton [Ham19] building upon earlier work with Kreck [HK93b]. Both
sources contain suitable parametrisations for Ωπ3 (Z) albeit of different forms.

After recalling basic facts about Whitehead’s Γ functor and Tate cohomology in Section 1, we
will then give an overview of the theory of syzygies of finite groups in Section 2. In Section 3, we
will make use of the result of Hambleton–Kreck [HK93b] to obtain an explicit parametrisation for
some J ∈ Ωπ3 (Z) in the case where π = D4n is the dihedral group of order 4n, and Section 4 will
then be dedicated to the proof that Tors(Z⊗Zπ Γ(J)) = 0. In Section 5, we will obtain an explicit
parametrisation for J∗ and, finally, in Section 6 we will prove also that Tors(Z⊗Zπ Γ(J∗)) = 0.

We conclude by noting that every finite subgroup of SO(3) has a cyclic or dihedral Sylow 2-
subgroup. In particular, by combining our result with [Bau88, HK88], we get that Theorem A also
holds in the case where π is a finite subgroup of SO(3). This makes possible a complete homotopy
classification of 4-manifolds whose fundamental group is π. The study of these manifolds was one
of the motivations for the original results of Hambleton–Kreck [HK93b] as they contain all elliptic
surfaces with finite fundamental group (see, for example, [HK93a, p. 81]). These were the subject
of a subsequent paper [HK93a] where they studied exotic smooth structures on elliptic surfaces.

Note also that, if π is a fixed point free finite subgroup of SO(4), then π has 4-periodic cohomol-
ogy and so the results of [HK88] imply that finite oriented Poincaré 4-complexes with fundamental
group π are also determined by the isometry class of its quadratic 2-type.

However, it is not clear whether or not this holds for all finite subgroups of SO(4). For example,
let π = D8 ×Z/2. Then π is a finite subgroup of SO(4) since it is contained in the central product
Q8 ◦Q8 as the image of Q8 ×Q8 under the double cover S3 × S3 → SO(4). On the other hand, if
J ∈ Ωπ3 (Z), then it follows from computations of the third author [Rup16b] and Hennes [Hen91]
that Tors(Z⊗Zπ Γ(J)) = 0 and Tors(Z⊗Zπ Γ(J

∗)) 6= 0. For a finite 2-complex K with π1(K) ∼= π,
let X be the boundary of a smooth regular neighbourhood of an embedding of K in R5. Then X
is a 4-manifold with π1(X) ∼= π and π2(X) ∼= J0⊕J

∗
0 where J0 = π2(K) ∈ Ωπ3 (Z) [HK88, p. 95]. It

follows that Tors(Z⊗Zπ π2(X)) 6= 0 and so the proof of Theorem A does not extend to this case.
It is still not known whether or not the homotopy type of a finite oriented Poincaré 4-complex

with arbitrary finite fundamental group π is determined by the isometry class of its quadratic
2-type, though we do not expect this to be true when π = D8 × Z/2 (as above) or π = (Z/2)3 (as
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discussed in [KPR20]). In the case where X is non-orientable, this was shown by Kim, Kojima
and Raymond [KKR92] to be false even for smooth 4-manifolds in the case π = Z/2.
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1. Preliminaries

The aim of this section will be to define Whitehead’s Γ functor and Tate homology, and recall a
few of their basic properties which we will use in the rest of the article. From now on, all modules
will be assumed to be finitely generated left modules.

The following was first defined by Whitehead in [Whi50].

Definition 1.1 (Γ groups). Let A be an abelian group. Then Γ(A) is an abelian group with
generators the elements of A. We write a as v(a) when we consider it as an element of Γ(A). The
group Γ(A) has the following relations:

{v(−a)− v(a) | a ∈ A} and

{v(a+ b+ c)− v(b+ c)− v(c+ a)− v(a+ b) + v(a) + v(b) + v(c) | a, b, c ∈ A}.

In particular, v(0A) = 0Γ(A).

We will be interested in the case where A is a free abelian group, in which case Γ(A) has the
following simple description.

Lemma 1.2 ([Whi50, page 62]). If A is free abelian with basis B, then Γ(A) is free abelian with
basis

{v(b), v(b+ b′)− v(b)− v(b′) | b 6= b′ ∈ B}.

Recall that a Zπ-lattice is a Zπ-module A whose underlying abelian group is finitely generated
torsion free, and so is of the form Zn for some n ≥ 0. For example, if X is a finite oriented Poincaré
4-complex with finite fundamental group π, then

π2(X) ∼= H2(X̃;Z) ∼= H2(X̃;Z) ∼= Hom(H2(X̃;Z),Z),

is finitely-generated and torsion-free as an abelian group and so π2(X) is a Zπ-lattice.
If A is a Zπ-lattice, then we can view Γ(A) as a Zπ-module as follows. Firstly, by Lemma 1.2,

we can take Γ(A) to be the subgroup of symmetric elements of A ⊗ A given by sending v(a) to
a⊗ a. Observe that v(b+ b′)− v(b)− v(b′) corresponds to the symmetric tensor b⊗ b′ + b′ ⊗ b. We
can now let the group π act on Γ(A) ⊆ A⊗A via

g ·
∑

i

(ai ⊗ bi) =
∑

i

(g · ai)⊗ (g · bi).

For a, b ∈ A, we will write

a� b = a⊗ b+ b⊗ a ∈ A⊗A

and we will also often write a⊗2 = a ⊗ a ∈ A⊗ A to shorten many expressions. We will continue
to use that a� b = b� a, a� a = 2a⊗ a and a� b+ c� b = (a+ c)� b for a, b, c ∈ A. For a map
f : A → B of Zπ modules we have induced f∗ : Γ(A) → Γ(B) with f∗(a ⊗ a) = f(a) ⊗ f(a) and
f∗(a� b) = f(a)� f(b).

To compute Γ groups we will make frequent use of the following lemma.
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Lemma 1.3 ([Bau88, Lemma 4]). Let π be a group. If 0 → A → B → C → 0 is a short exact
sequence of Zπ-lattices, then there exists a Zπ-lattice D and short exact sequences of Zπ-modules

0 → Γ(A) → Γ(B) → D → 0

and
0 → A⊗Z C

f
−→ D → Γ(C) → 0.

If {ai}, {cj} and {ai, c̃j} are bases for A, C, and B as free abelian groups respectively, where c̃j is
a lift of cj, then the map f is defined by

f(ai ⊗ cj) = [ai ⊗ c̃j + c̃j ⊗ ai] = [ai� c̃j ] ∈ D ∼= Γ(B)/Γ(A).

Remark 1.4. For the direct sum of Zπ-lattices A and B, these short exact sequences split, and so
Γ(A⊕B) ∼= Γ(A)⊕ Γ(B)⊕A⊗Z B.

The second key definition we require is as follows. See [Bro94] for a convenient reference.

Definition 1.5 (Tate homology). Given a finite group π and a Zπ-module A, the Tate homology

groups Ĥn(π;A) are defined as follows. Let N : Aπ → Aπ denote multiplication with the norm
element from the orbits Aπ := Z⊗ZπA of A to the π-fixed points of A, that is, N(1⊗a) =

∑
g∈π ga.

This is well-defined since N(1⊗ ga) = N · ga = N · a = N(1⊗ a). Then

Ĥn(π;A) := Hn(π;A) for n ≥ 1

Ĥ0(π;A) := ker(N)

Ĥ−1(π;A) := coker(N)

Ĥn(π;A) := H−n−1(π;A) for n ≤ −2

We can similarly define Tate cohomology groups by, for example, letting Ĥn(π;A) = Ĥ−n−1(π;A).

We will require the following properties of Tate homology, and we will use them throughout the
article without further mention.

Lemma 1.6 ([Bro94, VI (5.1)]). If 0 → A→ B → C → 0 is a short exact sequence of Zπ-modules,
then there is a long exact sequence of Tate homology groups

· · · → Ĥn(π;A) → Ĥn(π;B) → Ĥn(π;C) → Ĥn−1(π;A) → · · ·

Lemma 1.7 ([Bro94, VI (5.2)]). If A is a free Zπ-module, then Ĥn(π;A) = 0 for all n ∈ Z.

For a Zπ-module A, let Tors(A) denote the torsion subgroup of A as an abelian group. The
following lemmas are elementary and we refer to [KPR20] for proofs.

Lemma 1.8 ([KPR20, Lemma 3.2]). If π is a finite group and A is a Zπ-lattice, then there is an
isomorphism of abelian groups

Ĥ0(π;A) ∼= Tors(Z⊗Zπ A).

Remark 1.9. As an abelian group, we have Z⊗ZπA ∼= A/π where π acts on A by left multiplication.
We will therefore also often use a ∈ A to refer to the element 1⊗ a ∈ Z⊗Zπ A.

While we defined Ĥn(π;A) as abelian groups in Definition 1.5, it will be useful to fix more
explicit descriptions when n = 0,±1. The following will be in place from now on.

Convention 1.10. Throughout the rest of this article, A will be a Zπ-lattice. Following Defini-
tion 1.5 and Remark 1.9, we will use a ∈ A to denote both elements of the homology groups:

Ĥ0(π;A) = Tors(Z⊗Zπ A) = Tors(A/π)

Ĥ−1(π;A) = coker(N) = Aπ/(N ·Aπ).
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Furthermore, we will write:

Ĥ1(π;A) =
ker(d1 ⊗ idA : C1 ⊗Zπ A→ C0 ⊗Zπ A)

im(d2 ⊗ idA : C2 ⊗Zπ A→ C1 ⊗Zπ A)

where C2
d2−→ C1

d1−→ C0 → Z → 0 is a choice of free Zπ resolution for the trivial Zπ-module Z.

Convention 1.11. We adopt the following notation convention for maps g : A → B between Zπ
modules, which can also occur in various combinations:

• A subscript ∗ as in g∗ : Γ(A) → Γ(B) denotes the induced map between Γ-groups.

• A hat ̂ as in ĝ : Ĥi(π,A) → Ĥi(π,B) denotes the map on Tate homology.

For a Zπ-module A, let [A]s denote the equivalence class of A up to stable isomorphism, i.e. up to
the relation where A ∼s B for a Zπ-module B if there exists i, j ≥ 0 for which A⊕Zπi ∼= B⊕Zπj .
For later purposes, it will often be convenient to view this as the set [A]s = {B : A ∼s B}.

We conclude this section with the following observation.

Lemma 1.12 ([KPR20, Lemma 4.2]). Let A be a Zπ-lattice. Then Ĥ0(π; Γ(A)) only depends on
the stable isomorphism class [A]s, i.e. if A ∼s B for a Zπ-module B, then there is an isomorphism

of abelian groups Ĥ0(π; Γ(A)) ∼= Ĥ0(π; Γ(B)).

In particular, in order to determine Ĥ0(π; Γ(A)) for a Zπ-module A, it suffices to consider

Ĥ0(π; Γ(B)) for any B inside the stable class [A]s.

2. Syzygies of finite groups

In this section, we will recall the basic theory of syzygies of finite groups. This offers an
alternative perspective to some of the results which were discussed in [KPR20].

Recall that, for a finitely presented group π, a Zπ-module A and n ≥ 1, the nth stable syzygy
Ωn(A), which we also write as Ωπn(A), is defined as the set of Zπ-modules B for which there exists
an exact sequence

0 → B → Fn−1 → · · · → F0 → A→ 0

where the Fi are free Zπ-modules.
The following was first shown by Swan in [Swa60, Corollaries 1.1, 2.1]. For a more recent

reference, and a different proof, see [Joh03, Theorem 30.1].

Lemma 2.1. Let π be a finite group, let A be a Zπ-lattice and let n ≥ 2. Then Ωn(A) = [B]s for
any B ∈ Ωn(A), i.e. if B ∈ Ωn(A), then B

′ ∈ Ωn(A) if and only if B and B′ are stably isomorphic.

The following is also immediate by noting that the exact sequence for A and B defined above
is split when restricted to the underlying abelian groups provided A is torsion free.

Lemma 2.2. Let π be a finite group, let A be a Zπ-lattice and let n ≥ 1. If B ∈ Ωn(Z), then B
is a Zπ-lattice.

It is often useful to take the perspective (see [Joh12, Preface]) that the Syzygies Ωn(A) are,
in some sense, the nth derivative of the module A. This is already mentioned by R. H. Fox in
his definition of Fox derivative in 1960 [Fox60]. We will now recall this definition for use in the
following section.

Definition 2.3 (Fox derivative). If F is a free group with generators gi, then the Fox derivative
with respect to gi is the Z-module homomorphism

∂gi : ZF → ZF

which is defined by the requirements that ∂gi(gj) = δij where δij is the Kronecker delta, ∂gi(1) = 0,
and the product rule ∂gi(xy) = ∂gi(x)+x∂gi(y) for x, y ∈ F . If φ : F ։ π is a surjection of groups,
then we can view ∂gi as a map ∂gi : ZF → Zπ by post composition with φ. In particular, ∂gi maps
words in the generators of π to Zπ.



6 DANIEL KASPROWSKI, JOHN NICHOLSON, AND BENJAMIN RUPPIK

The main result on Fox derivatives that concerns us is as follows. A detailed account can be
found, for example, in [MR18, Section 1.2].

Proposition 2.4. Let P = 〈x1, · · · , xn | r1, · · · , rm〉 be a group presentation with corresponding
presentation complex XP , and φ : F = 〈x1, . . . , xn〉 ։ π the corresponding surjection. Then the

cellular chain complex of X̃P is given by

C∗(X̃P) : C2(X̃P)︸ ︷︷ ︸
= ⊕mi=1Zπ〈ri〉

d2−−→ C1(X̃P)︸ ︷︷ ︸
= ⊕ni=1Zπ〈xi〉

d1−−→ C0(X̃P )︸ ︷︷ ︸
= Zπ〈1〉

where the maps (of left Zπ-modules) are given on the basis vectors as d2(ri) =
∑n

j=1 φ(∂xj (ri)) ·xj
and d1(xj) = φ(xj)− 1 for all i, j.

If P is a presentation for π, then ker(d2) ∈ Ωπ3 (Z). Hence, in order to find an explicit parametri-
sation of Ωπ3 (Z), it remains to compute ker(d2) for some presentation P .

Remark 2.5. Whilst this method works to obtain a parametrisation for Ω3(Z), it is currently not
known whether or not this method can always be used to find a representative whose abelian group
has minimal rank. For example, it was noted by the second named author in [Nic21], that there
is a family of groups π = P ′′

48·n for n ≥ 3 odd with 4-periodic cohomology over which there exists
J ∈ Ω3(Z) with rankZ(J) = |π| − 1 but for which every known presentation P = 〈x1, · · · , xn |
r1, · · · , rm〉 has m− n ≥ 1 and so has rankZ(ker(d2)) ≥ 2|π| − 1.

For a Zπ-module A, define the dual A∗ = HomZ(A,Z) which has left Zπ action given by sending
ϕ 7→ g ·ϕ where (g ·ϕ)(x) = ϕ(g−1 ·x) for x ∈ A. By, for example, [Nic20, Lemma 1.5] this coincides
with the usual dual of Zπ-modules HomZπ(A,Zπ). From our definition it is clear that for π finite,
if A is a Zπ-lattice, then A∗ is also a Zπ-lattice.

The following was proven by Hambleton–Kreck [HK88, Proposition 2.4].

Proposition 2.6. Let X be a finite oriented Poincaré 4-complex X with finite fundamental group
π. Then there exists J ∈ Ω3(Z), an integer r ≥ 0 and an exact sequence

0 → J → π2(X)⊕ Zπr → J∗ → 0.

By the discussion above, we know that J and J∗ are necessarily Zπ-lattices. By combining
Lemmas 1.3 and 1.12, it is straightforward to show the following. See [KPR20, Corollary 4.5] for
a detailed proof.

Corollary 2.7. If Tors(Z ⊗Zπ Γ(J)) = 0 and Tors(Z ⊗Zπ Γ(J∗)) = 0 for some J ∈ Ω3(Z), then
Tors(Z⊗Zπ Γ(π2(X))) = 0.

If A is a Zπ-lattice then, by Lemma 1.8, we have Tors(Z ⊗Zπ A) ∼= Ĥ0(π;A). It is well known
(see, for example, [Bro94, III (10)]), that this vanishes if and only if it vanishes over each Sylow
p-subgroup πp.

Using this, Bauer made the following observation [Bau88, p. 5] in the case n = 3 (see [KPR20,
Section 6] for additional details). By examining the argument, it is not difficult to see that this
extends to all n ≥ 1 odd.

Lemma 2.8. Let π be a finite group with Sylow 2-subgroup π′. For n ≥ 1 odd, let J ∈ Ωπn(Z),

and let J ′ = Resππ′(J) ∈ Ωπ
′

n (Z) denote its restriction to Zπ′. If Tors(Z ⊗Zπ′ Γ(J ′)) = 0, then
Tors(Z⊗Zπ Γ(J)) = 0. Similarly, if Tors(Z⊗Zπ′ Γ((J ′)∗)) = 0, then Tors(Z⊗Zπ Γ(J

∗)) = 0.

We conclude this section with an overview of the proof of Theorem A. As we mentioned in the
introduction, it is a consequence of [HK88, Theorem 1.1] and [Tei92] (see [KT21, Corollary 1.5])
that, in order to prove Theorem A, it suffices to prove that Tors(Z ⊗Zπ Γ(π2(X))) = 0 when π is
a finite group whose Sylow 2-subgroup is dihedral. By Corollary 2.7 and Lemma 2.8, it suffices
to prove that Tors(Z ⊗Zπ Γ(J)) = 0 and Tors(Z ⊗Zπ Γ(J∗)) = 0 where π is the dihedral group of
order 2n for n ≥ 1. These results will be shown in Theorem 4.1 and Theorem 6.1 respectively.
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3. An explicit parametrisation for Ω3(Z) over dihedral groups

The aim of this section we will be to obtain an explicit parametrisation for Ω3(Z) in the case
where π = D2n is the dihedral group of order 2n where n is even. Note that, if n is odd, then
D2n has 4-periodic cohomology and so is dealt with by the results of Hambleton–Kreck [HK88].
In fact, it is possible to parametrise all the syzygies ΩD2n

m (Z) for m ≥ 1 in this case [Joh16].
Using the presentation

P = 〈x, y | xny−2, xyxy−1, y2〉

for D2n, we obtain the following partial free resolution of Z using Proposition 2.4

(3.1) C∗(P) : 0 → ker(d2) → Zπ3

·

(
Nx −(1+y)

1+xy x−1
0 y+1

)

−−−−−−−−−−−−→
d2

Zπ2
·
(
x−1
y−1

)

−−−−−→
d1

Zπ
ε
−→ Z → 0

where Nx = 1 + x + · · · + xn−1 and ε is the augmentation map. Here the matrices describing
the left Zπ-linear differentials d1, d2 multiply from the right, with the elements of the free Zπ-
modules written as row vectors. In particular, the composition corresponds to the matrix product
(d1 ◦ d2)(v) = v · d2 · d1. Let N =

∑
g∈π g denote the group norm. Then:

Lemma 3.1. The following sequence is exact:

0 → Z
N
−→ Zπ

·(x−1 1−xy )
−−−−−−−−→ Zπ2

·

(
Nx −(1+y)

1+xy x−1

)

−−−−−−−−−−−−→ Zπ2

Proof. This can be checked directly. However, let us give a shorter proof imitating [HK93b, Lemma
2.4]. Consider the 4-periodic resolution

ZQ4n

NQ4n−−−−→ ZQ4n
·(x−1 1−xy )
−−−−−−−−→ ZQ2

4n

·

(
Nx −(1+y)

1+xy x−1

)

−−−−−−−−−−−−→ ZQ2
4n

·
(
x−1
y−1

)

−−−−−→ ZQ4n

of Z over the generalized quaternion group Q4n from [CE56, p. 253]. The beginning of this
resolution corresponds to the presentation 〈x, y | xny−2, xyxy−1〉 of Q4n.

Apply the functor − ⊗Z[〈y2〉] Z, where 〈y2〉 ⊂ Q4n is the cyclic group C2 with two elements.

Since Tor
Z[〈y2〉]
3 (Z,Z) ∼= H3(C2;Z) ∼= Z/2 it does not remain exact at the third term, but as

Tor
Z[〈y2〉]
2 (Z,Z) ∼= H2(C2;Z) = 0, we conclude that

Zπ
·(x−1 1−xy )
−−−−−−−−→ Zπ2

·

(
Nx −(1+y)

1+xy x−1

)

−−−−−−−−−−−−→ Zπ2

is still exact. Note that the kernel of Zπ
·(x−1 1−xy )
−−−−−−−−→ Zπ2 is the set of fixed points under the

π-action and so is the image of the norm map. This implies the lemma. �

Lemma 3.2. Let f = (fA, fB) : A ⊕ B → C be a map between abelian groups. Then there is an
exact sequence

0 ker(fA) ker(f) ker(q ◦ fB : B → C/ im(fA)) 0i j

where i : a 7→ (a, 0), j : (a, b) 7→ b and q : C 7→ C/ im(fA) is the quotient map.

Proof. It is easy to see that i is injective and that im(i) = ker(j). To show that j is surjective,
let b ∈ ker(q ◦ fB : B → C/ im(fA)). Then fB(b) ∈ im(fA) so there exists a ∈ A such that
fA(a) = fB(b) and so j(−a, b) = b. �

Definition 3.3. We denote the augmentation ideal by I = Iπ = ker(Zπ
ε
−→ Z) and the ideal

generated by I and 2 by (I, 2) = ker(Zπ
ε
−→ Z/2).
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Remark 3.4. Dualising the exact sequence

0 → I → Zπ
ε
−→ Z → 0

we obtain the exact sequence

0 → Z
N
−→ Zπ → I∗ → 0.

In particular, the dual of I is isomorphic to Zπ/N .

Proposition 3.5. With respect to the inclusion ker(d2) ⊆ Zπ3, there is an exact sequence:

0 → Zπ/N
·(x−1 1−xy 0 )
−−−−−−−−−−→

i
ker(d2)

·

(
0
0
1

)

−−−−→
j

(I, 2) → 0.

Furthermore, we have j(1 + y,−Nx, 2) = 2, j(x − 1, 0, x − 1) = x − 1 and j(0, 0, y − 1) = y − 1
which gives lifts of the Zπ-module generators for (I, 2).

Proof. Follows by applying the decomposition in Lemma 3.2 to the d2 differential in the resolution

(3.1) for the dihedral group. Here fA = ·
(

Nx −(1+y)
1+xy x−1

)
corresponds to the first two rows of the

matrix, and fB = · ( 0 y+1 ) to the bottom row. Now use Lemma 3.1 to identify ker fA with Zπ/N .
To identify ker(q ◦ fB : Zπ → Zπ2/ im fA), consider again the resolution

ZQ4n
NQ4n−−−−→ ZQ4n

·(x−1 1−xy )
−−−−−−−−→ ZQ2

4n

·

(
Nx −(1+y)

1+xy x−1

)

−−−−−−−−−−−−→ ZQ2
4n

·
(
x−1
y−1

)

−−−−−→ ZQ4n

of Z over the generalized quaternion groupQ4n from the proof of Lemma 3.1. Since Tor
Z[〈y2〉]
1 (Z,Z) ∼=

H1(C2;Z) ∼= Z/2, the sequence

(3.2) Zπ2
fA=·

(
Nx −(1+y)

1+xy x−1

)

−−−−−−−−−−−−−−→ Zπ2
·
(
x−1
y−1

)

−−−−−→ Zπ

has homology Z/2. As fB = · ( 0 y+1 ) composed with ·
(
x−1
y−1

)
is trivial, the map q ◦ fB : Zπ →

Zπ2/ im fA factors through

Z/2 = ker

(
Zπ2/ im fA

·
(
x−1
y−1

)

−−−−−→ Zπ

)
.

To see that ker(q ◦ fB : Zπ → Zπ2/ im fA) ∼= (I, 2) it remains to show that (0, y + 1) is non-trivial
in Zπ2/ im fA. Assume that (0, y + 1) is in the image of fA, then the exactness of (3.1) implies
that (3.2) is exact. But (3.2) has homology Z/2 as mentioned above. �

Remark 3.6. It will also be useful to note that j(0, xy−1, xy−1) = xy−1. The following equalities
in Zπ will be used without comment in our calculations:

• (1 + xky)(1 − xky) = 0 = (1− xky)(1 + xky)

• xky = xky, Nx = Nx, 1± xy = 1± xy, 1 + y = 1 + y
• (1− xy)(x + y) = 0
• xy − 1 = (x− 1)y + (y − 1)

Here is the usual involution on the group ring Zπ induced by sending g 7→ g−1 for g ∈ π.

4. Computing Ĥ0(π; Γ(ker(d2)))

The aim of this section will be the following theorem, whose proof appears on page 16.

Theorem 4.1. If π is a dihedral group of order 2n for n even, then Ĥ0(π; Γ(ker(d2))) = 0.

Remark 4.2. Computer assisted calculations verifying the vanishing of Ĥ0(π; Γ(ker(d2))) where
π = D2n and n ≤ 24 can be found at [Rup16a].
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Let D = Γ(ker(d2))/Γ(Zπ/N), i.e. so that there is an exact sequence

0 → Γ(Zπ/N)
i∗−→ Γ(ker(d2))

q
−→ D → 0

where q is the quotient map. By Lemma 1.3 applied to the decomposition of ker(d2) in Proposi-
tion 3.5 there is an exact sequence

0 → (Zπ/N)⊗Z (I, 2)
f
−→ D

j∗
−→ Γ((I, 2)) → 0.

By the work done previously, the map f is given by

f : (Zπ/N)⊗Z (I, 2) → D = Γ(ker(d2))/Γ(Zπ/N)

1⊗ 2 7→ [(x− 1, 1− xy, 0)� (1 + y,−Nx, 2)]

1⊗ (y − 1) 7→ [(x− 1, 1− xy, 0)� (0, 0, y− 1)]

1⊗ (xy − 1) 7→ [(x− 1, 1− xy, 0)� (0, xy − 1, xy − 1)]

Here we decided to define the map f using lifts of the elements 2, y − 1, xy − 1 as opposed to
2, y−1, x−1, since the following calculations will be easier with respect to the generating set x, xy
consisting of order 2 elements of D2n.

Now consider the long exact sequence on Tate homology coming from the first exact sequence.

By [HK88, Theorem 2.1] and Remark 3.4, we have that Ĥ0(π; Γ(Zπ/N)) = 0 and so we have:

. . .→ 0 → Ĥ0(π; Γ(ker(d2)))
q̂
−→ Ĥ0(π;D)

∂
−→ Ĥ−1(π; Γ(Zπ/N)) → . . .

where ∂ denotes the boundary map in Tate homology.
We will now prepare a sequence of lemmas, which will then lead to a proof of the following

Proposition 4.3 on page 13. From now on, let

σ = (1 + yx)

n/2∑

i=1

x2i = (1 + yx)(x2 + x4 + . . .+ xn) = (1 + yx)(1 + x2 + x4 + . . .+ xn−2).

Proposition 4.3. There is an isomorphism of abelian groups

Ĥ0(π;D) ∼= Z/2 〈α1〉 ⊕ Z/2 〈α2〉

where the images in Ĥ−1(π; Γ(Zπ/N)) of the generators α1, α2 under the boundary map are

∂(α1) = 2 · (Nx ⊗Nx) and

∂(α2) = n · (Nx ⊗Nx) + 2 · (σ ⊗ σ).

Remember that we use the notation from Convention 1.10 to denote the equivalence classes of

the elements 2 · (Nx ⊗Nx), n · (Nx⊗Nx)+ 2 · (σ⊗ σ) ∈ Ĥ−1(π; Γ(Zπ/N)) that live in the cokernel
of the norm map.

We begin by noting that we have the following long exact sequence on Tate homology:

. . .→ Ĥ0(π; (Zπ/N) ⊗Z (I, 2))
f̂
−→ Ĥ0(π;D)

ĵ∗
−→ Ĥ0(π; Γ((I, 2))) → . . .

Lemma 4.4. For every finite group G of even order, there is an isomorphism of abelian groups

Ĥ0(G; (ZG/N) ⊗Z (I, 2)) ∼= Z/2 〈1⊗N〉.

Proof. First consider the short exact sequence 0 → (I, 2) → ZG → Z/2 → 0. Since the order of

G is even, the norm map is trivial on Z/2 and hence 1 ∈ Z/2 is non-trivial in Ĥ0(G;Z/2). In

particular, Ĥ0(G;Z/2) ∼= Z/2. By dimension shifting, i.e. using that the Tate homology of ZG

vanishes, we get Ĥ0(G;Z/2) ∼= Ĥ−1(G; (I, 2)). The pre-image 1 ∈ ZG maps to N ∈ ZG under the

norm map and hence N ∈ Ĥ−1(G; (I, 2)) is the non-trivial element.
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Now consider the short exact sequence

(4.1) 0 → Z⊗Z (I, 2)
N⊗1
−−−→ ZG⊗Z (I, 2)

1⊗1
−−→ (ZG/N) ⊗Z (I, 2) → 0

where the middle term is free by [KPR20, Lemma 4.3]. By dimension shifting, we have

Ĥ0(G; (ZG/N) ⊗Z (I, 2)) ∼= Ĥ−1(G; (I, 2)) ∼= Z/2.

Since N is a fixed point under the G action, the element 1 ⊗ N ∈ (ZG/N) ⊗Z (I, 2) maps to

0 = N⊗N under the norm map. Hence it represents an element of Ĥ0(G; (ZG/N)⊗Z(I, 2)). Under

the boundary map induced from the sequence (4.1) it is mapped to 1 ⊗ N ∈ Ĥ−1(G;Z ⊗Z (I, 2))
which is the non-trivial element by the previous calculation. This implies that 1 ⊗ N represents

the non-trivial element in Ĥ0(G; (ZG/N) ⊗Z (I, 2)). �

Lemma 4.5. The map Ĥ0(π; (Zπ/N) ⊗Z (I, 2))
f̂
−→ Ĥ0(π;D) is trivial, i.e. f̂(1⊗N) = 0.

Proof. A lift of N ∈ (I, 2) in ker d2 is given by (N,−n
2N,N). Hence we have

f(1⊗N) = (x− 1, 1− xy, 0)� (N,−
n

2
N,N).

It is straightforward to verify that there are the following three ways to decompose

(N,−
n

2
N,N) = Nxv1 = (1 + xy)

n/2∑

i=1

x2iv2 = (1 + y)

n/2∑

i=1

x2iv3,

where

v1 = (x+ y −
n

2
(x− 1),−yNx −

n

2
(1− xy), x+ y)

v2 = (1 + y,−Nx, 1 + y)

v3 = (1 + yx,−Nx, 1 + yx)

are all in ker(d2). Note that we can also decompose the other factor in ker(d2) as

(x− 1, 1− xy, 0) = (x − 1, 0, x− 1) + (0, 1− xy, 1− xy) + x(0, 0, y − 1).

In the situation where Zπ acts diagonally on a tensor product L ⊗Z L of Zπ-modules, in the
tensored down module Z ⊗Zπ (L ⊗Z L) ∼= L ⊗Zπ L the relation a ⊗ (λb) = (λa) ⊗ b holds, where
λ ∈ Zπ and a, b ∈ L. The elements Nx, 1+xy and 1+y are invariant under applying the involution
, so we use this in D⊗ZπD to move them freely between the factors in the tensor products in the

first equalities below. We have in Ĥ0(π;D) ∼= TorsZ⊗Zπ (Γ(ker(d2))/Γ(Zπ/N)) that the following
tensors all vanish:

(x− 1, 0, x− 1)⊗Nxv1 = Nx(x− 1, 0, x− 1)⊗ v1 = 0

(0, 1− xy, 1− xy)⊗ (1 + xy)
∑

x2iv2 = (1 + xy)(0, 1 − xy, 1− xy)⊗
∑

x2iv2 = 0

x(0, 0, y − 1)⊗ (1 + y)
∑

x2iv3 = (0, 0, y − 1)⊗ x−1(1 + y)
∑

x2iv3

= (0, 0, y − 1)⊗ (1 + y)
∑

x2i+1v3

= (1 + y)(0, 0, y − 1)⊗
∑

x2i+1v3 = 0.

By adding together these expressions, we get (x−1, 1−xy, 0)� (N,−n
2N,N) = 0 in Ĥ0(π;D). �

We will now compute Ĥ0(π; Γ((I, 2))). First note that there is an exact sequence

0 → I →֒ (I, 2)
ε
−→ 2Z → 0.
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Lemma 4.6. There is an isomorphism of Zπ-modules

ϕ : (I, 2) → Γ((I, 2))/Γ(I)

given by 2 7→ 2⊗ 2 and g − 1 7→ 2� (g − 1) for g ∈ π.

Proof. A Z basis of (I, 2) is given by 2 and all g − 1 for g ∈ π \ {1}. By Lemma 1.2 a Z basis for
Γ((I, 2)) is thus given by

{(g − 1)⊗ (g − 1), 2⊗ 2, 2� (g − 1), (g − 1)� (h− 1) | g, h ∈ π \ {1}, g 6= h}.

Doing the same consideration for I, we see that a Z basis for Γ((I, 2))/Γ(I) is given by

{[2⊗ 2], [2� (g − 1)] | g ∈ π \ {1}}.

Thus the map ϕ is a bijection of Z-modules.
It remains to show that ϕ is Zπ-linear. Let g ∈ π be given. Then

(g − 1) · (2⊗ 2)− 2(2� (g − 1)) = g · (2⊗ 2)− 2⊗ 2− (2⊗ 2(g − 1) + 2(g − 1)⊗ 2)

= (2g ⊗ 2g)− 2⊗ 2− 2⊗ 2g + 2⊗ 2− 2g ⊗ 2 + 2⊗ 2

= (2g − 2)⊗ (2g − 2) = 4(g − 1)⊗ (g − 1) ∈ Γ(I)

and so [(g − 1)(2⊗ 2)] = [2(2� (g − 1))] ∈ Γ((I, 2))/Γ(I). Hence

ϕ(2g) = ϕ(2(g− 1))+ϕ(2) = [2(2� (g− 1))]+ [2⊗ 2] = [(g− 1)(2⊗ 2)]+ [2⊗ 2] = g[2⊗ 2] = gϕ(2).

Similarly, for g, h ∈ π we have 2(g − 1)� g(h− 1) ∈ Γ(I) and hence

[2� g(h− 1)] = [2g� g(h− 1)] = g[2� (h− 1)] = gϕ(h− 1).

Thus

ϕ(g(h− 1)) = ϕ(gh− 1)− ϕ(g − 1) = [2� gh− 1]− [2� g − 1] = [2� g(h− 1)] = gϕ(h− 1). �

Lemma 4.7. For every finite group G there is an isomorphism of abelian groups

Gab ⊗Z Z/2 ∼= Ĥ0(G; (I, 2))

sending g ⊗ 1 to g − 1.

Proof. Consider the exact sequence

0 → (I, 2) →֒ ZG
ε
−→ Z/2 → 0.

The boundary map Ĥ1(G;Z/2)
∂
−→ Ĥ0(G; (I, 2)) is an isomorphism since Ĥ∗(G;ZG) = 0. Thus

Ĥ0(G; (I, 2)) ∼= Ĥ1(G;Z/2) ∼= H1(G;Z/2) ∼= Gab ⊗Z Z/2.

We now compute the boundary map explicitly, adopting Convention 1.10 for the notation in the
diagram:

0 C1 ⊗ZG (I, 2) C1 ⊗ZG ZG C1 ⊗ZG Z/2 0

0 C0 ⊗ZG (I, 2) C0 ⊗ZG ZG C0 ⊗ZG Z/2 0

d1⊗id d1⊗id

id⊗ε

d1⊗id

ε

For g ∈ G let cg ∈ C1 be a preimage of (g − 1) ∈ C0
∼= ZG under d1. Then cg ⊗ 1 ∈ C1 ⊗ZG Z/2

represents g ⊗ 1 ∈ Gab ⊗ Z/2. Under the boundary map

Gab ⊗Z Z/2 ∼= Ĥ1(G;Z/2)
∂
−→ Ĥ0(G; (I, 2)),

g ⊗ 1 is send to d1(cg)⊗ 1 = 1⊗ (g − 1) ∈ C0 ⊗ZG (I, 2). �
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Lemma 4.8. There is an isomorphism of abelian groups

Ĥ0(π; Γ((I, 2))) ∼= Z/2 〈αxy〉 ⊕ Z/2 〈αy〉

where for g ∈ π which satisfy g2 = 1 we introduce the notation

αg = 2� (g − 1) + 2(g − 1)⊗ (g − 1) ∈ Ĥ0(π; Γ((I, 2))).

Remark 4.9. We can also write this as αg = 2⊗ (g − 1)− (g − 1)⊗ 2. Observe that for g of order
2, we have g(g − 1) = −(g − 1) and (g − 1)2 = −2(g − 1) in Zπ.

Proof. We first show that the elements αg are torsion in Z ⊗Zπ Γ((I, 2)) and hence represent

elements in Ĥ0(π; Γ((I, 2))). Using that g2 = 1, in Γ((I, 2)) we have

(1 + g)αg = (1 + g)(2� (g − 1) + 2(g − 1)⊗ (g − 1))

= 2� (g − 1)− 2g� (g − 1) + 4(g − 1)⊗ (g − 1)

= −2(g − 1)� (g − 1) + 4(g − 1)⊗ (g − 1)

= −4(g − 1)⊗ (g − 1) + 4(g − 1)⊗ (g − 1)

= 0

Hence in Z ⊗Zπ Γ((I, 2)) the elements αg are 2-torsion, since multiplication by 2 and by (1 + g)
are equivalent under the trivial action on the first factor.

Now consider the short exact sequence

0 → Γ(I) → Γ((I, 2))
ψ
−→ (I, 2) → 0,

using the isomorphism Γ((I, 2))/Γ(I) ∼= (I, 2) from Lemma 4.6. Under this isomorphism, the
elements αg map to g − 1. Hence by Lemma 4.7, the map

Ĥ0(π; Γ((I, 2)))
ψ̂
−→ Ĥ0(π; (I, 2))

is surjective. Here we use that the dihedral group π of order 2n for n even is generated by xy and
y which are both 2-torsion, and thus generate the abelianization πab ∼= Z/2 ⊕ Z/2. By [HK88,

Theorem 2.1], we have that Ĥ0(π; Γ(I)) = 0 and so the map ψ̂ : Ĥ0(π; Γ((I, 2))) → Ĥ0(π; (I, 2)) is
an isomorphism by the long exact sequence on Tate homology. �

Recall that we defined the element σ = (1 + yx)
∑n/2

i=1 x
2i. We note the following properties

that we will use in our calculations: xσ = x−1σ = yσ = σx = σx−1 = σy. The following lemma
concerns the images of the maps

Ĥ0(π;D)
ĵ∗
−→ Ĥ0(π; Γ((I, 2))) and Γ(Zπ/N)

i∗−→ Γ(ker(d2))
q
−→ D = Γ(ker(d2))/Γ(Zπ/N).

Lemma 4.10. There exists α1, α2 ∈ Γ(ker(d2)) such that

(i) the corresponding elements in the Tate group Ĥ0(π;D) map to ĵ∗(α1) = αxy−αy and ĵ∗(α2) =

αy in Ĥ0(π; Γ((I, 2)))
(ii) N · α1 = i∗(2 · (Nx ⊗Nx)) and N · α2 = i∗(n · (Nx ⊗Nx) + 2 · (σ ⊗ σ)).

Proof. First let

α̃y = (1 + y,−Nx, 2)� (0, 0, y− 1) + 2(0, 0, y − 1)⊗2

α̃xy = (1 + y,−Nx, 2)� (0, xy − 1, xy − 1) + 2(0, xy − 1, xy − 1)⊗2

be in Γ(ker(d2)) so that the corresponding elements in Ĥ0(π;D) have

ĵ∗(α̃y) = 2� (y − 1) + 2(y − 1)⊗ (y − 1) = αy

ĵ∗(α̃xy) = 2� (xy − 1) + 2(xy − 1)⊗ (xy − 1) = αxy.
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Let us further in Γ(ker(d2)) define

α1 = α̃xy − α̃y − β1 where β1 = (1− x, xy − 1, 0)� (0, xy − 1, xy − 1),

α2 = α̃y − β2 where β2 = (x− 1, 1− xy, 0)� (σ,−
n

2
Nx, Nx).

Observe that in D, we have β1 = f(−1⊗ (xy − 1)). It is easy to see that ĵ∗(α1) = αy − αxy since

j∗ ◦ f = 0 and ĵ∗(α2) = αy as ĵ∗(β2) = 0, which confirms part (i) of the Lemma.
For part (ii) we make the following computation in Γ(ker(d2)):

N · β1 = Nx(1 + xy)((1 − x, xy − 1, 0)� (0, xy − 1, xy − 1))

= Nx(((1− xy)(1 + y), 2(xy − 1), 0)� (0, xy − 1, xy − 1))

N · α̃xy = Nx(1 + xy)((1 + y,−Nx, 2)� (0,−x−1(xy − 1), xy − 1) + 2(0,−x−1(xy − 1), xy − 1)⊗2)

= Nx((1− xy)(1 + y),−Nx + yNx, 2(1− xy))� (0, xy − 1, xy − 1) + 2Nx(0, xy − 1, xy − 1)⊗2

= Nβ1 +Nx(0,−Nx + yNx, 0)� (0, xy − 1, xy − 1)

= Nβ1 + (0, (y − 1)Nx, 0)� (0, 0, (y− 1)Nx) + 2(0, (y − 1)Nx, 0)
⊗2

N · β2 = (1 + y)Nx((x− 1, 1− xy, 0)� (0,−
n

2
Nx, Nx)) + (1 + x)σ((x − 1, 1− xy, 0)� (σ, 0, 0))

= (1 + y)((0, Nx − yNx, 0)� (0,−
n

2
Nx, Nx)) + (1 + x)((σ(x − 1), 0, 0)� (σ, 0, 0))

= (0, (y − 1)Nx, 0)� (0, 0, (y− 1)Nx)− n(0, (y − 1)Nx, 0)
⊗2 − 2(σ(x− 1, 1− yx, 0))⊗2

N · α̃y = Nx(1 + y)((1 + y,−Nx, 2)� (0, 0, y− 1) + 2(0, 0, y− 1)⊗2)

= Nx((0,−(1− y)Nx, 2(1− y))� (0, 0, y− 1) + 4(0, 0, y− 1)⊗2)

= Nx((0,−(1− y)Nx, 0)� (0, 0, y− 1))

= (0, Nx(y − 1), 0)� (0, 0, Nx(y − 1)).

Hence we have that:

N · α1 = 2(0, Nx(1− y), 0)⊗2 = i∗(2 · (Nx ⊗Nx))

N · α2 = n(0, Nx(1− y), 0)⊗2 + 2(σ(x− 1, 1− xy, 0))⊗2 = i∗(n · (Nx ⊗Nx) + 2 · (σ ⊗ σ))

since i∗(Nx ⊗Nx) = (0, Nx(1− y), 0)⊗2 and i∗(σ ⊗ σ) = (σ(x − 1, 1− xy, 0))⊗2. �

Proof of Proposition 4.3. Let α1, α2 be as in Lemma 4.10. We will view them as elements of
Z ⊗Zπ D using the identification D = Γ(ker(d2))/Γ(Zπ/N). In Lemma 4.10 (ii), we showed that

N · α1, N · α2 ∈ im(i∗) which implies that N · α1 = N · α2 = 0 ∈ D and so α1, α2 ∈ Ĥ0(π;D).
By Lemma 4.5, the map

ĵ∗ : Ĥ0(π;D) → Ĥ0(π; Γ((I, 2)))

is injective. By Lemma 4.8, Ĥ0(π; Γ((I, 2))) is generated by αxy and αy. By Lemma 4.10 (i), we

have that ĵ∗(α1) = αxy − αy and ĵ∗(α2) = αy. Hence ĵ∗ is bijective, Ĥ0(π;D) ∼= Z/2⊕Z/2 and is
generated by α1, α2.

Now to compute the boundary map Ĥ0(π;D)
∂
−→ Ĥ−1(π; Γ(Zπ/N)), consider the map of short

exact sequences

0 Γ(Zπ/N) Γ(ker(d2)) D 0

0 Γ(Zπ/N) Γ(ker(d2)) D 0

N

i∗

N

q

N

i∗ q

Since N · α1 = i∗(2 · (Nx ⊗Nx)) and N · α2 = i∗(n · (Nx ⊗Nx) + 2(σ ⊗ σ)), the boundary map ∂
sends α1 and α2 to 2 · (Nx ⊗Nx) and n · (Nx ⊗Nx) + 2(σ ⊗ σ), respectively. �
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In order to finish the proof of Theorem 4.1, we first need the following two lemmas.

Lemma 4.11. Let G be a finite group and let ψ : ZG→ ZG/N be the quotient map. For each g ∈ G
of order two, fix a set of coset representatives {x1, · · · , xn} for G/〈g〉 and let ΣG/〈g〉 =

∑n
i=1 xi.

Then there is an isomorphism of abelian groups

 ⊕

g 6=1,g2=1

Z/2


 /(1, · · · , 1) ∼= im(ψ∗ : Ĥ−1(G; Γ(ZG)) → Ĥ−1(G; Γ(ZG/N))

which, on the summand indexed by g, has the form 1 7→ ψ∗(ΣG/〈g〉 · (1� g)).

Proof. Let S be the set given by a representative of g, g−1 for each g ∈ G, g2 6= 1. By [HK88,
Lemma 2.2], we have

ZG⊕
⊕

S

ZG⊕
⊕

g 6=1,g2=1

ZG/(1 − g)ZG ∼= Γ(ZG).

On the first summand the isomorphism is given by h 7→ h⊗ h and on a summand corresponding
to g ∈ G, g 6= 1 the isomorphism sends h to hg ⊗ h+ h⊗ hg. On ZG, the norm map Z → (ZG)G

is an isomorphism, on ZG/(1− g)ZG with g2 = 1, g 6= 1, the norm map Z → (ZG/(1− g)ZG)G is
injective with cokernel Z/2. The cokernel is generated by summing over some set of representatives

of G/〈g〉. As Ĥ−1(G;ZG) = 0 and Ĥ−1(G;ZG/(1− g)ZG) ∼= Ĥ−1(〈g〉;Z) ∼= Z/2, this implies that
there is an isomorphism

⊕

g 6=1,g2=1

Z/2 ∼=
⊕

g 6=1,g2=1

Ĥ−1(G;ZG/(1 − g)ZG) ∼= Ĥ−1(G; Γ(ZG)).

It can be shown (see [HK18, p. 529]) that, on the summand indexed by g, this map is given by:

1 7→ ΣG/〈g〉 7→ ΣG/〈g〉 · (1� g).

Now note that there is an exact sequence 0 → Z → ZG → ZG/N → 0 which has associated
sequences from Lemma 1.3:

0 → Γ(Z)︸ ︷︷ ︸
∼=Z

→ Γ(ZG) → D0 → 0

0 → Z⊗Z (ZG/N)︸ ︷︷ ︸
∼=ZG/N

→ D0 → Γ(ZG/N) → 0

We have that Ĥ−1(G;ZG/N) ∼= Ĥ−2(G;Z) ∼= H1(G;Z) = 0 and so the two long exact sequences

for Tate homology can be combined at the Ĥ−1(G;D0) term to give an exact sequence:

Ĥ−1(G;Z)︸ ︷︷ ︸
∼=Z/|G|

17→N⊗N
−−−−−−→ Ĥ−1(G; Γ(ZG))

ψ∗

−−→ Ĥ−1(G; Γ(ZG/N)).

By exactness, we have that

im(ψ∗ : Ĥ−1(G; Γ(ZG)) → Ĥ−1(G; Γ(ZG/N))) ∼= Ĥ−1(G; Γ(ZG))/N ⊗N.

Let {x1(g), · · · , xn(g)} be coset representatives for G/〈g〉 where g 6= 1, g2 = 1. It can be shown
(again, see [HK18, p. 529]) that:

N ⊗N = N · γ +
∑

g 6=1,g2=1

ΣG/〈g〉 · (1� g)

for some γ ∈ Γ(ZG/N), and so N ⊗ N maps to the diagonal element under the isomorphism
described above. �
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In the case where π is the dihedral group of order 2n for n even, the non-trivial order two
elements are

{yxi : 0 ≤ i < n} ∪ {xn/2}

and we can take Σπ/〈yxi〉 = Nx for all 0 ≤ i < n and Σπ/〈xn/2〉 = (1 + y)
∑n/2−1
i=0 xi.

Lemma 4.12. The elements 2 ·(Nx⊗Nx), 2 ·(σ⊗σ) ∈ Ĥ−1(π; Γ(Zπ/N)) are linearly independent.

Proof. Consider the exact sequence Z → Zπ → Zπ/N and the associated exact sequences Γ(Z) →
Γ(Zπ) → D0 and Z ⊗Z Zπ/N → D0 → Γ(Zπ/N). A pre-image of 2(Nx ⊗ Nx) ∈ D0 in Γ(Zπ) is
given by

2(Nx ⊗Nx)−N �Nx = −yNx�Nx.

Note that on yNx ⊗ Nx ∈ Zπ ⊗Z Zπ the element x acts trivial and that yNx ⊗ Nx is mapped to
Nx ⊗ yNx under y. Hence −yNx�Nx is a fixed point in Γ(Zπ) and thus represents an element of

Ĥ−1(π; Γ(Zπ)).
Under the isomorphism from Lemma 4.11, the element

yNx�Nx = Nx� yNx =
∑

i,j

xj � yxi+j =
∑

i

Nx · (1� yxi)

maps to 1 in all summands index by yxi for some i and to 0 in all other summands. In particular,

2(Nx ⊗Nx) is non-trivial in Ĥ−1(π; Γ(Zπ/N)).

We have with our usual notation σ = (1 + yx)
∑n/2

i=1 x
2i that

2(σ ⊗ σ)−N ⊗N +N � xσ = σ ⊗ σ + xσ ⊗ xσ

which is a fixed point in Γ(Zπ). We claim that, under the isomorphism from Lemma 4.11, this
element maps to 1 in all summands index by yx2i+1 for some i and to 0 in all summands index by
yx2i for some i. It also maps to 1 in the summand indexed by xn/2 if and only if n/2 is even. Let

Nx2 :=
∑n/2
i=1 x

2i, so that σ = (1 + yx)Nx2 . Then

σ ⊗ σ + xσ ⊗ xσ = (1 + x)(σ ⊗ σ)

= (1 + x)(Nx2 ⊗Nx2 + yxNx2 ⊗ yxNx2 +Nx2 � yxNx2).

We have

(1 + x)(Nx2 � yxNx2) = Nx(1� yxNx2) =

n/2∑

i=1

Nx(1� yx2i+1).

Furthermore,

(1 + x)(Nx2 ⊗Nx2 + yxNx2 ⊗ yxNx2) = (1 + x)(1 + yx)(Nx2 ⊗Nx2)

= N(1⊗Nx2) =

n/2∑

i=1

N(1⊗ x2i).

Note thatN(1⊗x2i) = Nxn−2i(1⊗x2i) = N(xn−2i⊗1) and thusN(1⊗x2i+1⊗xn−2i) = N(1� x2i).
Hence if n/2 is odd, we have

n/2∑

i=1

N(1⊗ x2i) =

(n+2)/4∑

i=0

N(1� x2i)

which is trivial in Ĥ−1(π; Γ(Zπ/N)). If n/2 is even, we have

n/2∑

i=1

N(1⊗ x2i) = N(1⊗ xn/2) +

n/4−1∑

i=0

N(1� x2i).
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The last summand is again trivial in Ĥ−1(π; Γ(Zπ/N)) and we have

N(1⊗ xn/2) = (1 + y)

n/2−1∑

i=0

xi(1� xn/2)

which maps to the summand index by xn/2 under the isomorphism from Lemma 4.11. This proves
the claim. As 2(Nx ⊗Nx) maps to 1 in all summands index by yxi for all i, the two elements are
linearly independent. �

Proof of Theorem 4.1. We showed previously that there is an exact sequence:

0 → Ĥ0(π; Γ(ker(d2)))
q̂
−→ Ĥ0(π;D)

∂
−→ Ĥ−1(π; Γ(Zπ/N)) → . . . .

By Proposition 4.3, we have that Ĥ0(π;D) is generated by α1 and α2 with ∂(α1) = 2 · (Nx ⊗Nx)
and ∂(α2) = n · (Nx ⊗Nx) + 2 · (σ ⊗ σ). As n is even, n · (Nx ⊗Nx) is a multiple of 2 · (Nx ⊗Nx).
By Lemma 4.12, 2 · (Nx ⊗ Nx) and 2 · (σ ⊗ σ) are linearly independent and so ∂ is injective. By

exactness, this implies that Ĥ0(π; Γ(ker(d2))) = 0. �

5. An explicit parametrisation for Ω3(Z)

Since coker(d2) ∼= ker(d2)
∗, from dualizing Proposition 3.5 there is an exact sequence of left

Zπ-modules:

0 → (I, 2)∗
j∗

−→ coker(d2)
i∗
−→ (Zπ/N)∗ → 0

where we recall that the original maps from the kernel sequence were i = · ( x−1 1−xy 0 ) and

j = ·
(

0
0
1

)
. Dualizing preserves exactness of the sequence since all modules are Zπ-lattices, as

discussed for example in [Nic20, Remark 1.8]. Our aim will now be to simplify each of the terms
in the sequence above.

We first note that d2 as the dual of d2 is given by transposing the matrix for d2 and apply-

ing the involution. That is, d2 = ·
(

Nx 1+xy 0

−(1+y) x−1−1 1+y

)
. With the same procedure, the dual of

Zπ/N
·(x−1 1−xy 0 )
−−−−−−−−−−→

i
ker(d2) is given by i∗ = ·

(
x−1−1
1−xy

0

)
.

To reduce the number of inverses in the following computation, we substitute x−1 by x and

obtain d2 = ·
(

Nx 1+yx 0
−(1+y) x−1 1+y

)
, and the map coker(d2) → (Zπ/N)∗ is given by i∗ = ·

(
x−1
1−yx

0

)
.

This gives the following exact sequence.

(5.1) 0 → (I, 2)∗
·( 0 0 1 )
−−−−−→ coker(d2)

·

(
x−1
1−yx

0

)

−−−−−−→ (Zπ/N)∗ → 0

Lemma 5.1. There is an isomorphism of Zπ-modules

ϕ : (N, 2) → (I, 2)∗

which sends 2 7→ i(I,2);Zπ, N 7→ p, where i(I,2);Zπ : (I, 2) →֒ Zπ is inclusion and p : (I, 2) → Zπ is

given by p(λ) = N · 1
2ε(λ).

Remark 5.2. The definition of the map p makes sense since ε((N, 2)) ⊆ 2Z. By abuse of notation,
we could also write p = 1

2Nε.

Proof. First recall that Zπ/N ∼= I∗ which sends 1 to the inclusion map iI;Zπ : I →֒ Zπ, and so I∗

as a Zπ-module is generated by iI;Zπ. By dualising the exact sequence 0 → I →֒ (I, 2)
ε
−→ 2Z → 0,

we get

0 → Z
17→p
−−−→ (I, 2)∗

(λiI;Zπ 7→λ)◦iI;(I,2)
−−−−−−−−−−−−→ Zπ/N → 0
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where iI;(I,2) : I →֒ (I, 2) is the inclusion map. Since under the second map (i(I,2);Zπ : (I, 2) →֒
Zπ) 7→ 1 ∈ Zπ/N is a generator, this implies that (I, 2)∗ = 〈i(I,2);Zπ, p〉. To see that ϕ is well-
defined, note that N · i(I,2);Zπ = 2 · p. Hence ϕ is a surjective Zπ-module homomorphism and so
it remains to show injectivity.

To see this, note that the underlying abelian groups of (N, 2) and (I, 2) are both torsion-free and
have rank |π| since Q⊗Z (N, 2) = Q⊗Z (I, 2) = Qπ. This implies that the underlying abelian group
of (I, 2)∗ is also torsion-free of rank |π|. Hence ϕ is bijective since every surjection ϕ : Z|π| → Z|π|

is also a bijection. �

Lemma 5.3. There is an isomorphism of Zπ-moduless (Zπ/N)∗
∼=
−→ I which sends the map f ∈

(Zπ/N)∗ to f(1) ∈ I.

Proof. To show this we can, for example, dualise the isomorphism Zπ/N ∼= I∗ which sends 1 to
the inclusion map I →֒ Zπ. �

We can now substitute (I, 2)∗ ∼= (N, 2) and (Zπ/N)∗ ∼= I in (5.1). For this we need to find an
element in coker(d2) which becomes (0, 0, N) under multiplication by 2. We compute

2(Nx, 0, 0)− (0, 0, N) = (1− yx)(Nx, 1 + yx, 0)−Nx(−(1 + y), x− 1, 1 + y)

in Zπ3. Since (Nx, 1+yx, 0) and (−(1+y), x−1, 1+y) are in the image of d2, this implies (0, 0, N) =
2(Nx, 0, 0) ∈ coker(d2). Thus the following proposition follows from applying Lemmas 5.1 and 5.3
to (5.1).

Proposition 5.4. With respect to the above identification of coker(d2), there is an exact sequence:

0 → (N, 2)

27→(0,0,1)
N 7→(Nx,0,0)
−−−−−−−−→

i′
coker(d2)

−·

(
x−1
1−yx

0

)

−−−−−−−−→
j′

I → 0.

Furthermore, we have j′(1, 0, 0) = x−1 and j′(−y,−1, 0) = y−1 which gives lifts of the Zπ-module
generators for I.

6. Computing Ĥ0(π; Γ(coker(d
2)))

At the end of this section on page 21 we will prove the following:

Theorem 6.1. If π is a dihedral group of order 2n for n even, then Ĥ0(π; Γ(coker(d2))) = 0.

Let E = Γ(coker(d2))/Γ((N, 2)) so that there is an exact sequence

0 → Γ((N, 2))
i′
∗−→ Γ(coker(d2))

q′

−→ E → 0

where q′ is the quotient map. By Lemma 1.3, there is an exact sequence:

0 → (N, 2)⊗Z I
f ′

−→ E
j′
∗−→ Γ(I) → 0.

By Proposition 5.4, the map f ′ is defined by

f ′ : (N, 2)⊗Z I → E = Γ(coker(d2))/Γ((N, 2))

2⊗ (x− 1) 7→ [(0, 0, 1)� (1, 0, 0)]

N ⊗ (x− 1) 7→ [(Nx, 0, 0)� (1, 0, 0)]

2⊗ (y − 1) 7→ [(0, 0, 1)� (−y,−1, 0)]

N ⊗ (y − 1) 7→ [(Nx, 0, 0)� (−y,−1, 0)]

By the long exact sequence for Tate homology applied to the first exact sequence, we have:

(6.1) . . .→ Ĥ0(π; Γ((N, 2)))
î′
∗−→ Ĥ0(π; Γ(coker(d

2)))
q̂′
−→ Ĥ0(π;E) → . . . .

We will now aim to show the following.
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Proposition 6.2. Ĥ0(π;E) = 0.

We begin by noting that Ĥ0(π; Γ(I)) = 0 by [HK88, Theorem 2.1]. By the long exact sequence
on Tate homology for the second exact sequence, we thus have an exact sequence:

. . .→ Ĥ1(π; Γ(I))
∂
−→ Ĥ0(π; (N, 2)⊗Z I)

f̂ ′

−→ Ĥ0(π;E) → 0 → . . .

where ∂ denotes the boundary map. Hence, in order to show Proposition 6.2, it will suffice to
prove that ∂ is surjective.

Lemma 6.3. For every finite group G there is an isomorphism of abelian groups

Gab ⊗Z Z/2 → Ĥ0(G; (N, 2)⊗Z I)

given by g 7→ N ⊗ (g − 1).

Proof. Similarly to the proof of Lemma 4.4, we consider the following two exact sequences. Firstly

the sequence 0 → I → ZG
ε
−→ Z → 0 tensored with (N, 2)⊗Z −:

0 → (N, 2)⊗Z I → (N, 2)⊗Z ZG
id⊗ε
−−−→ (N, 2)⊗Z Z → 0

where the middle term is free by [KPR20, Lemma 4.3]. And secondly, we have:

0 → ZG
·2
−→ (N, 2)

N 7→1
−−−→ Z/2 → 0.

This is exact since N ·ZG = N · Z and, by the second isomorphism theorem for modules, we have
that (N, 2)/2 · ZG ∼= N · Z/(2 · ZG ∩N · Z) = N · Z/2N · Z ∼= Z/2.

By applying dimension shifting twice, we get:

Ĥ0(G; (N, 2)⊗Z I) ∼= Ĥ1(G; (N, 2)) ∼= Ĥ1(G;Z/2)

and Ĥ1(G;Z/2) ∼= Gab ⊗Z Z/2.

Under the isomorphism Gab ⊗Z Z/2 ∼= Ĥ1(G;Z/2) ∼= Ĥ1(G; (N, 2)), and adopting Conven-
tion 1.10, the element g maps to [cg ⊗N ] where cg ∈ C1 is such that d1(cg) = g − 1 ∈ C0. Under

the boundary map Ĥ1(G; (N, 2)) → Ĥ0(G; (N, 2)⊗Z I) induced by the first exact sequence above,
the element maps to N ⊗ (g − 1) as claimed. �

We can now show the following which completes the proof of Proposition 6.2. Recall that, for
the presentation P = 〈x, y | xny−2, xyxy−1, y2〉, we obtained a partial free resolution C∗(P) using
Fox derivatives. In what follows, we will write (C∗, d∗) = (C∗(P), d∗) for 0 ≤ ∗ ≤ 2 and will adopt
Convention 1.10 using this specific resolution.

Lemma 6.4. The boundary map ∂ : Ĥ1(π; Γ(I)) → Ĥ0(π; (N, 2)⊗Z I) is surjective.

Proof. For each g ∈ π of order 2, let cg ∈ C1 be such that d1(cg) = 1− g. Note that the map

d1 ⊗ idΓ(I) : Zπ
2 ⊗Zπ Γ(I) → Zπ ⊗Zπ Γ(I) ∼= Γ(I)

sends cg ⊗ ((1 − g)⊗2) 7→ (1 − g) · (1 − g)⊗2 = 0 and so we have defined an element

γg = [cg ⊗ (1− g)⊗2] ∈ Ĥ1(π; Γ(I)).

Now note that ∂(γg) ∈ Ĥ0(π; (N, 2)⊗Z I) is defined by a diagram chase on the following diagram:

0 C1 ⊗Zπ ((N, 2)⊗Z I) C1 ⊗Zπ E C1 ⊗Zπ Γ(I) 0

0 (N, 2)⊗Z I E Γ(I) 0

d1⊗id

id⊗f ′

d1⊗id

id⊗j′
∗

d1⊗id

f ′ j′
∗

where we use the identification C0 ⊗Zπ M ∼=M in the bottom exact sequence.
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It will be useful to note that, if wg ∈ coker(d2) is a lift of 1− g ∈ I, then

(id⊗j′∗)(cg ⊗ [wg ⊗ wg]) = γg and

(d1 ⊗ id)(cg ⊗ [wg ⊗ wg]) = (1− g) · [wg ⊗ wg].

We will now show that ∂(γyx) = N ⊗ (yx− 1) and ∂(γy) = N ⊗ (y− 1). This finishes the proof
since, by Lemma 6.3 and the fact that π is generated by yx and y, the elements N ⊗ (yx− 1) and

N ⊗ (y − 1) are generators for Ĥ0(π; (N, 2)⊗Z I).
We will begin by computing ∂(γyx). Since wyx = (0, 1, 0) ∈ coker(d2) is a lift of 1 − yx ∈ I, it

suffices to prove that f ′(N ⊗ (yx − 1)) = (1 − yx) · [(0, 1, 0) ⊗ (0, 1, 0)]. Firstly, since (0, yx, 0) ∈
coker(d2) maps to yx − 1 ∈ I, we can take f ′(N ⊗ (yx − 1)) = [(Nx, 0, 0)� (0, yx, 0)]. Secondly,
note that (Nx, 1 + yx, 0) = 0 ∈ coker(d2) and so we have:

(0, 1, 0) = −(Nx, 0, 0)− (0, yx, 0) ∈ coker(d2).

By using this repeatedly inside E, we get:

(1 − yx) · [(0, 1, 0)⊗ (0, 1, 0)] =[(0, 1, 0)⊗ (0, 1, 0)]− [(0, yx, 0)⊗ (0, yx, 0)]

=− [(0, 1, 0)⊗ (Nx, 0, 0)] + [(Nx, 0, 0)⊗ (0, yx, 0)]

=[(Nx, 0, 0)
⊗2] + [(Nx, 0, 0)� (0, yx, 0)]

=[(Nx, 0, 0)� (0, yx, 0)]

where we have used for the last equality that [(Nx, 0, 0)
⊗2] = 0 ∈ E since i′(N) = (Nx, 0, 0).

We will now compute ∂(γy). Similarly, we can take wy = (y, 1, 0) to be a lift of y − 1 ∈ I so
that f ′(N ⊗ (y − 1)) = [(Nx, 0, 0)� (y, 1, 0)]. We now compute:

(1 − y) · [(y, 1, 0)⊗ (y, 1, 0)]

= [(y, 1, 0)⊗ (y, 1, 0)]− [(1, y, 0)⊗ (1, y, 0)]

= [(y, 1, 0)⊗ (y, 1, 0)] + [(1, y, 0)⊗ (y, 1, 0)]− [(1, y, 0)⊗ (1 + y, 1 + y, 0)]

= [(1 + y, 1 + y, 0)⊗ (y, 1, 0)]− [(1, y, 0)⊗ (1 + y, 1 + y, 0)]

= [(1 + y, 1 + y, 0)� (y, 1, 0)]− [(1 + y, 1 + y, 0)⊗2]

= [(1 + y, 1 + y, 0)� (y, 1, 0)]

where we have used in the last step that [(1 + y, 1 + y, 0)⊗2] = 0 ∈ E since j′(1 + y, 1 + y, 0) = 0
and so (1 + y, 1 + y, 0) ∈ im(i′). Now note that

(y + 1, y + 1, 0) = (0, y + x, 1 + y) = (−yNx, 0, 1 + y) = (−Nx, 0, 1 + y) ∈ coker(d2),

where the first uses that (−1−y, x−1, 1+y) is trivial, the second uses that y+x = y(1+yx) and that
(Nx, 1+ yx, 0) is trivial, and the last line uses that 0 = (1− yx)(Nx, 1 + yx, 0) = (Nx − yNx, 0, 0).
In particular, this shows that:

(1− y) · [(y, 1, 0)⊗ (y, 1, 0)] = f ′(N ⊗ (y − 1)) + [(0, 0, 1 + y)� (y, 1, 0)].

Now note that (id⊗j′∗)(cy ⊗ [(0, 0, 1)� (1, y, 0)]) = 0 and

(d1 ⊗ id)(cy ⊗ [(0, 0, 1)� (1, y, 0)]) = (1 − y) · [(0, 0, 1)� (1, y, 0)]

= −[(0, 0, 1 + y)� (y, 1, 0)] + [(0, 0, 1)� (1 + y, 1 + y, 0)]

= −[(0, 0, 1 + y)� (y, 1, 0)]

since j′(0, 0, 1) = 0 and j′(1 + y, 1 + y, 0) = 0 implies that (0, 0, 1), (1 + y, 1 + y, 0) ∈ im(i′) and so
[(0, 0, 1)� (1 + y, 1 + y, 0)] = 0 ∈ E.

Hence, if we take γ̃y = cy ⊗ [(0, 0, 1)� (1, y, 0)]+ cy⊗ [(y, 1, 0)⊗ (y, 1, 0)] ∈ C1 ⊗E to be our lift
of γy ∈ C1⊗Γ(I), then (d1⊗ id)(γ̃y) = f ′(N⊗ (y−1)) and so ∂(γy) = N⊗ (y−1), as required. �
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In order to prove Theorem 6.1, we will now calculate Ĥ0(π; Γ((N, 2))). Recall that there is an
exact sequence:

0 → Z
N
−→ (N, 2)

27→1
−−−→ Zπ/N → 0.

Let F = Γ((N, 2))/Γ(Z) so that

(6.2) 0 → Γ(Z)︸ ︷︷ ︸
∼=Z

N∗−−→ Γ((N, 2))
q0
−→ F → 0

where q0 is the quotient map. By Lemma 1.3 again, we get the exact sequence:

0 → Z⊗Z (Zπ/N)︸ ︷︷ ︸
∼=Zπ/N

f0
−→ F → Γ(Zπ/N) → 0

where f0 : Zπ/N → F sends 1 7→ [2�N ].

Lemma 6.5. Ĥ0(π;F ) is generated by [2�N ].

Proof. First note that Z⊗Zπ Zπ/N ∼= Z/|π| ∼= Z/2n and so

Ĥ0(π;Zπ/N) = Tors(Z⊗Zπ Zπ/N) ∼= Z/2n.

By [HK88, Theorem 2.1], we have that Ĥ0(π; Γ(Zπ/N)) = 0 and so the map

f̂0 : Z/2n ∼= Tors(Z⊗Zπ Zπ/N) → Tors(Z ⊗Zπ F )

is surjective. Hence f̂0(1) = 2�N is a generator of Ĥ0(π;F ). �

Lemma 6.6. Ĥ0(π; Γ((N, 2))) = Tors(Z⊗Zπ Γ((N, 2))) is generated by

α =
n

2
· (2�N)−N ⊗N.

Proof. Since Z ⊗Zπ Γ(Z) ∼= Z is torsion-free, the long exact sequence on Tate homology coming
from the exact sequence (6.2) is:

0 → Ĥ0(π; Γ((N, 2)))
q̂0
−→ Ĥ0(π;F )

∂
−→ Ĥ−1(π; Γ(Z)) → . . . .

By dimension shifting, we have that

Ĥ−1(π; Γ(Z)) ∼= Ĥ−1(π;Z) ∼= Ĥ0(π;Zπ/N) ∼= Z/2n

and, with respect to the identification Ĥ−1(π; Γ(Z)) = Γ(Z)π/ im(N), it is generated by 1 ⊗ 1. It

follows from a straightforward diagram chase that ∂([2�N ]) = 4 ·(1⊗1). Since [2�N ] ∈ Ĥ0(π;F )
is a generator by Lemma 6.5, this implies that ker(∂) = 〈n2 · [2�N ]〉.

Let α = n
2 · (2�N)−N ⊗N ∈ Z⊗Zπ Γ((N, 2)). Then

4α = 2(N �N)− 4(N ⊗N) = 0

and so α ∈ Tors(Z ⊗Zπ Γ((N, 2))). Since q̂0(α) = n
2 · [2�N ], this implies that α generates

Ĥ0(π; Γ((N, 2))). �

Remark 6.7. We were not able to detect whether the generator α is non-zero in Ĥ0(π; Γ((N, 2))),

and hence we do not know whether the module Ĥ0(π; Γ((N, 2))) is trivial. Nevertheless, we can
finish the proof of Theorem 6.1 by showing that the generator α maps to zero under the map

î′∗ : Ĥ0(π; Γ((N, 2))) → Ĥ0(π; Γ(coker(d
2))) in the long exact sequence (6.1).

Lemma 6.8. î′∗ = 0, i.e. î′∗(α) = 0 ∈ Ĥ0(π; Γ(coker(d
2))).
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Proof. By Lemma 6.6, we know that Ĥ0(π; Γ((N, 2))) is generated by α and so im(î′∗) is generated
by

α̂ = î′∗(α) =
n

2
· ((0, 0, 1)� (Nx, 0, 0))− (Nx, 0, 0)

⊗2.

We will now show that α̂ is trivial. Consider the following elements in Γ(coker(d2)):

c1 = (Nx, 0, 0)
⊗2 + (Nx, 0, 0)� (0, yx, 0)

= (1 − yx) · (0, 1, 0)⊗2

and

c2 = (−Nx, 0, 0)� (y, 1, 0)− (−Nx, 0, 1 + y)⊗2 + (0, 0, 1)� (−Nx, 0, 1 + y)

= (1− y) · ((0, 0, 1)� (1, y, 0) + (y, 1, 0)⊗2)

where the second equalities follow from the calculations in Lemma 6.4. Hence we have that the

classes represented by c1, c2 ∈ Ĥ0(π; Γ(coker(d
2))) are trivial.

Since (Nx, 0, 0) = (yNx, 0, 0) ∈ coker(d2), we have in coker(d2):

yx · c1 + c2 = (−Nx, 0, 0)� (y, 0, 0) + (−Nx, 0, 1 + y)� (0, 0, 1) + (Nx, 0, 0)
⊗2 − (−Nx, 0, 1 + y)⊗2

= (−Nx, 0, 0)� (y, 0, 0) + (Nx, 0, 0)� (0, 0, y) + (0, 0, 1 + y)� (0, 0, 1)− (0, 0, 1 + y)⊗2

= (−Nx, 0, 0)� (y, 0, 0) + (Nx, 0, 0)� (0, 0, y)− (0, 0, y)⊗2 + (0, 0, 1)⊗2

Let v1 = (−Nx, 0, 0)� (y, 0, 0) + (Nx, 0, 0)� (0, 0, y). Since

c3 = −(0, 0, y)⊗2 + (0, 0, 1)⊗2 = 0 ∈ Ĥ0(π; Γ(coker(d
2))),

the above implies that v1 = yx · c1 + c2 − c3 = 0 ∈ Ĥ0(π; Γ(coker(d
2))).

Let S :=
∑n/2−1

i=0 xi and let v2 = (1 − xn/2) · (S, 0, 0)⊗2 so that v2 = 0 ∈ Ĥ0(π; Γ(coker(d
2))).

Now, we have:

v2 = (S, 0, 0)⊗2 − (Nx − S, 0, 0)⊗2

= (Nx, 0, 0)� (S, 0, 0)− (Nx, 0, 0)
⊗2.

Using (Nx, 0, 0) = (yNx, 0, 0) ∈ coker(d2) again,

Sy · v1 + v2 = (−yNx, 0, 0)� (S, 0, 0) + (yNx, 0, 0)� (0, 0, S) + v2

= (−Nx, 0, 0)� (S, 0, 0) + (Nx, 0, 0)� (0, 0, S) + v2

= (Nx, 0, 0)� (0, 0, S)− (Nx, 0, 0)
⊗2

= S(Nx, 0, 0)� (0, 0, 1)− (Nx, 0, 0)
⊗2

= S(0, 0, 1)� (Nx, 0, 0)− (Nx, 0, 0)
⊗2.

Finally, note that α̂ = Sy · v1 + v2 = 0 ∈ Ĥ0(π; Γ(coker(d
2))), as required. �

Proof of Theorem 6.1. We showed previously that there was an exact sequence:

Ĥ0(π; Γ((N, 2)))
î′
∗−→ Ĥ0(π; Γ(coker(d

2)))
q̂′
−→ Ĥ0(π;E).

By Proposition 6.2, we have that Ĥ0(π;E) = 0 and, by Lemma 6.8, we have that î′∗ = 0. By

exactness, this implies that Ĥ0(π; Γ(coker(d
2))) = 0. �
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