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Abstract: The intensity of influenza epidemics varies significantly from year to year among regions
with similar climatic conditions and populations. However, the underlying mechanisms of the
temporal and spatial variations remain unclear. We investigated the impact of urbanization and
public transportation size on influenza activity. We used 6-year weekly provincial-level surveillance
data of influenza-like disease incidence (ILI) and viral activity in northern China. We derived
the transmission potential of influenza for each epidemic season using the susceptible–exposed–
infectious–removed–susceptible (SEIRS) model and estimated the transmissibility in the peak period
via the instantaneous reproduction number (Rt). Public transport was found to explain approximately
28% of the variance in the seasonal transmission potential. Urbanization and public transportation
size explained approximately 10% and 21% of the variance in maximum Rt in the peak period,
respectively. For the mean Rt during the peak period, urbanization and public transportation
accounted for 9% and 16% of the variance in Rt, respectively. Our results indicated that the differences
in the intensity of influenza epidemics among the northern provinces of China were partially driven
by urbanization and public transport size. These findings are beneficial for predicting influenza
intensity and developing preparedness strategies for the early stages of epidemics.

Keywords: seasonal influenza; human mobility; driver; China

1. Introduction

In temperate regions, the peak influenza season occurs in the winter months [1], and
the scale of seasonal influenza epidemics can vary greatly between provinces and years [2,3].
However, little is known about the drivers of this variation. A better understanding of
the factors that govern epidemic intensity is necessary for the public health system to
accurately and promptly prepare for seasonal influenza epidemics.

Climatic factors are important drivers of influenza epidemics in temperate regions.
Experimental studies have shown that a reduction in relative humidity improves the
viability and transmission of influenza virus aerosols [4,5]. Epidemiological evidence also
indicates that a reduction in relative humidity is associated with a higher risk of influenza
A in the population [6]. Urbanization and human mobility are also believed to be drivers
of influenza epidemics [7–9]. A simulation-based investigation in Australia highlighted
that the increased peak prevalence and faster spreading rate of influenza pandemics could
partially be attributed to an increase in population fractions living in cities [7]. A study of
weekly incidence data from the United States found that the size of the urban population
was positively associated with the incidence of city-level influenza and further showed
that the intensity of influenza epidemics was shaped by urbanization and humidity [10].
Empirical evidence revealed that airline volume was a significant predictor of the spread of
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influenza between regions [8], and high mobility within countries (internal commuting)
could accelerate epidemics [9]. However, these studies focused mainly on the impact of
human mobility on interregional influenza epidemics. Evidence regarding the influence of
human mobility on intracity or intraprovincial epidemics is limited.

Recent studies on influenza epidemics have revealed unexplained differences between
provinces with similar urbanization and climate conditions in China [2,3,11], suggesting
that there are other unidentified factors driving the differences in influenza epidemics
between provinces. China is a vast country that comprises provinces with different climatic
and economic backgrounds. These factors have led to varying levels of heterogeneity
regarding population structure and mobility. Therefore, we assumed that the unexplained
interprovince differences in influenza epidemic intensity may be caused by the hetero-
geneity of population mobility in provinces with similar climates and urbanization levels.
Higher human mobility inside a province increases close contact between people, and thus
the transmission of the influenza virus among people may be enhanced.

In the present study, we explored the above hypothesis by using 6 years (2012 to 2017) of
data on weekly influenza-like disease and virus activity in 14 provinces in northern China.

2. Methods
2.1. Data

The temperature of both the environment and the dew point for each province were
obtained from the China Meteorological Administration to calculate the relative humidity,
using the R package ‘humidity’ (R software, version 4.2.1). The approximating function can
closely simulate relative humidity: r(t) = u × cos × (2 × π(t − 5))/52 + m. Census data,
including population size, urbanization, and public transportation data, were recovered
from the China National Bureau of Statistics [12]. Weekly influenza-like disease incidence
rate data (ILI) and viral detection positive rate data for each province were obtained from
the Chinese National Influenza Surveillance Network. Referring to previous studies [13,14],
proxy measures of the weekly incidence rate (referred to as the ‘incidence rate’) were
obtained by multiplying the ILI percentage among patients visiting sentinel hospitals
with the proportions of influenza-positive specimens. This proxy is considered a precise
representation of the activity of influenza infection [15,16].

2.2. SEIRS Model

Referring to previous studies [3,10], we constructed a susceptible–exposed–infectious–
removed–susceptible (SEIRS) compartmental model to work with province-level weekly
incidence rate data (the ILI rate × the proportions of influenza-positive specimens). Suscep-
tible (S) refers to individuals at risk of infection with influenza, representing approximately
90% of the total population. Exposed (E) refers to people in the latent period. Infectious (I)
refers to people who have been infected. Removed (R) refers to people who have recovered
or died. The SEIRS model consists of the following ordinary differential equations:

dS/dt = −N−1βSI + δ(N − S − E − I)

dE/dt = N−1βSI − εE

dI/dt = εE − γI

dR/dt = γI

N = S + E + I + R

where δ is the rate of reinfection, which is equal to 1/52; ε is the rate of infection after
exposure, which is equal to 7; and γ is the rate of recovery from infection, which is equal to
7/2. The values of δ, ε, and γ were taken from Dalziel’s research [10]. The generation time
was assumed to be 3 days.

After a certain period [17,18], the immunity of infected individuals weakens and these
individuals enter the susceptible compartment. New infections are generated when a
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susceptible individual comes into contact with an infected individual at a rate of βSI/N,
where N refers to the size of the population. In a stable population, the incidence of new
infections is governed by the transmission function β(t) = g+σ−ωr(t), where g refers to the
maximum gain in the transmission potential at 0 relative humidity andω refers to the rate
of the loss of viral viability caused by relative humidity. The transmission function β(t) is
composed of the sum of two parts: a seasonally invariant base transmission potential g,
which refers to transmission between individuals under the same climatic conditions (in
this case, the impact of climate is 0), and an additional transmission governed by relative
humidity, σ−ωr(t), which increases with the decrease in relative humidity in Chinese
provinces in winter and thus increases the risk of transmission between individuals under
different climate conditions.

2.3. GLM Model

A generalized linear model (GLM) of the SEIRS model was further constructed to
explore the patterns of influenza dynamics by fitting the incidence data. GLM avoids the
defects associated with the nonlinearity of the SEIRS model. The corresponding generalized
linear model is as follows:

Yn+1,j = a · Wnj + b · Xnjrnj + c · XnjPnj + Qnj

where Ynj = log[Inj], Inj indicate the number infected in week n of season j. We ob-
tained Inj by multiplying the incidence rate (the ILI rate × the proportions of influenza-
positive specimens) with the province population size. The parameter vector a is given by
a = [log(g), log(g + σ1), . . . , log(g + σ6)], which is estimated from the SEIRS model. The
design vector Wnj with seven elements indicates whether the data point associated with
(n,j) is in the off-peak regime or in one of the six influenza seasons. b and c are parameter
vectors with two elements, b = [ω1, ω2] and c = [ρ1, ρ2], where b is obtained by fitting
the relationship between relative humidity and viral viability and c is obtained from the
observed incidence data. Xnj is a design vector with two elements that indicate whether
the point associated with (n,j) is in the off-peak or peak influenza season. Pnj indicates cu-
mulative incidence, Pnj =

1
N Σn

k=0 Ikj. Onj is an offset term Onj = log(<S0j>) − log(N) + αYnj,
where <S0j> = 0.9N refers to the expected population-level initial susceptibility each season,
taken from Wang and colleagues’ study [19]. The influenza peak was defined as extending
from 5 weeks before the peak incidence rate observed in each season to 5 weeks after [20].
A detailed explanation of the GLM model was provided in a previous study [10].

2.4. Estimation of Transmissibility

The weekly instantaneous reproduction number Rt was estimated according to the
Bayesian framework applied to the branching process model proposed by Cori et al. [21],
which is an extension of Fraser method [22]. Fraser proposed that the renewal estimation
equation for the Rt of an epidemic could be written as:

Rt =
It

∑m
s=0 ws It−s

(1)

where It refers to the number of reported cases (here, the incidence rate times a constant)
between time t and time t + 1, and ws refers to the generation time distribution, such
that ∑m

s=0 ws = 1. The expected incidence at time t is Poisson distributed with a mean
(Rt ∑m

s=0 ws It−s). The transmissibility is assumed to be constant over the time period
[t − τ, t] and measured by R[t−τ,t]; then, the likelihood of It−τ, . . . . . . . . . , It given the
reproduction number R[t−τ,t] and I0, . . . . . . . . . , It−τ−1 is as follows:

P(It−τ, . . . . . . . . . , It

∣∣∣I0, . . . . . . . . . , It−τ−1, w, R[t−τ,t]) =
t

∏
s=t−τ

e−R[t−τ,t]Λs (R[t−τ,t]Λs)
Is

Is!
(2)
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where Λs = ∑m
s=0 ws It−s. The generation time distribution is a gamma distribution with

a mean of 3 days (SD = 1.5 d) and is assumed to be constant throughout an epidemic. A
Bayesian framework with a gamma-distributed prior with parameters (a, b) was developed
for R[t−τ,t], and the posterior joint distribution of R[t−τ,t] can be derived as proportional to

R[t−τ,t](posterior) = R[t−τ,t]
a+∑t

s=t−τ Is−1 e− R[t−τ,t](∑
t
s=t−τ Λs+

1
b )

t

∏
s=t−τ

Λs
Is

Is!
(3)

Equation (3) indicates that the posterior distribution of R[t−τ,t] is a gamma distribution

with the parameters (a + ∑t
s=t−τ Is, (∑t

s=t−τ Λs +
1
b )

−1
).

2.5. Regression Analysis with Transmissibility β and Rt of Each Influenza Season

A simple linear regression model was used to explore the relationship between driving
factors and β. R-squared values (R2) were used to quantify the impact of individual drivers.
To make the results more intuitive, we used the same method to further quantify the rela-
tionship between each driving factor and the simulated Rt. Because public transportation
is easily affected by population size and urbanization, for example, in provinces with larger
population sizes and higher urbanization, the accessibility of public transport is higher and
more people may use public transportation. Therefore, we can more accurately represent
human mobility per unit density. A combined mobility index, h, was calculated using
population size (PS), urbanization (U), and public transportation (PT) to represent human
mobility more accurately: h = log

(
PS∗U

PT

)
. A higher value of h indicates more frequent

population mobility. Differences in Akaike information criteria (∆AIC) were used to esti-
mate the relative quality of the GLM, where higher values indicate models with poorer
relative support.

3. Results

Annual data on population size, urbanization, and public transportation size are
presented in Table 1. As shown in Figure 1, influenza incidence varies with urbanization,
climate, and transportation size. The maximum and mean incidence of influenza at peak
times tended to be higher in provinces with larger magnitudes of urbanization and larger
transportation sizes (Figure 1A–D).

Table 1. Characteristics of the fourteen provincial-level administrative divisions during 2012–2017.

Year Province

Beijing Tianjin Hebei Shanxi
Inner

Mongo-
lia

Liaoning Jilin Heilong
jiang Shandong Henan Shaanxi Gansu Qinghai Ningxia

Population
size
(mil-
lions)

2012 20.69 14.13 72.88 36.11 24.90 43.89 27.50 38.34 96.85 94.06 37.53 25.78 5.73 6.47
2013 21.15 14.72 73.33 36.30 24.98 43.90 27.51 38.35 97.33 94.13 37.64 25.82 5.78 6.54
2014 21.52 15.17 73.84 36.48 25.05 43.91 27.52 38.33 97.89 94.36 37.75 25.91 5.83 6.62
2015 21.71 15.47 74.25 36.64 25.11 43.82 27.53 38.12 98.47 94.80 37.93 26.00 5.88 6.68
2016 21.73 15.62 74.70 36.82 25.20 43.78 27.33 37.99 99.47 95.32 38.13 26.10 5.93 6.75
2017 21.71 15.57 75.20 37.02 25.29 43.69 27.17 37.89 100.06 95.59 38.35 26.26 5.98 6.82

Urbanization
(%)

2012 86.20 81.55 46.80 51.26 57.14 65.65 53.70 59.60 52.43 42.43 50.02 38.75 47.44 50.67
2013 86.30 82.01 48.12 52.66 58.71 66.45 54.20 57.40 53.75 43.80 51.31 40.13 48.51 52.01
2014 86.35 82.27 49.33 53.79 59.51 67.05 54.81 58.01 55.01 45.20 52.57 41.68 49.78 53.61
2015 86.50 82.64 51.33 55.03 60.30 67.35 55.31 58.80 57.01 46.85 53.92 43.19 50.30 55.23
2016 86.50 82.93 53.32 56.21 61.19 67.37 55.97 59.20 59.02 48.50 55.34 44.69 51.63 56.29
2017 86.50 82.93 55.01 57.34 62.02 67.49 56.65 59.40 60.58 50.16 56.79 46.39 53.07 57.98

Public
trans-
porta-

tion size
(mil-
lions)

2012 7615.78 1299.51 2039.54 1248.38 963.49 4283.67 1705.61 2239.56 3982.68 2637.18 2545.99 1028.44 391.35 391.35
2013 8047.75 1609.27 2027.27 1563.64 1086.85 4356.33 1713.78 2381.56 4113.11 2661.57 2507.32 1107.11 417.60 417.60
2014 8158.48 1810.72 2053.42 1314.96 1070.99 4401.65 1768.67 2513.60 4038.54 2638.19 2692.46 1137.38 349.71 427.44
2015 7383.84 1858.13 1872.08 1321.32 1076.74 4347.10 1754.52 2574.76 3900.26 2570.70 2692.03 1098.23 379.09 423.77
2016 7349.53 1807.90 1860.48 1263.50 1145.88 4242.62 1713.69 2534.20 3911.36 2539.10 2694.06 1145.49 377.68 418.98
2017 7133.96 1732.79 1818.29 1271.83 1083.90 4328.24 1772.18 2550.84 3967.77 2594.21 2817.40 1249.46 367.10 407.44

The SEIRS model was used to fit the influenza incidence rate data to explore the
reasons for the temporal and spatial differences in the intensity of the influenza epidemics.
As described in the Methods section, the transmission potential of each influenza season
in each province could be obtained using the SEIRS model. Influenza epidemics vary in
intensity by year and province, indicating a difference in transmission potential. The SEIRS
model is a common method for fitting influenza time series data. However, the model is
nonlinear; thus, minor changes in input parameters can cause significant changes in the
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prediction results. Therefore, a general function of the SEIRS model was constructed to
work with province-level influenza incidence data. The results are shown in Figure 2. Ten
fitted parameters (Supplementary Table S1) were obtained using province-level time series
models. The results were obtained for the following three provinces randomly selected from
the total of 14: Beijing, Heilongjiang, and Ningxia. Spearman’s r = 0.83 for the comparison
of the observed and predicted influenza incidence (Figure 3).
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Figure 1. Bubble charts demonstrating the incidence rate in provinces with different levels of
urbanization, transport, and relative humidity (A–F). Provinces with higher max and mean incidence
tended to have a higher magnitude of urbanization (A,B), lower relative humidity (C,D), and larger
transportation size (E,F).

The early transmission potential obtained by SEIRS is only a mathematical value,
and its practical significance is limited. In this regard, we further explored the factors
that influenced the transmission potential. As shown in Figure 4, urbanization and public
transportation size could explain 1.28% and 27.62% of the variation in the annual trans-
mission potential, respectively. Close contact between individuals is a prerequisite for
influenza transmission. The frequency of close contact can directly affect the transmis-
sion potential of the influenza virus between persons. A larger public transport system
does not necessarily mean that contact between persons is more frequent. To meet the
commuting needs of residents, public transportation may be more extensive in areas with
large populations. The size of public transportation per unit population in urban areas
can reduce the impact of population size to better represent the transmission potential of
contact between people. Urbanization, population size, and public transportation size were
used to calculate the combined index h, which indicated population mobility. The results
showed a positive correlation between the combined index h and the annual transmission
potential, R2 = 0.1349 (p < 0.05).
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Figure 4. Urbanization, transportation size, and combined index estimated from census data pre-
dicted transmission potential, maximum Rt, and mean Rt during peak period of influenza season
(A–L). Gray points show transmission potential, maximum Rt, and mean Rt during peak period
of influenza season estimated from the influenza incidence rate. Red lines refer to the prediction
for transmission potential during peak period of influenza season (A–C). Purple lines refer to the
prediction for maximum Rt during peak period of influenza season (D–F). Green lines refer to the
prediction for mean Rt during peak period of the influenza season (G–L).

In addition, the association between urbanization, public transportation size, and the
combined index h was also examined with the maximum Rt and mean Rt at the peak of
each influenza season. Urbanization and public transportation size were significant drivers
of max Rt and mean Rt during the peak period of each influenza season.

4. Discussion

Weekly surveillance data on outpatient ILI and virus activity from 14 provinces in
northern China revealed that the annual transmission potential was positively associated
with the size of public transportation. The maximum Rt and mean Rt of each influenza
season during the peak period estimated from province-level incidence data were positively
correlated with urbanization and the size of public transportation. The results presented
here suggest that, at least in northern China, the intensity of the influenza epidemic may be
governed by urbanization and intra-city human mobility.
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Climate conditions, urbanization, and human mobility play a significant role in the
spread of seasonal influenza. Relative humidity is an important environmental factor that
affects the survival of influenza viruses in aerosols, and it is also a crucial driving factor for
influenza seasonality [23]. In the current study, we controlled for the influence of climate on
transmission by fitting approximate functions. Therefore, the annual transmission potential
refers to the comprehensive influence of other factors, excluding climate conditions.

The instantaneous reproduction number (Rt) is typically used to characterize real-time
transmissibility. A higher Rt value indicates a higher transmission potential. The pathogen
spreads when Rt > 1 and is under control when Rt < 1. We calculated the maximum Rt and
the mean Rt of each influenza season for 14 provinces to quantify the transmissibility at
peak times.

Further analysis showed that the size of public transport was positively correlated
with the yearly transmission potential. This was consistent with the results of a previous
simulation study [24]. Globally, people traveling by air cause the transmission of pandemic
and seasonal influenza viruses, especially the A/H3N2 viruses [25–30]. At the regional
scale, the spatial transmission of influenza is dominated by patterns of human contact,
including school closure times and commute patterns [2,31,32]. In the current study, the
maximum peak Rt and the mean peak Rt of the influenza season were positively associated
with the size of public transport, which could explain the variations for more than one fifth
of the maximum peak Rt variations and about one fifth of the peak mean Rt, respectively.
These results provide new evidence for understanding the impact of human mobility on
influenza epidemics.

Previous studies have examined the impact of urbanization on the intensity or epi-
demic patterns of influenza [2,7,10]. However, the definitions of urbanization vary between
studies. For example, in Dalziel et al.’s study, urban population size is regarded as an
indicator of urbanization [10]. In the studies by Lei and Zachreson, urbanization refers to
the proportion of the total population living in urban areas [7,10]. In our study, different
urbanization indicators were used to evaluate the relationship between urbanization and
influenza transmission. Our results showed that the proportion of the total population liv-
ing in urban areas was also positively correlated with the maximum peak Rt and the mean
peak Rt of the influenza season. However, we did not find a consistent positive relationship
between urban population density, urban population size, and influenza transmission
(Supplementary Figures S2 and S3). Our findings suggest that the proportion of the total
population living in urban areas may be a better indicator for studying the relationship
between urbanization and influenza transmission in northern China compared with urban
population size and urban population density.

Two reasons may be responsible for this result. First, regarding infectious diseases,
current explosive trends in urbanization mean that more people are concentrated in urban
regions. Coupled with the spread of suburbs, this can lead to large hubs in the commuter in-
teraction network, which can cause a faster spread of infectious diseases between work and
home [33,34]. Second, public transportation (buses and subways) is a common means of
traveling in many cities around the world; thus, if an infected person interacts closely with
other users of public transportation on a bus or subway, combined with insufficient ventila-
tion and overcrowded conditions, it can increase the risk of influenza for other uninfected
people and lead to the spread of influenza among colleagues and family members [35].

A higher transmission potential and Rt indicate that the number of infected cases will
increase in a short period of time, requiring increased surge capacity in the public health
system, including primary care facilities and clinical laboratories [36]. The significance of
our study is that, when the influenza season arrives, it can help predict the intensity of the
influenza epidemic according to urbanization and human mobility to prepare for its medical
and social impact in advance. Additionally, obtaining information on transmissibility at
peak times is beneficial for mitigating influenza spread by vaccination and taking non-
pharmaceutical interventions (NPIs) in the early stages of epidemics [37,38].
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A potential limitation of our study was that school holidays were not included in our
model. Previous studies have emphasized the importance of children in the spread of in-
fluenza, and the impact of school holidays and school closures on transmissibility [16,39,40].
Additionally, we did not have information on the impact of antigen drift and host immu-
nity on epidemics. However, a study based on the city-level analysis of the subtypes and
antigenical characteristics of the influenza virus in Australia demonstrated that antigenic
novelty has limited effects on epidemic size. It suggested that other factors drive influenza
epidemics apart from host immunity at the local scale in temperate areas [41].

5. Conclusions

In conclusion, urbanization and human mobility were positively associated with the
intensity of influenza. Increased commuting by public transport (including buses and
subways) can accelerate the spread of influenza. Monitoring flows for public transport may
be conducive to early detection and response to influenza epidemics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14112563/s1. Figure S1: The map indicating the provinces
studied in northern China. The color indicates the climatic domain: cold- temperate (black); mid-
temperate (blue); warm-temperate (green); Table S1: Summary statistics on the means of fitted
model parameters across provinces; Figure S2: The association for urban population density with
transmission potential (A), maximum Rt (B) and mean Rt (C) in peak time of influenza season; Figure
S3: The association for urban population size with transmission potential (A), maximum Rt (B) and
mean Rt (C) in peak time of influenza season.
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