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Second-order gravitational self-force in a highly regular gauge

by Samuel David Upton

Gravitational-wave emission from extreme-mass-ratio inspirals (EMRIs) is expected to
be a key source for the Laser Interferometer Space Antenna (LISA), a future space-based
gravitational-wave detector. In this thesis, we detail an approach to model these systems
through a perturbative method known as gravitational self-force theory. Accurate EMRI
science requires us to go to second order in perturbation theory, which introduces a
number of obstacles. One major problem that we focus on ameliorating in this thesis is
the strong divergence encountered on the worldline of the small object. This divergence
creates a severe computational cost in numerical simulations and hinders the rapid
calculations that are required for waveform generation for LISA. However, building on
previous work by Pound [Phys. Rev. D 95, 104056 (2017)], we develop a class of “highly
regular” gauges with a weaker singularity structure. We calculate all orders of the metric
perturbations required for numerical implementation and generate fully covariant and
generic coordinate-expansion expressions for the metric perturbations in this class of
gauges. Not only will the weaker divergences enable quicker numerical calculations, they
also allow us to rigorously derive a pointlike second-order stress-energy tensor for the
small object. We demonstrate that the form of this second-order stress-energy tensor is
valid in any smoothly related gauge and, using a specific distributional definition, also
valid in a widely used gauge in self-force calculations, the Lorenz gauge. This stress-
energy tensor can then be used as part of the source when solving for the full, physical
fields at second order and we outline how this can be done through the introduction of a
counter term that cancels the most singular part of the second-order source in the Lorenz
gauge. Finally, we present the calculation of the gauge vector required to transform
from the Lorenz gauge to the highly regular gauge and provide it in mode-decomposed
form for the case of quasicircular orbits in Schwarzschild spacetime. While this work is
motivated by EMRIs, much of the work in this thesis is valid for a small object in any
vacuum background spacetime with an external lengthscale much larger than the size of
the small object.
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Chapter 1

Introduction

Gravitational waves are ripples in the fundamental fabric of spacetime and were first
predicted by Einstein in 1916 [1, 2] (translated in [3, 4]). These propagate at the speed of
light, a fact which has only recently been experimentally confirmed [5] with the advent of
the field of gravitational-wave astronomy. Gravitational waves are emitted from sources
that feature accelerations of objects with non-symmetric properties. Astrophysical
systems exhibiting this feature include supernovae collapse, rotating neutron stars or,
primarily of interest to us, neutron star/black hole binaries [6, 7].

One particular class of binary sources is that of extreme-mass-ratio inspirals (EMRIs) [8].
In an EMRI, a black hole or neutron star of hundreds or thousands of solar masses slowly
inspirals into a supermassive black hole over the course of a year, continuously emitting
gravitational waves. The primary motivation for the work in this thesis is the modelling
of these EMRI systems.

However, much of the work is more general than just being applicable to EMRIs. Many
of the results in this thesis are valid for an object in a vacuum spacetime whose size is
much smaller than some external lengthscale, e.g. the orbital separation between two
bodies. In the case of an EMRI, this lengthscale is the large mass of the central black
hole. The EMRI problem connects back to fundamental questions in general relativity,
such as how extended, self-gravitating bodies move through spacetime and whether
we can idealise them as point particles. In this thesis, we aim to tackle foundational
problems in order to reduce the challenge of modelling these systems.

1.1 Extreme-mass-ratio inspirals

In an EMRI, an object of mass m ∼ 1–102M⊙ slowly spirals into an object of mass
M ∼ 105–107M⊙. The smaller object is a compact object, such as a black hole or neutron
star, whereas the larger object is a supermassive black hole, believed to exist in the
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centre of most galaxies [9–11]. In EMRI modelling, the geometry of the central black
hole is taken to be described by the Kerr metric [12]. Some examples of EMRI formation
processes are described in Refs. [6, Sec. 4.2, 13, Ch. 3.2], but the main formation channel
is believed to be direct capture of a nearby compact object by the supermassive black
hole. In this process, if a compact object travels sufficiently close to the supermassive
black hole, then its orbit can become bound to it.

To the lowest approximation, the trajectory of the bound small object is described by the
geodesic of a test particle in the Kerr spacetime. These geodesics involve complicated and
intricate motion and are described by three constants of motion (up to initial conditions):
the orbital energy, E, the azimuthal angular momentum, Lz, and the Carter constant,
Q [14]. The motion is ergodic (space-filling) in an approximately torus shaped region
surrounding the large black hole where the axis of revolution of the torus coincides with
the spin axis of the black hole and is triperiodic over all three spatial dimensions. It
should be noted that this description of the motion is no longer true when the ratio
between two of the frequencies is a rational number. One instead encounters resonant
motion where the trajectory of the small object becomes periodic and traces out the
two-dimensional surface of a self-intersecting cylinder [15]. While geodesics in the Kerr
spacetime are complex, they can be described in analytical form [16].

However, this approximation is not sufficient for tracking the motion of the small
object [17]. The extended nature and motion of the smaller body interacts with the
gravitational field of the supermassive black hole. This alters the trajectory of the smaller
body and moves it away from geodesic motion by exerting a self-force, so-called as it
is caused by the presence of the small object. It is this force that drives the inspiral
by acting on the smaller object and dissipating energy and angular momentum from
the system. These quantities are then radiated away as gravitational waves. The result
of this process is that the smaller object slowly inspirals into the larger one. As the
mass ratio, ϵ := m/M , is very small, the inspiral occurs over a long timescale, with the
smaller object expected to complete ϵ−1 ∼ 105 intricate orbits before plunging into the
central black hole [18, 19].

Due to the large number of orbits occurring near to the supermassive black hole, the
gravitational waves emitted are expected to provide an excellent picture of the geometry
of the black hole in the strong-gravity regime [8, 18]. The result is that we may test
predictions from general relativity, such as the ‘no hair’ theorem. This theorem states
that a stationary, uncharged and isolated black hole can be completely described using
only two parameters: its mass and its spin [20, Ch. 12.3, 21, Ch. 33.2]. These two
parameters then dictate all the higher multipole moments of the black hole. A deviation
from this would indicate that the spacetime geometry of these black holes is not described
by the Kerr metric [6]. More possible tests are given in Refs. [6, Sec. 6, 19, Ch. III, 22,
23], and references therein, and include (but are not limited to) whether the larger object
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is in fact a black hole or is some other exotic object, such as a boson star, and tests of
other gravity theories beyond general relativity.

1.2 Detection of gravitational waves

In 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors
provided the first direct measurement of gravitational waves from the merger of two
black holes [24]. Since the original discovery, there have been an additional 89 candidates
detected by the LIGO and Virgo detectors [25–28]. All but one of the detections have
been of systems with the individual objects having masses in the range of order 1M⊙ to
101M⊙.1 Although the majority of detections have involved binary systems containing
objects of comparable sizes, a handful of detections [28–31] have had unequal mass ratios,
even approaching ∼ 1 : 27 in the case of GW191219_163120 [28].

While the frequency band covered by LIGO and Virgo is 101 Hz to 103 Hz [7], gravitational
waves from EMRI systems are emitted at a frequency of order 10−3 Hz [7], outside of this
band. Earth based detectors are limited at low frequencies by noise coming from seismic
events and, as such, cannot detect gravitational wave signals emitted from EMRIs. The
space-based Laser Interferometer Space Antenna (LISA) [32, 33], scheduled to launch
in the mid-2030’s [34], has been designed to cover the frequency band needed to detect
EMRIs. The expected number of detections is very uncertain and has a wide range, but
it is expected at least a few will be detected throughout the mission lifetime, with a
potential upper bound in the thousands [8].

EMRIs will be a key source for LISA, but they are not the only family of sources that
are hoped to be detected.2 The two main others are massive black hole binaries and
galactic binaries [6, 13]. Massive black hole binaries feature the collision of two black
holes of order 104M⊙ to 107M⊙ with mass ratios ranging from equal up to ∼ 1 : 100.
Galactic binary sources are events in our own galaxy featuring two stellar-mass compact
objects. LISA data will also aid ground-based detectors by providing information on
upcoming equal-mass binary black hole collisions, such as the estimated time of merger
and approximate location in the sky, long before they enter the LIGO/Virgo frequency
band [37]. Figure 1.1 illustrates the respective sensitivity bands for LISA, LIGO, and
Virgo compared with emission frequencies of different sources. Data from LISA will also
be used to explore cosmological questions such as testing the expansion and acceleration
of the universe, the existence of cosmic strings, and the nature of the early universe,
among other questions [22, 23, 39].

1GW190426_190642 featured a collision of two black holes of individual masses 106 M⊙ and 76 M⊙.
2EMRI modelling takes the small object to be compact, but non-compact objects, such as brown

dwarfs, may be detectable by LISA if they orbit Sagittarius A* in the Galactic Centre [35, 36].
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Figure 1.1: Figure showing the various detection bands for LISA, Virgo and Advanced
LIGO (the current version of the detector). The characteristic strain is related to the
time light takes to travel across the detector. The black lines are the sensitivity curves,
a lower value means the detector is more sensitive at that frequency. Generated using

Ref. [38], based on Ref. [7].

Methods to detect EMRI signals in the raw LISA data are currently in development, as
new challenges appear when compared to LIGO/Virgo sources [13, 40]. The primary
method of detecting gravitational waves in the LIGO/Virgo data is through the use
of matched filtering [41, 42]. Roughly speaking, in this method, one precomputes a
template bank of possible gravitational wave signals with different source properties
and matches them against the data output from the gravitational wave detector. This
allows one to extract the signal even for signals highly dominated by the noise associated
with the detector. However, the exact same methods used for LIGO/Virgo are unlikely
to be used for LISA data owing to the increased complexity of the EMRI waveforms,
necessitating of order ∼ 1040 gravitational waveform templates in the template bank [43].
For comparison, the second LIGO/Virgo observing run used a template bank with ∼ 105

templates [44, 45].

To aid in developing data analysis techniques for LISA, so-called “kludge” models, which
rapidly generate waveforms, have been used [46–48]. While these can not be used for
actual parameter extraction from real LISA data, they are useful for developing methods
to find EMRI signals in the LISA data [49, 50]. An additional complication is that, due
to the long length of an EMRI inspiral, it is possible that the gravitational wave signals
from multiple EMRIs will be captured at that same time. Not only that, signals from the
other sources previously mentioned will be detected at the same time, necessitating one
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to disentangle the individual contributions when analysing the final data collected [51,
52]. One must also take into account potential degeneracies that may occur in the signals
in order to extract the correct system parameters [53].

1.3 Waveform modelling methods

In order to precisely extract the parameters from EMRIs in the data collected by LISA,
we require accurate models for the gravitational waves that are produced in EMRI
systems. The long inspiral time and the complexity of the orbits in EMRIs makes
modelling them extremely challenging, however.

The traditional technique for modelling compact binary mergers, such as the comparable-
mass binaries observed by LIGO/Virgo, is numerical relativity [54–56]. In a numerical
relativity setup, one seeks to exactly solve the full nonlinear Einstein field equations
(EFEs) using numerical methods. The majority of publicly available simulations have
had mass ratios ranging from equal up to 1 : 15 [57–59], although there have been some
simulations of systems with a 1 : 100 mass ratio [60, 61]. This greater mass-ratio is still
far below that needed for EMRIs. Unfortunately, numerical relativity is unsuitable for
use in EMRI systems as it is prohibitively computationally expensive over the length
scales involved [15]: that being the large number of orbits and the much smaller size of
the small object. The first condition requires one to track the small object over a very
long time period and the second condition requires one to keep track of behaviour on
both the scale of the large black hole and that of the smaller object. By a simple scaling
argument, each of these conditions increases the runtime of the numerical simulation by
a factor of ϵ−1, leading to a final overall factor of ϵ−2. For a typical EMRI, this would
increase the time needed to complete a numerical simulation by a factor of 1010.

Another technique that has been used to model compact binary systems is post-Newtonian
theory [62]. This is a weak-field and slow-motion approximation that expands the EFEs
in terms of the small parameter v/c ≪ 1, where v is the velocity of the body and c is the
speed of light. However, as a large part of the inspiral in an EMRI occurs near to the
supermassive black hole and in the strong-gravity regime with relativistic velocities, it is
not possible to use post-Newtonian theory to model the motion of the small object [15].

As a result, we use an alternative approach, that of gravitational self-force theory [15,
63–65]. As mentioned in Ch. 1.1, the self-force refers to the process by which changes in
an external field caused by an object’s dynamics propagate back and affect the motion
of the very same object. This can be modelled with a perturbative method, which we
review in Ch. 2.1, that expands the metric describing the geometry of the full spacetime,
gµν , around a known, background metric, gµν , with perturbations, hn

µν , caused by the
presence of the small object. The disparate sizes of the small and large object lead to a
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natural perturbative parameter, the mass ratio between the two objects, ϵ := m/M ≪ 1.
This perturbative expansion is written as

gµν = gµν + ϵh1
µν + ϵ2h2

µν + O
(︂
ϵ3
)︂
. (1.1)

In the case of an EMRI, the background metric describes the geometry of the large
black hole if it were isolated in space and is taken to be either the Schwarzschild or Kerr
metric.

To the leading order in the mass ratio, as mentioned in Ch. 1.1, the small object’s
worldline, γ, is a geodesic of the background spacetime, gµν . The metric perturbations
then alter the motion at higher orders and exert a self-force on the body, moving it away
from a background geodesic. This can be written as

D2zα

dτ2 = ϵfα
1 + ϵ2fα

2 + O
(︂
ϵ3
)︂
, (1.2)

which reduces to the geodesic equation when ϵ → 0. In Eq. (1.2), zα are coordinates on
the worldline, γ, τ is the proper time in the background metric, gµν , D/ dτ := uµ∇µ is
the covariant derivative along the worldline and is compatible with gµν , uα := dzα/dτ
is the four-velocity and fα

n is the nth-order self-force. The self-force (or at least part
of it) causes the orbit to evolve at a rate of Ė/E ∼ ϵ, resulting in an inspiral over the
radiation reaction time, trr ∼ E/Ė ∼ 1/ϵ [64].

As alluded to in the previous paragraph, the self-force does not only contain dissipative
(time-antisymmetric) effects, it includes conservative (time-symmetric) ones as well. One
can think of the conservative parts of the force as determining the corrections to the
instantaneous orbital frequencies of the orbit with the dissipative parts controlling their
slow evolution [17, 65, 66]. Examples of conservative effects are the periastron advance of
the small object’s orbit [67, 68] and the Detweiler redshift [69, 70], related to the surface
gravity of the small object if it is a black hole [15, 71].

A challenge is that we are required to go to at least second order in our perturbations in
order to model the waveforms accurately. This is a result of the requirement that for us
to extract information from the data gathered by LISA, the phase of the waveform must
be accurate to within a fraction of 1 radian. A rough argument is provided by Ref. [72],
which states that if we have a worldline z(t) with calculated acceleration a that has error
δa, then our worldline will have an azimuthal phase error of δz ∼ t2δa. Avoiding any
errors of O(1) in our worldline (and therefore our gravitational-wave phase) requires
that δz ≪ 1. EMRI systems evolve over a timescale of 1/ϵ , implying that we require
δz ∼ δa/ϵ2 ≪ 1. This then implies that we require δa ≪ ϵ2. Thus, to accurately model
an EMRI, we need to go to second order in self-force theory so that δa ∼ ϵ3.

A more precise argument was made by Hinderer and Flanagan [17]. The orbital para-
meters, JB = {E,Lz,Q}, slowly evolve over the radiation reaction time, trr ∼ 1/ϵ. This
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motives the introduction of a ‘slow time’, t̃ = ϵt, so that JB = JB(t̃). The orbital fre-
quencies, ΩA = {Ωr, Ωθ, Ωϕ} in the case of Kerr, are functions of the orbital parameters,
JB(t̃), and have perturbative expansions,

ΩA(JB, ϵ) = Ω(0)
A (JB) + ϵΩ(1)

A (JB) + O
(︂
ϵ2
)︂
, (1.3)

where Ω(n≥1)
A are the nth order corrections to Ω(0)

A due to the conservative part of the
self-force. The orbital frequencies evolve with respect to the time, t, as

dΩA

dt
= ϵF

(1)
A (JB) + ϵ2F

(2)
A (JB) + O

(︂
ϵ3
)︂
. (1.4)

where F (n)
A is constructed from the nth-order dissipative force. These can then be related

to the orbital phases by
φA =

∫︂
ΩA dt , (1.5)

so that
φA =

1
ϵ

(︂
φ
(0)
A (t̃) + ϵφ

(1)
A (t̃) + O(ϵ2)

)︂
, (1.6)

where φ(0)
A is constructed from Ω(0)

A and F
(1)
A and φ

(1)
A is constructed from Ω(1)

A and
F

(2)
A . One can see this through noting that an integration over t introduces a factor

of 1/ϵ through dt = dt
/︁
dt̃ dt̃ = ϵ−1 dt̃. Therefore, to calculate the orbital phases with

an error much less than order-ϵ0 requires the entirety of the first-order self-force and
the dissipative part of the second-order self-force. It should be emphasised that the
conservative piece of the first-order self-force and the dissipative piece of the second-order
self-force are on equal footing: even if one has the entirety of the first-order self-force
(both dissipative and conservative parts), if one does not have the dissipative piece of the
second-order self-force then one cannot correctly track the motion of the small object.

Returning to our perturbative expansion for gµν from Eq. (1.1), when we substitute this
into the Einstein field equations,

Gµν [g] = 8πTµν , (1.7)

where Gµν is the Einstein tensor and Tµν is the stress-energy tensor (with Tµν = 0 in
the vacuum EFE), we get

Gµν [g+ ϵh1 + ϵ2h2 + . . .] = 8πTµν . (1.8)

We will review how to perform expansions of Eq. (1.8) in Ch. 2.1 but through second
order in the mass ratio, the Einstein field equations have the form

δGµν [h
1] = 8πT 1

µν , (1.9)

δGµν [h
2] = 8πT 2

µν − δ2Gµν [h
1,h1], (1.10)
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where we take the background metric to satisfy the vacuum Einstein field equations,

Gµν [g] = 0, (1.11)

and
δGµν [h] = hα

(µ;ν)α + gµνh
α
[α;β]

β − 1
2 (hµν;α

α + hα
α;µν), (1.12)

is the linearised Einstein tensor, constructed from terms linear in hµν when expanding
the field equations, and

δ2Gµν [h,h] = 1
2hµν;αh

αβ
;β − 1

4hβ
β;αhµν;α + hµνhα

[α;β]
β − hµ

α;βhν[α;β]

+
1
2hαβ;(µh

αβ
;ν) − hαβ

;βhα
(µ;ν) +

1
4hαβ;µh

αβ
;ν

+ hαβ(hν[µ;α]β − hα[µ;|ν|β]) + gµν

(︂
hα

[β;α]hβρ
;ρ +

1
8h

ρ
ρ;βhα

α;β

+
1
4hαρ;βh

αβ;ρ − 3
8hαβ;ρh

αβ;ρ − hαβ [hρ
[ρ;α]β + hα[β;ρ]

ρ]
)︂

(1.13)

is the second-order Einstein tensor which is constructed from terms quadratic in h1
µν at

order ϵ2 in Eq. (1.8). Inspecting Eq. (1.10), we see that we can think of the first-order
perturbations as ‘sourcing’ those at second order. It is (roughly) these equations and the
equation of motion for the small object, from Eq. (1.2), that we must solve.

1.4 History of self-force

In this chapter, we review the historical development of the self-force problem in grav-
itational physics before moving on to give the current status of gravitational self-force
research. A number of extensive reviews of the self-force literature already exist, which
we signpost here: Ref. [15] provides a non-technical overview of the entire development of
gravitational self-force methods, Refs. [63, 64] provide a technical review of foundational
concepts used in gravitational self-force, Ref. [73] provides an overview of the compu-
tational methods that can be used, and Ref. [65] describes the analytic perturbative
methods used.

We should emphasise though that the work presented here, and in this thesis more
generally, is much broader than just seeking to solve the EMRI problem. We are
interested in how an object moves in any vacuum background spacetime that features
a large external lengthscale. In the case of EMRIs, this is the curvature caused by the
presence of the large black hole at the centre of the system.
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1.4.1 Formal development of the self-force problem in physics

The problem of how a moving body interacts with the field that it is in has long been
studied in physics; see Ch. 2 of Ref. [15] and Sec. 18 of Ref. [63] for an overview. In the
case of electromagnetism, the Abraham–Lorentz equation was derived to show how a
non-relativistic particle’s motion is changed by the self-force. When an electromagnetic
particle accelerates, it emits radiation. This emission causes a back reaction which alters
the motion of the object. This was extended to the relativistic flat-space case by Dirac
[74] and later, to the curved-space case by DeWitt and Brehme [75]. One can interpret
the self-force in gravity in a similar way. As the small object inspirals during an EMRI,
the systems emits gravitational waves which can be interpreted as causing a recoil in the
small object and altering its motion. One must also consider that when gravitational
waves are emitted, they can scatter off the spacetime curvature and come back to interact
with the small object at a later time.

Just as a small, charged particle moves as a test particle when within an external
electromagnetic field, at leading order in gravitational self-force theory, the small object
follows a geodesic of the external background. However, as our small object has some
spatial extent and its own gravitational field, we can not use a test-particle approximation
at all orders. Instead, we treat the small object as causing perturbations at O(ϵ) and
higher in the background spacetime. To find the form of these perturbations, we use
the technique of matched asymptotic expansions. This technique will be further outlined
in Ch. 2.1.4, but we summarise it here. When sufficiently close to the small object,
the expansion from Eq. (1.1) breaks down as the effects of the small object’s gravity
dominate. One then introduces a second asymptotic expansion which zooms in on the
small object. These two expansions are then matched at some appropriate lengthscale
where the gravitational effects from each body are comparable. This matching procedure
determines the form of the metric perturbations, hµν , in a region near to – but outside –
the small object.

This method was used by D’Eath [76] to find that the form of the perturbations is, at
first order, entirely equivalent to the solution of the linearised Einstein equation (1.9)
when sourced by a point particle,

T 1
µν = m

∫︂
γ
uµuν

δ4(x− z)√
−g

dτ . (1.14)

Here, γ is the worldline that represents the mean motion of the small object in the
background spacetime. It was also employed by Mino, Sasaki, and Tanaka [77] to find
the first-order equation of motion when including the effect of the gravitational self-force.
The equation of motion is named the MiSaTaQuWa equation after the original three
discoverers and Quinn and Wald [78], who derived the same equation using an alternative
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approach. It is given by

D2zµ

dτ2 = − ϵ

2g
µν
(︂
2htail

νρσ − htail
ρσν

)︂
uρuσ + O

(︂
ϵ2
)︂
, (1.15)

where
htail

µνρ = m

∫︂ τ−

−∞
∇ρḠ

+
µνµ′ν′uµ′

uν′
dτ , (1.16)

where ∇ρ is the covariant derivative compatible with the background metric. In Eq. (1.16),
G+

µνµ′ν′ is the retarded Green’s function associated with a wave equation derived from the
linearised Einstein equation in the Lorenz gauge and the bar denotes the trace-reversal [64].
The Lorenz gauge condition involves taking the trace-reverse of the perturbations,

h̄µν := hµν − 1
2gµνg

ρσhρσ (1.17)

and imposing that it has vanishing divergence,

∇µh̄µν = 0. (1.18)

This results in the linearised Einstein tensor (1.12) taking the form

Eµν [h̄] = −1
2□h̄µν −R ρ σ

µ ν h̄ρσ, (1.19)

where □ := gµν∇µ∇ν is the d’Alembertian or box operator. The tail piece, from
Eq. (1.16), can be interpreted as being determined by the gravitational waves previously
emitted by the small object. The waves have deflected off the curvature of the spacetime
and have come back to collide with the small object at a later time. The remaining part
of h1

µν is the direct piece, hdirect
µν , that is determined by the waves travelling along the

past lightcone of the small object.

A few years after the publication of the MiSaTaQuWa equation, Detweiler and Whiting [79,
80] showed that it could be expressed in the form

D2zµ

dτ2 = − ϵ

2g
µν
(︂
2hR1

νρ;σ − hR1
ρσ;ν

)︂
uρuσ + O

(︂
ϵ2
)︂
. (1.20)

Their approach was to split the first-order perturbation into two pieces: a regular field,
hR1

µν , and a singular field, hS1
µν . The Detweiler–Whiting regular field can be thought of as

an effectively external field to the small object which is smooth and valid for all r while
satisfying the linearised vacuum Einstein equations

δGµν [h
R1] = 0. (1.21)

Similar to the tail piece, the regular field can be interpreted as containing the previously
emitted gravitational waves but with the extra condition of Eq. (1.21). As the regular field
satisfies a field equation, it is possible determine how it propagates through spacetime.
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The small object then travels as a geodesic in an effective metric, g̃µν = gµν + ϵhR1
µν , so

that [80]
D̃

2
zµ

dτ̃2 = O
(︂
ϵ2
)︂
, (1.22)

where the tilde refers to all objects being defined with respect to g̃µν . Eq. (1.22) is exactly
equivalent to Eq. (1.20), and this correspondence is known as the generalised equivalence
principle [81]. This will be expanded upon further in Ch. 3.2. The Detweiler–Whiting
singular field can be interpreted as being caused by the object’s ‘self-field’ and contains
information about the small object’s multipole moments. It satisfies the linearised
Einstein equations with a point particle source (1.14),

δGµν [h
S1] = 8πT 1

µν , (1.23)

and diverges on the worldline of the small object. This schematically has the form,

hS1
µν ∼ m

r
, (1.24)

at leading order; here, r is the proper spatial distance to the worldline of the small object.
The singular field has the interpretation of a Coulomb-like field [15, 64]; that is, as in
the case of a point mass in Newtonian gravity, it is generated by the small object but
has no effect on its motion.

However, it is generally no longer valid to discuss objects in terms of point particles
beyond linear perturbative order in general relativity due to the non-linear nature of the
Einstein field equations [82]. This manifests itself at second order in the non-integrability
of the δ2Gµν term in Eq. (1.10). The first-order perturbation, h1

µν , behaves like ∼ 1/r
near the small object’s worldline, where r is the proper distance from the worldline. The
second-order Einstein tensor has the form δ2G[h1] ∼ (∂h1)2 + h1∂2h1 ∼ 1/r4. This is
not well defined as a distribution for two reasons: it is non-integrable on any domain
containing r = 0, and neither is it uniquely representable as a linear operator acting
on another distribution.3 However, a resolution to this problem at second order will be
illustrated in Ch. 5 with a rigorous derivation of a second-order stress-energy tensor for
a pointlike object.

It is important to note that Eq. (1.20) and thus the generalised equivalence principle
apply only to spherically symmetric objects with zero spin. However, since then, it has
been shown [85–87] that the equation of motion for a spinning body is given by

D̃
2
zµ

dτ̃2 = − ϵ

2mR̃
µ

αβγ ũ
αs̃βγ + O

(︂
ϵ2
)︂
, (1.25)

where, again, the tilde refers to quantities related to the effective metric and sβγ is the
spin tensor. The new term is the Mathisson–Papapetrou spin force [88–90]. Eq. (1.25) is

3See, e.g. Refs. [83, 84] for introductory references on distribution theory.
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the equation of motion derived by Dixon [91] for extended, spinning test bodies,

D2zµ

dτ2 = − 1
2mRµ

αβγu
αsβγ , (1.26)

but with the body now travelling in the effective metric, g̃µν = gµν + ϵhR1
µν . This shows

that the small object follows a geodesic – up to corrections due to spin, etc. – in an
effective spacetime caused by its perturbations.

As discussed before, we require self-force results up to second order to perform precise
parameter extraction from LISA data. In light of this, work was done [92–94] to extend
the MiSaTaQuWa equation (1.20) up to second order. This was completed by Pound
[95] who found the following expression for the second-order equation of motion,

D2zµ

dτ2 = −1
2 (g

µα + uµuα)
(︂
g δ

α − hRδ
α

)︂(︂
2hR

δβ;γ − hR
βγ;δ

)︂
uβuγ + O

(︂
ϵ3
)︂

(1.27)

and showed that the generalised equivalence principle still holds to O
(︁
ϵ3
)︁
, that is

D̃
2
zµ

dτ̃2 = O
(︂
ϵ3
)︂
. (1.28)

Here, hR
µν = ϵhR1

µν + ϵ2hR2
µν , and has the same properties as the hR1

µν described under
Eq. (1.20): it is smooth on the worldline, γ, and the effective metric, g̃µν = gµν + hR

µν , is
a solution to the vacuum EFEs,

Gµν [g+ hR] = O
(︂
ϵ3
)︂
, (1.29)

at all points in space. The higher order self-field, hS
µν , has the same general property as

the previously defined hS1
µν and provides information about the small object’s higher-order

multipole moments [72]. It should be noted that the split into regular and singular fields
is not unique [96] but we choose the split in this thesis to correspond to the one made in
Refs. [72, 81, 95] which satisfies the properties listed above. That is, that the regular
field satisfies the vacuum field equations from Eq. (1.29), the regular field is smooth on
the worldline, and that the equation of motion is a geodesic in the effective metric, g̃µν .
In addition to the non-uniqueness of the split, neither hR

µν nor hS
µν represent the true

physical field; only their sum hµν = hR
µν + hS

µν does.

The method of matched asymptotic expansions and the split into regular and singular
fields has the effect of ‘skeletonising’ the body [64]. The true, physical body is replaced by
a singularity with multipole moments matching that of the small object. The singularity
then moves in an effective geometry dictated by the background metric and the regular
field.

While the original result for the equation of motion from Eq. (1.27) was derived in
the Lorenz gauge, it was also shown that this equation of motion is true in any gauge
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Figure 1.2: Waveform generated in Ref. [107] using second-order gravitational self-force
methods for a nonspinning binary system with mass ratio 1 : 10. The orange line is
the waveform generated by the second-order self-force calculation while the black line
is the waveform for the equivalent system generated using numerical relativity. The
blue line in the inset is the waveform generated using only first-order self-force methods.

Reproduced from Ref. [107].

smoothly related to this gauge and also in a certain class of highly regular gauges, which
are of central importance to this thesis. The generalised equivalence principle will be
discussed further in Ch. 3.2.

1.4.2 Current status of the implementations of self-force theory in
black hole spacetimes

There has been a concerted international effort to implement the self-force formalism
before LISA’s launch. Currently, it is possible to calculate a full inspiral, driven by the
first-order self-force, with a spinning small object on a generic orbit in a Schwarzschild
background [97–100]. One can calculate the first-order self-force on any generic bound
orbit in Kerr [101] with inspirals performed for equatorial [102] and generic [103] orbits.
Some of the code written in service of performing self-force calculations has been made
available in the Black Hole Perturbation Toolkit [104].

At second order, it is only in the last few years that the first complete numerical calculation
has been performed, that being the computation of the binding energy in a quasicircular
orbit around a Schwarzschild black hole [105]. Since then, the gravitational wave energy
flux for the same type of system has been calculated [106] and, in December of 2021,
the first full waveforms using second-order gravitational self-force were published [107].
The waveform for the mass ratio of 1 : 10 is provided in Fig. 1.2. This shows excellent
agreement between second-order self-force calculations (orange line) and numerical
relativity ones (black line) for the same system. The waveforms match deep into the
inspiral, only deviating just before the transition to plunge. The blue line in Fig. 1.2
gives the waveform if only first-order dissipative effects are included, demonstrating the
need for full, second-order calculations to model these systems.

However, much work remains to bring self-force calculations to the required state before
the expected launch of LISA in the mid-2030’s, where the ultimate goal is generic orbits
in the Kerr spacetime. Recent work has been undertaken on incorporating effects such as
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Figure 1.3: As in Fig. 1.2, this is the waveform generated in Ref. [107] using second-
order gravitational self-force methods for a nonspinning binary system but this time
with mass ratio 1 : 1. The orange line is the waveform generated by the second-order
self-force calculation while the black line is the waveform for the equivalent system
generated using numerical relativity. The blue line in the inset is the waveform generated

using only first-order self-force methods. Reproduced from Ref. [107].

the spin of the small object [108–112] into self-force models as this has an O(1) impact
on the gravitational-wave phase. New methods for calculating the metric perturbations
of Kerr have been developed [113, 114] and beyond that, methods for rapidly generating
waveform templates over the entire parameter space to allow for data analysis to be
performed have been presented [115–117].

Second-order self-force has other applications outside of accurate waveform generation for
LISA. Information from gravitational self-force models has been used to refine effective
one-body (EOB) models [67, 118, 119], and second-order self-force calculations could
fully fix post-Newtonian (PN) and post-Minkowskian (PM) two-body dynamics to fifth
PN order and sixth PM order [120]. This is one [121] and two [122, 123] orders higher
than the current state of the art, respectively.

There is also an increasing body of evidence that the self-force formalism may be
applicable to binary systems outside of the usual EMRI regime of ϵ ≪ 1 [106, 107, 124–
128]. In fact, this is potentially true even up to comparable mass ratios, ϵ ≈ 1, in certain
areas of the parameter space [106, 107, 129]. Fig 1.3 shows the waveform calculated
in Ref. [107] for a 1 : 1 mass ratio inspiral demonstrating remarkable agreement, even
late into the inspiral. The applicability of self-force methods for more comparable mass
ratios is particularly relevant with the announcement of the LIGO-Virgo Collaboration
detecting a binary with mass ratio ∼ 1 : 27 [28], possibly indicating that gravitational
self-force models could be used for current ground-based detectors.

Self-force methods have traditionally been used for bound orbits where the small object
spirals into the large central object. However, recent work has used them in unbound,
scattering orbits [130, 131], which showed good agreement when compared to existing
post-Minkowskian calculations of the same systems.
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1.5 Thesis goals and outline

The MiSaTaQuWa equation (1.15), the Detweiler–Whiting reformulation (1.20), and
the second-order equation of motion (1.27) were all originally presented in the Lorenz
gauge. While the Lorenz gauge has advantages, it still suffers from the non-integrability
of the second-order Einstein tensor as discussed on page 11. As δ2Gµν is unbounded and
ill-defined on the worldline of the object, this prohibits us from straightforwardly writing
down a field equation for h2

µν that includes a well-defined stress-energy source, T 2
µν .4

The behaviour of δ2Gµν also introduces problems when attempting to construct the
source and to solve the second-order field equations numerically away from the worldline,
such as in a puncture scheme. In a puncture scheme, one truncates the singular field
at some order in distance, so that hP

µν ≈ hS
µν . One then enforces that the puncture

field vanishes at some suitable distance from the worldline. We define a residual field
constructed from the physical field and the puncture field, defined as hR

µν := hµν − hP
µν .

Substituting this into the perturbed vacuum field equations (Eqs. (1.9)–(1.10) with
Tn

µν = 0), one moves the puncture fields to the right-hand side of the equation and solves
for the residual field. Combining the residual and puncture fields allows one to recover
the physical field. We discuss this method more in Ch. 3.3.

The problem is that of infinite mode coupling [132], which we summarise here. To take
advantage of the symmetries of the spacetime, one decomposes this into a suitable basis of
harmonics. For example, in Schwarzschild, one could choose Barack–Lousto–Sago tensor
spherical harmonics [133, 134], so that the metric perturbations can be decomposed as

hn
µν =

∑︂
iℓm

hn
iℓm(t, r)Y iℓm

µν (θ,ϕ). (1.30)

With the modes written as such, to calculate a single mode of δ2Gµν [h1,h1] requires one
to calculate the infinite sum of products of first-order modes [132, 135],

δ2Giℓm =
∑︂

i1ℓ1m1i2ℓ2m2

Di1ℓ1m1i2ℓ2m2
iℓm [h1

i1ℓ1m1 ,h1
i2ℓ2m2 ], (1.31)

where Di1ℓ1m1i2ℓ2m2
iℓm [hi1ℓ1m1 ,hi2ℓ2m2 ] is a differential operator. As discussed earlier, the

second-order Einstein tensor diverges as ∼ 1/∆r4 at the worldline of the object, where
∆r is the distance to the worldline. After decomposing into modes and integrating over
two of the dimensions, one finds that Eq. (1.31) acts as

δ2Giℓm[h1,h1] ∼ 1
∆r2 . (1.32)

4A solution to this problem is presented in Ch. 5.2 but requires a number of technical subtleties and
knowledge of the local form of the field.



16 Chapter 1. Introduction

However, the modes of the first-order field are finite on the worldline [136, 137], meaning
that we are attempting to reconstruct a divergent function through summing up finite
modes. Thus to get convergence requires one to calculate an arbitrarily large number of
modes of the first-order fields to calculate even one second-order mode.

A way to circumvent this problem was provided by Miller et al. [132]. Instead of
summing over modes, as in Eq. (1.31), one expands the first-order field into regular and
singular pieces. When doing this, the second-order Einstein tensor in the source of the
second-order field equations takes the form

δ2Gµν [h
1,h1] = δ2Gµν [h

R1,hR1] + 2δ2Gµν [h
R1,hS1] + δ2Gµν [h

S1,hS1], ∆r > 0.
(1.33)

One then replaces the regular and singular fields in Eq. (1.33) with the residual and
puncture fields. The δ2Giℓm[hR1,hR1] and δ2Giℓm[hR1,hP1] terms are sufficiently well-
behaved that one may compute the modes directly from the modes of the first-order
residual and puncture fields. As described in Ref. [132], the problem is entirely caused
by the slow converge of the modes of δ2Giℓm[hP1,hP1] as this is the term that causes
the second-order Einstein tensor to diverge as ∼ 1/∆r4. Instead of summing up the
products of the modes of hP1

µν , Miller et al. [132] directly calculate δ2Gµν [hP1,hP1] in
four dimensions using the four dimensional expression for hP1

µν and then decompose this
quantity into modes. Unfortunately, while this makes the calculation of the modes of
the source possible, it is incredibly computationally expensive and takes up almost all of
the code runtime when implemented (such as in Ref. [105]). This is due to having to
calculate the modes by numerically integrating the complete four-dimensional expression
on a grid of r and ∆r values. This will not be efficiently extendible when approaching
problems involving more complicated dynamics, such as generic orbits in Kerr.

One motivation for the introduction of the class of highly regular gauges by Pound
[81] was to try to avoid this infinite mode coupling problem. In these gauges, the
second-order singular field hS2

µν behaves like ∼ m2/r, one order less divergent than its
behaviour ∼ m2/r2 in a generic gauge. One can divide the second-order singular field
into two pieces: a ‘singular times regular’ piece, hSR

µν ∼ mhR1
µν /∆r, and a ‘singular times

singular’ piece, hSS
µν ∼ m2∆r0. By simple order counting of m and hR1

µν , we see that, in
the second-order Einstein field equations, hSS

µν is sourced by δ2Gµν [hS1,hS1], as they both
feature terms ∼ m2, and that hSR

µν is sourced by δ2Gµν [hR1,hS1] as both expressions have
terms of the form ∼ mhR1

µν . Although the hSR
µν term appears more divergent, as expanded

on later in this thesis, its source, δ2Gµν [hR1,hS1], can be well-defined as a distribution
and it is the ‘singular times singular’ term that causes the most issues. Acting on the
‘singular times singular’ piece with the Einstein tensor, we see that δGµν [hSS] ∼ m2/∆r2.
Therefore, we know that the most singular piece of the second-order Einstein tensor
can only act as badly δ2Gµν [hS1,hS1] ∼ 1/r2 instead of ∼ 1/r4. This means that when
decomposing into modes, the individual modes of the second-order Einstein tensor can
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behave, at worst, as δ2Giℓm ∼ log |∆r|. While this is still divergent, it is much weaker
than that found in the Lorenz gauge.

The ultimate goal of this thesis is to further develop the highly regular gauge and take
advantage of its weaker singularity structure. We start in Ch. 2 by providing a summary
of mathematical techniques that are essential to the rest of the thesis. These include
performing local covariant and coordinate expansions near the worldline of an object
and a description of Fermi–Walker coordinates, coordinates that are tethered to an
accelerated worldline. As a demonstration of these tools, we show how to perform
coordinate expansions of the Detweiler–Whiting singular field for a scalar charge, given
in covariant form in Ref. [138], through five total orders in distance, one more than the
current state of the art.

In Ch. 3, we detail concepts important to gravitational self-force research. We describe the
self-consistent formalism that we use throughout this thesis. This is based on expanding
the metric perturbations in powers of ϵ but, crucially, not expanding the dependence
on the accelerated worldline. Next, we follow Ref. [139] and provide a derivation of the
generalised equivalence principle and then give an overview of the puncture scheme that
was previously mentioned. In the final parts of the chapter, we follow the method used
by Pound [81] to calculate the form of the metric perturbations in a lightcone rest gauge
which preserves the local structure of the lightcone while keeping the small object at
rest in spacetime. Finally, we describe the method used by Pound [81] to derive the
leading-order piece of the second-order singular field in the highly regular gauge.

In Ch. 4 of this thesis, we continue this calculation and derive the form of hS2
µν through

order r. This is the order required for numerical implementation, such as in a puncture
scheme. As discussed in Ref. [81], the weaker divergence in the highly regular gauge
means that the second-order Einstein tensor is well defined as a distribution. Therefore,
one may write a field equation for h2

µν that is well defined at all points in spacetime.
This results in us being able to rigorously derive a pointlike second-order stress-energy
tensor for the small object, which we detail in Ch. 5. In fact, when combined with the
first-order stress-energy tensor from Eq. (1.14), we show that this is nothing more than
the stress-energy tensor of a point-particle in an effective spacetime, g̃µν , given by

T̃
µν

= ϵm

∫︂
γ
ũµũν δ

4(x− z)√
−g̃

dτ̃ . (1.34)

This form of the stress-energy tensor was originally conjectured by Detweiler [93] to be
true in all gauges and, as such, we name T̃µν the Detweiler stress-energy. Our analysis
shows that it is valid in the class of highly regular gauges, and we later show that the
functional form of this stress-energy is retained in any smoothly related gauge. We then
demonstrate that, using a specific distributional definition for δ2Gµν , we can derive the
Detweiler stress-energy tensor in the Lorenz gauge, and we show that, again, it has the
same functional form as in the highly regular gauge. These two chapters (excluding
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Ch. 5.3 onwards) along with various other parts of this thesis dealing with the highly
regular gauge are also available in the paper Ref. [140]. In Ch. 5.3 we demonstrate how
our distributional definitions can be used to formulate field equations to directly solve
for the second-order field in the Lorenz gauge. This is done in the case of both the
Einstein field equations in Ch. 5.3.1 and the Teukolsky equation in Ch. 5.3.2, which is a
reformulation of the EFEs in terms of scalar quantities.

Following this, in Ch. 6, we convert our specific coordinate expressions for the metric
perturbations in the highly regular gauge into fully covariant form using the techniques
described in Ch. 2.2 and Ref. [96]. These are then expanded into a generic coordinate form
and provided in the Additional Material as a Mathematica notebook [141]. With a fully
generic coordinate form, one may write the highly regular gauge metric perturbations in
any coordinate basis adapted to the problem being studied.

In Ch. 7, we derive the gauge vector required to transform Lorenz gauge data calculated
in Ref. [105] for quasicircular orbits in a Schwarzschild spacetime into the highly regular
gauge. This could then be used as input for either the second-order Einstein field
equations or second-order Teukolsky equation from Ch. 5.3. We begin by recapping the
highly regular gauge conditions before deriving the covariant form of the gauge vector
for the transformation between the highly regular gauge and the Lorenz gauge and then
expanding it into generic coordinate form. Part of the gauge vector was found at leading
order by Spiers [142] but we provide all terms through the order required to ensure our
gauge conditions are satisfied on the worldline. We project this into the Newman–Penrose
formalism that allows one to rewrite tensorial quantities in terms of spin-weighted scalars.
The essential ingredients of the Newman–Penrose formalism are provided in App. C.

To perform the mode decomposition into spin-weighted spherical harmonics (presented in
App. D), we use the method of Refs. [137, 143] where we introduce a rotated coordinate
system in which the small object is always located at the north pole. This has the
advantage of drastically reducing the number of m modes that need to be calculated
to perform the mode decomposition as all but the lowest few m modes vanish when
evaluated here. Which m modes are non-vanishing depends on a number of factors,
including the spin-weight of the object being considered, but overall we only need to
calculate a handful of m modes instead of potentially hundreds. We then convert the
modes in our rotated coordinates into modes in the standard Schwarzschild coordinates
through the use of the Wigner-D matrix. The modes in the rotated coordinate system
are provided in the Additional Material [141]. In the last part of the chapter, we calculate
how one can construct the metric perturbations needed to transform the Lorenz gauge
data into the highly regular gauge using expressions from Ref. [135].

Finally, we sum up the work in this thesis and present future avenues for research in
Ch. 8.
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1.6 Conventions

The definitions in this section are given in table format in the Definitions and Abbrevi-
ations section.

In this thesis, we use geometric units so that G = c = 1. Greek indices run from 0 to 3 and
are raised and lowered with the background metric, gµν , which has signature (−,+,+,+).
Latin indices run from 1 to 3 and are raised and lowered with the Euclidean metric,
δab. Uppercase Latin indices denote multi indices, that is L := i1 . . . il. Parentheses and
square brackets around indices denote symmetrisation/antisymmetrisation, respectively.
Angled brackets, such as ⟨L⟩, denote the symmetric trace-free (STF) combination of the
enclosed indices with respect to δab. Additionally, we define T̂L := T ⟨L⟩, for a generic
tensor T . In some cases, we additionally use the notation SymL or STFL to denote
symmetrisation and the STF combination over the indices L, respectively.

We use a comma/semicolon or ∂/∇ to denote partial/covariant differentiation respectively.
The covariant derivative is compatible with gµν unless otherwise stated. We denote the
four-velocity of the small object as

uµ :=
dzµ

dτ
, (1.35)

where τ is proper time in gµν , and the directional derivative as

D

dτ
:= uµ∇µ. (1.36)

Terms written in a serif font are exact quantities, e.g. gµν is the full, exact metric
describing the physical spacetime. A prime symbol on the perturbation, hn′

µν , denotes
quantities in the lightcone rest gauge, and a star, hn∗

µν , denotes quantities in the Lorenz
gauge. No prime, hn

µν , indicates terms in the highly regular gauge. A prescript, nAµ1...
ν1... ,

on a tensor counts the power of ϵ coming from substituting the expansion of the
acceleration aµ =

∑︁
n≥1 ϵ

nfµ
n into Aµ1...

ν1... . An overset ring, Åµ1...
ν1... , indicates terms that

have been re-expanded for small acceleration and then re-collected at each order in ϵ,
i.e. h̊n

µν =
∑︁n

i=0
ihn−i

µν (where, for this purpose, h0
µν := gµν). Tildes placed over a tensor,

Ã
µ1...
ν1... , denote quantities defined with respect to the effective metric, g̃µν .

Additionally, we say that f(x) = O(g(x)) if

lim
x→0

f(x)

g(x)
= k, (1.37)

where k is some (potentially zero) constant and that f(x) = O(g(x)) if

lim
x→0

f(x)

g(x)
= 0. (1.38)
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This thesis makes use of Mathematica [144] and the computer algebra package
xAct [145–151] throughout. We make use of the SpinWeightedSpheroidalHarmon-
ics package from the Black Hole Perturbation Toolkit [104] as well.
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Chapter 2

Mathematical preliminaries

This chapter will give an overview of some of the mathematical techniques used in the
analysis of the gravitational self-force. Firstly, we start with a recap of perturbation
theory and how we can, in theory, extend a perturbed quantity to any order we require
before moving on to discuss gauge freedom in perturbation theory. We provide an
overview of the method of matched asymptotic expansions and how it has been used to
determine the form of the metric perturbations. We then outline local expansion methods
that can be used in general relativity. These will be used extensively throughout the rest
of the thesis when analysing fields near to the small object and are of crucial importance
to this work. We detail how one can perform both covariant and generic coordinate
expansions of various tensorial quantities. Finally, we detail a useful coordinate system
when working near the worldline of an object, that of Fermi–Walker coordinates.

2.1 Perturbation theory in general relativity

A perturbed metric is one in which we have a small deviation from an exact solution to
the Einstein field equations. This perturbed metric can be written as

gµν = gµν + hµν , (2.1)

where gµν is an exact solution and

hµν =
∞∑︂

n≥1
ϵnhn

µν [γ] (2.2)

is a series for the perturbation, hµν , with ϵ giving the ‘size’ of the perturbation [20,
Ch. 7.5, 139]. We can then recover a specific perturbation order by differentiating with
respect to our parameter,

hn
µν =

1
n!

dngµν

dϵn

⃓⃓⃓⃓
ϵ=0

. (2.3)
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This is similar for an arbitrary tensor, Aµν...
ρσ..., constructed from gµν . We can expand in

powers of hµν , i.e.

Aµν...
ρσ... [g+ h] = Aµν...

ρσ... [g] + δAµν...
ρσ... [h] + δ2Aµν...

ρσ... [h,h] + δ3Aµν...
ρσ... [h,h,h] + O

(︂
h4
)︂
, (2.4)

where δnAµν...
ρσ... is nth-order in hµν and linear in each of its arguments. We can then

define the operators in a similar way to Eq. (2.3), as

δnAµν...
ρσ... [h, . . . ,h] = 1

n!
dnAµν...

ρσ... [g+ λh]

dλn

⃓⃓⃓⃓
⃓
λ=0

, (2.5)

where we introduce λ as a formal order counting parameter to count powers of hµν .

Often, we are interested in operators constructed from products of different perturbations,
i.e. δ2Aµν...

ρσ... [h
1,h2]. To handle this, we adopt the definition [139, App. C]

δnAµν...
ρσ... [f1, . . . , fn] :=

1
n!

dn

dλ1 . . . dλn
Aµν...

ρσ... [gµν + λ1f1 + · · · + λnfn]

⃓⃓⃓⃓
λi=0

, (2.6)

which ensures that δnA is symmetric in all arguments. To see where these terms featuring
different perturbations come from, we substitute Eq. (2.2) into Eq. (2.4) to obtain a
power series in ϵ,

Aµν...
ρσ... [g+ h] = Aµν...

ρσ... [g] + ϵδAµν...
ρσ... [h

1] + ϵ2
(︂
δAµν...

ρσ... [h
2] + δ2Aµν...

ρσ... [h
1,h1]

)︂
+ ϵ3

(︂
δAµν...

ρσ... [h
3] + 2δ2Aµν...

ρσ... [h
1,h2] + δ3Aµν...

ρσ... [h
1,h1,h1]

)︂
+ O

(︂
ϵ4
)︂
.

(2.7)

The final line shows coupling between different orders of the metric perturbation but
we can also split our metric perturbations at each order up into separate fields. That
is, if we take δ2Aµν...

ρσ... [h
1,h1] and we split h1

µν = hA1
µν + hB1

µν , then, using our definition in
Eq. (2.6), we arrive at

δ2Aµν...
ρσ... [h

1,h1] = δ2Aµν...
ρσ... [h

A1,hA1] + 2δ2Aµν...
ρσ... [h

A1,hB1] + δ2Aµν...
ρσ... [h

B1,hB1]. (2.8)

This is precisely what we have done in Eq. (1.33) when expanding the metric perturbation
into singular and regular fields.

2.1.1 Second-order Ricci tensor in a vacuum background

As an example, we shall compute the form of the Ricci tensor, Rµν , of gµν to second
order when gµν is a solution to the vacuum Einstein equations, that is,

Rµν = 0. (2.9)
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Here, tensors written in sans-serif font are constructed from the full metric, gµν , whereas
those in a serif font are constructed from the background metric, gµν . As we are always
interested in a vacuum background in this thesis, this is entirely equivalent to deriving
the second-order Einstein field equations that we discussed in the previous chapter, as

Gµν = Rµν − 1
2gµνR, (2.10)

where R is the Ricci scalar, so that Gµν = 0 ⇐⇒ Rµν = 0.

To calculate Rµν , we must find an expression for it in terms of other ‘known’ quantities.
Firstly, we define ˆ︁∇µ and ∇µ to be the covariant derivatives compatible with gµν and
gµν , respectively. The difference between these two covariant derivatives is given by [20,
Ch. 3.1]

ˆ︁∇µA
ν1...νp
ρ1...ρq

= ∇µA
ν1...νp
ρ1...ρq

+
∑︂

i

Cνi
µσA

ν1...σ...νp
ρ1...ρq

−
∑︂

j

Cσ
µρj

Aν1...νp
ρ1...σ...ρq

, (2.11)

where

Cρ
µν =

1
2gρσ

(︂
∇µgνσ + ∇νgµσ − ∇σgµν

)︂
=

1
2
(︂
gρσ + ĥ

ρσ
)︂
(∇µhνσ + ∇νhµσ − ∇σhµν) (2.12)

is the difference between the Christoffel symbols in gµν and gµν . The second line follows
from using Eq. (2.1) to write the full metric with indices down in terms of the background
metric and the metric perturbation, introducing the definition,

ĥ
µν := gµν − gµν , (2.13)

for the difference between the exact and background metrics with indices up, and noting
that ∇µgνρ = 0. We should note at this time that this is still an exact expression, we
have performed no truncation of hµν . Additionally, ĥµν ̸= gµρgνσhρσ: it instead satisfies
gµνgνρ = δρ

ν .

Secondly, we recall that one way to define the Riemann curvature tensor for a spacetime
with no torsion is how the commutator of the covariant derivative acts on a one-form,
that is [20, Ch. 3.2] ˆ︁∇µ

ˆ︁∇νωρ − ˆ︁∇ν
ˆ︁∇µωρ = R σ

µνρ ωσ . (2.14)

Now, we expand the left-hand side of Eq. (2.14) in terms of ∇µ and the connection
coefficients from Eq. (2.12), so that

ˆ︁∇µ
ˆ︁∇νωρ = ∇µ∇νωρ −

(︂
∇µC

σ
νρ

)︂
ωσ −Cσ

νρ∇µωσ −Cσ
µρ∇νωσ

−Cσ
µν ∇σωρ +Cσ

µνC
γ
ρσωγ +Cσ

µρC
γ
νσωγ . (2.15)
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We can now substitute this into Eq. (2.14) to show that

R σ
µνρ = R σ

µνρ − 2∇[µC
σ
ν]ρ + 2Cγ

ρ[µC
σ
ν]γ , (2.16)

where R σ
µνρ is the Riemann tensor for gµν and we have noted that ωµ is arbitrary and

can be omitted. To find the Ricci tensor, we contract over ν and σ, so

R σ
µσρ = Rµρ = −2∇[µC

σ
σ]ρ + 2Cγ

ρ[µC
σ
σ]γ , (2.17)

where the Ricci curvature term of the background disappears by Eq. (2.9).

We stress that, up until now, all expressions that we have derived are exact, featuring no
expansions of the metric perturbations. To calculate the explicit expression for Eq. (2.17),
we substitute in Eq. (2.12) and keep all terms up to and including O

(︁
h2)︁. We also require

the leading-order expansion of ĥµν from Eq. (2.13) in terms of hµν . This is quite simply
given by

ĥ
µν

= −hµν + O
(︂
h2
)︂
, (2.18)

which can be verified by substitution into gµνgνρ = δρ
µ + O

(︁
h2)︁. This gives rise to the

final expression

Rµν = h ρ
ρ(µ;ν) − 1

2
(︂
h;νµ + h ρ

µν;ρ

)︂
− hρσhσ(µ;ν)ρ + hσ ρ

ν; hµ[σ;ρ]

+
1
2h

ρσ
;ρ

(︂
hµν;σ − 2hσ(µ;ν)

)︂
+

1
2h

ρσ
(︂
hρσ;νµ + hµν;σρ

)︂
+

1
4
(︂
hρσ

;µhρσ;ν − h;σ
(︂
hµν;σ + 2hσ(µ;ν)

)︂)︂
+ O

(︂
h3
)︂
, (2.19)

where we have switched to semi-colon notation for compactness and h := hµ
µ := gµνhµν .

We can then ‘pick off’ the pieces we require: e.g. following the notation from Eq. (2.6),
we have

δRµν [h] = h ρ
ρ(µ;ν) − 1

2
(︂
h;νµ + h ρ

µν;ρ

)︂
(2.20)

δ2Rµν [h,h] = hσ ρ
ν; hµ[σ;ρ] − hρσhσ(µ;ν)ρ +

1
2h

ρσ
;ρ

(︂
hµν;σ − 2hσ(µ;ν)

)︂
+

1
2h

ρσ
(︂
hρσ;νµ + hµν;σρ

)︂
+

1
4
(︂
hρσ

;µhρσ;ν − h;σ
(︂
hµν;σ − 2hσ(µ;ν)

)︂)︂
.

(2.21)

It is important to note that, in general, it is not true that gµνδnA ...
νρ... = δnAµ ...

ρ... as
we can miss terms by not taking into account the expansion of the full metric. Care
must be taken when raising and lowering indices in perturbation theory, and we must
define exactly what we mean when we perform index manipulations.
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2.1.2 Linear and quadratic Einstein tensors

One may also perform a similar operation on the Einstein tensor,

Gµν [g+ h] = δGµν [h] + δ2Gµν [h,h] + O
(︂
|h|3

)︂
, (2.22)

to show that

δGµν [h] = hα
(µ;ν)α + gµνhα

[α;β]
β − 1

2 (h
µν;α

α + hα
α;µν), (2.23)

and

δ2Gµν [h,h] = 1
2h

µν
;αh

αβ
;β − 1

4hβ
β;αhµν

;α + hµνhα
[α;β]

β + hµα;βhν
[α;β] +

1
2h

β
β;αh

α(µ;ν)

− hαβ
;βhα(µ;ν) +

1
4hαβ

;µhαβ;ν + hαβ(h
ν[µ;α]β − hα[µ;|ν|β])

+ gµν
(︂
hα

[β;α]hβρ
;ρ +

1
8h

ρ
ρ;βhα

α;β +
1
4hαρ;βh

αβ;ρ − 3
8hαβ;ρh

αβ;ρ

− hαβ [hρ
[ρ;α]β + hα[β;ρ]

ρ]
)︂

− 2h(µρδG
ν)ρ[h]. (2.24)

We can use Eq. (2.6) to ensure that δ2Gµν [h,h] is symmetric and bilinear by defining

δ2Gµν [h♭,h♯] :=
1
2

d2

dλ1 dλ2
Gµν [g+ λ1h

♭ + λ2h
♯]

⃓⃓⃓⃓
λi=0

, (2.25)

which reduces to Eq. (2.24) when h♭
µν = h♯

µν = hµν . We also define a linear operator

Qµν
♭ [h♯] := δ2Gµν [h♭,h♯], (2.26)

which is the term bilinear in h♭
µν and h♯

µν if we expand Gµν [g+ h♭ + h♯] in powers of h♯
µν

and its derivatives. That is,

Gµν [g+ h♭ + h♯] = Gµν [g+ h♭] +Qµν
♭ [h♯] + O

(︂
|h♯|2, |h♭|2|h♯|

)︂
. (2.27)

In Ch. 5, we make extensive use of the adjoints of these quantities. The precise definition
of the adjoint is given later in the thesis in Ch. 5.2.2. The linearised Einstein tensor is
self-adjoint [152], δG†µν [h] = δGµν [h]. The adjoint of Qµν

♭ is

Q†µν
♭ [ϕ] =

1
2

[︃
ϕαβ

(︂
hµν

♭ ;αβ − 2h(µ♭ α;
ν)

β + gµν
{︂
h♭

αρ;β
ρ − 1

2h
♭
αβ;ρ

ρ
}︂
+ h♭

αβ;
(µν)

)︂
− hαβ

♭

(︂
2ϕα

(µ;ν)
β − ϕµν

;αβ − ϕαβ;
(µν) + gµν

{︂
ϕρ

ρ;αβ + ϕαβ;ρ
ρ − 2ϕα

ρ
;ρβ

}︂)︂
+ ϕα(µh

|β|
♭ β;

ν)
α + 2hα(µ

♭ ϕ|β|
β;

ν)
α + ϕβ

β;α
(︂
h

α(µ;ν)
♭ − 1

2h
µν;α
♭

)︂
− 1

2g
µν
(︂
ϕρ

ρ;βh
♭
α

α;β + 2h♭
α

β;α
{︂
ϕρ

ρ;β − 2ϕβρ;
ρ
}︂
+ ϕα

αh
♭
β

β;ρ
ρ − 2ϕαρ;βh♭

αβ;ρ

+ 3ϕαβ;ρh♭
αβ;ρ

)︂
+ h♭

α
β;α
(︂
ϕµν

;β − 2ϕβ
(µ;ν)

)︂
+ ϕµν

(︂
h♭

αβ;
αβ − 1

2h
♭
α

α;β
β

)︂
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− 2ϕα(µh
ν)β
♭ ;αβ − 2hµν

♭ ϕα
[α;β]

β + hµν;α
♭ ϕαβ;

β − 2hα(µ
♭ ϕν)β

;αβ + 2ϕα(µh
ν)
♭ α;β

β

− ϕα
α

(︂
h

β(µ;ν)
♭ β − 1

2h
µν;β
♭ β

)︂
− 2ϕα(µh♭

α
|β|;ν)

β +
1
2ϕ

µν
;βh

♭
α

α;β + ϕβ
β;(µh♭

α
|α|;ν)

+ ϕαβ;(µh♭
αβ;

ν) − ϕβ(µ
;βh

♭
α

|α|;ν) − 2ϕαβ;
βh

α(µ;ν)
♭

+ 4 Sym
µν

(︂
hµα

♭ ϕα
[ν;β]

β + ϕµ
[α;β]h

να;β
♭

)︂]︃
. (2.28)

As mentioned at the end of Ch. 2.1.1, it is generally not true that one can raise and
lower indices on perturbed tensors with the background metric. However, one can move
indices by perturbing the metric contracted with our perturbed tensor. For example,

Gµ
ν [g+ h] = δ(gµρG

ρν)[h] + δ2(gµρG
ρν)[h,h] + O

(︂
|h|3

)︂
, (2.29)

where

δ(gµρG
ρν)[h] = gµρδG

ρν [h], (2.30)

δ2(gµρG
ρν)[h,h] = gµρδ

2Gρν [h,h] + hµρδG
ρν [h], (2.31)

and
Gµν [g+ h] = δ(gµρgνσG

ρσ)[h] + δ2(gµρgνσG
ρσ)[h,h] + O

(︂
|h|3

)︂
, (2.32)

where

δ(gµρgνσG
ρσ)[h] = gµρgνσδG

ρσ[h], (2.33)

δ2(gµρgνσGρσ)[h,h] = gµρgνσδ
2Gρσ[h,h] + 2hρ(µgν)σδG

ρσ[h]. (2.34)

These expressions can be used for any symmetric rank-2 tensor which vanishes on the
background.

2.1.3 Gauge freedom in perturbation theory

In this section, we outline the concept of gauge freedom in perturbation theory in general
relativity. Perturbations are inherently tied to gauge choices in GR [153] and this fact can
be exploited when performing calculations using perturbed quantities. Different gauges
may have properties that make them more amenable to certain calculations than others.
For example, the highly regular gauge mentioned in the introduction (and which will be
expanded on in upcoming chapters) has the benefit of reducing the singular nature of
the second-order source to the EFEs, allowing one to rigorously derive the second-order
stress-energy tensor. Other gauges have been chosen for other useful properties: the
Lorenz gauge is often chosen as it reduces the perturbed Einstein equations into a
sequence of hyperbolic wave equations [15] whereas the radiation gauge [154] allows one
to reconstruct the first-order metric perturbations from certain scalar fields.
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It is first important to note that gauge freedom in perturbation theory is distinct from
gauge freedom in the full theory of general relativity. In full GR, the gauge freedom is
given by the group of diffeomorphisms [20, Ch. 10.2 & App. C]. If we have two manifolds,
R and S, then a smooth map, ϕ : R → S, is diffeomorphic if it is bijective with a smooth
inverse. The existence of a diffeomorphism between two manifolds implies that they have
the same structure and, thinking in physical terms, mean that they represent the same
spacetime geometry. This is equivalent to saying that if the components of two metrics
can be related via a coordinate transformation, then they physically represent the same
solution to the Einstein field equations.

In contrast, gauge freedom in perturbation theory is the freedom to choose the map
between points in the background spacetime and points in the perturbed spacetime [153].
There are two ways to think of gauge transformations in perturbation theory in general
relativity, either the active view or the passive view [139]. The passive view treats gauge
transformations as infinitesimal changes in coordinates. This means that coordinates at
a point q, xµ(q), transform as [139]

xµ(q) → x′µ(q) = xµ(q) − ϵξµ
1 − ϵ2

(︃
ξµ

2 − 1
2ξ

ν
1∂νξ

µ
1

)︃
+ O

(︂
ϵ3
)︂
, (2.35)

where ξn are independent vector fields [153].

However, we will make most use of the active view. As stated in Ch. 2.1, we are looking at
small perturbations or fluctuations away from a known, background spacetime. Strictly
speaking, however, we are considering a family of metrics parametrised by ϵ [139]. We
can think of this as ‘adding’ an extra dimension to our manifold, so that along with our
usual spacetime dimensions, we have a parameter that tells us ‘how close’ we are to our
background spacetime. More concretely, we are looking at a five-dimensional manifold,
N = M × R, where the value on R is given by ϵ, which picks out a certain ‘copy’ of M,
labelled as Mϵ [153].

We refer to a gauge choice as the choice of identification map between our background
spacetime and the physical spacetime, which we denote ϕX

ϵ : M0 → Mϵ, where ϕX
ϵ

is generated by the vector field X and is a diffeomorphism forming a one-parameter
group [139, 153]. If Aµ...

ν...(q) is an arbitrary tensor on Mϵ at point q, then we can
construct a tensor on M0 using the pullback by our identification map, ϕX∗

ϵ Aµ...
ν...(p),

where p = ϕX∗
ϵ (q) is a point on M0. In fact, we can approximate ϕX∗

ϵ Aµ...
ν... at p by using

a Taylor expansion around Aµ...
ν... [139, 153],

ϕX∗
ϵ Aµ...

ν...(p) =
∑︂
n≥0

ϵn

n!
dn

dϵn

(︂
ϕX∗

ϵ Aµ...
ν...

)︂⃓⃓⃓⃓
ϵ=0

(p)

=
∑︂
n≥0

ϵn

n!
Ln

X(Aµ...
ν...)(p), (2.36)
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where the first line follows from assuming Aµ...
ν... is analytic and the second line from using

the normal definition of the Lie derivative and proof by induction. We can then define
the nth-order perturbation to be [139]

A
(X)µ...
(n) ν...

(p) :=
1
n!

Ln
X(Aµ...

ν...)(p), (2.37)

where all A(X)µ...
(n) ν...

are defined on M0, so that

ϕX∗
ϵ Aµ...

ν...(p) =
∑︂
n≥0

ϵnA
(X)µ...
(n) ν...

(p), (2.38)

where A(X)µ...
(0) ν...

:= Aµ...
ν... |ϵ=0.

A natural question to ask is what happens if we wish to work with a different identification
map, say ϕY

ϵ , defined the same way as before but generated by a vector field Y ? This will
take our point in our background spacetime, p, to a different point on Mϵ, q′ = ϕY

ϵ (p).
Moving from one map to another is known as a gauge transformation. We define the
gauge transformation of an nth-order perturbation as [139]

∆A µ...
(n)ν...

(p) =
1
n!

(︂
A
(Y )µ...
(n) ν...

−A
(X)µ...
(n) ν...

)︂
(p), (2.39)

Eq. (4.6) from Ref. [153] gives an explicit generating formula for gauge transformations
as the difference of two pullbacks, that being1

ϕY ∗
ϵ Aµ...

ν...(p) − ϕX∗
ϵ Aµ...

ν...(p) = ϵLξ1(ϕ
X∗
ϵ Aµ...

ν...)(p)

+
ϵ2

2
(︂
L2

ξ1 + 2Lξ2

)︂(︂
ϕX∗

ϵ Aµ...
ν...

)︂
(p) + O

(︂
ϵ3
)︂
, (2.40)

up to second order, where [139]

ξ1 = Y −X (2.41)

ξ2 =
1
2 [X,Y ]. (2.42)

We then substitute (2.38) into (2.40), equate order-by-order in ϵ and, by using (2.39),
we see that

∆A µ...
(1)ν...

(p) = Lξ1A
µ...
ν...(p), (2.43)

∆A µ...
(2)ν...

(p) =
1
2
(︂
L2

ξ1 + 2Lξ2

)︂
Aµ...

ν...(p) + Lξ1A
(X)µ...
(1) ν...

. (2.44)
1The factor of 2 before Lξ2 in our equation comes from differing conventions for ξ2.
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2.1.4 Matched asymptotic expansions

The use of matched asymptotic expansions [155] is key in the analysis of gravitational self-
force and has been used to derive a number of famous results such as the MiSaTaQuWa
equation (1.15). A regular asymptotic expansion of a function f(x, ϵ) is defined as [155]

f(x; ϵ) =
N∑︂

n=0
ϕn(ϵ)fn(x) + O(ϕN ) as ϵ → 0, (2.45)

where ϕn(ϵ) is an element of an asymptotic sequence satisfying

ϕn+1(ϵ) = O(ϕn(ϵ)) as ϵ → 0. (2.46)

However, there may be cases (such as in the self-consistent formalism in Ch. 3.1) where we
wish to keep some ϵ dependence inside of our expansion coefficients. Thus we write [155,
156]

f(x, ϵ) =
N∑︂

n=0
ϕn(ϵ)fn(x, ϵ) + O(ϕN ) as ϵ → 0, (2.47)

where f(x, ϵ) = O(1) and f(x, ϵ) ̸= O(1). This is known as a general asymptotic
expansion. In our case, we are identifying fn(x, ϵ) with hn

µν(x; z) and our asymptotic
sequence is the set {ϵn} with n = 0, 1, 2, . . ..

As an example, we illustrate how the method can be used to find the form of the metric
perturbations. Taking our small object to be in a spacetime described by the metric
gµν(x, ϵ), we can expand the metric as

gµν(x, ϵ) = gµν(x) + ϵh1
µν(x, ϵ) + ϵ2h2

µν(x, ϵ) + O
(︂
ϵ3
)︂
, (2.48)

where gµν is the external background vacuum metric that describes the spacetime as if
the small object were not present. The perturbations are then caused by the presence
and motion of the small object.

When expanding the metric in Eq. (2.48), we have assumed that the effect of the
perturbations is small everywhere. However, if there is a region in which this is not true,
then our expansion from Eq. (2.47) is no longer valid. This situation occurs in our EMRI
system. To see this, consider the region of spacetime near to the small object. If we get
near enough then the gravitational effects that we feel will be dominated by those caused
by the small object. Intuitively this makes sense: if we consider the Earth orbiting the
Sun then the gravity on Earth and nearby in space is primarily dictated by the Earth’s
gravitational field.

More mathematically [64], if the distance, r, to the object is ∼ ϵ, then any terms ∼ m/r
reduce in order and become the same ‘size’ as the background metric. This causes the
expansion in Eq. (2.48) to break down. To account for this, we introduce a second
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body zone

external universe

buffer
region

Figure 2.1: Diagram illustrating the buffer region in the case of a small-mass-ratio
binary. We split up spacetime into three regions: one where the small object’s gravity is
dominant, the body zone; one in which the supermassive black hole’s gravity dominates,
the external universe; and the buffer region where the gravitational effect of both objects

is significant. Reproduced from Ref. [15].

asymptotic expansion that uses a scaled distance,

r̃ :=
r

ϵ
. (2.49)

Now when we take the limit as ϵ → 0 at fixed r̃, we keep the scale of the small object
fixed and send the external universe to infinity. This is in contrast to our original ϵ → 0
limit, which fixes the external universe and sends the size of the small object to zero.

In our new expansion near the small object, we rewrite our full spacetime metric so
that [81]

gµν(r, ϵ) = gobj
µν (r̃) + ϵH1

µν(r̃) + ϵ2H2
µν(r̃) + O

(︂
ϵ3
)︂
, (2.50)

where gobj
µν is the metric the small object would have if it were isolated in spacetime. Both

Eq. (2.48) and Eq. (2.50) are expansions of the same spacetime and we refer to them
as the outer and inner expansions, respectively. This refers to where we are expanding
around: either the large object or the small object. However, as they are expansions of
the same spacetime, they must agree at some suitable length scale. We call this region
the buffer region which is given by the range ϵ ≪ r ≪ 1; see Fig. 2.1.

To perform the matching process, we re-expand both metrics in terms of r and ϵ and
match the coefficients that appear at each order in r and ϵ. By requiring that the outer
and inner expansion are well behaved (i.e. that there are no negative powers of ϵ in
either expansion), we constrain the powers of r and r̃ that appear in our expansions.
Following the argument in Ref. [81], if hn

µν =
∑︁
rphn,p

µν , where the sum is over all p, then
terms with p < −n would have to match terms in the inner expansion with inverse
powers of ϵ. These types of terms have been explicitly ruled out by imposing that our
expansions be well behaved in the appropriate limits. This argument also applies to the
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inner expansions but with rp replaced by 1/r̃p. Therefore, we find that the expansions
in r and r̃ must be given by [81]

gµν =
∑︂
p≥0

rpgp
µν , (2.51)

gobj
µν =

∑︂
p≥0

1
r̃p g

obj,p
µν , (2.52)

hn
µν =

∑︂
p≥−n

rphn,p
µν , (2.53)

Hn
µν =

∑︂
p≥−n

1
r̃pH

n,p
µν , (2.54)

where ln(r) terms may appear but have been absorbed in to the coefficients for visual
clarity.

Which terms must match is best illustrated in a tableau form [157] as

gobj ϵH1 ϵ2H2

∼ ∼ ∼
g ∼ g0 = gobj,0 r

(︁
g1 = H1,−1)︁ r2(︁g2 = H2,−2)︁ O

(︁
r3)︁,

ϵh1 ∼ ϵ
r

(︂
h1,−1 = gobj,1

)︂
ϵ
(︁
h1,0 = H1,0)︁ ϵr

(︁
h1,1 = H2,−1)︁ O

(︁
ϵr2)︁,

ϵ2h2 ∼ ϵ2

r2

(︂
h2,−2 = gobj,2

)︂
ϵ2

r

(︁
h2,−1 = H1,1)︁ ϵ2

(︁
h2,0 = H2,0)︁ O

(︁
ϵ2r
)︁
,

O
(︂

ϵ3

r3

)︂
, O

(︂
ϵ3

r2

)︂
, O

(︂
ϵ3

r

)︂
,

(2.55)

where all terms are now re-expressed in terms of r and ϵ instead of r̃ and ϵ as in
Eqs. (2.52) and (2.54). Thus we can see at what orders which perturbations must match
with one another in order for the expansions to be consistent. As an example, we see
from Eq. (2.52) that gobj

µν is asymptotically flat and thus can be written completely in
terms of multipole moments [158, 159]. Broadly, this means that in the buffer region, it
has the form [81]

gobj
µν ∼ 1 + ϵ

r
m+

ϵ2

r2

(︂
m2 +Min

i + ϵijkS
jnk

)︂
+ O

(︄
ϵ3

r3

)︄
, (2.56)

where m/Si is the Arnowitt–Deser–Misner (ADM) mass/angular momentum of gobj
µν and

Mi is its mass dipole moment. We see from Eq. (2.55) that this immediately constrains
the forms of h1,−1

µν and h2,−2
µν to be

h1,−1
µν ∼ m

r
, (2.57)

h2,−2
µν ∼ m2 +Min

i + ϵijkS
jnk

r2 , (2.58)

meaning that the leading-order behaviour of the perturbations at each order in ϵ in
the outer expansion is fully determined by the multipole moments of the small object.
There are two potential next steps to find the form of the perturbations: one may solve
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the vacuum Einstein field equations order-by-order in ϵ and r for the perturbations in
the outer expansion, hn

µν [72, 87]; or one could solve the field equations in the inner
expansion for Hn

µν order-by-order and then express this in the buffer region in terms of
the outer expansion [81]. This second option will be discussed further in Ch. 3.4 when
discussing the metric perturbations in a lightcone rest gauge.

2.2 Local expansion methods

In this section, we outline the methods of performing covariant and coordinate expansions
of tensorial quantities to analyse their behaviour off the worldline in terms of quantities
defined on the worldline. We also detail a useful coordinate system known as Fermi–
Walker coordinates that we will make heavy use of throughout the thesis. The descriptions
of covariant expansions using bitensors and of Fermi–Walker coordinates follows that of
Ref. [63].

2.2.1 Covariant and coordinate expansions

As stated previously, we are interested in analysing the behaviour of tensor fields near to
the worldline of the small object in our EMRI system. To do so, we require a method to
express tensors evaluated at points in the field away from the worldline, xµ, in terms
of quantities evaluated at points on the worldline, xµ′ . We assume that xµ and xµ′

are sufficiently close and are linked by a unique geodesic, β. While the motivation is
inspecting the behaviour of fields near the small object in EMRIs, these methods are
entirely generic to fields near a worldline.

We first outline how one may perform a covariant expansion of tensor fields near a
worldline in Ch. 2.2.1.1 following the explanation in Ref. [63]. In Ch. 2.2.1.2, we
show how one may then write these expansions in a generic coordinate form and give
the example of the expansion of the Detweiler–Whiting singular scalar field in the
Schwarzschild spacetime, given in Ref. [138]. The Detweiler–Whiting singular scalar
field, ΦS , is the scalar field analogue of the Detweiler–Whiting singular gravitational
field, hS1

µν , discussed in Ch. 1.4.1 [80]. The coordinate expansion methods have been used
previously in, e.g. Refs. [138, 160], however, we present the coordinate expansion one
order in distance higher than the current state of the art [138].

2.2.1.1 Covariant expansions using bitensors

In this section, we outline how one may construct local covariant expansions of tensor
fields. Our explanation of the method follows that of Refs. [63, Part I, 161, Ch. 2, 162].
To do this, we introduce the concept of a bitensor, a tensor which is a function of two
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spacetime points. One important bitensor that we will make extensive use of is Synge’s
world function [63, Ch. 3, 161, Ch. 2],

σ(x,x′) =
ε

2

(︃∫︂
β
ds

)︃2
, (2.59)

where β is the unique geodesic connecting xµ and xµ′ , s is an affine parameter and ε = ∓1
for time/spacelike geodesics. This gives half the geodesic distance squared between the
points xµ and xµ′ .

We denote derivatives of Synge’s world function as σµ′ := ∇µ′σ(x,x′) = ∂µ′σ(x,x′). Note
also that we may take derivatives of Synge’s world function at the unprimed coordinates
as well, giving σµ := ∇µσ(x,x′) = ∂µσ(x,x′). This can be generalised to higher and
higher derivatives, e.g. σµ′ν′ := ∇ν′∇µ′σ or σµ′ν := ∇ν∇µ′σ. The indices of σ tell us its
tensorial structure at both xµ and xµ′ , that is, σµ′ν′ is a rank-2 tensor at xµ′ but a scalar
at xµ. Likewise, σµ′ν is a covector at both xµ and xµ′ . This property demonstrates that
we can always commute primed and unprimed indices as the existence of one does not
affect the tensorial rank at the other point.

Derivatives of Synge’s world function also satisfy the useful identity

gαβσ
ασβ = gα′β′σα′

σβ′
= 2σ. (2.60)

By taking derivatives of Eq. (2.60) and then the limit as xµ goes to xµ′ , one may derive
local covariant expansions of σα′...α... in terms of quantities defined on the worldline.
To see an example, we start by introducing the standard notation for the coincidence
limit [161],

[Aα...α′...
β...β′... ] := lim

xµ→xµ′
Aα...α′...

β...β′...(x,x′). (2.61)

It immediately follows from Eqs. (2.59)–(2.60) that

[σ] = [σα] = [σα′ ] = 0. (2.62)

as, if the length of β goes to 0, then the integral in (2.59) vanishes. Taking primed
derivatives of Eq. (2.60), we see

σµ′ = σν′
σν′µ′ , (2.63)

which implies that
[σµ′ν′ ] = gµ′ν′ . (2.64)

This can be repeated to find higher and higher derivatives of σ(x,x′) [162],

[σµ′ν′ρ′ ] = 0, (2.65)

[σµ′ν′α′β′ ] =
2
3Rµ′(α′β′)ν′ . (2.66)
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Another object we will use is that of the parallel propagator, gµ′
µ(x,x′) [63, Ch. 5, 161,

Ch. 2, 162]. The parallel propagator parallel transports a tensor from xµ′ to xµ along β.
For instance, the vector Aµ(x) can be transported from/to Aµ′

(x′) via

Aµ(x) = gµ
µ′(x,x′)Aµ′

(x′), (2.67)

Aµ′
(x′) = gµ′

µ(x
′,x)Aµ(x), (2.68)

respectively. These expressions hold for covectors as well and tensors with any number
of indices with the inclusion of an appropriate number of parallel propagators, e.g.

Aαβ
µ

ν(x) = gα
α′gβ

β′gµ′
µg

ν
ν′Aα′β′

µ′ ν
′
(x′). (2.69)

It also has the properties that when contracted with itself, it returns the Kronecker delta,

gµ
µ′gµ′

ν = δµ
ν , (2.70)

and is symmetric in indices and arguments,

gµ
µ′
(x,x′) = gµ′

µ(x
′,x). (2.71)

This allows us to write the parallel propagator as gµ′
µ as the actual index order is not

relevant. When contracted with Synge’s world function, it gives

σµ = − gµ′
µσµ′ , (2.72)

σµ′ = − gµ
µ′σµ, (2.73)

and its derivative contracted with Synge’s world function vanishes for all combinations
of primed and unprimed indices,

gµ′
µ;νσ

ν = 0. (2.74)

As we did for Synge’s world function with Eq. (2.60), we can calculate different covariant
expansions by repeatedly differentiating Eq. (2.74) and taking the coincidence limit. For
example [162],

[gµ
ν′ ] = δµ′

ν′ , (2.75)

[gµ
ν′;α′ ] = 0, (2.76)

[gµ
ν′;αβ ] = − 1

2R
µ′

ν′α′β′ . (2.77)
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Combining the previous definitions, we can then express an arbitrary tensor Aµ
ν , evalu-

ated at x, in terms of quantities evaluated at x′ as

Aµ
ν(x) = gµ

µ′gν
ν′
(︃
A(0)µ′

ν′(x′) + λA(1)µ′
ν′α′(x′)σα′

+
λ2

2 A
(2)µ′

ν′;α′β′(x′)σα′
σβ′
)︃
+ O

(︂
λ3
)︂
, (2.78)

where λ is a formal order counting parameter to be set to unity at the end of the
calculation. The unknown coefficients, A(N)µ′

ν′α′1...α′
n , can be found in the same manner

as before by repeated differentiation and taking of the coincidence limit. As an example,
we seek the covariant expansion of σµ′ν′ . We first expand, as in Eq. (2.78) but without
the need for parallel propagators, as

σµ′ν′ = σ
(0)
µ′ν′ + λσ

(1)
µ′ν′α′σ

α′
+
λ2

2 σ
(2)
µ′ν′α′β′σ

α′
σβ′

+ O
(︂
λ3
)︂
. (2.79)

We know from Eq. (2.64), that A(0)
µ′ν′ = gµ′ν′ . Taking a primed derivative and the

coincidence limit gives that

σ
(1)
µ′ν′α′ = [σµ′ν′α′ ] = 0, (2.80)

σ
(2)
µ′ν′α′β′ = [σµ′ν′α′β′ ] =

2
3Rµ′(α′β′)ν′ , (2.81)

meaning that

σµ′ν′ = gµ′ν′ +
λ2

3 Rµ′α′β′ν′σα′
σβ′

+ O
(︂
λ3
)︂
. (2.82)

This can be repeated for any required covariant quantity. Ref. [163] provides a semi-
recursive method for calculating expansions of Synge’s world function and the parallel
propagator, along with many other covariant quantities.

2.2.1.2 Coordinate expansions of covariant quantities

In order to implement the covariant expansions in a specific calculation, one must first
write them in a chosen coordinate system. This necessitates re-expanding all the covariant
quantities in terms of coordinate differences,

∆xα′
:= xα − xα′ , (2.83)

where ∆xα′ ∼ λ. A derivative of ∆xα′ at xµ′ then gives

∆xα′
,β′ = −δα′

β′ . (2.84)

This leaves us with coefficients evaluated at xµ′ , as in Eq. (2.78), contracted into certain
combinations of ∆xα′ .



36 Chapter 2. Mathematical preliminaries

As stated in the introduction to this section, as an example of how to re-expand a
covariant quantity into a generic expansion, we will re-expand the Detweiler–Whiting
singular scalar field. This was presented in Ref. [138] through order λ4 in both covariant
form and in a specific coordinate system in the Schwarzschild spacetime but, to our
knowledge, has never been presented explicitly as a generic coordinate expansion past
order λ2. Instead of satisfying the linearised Einstein field equations with point particle
source, as in the gravitational case in Eq. (1.23), the Detweiler–Whiting singular scalar
field satisfies the inhomogeneous scalar wave equation

□ΦS = −4πq
∫︂
δ4(x,x′) dτ , (2.85)

where q is the scalar charge of the particle and δ4(x,x′) is the covariant Dirac delta
function. As in the gravitational case, one can construct a regular field from this quantity,

ΦR := Φ − ΦS , (2.86)

which satisfies the homogeneous wave equation,

□ΦR = 0, (2.87)

and can be used to calculate the scalar self-force,

Fµ = q∇µΦR. (2.88)

Detweiler and Whiting [80] demonstrated that the scalar singular field can be written in
terms of certain bitensors, U (x,x′) and V (x,x′), as

ΦS =
q

2

[︃
U(x,x′(τ ))

uµ′σµ′

]︃τ+

τ−

+
q

2

∫︂ τ+

τ−
V (x,x′(τ )) dτ , (2.89)

where τ± is the proper time that the worldline of the small object intersects the future/past
lightcones of the point xµ. The specific forms of U(x,x′) and V (x,x′) need not be
considered as Heffernan et al. [138] derived a local covariant expansion of Eq. (2.89),
using the techniques illustrated in the previous chapter (along with those of Ref. [164]).
This is provided in Eqs (4.1)–(4.3) of Ref. [138] and is given by

Φ = q

(︃ 1
λρ

+ λ
r2 − ρ2

6ρ3 Ruσuσ +
λ2

24ρ3

[︃
(r2 − 3ρ2)rṘuσuσ − (r2 − ρ2)Ruσuσ;σ

]︃
+

λ3

360ρ5 Φ(3)
)︃
+ O

(︂
λ4
)︂
, (2.90)
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where

Φ(3) = 15(r2 − ρ2)2RuσuσRuσuσ + ρ2
[︂
(r2 − ρ2)(3Ruσuσ;σσ + 4Ruσσα′Ruσσ

α′
)

+ (r4 − 6r2ρ2 − 3ρ4)(4Ruσuα′Ruσu
α′
+ 3R̈uσuσ) + r(r2 − 3ρ2)

× (16Ruσu
α′
Ruσσα′ − 3Ruσuσ;uσ)

]︂
+ ρ4

(︂
2Ru

α′
u

β′[︂
(r2 + ρ2)Rσα′σβ′

+ 2r(r2 + 3ρ2)Ruα′σβ′

]︂
+ 2Ru

α′
σ

β′[︂2rRσα′σβ′ + (r2 + ρ2)Ruβ′σα′

]︂
+ (r4 + 6r2ρ2 + ρ4)Ruα′uβ′Ru

α′
u

β′
+ 2(r2 + ρ2)Ruα′σβ′Ru

α′
σ

β′

+Rσα′σβ′Rσ
α′

σ
β′)︂. (2.91)

Ref. [138] also provides the order-λ4 term in the covariant expansion but we do not
consider that for our coordinate expansion.

In this example, we push the generic coordinate expansion of the covariant scalar singular
field expression one order higher to order λ3. To do so requires us to perform a coordinate
expansion of a derivative of Synge’s world function through O

(︁
λ5)︁, one order higher than

the current state of the art [138]. Additionally, while it is not required for an expansion
of the scalar field, we also calculate a coordinate expansion of the parallel propagator as
it is required for work later in the thesis.

To find a coordinate expansion of Synge’s world function, we exploit the fact that it
satisfies the identity from Eq. (2.60). We make the following ansatz as an expansion for
Synge’s world function,

σ(x,x′) =
∞∑︂

n=2
λnA

(n−1)
α′

1...α′
n
(x′)∆xα′

1 · · · ∆xα′
n

= λ2A
(1)
α′β′(x′)∆xα′

∆xβ′
+ λ3A

(2)
α′β′γ′(x′)∆xα′

∆xβ′
∆xγ′

+ λ4A
(3)
α′β′γ′µ′(x′)∆xα′

∆xβ′
∆xγ′

∆xµ′

+ λ5A
(4)
α′β′γ′µ′ν′(x′)∆xα′

∆xβ′
∆xγ′

∆xµ′
∆xν′

+ λ6A
(5)
α′β′γ′µ′ν′ρ′(x′)∆xα′

∆xβ′
∆xγ′

∆xµ′
∆xν′

∆xρ′
+ O

(︂
λ7
)︂
; (2.92)

see Refs. [138, 160] for similar expansions but with different conventions for ∆xα′ . The
primed derivative is then given by

σµ′(x,x′) = − 2λA(1)
µ′α′ ∆xα′

+ λ2
(︂
A
(1)
α′β′,µ′ − 3A(2)

µ′α′β′

)︂
∆xα′

∆xβ′

+ λ3
(︂
A
(2)
α′β′γ′,µ′ − 4A(3)

µ′α′β′γ′

)︂
∆xα′

∆xβ′
∆xγ′

+ λ4
(︂
A
(3)
α′β′γ′δ′,µ′ − 5A(4)

µ′α′β′γ′δ′

)︂
∆xα′

∆xβ′
∆xγ′

∆xδ′

+ λ5
(︂
A
(4)
α′β′γ′δ′ι′,µ′ − 6A(5)

µ′α′β′γ′δ′ι′

)︂
∆xα′

∆xβ′
∆xγ′

∆xδ′
∆xι′

+ O
(︂
λ6
)︂
, (2.93)
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We then substitute Eqs. (2.92)–(2.93) into the identity for Synge’s world function from
Eq. (2.60) and solve order-by-order. The expressions for A(n)

α′1···α′n are

A
(1)
α′β′ =

1
2gα′β′ , (2.94a)

A
(2)
α′β′γ′ =

1
2gδ′(α′ Γδ′

β′γ′), (2.94b)

A
(3)
α′β′γ′δ′ =

1
72
(︂
Rα′[γ′δ′]β′ + 3gα′ι′ Γι′

γ′δ′,β′ + 9gι′(β′ Γι′

γ′δ′),α′ + 9gι′µ′ Γι′

α′(β′ Γµ′

γ′δ′)

+ 6gµ′(α′ Γµ′

β′)ι′ Γι′
γ′δ′ + 6gµ′(γ′ Γι′

δ′)β′ Γµ′

α′ι′

)︂
, (2.94c)

A
(4)
α′β′γ′δ′ι′ =

1
120

(︂
5g(α′|ρ′|Γ

ρ′

δ′ι′,γ′β′) + 5Γρ′

(α′β′gγ′|κ′|Γ
κ′

ι′|ρ′|,δ′) + 10Γρ′

(α′β′g|ρ′κ′|Γ
κ′

δ′ι′,γ′)

+ 10Γρ′

(α′|κ′|gβ′|ρ′|∂γ′ Γκ′

δ′ι′) + 3Γρ′

(α′β′ Γκ′
γ′δ′ Γµ′

ι′)ρ′gκ′µ′ + 7Γρ′

(α′β′ Γκ′
γ′δ′ Γµ′

ι′)κ′gρ′µ′

+ 5Γρ′

(α′β′ Γκ′

γ′|µ′|Γ
µ′

δ′|ρ′|gι′)κ′

)︂
(2.94d)

A
(5)
α′β′γ′δ′ι′µ′ =

1
7200

(︂
60g(α′|ζ′|Γ

ζ′

ι′µ′,δ′γ′β′) − 90Γζ′

(α′β′ Γκ′
γ′δ′Rι′|ζ′|µ′)κ′

+ 120Γζ′

(α′β′gγ′|κ′|Γ
κ′

µ′|ζ′|,ι′δ′) − 60Γζ′

(α′β′gγ′|κ′ Γκ′

ι′µ′,δ′)ζ′

+ 150Γζ′

(α′β′g|ζ′κ′|Γ
κ′

ι′µ′,δ′γ′) + 180Γζ′

(α′|κ′|gβ′|ζ′|Γ
κ′

ι′µ′,δ′γ′)

+ 180g(α′|ζ′|Γ
κ′
γ′δ′,β′ Γζ′

µ′|κ′|,ι′) + 100gζ′κ′ Γζ′

β′γ′,α′ Γκ′

ι′µ′,δ′)

− 60Γζ′

(α′β′ Γκ′
γ′δ′gι′|ν′|Γ

ν′

|ζ′κ′|,µ′) − 3Γζ′

(α′β′ Γκ′
γ′δ′gι′|ν′|Γ

ν′

µ′)κ′,ζ′

+ 3Γζ′

(α′β′ Γκ′
γ′δ′gι′|ν′|Γ

ν′

µ′)ζ′,κ′ + 105Γζ′

(α′β′ Γκ′
γ′δ′g|ζ′ν′|Γ

ν′
µ′|κ′|,ι′)

+ 45Γζ′

(α′β′ Γκ′
γ′δ′g|κ′ν′|Γ

ν′

µ′|ζ′|,ι′) + 120Γζ′

(α′β′ Γκ′
γ′|ζ′|gδ′|ν′|Γ

ν′

µ′|κ′|,ι′)

+ 180Γζ′

(α′β′ Γκ′

γ′|ν′|gδ′|κ′|Γ
ν′

µ′|ζ′|,ι′) + 200Γζ′

(α′β′ Γκ′

γ′|ζ′gκ′ν′|Γ
ν′

ι′µ′,δ′)

+ 300Γζ′

(α′β′ Γκ′

γ′|ν′gζ′κ′|Γ
ν′

ι′µ′,δ′) − 60Γζ′

(α′β′ Γκ′
|ζ′ν′|gγ′|κ′|Γ

ν′
ι′µ′,δ′)

+ 180Γζ′

(α′|κ′|Γ
κ′

β′|ν′|gγ′|ζ′|Γ
ν′

ι′µ′,δ′) + 30Γζ′

(α′β′ Γκ′
γ′δ′ Γν′

ι′|ζ′|Γ
ρ′

µ′)κ′gν′ρ′

+ 70Γζ′

(α′β′ Γκ′
γ′δ′ Γν′

ι′|κ′|Γ
ρ′

µ′)ζ′gν′ρ′ + 70Γζ′

(α′β′ Γκ′
γ′δ′ Γν′

ι′|ρ′|Γ
ρ′

µ′)ζ′gκ′ν′

+ 80Γζ′

(α′β′ Γκ′
γ′δ′ Γν′

ι′|ρ′|Γ
ρ′

µ′)κ′gζ′ν′ + 3Γζ′

(α′β′ Γκ′
γ′δ′ Γν′

ι′|ζ′ Γρ′

κ′ν′|gµ′)ρ′

− 3Γζ′

(α′β′ Γκ′
γ′δ′ Γν′

ι′|κ′ Γρ′

ζ′ν′|gµ′)ρ′ − 48Γζ′

(α′β′ Γκ′

γ′|ζ′|Γ
ν′

δ′|ρ′|Γ
ρ′

ι′|κ′|gµ′)ν′

+ 24Γζ′

(α′β′ Γκ′

γ′|ν′|Γ
ν′

δ′|ζ′|Γ
ρ′

ι′|κ′|gµ′)ρ′ + 84Γζ′

(α′β′ Γκ′

γ′|ν′|Γ
ν′

δ′|ρ′|Γ
ρ′

ι′|ζ′|gµ′)κ′

− 60Γζ′

(α′β′ Γκ′

γ′|ν′|gδ′|κ′|g
ν′ρ′

Rι′|ζ′|µ′)ρ′

)︂
. (2.94e)

These are similar to the expansions appearing in Refs. [160, Eq. (2.10), 138, Eq. (3.10)]
but here, we have a slightly different definition for ∆xα′ and we take the derivatives at
xµ′ instead of xµ. Taking the primed derivative of the appropriate quantities and then
substituting these and Eq. (2.94) into Eq. (2.93) gives us the final expression for the
coordinate expansion of Synge’s world function,

σα′ =
∞∑︂

n=1
λnσ

(n)
α′ , (2.95)
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where the first five orders are given by

σ
(1)
α′ = − gα′β′ ∆xβ′ , (2.96a)

σ
(2)
α′ = − 1

2gα′δ′ Γδ′
β′γ′ ∆xβ′

∆xγ′ , (2.96b)

σ
(3)
α′ = − 1

6
(︂
gα′ι′ Γι′

β′γ′,δ′ + gα′µ′ Γι′
β′γ′ Γµ′

δ′ι′

)︂
∆xβ′

∆xγ′
∆xδ′ , (2.96c)

σ
(4)
α′ = − 1

24
[︂
Γν′

β′γ′

(︂
gα′µ′ Γκ′

δ′ν′ Γµ′

ι′κ′ −Rα′δ′ι′ν′ + gα′κ′ Γκ′
δ′ν′,ι′

)︂
+ gα′ν′

(︂
2Γν′

β′κ′ Γκ′
γ′δ′,ι′ + Γν′

β′γ′,δ′ι′

)︂]︂
∆xβ′

∆xγ′
∆xδ′

∆xι′ , (2.96d)

σ
(5)
α′ =

1
360

[︂
9Γκ′

α′µ′ Γν′
β′γ′gδ′κ′gµ′ρ′

Rι′ν′ς′ρ′ + 7Rα′ι′ς′κ′ Γκ′
β′γ′,δ′ − 3gα′κ′

(︂
3Γκ′

β′µ′,γ′ Γµ′

δ′ι′,ς′

+ 3Γκ′
β′µ′

[︂
Γµ′

γ′ν′ Γν′
δ′ι′,ς′ + Γµ′

γ′δ′,ι′ς′

]︂
+ Γκ′

β′γ′,δ′ι′ς′

)︂
+ 3Γκ′

α′β′

(︂
2Γµ′

γ′ν′gδ′µ′

·
[︂
gν′ρ′

Rι′κ′ς′ρ′ − Γν′
ι′κ′,ς′

]︂
− 2gδ′ν′ Γµ′

γ′κ′ Γν′
ι′µ′,ς′ + Γµ′

γ′δ′

[︂
5Rι′κ′ς′µ′ + 2gι′ν′ Γν′

κ′µ′,ς′

]︂
+ 2gγ′µ′

[︂
Γµ′

κ′ν′ Γν′
δ′ι′,ς′ + 2Γµ′

δ′[ι′,κ′]ς′

]︂)︂
+ Γκ′

β′γ′

(︂
−Γµ′

δ′κ′

[︂
3gα′ρ′ Γν′

ι′µ′ Γρ′

ς′ν′ − 10Rα′ι′ς′µ′

+ 9gι′ν′ Γν′
ς′µ′,α′ + 6gα′ν′ Γν′

ι′µ′,ς′

]︂
+ 3Γµ′

δ′ν′

[︂
−3gι′µ′ Γν′

ς′κ′,α′ + gα′µ′

{︂
gν′ρ′

Rι′κ′ς′ρ′

− 3Γν′
ι′κ′,ς′

}︂]︂
+ 3Γµ′

δ′ι′

[︂
4Rα′κ′ς′µ′ + 3gς′ν′ Γν′

κ′µ′,α′ + gα′ν′ Γν′
κ′µ′,ς′

]︂
+ 9Rα′δ′ι′κ′;ς′

+ 9gδ′µ′

[︂
Γµ′

κ′ν′ Γν′
ι′ς′,α′ + 2Γµ′

ι′[ς′,κ′]α′

]︂
+ 3gα′µ′

[︂
Γµ′

κ′ν′ Γν′
δ′ι′,ς′ − 2Γµ′

δ′κ′,ι′ς′ + Γµ′

δ′ι′,ς′κ′

]︂)︂]︂
· ∆xβ′

∆xγ′
∆xδ′

∆xι′
∆xς′ . (2.96e)

The expression for σ(5)α′ appears here for the first time and is one order past the current
state of the art. As a check on these expressions, we can substitute Eq. (2.96) into the
identity for Synge’s world function from Eq. (2.60). This has been correctly passed for
the first four orders, but we have been unable to check the highest order due to the
complexity of the expression that appears2.

Before proceeding, we define

r := uµ′σµ′ , (2.97)

ρ :=
√︂
Pµ′ν′σµ′σν′ , (2.98)

for notational simplicity3. Here, Pµν := gµν + uµuν is the projection operator. This
means that

σµ′
σµ′ = 2σ(x,x′) = ρ2 − r2. (2.99)

Here, r gives a notion of the difference in proper time while ρ denotes a difference in
proper distance. These two quantities appear in the scalar puncture field necessitating

2The resulting expansion of the scalar field in Eq. (2.105) uses Eq. (2.96e). The expression in
Eq. (2.105) matches the expression derived using an alternative approach that has found the singular
scalar field up to O

(︁
λ14)︁ for circular orbits in the Schwarzschild spacetime [165]. The specific details of

this method are not considered here but it leads us to believe that Eq. (2.96e) is correct.
3We use r in agreement with Refs. [96, 138, 164] but we use ρ to match Refs. [137, 143] instead of s

as in Ref. [96].
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us to find their coordinate expansions. The expression for r is trivial as it just requires
us to contract the four-velocity into Eq. (2.95), so that, at leading order,

r = −λr0 + O
(︂
λ2
)︂
. (2.100)

where, in analogy with Eq. (2.97), we define the four-velocity contracted with the
coordinate difference as

r0 := uµ′ ∆xµ′ , (2.101)

We write the expansion of ρ as a power series,

ρ =
∞∑︂

n=1
λnρ(n), (2.102)

and define
ρ0 :=

√︂
Pµ′ν′ ∆xµ′ ∆xν′ . (2.103)

We then proceed to substitute our coordinate expansion for σα′ from Eq. (2.95) into
the definition for ρ from Eq. (2.102) and collect terms at each order in λ. The first five
orders of the expansion are given by

ρ(1) = ρ0, (2.104a)

ρ(2) =
1

2ρ0

(︂
Γ∆

∆∆ + Γu
∆∆r0

)︂
, (2.104b)

ρ(3) = − 1
8ρ3

0

(︂
Γ∆

∆∆ + Γu
∆∆r0

)︂2
+

1
24ρ0

(︂
3Γu

∆∆
2 + 4Γ∆

∆∆,∆ + 4Γu
∆∆,∆r0 + 4r0Γα′

∆∆Γu
α′∆

+ 4Γα′
∆∆Γ∆

α′∆ + 3gα′β′ Γα′
∆∆Γβ′

∆∆

)︂
, (2.104c)

ρ(4) =
1

16ρ5
0

(︂
Γ∆

∆∆ + Γu
∆∆r0

)︂3
− 1

48ρ3
0

(︂
Γ∆

∆∆ + Γu
∆∆r0

)︂(︂
3Γu

∆∆
2 + Γα′

∆∆

[︂
4Γ∆

α′∆ + 3gα′β′ Γβ′

∆∆

+ 4Γu
α′∆r0

]︂
+ 4

[︂
Γ∆

∆∆,∆ + Γu
∆∆,∆r0

]︂)︂
+

1
24ρ0

(︂
2Γu

∆∆Γu
∆∆,∆ + 2Γα′

∆∆,∆Γ∆
α′∆ + Γ∆

∆∆,∆∆

+ 2Γα′
∆∆,∆Γu

α′∆r0 + Γu
∆∆,∆∆r0 + Γα′

∆∆

[︂
2Γu

α′∆Γu
∆∆ + Γ∆

∆α′,∆ + 2gα′β′ Γβ′

∆∆,∆ + Γu
∆α′,∆r0

+Rα′∆u∆r0
]︂
+ Γα′

∆β′ Γβ′

∆∆

[︂
Γ∆

α′∆ + 2gα′γ′ Γγ′

∆∆ + Γu
α′∆r0

]︂)︂
, (2.104d)

ρ(5) = − 5
128ρ7

0

(︂
Γ∆

∆∆ + Γu
∆∆r0

)︂4
+

1
64ρ5

0

(︂
Γ∆

∆∆ + Γu
∆∆r0

)︂2(︂
3Γu

∆∆
2 + 4Γα′

∆∆Γ∆
α′∆ + 4Γ∆

∆∆,∆

+ 3gα′β′ Γα′
∆∆Γβ′

∆∆ + 4
[︂
Γα′

∆∆Γu
α′∆ + Γu

∆∆,∆

]︂
r0
)︂

+
1

1152ρ3
0

(︄
−9Γu

∆∆
4 − 48Γα′

∆∆,∆(Γ
∆
α′∆ + Γu

α′∆r0)(Γ∆
∆∆ + Γu

∆∆r0) − 24Γu
∆∆

2

× (Γ∆
∆∆,∆ + 3Γu

∆∆,∆r0) − 8
(︂
2(Γ∆

∆∆,∆ + Γu
∆∆,∆r0)

2 + 3Γ∆
∆∆(Γ

∆
∆∆,∆∆ + Γu

∆∆,∆∆r0)
)︂

− 24Γu
∆∆

(︂
2Γu

∆∆,∆Γ∆
∆∆ + r0(Γ∆

∆∆,∆∆ + Γu
∆∆,∆∆r0)

)︂
− 24Γα′

∆β′ Γβ′

∆∆(Γ
∆
α′∆ + 2Γγ′

∆∆gα′γ′
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+ Γu
α′∆r0)(Γ∆

∆∆ + Γu
∆∆r0) − Γα′

∆∆

[︃
8Γ∆

α′∆

(︂
3Γu

∆∆
2 + Γβ′

∆∆(2Γ∆
β′∆ + 3Γγ′

∆∆gβ′γ′)

+ 4(Γ∆
∆∆,∆ + Γu

∆∆,∆r0)
)︂
+ 8Γu

α′∆

(︂
6Γu

∆∆Γ∆
∆∆ + 9Γu

∆∆
2r0 + Γβ′

∆∆r0(4Γ∆
β′∆

+ 3Γγ′

∆∆gβ′γ′ + 2Γu
β′∆r0) + 4r0(Γ∆

∆∆,∆ + Γu
∆∆,∆r0)

)︂
+ 3

(︃
8Γ∆

∆α′,∆(Γ
∆
∆∆ + Γu

∆∆r0)

+ 8
(︂
2Γβ′

∆∆,∆gα′β′ + (Rα′∆u∆ + Γu
∆α′,∆)r0

)︂
(Γ∆

∆∆ + Γu
∆∆r0) + Γβ′

∆∆gα′β′(6Γu
∆∆

2

+ 8Γ∆
∆∆,∆ + 3Γγ′

∆∆Γζ′

∆∆gγ′ζ′ + 8Γu
∆∆,∆r0)

)︃]︃)︄

+
1

720ρ0

(︃
10Γu

∆∆,∆
2 + 15Γu

∆∆Γu
∆∆,∆∆ + 18Γα′

∆∆,∆∆Γ∆
α′∆ + 6Γ∆

∆∆,∆∆∆ + 2Γα′
∆∆,∆

· (15Γu
α′∆Γu

∆∆ + 9Γ∆
∆α′,∆ + 5Γβ′

∆∆,∆gα′β′) + 3Γα′
∆β′,∆Γβ′

∆∆(16Γ∆
α′∆ + 5Γγ′

∆∆gα′γ′)

+ Γα′
∆β′

[︃
6Γβ′

∆∆,∆(3Γ∆
α′∆ + 5Γγ′

∆∆gα′γ′) + Γβ′

∆∆

(︂
15Γu

α′∆Γu
∆∆ + 42Γ∆

∆α′,∆

+ 10(Γγ′

∆ζ′ Γζ′

∆∆ + 2Γγ′

∆∆,∆)gα′γ′

)︂
+ 3Γβ′

∆γ′ Γγ′

∆∆(2Γ∆
α′∆ + 5Γζ′

∆∆gα′ζ′)

]︃
+ 2

[︃
Rα′∆u∆(10Γα′

∆β′ Γβ′

∆∆ + 7Γα′
∆∆,∆) + 3

(︃
3Γα′

∆∆,∆∆Γu
α′∆ + 3Γα′

∆∆,∆Γu
∆α′,∆ + Γu

∆∆,∆∆∆

− 3Γα′
u∆,∆Γβ′

∆∆Γ∆
α′β′ − 2Γα′

u∆Γβ′

∆∆,∆Γ∆
α′β′ − 5Γα′

u∆Γβ′

∆∆Γ∆
α′β′,∆ + 3Γα′

∆β′,∆Γβ′

∆∆(Γ
u
α′∆ + Γ∆

α′u)

+ 2Γα′
u∆Γβ′

∆α′,∆Γ∆
β′∆ + Γα′

∆β′

(︂
(Γβ′

∆γ′ Γγ′

∆∆ + 3Γβ′

∆∆,∆)Γ
u
α′∆ + Γβ′

∆∆(2Γu
∆α′,∆ + 3Γ∆

uα′,∆)
)︂

+ 2Γα′
u∆Γβ′

∆α′ Γ∆
∆β′,∆ + 2Γα′

u∆Γ∆
∆α′,∆∆ − 2Γα′

u∆Γ∆
∆∆,α′∆ − 4Rα′uβ′∆Γβ′

∆∆Γ∆
γ′∆g

α′γ′

− 2Rα′∆γ′∆Γα′
u∆Γ∆

β′∆g
β′γ′

)︃]︃
r0 − 3Rα′∆β′∆Γβ′

∆∆(13Γα′
∆∆ + 4Γα′

u∆r0)

+ Γα′
∆∆

[︃
10Γβ′

∆∆Γu
α′∆Γu

β′∆ + 20Γu
α′∆Γu

∆∆,∆ − 36Γβ′

∆∆Γ∆
α′β′,∆ − 6

(︂
Γβ′

∆∆,∆Γu
α′β′

+ Γβ′

∆∆Γu
α′β′,∆ − 2Γu

∆α′,∆∆ + Γu
∆∆,α′∆ + 3Γ∆

u∆,α′∆ − 3Γ∆
∆α′,u∆ + (Rα′∆γ′∆Γu

β′∆

− 4Rα′γ′∆uΓ∆
β′∆)g

β′γ′
+Rα′uβ′∆(7Γβ′

∆∆ − Γ∆
γ′∆g

β′γ′
)
)︂
r0 + 3

(︂
5(Rα′∆u∆ + Γu

∆α′,∆)

× Γu
∆∆ − 12Γβ′

∆∆,∆Γ∆
α′β′ + 14Γ∆

∆α′,∆∆ − 12Γ∆
∆∆,α′∆ + 5Γβ′

∆∆,∆∆gα′β′

− 12Rα′∆γ′∆Γ∆
β′∆g

β′γ′
+ 6Rα′∆u∆;∆r0

)︂]︃)︃
, (2.104e)

where we have introduced notation for contractions of uµ′ and ∆xµ′ so that, Γ∆
u∆,∆ :=

Γα′
β′µ′,ν′ ∆xα′uβ′

∆xµ′
∆xν′ or Ṙu∆u∆ := Rα′β′µ′ν′;γ′ ∆xβ′

∆xν′
uα′

uµ′
uγ′ , for example. With

these quantities in hand, we can proceed to calculate the coordinate expansion of the
scalar puncture field from Eq. (2.90).

In the original paper, Eq. (2.90) was written in terms of the Weyl tensor, Cαβµν , but
here we rewrite in terms of the Riemann tensor. We are free to do so as we work on a
vacuum background where the Weyl and Riemann tensors coincide. We now substitute
our expansions for σµ′ from Eq. (2.95), r from Eq. (2.100) and ρ from Eq. (2.102) into
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Eq. (2.90) to find the coordinate expansion. This is given by

Φ/q =
1
λρ0

− 1
2ρ3

0

(︂
Γ∆

∆∆ + Γu
∆∆r0

)︂
− λ

24ρ5
0

(︂
3Γu

∆∆
2ρ2

0 − 9Γ∆
∆∆

2 − 18Γu
∆∆Γ∆

∆∆r0

− 9Γu
∆∆

2r0
2 + 4Γ∆

∆∆,∆ρ2
0 + 4Γu

∆∆,∆r0ρ2
0 − 4Ru∆u∆r0

2ρ2
0 + 4r0Γα′

∆∆Γu
α′∆ρ2

0

+ 4Γα′
∆∆Γ∆

α′∆ρ2
0 + 3Γα′

∆∆Γβ′

∆∆gα′β′ρ2
0 + 4Ru∆u∆ρ4

0

)︂
− λ2

48ρ07

[︂
15Γ∆

∆∆
3 + 45Γu

∆∆Γ∆
∆∆

2r0 + 45Γu
∆∆

2Γ∆
∆∆r0

2 + 15Γu
∆∆

3r0
3 − 9Γu

∆∆
2Γ∆

∆∆ρ0
2

− 12Γ∆
∆∆Γ∆

∆∆,∆ρ0
2 − 9Γu

∆∆
3r0ρ0

2 − 12Γu
∆∆,∆Γ∆

∆∆r0ρ0
2 − 12Γu

∆∆Γ∆
∆∆,∆r0ρ0

2

− 12Γu
∆∆Γu

∆∆,∆r0
2ρ0

2 + 12Γ∆
∆∆Ru∆u∆r0

2ρ0
2 + 12Γu

∆∆Ru∆u∆r0
3ρ0

2

− 12(Γ∆
∆∆ + Γu

∆∆r0)Γα′
∆∆Γ∆

α′∆ρ0
2 − 9Γ∆

∆∆Γα′
∆∆Γβ′

∆∆gα′β′ρ0
2 − 9Γu

∆∆r0Γα′
∆∆Γβ′

∆∆gα′β′ρ0
2

+ 4Γu
∆∆Γu

∆∆,∆ρ0
4 − 4Γ∆

∆∆Ru∆u∆ρ0
4 − 12Γu

∆∆Ru∆u∆r0ρ0
4 − 8Rα′u∆uΓα′

∆∆r0
2ρ0

4

− 2Ru∆u∆;∆r0
2ρ0

4 + 2Ṙu∆u∆r0
3ρ0

4 + 2r0Rα′∆u∆Γα′
∆∆ρ0

4 + 2r0Γα′
∆β′ Γβ′

∆∆Γu
α′∆ρ0

4

+ 4r0Γα′
∆∆,∆Γu

α′∆ρ0
4 + 2Γα′

∆β′ Γβ′

∆∆Γ∆
α′∆ρ0

4 + 4Γα′
∆∆,∆Γ∆

α′∆ρ0
4 + 4Γα′

∆∆Γβ′

∆∆,∆gα′β′ρ0
4

+ 2Γ∆
∆∆,∆∆ρ0

4 + 4Γα′
∆β′ Γβ′

∆∆Γγ′

∆∆gα′γ′ρ0
4 + 2Γ∆

∆α′,∆Γα′
∆∆ρ0

4 + 2r0Γu
∆∆,∆∆ρ0

4

+ 2r0Γu
∆β′,∆Γβ′

∆∆ρ0
4 + 8Rα′u∆uΓα′

∆∆ρ0
6 + 2Ru∆u∆;∆ρ0

6 − 6Ṙu∆u∆r0ρ0
6

+ 4Γα′
∆∆Γu

α′∆ρ0
2
(︂

Γu
∆∆(ρ0

2 − 3r0
2) − 3Γ∆

∆∆r0
)︂]︂

+ O
(︂
λ3
)︂
. (2.105)

Due to the length of the expression, we have not been able to include the order-λ3 term,
which is the order that is one beyond the current state of the art [138]. Instead, we
include it, and the other orders, in a Mathematica notebook that can be found in the
Additional Material [141].

For the gravitational case, as opposed to the scalar one, we also require an expansion for
the parallel propagator. To calculate the coordinate expansion of gν′

µ, we proceed in a
similar way to that of σα′ . To begin, we use the ansatz

gν′
µ = δν′

µ′ + λG(1)ν′
µ′α′ ∆xα′

+ λ2G(2)ν′
µ′α′β′ ∆xα′

∆xβ′

+ λ3G(3)ν′
µ′α′β′γ′ ∆xα′

∆xβ′
∆xγ′

+ O
(︂
λ4
)︂

(2.106)

and substitute this into the identity for the derivative of the parallel propagator contracted
into a derivative of Synge’s world function from Eq. (2.74). We proceed to solve this
order-by-order to find

G(1)α′
β′γ′ = Γα′

β′γ′ , (2.107a)

G(2)α′
β′γ′δ′ =

1
2
(︂

Γα′
β′ι′ Γι′

γ′δ′ + gα′ι′
Rβ′(γ′δ′)ι′ + Γα′

γ′δ′,β′

)︂
, (2.107b)

G(3)α′
β′γ′δ′ι′ =

1
6 Sym

γ′δ′ι′

(︂
Γς′

γ′δ′

[︂
3gα′κ′

Rβ′(ι′ς′)κ′ + Γα′
ι′ς′,β′

]︂
+ Γα′

β′ς′

[︂
Γς′

γ′κ′ Γκ′
δ′ι′ + Γς′

γ′δ′,ι′

]︂
− gα′κ′

Γς′

β′γ′Rδ′ς′ι′κ′ + gα′ς′
Rβ′γ′δ′ς′;ι′ + Γα′

γ′ς′ Γς′

δ′ι′,β′ + Γα′
γ′δ′,β′ι′

)︂
. (2.107c)
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We have checked our expressions by substituting them into Eq. (2.74) and have verified
that they satisfy the identity to the appropriate order in λ.

2.2.2 Fermi–Walker coordinates

When analysing the properties of fields near the worldline of the small object, it is
advantageous to introduce coordinates that are adapted to the problem. In this chapter,
we introduce Fermi–Walker coordinates which are particularly suited to this task. In
general relativity, we can always find a coordinate system around a chosen point, p,
where the full spacetime metric reduces to the Minkowski metric through the use of
Riemann normal coordinates [166, Ch. 1.6]. In other words,

gµν(p) = ηµν and Γµ
νρ(p) = 0. (2.108)

This is (a version of) the equivalence principle. However, it is possible to extend this
notion from a single point, p, to an entire timelike curve, γ, with the introduction of
Fermi–Walker coordinates. Our description of Fermi–Walker coordinates summarises
that of Refs. [63, Ch. 9, 166, Ch. 1.11].

To begin, we introduce an orthonormal tetrad (uµ, eµ
a) on γ which is defined at the point

z(τ ) so that it satisfies

Deµ
a

dτ
= aνe

ν
au

µ, (2.109)

gµνu
µuν = − 1, (2.110)

gµνe
µ
au

ν = 0, (2.111)

gµνe
µ
ae

ν
b = δab, (2.112)

where uµ = dzµ/dτ is the curve’s four-velocity, aµ = D2zµ/ dτ2 is the acceleration of γ
and δab = diag(1, 1, 1) is the three dimensional flat space metric. If γ is a geodesic then
aµ vanishes. Eq. (2.109) ensures that the tetrad basis is Fermi–Walker transported along
γ, thus keeping it orthogonal to the worldline as it travels along it. This condition reduces
to that of parallel transport when the worldline is a geodesic. Eqs. (2.110)–(2.112) then
ensure that it is orthonormal at all points on γ. The dual tetrad, (e0

µ, ea
µ), can be defined

as satisfying

e0
µ = − uµ, (2.113)

ea
µ = δabgµνe

ν
b . (2.114)
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Eqs. (2.110)–(2.114) then imply that we can write the metric and inverse metric as

gµν = − e0
µe

0
ν + δabe

a
µe

b
ν , (2.115)

gµν = − uµuν + δabeµ
ae

ν
b , (2.116)

respectively.

With the orthonormal tetrad constructed, we may now create a local coordinate system
so that we may derive the form of the metric near γ. The full technical details are not
considered here (see Ref. [63, Chs 9.3–9.5] for more details) but we outline the geometric
picture of the coordinate construction. At a point x̄ := z(t) on γ, where t gives the
proper time, we generate a surface orthogonal to the worldline by emitting spacelike
geodesics from z(t) that are orthogonal to γ. We can then label a point on this surface
with coordinates xi so that we have coordinates, (t,xi), that describe points near to the
worldline. The tetrad can be written in terms of Synge’s world function as

x0 = t, (2.117)

xa = −ea
ᾱ(x̄)σ

ᾱ(x, x̄), (2.118)

σᾱ(x, x̄)uᾱ(x̄) = 0. (2.119)

Alternatively, we can write xi = rni, with r :=
√︁
δabxaxb =

√︂
2σ(x, x̄) being the proper

distance (along a unique spacelike geodesic orthogonal to γ) from γ to the point being
considered and ni being a unit vector giving the direction that the point lies in respective
to γ. We note as well that, as with σα′ , r ∼ λ and so counts powers of distance from the
worldline. A geometric representation of the Fermi–Walker coordinate construction is
given in Fig. 2.2.

Using these coordinates, we can write the metric near γ in the form [81]

gtt = − 1 − 2aix
i − (Rtitj + aiaj)x

ixj − 1
3 (4Rtitjak +Rtitj;k)x

ixjxk + O
(︂
x4
)︂
,

(2.120a)

gta = − 2
3Rtiajx

ixj − 1
12 (4Rtiajak + 3Rtiaj;k)x

ixjxk + O
(︂
x4
)︂
, (2.120b)

gab = δab − 1
3Raibjx

ixj − 1
6Raibj;kx

ixjxk + O
(︂
x4
)︂
, (2.120c)

where all Riemann terms are evaluated on γ at time t. When evaluating Eq. (2.120)
on γ, we immediately see that the metric in Fermi–Walker coordinates reduces to the
Minkowski metric. However, the Christoffel symbols at lowest order are not all zero as
we would expect when comparing with Eq. (2.108). Instead, Γt

ta = aa and Γa
tt = aa; both

reduce to 0 if γ is a geodesic as aa = 0 [63, Ch. 9.5].



2.2. Local expansion methods 45

Figure 2.2: Visualisation of construction of Fermi–Walker coordinates. At the point
z(t), we generate an orthogonal surface and label points on that surface with the
coordinate xi. The quantity r gives the proper distance to xi and ni picks out the

unique orthogonal geodesic that connects xi and γ. Based on Fig. 6 from Ref. [63].

As we are looking at a vacuum solution with Rµν = 0, we may use the identities from
App. D3 of Ref. [167] to write

Rtatb = Eab, (2.121a)

Rabct = ϵ i
ab Bic, (2.121b)

Rabcd = − ϵabiϵcdjE ij (2.121c)

and the derivatives as

Rtatb;c = Eabc +
2
3ϵci(aḂ i

b) , (2.122a)

Rabct;d = ϵ i
ab

(︃4
3Bicd − 2

3ϵdj(iĖ
j
c)

)︃
, (2.122b)

Rabcd;e = − ϵabiϵcdj

(︃
E ij

e +
2
3ϵ

(i
ek Ḃj)k

)︃
. (2.122c)

The quantities E and B are the tidal moments felt by an extended body moving on
the world line, γ, where two/three indices refer to the quadrupole/octopole moments
respectively. They are symmetric and trace-free, with respect to δab, over all indices and
only depend on proper time.

For a number of calculations later in this thesis, we are required to integrate expressions in
Fermi–Walker coordinates. This requires us to know what the form of the Fermi–Walker
surface element is. We require this through order-λ5 due to the singular nature of the
terms we will be integrating.
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The surface element on the spacelike hypersurface, S, of constant r is given by [166,
Ch. 3]

dSα = Nα

√︂
|h| dt dθ dϕ , (2.123)

where Nα is the unit normal to S and h is the determinant of the induced metric on
S. By construction of the Fermi–Walker coordinates, Nα = −nα. To see this, we write
Eq. (2.118) in terms of the parallel propagator, so that

xα = −gα
ᾱσ

ᾱ, (2.124)

meaning

nα = −gα
ᾱσ

ᾱ

√
2σ

, (2.125)

and,

nαnα =
gα

ᾱσ
ᾱ

√
2σ

gα
β̄σβ̄√
2σ

=
σᾱσᾱ

2σ = 1. (2.126)

Therefore nα is a unit normal in the full metric, gµν , as well as in the flat space metric,
δij , with the minus sign in Nα coming from the orientation of the surface.

The square root of the determinant of the induced metric is then given by

√︂
|h| =

√︂
|η|
(︃

1 + r2

2 η
ijj

(2)
ij +

r3

2 η
ijj

(3)
ij + O

(︂
r4
)︂)︃

, (2.127)

where bold Latin indices are (t, θ,ϕ) coordinates on the hypersurface and j
(n)
µν is the

order-rn term appearing in the Fermi–Walker metric from Eq. (2.120), so that

gµν = ηµν + r2j(2)µν + r3j(3)µν + O
(︂
r4
)︂
. (2.128)

We now return to Eq. (2.123) and substitute in Nα and
√︁

|h|, to see that

Nα

√︂
|h| = −nαr

2 sin θ
(︃

1 + r2

2
(︂
−j(2)tt +

1
r2 ΩABj

(2)
AB

)︂
+
r3

2
(︂
−j(3)tt +

1
r2 ΩABj

(3)
AB

)︂)︃
+ O

(︂
r6
)︂
, (2.129)

where Latin indices now refer to spatial Fermi–Walker coordinates, (r, θ,ϕ). Substituting
Eq. (2.129) and the values for j(n)µν from Eq. (2.120) into Eq. (2.123), we find the final
expression for dSα to be

dSα = −nαr
2
(︃

1 + r2

3 Eabn̂
ab +

r3

12Eabcn̂
abc
)︃
dt dΩ + O

(︂
r6
)︂
. (2.130)
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The Fermi–Walker volume element can be calculated in a similar way and is given by

dV =
√

−g d4x

=
√

−η
(︃

1 + r2

2 η
µνj(2)µν +

r3

2 η
µνj(3)µν + O

(︂
r4
)︂)︃

= r2
(︃

1 + r2

3 Eabn̂
ab +

r3

12Eabcn̂
abc
)︃
dt dr dΩ + O

(︂
r6
)︂
. (2.131)
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Chapter 3

Gravitational self-force

In this section we will detail the important concepts used in the study of gravitational
self-force. We start, in Ch. 3.1, by describing the self-consistent formalism for expanding
the metric perturbations before following Ref. [139] in Ch. 3.2 to show how the generalised
equivalence principle can be derived. Ch. 3.3 then explain how the gravitational self-force
formalism can be implemented numerically in the puncture scheme that was discussed in
the introduction. Finally, in Chs 3.4–3.5, we follow the method in Ref. [81] to determine
the form of the metric perturbations in a lightcone rest gauge before detailing the
transformation that Pound [81] used to derive the leading-order form of hSR

µν in the highly
regular gauge.

3.1 Self-consistent formalism

There are a number of different approaches to self-force calculations, but we will be using
the self-consistent formalism in this thesis, as described in Refs. [64, 81, 87, 139]. In the
self-consistent approach we expand our perturbation, hµν , in a form similar to Eq. (2.2),
but we allow each coefficient hn

µν to depend on the small object’s exact, ϵ-dependent,
accelerated worldline zµ(ϵ) [139]:1

hµν(x, ϵ) =
∑︂
n>0

ϵnhn
µν(x; z), (3.1)

so that
gµν(x, ϵ) = gµν(x) + ϵh1

µν(x; z) + ϵ2h2
µν(x; z) + O

(︂
ϵ3
)︂
. (3.2)

By doing so, we avoid performing a Taylor series expansion of the small object’s worldline

zµ(ϵ) = zµ
0 + ϵzµ

1 + ϵ2zµ
2 + O

(︂
ϵ3
)︂
. (3.3)

1Here, we use ϵ as a formal expansion parameter which is set to 1 at the end of the calculation.
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If we were to perform a series expansion of the worldline, then all our results would only
be valid in the case where the accelerated worldline is very close to the zeroth-order
worldline. This assumption will break down at some point, at a time much shorter than
the total inspiral time [139]. The result is that each coefficient, hn

µν , encodes the entire ϵ
dependence on the worldline, zµ(ϵ), instead of depending on some combination of the
Taylor coefficients, zµ

n , from Eq. (3.3). Eq. (3.1) is an asymptotic series of the type
described in Ch. 2.1.4.

As we have not expanded the worldline, the equation of motion is then given by [139]

D2zµ

dτ2 = fµ(τ , ϵ) =
∑︂
n≥0

ϵnfµ
n [h

1, . . . ,hn], (3.4)

where each of the fµ
n inherit dependence on ϵ through their dependence on hn

µν(x; z).

This approach is advantageous when compared to other treatments as it is valid on
asymptotically large spacetime domains, such as the ∼ 1/ϵ timescale that EMRI inspirals
occur over [139]. However, as discussed in Ref. [66], there are shortcomings to the self-
consistent approach: it would be difficult to numerically implement, and a straightforward
implementation would not accurately track the evolution of the spin and mass of the
large black hole. In the specific case of binary inspirals, a more practical alternative is
provided by a multiscale expansion [17, 65, 66], in which ‘fast’ and ‘slow’ variables are
used to capture processes that happen on different time scales.

3.2 Generalised equivalence principle

The motion of a test mass in general relativity is governed by the geodesic equation. This
can be expressed in two equivalent forms, either as

d2zµ

dτ2 + Γµ
νρ

dzν

dτ

dzρ

dτ
= 0, (3.5)

or as
D2zµ

dτ2 = 0, (3.6)

with Γµ
νρ being the Christoffel symbols associated with gµν , zµ(τ ) being the position of

the test mass and τ being the proper time. This is no longer the case when our object
has a finite gravitational mass [139]. We now have a perturbation in our spacetime which
acts as a force on our object and alters its motion, the gravitational self-force. This
leads to it no longer travelling on a geodesic in gµν or in gµν . Instead, it follows the
equation of motion given in Eq. (1.27). Given certain conditions (near sphericity and
slow spin), we can show that this is equivalent to the object travelling along a geodesic
in an effective metric,

g̃µν = gµν + hR
µν , (3.7)
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governed by [95, 139],
D̃

2
zµ

dτ̃2 = O
(︂
ϵ3
)︂
, (3.8)

where the tilde refers to all objects being defined with respect to g̃µν . The effective metric
has the properties that it is a smooth metric satisfying the Einstein vacuum equations
and it is causal on the worldline [81].

To see that the equation of motion (1.27) is equivalent to the geodesic equation (3.8) we
follow the derivation from Ref. [139]. First we start with the geodesic equation in our
effective spacetime with a potentially non-affine parameter, s. This is given by

d2zµ

ds2 + Γ̃µ
νρ

dzν

ds

dzρ

ds
=
dzµ

ds

d

ds
ln

√︄
−g̃νρ

dzν

ds

dzρ

ds
. (3.9)

Now substitute in (3.7) and let s = τ , where τ is the proper time in gµν . We can write
the left-hand side of (3.9) as

d2zµ

ds2 + Γ̃µ
νρ

dzν

ds

dzρ

ds
= uν ∂u

µ

∂zν
+ Γ̃µ

νρu
νuρ

= uν
(︃
∂uµ

∂zν
+ Γµ

νρu
ρ
)︃
+
(︂

Γ̃µ
νρ − Γµ

νρ

)︂
uνuρ

= uν∇νu
µ +Cµ

νρu
νuρ

=
D2zµ

dτ2 +Cµ
νρu

νuρ, (3.10)

where Cµ
νρ is given by (2.12). The right-hand side of (3.9) is now

uµ

d
dτ

√︂
1 − hR

νρu
νuρ√︂

1 − hR
αβu

αuβ
= − uµuσ

2(1 − hR
αβu

αuβ)
∇σ

(︂
hR

νρu
νuρ

)︂

= − uµuν

2

(︄
uσuρhR

νρ;σ + hR
αβu

αuβuσuρhR
νρ;σ + 2hR

νρ

D2zρ

dτ2

)︄
+ O

(︂
h3
)︂
. (3.11)

Combining (3.10) and (3.11) and simplifying, we find that (3.8) is equivalent to

D2zµ

dτ2 = −1
2 (g

µα + uµuα)
(︂
g δ

α − hRδ
α

)︂(︂
2hR

δβ;γ − hR
βγ;δ

)︂
uβuγ + O

(︂
ϵ3
)︂
. (3.12)

This is exactly the second-order self force equation of motion (1.27) that was derived
by Pound [95] using the method of matched asymptotic expansions. Thus, the small,
gravitating object moves on a geodesic of the effective metric (through O

(︁
ϵ2
)︁
).
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Figure 3.1: The idea behind the puncture scheme. The top row illustrates how we
split our spacetime in to a self-field, that encodes the multipole structure of the small
object, and an effective metric. The puncture scheme is described in the second row
where we ignore the actual form of the self field and replace it with a singular field that
mimics the curvature outside of the object while leaving the effective metric untouched.

Reproduced from Ref. [64].

3.3 Puncture scheme

At second order, starting in Ref. [168], the primary method of solving the field equations
is through the use of a puncture scheme [73, 169, 170]. This was discussed in the
introduction but we expand upon it here. The method involves removing our small
object from the spacetime and replacing it with a local singularity. See Fig. 3.1 for a
visual representation of the idea. It is this singularity that we now think of as causing the
curvature near the original position of the small object and we refer to it as a puncture,
denoted as hP

µν . The puncture is obtained by truncating the local expansion of the
singular field, hS

µν , so that hP
µν ≈ hS

µν , and imposing that it becomes identically zero at
some distance from γ. We define the residual field as

hR
µν := hµν − hP

µν (3.13)

so that hR
µν ≈ hR

µν near γ. We are no longer directly solving for the physical field, hµν ,
instead, we solve for hR

µν which becomes identical to hµν in the region where the puncture
field vanishes.

We wish to be able to replace hR
µν with hR

µν in the equation of motion from Eq. (1.27).
This is possible if hR

µν and its first derivatives are identical to hR
µν . To ensure this, we

impose the conditions

lim
x→z

(︂
hP

µν − hS
µν

)︂
= 0, (3.14)

lim
x→z

(︂
hP

µν,ρ − hS
µν,ρ

)︂
= 0, (3.15)
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where xµ is a point near the worldline, zµ := xµ′ . However, while this condition
is sufficient, in practice higher order punctures are used when performing self-force
calculations. That is, we ensure that the difference between higher derivatives of hP

µν

and hS
µν goes to 0 when evaluated on the worldline. This has the effect of improving the

regularity of the residual field meaning that any mode decomposition will converge at
an accelerated rate [171]. While a higher-order puncture is preferable, it can be very
challenging to derive the form of the punctures when moving up through the orders.

Substituting Eq. (3.13) into the vacuum Einstein equations, Eqs (1.9) and (1.10) with
Tn

µν = 0, we see the fields must satisfy the relations

δGµν [h
R1] = − δGµν [h

P1], r > 0, (3.16)

δGµν [h
R2] = − δ2Gµν [h

1] − δGµν [h
P2], r > 0. (3.17)

For the total hR
µν + hP

µν to match the real physical field, hR
µν must be a Ck function if

the puncture field was truncated at order rk. This ensures that Eqs. (3.16) and (3.17)
are locally integrable on the worldline of the small object. Thus we can write

δGµν [h
R1] = − (δGµν [h

P1])⋆, (3.18)

δGµν [h
R2] = − (δ2Gµν [h

1] + δGµν [h
P2])⋆, (3.19)

where the star means that we have promoted the quantities to locally integrable functions
by defining them to be zero at r = 0 or defining their value to be the limit as r → 0, if it
exists.

Thus, the second-order field is determined by solving Eqs. (1.27), (3.18) and (3.19)
as a system of coupled equations [64]. Explicitly, we are solving for the position of
the worldline, along with hR

µν inside the worldtube and hµν outside. This requires a
complicated numerical implementation, but the specific details are not considered here.

At first-order, there is a more widely used approach, that of mode-sum regularisation [73,
136, 172, 173]. This method involves decomposing the singular and full fields into
spherical harmonic modes, solving the decomposed field equations for the modes of the
physical field, and then subtracting the singular field mode-by-mode in order to find the
spherical harmonic modes of the regular field. As an equation,

hR
µν(z) =

∑︂
iℓm

[hiℓm(z) − hS
iℓm(z)]Y iℓm

µν (z), (3.20)

where Y iℓm
µν are the Barack–Lousto–Sago tensor harmonics mentioned in the introduction.

However, the specific basis used is not relevant. The physical field is determined by
solving the linearised Einstein equation from Eq. (1.9) with a point-mass source (1.14).
However, there are difficulties in using the mode-sum regularisation method at second
order as, generically, the second-order Einstein equation (1.10) diverges too strongly on
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the worldline. Even if it were possible to compute the physical field, it would not be
possible to use mode-sum regularisation to obtain the regular field as the individual
modes of hS2

µν diverge on the worldline [15].

3.4 Metric perturbations in a lightcone gauge

In this section, following the method from Ref. [81], we describe the derivation of the
metric perturbations in the lightcone gauge using matched asymptotic expansions. The
results in this section are all originally from Ref. [81]. To begin, we calculate the form of
the inner expansion’s metric in a rest gauge. The gauge is named as such as the small
object is at rest on our worldline. This is possible as we can always find an effective
metric in which our small object’s worldline is a geodesic [64]. Then, in the buffer region,
we express our rest gauge expansion in terms of the outer expansion. Finally, we then
transform this to a “practical gauge” that is more suitable for numerical implementation.

To motivate the transformation to this gauge, recall from Eq. (2.55) that the most
singular part of the metric perturbations in the outer expansion at each order in ϵ are
determined by the multipole moments of the small object. For a non-spinning, spherically
symmetric small object, this is described by the Schwarzschild metric and can be written
in ingoing Eddington–Finkelstein coordinates as

ds2
obj = −

(︃
1 − 2m

r

)︃
dv2 + 2 dv dr+ r2 dΩ2 , (3.21)

which we see, immediately, is linear in 1/r, eliminating any higher order terms. This
demonstrates that we can eliminate the term in hS2

µν with the form ∼ m2/r2.

We immediately specialise to a non-spinning, approximately spherically symmetric small
object. The inner expansion is given by the metric of a tidally perturbed, non-spinning
black hole as presented in Ref. [174] (with conversion to Cartesian Eddington–Finkelstein
coordinates from Ref. [81]). This is true whether the small object is a material body
or a black hole. To see this, we note that the multipole moments of the small body
entirely encode the physical composition of the object. Thus, by our matching tableau
in Eq. (2.55), any quadrupole (and higher) corrections will not appear until order ϵ3 (or
higher). The metric is written in the lightcone gauge, with condition

Hn
µan

a = 0, (3.22)

where the serif font refers to Cartesian advanced Eddington–Finkelstein coordinates,
(v, xa), defined on the manifold of gobj

µν and na = xa/r with δabn
anb = 1 and r :=

√︁
δabxaxb.

The gauge condition from Eq. (3.22) ensures that lightcones in the background spacetime
remain lightcones in the perturbed spacetime. This means that v is constant on lightcones,
r is both an affine parameter on the light rays generating these cones and the distance
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along the null rays from the small object, and na gives the direction of each individual
light ray [63, Ch. 10, 81]. Ref. [174] also refines the gauge to enforce that H1

µν = 0,
completely eliminating the middle column of Eq. (2.55). The Eddington–Finkelstein
coordinates ensure that no mass dipole term appears at leading order and H1

µν = 0
ensures that no term of that form appears at first subleading order. This enforces that
the coordinates are mass centered.

The form of the metric we get for the inner expansion is in terms of r̃ := r/ϵ and is
given explicitly by Eqs. (61)–(64) in Ref. [81]. This is then re-expanded for small ϵ at
fixed r and then transformed from Eddington–Frankenstein coordinates to Fermi–Walker
coordinates using the transformation given by Eq. (65) from Ref. [81]. Our resulting
metric is valid in the buffer region and is given by

gµν = g̊µν + ϵh̊1′
µν + ϵ2h̊2′

µν + O
(︂
ϵ3
)︂
, (3.23)

in the outer expansion. The primes indicate that the perturbations are in the lightcone
rest gauge. The overset rings indicate that the expansion is organised slightly differently
than Eqs. (2.1)–(2.2).

The leading term in Eq. (3.23) is

g̊tt = − 1 − r2Eabn̂
ab − r3

3 Eabcn̂
abc + O

(︂
r4
)︂
, (3.24a)

g̊ta = − 2
3r

2Bbcϵacdn̂
d

b +
r3

60
(︂
3Ėabn̂

b − 5Ėbcn̂a
bc − 20Bbcdϵ i

ab n̂cdi

)︂
+ O

(︂
r4
)︂
, (3.24b)

g̊ab = δab − r2

9
(︂
Eab − 6E c

(a n̂b)c + 3Ecdδabn̂cd

)︂
+
r3

90

(︃
30E cd

(a n̂b)c − 3Eabcn̂
c

− 8Ḃ d
(a ϵb)cdn̂

c + 10Ḃcd
ϵ i
c(a n̂b)di − 15δabEcdin̂

cdi
)︃
+ O

(︂
r4
)︂
, (3.24c)

which is Eq. (2.120) but with the acceleration terms set to zero. We also see from this
that r = 0 is a geodesic in this new background as there are no acceleration terms in
Eq. (3.24), so the Christoffel symbols vanish when evaluated on the worldline. The inner
expansion implicitly expanded that acceleration,

aµ =
∑︂
n>0

ϵnfµ
n , (3.25)

so that any acceleration terms have implicitly been moved to the first- or second-order
perturbations. Thus we expand our perturbations in terms of any acceleration terms
that may be in them.

The full background metric then becomes

gµν = 0gµν + ϵ 1gµν + ϵ2 2gµν + O
(︂
ϵ3
)︂
, (3.26)
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where

0gµν = g̊µν , (3.27)
1gµν = − 2f1

i x
iδt

µδ
t
ν + O

(︂
r3
)︂
, (3.28)

2gµν = − 2f2
i x

iδt
µδ

t
ν + O

(︂
r2
)︂
. (3.29)

Here we have introduced the notation

A = 0A+ ϵ 1A+ ϵ2 2A+ O
(︂
ϵ3
)︂
, (3.30)

where the prescript is the order of the acceleration term, to denote their re-expansion for
small acceleration. The metric perturbations are then written as

h̊1′
µν = 0h1′

µν +
1gµν , (3.31)

h̊2′
µν = 0h2′

µν +
1h1′

µν +
2gµν , (3.32)

so that
h̊n

µν =
n∑︂

i=0

ihn−i
µν , (3.33)

where we define nh0
µν := ngµν . This expansion was originally introduced in Ref. [81],

where a dagger was used in place of an overset ring.

The first-order term in Eq. (3.23) reads

h̊1′
µν = h̊R1′

µν + h̊S1′
µν . (3.34)

The regular field,
h̊R1′

µν = 0hR1′
µν + 1gµν , (3.35)

is given by

0hR1′
tt = − r2δEabn̂

ab + O
(︂
r3
)︂
, (3.36a)

0hR1′
ta = − 2

3r
2δBbcϵacdn̂b

d + O
(︂
r3
)︂
, (3.36b)

0hR1′
ab = − 1

9r
2
(︂
δEab − 6δE(acn̂b)c + 3δabδEcdn̂

cd
)︂
+ O

(︂
r3
)︂
, (3.36c)

and Eq. (3.28) where δEab and δBab are corrections to the respective tidal moments; these
have the identical forms to the tidal terms from the background metric in Eq. (3.24)
which implies that this is a smooth vacuum perturbation at r = 0. The singular field

h̊S1′
µν = 0hS1′

µν , (3.37)
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is given by

h̊S1′
tt =

2m
r

+
11
3 mrEabn̂

ab +
1
12mr

2
(︃

8Ėabn̂
ab
[︃
5 − 3 log

(︃2m
r

)︃]︃
+ 19Ėabcn̂

abc
)︃
+ O

(︂
r3
)︂
,

(3.38a)

h̊S1′
ta =

2m
r
n̂a +

2
15mr

(︃
11Eabn̂

b + 10Bbcϵacdn̂b
d + 15Ebcn̂a

bc
)︃
+

1
1260mr

2
(︃

126Ėabn̂
b

×
[︃
25 − 16 log

(︃2m
r

)︃]︃
+ 140Ḃbc

ϵacdn̂b
d
[︃
13 − 12 log

(︃2m
r

)︃]︃
+ 1095Eabcn̂

bc

+ 70Ėbc
n̂abc

[︃
25 − 12 log

(︃2m
r

)︃]︃
+ 1400Bbcdϵab

in̂cdi + 840Ebcdn̂a
bcd
)︃
+ O

(︂
r3
)︂
,

(3.38b)

h̊S1′
ab =

2m
3r
(︂
δab + 3n̂ab

)︂
+

1
315mr

(︃
154Eab − 168Bd

(aϵb)cdn̂
c + 480Ec

(an̂b)c + 15Ecdδabn̂
cd

+ 840Bcdϵc
i
(an̂b)di + 105Ecdn̂ab

cd
)︃
+

1
3780mr

2
(︃

252Ėab

[︃
29 − 20 log

(︃2m
r

)︃]︃
+ 2322Eabcn̂

c − 504Ḃd
(aϵb)cdn̂

c
[︃
11 − 12 log

(︃2m
r

)︃]︃
+ 1980Ėc

(an̂b)c + 60Ėcdδabn̂
cd

×
[︃
59 − 42 log

(︃2m
r

)︃]︃
− 4800B(a|c|

iϵb)din̂
cd − 420E(acdn̂b)cd + 1680Ḃcd

ϵc
i
(an̂b)di

×
[︃
4 − 3 log

(︃2m
r

)︃]︃
+ 1295Ėcdiδabn̂

cdi + 1260Ėcdn̂ab
cd + 5040Bcdiϵc

j
(an̂b)dij

+ 315Ecdin̂ab
cdi
)︃
+ O

(︂
r3
)︂
. (3.38c)

The regular field features terms of the form ∼ δEab or δBab, while the singular field
features terms that have explicit factors of m. This ensures that the regular field satisfies
the vacuum Einstein equations, as laid out in Ch. 1.4.

The second-order term in Eq. (3.23) reads

h̊2′
µν = h̊R2′

µν + h̊S2′
µν . (3.39)

The regular field
h̊R2′

µν = 0hR2′
µν + 1hR1′

µν + 2gµν (3.40)

is given by
h̊R2′

µν = O
(︂
r2
)︂
. (3.41)

The singular field,
h̊S2′

µν = 0hS2′
µν + 1hS1′

µν , (3.42)

is split into two pieces,
h̊S2′

µν = h̊SS′
µν + h̊SR′

µν , (3.43)

where h̊SS′
µν is the ‘singular times singular’ piece containing all terms proportional to m2

and h̊SR′
µν is the ‘singular times regular’ piece featuring all terms with the form mδEab
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and mδBab. Individually, these are

h̊SR′
tt =

11
3 mrδEabn̂

ab, (3.44a)

h̊SR′
ta =

2
15mr

(︂
11δEabn̂

b + 10δBbcϵacdn̂b
d + 15δEbcn̂a

bc
)︂
, (3.44b)

h̊SR′
ab =

1
315mr

(︂
154δEab − 168δBd

(aϵb)cdn̂
c + 480δEc

(an̂b)c + 15δEcdδabn̂
cd

+ 840δBcdϵc
i
(an̂b)di + 105δEcdn̂ab

cd
)︂
, (3.44c)

and2

h̊SS′
tt = − 4m2

[︂
Eabn̂

ab + r
(︂1

3 Ėabn̂
ab
{︂

11 − 6 log
(︂

2m
r

)︂}︂
+

2
3Eabcn̂

abc
)︂]︂

+ O
(︂
r2
)︂
, (3.45a)

h̊SS′
ta = − 4m2

[︂2
5Eabn̂

b + Ebcn̂a
bc + r

(︂6
5 Ėabn̂

b
{︂

2 − log
(︂

2m
r

)︂}︂
+

8
21Eabcn̂

bc

+
2
9 Ḃbc

ϵacdn̂b
d
{︂

4 − log
(︂

2m
r

)︂}︂
+

1
9 Ėbcn̂a

bc
{︂

19 − 12 log
(︂

2m
r

)︂}︂
+

1
2Ebcdn̂a

bcd

+
2
9Bbcdϵab

in̂cdi

)︂]︂
+ O

(︂
r2
)︂
, (3.45b)

h̊SS′
ab = − 4m2

[︂4
5Bd

(aϵb)cdn̂
c +

8
7Ec

(an̂b)c − 1
21Ecdδabn̂

cd + Bcdϵc
i
(an̂b)di +

5
6Ecdn̂ab

cd

+ r
(︂ 2

45 Ėab

{︂
31 − 12 log

(︂
2m
r

)︂}︂
+

4
21Eabcn̂

c − 4
45 Ḃd

(aϵb)cdn̂
c
{︂

4 − 3 log
(︂

2m
r

)︂}︂
+

4
7 Ėc

(an̂b)c

{︂
4 − 3 log

(︂
2m
r

)︂}︂
+

1
63 Ėcdδabn̂

cd
{︂

29 − 6 log
(︂

2m
r

)︂}︂
+

5
9Ecd(an̂b)

cd

− 8
63Bc

i
(aϵb)din̂

cd +
1
27Ecdiδabn̂

cdi +
4
9Bcdiϵc

j
(an̂b)dij +

1
3Ecdin̂abcdi

+
4
9 Ḃcd

ϵc
i
(an̂b)di

{︂
4 − 3 log

(︂
2m
r

)︂}︂
+

2
9 Ėcd

n̂abcd

{︂
4 − 3 log

(︂
2m
r

)︂}︂)︂]︂
+ O

(︂
r2
)︂
.

(3.45c)

This split can be extended to any order in r by including all explicitly m-dependent
terms in the singular fields and leaving the regular field to include all terms featuring
tidal moments and no explicit m dependence. The regular field is then a smooth solution
to the vacuum Einstein equations,

δG̊µν [h̊
R1′

] = 0, (3.46)

δG̊µν [h̊R2′
] = − δ2G˚ µν [h̊

R1′
], (3.47)

which are the linearised and second-order Einstein operators constructed from g̊µν . When
combined with g̊µν , the regular field forms an effective metric,

g̃′
µν = g̊µν + ϵh̊R1′

µν + ϵ2h̊R2′
µν + O

(︂
ϵ3
)︂
, (3.48)

as in Eq. (3.7), which is a vacuum metric, and in which the small object follows a
geodesic.

2All O
(︁
m0)︁ terms in Eq. (116) in Ref. [81] have been corrected to be O

(︁
m2)︁.
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Note that by inspection of the metric perturbations, we immediately see that in this
gauge we h2

µν ∼ r0 instead of the generic behaviour ∼ 1/r2. One final step remains,
however, and that is to perform one final gauge transformation to get this form of the
metric into a “practical” gauge with specific, useful properties.

3.5 Highly regular gauge

As discussed in Ch. 1.5, the highly regular gauge was introduced by Pound [81] to
ameliorate problems that appear in the Lorenz gauge due to divergent terms and to be a
more practical alternative to the lightcone gauge in Ch. 3.4. This chapter outlines the
method used in Ref. [81] to derive the leading-order form of the second-order singular
field in the highly regular gauge. We will then use this method in Ch. 4 to derive the
full second-order singular field needed to correctly calculate the second-order self-force.

The lightcone rest gauge from Ch. 3.4 completely eliminates the ∼ 1
/︁
r2 pieces of h2

µν

that appear in the Lorenz gauge. However, the “rest gauge” aspect forces the regular
field to behave as ∼ r2, meaning that the regular field and its first derivative vanish
when evaluated on the worldline. There is no obvious way to solve the field equations
numerically in this gauge so another gauge transformation is required to get the metric
into a more amenable form.

As in the previous section, the discussion in this section follows that originally presented
in Ref. [81]. Generically, to perform a gauge transformation we follow the method as
discussed in Ch. 2.1.3. Following Eqs. (2.43) and (2.44), we know that the perturbations
transform as

h1
µν → h1

µν + Lξ1gµν , (3.49)

h2
µν → h2

µν +
1
2
(︂
L2

ξ1 + 2Lξ2

)︂
gµν + Lξ1h

1
µν . (3.50)

where ξµ = ϵξµ
1 + ϵ2ξµ

2 + O
(︁
ϵ3
)︁

is a smooth gauge vector. However, we want to consider
how the regular and singular fields transform, and we must account for the fact that we
have written our perturbations as perturbations of g̊µν and not gµν . With a split in to
regular and singular fields, our gauge transformation rules become

h̊R1
µν = h̊R1′

µν + Lξ1 g̊µν , (3.51)

h̊S1
µν = h̊S1′

µν , (3.52)

h̊R2
µν = h̊R2′

µν + Lξ2 g̊µν +
1
2L2

ξ1 g̊µν + Lξ1 h̊
R1′
µν , (3.53)

h̊S2
µν = h̊S2′

µν + Lξ1 h̊
S1′
µν , (3.54)

where we define our new regular/singular fields such that they contain the old regu-
lar/singular fields and Lie derivatives acting upon them. Doing so ensures that the
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effective metric, g̃µν , transforms as any smooth vacuum metric would under a gauge
transformation, meaning that

g̃µν = g̊µν + ϵh̊R1
µν + ϵ2h̊R2

µν + O
(︂
ϵ3
)︂
, (3.55)

remains a vacuum metric and any geodesics remain geodesics after performing the gauge
transformation. Apart from smoothness, we only impose one other condition, that of the
transformation being worldline preserving,

ξn
a

⃓⃓⃓
γ
= 0. (3.56)

This ensures that the worldline of the small object after the gauge transformation is
identical to the one in the rest gauge. An alternative way to say this is that we ensure
that no mass dipoles (or corrections to mass dipoles) are introduced as a result of our
transformation.

Due to our gauge transformation, the highly regular gauge inherits the properties of the
lightcone rest gauge presented in the previous chapter but only on the singular field.
That is, the singular field satisfies the gauge condition from Eq. (3.22). Covariantly and
in the outer expansion, the highly regular gauge condition can be written as

hS
µνk

µ = 0, (3.57)

where kµ is a future directed null vector that emanates from the worldline, γ, and is
tangent to the lightcone of the small object along radially outgoing curves. The original
lightcone metric is also trace-free over the unit sphere, so that

hS
µνe

µ
Ae

ν
BΩAB = 0, (3.58)

where ΩAB is the metric on surfaces of constant luminosity distance and an upper case
Latin letter indicates a quantity defined on those surfaces. The final quantity is the
basis vector, eµ

A := ∂xµ/∂θA, where xµ are coordinates in the full spacetime and θA

are coordinates on the surface of constant luminosity distance. As discussed under
Eq. (3.22), these gauge conditions ensure that the local background lightcone structure
is preserved in the perturbed spacetime and that the background luminosity distance
(given previously by r) is the distance from the small object and an affine parameter
on the null rays that generate the lightcones as well. An image showing the geometric
construction is given in Fig. 3.2.

As in the first calculation for the form of the highly regular gauge [81], we use the
approach suggested in Ref. [94] and solve for ξµ in terms of the regular fields, hR

µν . Here,
we allow the regular fields to be in any arbitrary gauge, and solve Eqs. (3.51) and (3.53)
for ξµ

n in terms of hRn
µν . One can then choose their preferred gauge for hRn

µν and impose
the gauge conditions on the resulting form of the singular field.
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Figure 3.2: Geometric picture of the gauge conditions for the highly regular gauge.
The image features a lightcone emanating from the worldline, γ. The null vector, kµ,
is tangent to the lightcone along radially outgoing curves and the basis vector, eµ

A, is
tangent to the lightcone along spheres of constant luminosity distance, Sr. Based on

Fig. 16 from Ref. [175].

After finding ξµ
1 , we can calculate the second-order singular field in the new gauge via

Eq. (3.54). Despite the gauge transformation being smooth, it introduces an unbounded
term into hS2

µν : Lξ1h
S1′
µν , which behaves as ∼ 1/r . This is more divergent than the singular

field in the original lightcone rest gauge but, as we shall demonstrate in Ch. 5, a ‘singular
times regular’ term is much easier to deal with than a ‘singular times singular’ field even
if it appears that the ‘singular times regular’ term is more divergent in r.

Not only do we determine the gauge vector in terms of the regular field, we also fully
determine the other functions in the effective metric in terms of hR1

µν . These are the form
of the acceleration vectors fµ

n along with the perturbed tidal moments δEab and δBab.
After making the gauge transformation, our full metric has the form

gµν = g̊µν + ϵ

h̊1
µν⏟ ⏞⏞ ⏟(︂

0h1
µν +

1gµν

)︂
+ϵ2

h̊2
µν⏟ ⏞⏞ ⏟(︂

0h2
µν +

1h1
µν +

2gµν

)︂
+O

(︂
ϵ3
)︂
. (3.59)

We then define the regular/singular split to be3

h̊R1
µν := 0hR1

µν + 1gµν , (3.60)

h̊S1
µν := 0hS1

µν , (3.61)

h̊R2
µν := 0hR2

µν + 1hR1
µν + 2gµν , (3.62)

h̊S2
µν := 0hS2

µν +
1hS1

µν . (3.63)

We wish to extract the perturbations that ‘live’ on the gµν background, not those on the
background with no acceleration, g̊µν . Thus, we wish to express ξµ

n in terms of hRn
µν , not

3The 0gµν term in Eq. (125) in Ref. [81] should read 1gµν .
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in terms of h̊Rn
µν . To do so, we rewrite Eqs. (3.51) and (3.53) as

0hR1
µν = h̊R1

µν + Lξ1 g̊µν − 1gµν , (3.64)
0hR2

µν + 1hR1
µν = h̊R2′

µν + Lξ2 g̊µν − 2gµν +
1
2L2

ξ1 g̊µν + Lξ1 h̊
R1′
µν . (3.65)

Here we have grouped all the unknowns (ξµ
n , fµ

n , δEab, and δBab) on the right side of the
equations.

We know that we must calculate hS2
µν to order r as required to calculate the second-order

self-force. This follows from Eq. (3.15), where we impose that the first derivative of the
puncture must match the first derivative of the singular field. We already have hS2′

µν from
Eqs. (3.43)–(3.45) and Lξ1h

S1’
µν was previously given in Ref. [81] to order 1/r. In the

following chapter we expand the calculation for Lξ1h
S1’
µν up to and including order r by

first calculating ξµ
1 through order r2. We then present the full second-order perturbations

in the highly regular gauge.
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Chapter 4

Transformation to the highly
regular gauge from the lightcone
rest gauge

In this chapter, we will present the full calculation for the second-order singular field in
the highly regular gauge. As discussed in Ch. 1.5, the highly regular gauge introduced by
Pound [81] features a weaker singularity structure than any other previously considered
gauge in the gravitational self-force literature. It eliminates the most singular part
of the second-order source that causes problems when solving the Einstein equations
numerically near to the worldline of the small object. Not only that, by increasing the
regularity of the second-order source, one can write down well-defined field equations
that are valid as distributions everywhere in spacetime; the consequences of which will
be explored further in Ch. 5.

In order to use the highly regular gauge in solving the field equations, such as in the
puncture scheme detailed in Ch. 3.3, one requires the second-order singular field through
order r. This ensures that one can accurately construct a residual field that mimics the
regular field to a sufficiently high order, allowing one to construct an equation of motion
that accurately tracks the small object. In the original paper introducing the highly
regular gauge, Pound [81] presented the leading-order, 1/r part of the perturbations. In
this chapter, we extend this calculation to the required order in r by using the scheme
presented in Ch. 3.5.

This chapter is organised as follows: Ch. 4.1 describes the decomposition of the gauge
vector and regular field into irreducible STF tensors, and Ch. 4.2 describes the process
of solving for the gauge vector order-by-order in r. The final form of the second-order
singular field is then presented in Ch. 4.3. The material in this chapter was published in
Ref. [140].
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The results in this chapter act as input for the calculations in Ch. 6. There, we convert the
final expressions for the second-order singular field from the Fermi–Walker coordinates
they are presented in in this chapter into both covariant form and into a generic coordinate
expansion.

4.1 STF decomposition of the gauge vector and the regular
field

To solve Eq. (3.64) for the gauge vector, we begin by expanding both ξ1
µ (with index

down) and 0hR1
µν in irreducible STF form using App. A of Ref. [176] and App. B of

Ref. [63].

4.1.1 Gauge vector

The gauge vector is decomposed as

ξ1
µ =

∑︂
p,l≥0

rpξ
(p,l)
µL (t)n̂L, (4.1)

where the t and a components are, respectively, given by

ξ
(p,l)
t⟨L⟩ = T̂

(p,l)
L , (4.2a)

ξ
(p,l)
a⟨L⟩ = X̂

(p,l)
aL + ϵja⟨il

Ŷ
(p,l)
L−1⟩j + δa⟨il

Ẑ
(p,l)
L−1⟩, (4.2b)

with the hat indicating that these are STF tensors. Each term in this decomposition
is linearly independent from the others. The quantities n̂L form a complete basis,
equivalent to scalar spherical harmonics, for scalar fields on the unit sphere, and the
further decomposition of Cartesian 3-vectors and 3-tensors into irreducible STF pieces is
equivalent to a decomposition into spin-weighted or tensor spherical harmonics.

As mentioned we only impose two conditions on ξ1
µ: Firstly, that ξ1

µ is smooth so that our
two gauges are smoothly related and secondly, that ξ1

µ is worldline preserving, satisfying
Eq. (3.56). These conditions imply that the expansion (4.1) must be equivalent to a
Taylor series

ξ1
µ =

∑︂
k≥0

1
k!
∂Kξ

1
µ(t, 0)xK (4.3)

with ξ1
a(t, 0) = 0. Here xK = xi1 · · ·xik . When written as a sum of STF quantities,

xK = rk[n̂K + c1δ
(a1a2 n̂K−2) + c2δ

(a1a2δa3a4 n̂K−4) + . . .] (4.4)
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for some some numerical coefficients cn. Hence, our conditions on the gauge vector
impose

ξ1
t = T̂

(0,0)
+ rn̂a T̂

(1,1)
a + r2

(︂
T̂
(2,0)

+ T̂
(2,2)
ab n̂ab

)︂
+ r3

(︂
T̂
(3,1)
a n̂a + T̂

(3,3)
abc n̂abc

)︂
+ O

(︂
r4
)︂
,

(4.5a)

ξ1
a = rn̂b

(︂
X̂

(1,1)
ab + ϵjabŶ

(1,1)
j + δabẐ

(1,1))︂
+ r2

[︂
X̂

(2,0)
a + n̂bc

(︂
X̂

(2,2)
abc + ϵjabŶ

(2,2)
cj + δabẐ

(2,2)
c

)︂]︂
+ r3

[︂
n̂b
(︂
X̂

(3,1)
ab + ϵjabŶ

(3,1)
j + δabẐ

(3,1))︂
+ n̂bcd

(︂
X̂

(3,3)
abcd + ϵjabŶ

(3,3)
cdj + δabẐ

(3,3)
cd

)︂]︂
+ O

(︂
r4
)︂
. (4.5b)

It is necessary to carry this expansion to order r3 because the Lie derivative and the
singular form of h̊S1′

µν in Eq. (3.54) each reduce the order in r by one. Thus, order r3 in
the gauge vector is required for accuracy through order r in h̊S2

µν .

4.1.2 Regular field

We perform a similar decomposition for the regular field, so that

0hR1
µν =

∑︂
p,l≥0

rp 0h
R1(p,l)
µνL (t)n̂L. (4.6)

The tt, ta, and ab components are given by

0h
R1(p,l)
tt⟨L⟩ = Â

(p,l)
L , (4.7a)

0h
R1(p,l)
ta⟨L⟩ = B̂

(p,l)
aL + ϵja⟨il

Ĉ
(p,l)
L−1⟩j + δa⟨il

D̂
(p,l)
L−1⟩, (4.7b)

0h
R1(p,l)
ab⟨L⟩ = Ê

(p,l)
abL + δabK̂

(p,l)
L + STF

L
STF

ab

(︂
ϵjail

F̂
(p,l)
bjL−1 + δail

Ĝ
(p,l)
bL−1

+ δail
ϵjbil−1Ĥ

(p,l)
jL−2 + δail

δbil−1 Î
(p,l)
L−2

)︂
. (4.7c)

Since 0hR1
µν is smooth, we require this expansion to be equivalent to a Taylor series in xa.

This leaves us with the expansion

0hR1
tt = Â

(0,0)
+ rÂ

(1,1)
i n̂i + r2

(︂
Â
(2,0)

+ n̂ijÂ
(2,2)
ij

)︂
+ O

(︂
r3
)︂
, (4.8a)

0hR1
ta = B̂

(0,0)
a + rn̂i

(︂
B̂

(1,1)
ai + ϵjaiĈ

(1,1)
j + δaiD̂

(1,1))︂
+ r2

[︂
B̂

(2,0)
a

+ n̂ij
(︂
B̂

(2,2)
aij + ϵkaiĈ

(2,2)
jk + δaiD̂

(2,2)
j

)︂]︂
+ O

(︂
r3
)︂
, (4.8b)
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0hR1
ab = Ê

(0,0)
ab + δabK̂

(0,0)
+ rn̂i

[︂
Ê

(1,1)
abi + δabK̂

(1,1)
i + STF

ab

(︂
ϵkaiF̂

(1,1)
bk + δaiĜ

(1,1)
b

)︂]︂
+ r2

[︂
Ê

(2,0)
ab + δabK̂

(2,0)
+ n̂ij

(︂
Ê

(2,2)
abij + δabK̂

(2,2)
ij + STF

ab

{︂
ϵkaiF̂

(2,2)
bkj + δaiĜ

(2,2)
bj

+ δaiϵ
k

bjĤ
(2,2)
k + δaiδbj Î

(2,2)}︂)︂]︂
+ O

(︂
r3
)︂
. (4.8c)

App. A gives the relation between the individual STF tensors and derivatives of the
regular field evaluated on the worldline.

Additionally, we use constraints from the linearised vacuum Einstein equations

δG̊µν [
0hR1] = 0. (4.9)

Note that δG̊µν [h̊R1] = δG̊µν [ 0hR1] because 1gµν is a linear vacuum perturbation of g̊µν .

The tt and ta components of Eq. (4.9) give

Î
(2,2)

=
1
5EabÊ

(0,0)
ab +

6
5K̂

(2,0), (4.10a)

D̂
(2,2)
a =

6
5B̂

(2,0)
a +

3
5B̂

(0,0)
b Ea

b +
3
5Bbcϵac

dÊ
(0,0)
bd − 1

2
d

dt
Ĝ

(1,1)
a +

3
5
d

dt
K̂

(1,1)
a . (4.10b)

We use these equations to eliminate Î(2,2) and D̂
(2,2)
a , but the choice is arbitrary; we

could have easily chosen two other STF tensors to remove.

From the ab component of Eq. (4.9) we get two restrictions, one at l = 0 and one at
l = 2. These are

Â
(2,0)

= − 1
3EabÊ

(0,0)
ab +

d

dt
D̂

(1,1) − 1
2
d2

dt2
K̂

(0,0), (4.11a)

Â
(2,2)
ab = Â

(0,0)Eab − 2B̂(0,0)
c Bd(aϵb)

cd + Ê
(2,0)
ab − 2Ec

⟨aÊ
(0,0)
b⟩c − 7

6Ĝ
(2,2)
ab + EabK̂

(0,0)

+ K̂
(2,2)
ab +

d

dt
B̂

(1,1)
ab − 1

2
d2

dt2
Ê

(0,0)
ab , (4.11b)

where the constraints from the tt and ta components have been used to simplify these
expressions.

Combining Eqs. (4.8), (4.10), and (4.11) gives us the final expression for the components
of 0hR1

µν :

0hR1
tt = Â

(0,0)
+ rÂ

(1,1)
i n̂i + r2

[︃
−1

3EabÊ
(0,0)
ab +

d

dt
D̂

(1,1) − 1
2
d2

dt2
K̂

(0,0)
+ n̂ij

(︃
Â
(0,0)Eij

− 2B̂(0,0)
c Bdiϵj

cd + Ê
(2,0)
ij − 2Ec

iÊ
(0,0)
jc − 7

6Ĝ
(2,2)
ij + EijK̂

(0,0)
+ K̂

(2,2)
ij +

d

dt
B̂

(1,1)
ij

− 1
2
d2

dt2
Ê

(0,0)
ij

)︃]︃
+ O

(︂
r3
)︂
, (4.12a)
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0hR1
ta = B̂

(0,0)
a + rn̂i

(︂
B̂

(1,1)
ai + ϵjaiĈ

(1,1)
j + δaiD̂

(1,1))︂
+ r2

[︃
B̂

(2,0)
a + n̂ij

(︃
B̂

(2,2)
aij

+ ϵkaiĈ
(2,2)
jk + δai

{︃6
5B̂

(2,0)
j +

3
5B̂

(0,0)
b Ej

b +
3
5Bbcϵjc

dÊ
(0,0)
bd − 1

2
d

dt
Ĝ

(1,1)
j

+
3
5
d

dt
K̂

(1,1)
j

}︃)︃]︃
+ O

(︂
r3
)︂
, (4.12b)

0hR1
ab = Ê

(0,0)
ab + δabK̂

(0,0)
+ rn̂i

[︂
Ê

(1,1)
abi + δabK̂

(1,1)
i + STF

ab

(︂
ϵkaiF̂

(1,1)
bk + δaiĜ

(1,1)
b

)︂]︂
+ r2

[︃
Ê

(2,0)
ab + δabK̂

(2,0)
+ n̂ij

(︃
Ê

(2,2)
abij + δabK̂

(2,2)
ij + STF

ab

{︃
ϵkaiF̂

(2,2)
bkj + δaiĜ

(2,2)
bj

+ δaiϵ
k

bjĤ
(2,2)
k + δaiδbj

(︃1
5EcdÊ

(0,0)
cd +

6
5K̂

(2,0)
)︃}︃)︃]︃

+ O
(︂
r3
)︂
. (4.12c)

This form is particularly advantageous as it automatically includes any constraints that
would be imposed by the Einstein equations onto the form of our regular field.

4.2 Solving for ξµ1

We now return to Eq. (3.64), where, recall, g̊µν is given by Eq. (3.24), 1gµν by Eq. (3.28),
and h̊R1′

µν by Eq. (3.36). To solve for the gauge vector, we substitute the expansions (4.5)
and (4.12) and then work order by order in r and n̂L. This is possible because n̂L forms
an orthogonal basis, implying AP ⟨L⟩n̂

L = BP ⟨L⟩n̂
L =⇒ AP ⟨L⟩ = BP ⟨L⟩. As a result,

Eq. (3.64) reduces to a hierarchical set of equations for the STF tensors T̂ (p,l)
L , X̂(p,l)

L+1,
Ŷ

(p,l)
L , and Ẑ

(p,l)
L−1.

Rather than belabouring the technical details of the calculation, which are largely
mechanical, we state the results that follow from each order in r in Eq. (3.64).

Note that in the equations that follow, 0hR1
µν and its derivatives are always evaluated

on the worldline, but we omit the notation |γ for brevity. Additionally, we define
0hR1 := 0hR1

a
a := δab 0hR1

ab .

4.2.1 Order r0

Starting at the lowest order in the expansion of Eq. (3.64), we immediately discover rules
for four of our gauge vector components. These are

T̂
(0,0)

=
1
2

∫︂
Â
(0,0)

dt , (4.13)

T̂
(1,1)
a = B̂

(0,0)
a , (4.14)

X̂
(1,1)
ab =

1
2Ê

(0,0)
ab , (4.15)

Ẑ
(1,1)

=
1
2K̂

(0,0). (4.16)
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In Ref. [81], the relations in Eqs. (129)–(131) were given in terms of the full gauge vector,
ξ1

µ. To compare, we perform equivalent operations but now on our expansion of ξ1
µ,

substituting our values for the STF tensors from Eqs. (4.13)–(4.16) and using App. A to
relate the STF tensors to derivatives of the regular field. The results are

d

dt
ξ1

t =
d

dt
T̂
(0,0)

=
1
2Â

(0,0)

=
1
2

0hR1
tt , (4.17)

ξ1
t,a = T̂

(1,1)
a = B̂

(0,0)
a

= 0hR1
ta , (4.18)

ξ1
(a,b) = X̂

(1,1)
ab + δabẐ

(1,1)

=
1
2Ê

(0,0)
ab +

1
2δabK̂

(0,0)

=
1
2

0hR1
ab , (4.19)

which exactly match the expressions in Ref. [81], as expected. The value of ξ1
[a,b] is also

given in Ref. [81] but relies on Ŷ
(1,1)
c , which is found at order r.

4.2.2 Order r

Having correctly reproduced the leading expressions from Ref. [81], we can confidently
move on to higher orders. We continue our procedure, but now we find our higher-order
STF tensors in terms of not just the STF tensors in 0hR1

µν but also the tidal moments.

From the tt component of Eq. (3.64), we obtain an expression for the first-order self-force,

f1
a =

1
2Â

(1,1)
a − d

dt
B̂

(0,0)
a . (4.20)

When rewritten in terms of 0hR1
µν , this gives,

f1
a =

1
2

0hR1
tt,a − d

dt
0hR1

ta , (4.21)

which is the standard result for the first-order self-force when written in component
form [81].

The ta component gives

T̂
(2,0)

=
1
2D̂

(1,1) − 1
4
d

dt
K̂

(0,0), (4.22)

T̂
(2,2)
ab =

1
2B̂

(2,2)
ab +

1
2Eab

∫︂
Â
(0,0)

dt− 1
4
d

dt
Ê

(0,0)
ab , (4.23)

Ŷ
(1,1)
a =

∫︂
Ĉ

(1,1)
a dt . (4.24)
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Using the value of Ŷ (1,1)
a , we can now compare to the result from Ref. [81] for the

antisymmetric part of the spatial derivative of the gauge vector. This gives

ξ1
[a,b] = ϵab

cŶ
(1,1)
c = ϵab

c
∫︂
Ĉ

(1,1)
c dt

=
∫︂

0hR1
t[a,b] dt , (4.25)

which matches Eq. (133) from Ref. [81].

Finally, the ab component of Eq. (3.64) gives

X̂
(2,0)
a =

5
18Ĝ

(1,1)
a − 1

12K̂
(1,1)
a , (4.26)

X̂
(2,2)
abc =

1
4Ê

(1,1)
abc , (4.27)

Ŷ
(2,2)
ab =

1
2 F̂

(1,1)
ab − 1

3Bab

∫︂
Â
(0,0)

dt , (4.28)

Ẑ
(2,2)
a =

1
2K̂

(1,1)
a − 1

6Ĝ
(1,1)
a . (4.29)

4.2.3 Order r2

At the final order, not only do we find the last components of the gauge vector but we
also fix the forms of δEab and δBab that appear in Eq. (3.36). They are

δEab = 2Bd
(aB̂

(0,0)
|c| ϵb)

c
d + Ec

⟨aÊ
(0,0)
b⟩c − Ê

(2,0)
ab +

7
6Ĝ

(2,2)
ab − 2EabK̂

(0,0) − K̂
(2,2)
ab

+
1
2 Ėab

∫︂
Â
(0,0)

dt− 2Ed
(aϵb)

c
d

∫︂
Ĉ

(1,1)
c dt , (4.30)

δBab =
1
2Â

(0,0)Bab +
3
2 Ĉ

(2,2)
ab − B̂

(0,0)
c Ed

(aϵb)
c
d +

1
2 Ḃab

∫︂
Â
(0,0)

dt− 3
2BabK̂

(0,0)

− 3
4
d

dt
F̂

(1,1)
ab − 2Bd

(aϵb)
c
d

∫︂
Ĉ

(1,1)
c dt . (4.31)

When the values of the STF tensors are substituted, however, these become1

δEab = Eab
0hR1

tt − E⟨a
c 0hR1

b⟩c − 1
2

0hR1
tt,⟨ab⟩ +

d

dt
0hR1

t⟨a,b⟩ +
1
2 Ėab

∫︂
0hR1

tt dt− 1
2
d2

dt2
0hR1

⟨ab⟩

+ 2 STF
ab

Ea
c
∫︂

0hR1
t[b,c] dt , (4.32)

δBab = − 1
2Bab

0hR1 + E(acϵb)c
d 0hR1

td +
1
2Bab

0hR1
tt +

1
2ϵ

cd
(a

0hR1
|tc|,b)d +

1
2 Ḃab

∫︂
0hR1

tt dt

+ 2 STF
ab

Ba
c
∫︂

0hR1
t[b,c] dt− 1

2ϵ
cd

(a
d

dt
0hR1

b)c,d. (4.33)

1While we do not manipulate δBab after substitution, we do manipulate δEab. Arriving at our second
expression for δEab necessitates rewriting the Einstein field equation’s condition for Â

(2,2)
ab from Eq. (4.11b)

in terms of B̂
(0,0)
c Bd(aϵb)

cd and then substituting it into our initial expression for δEab.
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These expressions match those found for the transformation from the rest gauge to the
Lorenz gauge in Ref. [81] but with the omission of the term ∝ m. As in Ref. [81], we can
also write the perturbations of the tidal moments as

δEab = δR̊tatb[
0hR1 − Lξ1 g̊], (4.34)

δBab =
1
2ϵ

pq
(aδR̊b)tpq[

0hR1 − Lξ1 g̊], (4.35)

in agreement with analogous results in Ref. [94]. These forms of δEab and δBab let us
interpret them as the tidal moments of 0hR1

µν (up to a gauge transformation).

The rest of the STF tensors are found to be

T̂
(3,1)
a =

3
5B̂

(2,0)
a +

2
5Ea

bB̂
(0,0)
b +

1
5Bbcϵac

dÊ
(0,0)
bd +

2
5Ba

b
∫︂
Ĉ

(1,1)
b dt− 1

6
d

dt
Ĝ

(1,1)
a

+
1
20

d

dt
K̂

(1,1)
a , (4.36)

T̂
(3,3)
abc = B̂

(2,2)
abc +

1
6Eabc

∫︂
Â
(0,0)

dt− 1
12

d

dt
Ê

(1,1)
abc + STF

abc

(︄
2
3B̂

(0,0)
a Ebc +

1
3Bd

aϵbd
iÊ

(0,0)
ci

− 2
9Bab

∫︂
Ĉ

(1,1)
c dt

)︄
, (4.37)

X̂
(3,1)
ab =

4
15Ê

(2,0)
ab +

7
180Ĝ

(2,2)
ab − 1

30K̂
(2,2)
ab − 1

15Bd
(aB̂

(0,0)
|c| ϵb)

c
d − 1

10Ec
⟨aÊ

(0,0)
b⟩c

− 1
40 Ėab

∫︂
Â
(0,0)

dt− 1
15Ed

(aϵb)
c
d

∫︂
Ĉ

(1,1)
c dt , (4.38)

X̂
(3,3)
abcd =

1
6Ê

(2,2)
abcd , (4.39)

Ŷ
(3,1)
a = − 1

10Ba
bB̂

(0,0)
b − 1

60Ebcϵac
dÊ

(0,0)
bd +

1
4Ĥ

(2,2)
a +

7
30Ea

b
∫︂
Ĉ

(1,1)
b dt , (4.40)

Ŷ
(3,3)
abc =

1
4 F̂

(2,2)
abc − 1

6Babc

∫︂
Â
(0,0)

dt+ STF
abc

(︄
1
6Ed

aϵbd
iÊ

(0,0)
ci − 1

3BabB̂
(0,0)
c

− 1
3Eab

∫︂
Ĉ

(1,1)
c dt

)︄
, (4.41)

Ẑ
(3,1)

=
1
45EabÊ

(0,0)
ab +

3
10K̂

(2,0), (4.42)

Ẑ
(3,3)
ab =

1
9Bd

(aϵb)
c
dB̂

(0,0)
c − 1

6Ê
(2,0)
ab +

1
36Ĝ

(2,2)
ab +

1
6Ec

⟨aÊ
(0,0)
b⟩c +

1
3K̂

(2,2)
ab

+
1
24 Ėab

∫︂
Â
(0,0)

dt+
1
9Ed

(aϵb)
c
d

∫︂
Ĉ

(1,1)
c dt . (4.43)

4.2.4 Final result for ξµ
1

Substituting the above results for the STF tensors into Eq. (4.5), we obtain our final
form of the gauge vector required to transform from the rest gauge into the practical
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highly regular gauge. The components are given by2

ξ1
t =

1
2

∫︂
0hR1

tt dt+ rn̂a 0hR1
ta +

r2

12

[︃
2 0hR1

ta,
a − d

dt
0hR1 + 3n̂ab

(︃
2 0hR1

ta,b − d

dt
0hR1

ab

+ 2Eab

∫︂
0hR1

tt dt

)︃]︃
+
r3

60

[︃
3n̂a

(︃
4Bbcϵac

d 0hR1
bd + 8Ea

b 0hR1
tb + 2 0hR1

ta,b
b

+ 4Babϵ
bcd
∫︂

0hR1
tc,d dt− 2 d

dt
0hR1

ab,
b +

d

dt
0hR1

,a

)︃
+ 5n̂abc

(︃
8Eab

0hR1
tc

+ 2Eabc

∫︂
0hR1

tt dt+ 2 0hR1
ta,bc + 4Ba

dϵcd
i 0hR1

bi − 4Babϵc
di
∫︂

0hR1
td,i dt− d

dt
0hR1

ab,c

)︃]︃
+ O

(︂
r4
)︂
, (4.44a)

ξ1
a =

rn̂b

2

[︃
0hR1

ab + 2
∫︂

0hR1
t[a,b] dt

]︃
+
r2

12

[︃
2 0hR1

ab,
b − 0hR1

,a + n̂bc
(︃

6 0hR1
ab,c − 3 0hR1

bc,a

− 4Bb
dϵacd

∫︂
0hR1

tt dt

)︃]︃
+

r3

360

[︃
12Ebc 0hR1

bc n̂a − 3n̂b
(︃

4Eb
c 0hR1

ac + 8Ea
c 0hR1

bc

+ 12Bcdϵabd
0hR1

tc − 4Eab
0hR1 − 8Bc

(aϵb)c
d 0hR1

td − 8 0hR1
b[a,c]

c − 8 0hR1
ac,b

c + 2 0hR1
,ab

+ 3Ėab

∫︂
0hR1

tt dt+ 24Eb
c
∫︂

0hR1
t[a,c] dt− 32Ea

c
∫︂

0hR1
t[b,c] dt

)︃
+ 5n̂a

bc
(︃

12Eb
d 0hR1

cd

− 8Bb
dϵcd

i 0hR1
ti − 24Eb

d
∫︂

0hR1
t[c,d] dt+ 3Ėbc

0hR1
tt

)︃
− 10n̂bcd

(︃
12Eb[c

0hR1
a]d

− 6 0hR1
ab,cd + 8Bb

iϵadi
0hR1

tc + 4Bbcϵad
i 0hR1

ti + 3 0hR1
bc,ad + 12Ebc

∫︂
0hR1

t[a,d] dt

+ 6Bbc
iϵadi

∫︂
0hR1

tt dt

)︃]︃
+ O

(︂
r4
)︂
. (4.44b)

The order-r0 and -r terms match those found previously in Eqs. (129)–(131) and (133)
of Ref. [81].

4.3 Second-order singular field

With the gauge vector determined through order r3, we can now take the Lie derivative
of h̊S1′

µν as required to determine hS2
µν . Following Ref. [81], to more explicitly reveal the

structure of the singular field, we perform an SS/SR split as in Eq. (3.43) so that

h̊S2
µν = h̊SS

µν + h̊SR
µν (4.45)

with

h̊SR
µν = h̊SR′

µν + Lξ1 h̊
S1′
µν , (4.46)

h̊SS
µν = h̊SS′

µν . (4.47)

2ξ1
a was additionally simplified using the constraint in Eq. (4.10a) from the Einstein field equations in

terms of 0hR1
µν .
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This means that h̊SR
µν comprises terms ∼ m 0hR1

µν , and h̊SS
µν features all terms ∝ m2.

Calculating Lξ1 h̊
S1′
µν and combining it with h̊SR′

µν in Eqs. (3.44), we find the first three
orders of h̊SR

µν are

h̊SR
tt = − 2m

[︃1
r

(︃
0hR1

tt +
1
2

0hR1
ab n

ab
)︃
+

(︃1
4

0hR1
ab,cn

abc − nab d

dt
0hR1

ab + 2na d

dt
0hR1

ta

)︃
+ r

(︃11
6 Eab 0hR1

ab + nab
{︃

−11
3 Ea

c 0hR1
bc +

11
6 Eabδ

ij 0hR1
ij +

11
3 Ba

cϵbc
d 0hR1

td

+
11
6 Eab

0hR1
tt +

11
12

0hR1
ab,c

c − 11
6

0hR1
ac,b

c +
11
12δ

ij 0hR1
ij,ab +

d

dt
0hR1

ta,b − 1
2
d2

dt2
0hR1

ab

}︃
− 1

2n
abc d

dt
0hR1

ab,c +
1
12n

abcd
{︃

11Eab
0hR1

cd + 0hR1
ab,cd

}︃)︃]︃
+ O

(︂
r2
)︂
, (4.48a)

h̊SR
ta = − 2m

[︃1
r

(︃
0hR1

ta +
1
2

0hR1
tt na − 0hR1

ab n
b + 0hR1

bc na
bc
)︃
+

(︃
nb
{︃

0hR1
t[a,b] − 1

2
d

dt
0hR1

ab

}︃
+ na

b d

dt
0hR1

tb − 1
4n

bc
{︃

2 0hR1
ab,c +

0hR1
bc,a

}︃
− 1

2na
bc d

dt
0hR1

bc

)︃
+ r

(︃1
3Bbcϵac

d 0hR1
bd

+
4
3naEbc 0hR1

bc +
1
6n

b
{︃

−4Ec
(a

0hR1
b)c + 2Eabδ

ij 0hR1
ij + 4Bc

(aϵb)c
d 0hR1

td + Eab
0hR1

tt

+ 2 0hR1
a[b,c]

c − 2 0hR1
[b

c
,c]a

}︃
− 1

3na
bBcdϵbd

i 0hR1
ci +

1
12n

bc
{︃

−8Bb
dϵd

i
[a

0hR1
c]i

+ 10Ebc
0hR1

ta + Bdiϵaci
0hR1

bd + 6 0hR1
ta,bc − 6 d

dt
0hR1

ab,c + 3 d
dt

0hR1
bc,a

}︃
+ na

bc
{︃

2Eb
d 0hR1

cd + Ebcδ
ij 0hR1

ij + 2Bb
dϵcd

i 0hR1
ti +

1
2Ebc

0hR1
tt +

1
2

0hR1
bc,d

d

− 0hR1
bd,c

d +
1
2δ

ij 0hR1
ij,bc +

1
2
d

dt
0hR1

tb,c − 1
4
d2

dt2
0hR1

bc

}︃
− 1

6n
bcd
{︃

6Ebc
0hR1

ad

+ 2 0hR1
b(a,c)d

}︃
− 1

4na
bcd d

dt
0hR1

bc,d − 1
3n

bcdiBb
jϵaij

0hR1
cd + na

bcdi
{︃

Ebc
0hR1

di

+
1
6

0hR1
bc,di

}︃)︃]︃
+ O

(︂
r2
)︂
, (4.48b)
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h̊SR
ab = − 2m

[︃1
r

(︃
2 0hR1

t(anb) − 2 0hR1
c(anb)

c +
3
2

0hR1
cd nab

cd
)︃
+

(︃
0hR1

t(a,|c|nb)
c + 0hR1

tc,(anb)
c

− 0hR1
c(a,|d|nb)

cd − 1
2

0hR1
cd,(anb)

cd +
3
4

0hR1
cd,inab

cdi − nc
(a
d

dt
0hR1

b)c

)︃
+ r

(︃2
3n

cEc(a
0hR1

b)t

+
2
3n(aϵb)d

iBcd 0hR1
ci +

5
6nabEcd 0hR1

cd +
2
3 Sym

ab
na

c
{︃

Ebcδ
ij 0hR1

ij − 2E(bd 0hR1
c)d

+ 2B(b
dϵc)d

i 0hR1
ti + 0hR1

b[c,d]
d − 0hR1

[c
d

,d]b

}︃
− 2

3n
cd
{︃

Ec(a
0hR1

b)d + 2Bc
iϵdi(a

0hR1
b)t

}︃
− 2

3nab
cBdiϵci

j 0hR1
dj +

1
6 Sym

ab
na

cd
{︃

8Bc
iϵi

j
[b

0hR1
d]j + 4Bijϵbdj

0hR1
cj

− Bc
iϵbdiδ

jk 0hR1
jk + 4Bc

iϵbdi
0hR1

tt + 6 0hR1
tb,cd − 6 d

dt
0hR1

bc,d + 3 d
dt

0hR1
cd,b

}︃
+

4
3n

cdiBc
jϵij(a

0hR1
b)d +

1
12nab

cd
{︃

2Ecdδ
ij 0hR1

ij − 4Ec
i 0hR1

di + 4Bc
iϵdi

j 0hR1
tj

+ 0hR1
cd,i

i − 2 0hR1
ci,d

i + δij 0hR1
ij,cd

}︃
− 2

3 Sym
ab

na
cdi
{︃

Ec[d
0hR1

b]i +
0hR1

c(b,d)i

}︃
− 4

3n
cdij

(aϵb)jkBc
k 0hR1

di +
1
4nab

cdij
{︃

Ecd
0hR1

ij + 0hR1
cd,ij

}︃)︃]︃
+ O

(︂
r2
)︂
. (4.48c)

Here the first two orders, ∼ 1/r and ∼ r0, arise purely from Lξ1 h̊
S1′
µν , while the linear-in-r

terms contain contributions from both Lξ1 h̊
S1′
µν and h̊SR′

µν .

The ‘singular times singular’ piece of the perturbation is given in Eq. (3.45), which we
rewrite here as

h̊SS
tt = − 4m2

[︃
Eabn

ab + r

(︃1
3 Ėabn

ab
{︃

11 − 6 log
(︂

2m
r

)︂}︃
+

2
3Eabcn

abc
)︃]︃

+ O
(︂
r2
)︂
, (4.49a)

h̊SS
ta = − 4m2

[︃
Ebcna

bc + r

(︃2
9 Ėabn

b
{︃

7 − 3 log
(︂

2m
r

)︂}︃
+

1
6Eabcn

bc − 2
9 Ḃb

dϵacdn
bc

×
{︃

4 − 3 log
(︂

2m
r

)︂}︃
+

1
9 Ėbcna

bc
{︃

19 − 12 log
(︂

2m
r

)︂}︃
+

1
2Ebcdna

bcd

− 2
9Bbc

iϵadin
bcd
)︃]︃

+ O
(︂
r2
)︂
, (4.49b)

h̊SS
ab = − 4m2

[︃
−1

3Eab + B(a
dϵb)cdn

c +
2
3Ec(anb)

c − 1
6Ecdδabn

cd − Bc
iϵdi(anb)

cd

+
5
6Ecdnab

cd + r

(︃2
3 Ėab +

4
9 Ėc(anb)

c
{︃

4 − 3 log
(︂

2m
r

)︂}︃
+

1
3 Ėcdδabn

cd

+
1
9n

cd
(a

{︃
3Eb)cd − 4Ḃ|c|

iϵb)di

[︃
4 − 3 log

(︂
2m
r

)︂]︃}︃
− 4

9Bcd
jϵij(anb)

cdi

+
2
9 Ėcdnab

cd
{︃

4 − 3 log
(︂

2m
r

)︂}︃
+

1
3Ecdinab

cdi
)︃]︃

+ O
(︂
r2
)︂
. (4.49c)

In h̊SS
µν we have simply rewritten h̊SS′

µν , as given in Eq. (3.45), in terms of nL := ni1 · · ·nil

instead of n̂L = n⟨L⟩. This will simplify the conversion to fully covariant form, as required
for use in a puncture scheme; such a conversion can be done following the method in
Ref. [96] and is performed in Ch. 6.
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h̊SS
µν and the leading, 1/r terms in h̊SR

µν were given previously in Ref. [81].3 The ∼ r0 and
linear-in-r terms in h̊SR

µν appear here for the first time. We also provide our full results for
the singular field in a user-ready Mathematica form in the Additional Material [141].

This completes our calculation of the second-order singular field. In the next chapter, we
turn to the skeleton stress-energy that this field is associated with.

3The 0hR1
ab term in Eq. (134c) of Ref. [81] has a typo and has been corrected in Eq. (4.48c) to

0hR1
cd nab

cd.
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Chapter 5

Second-order stress-energy tensor

In this chapter, we provide the method and calculations to rigorously derive the second-
order stress-energy tensor for the small object. We find this first in the lightcone rest
gauge (Ch. 5.1.2) before finding the transformation to a generic highly regular gauge
(Ch. 5.1.3) and the Lorenz gauge (Ch. 5.2). We demonstrate that the second-order stress-
energy tensor has the same functional form in both the highly regular and Lorenz gauges.
This form is compatible with the result we obtain for the lightcone rest gauge. The
stress-energy tensor is found to be that of a point mass moving in the effective spacetime,
g̃µν , (Ch. 5.1.4) and has an invariant form under any smooth gauge transformation
(Ch. 5.1.7). We derive additional useful properties along the way in Chs 5.1.5–5.1.6.

After calculating the second-order stress-energy tensor in both the highly regular and
Lorenz gauges, we proceed to calculate the delta function content of the sources for the
second-order Einstein equations and the second-order Teukolsky equation in Ch. 5.3.
Material up to (but not including) Ch. 5.3 was previously published in Ref. [140].

5.1 The Detweiler stress-energy: derivation and properties
in highly regular gauges

5.1.1 Stress-energy tensors in self-force theory

In self-force theory, where one uses the principle of matched asymptotic expansions to
derive the form of the metric, we do not have the freedom to choose the form of the
stress-energy tensor. We require a stress-energy tensor source that gives us the local
form of the metric that was derived through matched asymptotic expansions. This
contrasts the usual approach to working in general relativity where a stress-energy tensor
is prescribed, based on some desired physical characteristics, and the metric that sources
it is solved for.
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There is a great deal of subtlety involved when dealing with stress-energy tensors in
self-force theory which we illustrate here. Say we were using an ordinary Taylor expansion
of the metric perturbations instead of the ϵ-dependent self-consistent scheme. We would
then write our stress-energy tensor as

Tµν(x, ϵ) = ϵTµν
1 (x) + ϵ2Tµν

2 (x) + O
(︂
ϵ3
)︂
, (5.1)

which we could define, order-by-order, by

8πTµν
1 := δGµν [h1], (5.2)

8πTµν
2 := δGµν [h2] + δ2Gµν [h1,h1]. (5.3)

This is not the procedure that we used when deriving the perturbations in the highly
regular gauge in the previous chapter but we could recover this series by re-expanding
the worldline γ around a geodesic in the background spacetime. It was previously shown
in Ref. [139] that this would introduce a mass dipole moment into h2

µν which would be
accounted for via the introduction of a mass-dipole stress-energy tensor, Tµν

δm, at second
order.

In the self-consistent scheme, the equations must be written in combined form instead of
splitting order-by-order in this framework as δGµν [h1] ̸= 0 off the worldline, in fact

ϵδGµν [h1] = O
(︂
ϵ2
)︂
, xα /∈ γ, (5.4)

so that for all points
ϵδGµν [h1] = 8πϵTµν

1 + O
(︂
ϵ2
)︂
. (5.5)

To see why, note that if we took Eq. (5.2) to be true for the self-consistent scheme
then, by the conservation of energy, ∇νT

µν
1 = ∇νδG

µν [h1] = 0. This implies that the
worldline is a geodesic in the background spacetime which is a contradiction as in the
self-consistent scheme we have an accelerated worldline. Thus, we have Eq. (5.5) where
Tµν

1 is the stress-energy tensor of a point mass on an accelerated worldline. This suggests
that we should work with total quantities, such as

8πTµν := δGµν [ϵh1 + ϵ2h2] + ϵ2δ2Gµν [h1,h1] + O
(︂
ϵ3
)︂
. (5.6)

However, there exists another issue that we must deal with before continuing. When
calculating the metric perturbations in the highly regular gauge, we did not actually
calculate the hµν that appear in the self-consistent scheme; instead we calculated h̊µν .
The difference between the two is subtle but important: the hµν in the self-consistent
scheme are defined in an ϵ-independent coordinate system whereas the values we have
calculated in the highly regular gauge use a coordinate system that depends on ϵ. If we
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expand Eq. (5.6) around g̊µν , we get

8πTµν = δG̊µν [ϵ h̊
1
+ ϵ2h̊

2
] + ϵ2 δ2G˚ µν [h̊

1, h̊1
] + O

(︂
ϵ3
)︂
, (5.7)

where δG̊µν are δ2G˚ µν are defined with respect to g̊µν . This leads us to define the
stress-energy tensors based on these quantities as

8πTµν
1 := δG̊µν [h̊1], (5.8)

8πTµν
2 := δG̊µν [h̊2] + δ2G˚ µν [h̊1, h̊1]. (5.9)

It follows from Eq. (5.8) that Tµν
1 is gauge invariant as δG̊µν is gauge invariant on a

vacuum background [153]. Thus, Tµν
1 is the same in any gauge and is given by the

stress-energy of a point mass on γ, given by

Tµν
1 = m

∫︂
γ
uµuν δ

4(x− z)√
−g

dτ . (5.10)

which is Eq. (1.14) but with indices up. This is not the case at second order with Tµν
2 . In

fact, as mentioned Ch. 1.4.1, it is not even clear whether Tµν
2 is a well-defined quantity

when in a gauge compatible with matched asymptotic expansions. While h̊1
µν is a locally

integrable function valid as a distribution, when acted on by the second-order Einstein
tensor, it becomes a product of distributions as δ2G˚ µν [h̊, h̊] ∼ h̊∇2h̊+∇h̊∇h̊. A product
of distributions is (generally) not a well-defined distributional quantity. By construction,
the total quantity δG̊µν [h̊2] + δ2G˚ µν [h̊1, h̊1] vanishes for r > 0 but there is no unique
way to promote this to a distribution on r ≥ 0. If we were able to define each term
individually as distributions, then we could write

δG̊µν [h̊2] = 8πTµν
2 − δ2G˚ µν [h̊1, h̊1], (5.11)

allowing us to directly solve for the physical field, as is done at first order. This final
problem will be considered in Ch. 5.3.1.

To expand upon the argument some more, we split h̊1
µν into singular and regular fields,

so that

δ2G˚ µν [h1,h1] = δ2G˚ µν [h̊S1, h̊S1] + 2δ2G˚ µν [h̊S1, h̊R1] + δ2G˚ µν [h̊R1, h̊R1]. (5.12)

We define
Q̊

µν
R [h] := δ2G˚ µν [h̊R1,h] (5.13)

which is a smooth linear operator because h̊R1
µν is smooth. This is then well-defined

in the distributional sense when acting on the integrable function h̊S1
µν . The final

term, δ2G˚ µν [h̊R1, h̊R1] ∼ r0 as h̊R1
µν ∼ r0 is a smooth field defined at all points in the

spacetime and, as such, is well-defined distributionally. Therefore, the problematic part
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of the second-order Einstein tensor is the ‘singular times singular’ piece, δ2G˚ µν [h̊S1, h̊S1].
Ref. [81] argued that, in a highly regular gauge, this is in fact an integrable function on
the entire spacetime. We follow this argument in the next sections where we use it to
derive the second-order stress energy tensor in a generic highly regular gauge.

5.1.2 Stress-energy in the lightcone rest gauge

We start by considering the distributional nature of the individual terms in a generic
highly regular gauge. While it is not immediately obvious that δ2G˚ [h̊S1, h̊S1] is well
defined as a distribution in these, we note that because h̊R1

µν features no terms with
explicit factors of m and h̊S1

µν features terms with an explicit factor of m, then h̊S1
µν must

be the source for h̊SS
µν in h̊2

µν as it features terms with the factor m2. This implies that

δ2G˚ µν [h̊S1] = −δG̊µν [h̊SS], r > 0. (5.14)

The previous relation is of course true in any gauge as we are free to choose the split of
h̊2

µν so that is satisfies this equality. However, in a generic highly regular gauge, the RHS
of Eq. (5.14) behaves as ∼ 1/r2 because h̊SS

µν ∼ r0. As such, it is a locally integrable
function across the entire space r ≥ 0, so we can write

δ2Gµν [hS1] = −δGµν [hSS], ∀r. (5.15)

Specialising to a rest gauge and evaluating the definition for Tµν
2 from Eq. (5.9), we find

that

8πTµν
2 = δG̊µν [h̊SR′

] + δG̊µν [h̊SS] + 2δ2G˚ µν [h̊S1′ , h̊R1′
] + δ2G˚ µν [h̊S1′ , h̊S1], (5.16)

where we have eliminated the terms that only depend on the regular field as, by definition,
they are vacuum solutions to the field equations. Following the argument in this chapter,
the right-hand side is zero for r > 0 and are all ordinary integrable functions. Therefore
this vanishes when integrating against a test function, meaning

Tµν
2′ = 0. (5.17)

The physical interpretation is as follows: when in the local rest gauge for a non-spinning
object, its stress-energy tensor is that of a point mass on the external background through
order ϵ2.

5.1.3 Stress-energy in a generic highly regular gauge

We now find Tµν
2 by finding how the stress-energy transforms under a gauge transformation

from the rest gauge. We use Eqs. (3.51)–(3.54) to write the h̊n
µν ’s in terms of the rest
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gauge quantities. Additionally, we require the identities (C2)–(C4) from Ref. [139], which
are

LξA[g] = δA[Lξg], (5.18)

L2
ξA[g] = δA[L2

ξg] + 2δ2A[Lξg, Lξg], (5.19)

LξδA[h] = δA[Lξh] + 2δ2A[Lξg,h], (5.20)

where A is a tensor of arbitrary rank which is constructed from a metric g. The first of
these reduces to the invariance of the linearised Einstein tensor, δGµν [Lξg] = 0, when
the background is vacuum.

Together, the above replacements and identities gives

8πTµν
2 = δG̊µν [h̊2′

+ Lξ1 h̊
1′
+ 1

2L2
ξ1 g̊+ Lξ2 g̊] + δ2G˚ µν [h̊1′

+ Lξ1 g̊, h̊1′
+ Lξ1 g̊]

= δG̊µν [h̊2′
] + δ2G˚ µν [h̊1′ , h̊1′

] + δG̊µν [Lξ1 h̊
1′
] + 1

2δG̊
µν [L2

ξ1 g̊]

+ 2δ2G˚ µν [h̊1′ , Lξ1 g̊] + δ2G˚ µν [Lξ1 g̊, Lξ1 g̊]

= 8πTµν
2′ + Lξ1δG̊

µν [h̊1′
] + 1

2L2
ξ1G

µν [g̊]

= 8πTµν
2′ + 8πLξ1T

µν
1 . (5.21)

In the first line, we have substituted Eqs. (3.51)–(3.54) into the right-hand side of the
definition (5.9). In the third equality we have appealed to Eqs. (5.19) and (5.20). In the
fourth, we have appealed to Gµν [g̊] = 0 and δG̊µν [h̊1′

] = 8πTµν
1′ = 8πTµν

1 .

Equation (5.21) tells us we can write

Tµν
2 = Tµν

2′ + Lξ1T
µν
1 . (5.22)

This is not too surprising as it is just the transformation law for a second-order tensor
when the background tensor vanishes [153]. In our case, we have effectively defined Tµν

2
as the second-order term in an expansion of the Einstein tensor. However, note that the
steps involved in Eq. (5.21) rely on the properties of the highly regular gauges; we have
not established Eq. (5.22) for the transformation between any two generic gauges.

Next, since Tµν
2′ = 0, Eq. (5.22) becomes

Tµν
2 = Lξ1T

µν
1 . (5.23)

The right-hand side was previously calculated in Eq. (D1) of Ref. [139] and is rederived
in Eq. (B.11).1 It reads

Lξ1T
µν
1 = −m

∫︂
γ
gµ

µ′g
ν
ν′uµ′

uν′
(︄
ξρ

1;ρ −
dξ1

∥
dτ

)︄
δ4(x, z) dτ , (5.24)

1The τ derivative term has a missing minus sign in Ref. [139], which has been added here.
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where ξ1
∥ := uρξ

ρ
1 and we have removed the orthogonal parts of the gauge vector,

ξµ
1⊥ := Pµ

νξ
ν
1 , as the worldline-preserving condition sets them to zero. We detail the

derivation of Eq. (5.24) and various related results in App. B.

By taking ξρ
1 to be the gauge vector from Eq. (4.44) and the proper time to be t, we find

dξ1
∥

dτ

⃓⃓⃓⃓
⃓
γ

= −dξt
1

dt

⃓⃓⃓⃓
⃓
γ

=
1
2

0hR1
tt

⃓⃓⃓
γ
=

1
2u

µuν0hR1
µν

⃓⃓⃓
γ

(5.25)

and

ξρ
1;ρ

⃓⃓⃓
γ
= (∂tξ

t
1 + ∂aξ

a
1 )
⃓⃓⃓
γ

=
1
2 (−

0hR1
tt + δab 0hR1

ab )
⃓⃓⃓
γ

=
1
2g

αβ 0hR1
αβ

⃓⃓⃓
γ
. (5.26)

Thus, the second-order stress-energy tensor in the highly regular gauge is given by

Tµν
2 = −m

2

∫︂
uµuν

(︂
gαβ − uαuβ

)︂
0hR1

αβδ
4(x, z) dτ . (5.27)

5.1.4 Point mass in the effective spacetime

With a short calculation, we can show the total stress-energy ϵTµν
1 + ϵ2Tµν

2 derived above
is exactly equal, through order ϵ2, to the stress-energy tensor of a point mass in the
effective spacetime g̃µν = gµν + hR

µν . That stress-energy tensor is given by

T̃
µν

= ϵm

∫︂
γ
ũµũν δ

4(x− z)√
−g̃

dτ̃ . (5.28)

Expanding this for small hR
µν , we see that

T̃
µν

= ϵm

∫︂
γ

dτ

dτ̃
uµuνδ4(x, z)

(︃
1 − ϵ

2g
αβhR1

αβ

)︃
dτ + O

(︂
ϵ3
)︂

= ϵm

∫︂
γ
uµuνδ4(x, z)

(︃
1 − ϵ

2

[︃
gαβ − uαuβ

]︃
hR1

αβ

)︃
dτ + O

(︂
ϵ3
)︂
, (5.29)

where we have used the standard expansion of a determinant and expanded dτ/dτ̃ using

dτ

dτ̃
=

1√︂
1 − hR

µνu
µuν

= 1 + ϵ

2h
R1
µνu

µuν + O
(︂
ϵ2
)︂
, (5.30)

which follows from

−1 = g̃µν ũ
µũν = (gµν + hR

µν)

(︃
dτ

dτ̃

)︃2
uµuν . (5.31)
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Comparing Eqs. (5.27) and (5.29), we see that

ϵTµν
1 + ϵ2Tµν

2 = T̃
µν

+ O
(︂
ϵ3
)︂
. (5.32)

This confirms Detweiler’s postulate in Ref. [93].

As Detweiler also noted, we can use this to write the field equations in a more transparent
form. Eq. (5.15), together with Gµν [g̃] = 0, implies that

Gµν [g] = ϵδGµν [hS1] + ϵ2δGµν [hSR] + 2ϵ2δ2Gµν [hS1,hR1] + O
(︂
ϵ3
)︂

= δG̃
µν
[ϵhS1 + ϵ2hSR] + O

(︂
ϵ3
)︂
, (5.33)

where “Gµν [g]” is to be understood as the expansion of the Einstein tensor through order
ϵ2, and δG̃µν is the linearised Einstein tensor constructed from the effective metric, g̃µν .
In words, the Einstein curvature of the physical spacetime (extended to all r > 0 from
outside the body) is identical to the linearised Einstein curvature of the perturbation
ϵhS1

µν + ϵ2hSR
µν atop the effective background g̃µν . Combining this with Eq. (5.32) allows

us to write the field equations in the form of a point mass sourcing a linear perturbation
of an effective background:

δG̃µν [ϵhS1 + ϵ2hSR] = 8πT̃µν
+ O

(︂
ϵ3
)︂
. (5.34)

In the remainder of the section, we derive several useful properties of this stress-energy.
In all cases, the properties further show that the Detweiler stress-energy behaves as an
ordinary stress-energy tensor in the effective metric, even as it behaves strikingly unlike
an ordinary stress-energy in the physical spacetime.

5.1.5 Raising and lowering indices

If our stress-energy tensor was an ordinary tensor in the physical spacetime, then we
could write its expansion as

Tµν = ϵTµν
1 + ϵ2Tµν

2 + O
(︂
ϵ3
)︂
, (5.35)

which would have indices raised and lowered with the full metric, gµν . This would mean
that, say,

Tµ
ν = gµρTρν ,

= ϵTµ
ν + ϵ2(T 2

µ
ν + h1

µρT
ρν
1 ) + O

(︂
ϵ3
)︂
. (5.36)
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However, this would mean that h1
µρT

ρν
1 ∼ δ4(x)/r as h1

µν ∼ 1/r and Tµν
1 features a delta

function. This is an ill-defined quantity meaning that the full metric cannot be used to
raise and lower indices on this stress-energy tensor.

In fact, the indices on the stress-energy tensor are raised and lowered with the effective
metric from the previous section. To see this, if we define

8πT̃µ
ν := δGµ

ν [ϵh1 + ϵ2h2] + ϵ2δ2(gµρG
ρν)[h1,h1] + O

(︂
ϵ3
)︂
, (5.37)

8πT̃µν := δGµν [ϵh
1 + ϵ2h2] + ϵ2δ2(gµρgνσG

ρσ)[h1,h1] + O
(︂
ϵ3
)︂
, (5.38)

in analogy with Eq. (5.6), then

T̃µ
ν = g̃µαT̃

αν

= ϵT 1
µ

ν + ϵ2(T 2
µ

ν + h0 R1
µαT

αν
1 ) + O

(︂
ϵ3
)︂
, (5.39)

T̃µν = g̃µαg̃νβT̃
αβ

= ϵT 1
µν + ϵ2(T 2

µν + 2 h0 R1
α(µgν)βT

αβ
1 ) + O

(︂
ϵ3
)︂
. (5.40)

The right-hand sides of Eqs. (5.37) and (5.38) are the expansions of the Einstein tensor
with mixed indices and both indices down, as given in Eqs. (2.29)–(2.34).

To derive these expressions, we use exactly the same method as for Tµν
2 . Performing

Eq. (5.21) again but for the different index position, we find

T̃µ
ν = ϵT 1

µ
ν + ϵ2Lξ1T

1
µ

ν , (5.41)

T̃µν = ϵT 1
µν + ϵ2Lξ1T

1
µν , (5.42)

where the Lie derivatives are given in Eqs. (B.24)–(B.23). By substituting in the values
of the gauge vector from Eq. (4.44) and converting to Fermi–Walker coordinates, we see
that the individual components for both indices down are given by

Lξ1T
1
tt = − m

2

∫︂ (︂
2 0hR1

tt + δab 0hR1
ab

)︂
δ4(x, z) dt , (5.43a)

Lξ1T
1
ta = −m

∫︂
0hR1

ta δ
4(x, z) dt , (5.43b)

Lξ1T
1
ab = 0 (5.43c)

and for one up and one down by

Lξ1T
1
t

t =
m

2

∫︂
δab 0hR1

ab δ
4(x, z) dt , (5.44a)

Lξ1T
1
t

a = 0, (5.44b)

Lξ1T
1
a

t = m

∫︂
0hR1

ta δ
4(x, z) dt , (5.44c)

Lξ1T
1
a

b = 0. (5.44d)
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In covariant form, these become

Lξ1T
1
µ

ν = − m

2

∫︂
γ

[︂(︂
gαβ − uαuβ

)︂
0hR1

αβuµ − 2 0hR1
µαu

α
]︂
uνδ4(x, z) dτ . (5.45)

Lξ1T
1
µν = − m

2

∫︂
γ

[︂(︂
gαβ − uαuβ

)︂
0hR1

αβuµuν − 4uαu(µ
0hR1

ν)α

]︂
δ4(x, z) dτ , (5.46)

We see by comparison with Eq. (5.27) that these agree with the order-ϵ2 terms in
Eqs. (5.39)–(5.40).

5.1.6 Conservation of stress-energy

In this section, we will demonstrate that the Detweiler stress-energy tensor is conserved
in the effective spacetime, g̃µν , and not the full spacetime, gµν , as one might expect. It
is a standard result that the stress-energy of a point-mass in a metric gµν is conserved if
and only if the mass moves on a geodesic of that metric. As T̃µν is a point mass in the
effective spacetime g̃µν , this means that

∇̃ν T̃
µν

= 0. (5.47)

However, if our stress-energy acted as a normal tensor, as in Eq. (5.35), then it would be
conserved in gµν . This would mean that

ϵ∇νT
µν
1 + ϵ2(∇νT

µν
2 + δΓµ

ρνT
ρν
1 + δΓν

ρνT
µρ
1 ) = O

(︂
ϵ3
)︂
, (5.48)

where δΓρ
µν = 1

2g
ρσ(2h1

ρ(ν;σ) − h1
ρν;σ) is the order-ϵ term that comes from expanding the

metric perturbations in Eq. (2.12). As with the argument below Eq. (5.36), this would
be ill-defined for our stress-energy tensor as (∂αh

1
βγ)T

µν
1 ∼ δ4/r2, which is an ill-defined

term.

5.1.7 Gauge invariance under smooth transformations

The results we have so far for the stress-energy tensor are valid for any generic highly
regular gauge that is related by a worldline-preserving transformation. However, it is
interesting to consider what happens if we do not impose this condition on our gauge
transformation. Our metrics perturbations and worldline are now related by [139]

hR1‡
µν = hR1

µν + Lξ1gµν , (5.49)

zµ
‡ = zµ − ϵξµ

1 + O
(︂
ϵ2
)︂
, (5.50)
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where the new gauge is denoted with a double dagger. We perform the calculation in
Eq. (5.21) again, accounting for the shift in the worldline from Eq. (5.50), to find that

Tµν
2‡ = Tµν

2 + (Lξ1 + £ξ1)T
µν
1 . (5.51)

Here £ξ1 acts on Tµν
1 ’s dependence on zµ; see Ref. [139] for a thorough description of

this type of transformation.

Eq. (B.16) gives the action of the Lie derivatives on Tµν
1 . One finds the gauge vector

by solving Lξ1gµν = ∆hR1
µν , without the gauge condition ξa

1 |γ = 0 The result is that the
terms involving gauge vectors are again given by Eqs. (5.25) and (5.26) but replacing
hR1

µν with ∆hR1
µν . Performing these substitutions, we obtain

(Lξ1 + £ξ1) T
µν
1 = −m

2

∫︂
uµuν

(︂
gαβ − uαuβ

)︂
∆hR1

αβδ
4(x, z) dτ . (5.52)

Eqs. (5.25) and (5.26) are specialised for the transformation from a rest gauge, where
hR1′

µν = 0, to a non-rest gauge resulting in ∆hR1
µν = hR1

µν . However, this is not always the
case, so Eq. (5.52) is the general form of the transformation.

The stress-energy tensor in the new gauge is then given by

Tµν
2‡ = − m

2

∫︂
uµuν

(︂
gαβ − uαuβ

)︂
hR1‡

αβ δ
4(x, z) dτ , (5.53)

which demonstrates that the functional form of Eq. (5.27) is always valid for a smoothly
related gauge but with a regular field specific to the new gauge. Note that this is also
consistent with the value of zero in the rest gauge. In the rest gauge, hR

µν

⃓⃓⃓
γ
= 0, leading

to a vanishing Tµν
2′ .

5.2 The Detweiler stress-energy in the Lorenz gauge

One of the most widely used gauges in self-force calculations is the Lorenz gauge [15],
and, as such, it is natural to look at the form of Tµν

2 in this gauge. The Lorenz gauge
satisfies the level of regularity assumed by matched asymptotic expansions: hn

µν ∼ mn/r2

with hn
µν being a smooth field away from the worldline.

Unfortunately, it is not possible to perform the same treatment in the Lorenz gauge as
in the highly regular gauge due to the non-distributional nature of some of the terms,
as discussed at the beginning of the chapter. Additionally, the gauge transformation
between the Lorenz gauge and the highly regular gauge is not smooth as the Lie derivative
is singular on the worldline and the argument from Ch. 5.1.7 cannot be used.

Instead, we perform a full analysis of Eq. (5.6) in the Lorenz gauge. This involves
explicitly calculating the right-hand side of the equation using a distributional definition
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for δ2Gµν [h1,h1], which we call the Detweiler canonical definition. The choice of this
definition allows us to recover the Detweiler stress-energy tensor.

5.2.1 Lorenz gauge field equations and metric perturbations

To calculate the form of the perturbations in the self-consistent Lorenz-gauge scheme [72,
87, 95], one imposes the standard Lorenz-gauge gauge-condition (given in Eq. (1.18))
that the divergence of the trace-reversed metric perturbation vanishes, on the full hµν

instead of the hn
µν ’s that appear at each order in ϵ. After imposing the gauge condition

on the field equations, the individual hn
µν ’s satisfy

Eµν [h̄
1∗
] = 0 for x /∈ γ, (5.54)

Eµν [h̄
2∗
] = − δ2Gµν [h1∗,h1∗] for x /∈ γ, (5.55)

where a star denotes a quantity in the Lorenz gauge and Eµν is the linearised Einstein
tensor in the Lorenz gauge given by Eq. (1.19).

In the Lorenz gauge, we may use the full hn
µν instead of the h̊n

µν as used in the highly
regular gauge [72, 87, 96]. The first-order singular field takes the form

hS1∗
µν =

2m
r

(gµν + 2uµuν) + O
(︂
r0
)︂
, (5.56)

where uα = (1, 0, 0, 0) so that uαnα = 0. The second-order singular field is split in to
three pieces

hS2∗
µν = hSS∗

µν + hSR∗
µν + hδm∗

µν , (5.57)

satisfying

Eµν [h̄
SS∗

] = − δ2Gµν [hS1∗,hS1∗] for x /∈ γ, (5.58)

Eµν [h̄
SR∗

] = − 2δ2Gµν [hR1∗,hS1∗] for x /∈ γ, (5.59)

Eµν [h̄
δm∗

] = 0 for x /∈ γ. (5.60)

Here, hSS∗
µν has the same structure as in the highly-regular gauge; that is, it contains all

terms ∼ m2 but the leading term is now ∼ 1/r2. An explicit expression for hSS∗
µν is not

required for this calculation but will be needed for one in Ch. 5.3 and is given by

hSS∗
tt = − 2m2

r2 + O(1/r), (5.61a)

hSS∗
ta = O

(︂
r0
)︂
, (5.61b)

hSS∗
ab =

m2

r2

(︃8
3δab − 7n̂ab

)︃
+ O(1/r). (5.61c)
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The sum of the terms hSR∗
µν and hδm∗

µν is analogous to the quantity hSR
µν in the highly

regular gauge wherein they contain terms proportional to products of m and hR1
µν . The

components of the ‘singular times regular’ pieces are given by

hSR∗
tt = − m

r
hR1∗

ab n̂ab + O
(︂
r0
)︂
, (5.62a)

hSR∗
ta = − m

r
hR1∗

tb n̂a
b + O

(︂
r0
)︂
, (5.62b)

hSR∗
ab =

m

r

[︂
2n̂c

(ah
R1∗
b)a − δabh

R1∗
cd n̂cd −

(︂
hR1∗

ij δij + hR1∗
tt

)︂
n̂ab

]︂
+ O

(︂
r0
)︂
, (5.62c)

and

hδm∗
tt = − m

3r
(︂
hR1∗

ab δab + 6hR1∗
tt

)︂
+ O

(︂
r0
)︂
, (5.63a)

hδm∗
ta = − 4m

3r h
R1∗
ta + O

(︂
r0
)︂
, (5.63b)

hδm∗
ab =

m

3r
(︂
2hR1∗

ab + δabδ
cdhR1∗

cd + 2δabh
R1∗
tt

)︂
+ O

(︂
r0
)︂
. (5.63c)

Motivated by the results earlier in this chapter for the highly regular gauge, we use the
definition of Tµν from Eq. (5.6). As in the highly regular gauge, the regular fields are
defined to be solutions of the vacuum Einstein equations and their Einstein tensor does
not contribute to Tµν , leaving us with the analogue of Eq. (5.16),

8πTµν = δGµν [ϵhS1∗ + ϵ2hSS∗ + ϵ2hSR∗ + ϵ2hδm∗] + 2ϵ2δ2Gµν [hS1∗,hR1∗]

+ ϵ2δ2Gµν [hS1∗,hS1∗] + O
(︂
ϵ3
)︂
. (5.64)

To proceed from here we must choose a distributional definition of δ2Gµν [hS1∗,hS1∗].
Using the gauge condition, ϵ2∇ν h̄

µν
SS∗ = O

(︁
ϵ3
)︁
, we can rewrite Eq. (5.58) as

δGµν [h̄
SS∗

] = −δ2Gµν [hS1∗,hS1∗] + O
(︂
ϵ3
)︂

for x /∈ γ. (5.65)

While in the highly regular gauge we get ‘for free’ that Eq. (5.15) is true and the most
singular parts can be cancelled, in the Lorenz gauge we can only cancel the singular
parts off of the worldline. However, as we know from the highly regular gauge that we
can associate δ2Gµν [hS1] and δGµν [hSS] at all points in spacetime, we define this to be
true, distributionally, in the Lorenz gauge, i.e.

δ2Gµν [hS1∗] := −δGµν [hSS∗], ∀r. (5.66)

As δGµν [hSS∗] is a linear operator acting on an integrable function, this means that both
sides of Eq. (5.66) are well defined as distributions for all r.

There is one subtlety that needs to be addressed before proceeding. The forms of the
perturbations presented in this section are only defined as local expansions around the
worldline and, as such, Eq. (5.66) is only valid in an infinitesimal region around γ. To



5.2. The Detweiler stress-energy in the Lorenz gauge 87

incorporate this into our definitions, we say that

δ2Gµν [h1∗,h1∗] := lim
s→0

δ2Gµν
s [h1∗,h1∗], (5.67)

where

δ2Gµν
s [h1∗,h1∗] :=

(︂
−δGµν [hSS∗] + 2δ2Gµν [hS1∗,hR1∗] + δ2Gµν [hR1∗,hR1∗]

)︂
θ(s− r)

+ δ2Gµν [h1∗,h1∗]θ(r− s), (5.68)

with θ being the Heaviside function. This localises Eq. (5.66) as required: for r > s,
δ2Gµν

s [h1∗,h1∗] is the smooth function δ2Gµν [h1∗,h1∗] and for r < s, h1∗
µν is split into

regular and singular fields and we apply Eq. (5.66). Eq. (5.68) implies that as a
distribution, δ2Gµν [h1∗,h1∗] acts on test fields ϕµν , as2

∫︂
ϕµνδ

2Gµν [h1∗,h1∗] dV := lim
s→0

{︃∫︂
ϕµν

(︂
−δGµν [hSS∗] + 2δ2G[hS1∗,hR1∗]

+ δ2Gµν [hR1∗,hR1∗]
)︂
θ(s− r) dV

+
∫︂
ϕµνδ

2Gµν [h1∗,h1∗]θ(r− s) dV

}︃
. (5.70)

In Ref. [93], Detweiler takes Eq. (5.65) to be valid distributionally on the region r ≥ 0,
and so we refer to Eq. (5.67) as the Detweiler canonical definition of δ2Gµν [h1∗,h1∗].
This results in our Einstein equations taking the form

8πTµν = ϵδGµν [hS1∗] + ϵ2(δGµν [hSR∗] + δGµν [hδm∗] + 2Qµν
R [hS1∗]) + O

(︂
ϵ3
)︂
, (5.71)

where Qµν
R [h] := δ2Gµν [hR1∗,h], in analogy with Eq. (5.13). When calculating Tµν in

Eq. (5.71), we may use the locally defined fields from Eqs. (5.56) and (5.62)–(5.63) as
the total Einstein equation vanishes off the worldline. If writing the field equations to
solve for h2∗

µν globally, we would use Eq. (5.67). This setup, where one solves for the
whole of the second-order metric perturbation, will be explored further in Ch. 5.3.1.

5.2.2 Distributional analysis

To determine the distribution Tµν , we integrate the right-hand side of Eq. (5.71) against
a test function.

2Here, the second integral, for r > s, is an ordinary integral of smooth functions, whereas the first
one, for r < s is defined distributionally (see Ch. 5.2.2) as∫︂

ϕµνδGµν [hSS∗]θ(s − r) dV :=
∫︂

δGµν [θ(s − r)ϕ]hSS∗
µν . (5.69)

Both integrals individually diverge as 1/s when taking the limit s → 0 but exactly cancel one another.
This will be explored further in Ch. 5.3.1 when looking at the source for the second-order Einstein
equation.
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Doing so requires the adjoints of our operators δGµν and Qµν
R . Here the adjoint of a

linear operator Dµν is defined by

ϕµνD
µν [ψ] −D†µν [ϕ]ψµν = ∇µK

µ
D, (5.72)

where ϕµν and ψµν are arbitrary smooth fields and Kµ
D = Kµ

D(ϕ,ψ). If ψµν is a
distribution, then we define the integral of Dµν [h] against a test field ϕµν as∫︂

ϕµνD
µν [ψ] dV :=

∫︂
D†µν [ϕ]ψµν dV . (5.73)

The linearised Einstein operator is self-adjoint [152]; that is, δG†µν [h] = δGµν [h]. Q†µν
R

is given in Eq. (2.28) with h♭
µν = hR1∗

µν .

We now evaluate the integral of Eq. (5.71) against a test field ϕµν ,

8π
∫︂
ϕµνT

µνdV =
∫︂
ϕµν

{︂
ϵδGµν [hS1∗] + ϵ2(δGµν [hSR∗]

+ δGµν [hδm∗] + 2Qµν
R [hS1∗])

}︂
dV . (5.74)

We then move the operators δGµν and Qµν
R onto the test tensor using Eq. (5.73), so that

the right-hand side of Eq. (5.74) becomes∫︂ (︂
δGµν [ϕ]

{︂
ϵhS1∗

µν + ϵ2(hSR∗
µν + hδm∗

µν )
}︂
+ 2ϵ2Q†µν

R [ϕ]hS1∗
µν

)︂
dV

= lim
R→0

∫︂
r>R

(︂
δGµν [ϕ]

{︂
ϵhS1∗

µν + ϵ2(hSR∗
µν + hδm∗

µν )
}︂
+ ϵ22Q†µν

R [ϕ]hS1∗
µν

)︂
dV

= lim
R→0

[︃∫︂
r>R

{︂
ϕµνδG

µν [ϵhS1∗ + ϵ2(hSR∗ + hδm∗)] + 2ϵ2ϕµνQ
µν
R [hS1∗]

}︂
dV

−
∫︂

r=R

{︂
KδG

α [ϵhS1∗ + ϵ2(hSR∗ + hδm∗)] + 2ϵ2KQ
α [hS1∗]

}︂
dSα

]︃
, (5.75)

where KD
α denotes the boundary term for the operator D. In the first equality we note

that as the integral is now over ordinary integrable functions instead of distributions, we
can remove the region r < R and then take the limit as R goes to 0. Following that, in
the second equality, we integrate by parts using Stokes’ theorem to move the operators
back onto the metric perturbations. The values of KD

α are given by

KδG
α [h] =

1
2ϕ

βµhβµ;α − 1
2h

βµϕβµ;α + ϕβ
βh

µ
[α;µ] + hβ

βϕ
µ
[µ;α] +

1
2ϕα

βhµ
µ;β

− 1
2hα

βϕµ
µ;β + hβµϕαβ;µ − ϕβµhαβ;µ. (5.76)



5.2. The Detweiler stress-energy in the Lorenz gauge 89

and

KQ
α [h] =

1
8
[︂
hβγ{ϕζ

ζh
R1∗
βγ;α + ϕβγh

R1∗
ζ

ζ
;α − 4ϕα

ζhR1∗
βζ;γ − 2ϕαβh

R1∗
ζ

ζ
;γ}

− hβ
β

{︂
ϕγ

γh
R1∗
ζ

ζ
;α + ϕγζ(hR1∗

γζ;α − 2hR1∗
αγ;ζ)

}︂
+ 2

{︂
hα

β
(︂
2ϕγζhR1∗

βγ;ζ

+ 2ϕγ
γh

R1∗
[ζ

ζ
;β]

)︂
+ hR1∗βγ

(︂
ϕβγh

ζ
ζ ;α − hζ

ζϕβγ ;α + 2hβ
ζϕγζ ;α − hβγϕ

ζ
ζ ;α

+ 2ϕζ
ζhβ[γ ;α] − 2ϕαβh

ζ
ζ ;γ − 2hβ

ζϕαζ ;γ + hαβϕ
ζ

ζ ;γ + 2ϕβ
ζ [hαζ ;γ + hαγ ;ζ

− hγζ ;α] − ϕβγhα
ζ

;ζ − ϕα
ζhβγ ;ζ − 2hβ

ζϕαγ ;ζ + hβγϕα
ζ

;ζ + hα
ζϕβγ ;ζ

)︂
+ hR1∗

α
β
(︂
hγζϕγζ ;β − hγ

γϕ
ζ

ζ ;β + hβ
γϕζ

ζ ;γ + 2ϕγ
γh

ζ
[ζ;β] − ϕγζ [hγζ ;β − 2hβγ ;ζ ]

− 2hγζϕβγ ;ζ + 2hγ
γϕβ

ζ
;ζ
)︂}︂]︂

, (5.77)

while the surface element in Fermi–Walker coordinates is given by

dSα = −R2nα dt dΩ + O
(︂
R3
)︂
, (5.78)

where nα = (0,ni) and the minus sign comes from the orientation of the normal vector
to the boundary of the region r > R.

To evaluate the volume integral, note that the integrand is order ϵ3 off the worldline,

ϵδGµν [hS1∗] + ϵ2(δGµν [hSR∗ + hδm∗] + 2Qµν
R [hS1∗]) = O

(︂
ϵ3
)︂
, r > 0. (5.79)

So the volume integral contributes nothing to the final result and can be ignored, leaving
only the boundary terms:

∫︂
ϕµνT

µν dV = − 1
8π lim

R→0

∫︂
r=R

(︂
ϵKδG

α [hS1∗] + ϵ2KδG
α [hSR∗]

+ ϵ2KδG
α [hδm∗] + 2ϵ2KQ

α [hS1∗]
)︂
dSα + O

(︂
ϵ3
)︂
. (5.80)

5.2.3 Evaluation of boundary terms

For the rest of this section, all occurrences of hR1∗
µν and ϕµν are evaluated on the worldline,

but we omit the notation for visual clarity. We substitute hS1∗
µν from (5.56), hSR∗

µν

from (5.62) and hδm∗
µν from (5.63) into Eq. (5.76), giving

KδG
α [hS1∗] = − 2mnβ

r2

(︂
ϕµ

µuαu
β − 2ϕβ

µuαu
µ + gα

βϕµνu
µuν

)︂
+ O(1/r), (5.81)

KδG
α [hSR∗] = − mnαn̂

ab

2r2

(︂
2hR1∗

ac ϕb
c + 2hR1∗

ta ϕtb − hR1∗
tt ϕab − δijhR1∗

ij ϕab − hR1∗
ab ϕc

c

− hR1∗
ab ϕtt

)︂
+ O(1/r), (5.82)

KδG
α [hδm∗] = − m

6r2

[︂
6ϕαan

a
(︂
δijhR1∗

ij + 2hR1∗
tt

)︂
+ nα

(︂
2hR1∗

ab ϕab + 8hR1∗
ta ϕt

a

− 10hR1∗
tt ϕa

a − 5δijhR1∗
ij ϕb

b + 5δijhR1∗
ij ϕtt + 6hR1∗

tt ϕtt

)︂]︂
+ O(1/r). (5.83)
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Note that we only require terms of order 1/rn where n ≥ 2 as all other terms will
vanish after taking the limit R → 0. We follow the same procedure for KQ

α , substituting
Eq. (5.56) into Eq. (5.77), to get

KQ
α [hS1∗] =

m

r2

[︃
nα

(︃
hR1∗

tt ϕa
a − hR1∗

ab ϕab − 2hR1∗
ta ϕt

a + δijhR1∗
ij ϕb

b − δijhR1∗
ij ϕtt

+ 2hR1∗
tt ϕtt

)︃
+ na

(︃
4hR1∗

αb ϕa
b − hR1∗

αa ϕb
b − hR1∗

b
bϕαa − hR1∗

tt ϕαa

− 2hR1∗
ab ϕα

b + 2hR1∗
ta ϕtα − hR1∗

αa ϕtt + 2uα

(︂
2hR1∗

tb ϕa
b − 2hR1∗

tt ϕta

− hR1∗
ta ϕb

b + 2hR1∗
ab ϕb

t − hR1∗
ta ϕtt

)︂)︃]︃
+ O(1/r). (5.84)

We then integrate each of these quantities with the surface element from Eq. (5.78),
noting that [176] ∫︂

n̂L dΩ = 0 for l ≥ 1. (5.85)

The first-order integral is given by

lim
R→0

∫︂
r=R

KδG
α [hS1∗] dSα = −8πm

∫︂
ϕtt dt , (5.86)

and the second-order ones by

lim
R→0

∫︂
r=R

KδG
α [hSR∗] dSα = − 8πm

9

∫︂ (︂
hR1∗

ab ϕab + 2hR1∗
ta ϕt

a + hR1∗
tt ϕa

a − δijhR1∗
ij ϕtt

− 3hR1∗
tt ϕtt

)︂
dt , (5.87)

lim
R→0

∫︂
r=R

KδG
α [hδm∗] dSα = − 4πm

9

∫︂ (︂
hR1∗

ab ϕab + 8hR1∗
ta ϕt

a − 8hR1∗
tt ϕa

a − 3δijhR1∗
ij ϕb

b

+ 5δijhR1∗
ij ϕtt + 6hR1∗

tt ϕtt

)︂
dt , (5.88)

lim
R→0

∫︂
r=R

KQ
α [hS1∗] dSα =

4πm
3

∫︂ (︂
hR1∗

ab ϕab + 4hR1∗
ta ϕa

t − 2hR1∗
tt ϕa

a − δijhR1∗
ij ϕb

b

+ 4δijhR1∗
ij ϕtt − 6hR1∗

tt ϕtt

)︂
dt . (5.89)

5.2.4 Recovering the Detweiler stress-energy

As we explained in Ch. 5.1.1, if we were to define 8πTµν
1 := δGµν [h1∗] in the self-consistent

expansion, then we would find Tµν
1 contains a subdominant correction that is extended

away from γ. That prompted us to define the total Tµν in Eq. (5.6), rather than defining
each Tµν

n separately. However, our formula (5.80) now provides an unambiguous split:∫︂
ϕµνT

µν
1 dV = − 1

8π lim
R→0

∫︂
r=R

KδG
α [hS1∗] dSα , (5.90)∫︂

ϕµνT
µν
2∗ dV = − 1

8π lim
R→0

∫︂
r=R

(︂
KδG

α [hSR∗] +KδG
α [hδm∗] + 2KQ

α [hS1∗]
)︂
dSα . (5.91)

These are equivalent to the definitions (5.8) and (5.9).
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At first order, we can immediately see from Eq. (5.86) that Eq. (5.90) can be written as∫︂
ϕµνT

µν
1 dV = m

∫︂∫︂
ϕµνu

µuνδ4(x, z) dτ dV . (5.92)

Since this holds for an arbitrary test field ϕµν , we infer that Tµν
1 is the point-mass

stress-energy in Eq. (5.10), as expected; a nearly identical derivation appears in Ref. [86].

Moving to second order, we sum the boundary terms to obtain

lim
R→0

∫︂
r=R

(︂
KδG

α [hSR∗] +KδG
α [hδm∗] +KQ

α [hS1∗]
)︂
dSα

= 4πm
∫︂
(2hR1∗

tt − δijhR1∗
ij )ϕtt dt . (5.93)

We can therefore write Eq. (5.91) as∫︂
ϕµνT

µν
2∗ dV =

m

2

∫︂∫︂
ϕµνu

µuν(uαuβ − gαβ)hR1∗
αβ dτ dV . (5.94)

This implies that, given Detweiler’s canonical definition of δ2Gµν [h1∗,h1∗], Tµν
2∗ in the

Lorenz gauge has the same functional form as the Tµν
2 found in the highly regular gauge

in Eq. (5.27). Additionally, using the methods and arguments outlined in this section,
we can show that the functional forms of T 2

µ
ν and T 2

µν in the Lorenz gauge match the
ones found in the highly regular gauge, as is to be expected.

5.3 Distributional sources for field equations

With our distributional definitions for the second-order stress-energy tensor, it is possible
to formulate field equations that directly solve for the second-order metric perturbation.
To do so first requires us to calculate the source of these equations. In this section we
consider two such methods: firstly, directly using the Einstein field equations and secondly,
using the Teukolsky equation. The Teukolsky equation [177] rewrites the Einstein field
equations as a single master equation that solves for certain scalar quantities. These
scalar quantities can then be used to reconstruct the metric perturbations.

One complication that is encountered when calculating the sources for these equations
comes from the non-compact nature of the second-order Einstein equation, given in
Eq. (1.10). While the stress-energy tensor is a compact source only supported on the
worldline, δ2Gµν [h1,h1] has support across the entire spacetime and, crucially, also
features delta function content only supported on the worldline. This is unlike most
distributional sources which tend to either have only have delta function content or
feature no delta functions at all. When looking at the source for the second-order Einstein
equation, we show that one must explicitly calculate this delta function content to ensure
that the source is well-defined on the entire spacetime.
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We explain how one can calculate the source for the Einstein equation in Ch. 5.3.1 and
for the Teukolsky equation in Ch. 5.3.2.

5.3.1 Source for the second-order Einstein equation

With our distributional definitions for the second-order stress-energy tensor, we consider
the source for the second-order Einstein field equations when in the Lorenz gauge,

δGµν [h
2∗] = 8πT 2∗

µν − δ2Gµν [h
1∗,h1∗], (5.95)

where T 2∗
µν is given by the order-ϵ2 term in Eq. (5.46) but with 0hR1

µν → hR1∗
µν and δ2Gµν

uses the distributional definition from Eq. (5.66).

Eq. (5.95) is a well-defined equation following our distributional definitions. However, it is
not immediately obvious how one would practically use our definition for δ2Gµν [h1∗,h1∗]

to numerically solve for the physical field with this distributional source. The aim of
this section is to reformulate our distributional definition for δ2Gµν [h1∗,h1∗] in a more
practical form.

In the text around Eqs. (5.69)–(5.70) we mentioned that that the canonical definition
did feature quantities that would diverge individually in the s → 0 limit but that they
exactly cancelled one another when explicitly calculated. Looking at Eq. (5.70), when
solving Eq. (5.95) numerically in four dimensions or in some mode basis, it is the second
integral for r > s that we would be calculating, neglecting the distributional first term.
By incorporating the distributional first term, we can provide a counter term that
exactly cancels the divergent behaviour in the second integral. For the calculation of
the stress-energy tensor, we never needed to calculate these terms as δ2Gµν [hS1∗,hS1∗]

was exactly cancelled by δGµν [hSS∗
µν ]. However, moving to Eq. (5.95), we now do need to

explicitly calculate these terms to ensure our equation is well defined.

To calculate the distributional nature of hSS∗
µν , we follow the same procedure as in Ch. 5.2.2

when determining the form of the stress-energy tensor. Defined distributionally, the
integral of δGµν [hSS∗] against a tensor field ϕµν is∫︂

ϕµνδGµν [h
SS∗]θ(s− r) dV :=

∫︂
δGµν [θ(s− r)ϕ]hµν

SS∗ dV , (5.96)

where we have used that both δGµν and the Heaviside function are self adjoint. This has
the same form as Eq. (5.69) but defined for the linearised Einstein tensor with indices
down. Integrating the right-hand side by parts and including the minus sign factor from
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Eq. (5.70), we see that

−
∫︂
δGµν [θ(s− r)ϕ]hµν

SS∗ dV = lim
R→0

(︃
−
∫︂

r>R
δGµν [h

SS∗]ϕµνθ(s− r) dV

+
∫︂

r=R
KδG

α [θ(s− r)ϕ,hSS∗] dSα
)︃

. (5.97)

We already know the form of KδG
α [ϕ,h] from Eq. (5.76) so we can simply make the

replacements ϕµν → ϕµνθ(r − s) and hµν → hSS∗
µν , where hSS∗

µν is given by Eq. (5.61).
However, unlike in Eq. (5.79) of Ch. 5.2.2, the volume integral in the above equation does
not vanish as the integrand is non-zero off the worldline. This means we must explicitly
calculate its contribution to the final result.

Calculating the boundary term first, we substitute in hSS∗
µν to find that

KδG
α [hSS∗] = − m2

r3 θ(s− r)ϕβµ
(︂
6nβuαuµ − nα(14nβµ − 7Pβµ + 3uβuµ)

)︂
+
m2

2r2 θ(s− r)ϕβµ
γ

(︂
Pα

γ(3uβuµ − 7nβµ) + nγ [2nβ(7Pαµ − 13uαuµ)

+ nα(28nβµ − 21Pβµ + 13uβuµ)] + uγ(7nβµuα + 3Pβµuα − 6Pαµuβ)
)︂

+ O(1/r), (5.98)

where ϕµν is evaluated on the worldline and ϕµν
α := ∂αϕ

µν |γ . Contracting with the
Fermi–Walker surface element from Eq. (2.130) and integrating over the angles gives

lim
R→0

∫︂
r=R

KδG
α [hSS∗] dSα =

4πm2

3 lim
R→0

∫︂
ϕµν θ(s−R)

R
(7Pµν − 9uµuν) dt , (5.99)

where we have distributed the limit to remove terms of order R and higher.

Returning to the volume integral in Eq. (5.97), we see

− lim
R→0

∫︂
r>R

δGµν [h
SS∗]ϕµνθ(s− r) dV

= lim
R→0

∫︂
r>R

[︃
m2

r4 θ(s− r)ϕµν
(︂
3uµuν + 14nµν − 7Pµν

)︂
+
m2

r3 θ(s− r)ϕµν
γn

γ
(︂
3uµuν + 14nµν − 7Pµν

)︂
+ O

(︂
1/r2

)︂]︃
dV

=
4m2π

3 lim
R→0

∫︂
r>R

[︃
ϕµν

r2 θ(s− r)
(︂
9uµuν − 7Pµν

)︂
+ O

(︂
r0
)︂]︃
dt dr

=
4m2π

3 lim
R→0

s−R

Rs
θ(s−R)

∫︂
(9uµuν − 7Pµν)ϕ

µν dt , (5.100)

where the order-r−3 term vanishes going from the first to second equality due to the
integral over the angles and we use∫︂ ∞

R

θ(s− r)

r2 dr =
s−R

Rs
θ(s−R), (5.101)
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to go to the final line. We have eliminated the higher-order terms in the final line by
noting that they vanish when taking the limit as R → 0.

Summing up Eqs. (5.99)–(5.100), we find that our counter term is given by

lim
R→0

(︃
−
∫︂

r>R
δGµν [h

SS∗]ϕµνθ(s− r) dV +
∫︂

r=R
KδG

α [θ(s− r)ϕ,hSS∗] dSα
)︃

=
4m2π

3s

∫︂
(7gµν − 2uµuν)ϕ

µν dt , (5.102)

where we have written the projection operator in terms of the metric and four velocity, and
we have eliminated the Heaviside function by noting that, in the area we are interested
in, s will always be greater than R. This has the knock on effect of eliminating the limit
as R → 0 as we have eliminated all the R dependence in the equation.

As Eq. (5.102) has compact support (recall ϕµν is evaluated on the worldline), we can
think of it as some effective stress-energy tensor, T counter

µν , which we define as

∫︂
ϕµνT counter

µν dV :=
1

8π lim
R→0

(︃
−
∫︂

r>R
δGµν [h

SS∗]ϕµνθ(s− r) dV

+
∫︂

r=R
KδG

α [θ(s− r)ϕ,hSS∗] dSα
)︃

, (5.103)

We can use the fact that ϕµν is a test field and combine Eqs. (5.102) and (5.103), to
write the stress-energy tensor explicitly as

T counter
µν =

m2

6s

∫︂
(7gµν − 2uµuν)δ

4(x, z) dτ . (5.104)

With the hSS∗
µν calculated, we turn our attention to the other pieces in Eq. (5.68). By

construction, the δ2Gµν [hR1∗,hR1∗] piece does not contribute anything as hR1∗
µν is a

smooth field everywhere. Moving to the QR
µν [h

S1∗] term, we write it as in Eq. (5.75), to
see that

lim
R→0

∫︂
r>R

QR†
µν [ϕθ(s− r)]hS1∗

µν dV = lim
R→0

[︂∫︂
r>R

ϕµνθ(s− r)QR
µν [h

S1∗] dV

−
∫︂

r=R
KQ♭♭

α [hS1∗,ϕθ(s− r)] dSα
]︂
. (5.105)

We note that KQ♭♭
α is not the same operator as KQ

α , given in Eq. (5.77). The operator in
Eq. (5.77) was constructed from Qµν

R whereas KQ♭♭
α is constructed from QR

µν and is given
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by

KQ♭♭
α [h,ϕ] = 1

4

[︃
hβγ

(︂
2ϕαβh

R1
ζ

ζ
;γ − ϕζ

ζh
R1
βγ;α − ϕβγh

R1
ζ

ζ
;α − 4ϕβ

ζ(hR1
αζ;γ − hR1

γζ;α)
)︂

+ hβ
β

(︂
ϕγ

γh
R1
ζ

ζ
;α + ϕγζ(2hR1

αγ;ζ − 3hR1
γζ;α)

)︂
+ 2

[︂
hα

β
(︂
2ϕγζ(hR1

γζ;β − hR1
βγ;ζ)

+ ϕγ
γ(−hR1

ζ
ζ

;β + hR1
β

ζ
;ζ)
)︂
+ hR1

α
β
(︂
hγ

γϕ
ζ

ζ;β − hγζϕγζ;β − hβ
γϕζ

ζ;γ

+ ϕγζ(hγζ;β − 2hβγ;ζ) + 2ϕγ
γh

ζ
[β;ζ]

)︂]︂
+ 2hR1βγ

(︂
2ϕζ

ζhβ[α;γ] − hζ
ζϕβγ ;α

+ 2hβ
ζϕαζ;γ − hαβϕ

ζ
ζ;γ + 2ϕβγh

ζ
[ζ;α] + ϕα

ζhβγ;ζ + 2hβγϕ
ζ
[ζ;α]

+ hα
ζϕβγ;ζ

)︂]︃
. (5.106)

In the original calculation of the Detweiler stress-energy tensor that, as we used the total
quantity δGµν [h2∗] + δ2Gµν [h1∗,h1∗], the volume integral would be identically zero as
the integrand itself was order ϵ3 when evaluated off the worldline. We can not make
that argument now when looking at constituent parts of the field equations and must
explicitly evaluate the volume integral in Eq. (5.105) to see if there are any s-dependent
pieces. After calculating the integral, we find that it is identically zero after performing
the angular integration and, as such, contributes no s-dependent terms to the final sum.
However, as shown in Eq. (5.89), the boundary term does contribute delta function
content. Performing the same calculation but for KQ♭♭

α from Eq. (5.106), we find that

lim
R→0

∫︂
r=R

KQ♭♭
α [hS1∗] dSα = −4πm

3

∫︂
hR1

µνϕ
αβ
(︂
Pµ

αP
ν

β − 8Pµ
αu

νuβ − 2uµuνPαβ

− PµνPαβ + 4Pµνuαuβ + 6uµuνuαuβ

)︂
dt . (5.107)

This has the same structural form as KQ
α but with different numerical coefficients on

some of the terms. As we did for KδG
α [hSS∗] in Eqs. (5.104), we can think of this as a

stress-energy tensor, defined as∫︂
ϕµνTQ♭♭

µν dV := − 1
8π lim

R→0

∫︂
r=R

2KQ♭♭
α [hS1∗] dSα

=
m

3

∫︂
hR1∗

µν ϕαβ
(︂
Pµ

αP
ν

β − 8Pµ
αu

νuβ − 2uµuνPαβ − PµνPαβ

+ 4Pµνuαuβ + 6uµuνuαuβ

)︂
dt . (5.108)

This can then be explicitly written as a stress-energy tensor,

TQ♭♭
αβ =

m

3

∫︂
hR1∗

µν

(︂
Pµ

αP
ν

β − 8Pµ
αu

νuβ − 2uµuνPαβ − PµνPαβ

+ 4Pµνuαuβ + 6uµuνuαuβ

)︂
dt . (5.109)
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With our stress-energy counter terms calculated, we can rewrite Eq. (5.95) to take this
into account as

δGµν [h
2∗] = 8π(T 2∗

µν − TQ♭♭
µν ) + lim

s→0

{︂
8πT counter

µν − θ(r− s)δ2Gµν [h
1∗,h1∗]

}︂
. (5.110)

The terms on the RHS after T 2∗
µν are exactly the source given in Eq. (5.67) with

T counter
µν /TQ♭♭

µν being the first/second terms in Eq. (5.68) re-expressed as delta func-
tions. We have not explicitly checked but it is likely that the difference T 2∗

µν − TQ♭♭
µν is

related to the stress-energy sourced by hδm
µν previously calculated by Pound [72, Eq. (133)].

This can be seen from Eq. (5.91) where the introduction of TQ♭♭
µν cancels the KQ♭♭

α [hS1]

part of T 2∗
µν .

As an example of how this could be implemented in a four-dimensional setup when
solving numerically, one could institute a small-s cut-off for the right-hand side when
integrating over it. After doing this for a sequence of decreasing values of s, one could then
numerically take the limit as s → 0. This would, in theory, provide a finite answer but it
would rely on delicate numerical cancellations between the second-order Einstein tensor
and our new stress-energy term. It may also be possible to implement Eq. (5.110) in a
mode decomposition but we leave investigations of this and the numerical implementation
to future work.

5.3.2 Source for the Teukolsky equation

In the previous section, we considered the source for the Einstein field equations to
solve for the metric perturbations. However, one alternative is to use the Teukolsky
equation [177]. As mentioned in the introduction to this chapter, the Teukolsky equation
reformulates the Einstein field equations in terms of scalar quantities. These are the
Weyl scalars, Ψi, given in Eq. (C.11).

Teukolsky demonstrated that the equations for the perturbations of each of the Ψi

decouple so one may solve for each individually. We denote the nth order perturbation
of the Weyl scalar as Ψ(n)

i . Not only do the equations for each of the Ψi decouple,
they also become separable in Kerr and Schwarzschild. Decoupled, separable equations
had previously been calculated for perturbations in Schwarzschild [178–180] but not for
perturbations in Kerr. This separability and decoupling allows one to write equations
for each of the perturbations of the Weyl scalars, individually, as a collection of ordinary
differential equations. Of particular interest are perturbations of Ψ4 as they encode
all of the information about outgoing gravitational waves. They also contain the
entire information about the metric perturbations. With the perturbations to the
Weyl scalar calculated, one may then use metric reconstruction to recover the metric
perturbations [154, 181, 182].
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The Teukolsky equation is written in the Kerr spacetime which, in standard Boyer–
Lindquist coordinates (t, r, θ,ϕ), has the metric [183]

ds2 = −
(︄

1 − 2Mr

Σ

)︄
dt2 − 4Mar sin2(θ)

Σ
dt dϕ+

Σ
∆
dr2 + Σ dθ2

+

(︄
r2 + a2 +

2Ma2r sin2(θ)

Σ

)︄
sin2(θ) dϕ2 , (5.111)

with Σ := r2 + a2 cos2(θ), ∆ := r2 − 2Mr + a2 and a being the spin parameter. The
Teukolsky equation takes advantage of the geometric structure of the Kerr spacetime
where all of the background Weyl scalars, except Ψ2, vanish. The ultimate goal of EMRI
modelling is to generate waveforms on a Kerr background which motivates the use of
the Teukolsky equation in Kerr. One may also use the Teukolsky equation with the
Schwarzschild background by setting the spin parameter, a, to zero.

The Teukolsky equation is often written in terms of the Newman–Penrose (NP) formalism
(see App. C) which, when solving for Ψ(1)

4 , is given by3

[(∆ + 3γ − γ̄ + 4µ+ µ̄)(D+ 4ϵ− ρ)

− (δ̄− τ̄ + β̄ + 3α+ 4π)(δ− τ + 4β) − 3Ψ2]Ψ
(1)
4 = 4πT4 (5.112)

where the source is given by

T4 = (∆ + 3γ − γ̄ + 4µ+ µ̄)[(δ̄− 2τ̄ + 2α)Tnm̄ − (∆ + 2γ − 2γ̄ + µ̄)Tm̄m̄]

+ (δ̄− τ̄ + β̄ + 3α+ 4π)[(∆ + 2γ + 2µ̄)Tnm̄ − (δ̄− τ̄ + 2β̄ + 2α)Tnn] (5.113)

All quantities in these equations (except Tµν) are Newman–Penrose scalars or derivatives
and are defined in Eqs. (C.8)–(C.9).

In operator form, this can be compactly written as [152]

ŜÊ [h1] = ÔT̂ [h1], (5.114)

where Ô is defined as the term inside the square brackets on the left-hand side of
Eq. (5.112),

Ô := (∆ + 3γ − γ̄ + 4µ+ µ̄)(D+ 4ϵ− ρ) − (δ̄− τ̄ + β̄ + 3α+ 4π)(δ− τ + 4β) − 3Ψ2,
(5.115)

3On the RHS of this equation, π refers to the numerical constant whereas on the LHS, it refers to the
NP quantity given in Eq. (C.8e).
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Ŝ is defined as the expression acting on Tµν in Eq. (5.113),

Ŝ := (∆ + 3γ − γ̄ + 4µ+ µ̄)[(δ̄− 2τ̄ + 2α)nµm̄ν − (∆ + 2γ − 2γ̄ + µ̄)m̄µm̄ν ]

+ (δ̄− τ̄ + β̄ + 3α+ 4π)[(∆ + 2γ + 2µ̄)nµm̄ν − (δ̄− τ̄ + 2β̄ + 2α)nµnν ], (5.116)

and Ê [h] represents the linearised Einstein tensor. Finally, at linear order,

T̂ [h1] = Ψ(1)
4 , (5.117)

where the superscript refers to the perturbative order.

At second order, the Teukolsky equation takes a slightly more complicated form and
was reformulated by Spiers et al. [184] to take advantage of the distributional definitions
presented earlier in this chapter. The operator Ŝ now acts on δ2Gµν , and Ψ(2)

4 is composed
of a linear and a quadratic piece,

Ψ(2)
4 = Ψ(2)

4L + Ψ(2)
4Q, (5.118)

where

Ψ(2)
4L = T̂ [h2], (5.119)

Ψ(2)
4Q = δ2Ψ4[h

1,h1], (5.120)

with δ2Ψ4 being the quadratic Weyl scalar operator. The second-order Teukolsky equation
is then given by

ŜÊ [h2] = ÔT̂ [h2], (5.121)

which, when expanded, gives

Ô[Ψ(2)
4L ] = Ŝ

[︂
8πT 2

µν − δ2Gµν [h
1,h1]

]︂
. (5.122)

The first term is trivially given by substituting T 2
µν into Eq. (5.113), so that

Ŝ [T 2
µν ] = (∆ + 3γ − γ̄ + 4µ+ µ̄)[(δ̄− 2τ̄ + 2α)T 2

nm̄ − (∆ + 2γ − 2γ̄ + µ̄)T 2
m̄m̄]

+ (δ̄− τ̄ + β̄ + 3α+ 4π)[(∆ + 2γ + 2µ̄)T 2
nm̄ − (δ̄− τ̄ + 2β̄ + 2α)T 2

nn],
(5.123)

where T 2
µν is the stress-energy previously derived and is given by Eq. (5.46). The second

term is more complicated and requires a distributional treatment, similar to Ch. 5.2. We
follow a similar procedure as before to calculate the delta content but with the inclusion
of the Ŝ operator. Due to the extra derivatives, this increases the singular nature of the
integrands, requiring higher-order expansions of the metric perturbations to be used.
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Moving to the term including the second-order Einstein tensor and specialising to the
Lorenz gauge, we substitute in Detweiler’s canonical definition (5.67) to get

Ŝ
[︂
δ2Gµν [h

1∗,h1∗]
]︂
= Ŝ

[︂
lim
s→0

{︂(︂
−δGµν [h

SS∗] + 2QR
µν [h

S1∗,hR1∗]

+ δ2Gµν [h
R1∗,hR1∗]

)︂
θ(s− r) + δ2Gµν [h

1∗,h1∗]θ(r− s)
}︂]︂

, (5.124)

where Qµν is given by Eq. (5.13) but defined with indices down. As before, we can ignore
the term quadratic in hR1∗

µν as, while it contributes to the source, it does not feature any
delta content.

To find the distributional content in the hSS∗
µν term, we proceed in a similar fashion to

the previous chapter and write it as an integral against a test function, 2ϕ, so that∫︂
2ϕS

µνδGµν [h
SS∗]θs dV :=

∫︂
hµν

SS∗δGµν [S
†[θs2ϕ]] dV . (5.125)

Here, Sµν := Ŝ from Eq. (5.116) with indices restored, θs := θ(s− r), and 2ϕ is a
spin-weighted test function to account for the spin weight of Sµν to ensure that the
integrand has spin weight zero. Then, using our canonical definition for the relation
between δ2Gµν [hS1∗,hS1∗] and δGµν [hSS∗] from Eq. (5.66), we write

lim
s→0

∫︂
hµν

SS∗δGµν [S
†[θs2ϕ]] dV

= lim
s→0

lim
R→0

∫︂
r>R

hµν
SS∗δGµν [S

†[θs2ϕ]] dV

= lim
s→0

lim
R→0

[︃∫︂
r>R

2ϕθsS
µν [δG[hSS∗]] dV

−
∫︂

r=R

(︂
KS

α [δG[h
SS∗], 2ϕθs] +KδG

α [hSS∗,S†[2ϕθs]]
)︂
dSα

]︃
(5.126)

In the first line, we use the fact that this is now an ordinary integral as the integrand
multiplied by the volume element is of order r0 and in the final equality, we have
integrated by parts to recover the original integrand while keeping the boundary terms,
Kα

P , that appear for the specific operators, P .

We may now show that this integral vanishes without explicitly calculating the individual
terms of the expression. To do so, we first note that, in the Lorenz gauge, hSS∗

µν has
alternate but definite parity at each order in r [96]. In Fermi–Walker coordinates,
recalling that each power of n̂α is equivalent to increasing ℓ by 1,

hSS∗
µν ∼ n̂2

r2 +
n̂3

r
+ n̂4r0 + n̂5r+ O

(︂
r2
)︂
, (5.127)

where the notation n̂ℓ, for some integer ℓ, means terms of the form n̂L, n̂L−2, . . . ,n for
odd ℓ and n̂L, n̂L−2, . . . , 1 for even ℓ. Therefore, even (and odd) powers of r only feature
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even (and odd) powers of ℓ. Inspecting each of the boundary terms, we find that

Kα
S [δG[h

SS∗], 2ϕ] ∼ ∇3hSS∗
µν ∼ n̂5

r5 +
n̂6

r4 +
n̂7

r3 +
n̂8

r2 + O
(︂
r−1

)︂
, (5.128)

Kα
δG[h

SS∗,S†[2ϕ]] ∼ ∇hSS∗
µν ∼ n̂3

r3 +
n̂4

r2 + O
(︂
r−1

)︂
, (5.129)

as Kα
P ∼ ∇ and δGµν ∼ ∇2. Firstly, we note that any terms rn with n ≥ −1 will go to

0 when taking the limit R → 0 as dSα features a factor of R2 (5.78). Secondly, as dSα

has a factor of nα, both terms ∼ r−2 will integrate to 0 as they originally feature even
powers of n̂. To see this, we note that Eq. (5.85) states that the angular integral of n̂L

evaluates to 0 for l ≥ 1. As the power of n̂ in the R0 term is now always odd, this means
that any power of n̂ appearing is also odd, meaning that at least one n̂ appears in every
term. This would then evaluate to 0 when integrated.

Finally, we know that Eq. (5.126) is a well-defined integral of an ordinary function and
therefore can not diverge. As stated before, the integrand multiplied by the volume
element gives a quantity of order r0. This will be multiplied by a Heaviside function (or
an nth-order derivative of one) which, when integrated for r > R will give a finite result.
Thus, all of the divergent terms that appear from taking the derivatives in Eqs. (5.128)–
(5.129) and in the volume integral must cancel to ensure the integral is well defined.
While it’s true that we have no small R divergence, it’s likely that we will have a small s
divergence as we found in case of the source for the Einstein equation. Unfortunately,
we have been unable to calculate this quantity due to the complexity of taking so many
derivatives of hSS∗

µν . We leave the derivation of the (potential) stress-energy counter term
to future work.

Moving to the final term, we proceed in a similar way to before by defining∫︂
2ϕS

µνQµν [h
S1∗]θs dV :=

∫︂
Q†

µν [S
†[2ϕθs]]h

µν
S1∗ dV . (5.130)

Integrating by parts to move the operators onto hS1∗
µν , we get

∫︂
Q†

µν [S
†[2ϕθs]]h

µν
S1∗ dV = lim

s→0
lim
R→0

[︃∫︂
r>R

Sµν
† [2ϕθs]Qµν [h

S1∗] dV

−
∫︂

r=R
KQ

µ [S†[2ϕθs],hS1∗] dSµ
]︃

= lim
s→0

lim
R→0

[︃∫︂
r>R

2ϕθsSµνQ
µν [hS1∗] dV

−
∫︂

r=R
(KQ

µ [S†[2ϕθs],hS1∗] +KS
µ [Q[h

S1∗], 2ϕθs]) dS
µ
]︃

(5.131)

The form of Kα
Q was previously derived in Eq. (5.89) and, as S†

µν is regular, we can
make the substitution ϕµν → S†

µν [2ϕθs] in the previous expression, which, when written



5.3. Distributional sources for field equations 101

covariantly, gives

lim
s→0

lim
R→0

∫︂
r=R

KQ
α [S†[2ϕθs]] dS

α

= − 4πm
3 lim

s→0

∫︂
hR1∗

α′β′S
µ′ν′

† [2ϕθ(s)]
(︂
Pα′β′

Pµ′ν′ + 2Pµ′ν′uα′
uβ′ − 4Pα′β′

uµ′uν′

− 6uα′
uβ′

uµ′uν′ − P (α′
(µ′Pν′)

β′) + 8P (α′
(µ′uν′)u

β′)
)︂
dτ ′

= lim
s→0

∫︂
kµ′ν′Sµ′ν′

† [2ϕθ(s)] dτ
′

= lim
s→0

∫︂∫︂
kµ′ν′gµ

µ′
gν

ν′
Sµν

† [2ϕθ(s)]δ
4(x, z) dV dτ ′

=
∫︂∫︂

2ϕkµ′ν′Sµν [gµ
µ′
gν

ν′
δ4(x, z)] dV dτ ′ , (5.132)

where kµ′ν′ is defined by the second equality as

kµ′ν′ := −4πm
3 hR1∗

α′β′

(︂
Pα′β′

Pµ′ν′ + 2Pµ′ν′uα′
uβ′ − 4Pα′β′

uµ′uν′ − 6uα′
uβ′

uµ′uν′

− P (α′
(µ′Pν′)

β′) + 8P (α′
(µ′uν′)u

β′)
)︂
, (5.133)

and use that lims→0 θ(s) = 1 in the final line. The components of kµν in the NP basis
can be written as

kll =
4πm

3 (hR1∗
ll − 6hR1∗

lu ul + 3gµνhR1∗
µν ulul), (5.134a)

kln =
4πm

3 (gµνhR1∗
µν + hR1∗

ln + 3hR1∗
uu − 6hR1∗

u(l un) + 3gµνhR1∗
µν ulun), (5.134b)

kmm̄ = − 4πm
3 (gµνhR1∗

µν − hR1∗
mm̄ + 3hR1∗

uu + 6hR1∗
u(mum̄) − 3gµνhR1∗

µν umum̄), (5.134c)

with the other components obtained by switching the labels between the different basis
vectors.

To write the final source, we need to know how Sµν [gµ
µ′
gν

ν′
δ4(x, z)] acts distributionally.

When expanding Sµν , we get terms containing either zero, one or two derivatives. With
no derivatives, we just recover the standard delta function in the source. For one
derivative, we use the identity from Eq. (13.3) from Ref. [63] to write

(gα
α′(x, z)δ4(x, z));α = −∂α′δ4(x, z). (5.135)

We can find the distributional identity for the double covariant derivative by writing∫︂
ϕ∇β∇α(g

α
α′gβ

β′δ4(x, z)) dV

=
∫︂
ϕ;βαg

α
α′gβ

β′δ4(x, z) dV +
∫︂ (︂

ϕ(gα
α′gβ

β′δ4(x, z));α − ϕ;αg
β

α′gα
β′δ4(x, z)

)︂
dSβ

= [ϕ;βαg
α

α′gβ
β′ ]

= ϕ;βα. (5.136)



102 Chapter 5. Second-order stress-energy tensor

where the boundary terms vanish as ϕ has compact support, meaning that it and its
derivatives vanish on the boundary. Therefore, we can write this as the distributional
identity,

(gα
α′gβ

β′δ4(x, z));αβ = ∇β′∇α′δ4(x, z). (5.137)

This will then allow us to write the source from Eq. (5.132) in terms of a delta function, a
derivative of a delta function and a second derivative of a delta function, each multiplied
by some coefficient.

With the KQ
α term calculated, we now turn to KS

α from Eq. (5.131). This is found in
the usual way, by integrating Eq. (5.131) by parts to move Sµν

† onto Qµν and applying
Stokes’ theorem to find the boundary terms to give

KS
α [Q[h], 2ϕ] = m̄α

[︂(︂
δ̄[Qnn] − ∆[Qm̄n[h]]

)︂
ϕ−Qnn[h]

(︂
δ̄[ϕ] − ϕ(6α+ 2β̄ + 3π− τ̄ )

)︂
+Qm̄n[h]

(︂
∆[ϕ] − ϕ(6γ + 3µ+ 2µ̄)

)︂]︂
+ nα

[︂(︂
∆[Qm̄m̄[h]] − δ̄[Qm̄n[h]]

)︂
ϕ+Qm̄n[h]

(︂
δ̄[ϕ] + ϕ(2τ̄ − 6α− 3π)

)︂
−Qm̄m̄[h]

(︂
∆[ϕ] − ϕ(6γ − 2γ̄ + 3µ+ µ̄)

)︂]︂
, (5.138)

where ∆[f ] and δ̄[f ] are NP derivatives, given in Eqs. (C.9b) and (C.9d). In earlier
chapters, we had used notation for contractions, such as Ruσuσ;σ := Rαβγδ;µu

ασβuγσδσµ,
where we ignored the action of the derivative when contracting vectors into tensors.
However, when considering NP quantities, this is no longer true. As an example,
δ̄[Qm̄n[h]] ̸= Qµν;ρm̄

µnνm̄ρ, instead, δ̄[Qm̄n[h]] := m̄ρ∇ρ(m̄µnνQµν).

After substituting in the expansions for Qµν and ∇αQµν , Taylor expansions for the tetrad
legs and NP spin coefficients, and the surface element from Eq. (2.130) we may proceed
with our surface integral. We find the integrand combined with the surface element has
the form

KS
α [Q[h

S1∗], 2ϕθs] dS
α ∼ 1

R2 +
1
R

+R0 + O(R). (5.139)

This initially seems problematic as we have that the leading two orders diverge when
taking the limit as R → 0. However, these two orders vanish when performing the
angular integral. This is to be expected as we have a well-defined integral and, as such,
all terms that would to diverge when taking the limit R → 0 must either cancel or
evaluate to 0 when performing the angular integration.

The resulting expression can be written as terms proportional to 2ϕ, hR1∗
µν and their

derivatives as

lim
R→0

∫︂
r=R

KS
α [ϕ] dS

α

=
∫︂ (︂

2ϕ;µ′ν′Aα′β′µ′ν′
hR1∗

α′β′ + 2ϕ;µ′(Bα′β′µ′
hR1∗

α′β′ +Cα′β′ν′µ′
hR1∗

α′β′;ν′)

+ 2ϕ(D
α′β′µ′ν′

hR1∗
α′β′;µ′ν′ +Eα′β′µ′

hR1∗
α′β′;µ′ + Fα′β′

hR1∗
α′β′)

)︂
dτ ′
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=
∫︂∫︂ [︂

2ϕ;µνg
µ

µ′gν
ν′Aα′β′µ′ν′

hR1∗
α′β′ + 2ϕ;µg

µ
µ′(Bα′β′µ′

hR1∗
α′β′ +Cα′β′ν′µ′

hR1∗
α′β′;ν′)

+ 2ϕ(D
α′β′µ′ν′

hR1∗
α′β′;µ′ν′ +Eα′β′µ′

hR1∗
α′β′;µ′ + Fα′β′

hR1∗
α′β′)

)︂]︂
δ4(x, z) dV dτ ′ . (5.140)

Most of our newly defined tensors are too long to include here but are included in the
Additional Material [141]. However, as an example of the structure, we display the
shortest one here,

Aα′β′µ′ν′
= − 4πm

105 m̄
γ′
m̄ζ′

nι′
nκ′[︂70P (α′

γ′Pζ′ β
′)Pι′ (µ

′
P ν′)

κ′ − 140P (α′
γ′Pι′ β

′)Pζ′ (µ
′
P ν′)

κ′

+ 70P (α′
ι′Pκ′ β

′)Pγ′ (µ
′
P ν′)

ζ′ + 120Pγ′ (α
′
P β′)(µ′

P ν′)
ζ′uι′uκ′

− 120Pζ′ (α
′
P β′)(µ′

P ν′)
κ′uγ′uι′ − 120Pζ′ (µ

′
P ν′)(α′

P β′)
κ′uγ′uι′

+ 120Pι′ (α
′
P β′)(µ′

P ν′)
κ′uγ′uζ′ − 49P (α′

γ′Pζ′ β
′)Pκ′ (µ

′
uν′)uι′

+ 49P (α′
γ′Pκ′ β

′)Pζ′ (µ
′
uν′)uι′ + 49P (α′

ζ′Pι′ β
′)Pκ′ (µ

′
uν′)uγ′

− 49P (α′
ι′Pκ′ β

′)Pζ′ (µ
′
uν′)uγ′ + 70Pγ′ (µ

′
P ν′)

ζ′Pκ′ (α
′
uβ′)uι′

− 70Pζ′ (µ
′
P ν′)

κ′Pγ′ (α
′
uβ′)uι′ − 70Pζ′ (µ

′
P ν′)

κ′Pι′ (α
′
uβ′)uγ′

+ 70Pι′ (µ
′
P ν′)

κ′Pζ′ (α
′
uβ′)uγ′ − 12P (α′

γ′P β′)
ζ′Pµ′ν′

uι′uκ′

+ 24P (α′
ζ′P β′)

κ′Pµ′ν′
uγ′uι′ − 12P (α′

ι′P β′)
κ′Pµ′ν′

uγ′uζ′

− 75Pγ′ (µ
′
Pζ′ ν

′)Pα′β′
uι′uκ′ + 150Pζ′ (µ

′
Pκ′ ν

′)Pα′β′
uγ′uι′

− 75Pι′ (µ
′
Pκ′ ν

′)Pα′β′
uγ′uζ′ − 7Pγ′ (α

′
uβ′)Pζ′ (µ

′
uν′)uι′uκ′

+ 7Pζ′ (α
′
uβ′)Pκ′ (µ

′
uν′)uγ′uι′ + 7Pζ′ (µ

′
uν′)Pκ′ (α

′
uβ′)uγ′uι′

− 7Pι′ (α
′
uβ′)Pκ′ (µ

′
uν′)uγ′uζ′ − 35Pγ′ (µ

′
Pζ′ ν

′)uα′
uβ′

uι′uκ′

+ 70Pζ′ (µ
′
Pκ′ ν

′)uα′
uβ′

uγ′uι′ − 35Pι′ (µ
′
Pκ′ ν

′)uα′
uβ′

uγ′uζ′

]︂
. (5.141)

Each of the terms in Eq. (5.140) features two covariant derivatives acting on either 2ϕ,
hR1∗

µ′ν′ or in a term contained in one of our newly defined tensors. We can see this in the
case of Aα′β′µ′ν′ : with the two derivatives taken, the only terms that are remaining that
can be used to construct the expression are the tetrad legs, the projection operator and
the four velocity. This is the same case in Cα′β′ν′µ′ and Dα′β′µ′ν′ . When our newly defined
tensor can feature exactly one derivative, as is the case in Bα′β′µ′ and Eα′β′µ′ , then we
find terms that are proportional to one of the spin coefficients. In the final term, Fα′β′ ,
where we have terms constructed from two derivatives, we find terms proportional to the
Riemann tensor, derivatives of the spin coefficients or two spin coefficients multiplied
together.

We then move the derivatives onto the parallel propagators and delta function using the
same process as in Eq. (5.132) and then use the distributional identities from Eqs. (5.135)
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and (5.139), to write the source as

TS =
∫︂
Aα′β′µ′ν′

hR1∗
α′β′∇ν′∇µ′δ4(x, z) − ∇µ′δ4(x, z)(Bα′β′µ′

hR1∗
α′β′ +Cα′β′ν′µ′

hR1∗
α′β′;ν′)

+ δ4(x, z)(Dα′β′µ′ν′
hR1∗

α′β′;µ′ν′ +Eα′β′µ′
hR1∗

α′β′;µ′ + Fα′β′
hR1∗

α′β′) dτ ′ . (5.142)

Combining the above equation with Eq. (5.132) (after expanding Ŝ acting on the delta
function) and Eq. (5.123) gives us the delta content of the source for the second-order
Teukolsky equation. While we have the delta function content, we have not yet calculated
the counter terms that may appear, as in the case of the Einstein equation in the
previous section, but we leave this to future work. With the delta content of the source
written in fully covariant form, we can easily write it in a specific coordinate system for
either Kerr or Schwarzschild, depending on the problem being investigated. When in
the Schwarzschild spacetime, a great number of the spin coefficients vanish which will
dramatically simplify the Aα′β′µ′ν′–Fα′β′ tensors in Eq. (5.142). One can then combine
the delta function content with a calculation for the parts of the source that are not
supported on the worldline to give the full source for the second-order Teukolsky equation.
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Chapter 6

Covariant and coordinate
punctures in a highly regular
gauge

In Ch. 4, we presented the full form of the singular field perturbations in the highly
regular gauge in Fermi–Walker coordinates. While this has been sufficient for our analysis
of the second-order stress-energy tensor in Ch. 5, if we are interested in implementing
the highly regular gauge in self-force calculations, for example in a puncture scheme,
then we need the ability to write the perturbations in an arbitrary coordinate system.
This can then be specified later and tailored to the specific problem being investigated.

To avoid the requirement to perform a (potentially) complicated coordinate transforma-
tion from Fermi–Walker coordinates to the preferred coordinate system, in this chapter we
will provide covariant expressions and coordinate expansions that can then be projected
into any desired coordinate system. The methods in this section were originally designed
to generate a second-order Lorenz gauge puncture [96] but can easily be applied to
constructing a puncture in the highly regular gauge.

In Ch. 6.1, we describe the method used in Ref. [96] to create the Lorenz gauge punctures
before moving on to apply it to our Fermi–Walker highly-regular gauge expressions
in Ch. 6.2 to generate covariant punctures. Finally, in Ch. 6.3, we take our covariant
highly-regular gauge punctures and perform a coordinate expansion, as in Ch. 2.2.1.2, to
put them in a form where they can then be expressed in any chosen coordinate system.

6.1 Converting Fermi–Walker coordinates to covariant form

In this section, we outline the method as used in Ref. [96] to create the Lorenz gauge
puncture. While the full technical details containing derivations of the various quantities
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Figure 6.1: Diagram illustrating the relationship between x, x′ and x̄. The two points
x′ and x̄ are points on the worldline, γ, separated by ∆τ while x̄ and x are connected

by the geodesic that intersects γ orthogonally. Based on Fig. 1 from Ref. [96].

are contained within that paper, we reproduce the essential results that we will need to
produce the highly regular gauge puncture. The final results will be covariant quantities
expressed entirely in terms of parallel propagators, the four-velocity, Riemann tensors and
Synge’s world function. We reviewed the definitions and properties of parallel propagators
and Synge’s world function in Ch. 2.2.1.1 when discussing covariant expansion methods.

The idea behind the method from Ref. [96] is to express the field at a point x in terms
of an arbitrary nearby point on the worldline, x′ = z(τ ′). This is done through an
intermediary point, x̄ = z(τ̄ ), which lies on γ and is separated from x′ by the difference
in proper time

∆τ := τ̄ − τ ′. (6.1)

The intermediary point, x̄, is then connected to x by the unique geodesic that intersects
the worldline orthogonally. A visual representation is provided in Fig. 6.1.

As Fermi–Walker coordinates are constructed geometrically, see Ch. 2.2.2, there is a very
straightforward way to convert them into covariant form. We know from Eqs. (2.117)–
(2.119), that there is a simple correspondence between FW coordinates and covariant
quantities, which we give again as

x0 = t, (6.2)

xa = −ea
ᾱ(x̄)σ

ᾱ(x, x̄), (6.3)

σᾱ(x, x̄)uᾱ(x̄) = 0, (6.4)
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where the barred indices on Synge’s world function refer to derivatives taken with respect
to x̄. As stated previously, Synge’s world function gives half the geodesic distance squared
between two points (up to a minus sign) meaning that a derivative gives the geodesic
distance. This quantity is then contracted with the spatial Fermi–Walker tetrad leg, ea

ᾱ,
to give the Fermi–Walker spatial distance, xa. The third equation ensures that σᾱ is
always orthogonal to the worldline. As we saw in the text below Eq. (2.119), we can
write the Fermi–Walker radial distance in terms of covariant quantities with

r :=
√︂
δabxaxb =

√︂
Pᾱβ̄σ

ᾱσβ̄ =
√

2σ̄, (6.5)

where
σ̄ := σ(x, x̄). (6.6)

We have added an extra step in Eq. (6.5), where we have rewritten the flat-space metric
in terms of the projection operator,

eα
ae

aβ = Pαβ = gαβ + uαuβ, (6.7)

which immediately follows from Eq. (2.116). The radial unit vector is then given by

na =
xa

r
=

−ea
ᾱσ

ᾱ

√
2σ̄

. (6.8)

Additionally, we must replace the Fermi–Walker basis one-forms, as when written
explicitly, the singular field has the standard form

hS
µν dx

µ dxν = hS
tt dt dt+ 2hS

ta dt dx
a + hS

ab dx
a dxb . (6.9)

These are given by [96, Eqs. (82)–(84)]

dt = µσᾱαu
ᾱ dxα , (6.10)

dxa = − ea
ᾱ(σ

ᾱ
α + µσᾱ

β̄u
β̄σαγ̄u

γ̄), (6.11)

where
µ = −(σᾱβ̄u

ᾱuβ̄ + σᾱa
ᾱ)−1. (6.12)
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Finally, the second-order singular field, hSR
µν , features derivatives of the first-order regular

field, hR1
µν . These can be written as [96, Eqs. (122)–(123)]

∂th
R1
µν = hR1

µ̄ν̄|ᾱu
ᾱ + O(aµ), (6.13)

∂ah
R1
µν = hR1

µ̄ν̄|ᾱe
ᾱ
a + O(aµ), (6.14)

∂t∂th
R1
µν = hR1

µ̄ν̄|ᾱβ̄u
ᾱuβ̄ + O(aµ), (6.15)

∂t∂ah
R1
µν = hR1

µ̄ν̄|ᾱβ̄e
ᾱ
au

β̄ + O(aµ), (6.16)

∂a∂bh
R1
µν = hR1

µ̄ν̄|ᾱβ̄e
ᾱ
ae

β̄
b + 2Rµ̄

b0au(ᾱh
R1
β̄)µ̄ − 4

3R
µ̄
(bν̄)aP

ν̄
(ᾱh

R1
β̄)µ̄ + O(aµ), (6.17)

where the bar, |, indicates a covariant derivative at xᾱ and any acceleration terms can
be ignored as they would belong to the third-order singular field. These expressions can
be derived by taking covariant derivatives of hR1

ᾱβ̄
and calculating the Christoffel symbols

constructed from the FW background metric in Eq. (2.120).

After rewriting all quantities in terms of x̄, we then re-expand them in powers of ∆τ , the
time difference given in Eq. (6.1). For example,

htt(x, x̄) =
∞∑︂

n=0
∆τn dn

dτ ′nhtt(x,x′), (6.18)

where d
/︁
dτ ′ = uα′∇α′ and the expansion in distance of the difference in proper time is

given by
∆τ = λr + λ2raσ + O

(︂
λ3
)︂
, (6.19)

originally from Eqs. (97)–(98) in Ref. [96]. Here, λ is our formal order counting parameter
from Ch. 2.2.1.2, and we have reintroduced the quantity r from Eq. (2.97). Below we
will also use the quantity ρ from Eq. (2.98). We note that we expand all quantities
through four total orders but we only display the leading two orders here to indicate the
forms of the expressions; the full expansions can be found in the original paper [96]. We
may do our series expansions as a normal power series as all the Fermi–Walker quantities
(including one-forms) are scalars at x̄. The expansion of Synge’s world function is given
by [96, Eqs. (99)–(101)]

σ(x, x̄) = σ(x,x′) +
dσ

dτ ′ ∆τ +
1
2
d2σ

dτ ′2 ∆τ2 +
1
6
d3σ

dτ ′3 ∆τ3 + O
(︂
λ4
)︂

=
1
2
[︂
λ2ρ2 + λ3r2aσ

]︂
+ O

(︂
λ4
)︂
, (6.20)

and expansions of the Fermi–Walker basis one-forms are given by [96, Eqs. (103)–(106)]

dt = − gα′
µ

[︂
λ0uα′ + λ(raα′ + aσuα′) + O

(︂
λ2
)︂]︂
dxµ , (6.21)

dxa = gα′
µ

[︂
λ0ea

α′ + λ(eaβ′
ruα′aβ′) + O

(︂
λ2
)︂]︂
dxµ . (6.22)
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In the above expressions, we see that acceleration terms have appeared. This is a result of
taking the derivatives with respect to τ ′. As stated, d

/︁
dτ ′ = uα′∇α′ , so taking multiple

τ ′ derivatives results in us taking derivatives of uα′ along the worldline, providing us
with acceleration terms. These can then be differentiated along the worldline, giving us
terms like ȧα′ , where a dot indicates a time derivative in the usual manner.

When accounting for these terms, at first order, we split up hS1
µν into an acceleration-

independent and a linear-in-acceleration piece:

hS1
µν = hS1◁a

µν + hS1a
µν + O

(︂
a2
)︂
. (6.23)

As each acceleration term carries an ϵ, this effectively makes hS1a
µν a second-order term

and allows us to ignore any non-linear acceleration terms that appear in the expansion
of hS1

µν . Additionally, we can ignore any explicit acceleration terms that appear in both
hSR

µν and hSS
µν as these would become third-order terms.

6.2 Creating the covariant puncture

With the methods from Ref. [96] recapped, we can now proceed to use them to generate
our covariant puncture for the singular field in the highly regular gauge. Ch. 6.2.1 will
provide the components of the highly regular gauge singular field when evaluated at x̄
with each being written in covariant form. We then move to Ch. 6.2.2, which provides
the components evaluated at x′ before combining this with one-form expansions to find
the final, fully covariant form in Ch. 6.2.3.

6.2.1 Perturbation components at x̄

We begin by calculating the form of the components of the first-order singular field,
hS1

µν , when evaluated at x̄α. As discussed in Ch. 3.5, hS1
µν in the highly regular gauge is

the same as in the light-cone rest gauge, given in Eq. (3.38). Therefore, the first-order
singular field in the highly regular gauge evaluated at x̄α is merely given by substituting
the appropriate expressions from Ch. 6.1 into Eq. (3.38). These are then given by

hS1
tt =

√
2m

λ
√
σ̄
+

11mλ
3
√

2σ̄
Rūσ̄ūσ̄ +

mλ2

24
[︂
Ṙūσ̄ūσ̄

{︂
80 − 48 log

(︂√
2m

λ
√

σ̄

)︂}︂
− 19

√︃
2
σ̄
Rūσ̄ūσ̄|σ̄

]︂
+ O

(︂
λ3
)︂
, (6.24a)
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hS1
ta =

meᾱ
a

36σ̄

(︄
−36σᾱ

λ
+ 12λ

[︂
2
√

2Rᾱσ̄ūσ̄

√
σ̄− 2Rᾱūσ̄ūσ̄− 3Rūσ̄ūσ̄σᾱ

]︂
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[︂
σ̄
(︂
Ṙᾱσ̄ūσ̄

{︂
52 − 48 log

(︂√
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λ
√

σ̄

)︂}︂
+ 7

{︂
2Rᾱūσ̄ū|σ̄ +Rūσ̄ūσ̄|ᾱ

}︂)︂
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√
2σ̄3Ṙᾱūσ̄ū
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5 − 3 log

(︂√
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λ
√
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)︂}︂
+ 12Rūσ̄ūσ̄|σ̄σᾱ −

√
2σ̄

×
(︂
15Rᾱσ̄ūσ̄|σ̄ + 4Ṙūσ̄ūσ̄σᾱ

{︂
5 − 3 log

(︂√
2m

λ
√

σ̄

)︂}︂)︂]︂)︄
+ O

(︂
λ3
)︂
, (6.24b)

hS1
ab =

meᾱ
ae

β̄
b

144σ̄3/2

(︄
72

√
2σᾱσβ̄

λ
+ 12λ

[︂√
2Rūσ̄ūσ̄σᾱσβ̄ − 16

√
σ̄σ(ᾱRβ̄)σ̄ūσ̄ + 8

√
2σ̄σ(ᾱRβ̄)ūσ̄ū

]︂
+ λ2

[︂
−32

√
2σ̄2

(︂
Ṙū(ᾱβ̄)σ̄

{︂
5 − 6 log

(︂√
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λ
√

σ̄

)︂}︂
+Rᾱūβ̄ū|σ̄ + 2Rūσ̄ū(ᾱ|β̄)

)︂
+ 192σ̄5/2Ṙᾱūβ̄ū

{︂
3 − 2 log

(︂√
2m

λ
√

σ̄

)︂}︂
− 3

√
2σᾱσβ̄Rūσ̄ūσ̄|σ̄ + 72

√
σ̄σ(ᾱRβ̄)σ̄ūσ̄|σ̄

− 4
√

2σ̄
(︂
gᾱβ̄Rūσ̄ūσ̄|σ̄ + 8σ(ᾱṘβ̄)σ̄ūσ̄

{︂
4 − 3 log

(︂√
2m

λ
√

σ̄

)︂}︂
− 2σ(ᾱRβ̄)ūσ̄ū|σ̄

−Rūσ̄ūσ̄|(ᾱσβ̄)

)︂
+ 32σ̄3/2

(︂
Ṙᾱσ̄β̄σ̄ + 3Rū(ᾱβ̄)σ̄|σ̄ + gᾱβ̄Ṙūσ̄ūσ̄

{︂
4 − 3 log

(︂√
2m

λ
√

σ̄

)︂}︂
+ 2σ(ᾱṘβ̄)ūσ̄ū

)︂]︂)︄
+ O

(︂
λ3
)︂
. (6.24c)

This can then be continued at second order for the singular fields hSR
µν (4.48) and

hSS
µν (4.49). The ‘singular times regular’ piece is given by

hSR
tt = − m

4
√

2σ̄3/2

[︃ 2
λ
(hR1

σ̄σ̄ + 4hR1
ūū σ̄) − λ0

(︂
16σ̄ḣR1

σ̄ū + hR1
σ̄σ̄ |σ̄ + 4

√
2σ̄1/2ḣ

R1
σ̄σ̄

)︂]︃
+ O(λ),

(6.25a)

hSR
ta = − meᾱ

a

4σ̄2

[︃ 2
λ

(︂
2hR1

ᾱσ̄σ̄+ 2
√

2hR1
ᾱūσ̄

3/2 − hR1
σ̄σ̄σᾱ − hR1

ūū σ̄σᾱ

)︂
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(︂
σ̄ᾱh

R1
σ̄σ̄ |σ̄

− 2
√

2σ̄3/2(hR1
σ̄ū |ᾱ + hR1

ᾱū|σ̄ − ḣ
R1
ᾱσ̄) +

√
2σ̄σᾱḣ

R1
σ̄σ̄ − σ̄(hR1

σ̄σ̄ |ᾱ + 2hR1
ᾱσ̄ |σ̄ − 4σᾱḣ

R1
σ̄ū)
)︂]︃

+ O(λ) (6.25b)

hSR
ab = −

meᾱ
ae

β̄
b

16σ̄5/2

[︃ 2
λ

(︂
3
√

2hR1
σ̄σ̄σᾱσβ̄ − 8

√
2σ̄hR1

σ̄(ᾱσβ̄) − 16σ̄3/2hR1
ū(ᾱσβ̄)

)︂
+ λ0

(︂
4
√

2σ̄(hR1
σ̄σ̄|(ᾱσβ̄) + 2σ(ᾱhR1

β̄)σ̄|σ̄) − 3
√

2σᾱσβ̄h
R1
σ̄σ̄|σ̄ + 16σ̄3/2(hR1

σ̄ū|(ᾱσβ̄)

+ σ(ᾱh
R1
β̄)u|σ̄ − σ(ᾱḣ
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β̄)σ̄

)︂]︃
+ O(λ). (6.25c)

We have omitted the highest-order piece of hSR
µ̄ν̄ due to its length but it will be used to

calculate the covariant punctures. Finally, the ‘singular times singular’ piece is given by

hSS
tt = − 2m2λ0

σ̄
+

2m2λ

3σ̄
[︂
2Rūσ̄ūσ̄|σ̄ −

√
2σ̄Ṙūσ̄ūσ̄(11 − 6 log

(︂√
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λ
√
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)︂
)
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+ O

(︂
λ2
)︂
, (6.26a)
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hSS
ta =
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+
√
σ̄

[︃
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+ O
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λ2
)︂
, (6.26b)

hSS
ab =

m2eᾱ
ae

β̄
b

18σ̄2

[︄
3λ0

(︂
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√
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)︂
+ λ

(︃
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√
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(︂
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. (6.26c)

6.2.2 Expansion at x′

Accounting for the introduction of acceleration terms and splitting up hS1
µν as in Eq. (6.23),

we find that the components of hS1◁aµν when expanded at x′α are given by

hS1◁a
tt =

2m
λρ

+
mλ

3ρ3Ruσuσ(r
2 + 11ρ2) − mλ2

12ρ3

(︂
24Ruσuσ;u log

(︂
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λρ

)︂
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+Ruσuσ;σ(r
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)︂
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(︂
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, (6.27a)
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λ
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(︃
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+ 8Ṙuσuσ

(︂
5 − 3 log

(︂
2m
λρ

)︂)︂
ρ3
)︃
σα′

)︄]︄
+ O

(︂
λ3
)︂
, (6.27b)
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hS1◁a
ab = −
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a e
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)︄⎤⎦+ O
(︂
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(6.27c)

The acceleration terms that appear as a result of our expansion of the first-order singular
field are

hS1a
tt = − mλ0aσr2

ρ3 − mλȧσr3

3ρ3 + O
(︂
λ2
)︂
, (6.28a)

hS1a
ta = − meα′

a r

3ρ6

[︂
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,

(6.28b)
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(︂
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. (6.28c)

As hS1a
µν is a second-order term, we can neglect any terms of order-λ2 and higher to match

the orders required for hSR
µν and hSS

µν .

Moving to the second-order field, we calculate the SR components to be
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tt = − m
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where, again, we have omitted the highest order term. The SS components are calculated
to be

hSS
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(6.30a)

hSS
ta =

2m2eα′
a

9ρ3

[︃
18λ0Ruσuσσα′ + λ

(︃
ρ
[︂
3Rα′σuσ;σ −Ruσuσ;α′ρ −Rα′uσu;σ(3r + 2ρ)
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6.2.3 Final expressions for the covariant punctures

With all of the individual components of the singular field now expressed as functions of
x′α, we now combine with the expansions of dt and dxa, given in Eqs. (6.21)–(6.22) to
find the final form of the covariant punctures. After contracting with the basis vectors, we
obtain the covariant form of hS

µν dx
µ dxν , as in Eq. (6.9). We then read off the coefficients

of dxµ dxν to obtain hS
µν .

The first-order singular field is given by
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[︃−72ρ2

λ

(︂
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σ(α′uβ′) + 3

(︂
Ruσuσ;σ(r − ρ)(r + ρ)2(3r + ρ)

− Ṙuσuσ(3r5 + 4r4ρ − 2r3ρ2 − 6r2ρ3 + 3rρ4 + 14ρ5)
)︂
uα′uβ′

+ 4gα′β′ρ4(3Ruσuσ;σ + 3Ṙuσuσr − 8Ṙuσuσρ) − 8ρ5
(︂
Ṙα′σβ′σ −Rα′uβ′u;σ

× (3r + ρ) + Ṙα′uβ′u(−2r2 + 4rρ + 9ρ2) + 3Ru(α′β′)σ;σ + (r − 5ρ)Ṙu(α′β′)σ

+ 2ρRσuu(α′;β′)

)︂
− 2ρ2σ(β′

(︂
6(2ρ − r)Rα′)σuσ;σ + (3r2 − 24rρ − 32ρ2)Ṙα′)σuσ

+ 9r2Rα′)uσu;σ + 2ρ2Rα′)uσu;σ − 6r3Ṙα′)uσu + 12r2ρṘα′)uσu

+ 58rρ2Ṙα′)uσu + 8ρ3Ṙα′)uσu + ρ2R|uσuσ|;α′)

)︂
− 2ρ2u(β′

(︂
6(4ρ2 + rρ − r2)

×Rα′)σuσ;σ + (3r3 − 21r2ρ − 44rρ2 − 44ρ3)Ṙα′)σuσ + 9r3Rα′)uσu;σ

+ 9r2ρRα′)uσu;σ − 10rρ2Rα′)uσu;σ − 2ρ3Rα′)uσu;σ − 6r4Ṙα′)uσu

+ 6r3ρṘα′)uσu + 58r2ρ2Ṙα′)uσu + 74rρ3Ṙα′)uσu + 52ρ4Ṙα′)uσu

+ (r − 7ρ)ρ2R|uσuσ|;α′)

)︂
+ 24Ṙuσuσ log

(︃2m
λρ

)︃
gα′β′ρ5 + 48 log

(︃2m
λρ

)︃
ρ4

×
(︂
Ṙα′uβ′uρ2(r + ρ) − ρ2Ṙu(α′β′)σ − σ(α′Ṙβ′)σuσ − u(α′rṘβ′)σuσ

− 2ρu(α′Ṙβ′)σuσ + rσ(α′Ṙβ′)uσu + (r + ρ)2u(α′Ṙβ′)uσu

)︂)︃]︃
+ O

(︂
λ3
)︂
. (6.31)

We have confirmed that this satisfies the Einstein field equations to the appropriate
order, i.e.

δGµν [hS1◁a] = O(λ), x /∈ γ. (6.32)
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At second-order, the SS piece of the singular field is given by

hSS
αβ = − 2m2gα′

αg
β′

β

9ρ4

[︃
3λ0

(︃
Ruσuσ(5r2 + 6rρ + 5ρ2)uα′uβ′ + 5Ruσuσσα′σβ′

+ 2Ruσuσ(5r + 3ρ)σ(α′uβ′) − 2ρu(α′

(︂
3Rβ′)σuσr −Rβ′)uσu(3r2 + 2rρ + 3ρ2)

)︂
− 2ρσ(α′

(︂
3Rβ′)σuσ −Rβ′)uσu(3r + 2ρ)

)︂
− ρ2

(︂
Ruσuσgα′β′ + 2Rα′uβ′uρ(3r + ρ)

− 6ρRu(α′β′)σ

)︂)︃
+ λ

(︃
uα′uβ′

[︂
Ṙuσuσ(r + ρ)

(︂
9r2 + 11rρ + 38ρ2

− 12 log
(︂

2m
λρ

)︂
ρ(r + ρ) − 6Ruσuσ;σ(r + ρ)2

)︂]︂
+ σα′σβ′

[︂
Ṙuσuσ

(︂
9r + 14ρ

− 12 log
(︂

2m
λρ

)︂
ρ
)︂

− 6Ruσuσ;σ
]︂
+ 2u(α′σβ′)

[︂
Ṙuσuσ

(︂
9r2 + 17rρ + 20ρ2

− 12 log
(︂

2m
λρ

)︂
ρ(r + ρ)

)︂
− 6Ruσuσ;σ(r + ρ)

]︂
− 2ρu(α′

[︃
Ṙβ′)σuσ

(︂
6r2 + 13rρ

+ 16ρ2 − 12 log
(︂

2m
λρ

)︂
ρ(r + ρ)

)︂
− 3Rβ′)σuσ;σ(r + ρ) + (r + ρ)

(︂
R|uσuσ|;β′)ρ

+Rβ′)uσu;σ(3r + 2ρ) − Ṙβ′)uσu

[︂
6r2 + 11rρ + 29ρ2 − 12 log

(︂
2m
λρ

)︂
ρ(r + ρ)

]︂)︂]︃
− 2ρσ(α′

[︂
R|uσuσ|;β′)ρ − 3Rβ′)σuσ;σ +Rβ′)uσu;σ(3r + 2ρ) + 2Ṙβ′)σuσ

×
(︂
3r + 8ρ − 6 log

(︂
2m
λρ

)︂
ρ
)︂

− Ṙβ′)uσu

(︂
6r2 + 20rρ + 17ρ2 − 12 log

(︂
2m
λρ

)︂
× ρ(r + ρ)

)︂]︂
− 3ρ2

[︂
Ṙuσuσgα′β′(r − 2ρ) + 2Ṙα′uβ′u(3r − 2ρ)ρ(r + ρ)

− 6rρṘu(α′β′)σ

]︂)︃]︃
+ O

(︂
λ2
)︂
. (6.33)

This again satisfies the appropriate Einstein field equations,

δGµν [hSS] + δ2Gµν [hS1◁a,hS1◁a] = O
(︂
λ0
)︂
, x /∈ γ. (6.34)

The first-order singular field with linear acceleration terms is

hS1a
αβ =

gα′
αg

β′
β

3ρ5

[︃
3λ0

(︃
2rρ2(r + 2ρ)a(α′

(︂
σβ′) + (r + ρ)uβ′)

)︂
+ aσ

(︂
−3r2σα′σβ′

+ 2(−3r3 − 2r2ρ + 2rρ2 + 2ρ3)σ(α′uβ′) − (r + ρ)(3r3 + r2ρ − 4rρ2 − 4ρ3)

· uα′uβ′

)︂)︃
+ λ

(︃
2ȧ(α′r2ρ2(r + 3ρ)

(︂
σβ′) + (r + ρ)uβ)′

)︂
+ ȧσr

(︂
−3r2σα′σβ′

+ 2(−3r3 − 2r2ρ + 3rρ2 + 6ρ3)σ(α′uβ′) − (r + ρ)(3r3 + r2ρ − 6rρ2 − 12ρ3)

· uα′uβ′

)︂)︃]︃
+ O

(︂
λ2
)︂
, (6.35)
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while the SR piece of the second-order singular field is

hSR
αβ = − mgα′

αg
β′

β

2ρ5

[︄
2
λ

[︃
4ρ2

(︃
hR1
(α′|σ|σβ′) + (r + ρ)

(︂
hR1
(α′|u|σβ′) + hR1

(α′|σ|uβ′)

+ (r + ρ)hR1
(α′|u|uβ′)

)︂)︃
− hR1

σσ

(︂
3σα′σβ′ + (r + ρ)(3r + ρ)uα′uβ′

+ 2(3r + 2ρ)σ(α′uβ′)

)︂
− hR1

σu

(︃
6rσα′σβ′ + 2(r + ρ)

(︂
(3r − 2ρ)(r + ρ)

· uα′uβ′ + 2(3r − ρ)σ(α′uβ′)

)︂)︃
− hR1

uu

(︃
3r2σα′σβ′ + (r + ρ)

(︂
(r + ρ)

× (3r2 − 2rρ − 2ρ2)uα′uβ′ + 2(3r2 − rρ − ρ2)σ(α′uβ′)

)︂)︃]︃
+ λ0

[︃
hR1

σσ;σ

(︂
−3σα′σβ′ − (r + ρ)(3r + ρ)uα′uβ′ − 2(3r + 2ρ)σ(α′uβ′)

)︂
+ rhR1

uu;u

(︂
3r2σα′σβ′ + (r + ρ)(3r3 + r2ρ − 6rρ2 − 8ρ3)uα′uβ′

+ 2(3r3 + 2r2ρ − 3rρ2 − 4ρ3)σ(α′uβ′)

)︂
+ hR1

σu;u

(︂
6r2σα′σβ′ + 2(r + ρ)

× (3r3 + r2ρ − 4rρ2 − 4ρ3)uα′uβ′ + 4(3r3 + 2r2ρ − 2rρ2 − 2ρ3)σ(α′uβ′)

)︂
+ hR1

uu;σ

(︂
−3r2σα′σβ′ − (r + ρ)(3r3 + r2ρ − 4rρ2 − 4ρ3)uα′uβ′

− 2(3r3 + 2r2ρ − 2rρ2 − 2ρ3)σ(α′uβ′)

)︂
− 2hR1

σu;σ

(︃
3rσα′σβ′ + (r + ρ)

×
(︂
(3r − 2ρ)(r + ρ)uα′uβ′ + 2(3r − ρ)σ(α′uβ′)

)︂)︃
+ hR1

σσ;u

(︃
3rσα′σβ′

+ (r + ρ)
(︂
(3r − 2ρ)(r + ρ)uα′uβ′ + 2(3r − ρ)σ(α′uβ′)

)︂)︃
+ 2ρ2

(︂
σ(α′hR1

|σσ|;β′) + 2(r + ρ)σ(α′hR1
|σu|;β′) + r(r + 2ρ)σ(α′hR1

|uu|;β′)

+ 2σ(α′hR1
β′)σ;σ + 2rσ(α′hR1

β′)u;σ + 2ρσ(α′hR1
β′)u;σ − 2rσ(α′hR1

β′)σ;u − 2ρσ(α′hR1
β′)σ;u

− 2r2σ(α′hR1
β′)u;u − 4rρσ(α′hR1

β′)u;u + ru(α′hR1
|σσ|;β′) + ρu(α′hR1

|σσ|;β′)

+ 2r2u(α′hR1
|σu|;β′) + 4rρu(α′hR1

|σu|;β′) + 2ρ2u(α′hR1
|σu|;β′) + r3u(α′hR1

|uu|;β′)

+ 3r2ρu(α′hR1
|uu|;β′) + 2rρ2u(α′hR1

|uu|;β′) + 2ru(α′hR1
β′)σ;σ + 2ρu(α′hR1

β′)σ;σ

+ 2r2u(α′hR1
β′)u;σ + 4rρu(α′hR1

β′)u;σ + 2ρ2u(α′hR1
β′)u;σ − 2r2u(α′hR1

β′)σ;u

− 4rρu(α′hR1
β′)σ;u − 2ρ2u(α′hR1

β′)σ;u − 2r(r + ρ)(r + 2ρ)u(α′hR1
β′)u;u

)︂]︃]︄
+ O(λ).

(6.36)

These need to satisfy

δGµν [hSR] + δGµν [hS1a] + 2δ2Gµν [hR1,hS1◁a] = O
(︂
λ0
)︂
, x /∈ γ. (6.37)

We have successfully checked that the covariant punctures for hSR
µν and hS1,a

µν satisfy
Eq. (6.37) through the leading two orders, λ−3 and λ−2. However, we have not been
able to check this at the highest order we have calculated, order λ−1. This is due to the
complexity and length of the expressions when taking multiple different combinations of
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derivatives. Despite this, we provide all orders of the covariant punctures for the different
singular field terms in a Mathematica notebook in the Additional Material [141].

Comparing the covariant puncture for hS1
µν from Eq. (6.31) to the Lorenz gauge version

of the puncture from Eq. (127) of Ref. [96],

hS1◁a,Lor
αβ =

2m
λρ

gα′
αg

β′
β(gα′β′ + 2uα′uβ′) + O(λ), (6.38)

we see that the highly regular gauge puncture has a more complicated form. This
continues at higher order with the Lorenz gauge puncture being substantially simpler
and shorter at all orders. The more complex form results from the highly regular gauge
conditions that seek to preserve the background lightcone structure emanating from the
worldline in the perturbed spacetime; see Ch. 7.1 for further discussion. This has the
knock-on effect that the coordinate expansion in the highly regular gauge will be much
more complicated than the Lorenz gauge one as we are introducing more and more terms,
and more quantities will need to be expanded. Thus, if we wanted to perform a mode
decomposition of the singular field in the highly regular gauge, we would find that the
process is likely to be more complicated than in the Lorenz gauge due to an increase in
the number of quantities that need to be decomposed into modes. However, we believe
that the benefits of the highly regular gauge outweigh any disadvantages that may come
from the metric perturbations having a more complicated structure. Merely eliminating
the two leading orders of hSS

µν in Eq. (6.33) has dramatic consequences as it alleviates
the problem of infinite mode coupling [132] that was discussed in the introduction. This
should allow one to much more efficiently calculate modes of the second-order source for
whatever calculation is being performed.

6.3 Coordinate expansion of covariant puncture

With our covariant punctures derived, we can proceed to write them as a generic
coordinate expansion using the techniques discussed for the singular scalar field in
Ch. 2.2.1.2. This will allow them to be easily written in any desired coordinate system.

To do so, we substitute our coordinate expansion for σα′ from Eq. (2.95)–(2.96), ρ

from Eqs. (2.102)–(2.104) and gµ′
µ from Eqs. (2.106)–(2.107) into the expression for

hS
µν from Ch. 6.2.3. Doing so results in expressions that are written in terms of the

coordinate difference, ∆xµ′ and the four-velocity, uµ′ along with hR1
µν , Γµ

νρ, and Rα′β′µ′ν′

and their respective derivatives. The final expressions are incredibly long and, as such,
we only display them through order λ0 (except for hSR

µν , for which we just display the
leading-order term). The higher order terms are available in the Additional Material in
a Mathematica notebook [141].
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The coordinate expansion of the first-order singular field, with no acceleration, in the
highly regular gauge is given by

hS1◁a
µν =

2m
λρ3

0

(︂
∆xµ′ + uµ′(r0 − ρ0)

)︂(︂
∆xν′ + uν′(r0 − ρ0)

)︂
− mλ0

ρ5
0

[︂
uµ′uν′(r0 − ρ0)

×
(︂
3r0(Γ∆

∆∆ + Γu
∆∆r0) − (Γ∆

∆∆ + Γu
∆∆r0)ρ0 − 2Γu

∆∆ρ2
0

)︂
+ 3∆xµ′ ∆xν′

× (Γ∆
∆∆ + Γu

∆∆r0) + 2u(µ′ ∆xν′)

(︂
Γ∆

∆∆(3r0 − 2ρ0) + Γu
∆∆(r0 − ρ0)(3r0 + ρ0)

)︂
− 2u(µ′

(︂
2Γ∆

ν′)∆ + gν′)α′ Γα′
∆∆ + 2Γu

ν′)∆(r0 − ρ0)
)︂
(r0 − ρ0)ρ

2
0

− 2∆x(µ′ρ2
0

(︂
2Γ∆

ν′)∆ + gν′)α′ Γα′
∆∆ + 2Γu

ν′)∆(r0 − ρ0)
)︂]︂

+ O(λ). (6.39)

Moving to second order, the first-order singular field with acceleration is

hS1a
µν = − mλ0

ρ5
0

[︂
a∆uµ′uν′(4r0

3ρ0 + 3r0
2ρ2

0 − 8r0ρ3
0 + 4ρ4

0 − 3r0
4) − 3∆xµ′ ∆xν′a∆r0

2

+ 2
(︂
r0(r0 − 2ρ0)ρ

2
0∆x(µ′aν′) + a∆(2r0

2ρ0 + 2r0ρ2
0 − 2ρ3

0 − 3r0
3)∆x(µ′uν′)

+ r0(r0 − 2ρ0)(r0 − ρ0)ρ
2
0a(µ′uν′)

)︂]︂
+ O(λ). (6.40)

The ‘singular times singular’ piece is given by

hSS
µν = − 2m2λ0

3ρ4
0

[︂
6ρ3

0R(µ′|∆|ν′)u + 2(3r0 − ρ0)ρ
3
0R(µ′|u|ν′)u +R∆u∆u

(︂
5∆xµ′ ∆xν′

− gµ′ν′ρ2
0 + uµ′uν′(5r0

2 − 6r0ρ0 + 5ρ2
0) + (10r0 − 6ρ0)∆x(µ′uν′)

)︂
− 6ρ0∆x(µ′Rν′)∆∆u + (−6r0ρ0 + 4ρ2

0)∆x(µ′Rν′)u∆u − 6r0ρ0u(µ′Rν′)∆∆u

− 2ρ0(3r0
2 − 2r0ρ0 + 3ρ2

0)u(µ′Rν′)u∆u

]︂
+ O(λ). (6.41)

Finally, the ‘singular times regular’ piece is

hSR
µν =

m

λρ5
0

[︂
4ρ2

0∆x(µ′hR1
ν′)∆ + 4(r0 − ρ0)ρ

2
0∆x(µ′hR1

ν′)u − hR1
∆u

(︂
6∆xµ′ ∆xν′r0

+ 2uµ′uν′(r0 − ρ0)
2(3r0 + 2ρ0) + 4(r0 − ρ0)(3r0 + ρ0)∆x(µ′uν′)

)︂
− hR1

∆∆

(︂
3∆xµ′ ∆xν′ + uµ′uν′(r0 − ρ0)(3r0 − ρ0) + (6r0 − 4ρ0)∆x(µ′uν′)

)︂
− hR1

uu

(︂
3∆xµ′ ∆xν′r0

2 + uµ′uν′(r0 − ρ0)
2(3r0

2 + 2r0ρ0 − 2ρ2
0)

+ 2(r0 − ρ0)(3r0
2 + r0ρ0 − ρ2

0)∆x(µ′uν′)

)︂
+ 4(r0 − ρ0)ρ

2
0h

R1
(µ′|∆|uν′)

+ 4(r0 − ρ0)
2ρ2

0h
R1
(µ′|u|uν′)

]︂
+ O

(︂
λ0
)︂
. (6.42)
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Chapter 7

Local gauge transformation from
the Lorenz gauge to the highly
regular gauge for quasicircular
orbits in Schwarzschild spacetime

This chapter deals with the transformation from the Lorenz gauge to the highly regular
gauge. As has been previously discussed, Ref. [105] performed the first calculations
of a second-order self-force quantity, that being the binding energy in a quasicircular
orbit around a Schwarzschild black hole, using quantities defined in the Lorenz gauge.
However, these calculations required significant computing time even for this simple case
and would become likely impossible to compute when moving to the astrophysically
realistic scenario of generic orbits in Kerr. We therefore wish to transform to the highly
regular gauge and take advantage of the properties that have been demonstrated and
discussed in this report so far. These calculations form part of a broader, international
effort to solve the second-order self-force problem in time for LISA’s launch in 2037. As
data for quasicircular orbits in Schwarzschild already exists in the Lorenz gauge [105], we
seek to find a gauge transformation to take us to the highly regular gauge. Specifically,
we transform the first-order singular field to the highly regular gauge to take advantage
of the weaker divergences as discussed in Ch. 5.

This chapter is organised as follows: firstly, we determine a covariant expression for the
gauge vector to transform us between the two gauges in Ch. 7.2, which is then expanded
in terms of coordinates in Ch. 7.3. After this, in Ch. 7.4, we determine the components
of the gauge vector for the specific case of quasicircular orbits in Schwarzschild to allow
direct comparison with the previously mentioned existing Lorenz gauge data. To do this,
we introduce a rotated coordinate system in which the small object is instantaneously
at the north pole. We then utilise the Newman–Penrose formalism and decompose the
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spacetime

gauge vector into a spin-weighted spherical harmonic basis. The rotated coordinate
system has the advantage that when we perform the decomposition in Ch. 7.5, only the
lowest m mode is non-zero (we will find that we need to calculate some higher modes to
take account of derivatives that appear). We then rotate back to the original coordinate
system in Ch. 7.6 and construct the metric perturbations in Ch. 7.7.

7.1 Gauge conditions for the highly regular gauge

The gauge conditions for the highly regular gauge were previously given in Eqs. (3.57)–
(3.58) but we repeat them here. There are two gauge conditions imposed on the singular
field: firstly, that the contraction of the perturbation with a null vector is identically
zero,

hHR,S
µν kν = 0, (7.1)

where kµ is a future directed null vector that is tangent to the lightcone of the small
object; and secondly, that the trace over the angular components of the perturbation
vanishes,

hHR,S
AB ΩAB = 0, (7.2)

where ΩAB is the metric on a surface of constant luminosity distance and θA are
coordinates on this surface. These gauge conditions have the geometrical interpretation
of ensuring that the background luminosity distance is still an affine parameter along
null rays emanating from the particle in the perturbed spacetime and that lightcones and
the element surfaces of constant luminosity distance are the same in the background and
perturbed spacetimes. Both of these gauge conditions are inherited from the lightcone
rest gauge, defined in Ref. [174], that the highly regular gauge is built off of; see the
discussion around Eq. (3.57). We emphasise again that we are only imposing the gauge
conditions on the singular field.

As we are looking to make a local gauge transformation, we seek an expansion of the
gauge conditions in terms of distance from the worldline, λ. To do so, we can use the
covariant expansion methods detailed in Ch. 2.2.1.1.

To find the form of the null vector, kµ, at xµ we decompose it into pieces parallel and
orthogonal to the worldline, so that

kµ(x) = gµ
µ′

(︂
k∥u

µ′
+ kν′

⊥P
µ′

ν′

)︂
, (7.3)

where we can expand

k∥ = k
(0)
∥ + λk

(1)
∥ + O

(︂
λ2
)︂
, (7.4)

kµ′

⊥ = k
(0)µ′

⊥ + λk
(1)µ′

⊥ + O
(︂
λ2
)︂
, (7.5)
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in terms of λ. We then contract it with itself to see

gµνk
µkν = gµ′ν′

(︂
k∥u

µ′
+ kα′

⊥ P
µ′

α′

)︂ (︂
k∥u

ν′
+ kβ′

⊥ P
ν′

β′

)︂
= −

(︂
k∥
)︂2

+ Pµ′ν′kµ′

⊥ k
ν′
⊥

= − λ0
[︂(︂
k
(0)
∥

)︂2
− Pµ′ν′k

(0)µ′

⊥ k
(0)ν′

⊥

]︂
− 2λ

[︂
k
(0)
∥ k

(1)
∥ − Pµ′ν′k

(0)µ′

⊥ k
(1)ν′

⊥

]︂
+ O

(︂
λ2
)︂
. (7.6)

For this to be null, we require Eq. (7.6) to be 0. As null vectors have no unique length,
we are free to choose k0

∥ = 1, so that

Pµ′ν′k
(0)µ′

⊥ k
(0)ν′

⊥ = 1, (7.7)

which we can show has a solution

k
(0)µ′

⊥ = −Pµ′
ν′σν′

ρ
, (7.8)

using Pµ′α′Pα′
ν′ = Pµ′ν′ and the definition of ρ from Eq. (2.98).

Moving to the next order in λ, we arrive at the condition

k
(0)
∥ k

(1)
∥ = Pµ′ν′k

(0)µ′

⊥ k
(1)ν′

⊥ . (7.9)

We immediately see that we have freedom to set both of the first-order terms to 0. This
would then continue at each higher order in λ which means that all higher order terms
are 0. This gives us an exact expression for our null vector,

kµ = gµ
µ′

(︄
uµ′ − Pµ′

ν′σν′

ρ

)︄
. (7.10)

The first-order singular field in the highly regular gauge can be written in terms of a
gauge transformation from the Lorenz gauge as

hS1
µν = hS1∗

µν + Lξgµν , (7.11)

where the first-order singular field in the Lorenz gauge can be written covariantly as [96,
138]

hS1∗
µν =

2m
λρ

gµ
µ′
gν

ν′
(gµ′ν′ + 2uµ′uν′) +

mλ0

ρ3 gµ
µ′
gν

ν′
[(ρ2 − r2)aσ(gµ′ν′ + 2uµ′uν′)

+ 8rρ2a(µ′uν′)] + O(λ). (7.12)
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Applying our gauge conditions from Eqs. (7.1) and (7.2) to Eq. (7.11), we see that

(hS1∗
µν + 2ξ(µ;ν))k

ν = 0 (7.13)

and
(hS1∗ + 2ξ(µ;ν))e

µ
Ae

ν
BΩAB = 0 (7.14)

respectively. We must then solve for the gauge vector that enforces these conditions.

7.2 Covariant expression for the gauge vector

To ensure that the highly regular gauge condition is satisfied on the worldline, we solve
for the gauge vector through order λ by using the ansatz

ξµ = gµ
µ′
[︃
ln(ρ)X0

µ′ + Y 0
µ′ +

Z0
µ′ν′σν′

ρ
+ λ

(︂
ρ ln(λρ)X1

µ′ + ρY 1
µ′ + Z1

µ′ν′σν′)︂]︃
+ O

(︂
λ2
)︂
,

(7.15)
where the numerical superscript indicates the order in λ that the terms appear at. This
method was previously used by Spiers [142] to find part of the leading-order piece of the
gauge vector. Note, for generality, we do not assume that Zn

µ′ν′ is symmetric. However,
as the singular field of the Lorenz gauge only features acceleration terms (which when
expanded become order-ϵ2 terms) at order λ0, we can immediately set

X1
µ′ = Y 1

µ′ = Z1
µ′ν′ = 0, (7.16)

leaving us with

ξµ = gµ
µ′
(︄

ln(ρ)X0
µ′ + Y 0

µ′ +
Z0

µ′ν′σν′

ρ

)︄
+ O

(︂
λ2
)︂
. (7.17)

When differentiating this expression, we arrive at

ξµ;ν = −gµ
µ′
gν

ν′

λρ

(︄
Z0

µ′ν′ +
1
ρ
X0

µ′Pα′ν′σα′ − 1
ρ2Z

0
µ′α′Pβ′ν′σα′

σβ′
)︄
+ O(λ). (7.18)

Eq. (7.13) becomes

0 = − gµ
µ′
[︄

1
ρ

(︂
2muµ′ −X0

µ′ + 2uα′
Z0
(µ′α′)

)︂
+

1
ρ2 (Pα′µ′σα′ {︂2m+ uβ′

X0
β′

}︂
+ Z0

µ′α′σα′ − 2Pβ′ ν
′
σβ′

Z0
(µ′ν′)) − 1

ρ3

(︂
Pµ′β′σβ′

σα′ {︂
Pα′ ν

′
X0

ν′ + uν′
Z0

ν′α′

}︂)︂
+

1
ρ4Pµ′ν′Pβ′ ι

′
σα′

σβ′
σν′

Z0
ι′α′

]︄
, (7.19)
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where all terms are order λ−1. By inspection, we see that this can be solved by setting

X0
µ′ = 2muµ′ , (7.20)

Z0
µ′ν′ = APµ′ν′ , (7.21)

where A is an unknown constant.

We now move onto the angular traceless condition from Eq. (7.2). To simplify this
calculation, we rewrite the inverse of the four dimensional metric in terms of a null basis

gµν = −Nµkν − kµNν + ΩABeµ
Ae

ν
B, (7.22)

where kµ is the same as the one given in Eq. (7.10) and Nµ is an undetermined null
vector with conditions Nµe

µ
A = 0 and Nµkµ = −1. Rearranging, we see that

ΩABeµ
Ae

ν
B = gµν +Nµkν + kµNν . (7.23)

We then combine this with the trace condition from Eq. (7.2) and the null vector condition
from Eq. (7.1) to see that

hHR
µν e

µ
Ae

ν
BΩAB = hHR

µν g
µν = 0. (7.24)

Therefore we can simply trace over Eq. (7.11) using the four dimensional metric to
impose the final gauge condition. By explicitly expanding the projection operators in
terms of the metric and four velocity, we find that

A = m. (7.25)

Substituting our values for the previously undetermined coefficients into the gauge vector
from Eq. (7.15), we get

ξµ = gµ
µ′
[︃
2m ln(ρ)uµ′ + Y 0

µ′ +
m

ρ
Pµ′ν′σν′

]︃
+ O

(︂
λ2
)︂
. (7.26)

Note, however, that Y 0
µ′ is completely undetermined by the gauge condition. Therefore

we are free to set it to zero. Our final gauge vector is then given by

ξµ = gµ
µ′
[︃
2m ln(ρ)uµ′ +

m

ρ
Pµ′ν′σν′

]︃
+ O

(︂
λ2
)︂
. (7.27)

The logarithm term in the gauge vector at leading order was originally found by Spiers
[142], where ρ ∼ ρ0, σα′ ∼ ∆xα′ and gν

µ′ ∼ δµ′

ν′ . In this section, we have calculated the
fully covariant form of the gauge vector through two orders and will expand it into a
generic coordinate expansion in the next section.
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7.3 Coordinate expansion of gauge vector

With our covariant expression for the gauge vector found, we now wish to convert it to
coordinates that can be used in the problem at hand. To do so requires us to re-expand
Eq. (7.27) in terms of the coordinate difference. This can be done using the methods
from Ch. 2.2.1.2. Using the expansion for ρ derived in Eqs. (2.104a)–(2.104d), we can
expand the functions of ρ that appear in the gauge vector as

1
ρ
=

1
λρ0

(︃
1 − λ

2ρ2
0

Γα′
µ′ν′Pα′β′ ∆xµ′

∆xν′
∆xβ′

)︃
+ O(λ) (7.28)

and
ln(ρ) = ln(ρ0) +

λ

2ρ2
0

Γα′
µ′ν′Pα′β′ ∆xµ′

∆xν′
∆xβ′

+ O
(︂
λ2
)︂
. (7.29)

Using the previous two expressions along with the expansions of Synge’s world function,
Eqs. (2.96a)–(2.96d), and the parallel propagator, Eqs. (2.107a)–(2.107c), the coordinate
expansion of the gauge vector is given by

ξµ =

(︃
2m ln(ρ0)uµ′ − m

ρ0
Pµ′ν′ ∆xν′

)︃
+ λ

(︃
2m ln(ρ0)Γα′

µ′ν′ ∆xν′
uα′

− m

ρ0
Γα′

µ′β′ ∆xβ′
∆xν′

Pα′ν′ +
m

2ρ3
0

Γγ′

α′β′ ∆xα′
∆xβ′

∆xν′
∆xι′

Pµ′ν′Pγ′ι′

+
m

ρ2
0

Γι′
α′β′ ∆xα′

∆xβ′
∆xν′

Pι′ν′uµ′ − m

2ρ0
Γν′

α′β′ ∆xα′
∆xβ′

Pµ′ν′

)︃
+ O

(︂
λ2
)︂

(7.30)

7.4 Gauge vector components in Schwarzschild spacetime

In this section, we detail the process of calculating the gauge vector’s components in the
Schwarzschild spacetime. We follow the methods previously presented in Refs. [137, 138,
143]. Before proceeding, as we are going to introduce a number of coordinate systems,
we must ensure that our notation is clear. As we have completed the calculation for
the form of the vector, we can dispense with the old notation that an unprimed index
refers to a point in the field and a primed index refers to a point on the worldline. We
proceed with the understanding that all quantities are defined on the worldline except
for ∆xµ which refers to a coordinate difference. We will introduce three coordinate
systems that only differ in the angular section: (θ,ϕ) coordinates, (α,β) coordinates
and (w1,w2) coordinates. These three bases will be denoted with unprimed, primed and
double primed indices, respectively.

The Schwarzschild solution [185, 186] in (t, r, θ,ϕ) coordinates is given by

ds2 = −f(r) dt2 + f−1(r) dr2 + r2 dΩ2 (7.31)
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where
f(r) :=

r− 2M
r

(7.32)

and
dΩ2 = dθ2 + sin2(θ) dϕ2 . (7.33)

The Schwarzschild manifold can be written as the Cartesian product, M = M2 × S2,
between the (t, r) plane, M2, and the unit two-sphere, S2.

Following Refs. [137, 143], when considering a circular orbit in Schwarzschild, we can
write the four-velocity in terms of the specific energy,

E0 = f0

√︃
r0

r0 − 3M , (7.34)

and angular momentum,

L0 = r0

√︄
M

r0 − 3M , (7.35)

as
uµ = (−E0, 0, 0,L0), (7.36)

where f0 := f(r0) and r0 refers to r evaluated at the location of the small object. Note
that due to the spherical symmetry of the Schwarzschild spacetime, we can consider the
orbit to be equatorial without any loss of generality. The azimuthal frequency of the
orbit is given by

Ωϕ =
dϕp

dt
=

√︄
M

r3
0

. (7.37)

7.4.1 Coordinate systems

As discussed in the introduction to this chapter, we want to introduce a coordinate
system that instantaneously places the small object at the north pole. This method has
previously been used in, e.g. Refs. [187, 188], as it allows us to only calculate a small
number of m modes instead of the potentially hundreds that would be required for a
non-rotated system. By placing the particle at the north pole, we see from Eq. (D.23)
that all but the lowest m modes vanish (the exact one depends on the spin-weight being
considered). The new (α,β) coordinate system is related to the standard Schwarzschild
coordinates through the relations

sin θ cos(ϕ− ϕp) = cosα, (7.38a)

sin θ sin(ϕ− ϕp) = sinα cosβ, (7.38b)

cos θ = sinα sin β. (7.38c)

This transformation does not change the structural form of metric; i.e. we still have the
metric in the form of Eq. (7.31) but with (α,β) replacing (θ,ϕ), but has the effect of



126
Chapter 7. Lorenz gauge to highly regular gauge transformation in Schwarzschild

spacetime

moving the particle to the north pole. This is equivalent to an Euler angle rotation of
(ϕp,π/2,π/2) (using the z − y− z convention) [143].

Near the north pole, α = 0, we follow the method detailed in Refs. [137, 138, 143] and
adopt quasi-Cartesian Riemann normal coordinates on S2,

w1 = 2 sin
(︃
α

2

)︃
cosβ, (7.39a)

w2 = 2 sin
(︃
α

2

)︃
sin β. (7.39b)

which transform the metric to have the form

ds2 = −
(︄
r− 2M

r

)︄
dt2 +

(︄
r

r− 2M

)︄
dr2 + r2

{︄[︄
16 −w2

2(8 −w2
1 −w2

2)

4(4 −w2
1 −w2

2)

]︄
dw2

1

+ 2
[︄
w1w2(8 −w2

1 −w2
2)

4(4 −w2
1 −w2

2)

]︄
dw1 dw2 +

[︄
16 −w2

1(8 −w2
1 −w2

2)

4(4 −w2
1 −w2

2)

]︄
dw2

2

}︄
. (7.40)

Note that (w1,w2) are Riemann normal coordinates on S2 but (t, r,w1,w2) are not
Riemann normal coordinates on M. We perform our calculations in this coordinate
system to avoid the situation where the (α,β) coordinates become ill-defined on the
worldline of the small object. The (w1,w2) coordinate differences feature trigonometric
functions of α and β as well, simplifying the form of the integrals required in the mode
decomposition. Geometrically, when we are close to the particle, we can think of (w1,w2)

as coordinates on a two-dimensional Cartesian plane orthogonal to a sphere of constant
Schwarzschild radius. To see this, note that for small α,

w1 ∼ α cosβ, (7.41a)

w2 ∼ α sin β, (7.41b)

so α acts as a radial distance away from the particle with β acting as a polar angle
coordinate. Therefore, changes in (w1,w2) refer to movements around this plane whereas
a change in r gives a distance closer or further away to the central black hole.

Expressing the coordinate form of the gauge vector (7.30) in this basis requires us to
calculate the form of the metric, the four-velocity and the coordinate difference in the
(w1,w2) coordinate system. When evaluated on the particle, r = r0 and α = 0, the
metric takes the form

ds2|p = −
(︄
r0 − 2M

r0

)︄
dt2 +

(︄
r0

r0 − 2M

)︄
dr2 + r2

0(dw
2
1 + dw2

2), (7.42)

while the four-velocity in the (w1,w2) basis, denoted with a double prime, is given by

uµ′′ = lim
α→0

eµ
µ′′uµ = (−E0, 0,L0, 0). (7.43)
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These two quantities then allow us to construct the projection operator, Pµ′′ν′′ =

gµ′′ν′′ + uµ′′uν′′ , and the Christoffel symbols, Γα′′
β′′γ′′ , on the particle. The non-zero

components of the Christoffel symbols on the particle are given by

Γt
tr|p =

M

r0(r0 − 2m)
, (7.44)

Γr
µ′′ν′′ |p = diag

(︄
M(r0 − 2M)

r3
0

, − M

r0(r0 − 2M)
, −(r0 − 2M), −(r0 − 2M)

)︄
, (7.45)

Γw1
rw1 |p = Γw2

rw2 |p =
1
r0

. (7.46)

The coordinate difference is straightforwardly given by

∆xµ′′
= (0, ∆r, ∆w1, ∆w2)

=

(︃
0, ∆r, 2 sin

(︃
α

2

)︃
cosβ, 2 sin

(︃
α

2

)︃
sin β

)︃
, (7.47)

where we have written this in terms of α and β but, crucially, still in the (w1,w2) basis.

Finally, we can calculate the form of the ρ0 term that appears with the simple contraction

ρ2
0 = Pµ′′ν′′ ∆xµ′′

∆xν′′

=
2χr2

0(r0 − 2M)

r0 − 3M (δ2 + 1 − cosα), (7.48)

where
δ2 :=

∆r2

2χr0

r0 − 3M
(r0 − 2M)2 , (7.49)

and
χ := 1 − M

r0 − 2M sin2 β. (7.50)

This expression exactly matches equivalent expressions for ρ0 in Refs. [137, 143], as
expected.1

7.4.2 Carter tetrad

Instead of writing our gauge vector components in a coordinate basis, we opt instead to
write them in the Carter tetrad. This is a null basis that utilises the Newman–Penrose
formalism (see App. C) to write quantities in terms of spin-weighted scalars. The
Newman–Penrose formalism allows one to use spin-weighted spherical harmonics (see
App. D.2) as the basis for the mode decomposition. This has the advantage of simplifying
the integrals that need to be performed when computing the mode decomposition of the
gauge vector. We will discuss this further in Ch. 7.5.

1Ref. [143] uses the notation ρ0 and Ref. [137] uses ρ for what we refer to as ρ0.
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In Schwarzschild, the Carter tetrad is, matching the convention of Ref. [135], given by

lµ
′
=

1√
2f

(1, f , 0, 0), (7.51)

nµ′
=

1√
2f

(1, −f , 0, 0), (7.52)

mµ′
=

1√
2r

(0, 0, 1, i cscα), (7.53)

m̄µ′
=

1√
2r

(0, 0, 1, −i cscα), (7.54)

which satisfies the Newman–Penrose formalism conditions from Eqs. (C.1)–(C.3). To
avoid potential confusion, we will be using ℓ and m for harmonic mode numbers and
l and m for two of the components of the Carter tetrad. Note that we have defined
our Carter tetrad in the (α,β) coordinates as it is the properties of this coordinate
basis (where all but the lowest few m modes vanish) that we want to take advantage of
when decomposing into spin-weighted spherical harmonics. This is consistent with the
description of the method in Ref. [65, Ch 7.2] although using slightly different steps. In
Ref. [65, Ch 7.2], the Carter tetrad is defined in the (θ,ϕ) basis and coordinates and then
transformed to the (w1,w2) basis. A factor of e−is(β+π/2) is then inserted to account for
the rotation of the frame between (θ,ϕ) and (α,β). Through a quick calculation, one
can show that the resulting vector is exactly the same as if one defined the tetrad in the
(α,β) basis and transformed to the (w1,w2) basis, at least through the orders we are
working to.

Transforming to the (w1,w2) coordinates and keeping the leading two orders in distance
(which are now counted in powers of ∆r and α, following Eq. (7.47)) from the small
object, we get the Carter tetrad in our Riemann normal coordinates given by

lµ
′′
=

1√
2f0

(︃
1 − ∆r(1 − f0)

2f0r0
, f0 +

∆r(1 − f0)

2r0
, 0, 0

)︃
+ O

(︂
λ2
)︂
, (7.55)

nµ′′
=

1√
2f0

(︃
1 − ∆r(1 − f0)

2f0r0
, −f0 +

∆r(1 − f0)

2r0
, 0, 0

)︃
+ O

(︂
λ2
)︂
, (7.56)

mµ′′
=

1√
2r2

0

(︂
0, 0, (r0 − ∆r)e−iβ, i(r0 − ∆r)e−iβ

)︂
+ O

(︂
λ2
)︂
, (7.57)

m̄µ′′
=

1√
2r2

0

(︂
0, 0, (r0 − ∆r)eiβ, −i(r0 − ∆r)eiβ

)︂
+ O

(︂
λ2
)︂
, (7.58)

where, as before, we have left the angular dependence in terms of (α,β) coordinates but
with the expression in the (w1,w2) basis. These satisfy the Newman–Penrose formalism
conditions from Eqs. (C.1)–(C.3) through order λ.
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7.4.3 Gauge vector in the Carter tetrad

We may now calculate the components of the gauge vector by contracting the Carter
tetrad legs into the expression for the gauge vector from Eq. (7.30). The l leg of the
gauge vector is given by

ξl = −

√︄
2(r0 − 2M)

r0 − 3M m log(ρ0)

(︄
1 −

√︄
M

r0
cosβ sinα

)︄

+
m

ρ0

[︄
M
√︂

2r0(r0 − 2M) cos2 β

3M − r0
+

∆r2M − 2∆rr0(r0 − 2M) − 2r0(r0 − 2M)2

2
√

2r0(r0 − 2M)3/2

+

√︄
r0(r0 − 2M)

2 cosα
(︄

1 + 2M cos2 β

r0 − 3M

)︄
−

(∆r+ r0)
√︂

2M(r0 − 2M) cosβ sinα
2(r0 − 3M)

]︄

+
m

ρ2
0

[︄
∆r
(︂

∆r2M − 2r0(r0 − 2M)2
)︂

√︂
2(r0 − 3M)(r0 − 2M)3/2

−
2∆rMr0

√︂
2(r0 − 2M) cos2 β

(r0 − 3M)3/2

+
∆rr0

√︂
2(r0 − 2M) cosα(r0 − 3M + 2M cos2 β)

(r0 − 3M)3/2

]︄

+
m

ρ3
0

[︄
−∆r2√

r0

2
√

2(r0 − 3M)(r0 − 2M)5/2

[︂
(r0 − 3M)

(︂
∆r2M − 2r0(r0 − 2M)2

)︂
− 4Mr0(r0 − 2M)2 cos2 β

]︂
− ∆r2r0

3/2 cosα(r0 − 3M + 2M cos2 β)√
2(r0 − 3M)

√
r0 − 2M

+
∆rr0 cosβ sinα

2
√

2(r0 − 3M)2(r0 − 2M)3/2

[︂√
M (r0 − 3M)

(︂
∆r2M − 2r0(r0 − 2M)2

)︂
− 4M3/2r0(r0 − 2M)2 cos2 β

]︂
+

∆r
√
Mr0

2√
r0 − 2M cosα cosβ sinα√
2(r0 − 3M)2

× (r0 − 3M + 2M cos2 β)

]︄
+ O

(︂
λ2
)︂
, (7.59)

and the n leg by

ξn = −

√︄
2(r0 − 2M)

r0 − 3M m log(ρ0)

(︄
1 +

√︄
M

r0
cosβ sinα

)︄

+
m

ρ0

[︄
M
√︂

2r0(r0 − 2M) cos2 β

r0 − 3M − ∆r2M − 2∆rr0(r0 − 2M) − 2r0(r0 − 2M)2

2
√

2r0(r0 − 2M)3/2

−

√︄
r0(r0 − 2M)

2 cosα
(︄

1 − 2M cos2 β

r0 − 3M

)︄
−

(∆r+ r0)
√︂

2M(r0 − 2M) cosβ sinα
2(r0 − 3M)

]︄

+
m

ρ2
0

[︄
∆r
(︂

∆r2M − 2r0(r0 − 2M)2
)︂

√︂
2(r0 − 3M)(r0 − 2M)3/2

−
2∆rMr0

√︂
2(r0 − 2M) cos2 β

(r0 − 3M)3/2

+
∆rr0

√︂
2(r0 − 2M) cosα(r0 − 3M + 2M cos2 β)

(r0 − 3M)3/2

]︄
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+
m

ρ3
0

[︄
∆r2√

r0

2
√

2(r0 − 3M)(r0 − 2M)5/2

[︂
(r0 − 3M)

(︂
∆r2M − 2r0(r0 − 2M)2

)︂
− 4Mr0(r0 − 2M)2 cos2 β

]︂
+

∆r2r0
3/2 cosα(r0 − 3M + 2M cos2 β)√

2(r0 − 3M)
√
r0 − 2M

+
∆rr0 cosβ sinα

2
√

2(r0 − 3M)2(r0 − 2M)3/2

[︂√
M(r0 − 3M)

(︂
∆r2M − 2r0(r0 − 2M)2

)︂
− 4M3/2r0(r0 − 2M)2 cos2 β

]︂
+

∆r
√
Mr0

2√
r0 − 2M cosα cosβ sinα√
2(r0 − 3M)2

× (r0 − 3M + 2M cos2 β)

]︄
+ O

(︂
λ2
)︂
, (7.60)

The angular pieces are given by

ξm = me−iβ

√︄
2M

r0 − 3M log ρ0 − m sinαe−iβ

√
2ρ0(r0 − 3M)

[︂(︂
∆rM + r0(r0 − 2M)

)︂
cosβ

+ i(r0 − 3M)r0 sin β
]︂

− ∆r
√
Mme−iβ

√
2ρ2

0(r0 − 3M)3/2(r0 − 2M)2

[︂
(r0 − 3M)

×
(︂

∆r2M − 2r0(r0 − 2M)2
)︂
+ 2r0(r0 − 2M)2

(︂
(r0 − 3M) cosα

+ 2M(cosα− 1) cos2 β
)︂]︂

− ∆rmr0√
2ρ3

0(r0 − 2M)2(r0 − 3M)2

[︂
(e−2iβ − 5)M + 2r0

]︂
×
[︂
(r0 − 3M )

(︂
∆r2M − 2r0(r0 − 2M)2 + 2r0(r0 − 2M)2 cosα

)︂
+ 4Mr0(r0 − 2M)2(cosα− 1) cos2 β

]︂
sinα+ O

(︂
λ2
)︂
, (7.61)

with ξm̄ being the complex conjugate of the above.

7.5 Mode decomposition of the gauge vector

Having written the gauge vector in the Carter tetrad we can proceed with the mode
decomposition. As mentioned previously, as all of the gauge vector tetrad legs are
spin-weighted scalars, we may decompose each of them using spin-weighted spherical
harmonics; see App. D for properties of the spin-weighted spherical harmonics. This
method is described in Ch. 7.2 of Ref. [65] for the decomposition of the singular field but
the same principles apply for the gauge vector, with one major difference that will be
explained. We outline the method below before moving onto explicit calculations. We
also note that we use (ℓ, m) as labels for modes in the (θ,ϕ) coordinates and (ℓ, m′) as
labels for modes in the (α,β) coordinates.
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7.5.1 Outline of method

To begin, we combine our expressions for the gauge vector tetrad components with the
explicit representation of the spin-weighted spherical harmonics given in Eq. (D.23).
Before performing the integral over α, there is a complication that we must overcome.
This was previously discussed and a solution presented in Refs. [132, 137] and we
summarise here. The problem appears as the quantity ρ0 from Eq. (7.48) features
a non-physical, β dependent directional discontinuity at the south pole of our (α,β)
coordinate system. For example,

lim
β→0

lim
α→π

ρ0 =

√︄
4r2

0(r0 − 2M)

r0 − 3M +
r0∆r2

r0 − 2M , (7.62a)

lim
β→ π

2

lim
α→π

ρ0 =

√︄
r0

(︃
∆r2

r0 − 2M + 4r0

)︃
. (7.62b)

This discontinuity has the effect of vastly slowing down the rate of convergence when
summing over the ℓ modes. To handle this problem, Ref. [137] introduced a window
function to ‘smooth out’ the directional discontinuity. This was then refined in Ref. [132]
to be

Wn
m′(α) := 1 − n

2

(︄
(m′ + n− 2)/2

n/2

)︄
B

(︃1 − cosα
2 ; n2 , m

′

2

)︃
, (7.63)

where (n
k) is the binomial coefficient and

B(z; a, b) =
∫︂ z

0
ta−1(1 − t)b−1 dt (7.64)

is the incomplete Beta function [189, Ch. 8.17]. The window function behaves as
Wn

m′ = 1 + O(αn) at the north pole. As discussed in Refs. [132, 137], we do not wish
the window function to affect our expressions for the gauge vector, we only wish it to
cancel the non-physical behaviour at the south pole. Therefore, we choose n = 2, to
match the order in λ that we are discarding. Additionally, we enforce that m′ is even
so that for m′ odd we choose the smallest even integer above the current value. This
results in the window function taking the form

W2
m′(α) = cos2⌈ m′

2 ⌉
(︃
α

2

)︃
. (7.65)

Continuing on, we find that performing the α integral results in an expression with
the sum of two polynomials in δ2, from Eq. (7.49), each multiplied by a δ2-dependent
prefactor. As an example, for a power of ρ0, p, with s = m′ = 0 and no trigonometric
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functions of α, we get an expression of the form [65, Eqs. (448)–(449)]

δp+2(δ2 + 2)(p+2)/2
ℓ−(p+4)/2∑︂

i=0
aiδ

2i + log
(︄
δ2 + 2
δ2

)︄ ℓ+(p+2)/2∑︂
i=0

biδ
2i, p even, (7.66)

(δ2 + 2)(n+2)/2
ℓ∑︂

i=0
ciδ

2i + |δ|δn+1
ℓ∑︂

i=m′

diδ
2i, p odd. (7.67)

It is at this stage that the major difference between the method for the gauge vector
and for the singular field from Ref. [65] appears. We first note that δ2 counts powers
of distance squared as δ2 ∼ ∆r2 ∼ λ2. In the singular field case, one simply performs
a series expansion in δ on Eq. (7.66) up to the required order in λ to match the order
that the singular field goes up to. This can then be integrated over β resulting in either
a power series, elliptic integral or derivative of a hypergeometric function with respect
to one of its arguments, depending on whether we have an even power, odd power or
logarithm of δ, respectively. When integrating over β, the integral is identically zero
unless certain conditions are met: for m′ = 0, we require the powers of cosα and sin β
to both be even; for m′ even and ̸= 0, we require the powers of cosα and sin β to either
both be odd or both be even; for m′ odd, we require one of the powers to be even and
one to be odd. With this knowledge ahead of time, we can drastically reduce the amount
of integrals that we need to perform over α and β.

Returning to the differences between the approaches, the approximation in the singular
field case in δ2 is no longer possible when decomposing the gauge vector. We found
that doing this for the gauge vector introduced a large ℓ divergence when summing up
the modes. To see why this happens, note that in Eq. (7.66), the upper limit on the
sums depends on the value of ℓ. By truncating the series at some power in δ2, we throw
away some of the ℓ-dependent behaviour leading to the non-convergence when summing
up the final (ℓ, m′) modes. We believe this issue also appears in the singular field, but
it is not directly observed as any poor large ℓ behaviour in the puncture field will be
compensated for in the residual field, meaning that when recovering the physical field
by summing the puncture and residual fields, the large ℓ divergence will not occur. In
the gauge vector case, we cannot compensate for the large ℓ divergence in the same way,
necessitating us to keep all of the ℓ dependence in Eq. (7.66) when integrating over β.

Inspecting the individual terms, it’s not immediately clear how one would integrate a
term like

∆r2n log
(︄

2 + d2∆r2 − 2e sin2 β

d2∆r2

)︄(︄
d√︁

1 − e sin2 β

)︄2n

, (7.68)

or

∆r2n

(︄
d√

1 − e sin 2β

)︄2n(︄
2 + d2∆r2

1 − e sin2 β

)︄2k

, (7.69)
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for some positive integers n and k, where we have substituted in the expressions for
δ and χ from Eqs. (7.49)–(7.50) and let d :=

√︂
(r0 − 3M)/(2r0(r0 − 2M)2) and e :=

M/(r0 − 2M). However, we can perform an expansion of the non-ℓ dependent pieces
of Eq. (7.66), allowing us to perform the integrals over β analytically. These can all be
done in terms of hypergeometric functions or parameter derivatives of hypergeometric
functions which reduce to the power series or elliptic integrals mentioned previously. The
final expressions that one ends up with in the gauge vector case are substantially more
complicated than the singular field case due to the higher powers of δ that appear. In
Sec. 7.2.1 of Ref. [65], expressions for the mode-decomposed components of the punctures
are provided as functions of ℓ. Unfortunately, we have been unable to find a general
expression for the (ℓ, m′) modes of the punctures due to the complexity of the final
expressions that we find. Instead, we explicitly compute the mode coefficients up to
ℓ = 20 and for the specific m′ values that we need.

7.5.2 Integrals over α

Beginning the mode decomposition, we start by noting that all of the individual terms
in the gauge vectors have the form,

∼ cosn1 α sinn2 α cosn3 β sinn4 β

ρp
0

, (7.70)

or
∼ log(ρ0) cosn1 α sinn2 α cosn3 β sinn4 β. (7.71)

From Eq. (D.23), we know we can write the spin-weighted spherical harmonics explicitly
as

sYℓm(arccos(x),β) = asℓm(1 − x)ℓeimβ
ℓ−s∑︂
r=0

bsℓmr

(︄√︄
1 + x

1 − x

)︄2r+s−m

, (7.72)

where we have made the substitution x = cosα, and defined

asℓm :=
(−1)m

2ℓ

√︄
(ℓ+ m)!(ℓ− m)!(2ℓ+ 1)

4π(l+ s)!(l− s)!
, (7.73)

bsℓmr := (−1)ℓ−r−s

(︄
ℓ− s

r

)︄(︄
ℓ+ s

r+ s− m

)︄
, (7.74)

with (p
q) being the binomial coefficient. The reason that we have performed the change of

variables is that we found the computer algebra package we used to perform the integrals
(Mathematica [144]), calculated the integrals much more efficiently when not using
trigonometric functions. Thus we can combine the expressions from Eqs. (7.70)–(7.71),
the explicit expression for the spin-weighted spherical harmonics from Eq. (7.72) and
the window function from Eq. (7.65) to construct the integrand for the decomposition
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coefficients. We can factor out the non-α dependence in ρ0 by writing

ρ0 = K
√︁
δ2 + 1 − cosα, (7.75)

where

K :=

√︄
2χr2

0(r0 − 2M)

r0 − 3M , (7.76)

so that ρn
0 ∼ (δ2 + 1 − cosα)n/2. Therefore, to calculate the integral against a spin-

weighted spherical harmonic, it suffices to look at an integral of the form∫︂ 1

−1
2−m′/2xn1(δ2 − x+ 1)−p/2(x+ 1)

1
2 (n2+2r+s)(1 − x)

1
2 (2ℓ+m′+n2−2r−s) dx . (7.77)

Expressions of this form can readily be integrated by a computer algebra package, e.g.
Mathematica [144].

As an example of how to calculate the decomposition, we start with the case where p = 1
and ni = 0 in Eq. (7.70) and calculate the α integral when m′ is even. In this case,
Eq. (7.77) becomes

∫︂ 1

−1

2−m′/2(x+ 1)r+ s
2 (1 − x)

1
2 (2ℓ+m′−2r−s)

√
δ2 − x+ 1

dx

= i2ℓ+3m′+2r+s2−m′/2√
π(2 + δ2)r+s/2|δ|2ℓ+m′−2r−s

[︃√︁
2 + δ2Γ

(︂
1 + r+

s

2
)︂

× 2F̃ 1

(︃1
2, 1

2 (2r+ s− 2ℓ− m′); 1
2 (3 + 2r+ s); δ

2 + 2
δ2

)︃
− |δ|Γ

(︂
1 + ℓ+

m′

2 − r− s

2
)︂

2F̃ 1

(︃1
2, −r− s

2; 1
2 (3 + 2ℓ+ m′ − 2r− s); δ2

2 + δ2

)︃]︃
,

(7.78)

where Γ(x) is the Gamma function [189, Ch. 5] and

2F̃ 1(a, b; c; z) = 2F1(a, b; c; z)
Γ(c)

, (7.79)

is the regularised hypergeometric function [189, Eq. (15.1.2)]. This is defined from the
hypergeometric function which itself is given by [189, Eq. (15.2.1)],

2F1(a, b; c; z) = Γ(c)
Γ(a)Γ(b)

∞∑︂
s=0

Γ(a+ s)Γ(b+ s)

Γ(c+ s)s!
. (7.80)

While it appears that Eq. (7.78) is (potentially) imaginary, this is merely an artefact of
the way that Mathematica has written the output. When values for ℓ, m′, s and r are
substituted in then we recover a real function as expected. Combining Eq. (7.80) with
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Eq. (7.72), we can write a sum for generic s, ℓ and even m′ as

∫︂ 1

−1

W2
m′(arccosx)√
δ2 − x+ 1 sY

∗
ℓm(arccosx, 0) dx

= asℓm′

ℓ−s∑︂
r=0

bsℓmri
2ℓ+3m′+2r+s2−m′/2√

π(2 + δ2)r+s/2|δ|2ℓ+m′−2r−s

[︃√︁
2 + δ2Γ

(︂
1 + r+

s

2
)︂

2F̃ 1

(︃1
2, 1

2 (2r+ s− 2ℓ− m′); 1
2 (3 + 2r+ s); δ

2 + 2
δ2

)︃
− |δ|Γ

(︂
1 + ℓ+

m′

2 − r− s

2
)︂

2F̃ 1

(︃1
2, −r− s

2; 1
2 (3 + 2ℓ+ m′ − 2r− s); δ2

2 + δ2

)︃]︃
.

(7.81)

The sum itself appears very complicated but it collapses to the form of Eq. (7.67) when
the mode numbers are substituted in. For example, if we let s = 0, m′ = 0 and ℓ = 6,
then we find that the sum in Eq. (7.81) evaluates to

1√
13π

[︂√︁
2 + δ2

(︂
1 + 42δ2 + 280δ4 + 672δ6 + 720δ8 + 352δ10 + 64δ12

)︂
− |δ|

(︂
13 + 182δ2 + 728δ4 + 1248δ6 + 1040δ8 + 416δ10 + 64δ12

)︂]︂
, (7.82)

which has exactly the form that we would expect from Eq. (7.67).

The advantage of performing the integrals in this way is that we avoid having to repeat
the integrals multiple times for different values of (s, ℓ, m′), instead we may just perform
the integral once and then use the sum to generate our final expression. After calculating
the generating sum for the different cases, we then check that it gives the right result by
numerically calculating the integral and comparing the answer to ensure that we have
correctly performed the integral analytically.

The calculation of the integrals for different trigonometric factors and for odd p proceeds
in the same manner as our example above. One finds linear combinations of different
hypergeometric functions with some prefactor. These all collapse as expected to the
expected form, as in Eq. (7.67).

The even powers of p have a somewhat different structure though. We find that it is
not possible to compute the integral for generic (s, m′). Instead, we specialise to the
required s and m′ values and calculate the integral for generic ℓ. We illustrate this
for the simplest case where p = 2, ni = 0, s = 0 and m′ = 0. Choosing these values,
Eq. (7.77) becomes ∫︂ 1

−1

(1 − x)ℓ−r(1 + x)r

δ2 + 1 − x
dx . (7.83)
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As ℓ− r and r are always integers, we find it most convenient to use the binomial theorem
to calculate the integral,

∫︂ 1

−1

(1 − x)ℓ−r(1 + x)r

δ2 + 1 − x
dx =

ℓ−r∑︂
k1=0

r∑︂
k2=0

(︄
ℓ− r

k1

)︄(︄
r

k2

)︄∫︂ 1

−1

(−x)k1xk2

δ2 + 1 − x

=
ℓ−r∑︂

k1=0

r∑︂
k2=0

(−1)k1

(︄
ℓ− r

k1

)︄(︄
r

k2

)︄
(1 + δ2)k1+k2

×B
(︂
− 1

1 + δ2 , 1
1 + δ2 ; 1 + k1 + k2, 0

)︂
(7.84)

where
B(z0, z1; a, b) =

∫︂ z1

z0
ta−1(1 − t)b−1 dt , (7.85)

is the generalised incomplete beta function. This reduces to the incomplete beta function
from Eq. (7.64) when z0 = 0. We can do as in Eq. (7.81) and write the integral against
the spin-weighted spherical harmonic for generic ℓ as

∫︂ 1

−1

W2
0 (arccosx)
δ2 − x+ 1 Y ∗

ℓ0(arccosx, 0) dx

= a0ℓ0

ℓ∑︂
r=0

b0ℓ0r

ℓ−r∑︂
k1=0

r∑︂
k2=0

(−1)k1

(︄
ℓ− r

k1

)︄(︄
r

k2

)︄
(1 + δ2)k1+k2

×B
(︂
− 1

1 + δ2 , 1
1 + δ2 ; 1 + k1 + k2, 0

)︂
. (7.86)

As in the previous case, we have checked that the sum collapses to the expected form from
Eq. (7.66) and we have numerically evaluated the integral for specific values of ℓ and δ to
ensure that we have calculated the generic ℓ form correctly. The integrations for different
values of ni, s and m′ proceed in a similar fashion and feature linear combinations of
the incomplete beta functions multiplied by some (ni, s, ℓ, m′) dependent prefactor.

With the terms featuring logarithms, we proceed in a similar way to the even p case
and calculate an expression for generic ℓ but with specific s and m′. For example, for
s = m′ = 0, we have

1
2

∫︂ 1

−1
(1 − x)ℓ−r(1 + x)r log

(︂
δ2 + 1 − x

)︂
dx

= 2ℓΓ(2 + ℓ− r)
[︂r! log

(︁
δ2 + 2

)︁
Γ(ℓ+ 2) − 2Γ(r+ 2)

δ2 + 2 3F̃ 2
(︂
1, 1, r+ 2; 2, ℓ+ 3, 2

δ2 + 2
)︂]︂

.

(7.87)

The quantity

pF̃ q(a1, . . . , ap; b1, . . . , bq; z) = pFq(a1, . . . , ap; b1, . . . , bq; z)
Γ(b1) · · · Γ(bq)

, (7.88)
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is the regularised generalised hypergeometric function [189, Eq. (16.2.5)] constructed
from the generalised hypergeometric function [189, Eq. (16.2.1)]

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑︂

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
, (7.89)

where
(a)n =

Γ(a+ n)

Γ(a)
, (7.90)

is Pochhammer’s symbol [189, Eq. (5.2.5)]. These reduce to Eqs. (7.79)–(7.80) for p = 2
and q = 1. As before, we have numerically checked all of the integrals to ensure we have
generated the correct analytic expressions. The form of the integrals for other ni, s, ℓ
and m′ all feature a similar structure but different factors in the gamma functions and
hypergeometric function depending on the specific value of (ni, s, ℓ, m′).

With all of the integrals calculated for generic ℓ, we can use our expression for the
spin-weighted spherical harmonic expressed as a sum and calculate the explicit form for
each ℓ, m′ and s required. We find that all resulting expression is in the form of either
Eq. (7.66) or Eq. (7.67), as expected. We then multiply by the appropriate factor of K
from Eq. (7.76) to ensure we have the correct constant and β dependence. With this in
hand, and with all the analytic expressions checked against a numerical integration of
the same value, we can confidently proceed to performing the β integrals.

7.5.3 Integrals over β

As discussed in the text around Eqs. (7.68)–(7.69), it’s not clear how one can analytically
integrate terms of the form log

(︂
δ2+2

δ2

)︂
δ2i or (δ2 + 2)(n+2)/2δ2i when the expressions are

explicitly presented in terms of β. Instead, we choose to perform a series expansion in δ2

of the non-δ2i terms,

log
(︄
δ2 + 2
δ2

)︄
= log

(︃ 2
δ2

)︃
+ O

(︂
δ2
)︂
, (7.91)

(δ2 + 2)n/2 = 2n/2 + O
(︂
δ2
)︂
. (7.92)

We believe we are justified in performing this expansion as, even though we are throwing
away ℓ dependent terms, they are all suppressed by a factor of λ2 meaning that they
are at a higher order than what the gauge vector was calculated through. If we find, at
some later date, that we require a higher order approximation to these terms, it is fairly
trivial with the code we have written to extend this to whatever order is required.

After performing the approximation, we find that all remaining terms can be integrated
analytically. To do so, we take our mode coefficients and express them in terms of χ
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using Eq. (7.49). This results in expressions of the form

∑︂
i>0

ai

χi/2 , p odd, (7.93)

∑︂
i≥0

bi + ci log(χ)
χi

, p even or log, (7.94)

where the specific limits on the sums depend on ℓ, m′ and s. These will potentially also
be multiplied by a trigonometric factor coming from the gauge vector expressions. For
m′ > 0, we will also introduce exponential functions. We find the best way to handle
these is to express them in terms of trigonometric functions so that our expressions
just feature inverse powers of χ multiplied by either sin β, cosβ, logχ or some constant
function.

To perform the integrals, for terms featuring no logs, we may use Eq. (3.681.1) of
Ref. [190]

∫︂ π
2

0

sin2µ−1(x) cos2ν−1(x)

(1 − k2 sin2(x))ρ
dx =

1
2B(µ, ν) 2F 1(µ, ρ;µ+ ν; k2),

Reµ > 0, Re ν > 0. (7.95)

where B(µ, ν) is the Beta function (Eq. (7.85) with z0 = 0 and z1 = 1) and the
denominator is χ, given in Eq. (7.50), with k2 = M/(r0 − 2M). One note is that the
integration limits on Eq. (7.95) are between 0 and π/2. As stated previously, this integral
vanishes unless both powers of sin β and cosβ are even. This can be seen from a simple
periodicity argument. In the case where the integrals do not vanish, we can simply
multiply the final result from Eq. (7.95) by four to get the integration over (0, 2π).

For the term featuring logs, we take a derivative of Eq. (7.95) with respect to ρ, so that

∫︂ π/2

0

sin2µ−1(x) cos2ν−1(x)

(1 − k2 sin2(x))ρ
log
(︂
1 − k2 sin2 x

)︂
dx

= −1
2B(µ, ν)2F

(0,1,0,0)
1 (µ, ρ;µ+ ν; k2), (7.96)

where
2F

(0,1,0,0)
1 (α,β; γ; ζ) := ∂b

(︂
2F1(a, b; c; z)

)︂⃓⃓⃓
a=α,b=β,c=γ,z=ζ

, (7.97)

is the derivative of the hypergeometric function with respect to its second parameter.

With the β integrals complete, we now have the modes of our gauge vector in the
(ℓ, m′) basis. We have checked that the analytic modes of the gauge vector that we
have obtained are the same as those that would be obtained by numerically integrating
the full expressions from Eqs. (7.59)–(7.61). It appears that the individual analytically
calculated modes have a relative error of between 0.01% and 1% when compared to the
numerically calculated modes for M = 1, r0 = 10 and ∆r = 1/2. If one desired a higher



7.6. Rotation between (α,β) and (θ,ϕ) coordinates 139

Figure 7.1: Figure illustrating the action of the Euler angle rotations in our spacetime.
We rotate the small object to ϕ = 0 before rotating it to the north pole. We then align

the small object’s tangent vector with β̂.

accuracy then it is fairly trivial to do as one can perform higher order Taylor expansions
of the quantities in Eq. (7.91). This will generate more complicated expressions but the
code we have written is easily extendible to be able to handle this. We must now convert
these into modes in the (ℓ, m) basis which we do so in the following section.

7.6 Rotation between (α, β) and (θ, ϕ) coordinates

With our gauge vector decomposed in the rotated coordinate system (primed indices),
we can now rotate back to the original (θ,ϕ) system (unprimed indices) to sum the
modes. To do this, we make use of the Wigner D-matrix [191, 192]. These are described
in App. D.3 and allow one to related modes calculated in one basis to modes calculated
in another if the two bases are related by a rotation using Euler angles. Euler angles
represent rigid body rotations using a composition of three rotations around two of the
coordinate axes.

In our case, the rotation to put the small object at the north pole is described by the
Euler angles (ϕp(t),π/2,π/2) [143]. Fig. 7.1 provides a visual depiction of the rotation
process. We first rotate around the z axis by ϕp(t) to move our small object to ϕ = 0.
The next step is to rotate our small object to the north pole; this is done using a rotation
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of π/2 around the y axis. The final step is to rotate around the z axis by π/2 to ensure
that the tangent vector to the small object’s worldline points in the direction of β̂.

The mode coefficients of the tetrad legs in the (θ,ϕ) basis can be written in terms of
those in the (α,β) basis using Eq. (D.27),

ξℓm
a =

ℓ∑︂
m′=−ℓ

Dℓ
mm′(ϕp(t),π/2,π/2)ξℓm′

a (7.98)

where we use a to denote one of the NP tetrad legs, as in App. C. It may seem at first that
we need to calculate an m′ for every ℓ that we calculate, however, this is not the case.
When summed against a spin-weighted spherical harmonic, the Wigner-D matrix, with
our specific angles, picks out certain m′ values. For example, say we want to evaluate a
spin-weight zero function at θ = π/2 and ϕ = 2, we see that

f(π/2, 0) =
∞∑︂

ℓ=0

ℓ∑︂
m=−ℓ

ℓ∑︂
m′=−ℓ

Dℓ
mm′(ϕp,π/2,π/2)fℓm′Yℓm(π/2,ϕp)

=
∞∑︂

ℓ=0

√︄
2ℓ+ 1

4π fℓ0, (7.99)

with the understanding that the mode labels refer to the (ℓ, m′) basis. To calculate
this, we explicitly calculate the form of the individual ℓ modes and find the sequence
that it corresponds to. Thus we know that we can just calculate the m′ = 0 mode to
fully determine this function. This can be done for different spin weights, leading to
similar results but with a different m′ being required. One additional case appears,
which is where we have a factor of m in the expression. This can occur after taking time
derivatives of the gauge vector, as ∂tξ

ℓm′
a ∼ mξℓm′

a ; the reason why will be explained in
the next section. Taking Eq. (7.99) and inserting a factor of m, we see that

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

ℓ∑︂
m′=−ℓ

mDℓ
mm′(ϕp,π/2,π/2)fℓm′Yℓm(π/2,ϕp)

=
∞∑︂

ℓ=1
i

√︄
ℓ(ℓ+ 1)(2ℓ+ 1)

4π fℓ1, (7.100)

picking out a different value of m′. With this noted, we can repeat this procedure for
different values of s to precalculate the action of summing over the Wigner-D matrix
and the spin-weighted spherical harmonics, avoiding having to calculate modes that will
be cancelled in the final result.
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7.7 Perturbations in Carter tetrad

To see what the perturbation components are in terms of the gauge vector, we first
decompose the perturbations into spin-weighted spherical harmonics [135, 193]

∆h1
ab =

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

∆h1ℓm
ab Yℓm, (7.101)

∆h1
aA =

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

rλ1√
2

[︂
−1YℓmmA

(︂
∆h1ℓm

a+ − i∆h1ℓm
a−

)︂
− 1Yℓmm̄A

(︂
∆h1ℓm

a+ + i∆h1ℓm
a−

)︂]︂
, (7.102)

∆h1
AB =

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

(︂
∆h1ℓm

◦ ΩABYℓm +
r2λ2

2
[︂

−2YℓmmAmB(∆h1ℓm
+ − i∆h1ℓm

− )

+ 2Yℓmm̄Am̄B(∆h1ℓm
+ + i∆h1ℓm

− )
]︂)︂

, (7.103)

where we have converted the expressions, originally written in vector and tensor harmonics,
into spin-weighted spherical harmonics, and λs is given by Eq. (D.12). Here we use the
notation of Ref. [135], so that a lowercase Latin letter indicates a tensor on the manifold
M2 and an uppercase Latin letter indicates a tensor on the manifold S2.

It has been shown in Ref. [135] that components of the gauge perturbation’s mode
decomposition can be given in terms of the gauge vector by2

∆h1ℓm
ab = 2δ(aξℓm

b) , (7.104)

∆h1ℓm
a+ = ξℓm

a + δaξ
ℓm
+ − 2rar

−1ξℓm
+ , (7.105)

∆h1ℓm
a− = δaξ

ℓm
− − 2rar

−1ξℓm
− , (7.106)

∆h1ℓm
◦ = 2rraξℓm

a − ℓ(ℓ+ 1)ξℓm
+ , (7.107)

∆h1ℓm
± = 2ξℓm

± , (7.108)

where δa is the covariant derivative on M2 and ra := ∂ar. Here, ξℓm
± come from a vector

harmonic decomposition of the gauge vector. By writing the vector harmonics in terms
of spin-weighted spherical harmonics and contracting with mA or m̄A, one can show that
ξℓm

± can be written in terms of the Carter tetrad by

ξℓm
+ =

r√
2λ1

(ξℓm
m̄ − ξℓm

m ), (7.109)

ξℓm
− =

ir√
2λ1

(ξℓm
m + ξℓm

m̄ ). (7.110)

2Note that these expressions do not exactly match those of the original paper. This is due to the
fact that the original paper expands ξµ whereas we are expanding ξµ. This results in extra factors of r2

appearing which may end up differentiated, giving the expressions a slightly different structure.
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Any radial derivatives that appear in Eqs. (7.104)–(7.106) are straightforward to compute
as the only r dependence in the gauge vector decomposition is contained inside ∆r. When
performed in the (θ,ϕ) coordinate system, the t derivative has the effect of multiplying
the original expression by −imϕ̇p(t), e.g.

∂tξ
ℓm
t = −imϕ̇p(t)ξ

ℓm
t . (7.111)

To see why, we note that the only t dependency in the gauge vectors is through the
Wigner D-matrix when it rotates the system by ϕp(t). Rewriting Eq. (D.25), we see that

Dℓ
mm′(ϕp(t),π/2,π/2) = im

′

√︄
4π

2ℓ+ 1 −m′Y ∗
ℓm

(︃
π

2 ,ϕp(t)

)︃

= im
′

√︄
4π

2ℓ+ 1 −m′Y ∗
ℓm

(︃
π

2 , 0
)︃
e−imϕp(t). (7.112)

Therefore, the t derivative has the effect of bringing down the factor of −imϕ̇p(t) from
the exponential contained in the spherical harmonic.

Evaluating the t derivatives is straightforward in the unrotated system but a subtlety
appears if we wanted to take t derivatives in the rotated coordinate system. This results
from the fact that in the (α,β) coordinate system, the particle is always at the north
pole, thus there is no obvious time dependence in the system. We can see this from
our expressions for the gauge vector as all the time dependence is contained within the
Wigner D-matrices. However, a resolution was presented in App. A of Ref. [132]. This
method expresses the time derivatives as a one-parameter family of rotations so that t is
no longer a coordinate but a parameter of the rotation. The full method is described in
Ref. [132] but it results in us being able to write time derivatives in the rotated system as

∂tfℓm′ =
1
2

√︄
M

r3
0

(︂
µ−

ℓm′fℓ,m′+1 − µ+ℓm′fℓ,m′−1
)︂

, (7.113)

where
µ±

ℓm′ :=
√︂
(l±m′)(l∓m′ + 1). (7.114)

Returning to the Carter tetrad, we can then immediately find ∆h1ℓm
ll , ∆h1ℓm

ln and ∆h1ℓm
nn

by contracting the relevant tetrad basis vector with Eq. (7.104). The various m and m̄
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components are given by [135]

∆h1ℓm
am = − λ1√

2r

(︂
∆h1ℓm

a+ + i∆h1ℓm
a−

)︂
(7.115)

∆h1ℓm
am̄ =

λ1√
2r

(︂
∆h1ℓm

a+ − i∆h1ℓm
a−

)︂
(7.116)

∆h1ℓm
mm = − λ2

2r2

(︂
∆h1ℓm

+ + i∆h1ℓm
−

)︂
(7.117)

∆h1ℓm
m̄m̄ =

λ2
2r2

(︂
∆h1ℓm

+ − i∆h1ℓm
−

)︂
(7.118)

∆h1ℓm
mm̄ =

1
r2 ∆h1ℓm

◦ . (7.119)

Combining the previous results, expanding r = r0 + ∆r and projecting onto the Carter
tetrad, we see that the components in the tetrad are given by

∆h1ℓm
ll = − 2ξℓm

l

(︃
2ϵ+ imΩϕ√

2f

)︃
+
√︁

2fξℓm
l,r , (7.120)

∆h1ℓm
nn = 2ξℓm

n

(︃
2ϵ− imΩϕ√

2f

)︃
−
√︁

2fξℓm
n,r , (7.121)

∆h1ℓm
ln = − imΩϕ√

2f

(︂
ξℓm

l + ξℓm
n

)︂
+ 2ϵ

(︂
ξℓm

n − ξℓm
l

)︂
+

√︄
f

2
(︂
ξℓm

n,r − ξℓm
l,r

)︂
, (7.122)

∆h1ℓm
lm =

1√
2fr

[︂
frξℓm

m,r − ξℓm
m

(︂
f + imΩϕr

)︂
−
√︁
fλ1ξ

ℓm
l

]︂
, (7.123)

∆h1ℓm
nm = − 1√

2fr

[︂
frξℓm

m,r − ξℓm
m

(︂
f − imΩϕr

)︂
+
√︁
fλ1ξ

ℓm
l

]︂
, (7.124)

∆h1ℓm
lm̄ =

1√
2fr

[︂
frξℓm

m̄,r − ξℓm
m̄

(︂
f − imΩϕr

)︂
+
√︁
fλ1ξ

ℓm
l

]︂
, (7.125)

∆h1ℓm
nm̄ = − 1√

2fr

[︂
frξℓm

m̄,r − ξℓm
m̄

(︂
f − imΩϕr

)︂
−
√︁
fλ1ξ

ℓm
l

]︂
, (7.126)

∆h1ℓm
mm = −

√︂
2(ℓ− 1)(ℓ+ 2)

r
ξℓm

m , (7.127)

∆h1ℓm
m̄m̄ =

√︂
2(ℓ− 1)(ℓ+ 2)

r
ξℓm

m̄ , (7.128)

∆h1ℓm
mm̄ =

√
2f
r

(︂
ξℓm

l − ξℓm
n

)︂
+

1
r

√︄
ℓ(ℓ+ 1)

2
(︂
ξℓm

m − ξℓm
m̄

)︂
, (7.129)

where ϵ is the NP spin coefficient defined in Eq. (C.8i). For quasicircular orbits in
Schwarzschild,

ϵ =
M [r0(r0 − 2M) − ∆r(2r0 − 3M)]

2
√

2r5/2
0 (r0 − 2M)3/2

. (7.130)

To sum up the modes to recover the full perturbation requires us to use the appropriate
spin-weighted spherical harmonic. Each m tetrad leg that appears adds one to the
spin weight required and each m̄ tetrad leg removes one to the spin weight required.
Therefore: ∆h1ℓm

ll , ∆h1ℓm
ln , ∆h1ℓm

nn and ∆h1ℓm
mm̄ each require spin weight zero (equivalent to
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a standard scalar spherical harmonic); ∆h1ℓm
lm and ∆h1ℓm

nm require spin weight one; ∆h1ℓm
lm̄

and ∆h1ℓm
nm̄ require spin weight minus one; ∆h1ℓm

mm requires spin weight two and finally,
∆h1ℓm

m̄m̄ requires spin weight minus two.

With the full gauge transformations calculated in the Carter tetrad, one can then combine
them with the expressions for the singular field in the Lorenz gauge from App. C of
Ref. [137] to find the form of the perturbations in the highly regular gauge. The Lorenz
gauge expressions are presented in the BLS basis but can be straightforwardly converted
to the Carter tetrad using the relations from Ch. 4.2.1 of Ref. [65]. We provide the
modes of the gauge vector in the Additional Material [141] so one may combine all these
quantities to construct the metric perturbations in the highly regular gauge.
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Conclusions and summary

In this final chapter, we summarise the work presented in this thesis and give potential
avenues for future research.

8.1 Summary of work presented in this thesis

There are five main results for this thesis. Firstly, in Ch. 4, we have derived the form
of the metric perturbations in a class of highly regular gauges that feature a much
weaker divergence than any gauge previously considered at second-order. This class of
gauges was originally introduced by Pound [81] to help alleviate the problem of infinite
mode coupling that appears when solving the second-order field equations. With the
weaker divergence, the highly regular gauge should help with this issue. Only the leading
order term of the metric perturbations was derived by Pound [81], we have derived the
metric perturbations to all orders required to perform a numerical implementation in
a puncture scheme and presented them in Eqs. (4.48)–(4.49). Secondly, in Ch. (6), we
converted the highly regular gauge metric perturbations that were originally written in
Fermi–Walker coordinates into a fully covariant form, in Ch. 6.2.3 and into a generic
coordinate expansion, in Ch. 6.3. This will allow others to easily implement the highly
regular gauge in any preferred coordinate system without having to calculate a potentially
complicated gauge transformation from some starting gauge to the highly regular gauge.
We were unable to successfully show that the highest-order pieces of the hS1,a

µν term
from Eq. (6.35) and hSR

µν term from Eq. (6.36) in the covariant expansion satisfied the
appropriate Einstein field equations but we have provided them (and all of the other
covariant and coordinate punctures) in a Mathematica notebook in the Additional
Material [141].

Thirdly, in Ch. 5.1, using the weaker divergence properties of the highly regular gauge, we
rigorously derived the form of a unique second-order stress-energy tensor that describes
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the system, which we gave in Eq. (5.27). We found, in Ch. 5.1.4, that this is merely
given by the stress-energy tensor of a point particle in an effective metric, g̃µν , allowing
one to rewrite the field equations in terms of effective quantities. This confirms a
previous conjecture by Detweiler [93] and, as such, we name this effective stress-energy
the Detweiler stress-energy tensor. The result demonstrates the validity of point masses
beyond linear order in perturbation theory and provides the physical interpretation of a
self-gravitating object both moving as and having the stress-energy of a test body in the
effective spacetime.

We demonstrated in Ch. 5.1.7 that this result is true in any gauge smoothly related to
the highly regular gauge and, in Ch. 5.2, it is also true in one of the most widely use
gauges in self-force, the Lorenz gauge. It is likely that this is true in other gauges as well
but will require the adoption of Detweiler’s canonical definition, from Eq. (5.67), for the
second-order Einstein tensor. In non-highly regular gauges, one is required to know the
local form of the metric perturbations before performing the calculation of stress-energy
tensor. This is in contrast to the highly regular gauge, where one can derive the result
purely using its distributional nature that is a consequence of the weaker divergence at
the worldline.

Our fourth result is the reformulation of the second-order Einstein equations, in Ch. 5.3.1,
and the second-order Teukolsky equation, in Ch. 5.3.2, to account for Detweiler’s
canonical definition of the second-order Einstein tensor and to provide a practical way
one could implement our distributional results in a numerical scheme. We had originally
worked with total quantities δGµν [h2] + δ2Gµν [h1,h1] = T 2

µν , meaning that the most
singular parts of the left-hand side of the equation cancelled each other by the canonical
definition. As stated in the text above Eq. (5.61), this meant we never had to calculate the
distributional nature of δ2Gµν [hS1,hS1] as it was cancelled by δGµν [hSS]. When moving
δ2Gµν [hS1,hS1] to the right-hand side of the equation, we used Detweiler’s canonical
definition and derived the distributional nature of this term in Eq. (5.104). This was a
divergent quantity but it acted as a counter term and exactly cancelled the divergent
behaviour that one would encounter if numerically integrating the expression. We also
calculated the delta function content in the source of the second-order Teukolsky equation
in Eqs. (5.123), (5.132) and (5.140). Some of the resulting expressions were too length
to include in the text of the thesis so have been included in the Additional Material [141].
It remains to calculate the form of any counter terms that may appear, as in the Einstein
field equations, but this is an avenue for future research and our derivation provides the
necessary steps for performing such a calculation.

The final result is the gauge transformation from the Lorenz gauge to the highly regular
gauge for quasicircular orbits in Schwarzschild in Ch. 7. We derived the form of the gauge
vector to all orders required, in Eq. (7.27). This built on work previously done by Spiers
[142]. The covariant form of the gauge vector was expanded into a generic coordinate form
in Eq. (7.30) and then written in the Newman–Penrose formalism in Eqs. (7.59)–(7.61).
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In Ch. 7.5, we developed an algorithmic way to perform the mode decomposition. We
began by calculating the polar integrals against spin-weighted spherical harmonics for
generic ℓ (and sometime for generic s and m′ as well). While the resulting expressions
featured complicated sums, we found that these reduced to sums of polynomials in δ2

multiplied by some δ-dependent prefactor, as expected from Ref. [65, Eqs. (448)–(449)].
We then performed an expansion of the non-ℓ dependent prefactor to the polynomials
that matched the order of the gauge vector we had calculated through. This was required
to analytically evaluate the integrals over β but we avoided truncating the polynomials in
δ2 as this would introduce poor behaviour at large values of ℓ. After performing the final
integration to find the modes of the gauge vector, we checked our analytically derived
modes for the gauge vector against a full numerical calculation of the modes and found
a relative error of, at worst, 1% between the two. As mentioned, if we wished to reduce
this error, we could just perform a higher order expansion of the δ dependent prefactors
that appear after doing the integral over α. In Ch. 7.7, we then used expressions from
Ref. [135] for the metric perturbations in terms of a gauge vector to construct the form
of the change in the metric perturbations induced by the gauge transformation. These
expressions were written in the Carter tetrad and were given in Eqs. (7.120)–(7.129).
We have provided the modes of the gauge vector in the Additional Material [141].

8.2 Future research

In terms of future directions for research following from this thesis, one obvious case is
to extend the highly regular gauge to include the case where the small object is spinning
or is not spherically symmetric. Our derivation specialised to a spherically symmetric,
non-spinning body and should be generalised to the more astrophysically relevant case.
It would be interesting to see how this affects the results for the Detweiler stress-energy
tensor as well. It may also be possible to make hSS

µν more regular by removing the r0

piece of the metric perturbation meaning that hSS
µν |γ = 0. We have attempted this but

so far been unsuccessful in our attempts to find the gauge transformation that performs
this task. It may be that these pieces contain physically meaningful information that
can not be gauged away. One could then generate covariant and coordinate punctures in
this case as well.

Following from the gauge conditions of the highly regular gauge, given in Ch. 7.1, one
can write the perturbations in terms of null vectors. For example, if one defines

kα =
gα′

α√
2

(︄
uα′ +

Pα′β′σβ′

ρ

)︄

=
gα′

α√
2ρ

(︂
σα′ + (r + ρ)uα′

)︂
, (8.1)
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so that kαkα = 0, one can write the the first-order singular field from Eq. (6.31) as

hS1◁a
αβ =

4m
λρ

kαkβ + O(λ). (8.2)

One can then write Eq. (8.2) in terms of these null vectors as

gµν = gµν + ϵhS1◁a
µν + O(ϵ),

= gµν + 2ϵV kµkν + O
(︂
ϵλ, ϵ2

)︂
, (8.3)

where V = 2m/(λρ), which has the form of a Kerr–Schild metric [194–196]. It would
be interesting to further explore the connection between the highly regular gauge and
Kerr–Schild gauges, potentially drawing on previous work by Harte [197] and Harte and
Vines [198].

We mentioned in the body of the thesis that it so far has not been possible to perform
mode-sum regularisation at second order due to the strength of the divergence encountered
on the worldline of the small object. With the highly regular gauge, however, this may
be possible. As stated in the introduction, the modes of the most singular part of the
second-order source in the highly regular gauge behave, at worst, as ∼ log(∆r). Because
we can think of δGµν [h2] ∼ ∂2h2, this implies the the modes of h2

µν could behave, at worst,
as ∼ ∆r2 log(∆r). This would be smooth enough to use for mode-sum regularisation.
With the knowledge of the second-order stress-energy tensor, one could directly solve
for the modes of h2

µν and construct the modes of the regular field by subtracting the
modes of the singular field from it. This may also be possible in the Lorenz gauge, using
our formulation from Ch. 5.3.1, but it is not immediately clear exactly how one would
implement this.

The weaker divergence would also be useful in a puncture scheme as well. As a first test,
one could use the methods of Ref. [137] to decompose the highly regular gauge puncture
into modes in the Schwarzschild spacetime. With the modes calculated, one could
calculate δ2Giℓm[hP1,hP1] using the methods of Ref. [135] to see how the modes behave
in this case. The best case result would be no longer encountering the infinite mode
coupling problem. One would then not have to use the method developed in Ref. [132]
to avoid this problem. As stated in the introduction, while the use of this method is
necessary to compute the second-order source, it also accounts for the overwhelming
majority of the computational cost of the calculation.

While not required for EMRI research, it would be conceptually interesting to see if
the result for the Detweiler stress-energy tensor can be extended to higher order in ϵ.
That is, does the point-mass view of the small object continue to remain valid at higher
perturbative orders? Is it always possible to think of the small object as a point mass in
an effective spacetime or is there some upper limit where this breaks down?
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With regards to the gauge transformation in Schwarzschild, the next step would be
to construct the modes of the change in the metric perturbation and test that, when
combined with the perturbations in the Lorenz gauge, they satisfy the highly regular
gauge conditions. We have had preliminary success with this as initial testing has
shown that the trace test from Ch. 7.1 is satisfied. However, we have not been able
to successfully show that the null vector test is satisfied. It is not entirely clear why
this is the case as the analytic gauge vector shows good agreement with the numerically
calculated one. This leads us to believe that this is an issue with the actual test itself or
the way in which we have constructed the ∆h1

µν ’s.

Finally, the work determining the delta content of the source for the Teukolsky equation
in Ch. 5.3.2 contributes to an international collaboration working towards solving the
Teukolsky equation in the Kerr spacetime. The first goal is to solve it in the case of
quasicircular orbits in Schwarzschild [199]. To incorporate our work into this requires us
to express the final source in Schwarzschild coordinates. Doing so, we explicitly write
the covariant delta function in terms of coordinate quantities and calculate how the
derivatives act upon them (if any do). This is done by writing the angular dependence as
a sum over spin-weighted spherical harmonics and acting upon the harmonics with the
angular derivatives. One also acts upon the (t, r) dependence in the delta functions by
taking derivatives of them, leaving us with δ′(r− r0), for example. Once in coordinates,
we can evaluate the integrals over the time coordinate that appear and explicitly find the
form of the delta content of the source. One final thing that must be done is to determine
if any counter terms appear in these expressions and calculate them to ensure that any
divergences cancel when numerically calculating the source. It would be interesting to
see if the method of introducing a counter term is equivalent to other regularisation
procedures that are performed in physics and mathematics, such as Hadamard or
dimensional regularisation.
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Appendix A

Correspondence between STF
expansion of the regular field and
derivatives of the regular field

This section details how to relate the STF tensors featured in the decomposition of
the regular field in Sec. 4.1 to derivatives of the field evaluated on the worldline. The
first two orders match those presented in App. B of Ref. [81] but with some STF labels
switched.1

At order r0

Â
(0,0)

= 0hR1
tt

⃓⃓⃓
γ
, (A.1)

B̂
(0,0)
a = 0hR1

ta

⃓⃓⃓
γ
, (A.2)

Ê
(0,0)
ab = 0hR1

⟨ab⟩

⃓⃓⃓
γ
, (A.3)
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=
1
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ab 0hR1
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⃓⃓⃓
γ
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At order r
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Ĉ
(1,1)
a =

1
2ϵa

bc 0hR1
tb,c

⃓⃓⃓
γ
, (A.7)

D̂
(1,1)

=
1
3

0hR1
ta,

a
⃓⃓⃓
γ
, (A.8)

Ê
(1,1)
abc = 0hR1

⟨ab,c⟩

⃓⃓⃓
γ
, (A.9)

1Eq. (B5h) in Ref. [81] has the prefactor 1/6 which has been corrected here in Eq. (A.12) to 1/3
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F̂
(1,1)
ab =

2
3ϵ

cd
(a

0hR1
b)c,d

⃓⃓⃓
γ
, (A.10)

Ĝ
(1,1)
a =

3
5

0hR1
⟨ab⟩,

b
⃓⃓⃓
γ
, (A.11)

K̂
(1,1)
a =

1
3δ

bc 0hR1
bc,a

⃓⃓⃓
γ
. (A.12)

Finally at order r2

Â
(2,0)

=
1
6

0hR1
tt,a

a
⃓⃓⃓
γ
, (A.13)

Â
(2,2)
ab =

1
2

0hR1
tt,⟨ab⟩

⃓⃓⃓
γ
, (A.14)

B̂
(2,0)
a =

1
6

0hR1
ta,b

b
⃓⃓⃓
γ
, (A.15)

B̂
(2,2)
abc =

1
2

0hR1
t⟨a,bc⟩

⃓⃓⃓
γ
, (A.16)

Ĉ
(2,2)
ab =

1
3ϵ

cd
(a

0hR1
|tc|,b)d

⃓⃓⃓
γ
, (A.17)

D̂
(2,2)
a =

3
10

0hR1
t

b
,⟨ab⟩

⃓⃓⃓
γ
, (A.18)

Ê
(2,0)
ab =

1
6

0hR1
⟨ab⟩,c

c
⃓⃓⃓
γ
, (A.19)

Ê
(2,2)
abcd =

1
2

0hR1
⟨ab,cd⟩

⃓⃓⃓
γ
, (A.20)

F̂
(2,2)
abc =

1
2 STF

abc

(︂
ϵa

pq 0hR1
⟨pb⟩,qc

⃓⃓⃓
γ

)︂
, (A.21)

Ĝ
(2,2)
ab =

6
7 STF

ab

(︂
0hR1

⟨ja⟩,
j
b

⃓⃓⃓
γ

)︂
, (A.22)

Ĥ
(2,2)
a =

1
5ϵa

cd 0hR1
bc,d

b
⃓⃓⃓
γ
, (A.23)

Î
(2,2)

=
1
10

0hR1
⟨ab⟩,

ab
⃓⃓⃓
γ
, (A.24)

K̂
(2,0)

=
1
18

0hR1
a

a,b
b

⃓⃓⃓
γ
, (A.25)

K̂
(2,2)
ab =

1
6

0hR1
c

c
,⟨ab⟩

⃓⃓⃓
γ
. (A.26)
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Appendix B

Lie derivative of the first-order
stress-energy tensor

For the transformation to the highly regular gauge, we are only concerned with worldline-
preserving transformations where the flow orthogonal to the worldline vanishes on the
worldline so that the position of the worldline is unchanged. However, it is interesting
to consider non-worldline preserving gauge transformations as well. As discussed in
Ref. [139], this necessitates the introduction of another Lie derivative, £, which generates
a flow by dragging points of the worldline, zµ, relative to points of the field, xµ. Instead
of Eq. (5.22), the second-order stress-energy tensor now transforms as

Tµν
2 = Tµν

2′ + (Lξ1 + £ξ1) T
µν
1 . (B.1)

The Lie derivatives of Tµν
1 were previously presented in Ref. [139]. Here we reproduce

(and correct a small error in) that result, and we derive analogous results for the Lie
derivatives of T 1

µ
ν and T 1

µν .

B.1 Lie derivatives of T µν
1

Eq. (5.10) may be written so that it is invariant under reparametrisation as [63]

Tµν
1 (x; z) = m

∫︂
γ
gµ

µ′(x, z)gν
ν′(x, z)żµ′

żν′ δ4(x, z)√︂
−gρ′σ′(z)żρ′

żσ′
ds , (B.2)

where gµ
µ′(x, z) is a parallel propagator from xµ′ := zµ to xµ, and żµ′ := dzµ′

ds . This form
is particularly useful for our calculations of Lie derivatives of Tµν

1 .
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The ordinary Lie derivative is evaluated in the standard way, so

Lξ1T
µν
1 = m

∫︂
γ

Lξ1

(︄
gµ

µ′(x, z)gν
ν′(x, z)żµ′

żν′ δ4(x, z)√︂
−gρ′σ′(z)żρ′

żσ′

)︄
ds . (B.3)

The Lie derivative of the Dirac delta is found by integrating against a test function and
is given by

Lξ1δ
4(x, z) = −

(︂
ξα′

1 ;α′ + ξα′
1 ∇α′

)︂
δ4(x, z). (B.4)

The other term in Eq. (B.3) is∫︂
γ

Lξ1 (W
µν) δ4(x, z) ds =

∫︂
γ

(︂
ξρ

1W
µν

;ρ − 2ξ(µ1 ;ρW
ν)γ
)︂
δ4(x, z) ds

= − 2
∫︂

γ
ξ
(µ
1 ;ρW

ν)γδ4(x, z) ds , (B.5)

where

Wµν :=
gµ

µ′gν
ν′ żµ′

żν′√︂
−gρ′σ′ żρ′

żσ′
(B.6)

In the second line of Eq. (B.5), we have used the identity gα
β′;βδ

4(x, z) = 0 [63] to
eliminate Wµν

;ρ. Taking our parameter s to be proper time, we see that∫︂
γ

Lξ1 (W
µν) δ4(x, z) ds = − 2

∫︂
γ
g
(µ
µ′ ξ

ν)
1 ;ρg

ρ
ν′u

µ′
uν′
δ4(x, z) dτ

= − 2
∫︂

γ
gµ

µ′g
ν
ν′u(µ

′Dξ
ν′)
1
dτ

δ4(x, z) dτ . (B.7)

The final line is obtained by integrating the previous line against a test field ϕµν :∫︂
ϕµν

∫︂
γ
g
(µ
µ′ ξ

ν)
1 ;ρg

ρ
ν′u

µ′
uν′
δ4(x, z) dτ dV =

∫︂
γ
ϕµ′ν′u(µ

′
ξ

ν′)
1 ;ρ′uρ′

dτ

=
∫︂
ϕµν

∫︂
γ
gµ

µ′g
ν
ν′u(µ

′Dξ
ν′)
1
dτ

δ4(x, z) dτ dV .

(B.8)

By combining Eqs. (B.4) and (B.7), we see

∫︂
γ

Lξ1

(︄
gµ

µ′gν
ν′ żµ′

żν′√︂
−gρ′σ′ żρ′

żσ′
δ4(x, z)

)︄
ds = −

∫︂
γ
gµ

µ′g
ν
ν′

[︄(︄
2u(µ′Dξ

ν′)
1
dτ

+ uµ′
uν′
ξρ′

1 ;ρ′

)︄

× δ4(x, z) + uµ′
uν′
ξρ′

1 ∇ρ′δ4(x, z)
]︄
dτ . (B.9)

This can be simplified by decomposing ξα′
1 into parallel and orthogonal parts,

ξα′
1 = −uα′

ξ1
∥ + ξα′

1⊥, (B.10)
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where ξα′
1⊥ := Pα′

β′ξβ′

1 . With this decomposition, we obtain

Lξ1T
µν
1 = −m

∫︂
γ
gµ

µ′g
ν
ν′

[︄
2u(µ′Dξ

ν′)
1⊥
dτ

δ4(x, z) + uµ′
uν′
(︄
ξρ′

1 ;ρ′ −
dξ1

∥
dτ

)︄
δ4(x, z)

+ uµ′
uν′
ξρ′

1⊥∇ρ′δ4(x, z)
]︄
dτ + O(ϵ), (B.11)

which agrees with Eq. (D1) in Ref. [139] (with the correction of the minus sign as
discussed in footnote 1 of Ch. 5).

As discussed in Ref. [139], because Tµν
1 can be written in the form

Aµν(x; z) =
∫︂

γ
Bµν(x, z(s))

√︂
−gµ′ν′ żµ′

żν′
ds , (B.12)

its Lie derivative with respect to the dependence on zµ is given by

£ξ1A
µν(x; z) =

∫︂
γ
ξρ′

1⊥∇ρ′Bµν(x, z) dτ . (B.13)

For Tµν
1 , we see that

Bµν = m
gµ

µ′gν
ν′ żµ′

żν′

−gρ′σ′ żρ′
żσ′ δ

4(x, z), (B.14)

which implies

£ξ1T
µν
1 = m

∫︂
γ
ξρ′

1⊥∇ρ′

(︄
gµ

µ′gν
ν′ żµ′

żν′

−gρ′σ′ żρ′
żσ′ δ

4(x, z)
)︄
ds

=
∫︂

γ
gµ

µ′g
ν
ν′

(︄
2u(µ′

ξ̇
ν′)
1⊥δ

4(x, z) + uµ′
uν′
ξρ′

1⊥∇ρ′δ4(x, z)
)︄
dτ , (B.15)

where we have used gα
β′;γ′δ4(x, z) = 0 and ξν

1⊥∇ν ż
µ = żν∇νξ

µ
1⊥. The latter identity

follows from Eq. (B1) in Ref. [139].

Eqs. (B.11) and (B.15) sum to give

(Lξ1 + £ξ1)T
µν
1 = −m

∫︂
γ
gµ

µ′g
ν
ν′uµ′

uν′
δ4(x, z)

(︄
ξρ

1;ρ −
dξ1

∥
dτ

)︄
dτ , (B.16)

which matches Eq. (D2) from Ref. [139] as expected (again with the missing minus sign
added). Note that this is also the same as Eq. (5.24) as £ξ1T

µν
1 = 0 for that specific

calculation.
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B.2 Lie derivatives of T 1
µν and T 1

µ
ν

The first-order stress-energy tensor with both indices down is given by

T 1
µν(x; z) = m

∫︂
γ
gµαgνβg

α
µ′(x, z)gβ

ν′(x, z)żµ′
żν′ δ4(x, z)√︂

−gρ′σ′(z)żρ′
żσ′

ds (B.17)

and with mixed indices by

T 1
µ

ν(x; z) = m

∫︂
γ
gµαg

α
µ′(x, z)gν

ν′(x, z)żµ′
żν′ δ4(x, z)√︂

−gρ′σ′(z)żρ′
żσ′

ds . (B.18)

To calculate the Lie derivatives of these quantities, we follow the same methods described
above. The results are

Lξ1T
1
µν = m

∫︂
γ
gµαgνβg

α
α′g

β
β′

(︂
2ξ1

ρ′;
(α′
uβ′)uρ′ − uα′

uβ′[︂
ξρ′

1 ;ρ′ + ξ̇
1
∥ + ξρ′

1⊥∇ρ′

]︂)︂
× δ4(x, z) dτ , (B.19)

Lξ1T
1
µ

ν = m

∫︂
γ
gµαg

α
α′gν

ν′

(︂
ξ1

ρ′;
α′
uν′
uρ′ − ξν′

1 ;ρ′uα′
uρ′ − uα′

uν′[︂
ξρ′

1 ;ρ′ + ξ̇
1
∥ + ξρ′

1⊥∇ρ′

]︂)︂
× δ4(x, z) dτ . (B.20)

Here and below, an overdot denotes a derivative with respect to τ .

The Lie derivatives at zµ follow trivially from Eq. (B.15). Since we can pass the
contraction through the derivative, as in gµρ£ξ1T

ρν
1 = £ξ1(gµρT

ρν
1 ), we get

£ξ1T
1
µν =

∫︂
γ
gµαgνβg

α
µ′g

β
ν′

(︂
2u(µ′

ξ̇
ν′)
1⊥δ

4(x, z) + uµ′
uν′
ξρ′

1⊥∇ρ′δ4(x, z)
)︂
dτ , (B.21)

£ξ1T
1
µ

ν =
∫︂

γ
gµαg

α
µ′g

β
ν′

(︂
2u(µ′

ξ̇
ν′)
1⊥δ

4(x, z) + uµ′
uν′
ξρ′

1⊥∇ρ′δ4(x, z)
)︂
dτ . (B.22)

Combining these results, we find

(Lξ1 + £ξ1) T
1
µν = m

∫︂
γ
gµαgνβg

α
α′g

β
β′

(︂
2ξ1

ρ′;
(α′
uβ′)uρ′

+ 2u(α′
ξ̇

β′)
1 + uα′

uβ′
ξ̇

1
∥

− uα′
uβ′

ξρ′

1;ρ′

)︂
δ4(x, z) dτ , (B.23)

(Lξ1 + £ξ1) T
1
µ

ν = m

∫︂
γ
gµαg

α
α′gν

ν′uν′(︂
ξ1

∥;
α′ − ξρ′

1;ρ′u
α′
+ ξ̇

α′

1 + uα′
ξ̇

1
∥

)︂
δ4(x, z) dτ . (B.24)
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Appendix C

Newman–Penrose formalism

Introduced by Newman and Penrose [200], the eponymous Newman–Penrose (NP)
formalism rewrites the equations and tools of general relativity in terms of spinor
calculus through the introduction of a null tetrad basis, eµ

a := (lµ,nµ,mµ, m̄µ)a, where
a ∈ {1, 2, 3, 4}. In this appendix, we outline the construction of the NP formalism and
provide definitions for NP quantities that will be used in this thesis. We mainly follow
the details from the original paper [200] with some additional information and identities
provided by Refs. [201, 202].

In the NP formalism, lµ and nµ are both real valued vectors and mµ is a complex
valued vector with m̄µ being its complex conjugate. The vectors satisfy the orthogonality
conditions1

lµlµ = nµnµ = mµmµ = m̄µm̄µ = 0, (C.1)

lµmµ = lµm̄µ = nµmµ = nµm̄µ = 0, (C.2)

lµnµ = −mµm̄µ = −1. (C.3)

It follows from these definitions that one may then write the metric as

gµν = −lµnν − nµlν +mµm̄ν + m̄µmν , (C.4)

with indices down and

gµν = −lµnν − nµlν +mµm̄ν + m̄µmν , (C.5)

with indices up.
1In Newman and Penrose’s original paper [200], they used the mostly-minus metric signature,

(+, −, −, −). However, in this thesis, we use the mostly-plus metric signature, (−,+,+,+), which has
the effect of introducing an overall minus sign to some expressions. For example, in the original paper,
lµnµ = −mµm̄µ = 1, which has the sign swapped in Eq. (C.3).
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The Ricci rotation coefficients (connection coefficients for orthonormal, non-holonomic
bases) for the tetrad can then be written as

γabc = eaµ;νe
bµecν . (C.6)

These are complex valued and antisymmetric in the first two indices,

γabc = −γbac. (C.7)

The different components of the Ricci rotation coefficients can then be expressed as 12
complex spin coefficients, defined as

κ := −mµDlµ, (C.8a)

τ := −mµ∆lµ, (C.8b)

σ := −mµδlµ, (C.8c)

ρ := −mµδ̄lµ, (C.8d)

π := m̄µDnµ, (C.8e)

ν := m̄µ∆nµ, (C.8f)

µ := m̄µδnµ, (C.8g)

λ := m̄µδ̄nµ, (C.8h)

ϵ := − 1
2
(︂
nµDlµ − m̄µDmµ

)︂
, (C.8i)

γ := − 1
2
(︂
nµ∆lµ − m̄µ∆mµ

)︂
, (C.8j)

β := − 1
2
(︂
nµδlµ − m̄µδmµ

)︂
, (C.8k)

α := − 1
2
(︂
nµδ̄lµ − m̄µδ̄mµ

)︂
, (C.8l)

where we have introduced notation for the directional derivatives, given by

Dϕ := lµ∇µϕ, (C.9a)

∆ϕ := nµ∇µϕ, (C.9b)

δϕ := mµ∇µϕ, (C.9c)

δ̄ϕ := m̄µ∇µϕ. (C.9d)

Directional derivatives of the tetrad legs are then given by

Dlµ = (ϵ+ ϵ̄)lµ − κ̄mµ − κm̄µ, (C.10a)

∆lµ = (γ + γ̄)lµ − τ̄mµ − τm̄µ, (C.10b)

δlµ = (ᾱ+ β)lµ − ρ̄mµ − σm̄µ, (C.10c)

δ̄lµ = (α+ β̄)lµ − σ̄mµ − ρm̄µ, (C.10d)
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Dnµ = − (ϵ+ ϵ̄)nµ + πmµ + π̄m̄µ, (C.10e)

∆nµ = − (γ + γ̄)nµ + νmµ + ν̄m̄µ, (C.10f)

δnµ = − (ᾱ+ β)nµ + µmµ + λ̄m̄µ, (C.10g)

δ̄nµ = − (α+ β̄)nµ + λmµ + µ̄m̄µ, (C.10h)

Dmµ = (ϵ− ϵ̄)mµ + π̄lµ − κnµ, (C.10i)

∆mµ = (γ − γ̄)mµ + ν̄lµ − τnµ, (C.10j)

δmµ = (β − ᾱ)mµ + λ̄lµ − σnµ, (C.10k)

δ̄mµ = (α− β̄)mµ + µ̄lµ − ρnµ, (C.10l)

Dm̄µ = (ϵ̄− ϵ)m̄µ + πlµ − κ̄nµ, (C.10m)

∆m̄µ = (γ̄ − γ)m̄µ + νlµ − τ̄nµ, (C.10n)

δm̄µ = (ᾱ− β)m̄µ + µlµ − ρ̄nµ, (C.10o)

δ̄m̄µ = (β̄ − α)m̄µ + λlµ − σ̄nµ, (C.10p)

One may also construct five complex-valued scalars, Ψn, from contractions of the tetrad
legs with the Weyl tensor, Cαβµν ,

Ψ0 := Cαβµν l
αmβlµmν , (C.11a)

Ψ1 := Cαβµν l
αnβlµmν , (C.11b)

Ψ2 := Cαβµν l
αmβm̄µnν , (C.11c)

Ψ3 := Cαβµνn
αlβnµm̄ν , (C.11d)

Ψ4 := Cαβµνn
αm̄βnµm̄ν . (C.11e)

These are known as Weyl scalars as they contain the information about the ten inde-
pendent components of the Weyl tensor. As we work in a vacuum background with
Rµν = 0, the Weyl and Riemann tensors coincide and we are free to swap between them
as required.
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Appendix D

Spin-weighted spherical harmonics
and Wigner-D matrices

This appendix details functions defined on the two-sphere, S2. In particular, we outline
the spherical harmonics, spin-weighted spherical harmonics and the Wigner-D matrix.
These will be used extensively in Ch. 7 when decomposing the gauge vector for the
transformation from the Lorenz gauge to the highly regular gauge, and in a number of
other places in this thesis.

D.1 Spherical harmonics

The spherical harmonics are defined as [189, Ch. 14]

Yℓm(θ,ϕ) =
√︄
(2l+ 1)(l− m)!

4π(l+ m)!
Pm

ℓ (cos θ)eimϕ, (D.1)

where ℓ ≤ m ≤ ℓ. Here,

Pm
ℓ (x) = (−1)m(1 − x2)m/2d

mPℓ(x)

dxm
, m ≥ 0 (D.2)

are the associated Legendre polynomials, defined in terms of derivatives of the Legendre
polynomials. The relation between positive and negative m values is given by

P−m
ℓ (x) = (−1)m (l− m)!

(l+ m)!
Pm

ℓ (x). (D.3)

Legendre polynomials themselves are solutions to the differential equation

(1 − x2)
d2Pℓ(x)

dx2 − 2xdPℓ(x)

dx
+ ℓ(ℓ+ 1)Pℓ(x) = 0. (D.4)
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The spherical harmonics are orthonormal on the unit two-sphere,∫︂
S2
YℓmY

∗
ℓ′m′ dΩ = δℓℓ′δmm′ , (D.5)

where dΩ := sin θ dθ dϕ, satisfy the completeness relation

∑︂
ℓm

Y ∗
ℓm(θ′,ϕ′)Yℓm(θ,ϕ) = δ(cos θ− cos θ′)δ(ϕ− ϕ′). (D.6)

and satisfy the symmetry relation

Yℓ,−m = (−1)mY ∗
ℓm, (D.7)

where the asterisk in the previous three expressions denotes complex conjugation.

As the spherical harmonics form an orthonormal basis, we may write a function of (θ,ϕ)
in terms of spherical harmonics as

f(θ,ϕ) =
∞∑︂

ℓ=0

ℓ∑︂
m=−ℓ

fℓmYℓm(θ,ϕ), (D.8)

where the angular dependence is solely contained in the spherical harmonics. To find the
coefficients, we integrate against the complex conjugate of the spherical harmonics, so
that

fℓm =
∫︂

S2
f(θ,ϕ)Y ∗

ℓm(θ,ϕ) dΩ . (D.9)

When evaluated at the north pole, all but the m = 0 modes vanish

Yℓm(0,ϕ) =

⎧⎨⎩
√︂

2ℓ+1
4π , m = 0,

0, |m| > 0.
(D.10)

D.2 Spin-weighted spherical harmonics

Spin-weighted spherical harmonics, sYℓm, are generalisations of the spherical harmonics
to objects with spin weight, s [203, 204]. An object, a, has spin weight, s, if it transforms
as a → aeisϕ under complex rotation of the basis, mµ → mµeiϕ. In this appendix, we
use sign conventions to match those of Ref. [135] when defining various quantities.

The spin-weight spherical harmonics can be defined by their relation to spherical har-
monics by

sYℓm =
1
λs

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)sðs

↑Yℓm, 0 ≤ s ≤ ℓ,

ð|s|
↓ Yℓm, −ℓ ≤ s ≤ 0,

0, |s| > ℓ,

(D.11)
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where

λs :=

√︄
(ℓ+ |s|)!
(ℓ− |s|)!

, (D.12)

and

ð↑a = (mADA − sDAm
A)a, (D.13)

ð↓a = (m̄ADA + sDAm̄
A)a, (D.14)

are the spin-raising/lowering operators, respectively, with A being an index on S2

and DA being the covariant derivative compatible with the metric on the unit sphere,
ΩAB = diag(1, sin2(θ))AB. They also have the properties that

sY
∗

ℓm = (−1)m+s
−sYℓ,−m, (D.15)

ð↑sYℓm = −
√︂
(ℓ− s)(ℓ+ s+ 1)s+1Yℓm, (D.16)

ð↓sYℓm =
√︂
(ℓ+ s)(ℓ− s+ 1)s−1Yℓm, (D.17)

ð↓ð↑sYℓm = − (ℓ− s)(ℓ+ s+ 1)sYℓm, (D.18)

are orthonormal on the unit two-sphere,∫︂
S2

sY
∗

ℓm sYℓ′m′ dΩ = δℓℓ′δmm′ , (D.19)

and satisfy the completeness relation,

∑︂
ℓm

sY
∗

ℓm(θ′,ϕ′)sYℓm(θ,ϕ) = δ(cos θ− cos θ′)δ(ϕ− ϕ′). (D.20)

As with the spherical harmonics, one can decompose a function of (θ,ϕ), with spin weight
s as

sf(θ,ϕ) =
∞∑︂

ℓ=0

ℓ∑︂
m=−ℓ

fℓm sYℓm(θ,ϕ), (D.21)

where the coefficients are given by

fℓm =
∫︂

S2
f(θ,ϕ)sY

∗
ℓm(θ,ϕ) dΩ . (D.22)

Finally, one can explicitly write the spin-weighted spherical harmonics as [203]

sYℓm(θ,ϕ) = (−1)m
√︄

2ℓ+ 1
4π

(ℓ+ m)!(ℓ− m)!
(ℓ+ s)!(ℓ− s)!

sin2ℓ
(︃
θ

2

)︃

×
ℓ−s∑︂
r=0

(︄
ℓ− s

r

)︄(︄
ℓ+ s

r+ s− m

)︄
(−1)ℓ−r−seimϕ cot2r+s−m

(︃
θ

2

)︃
. (D.23)
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This form is particularly useful when deriving the mode decomposition of the gauge
vector in Ch. 7.

D.3 Wigner D-matrix

To rotate the mode coefficients between two coordinate systems, as is required in Ch. 7,
one can make use of the Wigner D-matrix, Dℓ

mm′(α,β, γ) [191, 192]. The Wigner
D-matrix encodes information from Euler angles, (α,β, γ), which represent rigid body
rotations in three dimensional space: we rotate around the z axis by α, the y axis by β
and then finally around z again by γ. There are a number of differing sign conventions
for the Wigner D-matrices but we choose ours to be consistent with Ref. [137, 143]
(which are themselves consistent with Ref. [205]), so that

Dℓ
m1m2(α,β, γ) = e−i(m1α+m2γ)Dℓ

m1m2(0,β, 0). (D.24)

The Wigner D-matrix may also be written in terms of spin-weighted spherical harmonics
as [203, 204]

Dℓ
ms(α,β, γ) = (−1)s

√︄
4π

2ℓ+ 1−sY
∗

ℓm(β,α)e−isγ , (D.25)

which reduces to a relation in terms of regular spherical harmonics for s = 0,

Dℓ
m0(α,β, 0) =

√︄
4π

2ℓ+ 1Y
∗

ℓm(β,α). (D.26)

If we transform coordinates from (θ′,ϕ′) to (θ,ϕ), then the mode coefficients of a function,
f , in the new coordinates, fℓm, can be written in terms of the mode coefficients of the
old coordinates, fℓm′ , using

fℓm =
ℓ∑︂

m′=−ℓ

Dℓ
mm′(α,β, γ)fℓm′ . (D.27)

This statement is also true for the modes of spin-weighted functions as well [204]. Thus,
if f has spin weight s, we can sum over spin-weighted spherical harmonics to recover the
original function in terms of the mode coefficients in the old coordinates,

f(θ,ϕ) =
∑︂
ℓm

(︄
ℓ∑︂

m′=−ℓ

Dℓ
mm′(α,β, γ)fℓm′

)︄
sYℓm(θ,ϕ) (D.28)
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