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Systems of rod-shaped viruses have long been important to the
science of living liquid crystals, as their monodispersity and
uniform charge make them convenient model systems.
Recently, it was shown that, upon the addition of polymers,
suspensions of rod-shaped viruses form liquid crystals that are
linked with increased tolerance of bacteria against antibiotics.
We use homogenization to obtain effective equations
describing antibiotic diffusion through these liquid crystals.
The analytical results of homogenization are compared with
numerical results from an exact microscopic model, showing
good agreement and thus allowing us to identify the key
parameters behind the process. Our modelling shows that the
adsorption plays a key role in increasing antibiotic diffusion
time and therefore the presence of nematic rod-shaped viruses
may increase antibiotic tolerance through physical mechanisms
alone. These results demonstrate the applicability of
homogenization as an analytical tool to systems of liquid
crystalline viruses, with relatively straightforward extension to
more complex problems such as liquid crystalline biofilms,
other biological liquid crystals and biological systems with
different types of local structural order.
1. Introduction
Liquid crystals are ubiquitous in biology; an early example is
Reinitzer’s discovery of liquid crystals in experiments on carrot
extract [1]. Furthermore, throughout the rich history of the topic,
mathematical models of liquid crystals have frequently been
inspired by, and applied to, suspensions of rod-shaped viruses
due to their high degree of uniformity [2], starting with the
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celebrated Onsager theory of phase transitions in lyotropic liquid crystals [3]. Recently, the topic of liquid
crystalline viral suspensions has taken a new turn, with the discovery that the filamentous virus Pf4
forms liquid crystals in Pseudomonas aeruginosa biofilms [4], which are bacterial communities with a
complex structure; the bacteria are surrounded by a self-produced extracellular matrix consisting of
polymer substances.

Pf4 is a bacteriophage (henceforth phage): a virus that infects and undergoes replication
within bacteria. It has negative surface charge and is approximately 2 μm long and 6–7 nm in
diameter. In contrast to many other types of phages, Pf4 virions do not require host cell lysis to
replicate, developing a mutualistic relationship with their host. For Pf4, the host bacteria are
P. aeruginosa, with Pf4 infecting cells and also replicating within. Hence, the liquid crystal formation
occurs naturally in biofilms of P. aeruginosa, where they lead to increased tolerance against
antibiotics [4–6].

Antibiotic tolerance is the transient ability of bacteria to withstand a certain duration of antibiotic
treatment, for instance, through arresting bacterial growth. This is not to be confused with antibiotic
resistance, which is the inherent ability of bacteria to withstand a certain concentration of antibiotics,
regardless of treatment duration, and is vertically transmitted on to future generations, leading to
resistant populations (i.e. always due to genetic mutations). Antibiotic tolerance and resistance can be
induced by exposure to sub-lethal concentrations of antibiotics. The ability of bacteria to withstand
antibiotics is a growing area of concern in medicine and human health, and an important area of
research. In vitro, upon mixing with polymers that occur naturally in P. aeruginosa biofilms, the
filamentous virus Pf4 forms liquid crystalline droplets called tactoids [4]. An increased antibiotic
tolerance has been observed in bacteria encapsulated by Pf4 tactoids [6]. This may be due to a purely
physical barrier effect or the ability of phages, being anionic, to adsorb cationic antibiotics [4,7]. We
use homogenization to study the relative importance of these two factors and assess their relevance to
antibiotic tolerance.

Most of the polymers in P. aeruginosa biofilms are negatively charged, thus not interacting with the
anionic phages or each other, in the absence of multivalent cations that induce crosslinking [4]. This
means that the polymers can act as depleting agents according to the theory of Asakura & Oosawa
[8]. Furthermore, phase behaviour of rod-shaped components of biofilms, such as Pf4 virions, can be
described by Onsager’s theory [3]. Formation of liquid crystals has also been studied for
other biofilms than P. aeruginosa [9,10]. However, the topic is relatively novel and mathematical
modelling of liquid crystalline biofilms has been limited to cell-level simulations [9,10] and population
dynamics [11].

In this paper, we propose an analytically solvable continuum model to describe the diffusion and
adsorption antibiotics in liquid crystals formed by Pf4 virions. To achieve an analytical solution for
the complex microscopic structure of a liquid crystal, we apply the method of homogenization. This
mathematical technique describes systems in which scale separation occurs, so that the physics at a
macroscopic scale, and a much smaller microscopic scale, can be disentangled [12]. If the details of
such a system are regular on a microscopic scale, they can be homogenized; this means that the
microscopic structure is averaged out and what is left is a much simpler macroscopic structure,
governed by effective equations. These give the same results as the microscopic model, in the limit
that the microscopic scale becomes infinitesimal. The applicability of homogenization and the form of
the effective equations depend on the scaling of the parameters, hence each scaling regime needs to be
considered separately. An overview of the scaling regime dependence of homogenization for diffusion
and reaction in porous media has been given by Battiato & Tartakovsky [13].

Homogenization is applicable to liquid crystalline structures, since these are orientationally
ordered on a microscopic scale; the microscopic structure can be considered as a lattice of aligned
phages and we can straightforwardly define a small length scale of a lattice unit cell. For instance,
homogenization has been applied to liquid crystals by Bennett et al., among others [14–17]. In the
homogenization of diffusion and adsorption in liquid crystals, we exploit the similarity with reactive
diffusion in porous media, since homogenization has been widely applied in mathematical
descriptions of this phenomenon [13,18–24]. Hence, the homogenization of the model in this paper
follows the approach of Allaire [19].

We obtain a macroscopic, homogenized model, which can be compared in some simpler cases with
an exact, microscopic model solved using Comsol. These models serve to verify that homogenization is a
valuable means of analysis in the topic of liquid-crystal-induced antibiotic tolerance and biological
liquid crystals in general. We demonstrate this by showing that the homogenized model offers clear
insight into the parameters governing the system, allowing for efficient analysis. Furthermore, the
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Figure 1. A schematic illustration of the model: (a) a sketch of a tactoid (in blue), with phages (green) surrounding a bacterium
(red). Shaded in yellow is an example of a two-dimensional tactoid slice on which the model is solved. This domain is shown in (b).
The colour scale indicates a typical antibiotic concentration, from high (red) to low (blue), and circles represent phages. A unit cell of
this domain is enlarged in (c), with the indices j dropped for notational convenience.
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model is straightforwardly extendable to more complex geometries. Because our research is
interdisciplinary, it has two aspects: one physical and mathematical, and one biological. As a
consequence, we also obtain a set of biologically oriented results, concerned with whether tactoids can
cause antibiotic tolerance. These results are presented elsewhere in full detail [25].

The structure of this paper is as follows. In §2, we discuss and non-dimensionalize the microscopic
model and restrict it to two dimensions; its homogenized form is derived in §3, where we also test its
agreement with the microscopic model. The homogenized model is extended to three dimensions in
§4. The results are presented and discussed in §5, where we discuss two- and three-dimensional
phage configurations. A brief summary of the results and future outlook concludes this work.
2. The microscopic model
We solve the problem of antibiotic diffusion in a three-dimensional liquid crystal and consider a few of its
applications. The first of these is antibiotic diffusion in a tactoid consisting of orientationally ordered
phages, encapsulating a bacterium, as illustrated in figure 1. Throughout this paper, we assume that
the phage liquid crystalline state has reached equilibrium, which means that the antibiotics are added
to the system after the nematic state has formed. Images by Tarafder et al. [6] show that such a phage
liquid crystalline droplet encapsulating a bacterium has planar anchoring at its boundaries and that
the nematic director follows the curvature of the tactoid. However, curvature effects can be neglected
because the large aspect ratio of the phages ensures that the geometry is locally flat and hence the
phage alignment is locally parallel. Due to the nematic order, one can consider the internal tactoid
structure to consist of filaments that form a regular lattice. This is not a restrictive hypothesis, since
the results obtained are very robust to fluctuations on the microscopic scale. This has been proved by
Bruna & Chapman for diffusion in porous media [26] and verified for our results in appendix S1 in
the electronic supplementary material. The tactoid geometry allows for further simplifications. As the
phages are long and thin (see appendix S2 in the electronic supplementary material) and aligned,
diffusion along the length of the phages will be insignificant compared with diffusion across the
phages. Therefore, the system can be reduced to two dimensions. Due to the regularity of the lattice
and the insignificance of curvature effects, we can choose a tactoid sector with a thickness of one
lattice unit cell as a domain. Under these reasonable assumptions, the two-dimensional domain is
representative of a tactoid in its entirety when the phage packing density is constant across the
tactoid. This last assumption has little influence on the antibiotics diffusion, as discussed in §5. The
resulting domain is shown in figure 1. Its height covers the entire thickness of the tactoid, from the
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bacterium boundary to the outer tactoid edge. It is one phage sector thick and the vertical outer
boundary conditions in figure 1 are periodic.

In its dimensional form, the microscopic model to be homogenized is expressed as

@~u
@~t

¼ ~r � (~D ~r~u), ~x [ ~D, ð2:1aÞ

@~v
@~t

¼ ~k(~a~u� ~v), ~x [ ~G j, ð2:1bÞ

� ~Dn � ~r~u ¼ ~k(~a~u� ~v), ~x [ ~G j ð2:1cÞ
and n � ~r~u ¼ 0, ~x [ ~E, ð2:1dÞ
where ~u denotes the volume concentration of free antibiotics (in units of m−3), ~v is the surface
concentration of adsorbed antibiotics (in units of m−2), ~D is the diffusion coefficient in m2/s, ~a is the
equilibrium binding coefficient in m, ~k is the adsorption rate in 1/s and n is the outward unit normal
pointing into the phages. Equation (2.1a) describes the diffusion in the tactoid domain ~D and equation
(2.1b) describes the adsorption at the phage boundary ~G j (where the index j denotes the jth phage),
determining ~v. From this, equation (2.1c) determines the flux at the phage boundary and equation
(2.1d) is a no-flux boundary condition at the domain end boundaries ~E, which is the union of the top
boundary in figure 1 and the bacterium boundary. Equation (2.1d) can be replaced with other
conditions if necessary, without invalidating the analysis presented here. The adsorption dynamics in
equation (2.1b) are linear, which is justified since the degree of adsorption is low compared with the
phage adsorption capacity, as shown from the parameter estimates in appendix S2 of the electronic
supplementary material.

We will proceed to write the microscopic model in non-dimensional form, which will allow us to
identify the key control parameters for the dynamics and also to homogenize the model. There are
two length scales in this problem: the tactoid thickness ~L and the interphage distance scale ~a. We
define non-dimensional macroscopic spatial coordinates by scaling with ~L

x ¼ ~x
~L
: ð2:2Þ

The two spatial scales naturally engender two separate diffusion timescales. The first is the diffusion time
at the microscopic (phage) scale,

~tD ¼ ~a2

~D
, ð2:3Þ

while the second is the diffusion time at the macroscopic (tactoid) scale, which is much larger,

~t
ðMÞ
D ;

~L
2

~D
¼ ~tD

e2
: ð2:4Þ

As ~a � ~L, we define a small parameter e as e ; ~a=~L ¼ N�1 � 1, where N is the number of phage layers
across the tactoid. This number quantifies how many phages can fit across the thickness of a tactoid; in
other words, the difference in scale between phage and tactoid. Another aspect of the antibiotic dynamics
in the tactoid is the adsorption at the phage surface. This happens on a timescale of

~tk ¼ 1
~k
, ð2:5Þ

which is assumed to be of the same order of magnitude as ~tD, as discussed in appendix S2 in the
electronic supplementary material. This is one of the scaling choices for which microscopic and
macroscopic scales are separated and hence homogenization is applicable. Furthermore, it implies that
adsorption is fast compared with macroscopic diffusion, which is realistic. We scale the time
coordinate with the macroscopic diffusion time as follows:

t ¼
~t

~t
ðMÞ
D

¼
~t~D
~L
2 : ð2:6Þ

Finally, the antibiotic concentrations are scaled as

~u ¼ ~u0u ð2:7aÞ
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and

~v ¼ ~v0v: ð2:7bÞ

The scaling parameters ~u0 and ~v0 will be set later on. Substituting equations (2.2)–(2.7) leads to the
following form of equations (2.1):

@u
@t

¼ r2u, x [ D, ð2:8aÞ

@v
@t

¼ ~k~L
2

~D
~a~u0
~v0

u� v
� �

, x [ G j, ð2:8bÞ

� n � ru ¼ ~k~L~v0
~D~u0

~a~u0
~v0

u� v
� �

, x [ G j ð2:8cÞ

and n � ru ¼ 0, x [ E, ð2:8dÞ

where D and G j are the tactoid domain and jth phage boundary in non-dimensional units of x,
respectively, and E is the union of non-dimensional domain end boundaries. We define

g ¼ ~k~L
2

~D
� O

1
e2

� �
ð2:9Þ

and

m ¼ ~a~u0
~v0

: ð2:10Þ

Some comments are in order about the scale of μ, which will be used to set the parameters ~u0 and ~v0. We
define the free and bound antibiotic concentrations at equilibrium as u∞ and v∞, and observe from
equation (2.8b) that

v1 ¼ ~a~u0
~v0

u1: ð2:11Þ

The total amount of bound antibiotics at equilibrium is

~vTot /N2~a~v0v1, ð2:12Þ

since the total number of phages scales as N2 and the phage size is of the order ~a. Combining equations
(2.11) and (2.12) gives

~vTot / 1
e2
~a~v0

~a~u0
~v0

u1 ¼
~L~a~u0
e

u1: ð2:13Þ

This means that ~vTot diverges as e ! 0, or equivalently N→∞ unless

~a ¼ e~a1 and a1 ≃ Oð1Þ: ð2:14Þ

Now, we can set the ratio of ~u0 and ~v0 by requiring that the total amounts of free and bound antibiotics
are of the same order,

~L
2
~u0 � N2~a~v0 ¼ 1

e2
e~L~v0~u0 ¼

~v0
~a
: ð2:15Þ

We cannot fix ~u0 and ~v0 individually unless one of the outer boundary conditions is Dirichlet, since the
system is scale invariant. The scaling in equation (2.15) also determines the scaling of μ,

m ¼ ~a~u0
~v0

¼ ~a

~a
¼ e~a1

~a
¼ ~a1

~L
¼ Oð1Þ: ð2:16Þ
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Finally, we can substitute equations (2.9), (2.15) and (2.10) into equations (2.8), which results in the non-
dimensional microscopic model

@u
@t

¼ r2u, x [ D, ð2:17aÞ
@v
@t

¼ g(mu� v), x [ G j, ð2:17bÞ
� n � ru ¼ eg(mu� v), x [ G j ð2:17cÞ

and n � ru ¼ 0, x [ E: ð2:17dÞ
We apply homogenization to this model in the next section and solve it numerically in §4.
rnal/rsos
R.Soc.Open

Sci.10:221120
3. The two-dimensional homogenized model
Having defined the non-dimensional microscopic model in equations (2.17), we can obtain the effective
macroscopic equations using homogenization. This is useful since, due to the microscopic structure, the
model cannot be solved analytically and numerical modelling is computationally expensive.
Homogenization can be applied due to the nematic order; we can consider the microscopic structure
formed by the phages to be a lattice of locally periodic unit cells. Homogenizing the model results in
effective equations on a simple macroscopic geometry consisting of a filled rectangle, i.e. without
phage structure.

The ratio between the microscopic unit cell size and the macroscopic tactoid width is given by the
small parameter e. To homogenize, we introduce a microscopic coordinate y defined in a unit cell
(figure 1) and expand the fields in powers of e, with

y ¼ x
e
, ð3:1aÞ

u ¼ ekukðx, y, tÞ ð3:1bÞ
and v ¼ ekvkðx, y, tÞ, ð3:1cÞ
where summation over repeated indices is implied. Substitution into equations (2.17) gives

ek
@uk
@t

¼ 1
e2

r2
y þ

2
e
rx � ry þr2

x

� �
ekuk, y [ C, ð3:2aÞ

ek
@vk
@t

¼ g2
e2

ðmuk � vkÞek, y [ G ð3:2bÞ

and � n � 1
e
ry þrx

� �
ukek ¼ g2

e
ðmuk � vkÞek, y [ G, ð3:2cÞ

where g2 ¼ ge2 ¼ Oð1Þ, as required by equation (2.9), and C and G are the non-dimensional free unit cell
domain and phage boundary, respectively, as shown in figure 1. Now, we can expand equations (3.2a) to
(3.2c) in e and analyse them order by order.
3.1. Leading order
At this order, the equations are

r2
yu0 ¼ 0, y [ C, ð3:3aÞ

g2ðmu0 � v0Þ ¼ 0, y [ G ð3:3bÞ
and n � ryu0 ¼ g2ðmu0 � v0Þ, y [ G: ð3:3cÞ
These equations are solvable and have the solutions

u0ðx, y, tÞ ¼ u0ðx, tÞ ð3:4aÞ
and

v0ðx, tÞ ¼ mu0ðx, tÞ: ð3:4bÞ
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3.2. First order
At next order in e, the equations are

r2
yu1 þ 2rx � ryu0 ¼ 0, y [ C, ð3:5aÞ

g2ðmu1 � v1Þ ¼ 0, y [ G ð3:5bÞ

and � n � (ryu1 þrxu0) ¼ g2ðmu1 � v1Þ, y [ G: ð3:5cÞ

The solution of equation (3.5b) is

v1ðx, y, tÞ ¼ mu1ðx, y, tÞ: ð3:6Þ

Equations (3.5a) and (3.5c) are solvable. Their solution has the form

u1ðx, y, tÞ ¼ xðyÞ � rxu0ðx, tÞ, ð3:7Þ
where the components χk of the (vector) function χ(y) are the solution of the cell problem

r2
yxk ¼ 0, y [ C ð3:8aÞ

and

� n � ryxk ¼ nk, y [ G, ð3:8bÞ
with nk is the kth component of the outward unit normal from the unit cell C into the phages. This
equation generally needs to be solved numerically but only once, since it yields a generally applicable
effective diffusion coefficient for the microscopic geometry.
3.3. Second order
At this order in the smallness parameter, the equations are

@u0
@t

¼ (r2
yu2 þ 2rx � ryu1 þr2

xu0), y [ C, ð3:9aÞ
@v0
@t

¼ g2ðmu2 � v2Þ, y [ G ð3:9bÞ
and � n � (ryu2 þrxu1) ¼ g2ðmu2 � v2Þ, y [ G: ð3:9cÞ
The solvability condition is obtained by integrating equation (3.9a) over the unit cell C, and applying the
divergence theorem and the boundary condition in equation (3.9c) as follows:

0 ¼
ð
C
� @u0

@t
þ [ry � (ryu2 þrxu1)þrx � (ryu1 þrxu0)] d3y

¼
ð
G

n � (ryu2 þrxu1) d2y�
ð
C

@u0
@t

d3yþ
ð
C
rx � (ryu1 þrxu0) d3y

¼ �
ð
G

@v0
@t

d2y�
ð
C

@u0
@t

d3yþ
ð
C
rx � (ryu1 þrxu0) d3y

¼ �jGj @v0
@t

� jCj @u0
@t

þ jCjr2
xu0 þrx �

ð
C
ryu1 d3y: ð3:10Þ

Substituting equations (3.4b) and (3.7) into this expression, we obtain the homogenized equation

(jCj þ mjGj) @u0ðx, tÞ
@t

¼ rx � [DðeffÞrxu0ðx, tÞ], x [ DH , ð3:11Þ

where DH is the non-dimensional homogenized domain that does not contain the microscopic phage
structure, and D(eff) is the effective diffusion tensor

DðeffÞ
ij ¼ jCj þ

ð
C
@yix jðyÞd3y: ð3:12Þ

The effective diffusion tensor, being derived from the unit cell problem, contains the effect of the
microscopic geometry on the diffusion; in this case, the effect of the phages as a physical diffusion
barrier. The factor in front of the time derivative contains the contribution of the adsorbed antibiotics,
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Figure 2. A comparison of antibiotic concentration as a function of the radial tactoid coordinate for the microscopic and
homogenized model, at t = 0.5 s, for (a) 10 phage layers and (b) 100 phage layers. The adsorption coefficient α = 0.4 μm.
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and hence gives the effect of adsorption on the diffusion. We can rewrite the homogenized equation (3.11)
in dimensional form, using the time and space scalings given by equations (2.6) and (2.2), respectively:

(jCj þ mjGj) @~uð~x,
~tÞ

@~t
¼ ~r � (~DðeffÞ ~r)~uð~x, ~tÞ, ~x [ ~DH , ð3:13Þ

where ~DH is the dimensional homogenized domain and the dimensional diffusion tensor is

~D
ðeffÞ ¼ ~DDðeffÞ: ð3:14Þ

One can also express the coefficient of the time derivative in terms of dimensional variables by observing
that both G and C are measured in microscopic units. Therefore, their dimensional versions are, using the
scaling in equation (3.1a),

j~Gj ¼ ~ajGj and j~Cj ¼ ~a2jCj: ð3:15Þ

Substituting these two expressions and equation (2.10) into equation (3.13), without changing the right-
hand side of the equation to preserve the standard diffusion equation form, yields the dimensional
homogenized equation

1
~a2

(jC̃j þ ~aj ~Gj) @~uð~x,
~tÞ

@~t
¼ ~r � (~DðeffÞ ~r)~uð~x, ~tÞ, ~x [ ~DH : ð3:16Þ

A remark about the scaling is in order here. The coefficient of the time derivative diverges as the layer
number N→∞ unless ~a ¼ Oð1=NÞ ¼ OðeÞ; this is indeed the scaling of α demanded by the condition
μ∼O (1).

Both the microscopic and homogenized model, as given by equations (2.1) and (3.16), respectively,
were solved in Comsol. The first was solved on the domain in figure 1b. The second was solved on a
filled rectangle with the same size: the tactoid and outer layer thicknesses are 1 μm and 0.2 μm,
respectively. The general form PDE interface was used for all equations. A Dirichlet boundary
condition ~u ¼ 1 was set at the edge of the outer layer (the top boundary in figure 1).

A comparison of the models is presented in figure 2, which shows, for each model, the free antibiotic
concentration across the width of a tactoid. The concentration is averaged across the domain width
(horizontal in figure 1), resulting in a one-dimensional graph. In the homogenized model, there is no
lateral concentration gradient, since the phage structure is averaged out, and the problem can be
reduced to one dimension without averaging. Since the small parameter e is determined by the
number of phage layers N, the agreement is expected to improve with larger N. Results are shown for
N = 10, chosen as a lower limit for the applicability of homogenization since the difference between
microscopic and macroscopic scales is merely one order of magnitude, and N = 100, a value
representative for a real tactoid. The agreement depends on N as expected: for N = 10, the models
agree quite closely; for N = 100, the agreement is excellent. This confirms that homogenization is
applicable to the present problem.
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4. The three-dimensional homogenized model
We extend the homogenized model to three dimensions to show further applications. Firstly, this allows
us to model a tactoid with varying phage packing density and to assess the influence of this varying
density on antibiotic diffusion. As a second example, this model can be applied to a layer of Pf4
liquid crystal of varying thickness with embedded bacteria. The diffusion coefficient is now
anisotropic; across the circular phage axis it is still given by ~Deff and along the long phage axis we
take diffusion to be the uninhibited, with diffusion coefficient ~D. However, the homogenized model
also contains an adsorption coefficient in front of the time derivative (see equation (3.16)). This
coefficient turns out to be equal along both directions of diffusion, which we proceed to show.

The adsorption along the longitudinal direction with respect to the phages was derived using an
expansion in the small parameter η, which is the difference in scale between the unit cell shown in
figure 1 and the phage length ~Lph: h ¼ ~a=~Lph. We are considering diffusion along a three-dimensional
channel with the length of a phage and the cross-section corresponding to a unit cell. The space and
time variables are scaled as follows:

x1 ¼
~x1
~Lph

, x2 ¼
~x2
~a
, x3 ¼

~x3
~a

and t ¼
~tD
~Lph

, ð4:1Þ

where the index 1 indicates the direction along the phages, and 2 and 3 are the directions along the unit
cell. On the fast timescale, which can be defined as t2 = t/η2, we assume that the system has equilibrated.
Therefore, the equations do not depend on this timescale. We non-dimensionalize ~u and ~v in the same
way as in equations (2.7). The diffusion–adsorption equations become

@u
@t

¼ @2u
@x21

þ 1
h2

@2u
@x22

þ 1
h2

@2u
@x23

, x [ D3D, ð4:2aÞ

� n1
@u
@x1

¼ 0, x [ G3D, ð4:2bÞ

� n2
@u
@x2

� n3
@u
@x3

¼ g phðmu� vÞ, x [ G3D ð4:2cÞ

and
@v
@t

¼ g ph

h2 ðmu� vÞ, x [ G3D, ð4:2dÞ

where g ph ¼ ðk~L2ph=DÞh2 and the subscript 3D indicates the extension of the domains along the x1
direction between 0 and Lph. On all other boundaries, no-flux boundary conditions are present. We
expand u and v in powers of η2. Up to O(1), this results in

@u0
@t

¼ @2u0
@x21

þ 1
h2

@2u0
@x22

þ 1
h2

@2u0
@x23

þ @2u2
@x22

þ @2u2
@x23

, x [ D3D, ð4:3aÞ

� n1
@u0
@x1

¼ 0, x [ G3D, ð4:3bÞ

� n2
@u0
@x2

� n3
@u0
@x3

¼ g phðmu0 � v0Þ, x [ G3D, ð4:3cÞ

and
@v0
@t

¼ g ph

h2 ðmu0 � v0Þ þ g phðmu2 � v2Þ, x [ G3D: ð4:3dÞ

At the lowest order, the equations are

@2u0
@x22

þ @2u0
@x23

¼ 0, x [ D3D, ð4:4aÞ

� n2
@u0
@x2

� n3
@u0
@x3

¼ g phðmu0 � v0Þ, x [ G3D ð4:4bÞ

and g phðmu0 � v0Þ ¼ 0, x [ G3D, ð4:4cÞ
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which leads to the conclusion that μu0(x1, t) = v0(x1, t). At the next order,

0 ¼ @2u0
@x21

� @u0
@t

þ @2u2
@x22

þ @2u2
@x23

, x [ D3D, ð4:5aÞ

� n1
@u0
@x1

¼ 0, x [ G3D, ð4:5bÞ

� n2
@u2
@x2

� n3
@u2
@x3

¼ g phðmu2 � v2Þ, x [ G3D ð4:5cÞ

and
@v0
@t

¼ g phðmu2 � v2Þ, x [ G3D: ð4:5dÞ

Integrating over the unit cell and using Gauss’ Law yields
ð
C

@u0
@t

d3x ¼
ð
C

@2u0
@x21

d3xþ
ð
G

@v0
@t

d2x, ð4:6Þ

which, using the relation μu0 = v0, yields the following equation for diffusion along the phages:

ðjCj þ mjGjÞ @u0
@t

¼ jCj @
2u0
@x21

: ð4:7Þ

Comparison to equation (3.11) shows that the adsorption factor is equal in all directions of diffusion.
221120
5. Results and discussion
The homogenization approach presented here is important for elucidating the nature of the effect of the
phages on antibiotic diffusion and the dependence of the model on its key parameters. By writing
equation (3.16) in the form of Fick’s law,

@~uð~x, ~tÞ
@~t

¼ ~r �
~D
ðeffÞ

1
~a2
(jC̃j þ ~aj ~Gj)

~r

0
BB@

1
CCA~uð~x, ~tÞ, ~x [ ~DH , ð5:1Þ

the effective diffusion time is found to be

~t
ðeffÞ
D ¼

~L
2
=~a2(jC̃j þ ~aj ~Gj)

~D
ðeffÞ ;

~L
2

D̂
: ð5:2Þ

Since, without the presence of phages, the diffusion time would be given by ~L
2
=~D, by comparison with

equation (5.2) we can assess the effect of the phages on the diffusion. More specifically, the relative
magnitudes of ~D and ~D

ðeffÞ
give the strength of the physical phage barrier effect, while the factor

ð1=~a2ÞðjC̃j þ ~aj ~GjÞ can be used to derive the strength of the adsorption effect.
From equation (5.2), the key parameters governing the model can be derived. In the first place, the

effective diffusion time ~t
ðeffÞ
D and equation (3.16) do not depend on the adsorption rate ~k. This is

expected, since in the derivation of the homogenized model it was assumed that the adsorption time
~tk and microscopic diffusion time ~tD are of the same order of magnitude. This scale is two orders of e
smaller than the macroscopic diffusion time ~t

ðMÞ
D . Hence, compared with ~t

ðMÞ
D , ~tk should be small and

~k should be large. This is equivalent to a high, effectively instantaneous adsorption rate compared
with the macroscopic rate of diffusion, and any variation in adsorption rate has no significant effect.
Secondly, equation (5.2) indicates a quadratic relationship between the diffusion time and the tactoid
width ~L. The dependence of ~tðeffÞD on the equilibrium binding constant ~a is derived by expanding D̂ in
powers of 1=~a,

D̂ ;
~D
ðeffÞ

~a2

(jC̃j þ ~aj ~Gj)
¼

~D
ðeffÞ

~ajCj(ð1=~aÞ þ j ~Gj= ~jCj)
�

~D
ðeffÞ

~ajCjj ~Gj= ~jCj
~t
ðeffÞ
D ¼

~L
2
~ajCjj ~Gj= ~jCj
~D
ðeffÞ : ð5:3Þ

Hence, the diffusion time depends linearly on ~a, if ~a is sufficiently large.
The parameter dependence of the model was verified by integrating the microscopic equations in Comsol.

As expected from the previous parameter analysis, for fast adsorption (~tk � ~t
ðMÞ
D Þ, the value of ~k has no

influence on the results. Figure 3 shows the dependence of the numerically calculated diffusion time on
various parameters. The diffusion time is quantified as t90, the time at which the antibiotic concentration
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Figure 3. Dependence of the equilibration time on (a) the tactoid width, with the dashed line showing a quadratic fit, (b) the
binding equilibrium constant a, with a linear fit indicated by the dashed line, and (c) the phage packing density.
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as shown in figure 5.
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that has reached the bacterium is 90% of the equilibrium concentration. To verify that the results are no artefact
at t90, calculations were repeated for t10, the time at which the concentration at the bacterium is 10% of the
equilibrium (see figure S1 in the electronic supplementary material). The results demonstrate a linear
dependence of the diffusion time on ~a and a quadratic dependence on ~L, as discussed above. Furthermore,
the diffusion time increases strongly with increasing packing density, quantified as the minimal distance
between phages. This is expected, since as this distance approaches zero, there is no space left between
phages for the antibiotics to diffuse through and the diffusion time diverges.

As demonstrated here, homogenization allows us to find an expression for the diffusion time and to
assess its dependence on the key model parameters, without the need to solve the microscopic model
numerically. The biological implications of this are that the mechanism of liquid-crystal-induced
antibiotic tolerance can be analysed more efficiently and with more insight into the parameter
significance than numerical analysis can provide. More specifically, the formation of liquid crystals by Pf4
phages has been shown to increase antibiotic tolerance; the model outlined in this paper elucidates the
importance of diffusion barrier and adsorption effects to this increased tolerance. This way, we can clarify
whether these are the principal effects behind the increased antibiotic tolerance, or if other mechanisms
are more important. A more in-depth analysis of this application is reported elsewhere [25].

To assess the influence of varying phage packing density on the antibiotic diffusion, we also model a
tactoid in three dimensions. The results are shown in figure 4. The boundary conditions are the same as
for the two-dimensional model, as is the addition of a small outer layer around the tactoid. The packing
of the phages was taken to be twice as dense at the tips of the tactoid as in the middle, since simulations
have shown denser packing at these locations [27]. The packing density across the tactoid was varied in
such a way that the effective diffusion coefficient follows the quadratic trend shown in figure 5. The
diffusion coefficient is anisotropic, as discussed in §4. It is governed by the orientation of the phages;
since these align along the ellipsoidal bacterium, their orientation is given by the equation for this
ellipsoid. Figure 4 shows that the variation in packing density has little influence on the diffusion
time. This can be explained by the relatively fast diffusion along the phages, which homogenizes the
antibiotic concentration. Furthermore, the influence of packing density on diffusion time is only strong
at the highest phage concentrations (figure 3), which are beyond the concentrations modelled here.

In vivo, tactoids have not been observed directly in liquid crystalline P. aeruginosa biofilms; however,
the biofilm contains high concentrations of similar depleting polymers, with a liquid crystalline structure
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forming on the global biofilm scale [4]. Therefore, the application of our model to tactoids, corresponding
to in vitro systems, is a first step towards modelling a biofilm in its full complexity. Furthermore, our
results concerning increased antibiotic tolerance apply to embedding of bacteria in a liquid crystalline
environment of any form and are therefore not limited to in vitro systems. To illustrate this, the
homogenized model was finally used to analyse antibiotic diffusion in a layer of Pf4 liquid crystal of
varying thickness with embedded bacteria. The geometry of the latter model corresponds more
closely to an in vivo biofilm than a tactoid. The results are shown in figure 6. In this liquid crystalline
layer, antibiotics are continually added from the upper boundary, using the same Dirichlet boundary
condition as for the edge of the outer domain in the tactoid model. There is no flux of antibiotics at
the lower boundary. The profile of the upper boundary was modelled using sinusoidal functions to
ensure horizontal periodicity, with the equation y = 10 + (1/7)sin ((x + 8)π/2) + (1/3)sin 2((x + 8)π/4) +
sin ((x + 8)π/8) with x and y in μm. The orientation θ of the phages is solved by the equation r2u ¼ 0
(the Frank–Oseen model in the one electric constant approximation without external fields), with
planar alignment at the phages and upper and lower boundaries. This orientation, which determines
the diffusion tensor, is indicated in figure 6 by red lines. The antibiotics reach the bacteria on longer
timescales than in a tactoid, which is expected given the influence of the liquid crystalline layer
thickness on the diffusion time shown in figure 3. Of note is that diffusion is slower in the narrower
space between the two leftmost bacteria, as expected. The results of these models show the flexibility
of homogenization for the modelling of both in vitro and in vivo systems, for various geometries, and
in both two and three dimensions. In other words, the homogenized equations derived in this paper
are applicable not only to the specific biological systems considered here, but also to similar but more
complex biological systems and general diffusion in porous media.

In view of this general applicability, certain restrictions and assumptions that homogenization entails,
besides local periodicity, need to be addressed. The results of homogenization depend on the scaling



Table 1. Summary of scaling regimes of the diffusion and adsorption times, and the resulting homogenized models.

scaling description of homogenized model

~tk � ~tD � ~t
ðMÞ
D The same homogenized model as presented in this paper.

~tD � ~tk � ~t
ðMÞ
D The scaling presented in this paper: an effective diffusion equation with

a time coefficient determined by adsorption.

~tD � ~tk � ~t
ðMÞ
D Adsorption and diffusion decouple at the microscopic scale.

Homogenization yields two coupled macroscopic equations: an effective

diffusion and a trivial adsorption equation.

~tD � ~t
ðMÞ
D � ~tk A homogenized diffusion equation without adsorption: slow global,

uniform adsorption follows diffusive equilibrium.
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choices of the model parameters. Most of the scaling choices made in this paper follow straightforwardly
from realistic requirements. For example, the scaling of ~a, and the relative scales of ~u and ~v, are
determined by requiring that the total amounts of free and bound antibiotics are of the same order
and do not diverge. An exception is the relative scaling of diffusion and adsorption times; this means
adsorption is much faster than macroscopic diffusion, which is reasonable, but other scalings could
also be possible. A benefit of the scaling choice adopted is that it gives the most general, nontrivial
results; for instance, if the adsorption rate were slower, adsorption would be negligible on a
microscopic scale. Then u and v decouple at this scale, and are determined by a separate set of
equations. For an even slower adsorption rate, adsorption would be completely negligible in the
homogenized equations. For an even faster adsorption rate, the homogenized model is identical to the
model presented in this paper, since as long as adsorptive equilibrium is reached long before diffusive
equilibrium, it does not matter how fast adsorption is from a macroscopic point of view. The different
scaling choices are summarized in table 1. For an overview of the applicability of homogenization for
a wide array of scaling choices, applied to the closely related topic of reactive diffusion in porous
media, we refer to the work of Battiato & Tartakovsky [13].
6. Conclusion
The results presented in this work demonstrate that homogenization can be applied to describe and
quantify the diffusion and adsorption of antibiotics in liquid crystals consisting of filamentous phages.
We identify that adsorption is a key ingredient in increasing the antibiotic diffusion time and that it
may therefore significantly enhance antibiotic tolerance. The advantage of homogenization is that it
allows us to link the diffusion time to biological parameters. This is a preliminary study of liquid
crystals in biology, which was chosen for its simplicity and because the system is well-studied and
well-controlled. Since the applicability of homogenization only depends on local structural regularity,
it can be applied to more complex structures such as biofilms and other biological systems with
complex geometries that change slowly over a microscopic length scale. This yields analytically
solvable models, the physical and chemical variables of which can be linked to the biological
properties of the system.

Data accessibility. The data are provided in electronic supplementary material [28].
Authors’ contributions. M.T.v.R.: conceptualization, data curation, formal analysis, investigation, methodology, project
administration, software, validation, visualization, writing—original draft, writing—review and editing; S.W.:
conceptualization, funding acquisition, investigation, methodology, project administration, resources, supervision,
validation, visualization, writing—review and editing; P.R.S.: investigation, methodology, resources, validation,
visualization, writing—review and editing; M.K.: conceptualization, funding acquisition, investigation,
methodology, project administration, resources, supervision, validation, visualization, writing—review and editing;
G.D.: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project
administration, resources, software, supervision, validation, visualization, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. No funding has been received for this article.
Acknowledgements. We thank Tim Sluckin for many insightful discussions.



14

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 M

ar
ch

 2
02

3 
References

royalsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.10:221120
1. Sluckin TJ, Dunmur DA, Stegemeyer H. 2004
Crystals that flow: classic papers from the history
of liquid crystals. Liquid Crystals Book Series.
London, UK: Taylor & Francis.

2. Dogic Z, Fraden S. 2006 Ordered phases of
filamentous viruses. Curr. Opin. Colloid In. 11,
47–55. (doi:10.1016/j.cocis.2005.10.004)

3. Onsager L. 1949 The effects of shape on the
interaction of colloidal particles. Ann. N.Y. Acad.
Sci. 51, 627–659. (doi:10.1111/j.1749-6632.
1949.tb27296.x)

4. Secor PR et al. 2015 Filamentous bacteriophage
promote biofilm assembly and function. Cell
Host Microbe 18, 549–559. (doi:10.1016/j.chom.
2015.10.013)

5. Burgener EB et al. 2019 Filamentous
bacteriophages are associated with
chronic Pseudomonas lung infections and
antibiotic resistance in cystic fibrosis. Sci. Transl.
Med. 11, 1–12. (doi:10.1126/scitranslmed.
aau9748)

6. Tarafder AK, von Kügelgen A, Mellul AJ, Schulze
U, Aarts DGAL, Bharat TAM. 2020 Phage
liquid crystalline droplets form occlusive
sheaths that encapsulate and protect infectious
rod-shaped bacteria. Proc. Natl Acad. Sci.
USA 117, 4724–4731. (doi:10.1073/pnas.
1917726117)

7. Janmey PA, Slochower DR, Wang YH, Wen Q,
Cẽbers A. 2014 Polyelectrolyte properties of
filamentous biopolymers and their
consequences in biological fluids. Soft Matter
10, 1439–1449. (doi:10.1039/c3sm50854d)

8. Asakura S, Oosawa F. 1954 On interaction
between two bodies immersed in a solution of
macromolecules. J. Chem. Phys. 22, 1255–1256.
(doi:10.1063/1.1740347)

9. Hartmann R, Singh PK, Pearce P, Mok R,
Song B, Díaz-Pascual F, Dunkel J, Drescher K.
2019 Emergence of three-dimensional
order and structure in growing biofilms.
Nat. Phys. 15, 251–256. (doi:10.1038/s41567-
018-0356-9)
10. Yaman YI, Demir E, Vetter R, Kocabas A. 2019
Emergence of active nematics in chaining
bacterial biofilms. Nat. Commun. 10, 2285.
(doi:10.1038/s41467-019-10311-z)

11. Pourtois JD, Kratochvil MJ, Chen Q, Haddock NL,
Burgener EB, De Leo GA, Bollyky PL. 2021
Filamentous bacteriophages and the
competitive interaction between Pseudomonas
aeruginosa strains under antibiotic treatment: a
modeling study. mSystems 6(3), e00193-21.
(doi:10.1128/mSystems.00193-21)

12. Pavliotis G, Stuart A. 2008 Multiscale methods:
averaging and homogenisation, vol. 53. Texts
Applied in Mathematics. New York, NY:
Springer.

13. Battiato I, Tartakovsky DM. 2011 Applicability
regimes for macroscopic models of reactive
transport in porous media. J. Contam. Hydrol.
120–121, 18–26. (doi:10.1016/j.jconhyd.2010.
05.005)

14. Bennett TP, D’Alessandro G, Daly KR. 2018
Multiscale models of metallic particles in
nematic liquid crystals. SIAM J. Appl. Math. 78,
1228–1255. (doi:10.1137/18M1163919)

15. Bennett TP, D’Alessandro G, Daly KR.
2014 Multiscale models of colloidal dispersion
of particles in nematic liquid crystals. Phys. Rev.
E 90, 062505. (doi:10.1103/PhysRevE.90.
062505)

16. Calderer MC, Desimone A, Golovaty D,
Panchenko A. 2014 An effective model for
nematic liquid crystal composites with
ferromagnetic inclusions. SIAM J. Appl. Math.
74, 237–262. (doi:10.1137/130910348)

17. Canevari G, Zarnescu A. 2020 Design of effective
bulk potentials for nematic liquid crystals via
colloidal homogenisation. Math. Models
Methods Appl. Sci. 30, 309–342. (doi:10.1142/
S0218202520500086)

18. Allaire G, Raphael AL. 2007 Homogenization of
a convection-diffusion model with reaction in a
porous medium. C. R. Math. 344, 523–528.
(doi:10.1016/j.crma.2007.03.008)
19. Allaire G, Brizzi R, Mikelić A, Piatnitski A. 2010
Two-scale expansion with drift approach to the
Taylor dispersion for reactive transport through
porous media. Chem. Eng. Sci. 65, 2292–2300.
(doi:10.1016/j.ces.2009.09.010)

20. Auriault JL, Adler PM. 1995 Taylor dispersion in
porous media: analysis by multiple scale
expansions. Adv. Water Resour. 18, 211–226.
(doi:10.1016/0309-1708(95)00011-7)

21. Bourbatache MK, Millet O, Moyne C. 2020
Upscaling diffusion–reaction in porous media.
Acta Mech. 231, 2011–2031. (doi:10.1007/
s00707-020-02631-9)

22. Mauri R. 1991 Dispersion, convection, and
reaction in porous media. Phys. Fluids A Fluid 3,
743–756. (doi:10.1063/1.858007)

23. Municchi F, Icardi M. 2020 Macroscopic models
for filtration and heterogeneous reactions in
porous media. Adv. Water Resour. 141, 103605.
(doi:10.1016/j.advwatres.2020.103605)

24. van Duijn C, Mikelić A, Pop I, Rosier C. 2008
Effective dispersion equations for reactive flows
with dominant Péclet and Damkohler Numbers.
In Advances in chemical engineering (eds GB
Marin, D West, GS Yablonsky), advances in
chemical engineering, vol. 34, pp. 1–45.
New York, NY: Academic Press.

25. van Rossem M, Wilks S, Kaczmarek M, Secor PR,
D’Alessandro G. 2022 Modelling of filamentous
phage-induced antibiotic tolerance of P.
aeruginosa. PLoS ONE 17, e0261482. (doi:10.
1371/journal.pone.0261482)

26. Bruna M, Chapman SJ. 2015 Diffusion in
spatially varying porous media. SIAM J. Appl.
Math. 75, 1648–1674. (doi:10.1137/141001834)

27. Kuhnhold A, Van Der Schoot P. 2022 Structure
of nematic tactoids of hard rods. J. Chem. Phys.
156, 104501. (doi:10.1063/5.0078056)

28. van Rossem MT, Wilks S, Secor PR, Kaczmarek
M, D’Alessandro G. 2023 Homogenization
modelling of antibiotic diffusion and adsorption
in viral liquid crystals. Figshare. (doi:10.6084/
m9.figshare.c.6350188)

http://dx.doi.org/10.1016/j.cocis.2005.10.004
http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
http://dx.doi.org/10.1016/j.chom.2015.10.013
http://dx.doi.org/10.1016/j.chom.2015.10.013
http://dx.doi.org/10.1126/scitranslmed.aau9748
http://dx.doi.org/10.1126/scitranslmed.aau9748
http://dx.doi.org/10.1073/pnas.1917726117
http://dx.doi.org/10.1073/pnas.1917726117
http://dx.doi.org/10.1039/c3sm50854d
http://dx.doi.org/10.1063/1.1740347
http://dx.doi.org/10.1038/s41567-018-0356-9
http://dx.doi.org/10.1038/s41567-018-0356-9
http://dx.doi.org/10.1038/s41467-019-10311-z
http://dx.doi.org/10.1128/mSystems.00193-21
http://dx.doi.org/10.1016/j.jconhyd.2010.05.005
http://dx.doi.org/10.1016/j.jconhyd.2010.05.005
http://dx.doi.org/10.1137/18M1163919
http://dx.doi.org/10.1103/PhysRevE.90.062505
http://dx.doi.org/10.1103/PhysRevE.90.062505
http://dx.doi.org/10.1137/130910348
http://dx.doi.org/10.1142/S0218202520500086
http://dx.doi.org/10.1142/S0218202520500086
http://dx.doi.org/10.1016/j.crma.2007.03.008
http://dx.doi.org/10.1016/j.ces.2009.09.010
http://dx.doi.org/10.1016/0309-1708(95)00011-7
http://dx.doi.org/10.1007/s00707-020-02631-9
http://dx.doi.org/10.1007/s00707-020-02631-9
http://dx.doi.org/10.1063/1.858007
http://dx.doi.org/10.1016/j.advwatres.2020.103605
http://dx.doi.org/10.1371/journal.pone.0261482
http://dx.doi.org/10.1371/journal.pone.0261482
http://dx.doi.org/10.1137/141001834
http://dx.doi.org/10.1063/5.0078056
http://dx.doi.org/10.6084/m9.figshare.c.6350188
http://dx.doi.org/10.6084/m9.figshare.c.6350188

	Homogenization modelling of antibiotic diffusion and adsorption in viral liquid crystals
	Introduction
	The microscopic model
	The two-dimensional homogenized model
	Leading order
	First order
	Second order

	The three-dimensional homogenized model
	Results and discussion
	Conclusion
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	Acknowledgements
	References


