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ABSTRACT

One of the important decisions for mitigating the risk from a sudden onset disaster is to determine the
optimal location of relevant facilities (e.g., warehouses), because this affects the subsequent humanitarian
operations. Researchers have proposed several methods to solve the facility location problem (FLP) in
disaster management. This paper considers a stochastic FLP where the goal is to minimize the expected
time required to provide service to all affected regions when travel times are stochastic due to uncertain
road conditions. The number of facilities to open is constrained by a certain maximum budget. To solve
this stochastic optimization problem, we propose a hybrid simulation optimization model that combines a
simheuristic algorithm with a survival analysis method to evaluate the probability of meeting the demand of
all affected areas within a time target. An experiment using a benchmark set shows our model outperforms
deterministic solutions by about 8.9%.

1 INTRODUCTION

Climate change has increased the frequency of weather-related disasters in the past 50 years. In 2021,
according to the Emergency Event Database, the world suffered from 432 natural disasters that affected
101.8 million people, resulted in 10,492 deaths and caused approximately US$ 252.1 billion of economic
losses (CRED 2022). Therefore, research into disaster risk management has flourished as evidenced by
the many literature review articles. A list of surveys on the topic can be found in Onggo et al. (2021).
One of the important disaster management decisions is to determine the optimal location of facilities (such
as warehouses, shelters, or medical centers). The facility location problem (FLP) is one of the classic
optimization problems in Operations Research (OR). As a consequence, many OR models and methods have
been applied to solve facility location problems in the disaster management context. Among these, one can
find mixed integer linear and non-linear programming (An et al. 2015), two-stage stochastic programming
(Oksuz and Satoglu 2020), and heuristic optimization (Salman and Yücel 2015). One technique that has
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not been used yet in this application area is simheuristics. A simheuristic algorithm is a hybrid approach
that combines a metaheuristics component –to efficiently explore a vast solution space– and a simulation
component –to take into account the uncertainty in the problem. Simheuristics have been applied to solve
many stochastic optimization problems (Chica et al. 2020). Hence, it has the potential for solving the
stochastic FLP in disaster management.

This paper considers an uncapacitated FLP with stochastic travel times (caused by damages to road
infrastructure) and a budget constraint to open (for disaster response) or run (for disaster preparedness)
facilities. The goal is to minimize the expected time required to service all the affected regions in a
geographical area. The service is carried out by fleets of vehicles (e.g., unmanned aerial ones), each fleet
being based in a different facility. Hence, we consider a set of locations (demand points) that can potentially
be hit by a sudden onset natural disaster. Decision makers need to decide the location of facilities such
that all demand points are covered while the maximum travel time between any demand point and its
nearest facility (i.e. makespan) is minimized. In the context of disaster preparedness, this model helps
decision makers to determine the optimal facility locations, so that they can preposition their emergency
resources at the facilities. In the context of disaster response, the model helps decision makers to deploy
temporary facilities at the right locations, while respecting the available budget. The remainder of this
paper is organized as follows. In Section 2, we review the literature on FLPs for disaster management,
and how other authors have addressed these problems. We highlight that simheuristics have not been
applied yet in disaster management. Then, we review the simheuristics literature to show that it has the
potential for solving stochastic FLPs in disaster management. Next, we describe the problem and provide
the model formulation in Section 3. The details of the simheuristic approach are explained in Section 4.
The experiment setting and its result are presented in Section 5. Finally, we draw our conclusions and
identify future work in Section 6.

2 LITERATURE REVIEW

This section reviews previous work on FLPs applied in the context of disaster management and provides
an overview of recent simheuristics applications in several fields.

2.1 Facility Location Problem in Disaster Response

Facility location problems and their variants have been extensively studied in the literature. The usual goal
of an FLP is to decide on the position of an undetermined number of facilities in order to minimize the fixed
set-up cost for the facilities and the cost related to serving the demand. FLPs find applications in a variety of
fields, including supply chain management (e.g., locating distribution and retail centers), telecommunication
networks (e.g., locating cloud service centers in a network), and transportation networks (e.g., locating
electric vehicle charging points). One particular area in which FLPs play a key role is humanitarian
logistics or emergency logistics, which is defined in Sheu (2007) as “a process of planning, managing and
controlling the efficient flows of relief, information, and services from the points of origin to the points of
destination to meet the urgent needs of the affected people under emergency conditions.” Facility location
under emergency conditions poses significant challenges compared to traditional facility location problems.
Those challenges are identified in Balcik and Beamon (2008) as follows: (i) uncertainties related to demand
(the size, location, and timing of demand are unknown, and even after a disaster hits, these information are
often unreliable); (ii) communication complexities due to damaged roads, damaged communication lines,
and involvement of third parties; (iii) the need for timely delivery (people who are affected by the disaster
need timely delivery of tents, blankets, as well as consumable items such as food and water); and (iv) lack
of adequate emergency resources such as supplies, people, and transportation capacity. Although facility
location in disaster management is a relatively new area compared to traditional facility location, several
survey papers have already emerged that summarize and categorize the work done with respect to several
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criteria, which include objective functions, constraints, solution methods, facility type, data modeling type,
nature of disasters, and number of periods considered in the model (Boonmee et al. 2017).

In the literature, disaster management activities have been planned in two parts: pre-disaster and post
disaster activities. Pre-disaster activities include facility location and inventory positioning, while post
disaster activities include allocating demand nodes to facilities or routing decisions. We focus on the
facility location decision in this paper. Facility location models in the context of emergency logistics during
the pre-disaster phase usually combine facility location with other decisions such as inventory positioning.
There is limited research on the facility location decision itself in disaster management literature (Caunhye
et al. 2012). Some papers only consider facility location (Jia et al. 2007).

The earlier articles mostly study FLP in disaster management under a deterministic setting. However, the
presence of uncertainty has recently been taken into account. Liberatore et al. (2013), Hoyos et al. (2015),
and Dönmez et al. (2021) provide excellent reviews of the articles that consider facility location in disaster
management under uncertainty. Three types of uncertainties have been studied: (i) demand uncertainty;
(ii) supply uncertainty; and (iii) uncertainty related to transportation network connectivity. While demand
and supply uncertainty have been studied extensively in the literature, the work on the uncertainty around
transportation network, which may lead to roads being blocked or transportation taking more time due
to the damages to the infrastructure, is rather limited. Recent studies that look at road disruption include
those by Rath et al. (2016), Tofighi et al. (2016), Aslan and Çelik (2019), and Paul and Wang (2019). In
our work, we aim to fill this gap by considering a stochastic increase in the travel time due to a potential
damage to road infrastructure. Methods used to capture uncertainty in facility location problems in disaster
management include stochastic programming, robust optimization, and chance-constrained programming.
The solution methods that are employed range from exact methods to approximation methods and heuristics.
Exact methods such as Benders decomposition (Bayram and Yaman 2018), Lagrangian relaxation, and
branch-and-cut methods work efficiently for small to medium-sized instances. To overcome this particular
drawback, several heuristic approaches have been proposed in the literature. Among those heuristics methods
include tabu search (Noham and Tzur 2018), particle swarm optimization (Bozorgi-Amiri et al. 2012),
simulated annealing (Lu 2013), genetic algorithms (Mostajabdaveh et al. 2019), variable neighborhood
search (Ahmadi et al. 2015), etc. To the best of our knowledge, our paper is the first paper that proposes
a simheuristic approach to solve an FLP in disaster management under uncertainty. We have proposed a
simheuristic to solve this problem because they are a natural extension of both metaheuristics and simulation
techniques, to address large-scale and NP-hard optimization problems under uncertainty –which is a frequent
case in real-life applications, as the case of the problem tackled in this paper.

2.2 Recent Applications of Simheuristics

The approach of this paper is based on simheuristics, which is a hybrid methodology combining metaheuristics
optimization and simulation (Rabe et al. 2020). The simulation component provides feedback into the
metaheuristic component, which allows for filtering the solution space and promotes convergence towards
stochastic solutions of increasing quality. One of the advantages of this methodology is its ability to integrate
stochastic variables when formulating the problem mathematically, either in the objective function and/or in
the constraints. Chica et al. (2020) provide a literature review on the applications of simheuristic algorithms
in different industrial optimization problems. This review highlights the ability of simheuristics to solve
real-life optimization problems under uncertain scenarios. Recent works employing simheuristics include
applications in arc routing problems (Keenan et al. 2021), inventory routing problems (Onggo et al. 2019),
scheduling problems (Hatami et al. 2018), or finance and insurance (Panadero et al. 2018). This wide
range of successful applications of simheuristics in several application areas demonstrates its effectiveness
in solving different logistics and manufacturing problems under uncertainty scenarios currently faced by
decision-makers including in disaster management.
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3 PROBLEM DESCRIPTION

Figure 1 illustrates the FLP considered in this paper. A set of nodes (shown in circles) represents the
locations where people live. These locations (or demand points) can potentially be hit by a natural disaster.
In practice, the nodes can be districts or cities. Based on the budget constraint, decision makers can operate
up to N f facilities. Given N f , decision makers have to determine their ‘optimal’ locations, i.e., those that
minimize the makespan or the maximum travel time required to reach any location from its nearest facility.
In Figure 1, the location of two facilities are shown in rectangles and the lines show their makespans.

Figure 1: A schematic representation of the stochastic FLP considered.

Let us consider the following sets and indices: i ∈ I is the index of demand points, while j ∈ J is the
index of facilities, and J ⊂ I. The decision variables in the model are the location of the facilities (x j)
and the allocation of demand points to their nearest facilities (yi j). Here, x j = 1 if a facility is located at
candidate location j, and 0 otherwise. Similarly, yi j = 1 if a demand point i is allocated to facility j, and 0
otherwise. The makespan of facility j (z j) is shown in Equation (1), where Ti j is the travel time between
demand point i and facility j. The travel time Ti j comprises two components: the deterministic travel time
ti j and the stochastic delay Di j, i.e.: Ti j = ti j +Di j. The deterministic travel time represents the travel time
required under perfect conditions and the stochastic delay represents the travel delay due to the damage to
the transportation network:

z j = max
i∈I

Ti jyi j (1)

The objective function is to find locations of N f facilities that cover all demand points in such a way
that the maximum (i.e., worst) makespan is minimized. Since our model is stochastic, the objective function
will be to minimize the expected worst makespan. This is implemented using Equation (2) below:

min E
[

max
j∈J

z j

]
(2)

subject to:
∑
j∈J

yi j = 1 ∀i ∈ I (3)

∑
j∈J

x j = N f (4)

yi j ≤ x j ∀i ∈ I,∀ j ∈ J (5)

x j, yi j ∈ {0,1} ∀i ∈ I,∀ j ∈ J (6)

Constraint (3) ensures that each demand point is allocated to a facility. Constraint (4) ensures that we
use exactly N f facilities. Constraint (5) ensures demand points can only be allocated to open facilities.
Constraint (6) states that the decision variables are binary.
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4 SIMHEURISTICS METHOD

The proposed simheuristic method in this paper combines a multi-start (MS) metaheuristic framework with
Monte Carlo simulation (MCS). We have used a MS approach since it offers a well-balanced combination
of efficiency and relative simplicity. For this reason, multi-start algorithms are frequently employed to
solve NP-hard optimization problems in vehicle routing and scheduling domains (Dominguez et al. 2014;
Dominguez et al. 2016). Listing 1 shows the Python code for our simheuristic algorithm.

1 def createStochSolution(instance, detMakespan, rng):
2 # Create an initial solution using the savings-based heuristic
3 initSolution = createInitialSolution(instance, False, rng)
4 simulateSolution(initSolution, detMakespan, instance, nShort)
5 bestSolution = initSolution
6 # Create a pool of elite solutions
7 eliteSolutions = collections.deque(maxlen=3)
8 eliteSolutions.append(bestSolution)
9 # Start the multi-start process

10 elapsedTime = 0
11 startTime = time.process_time()
12 while elapsedTime < maxTime:
13 # Create a new solution using the savings-based heuristic
14 solution = createInitialSolution(instance, True, rng)
15 if solution.detMakespan < bestSolution.detMakespan:
16 simulateSolution(solution, detMakespan, instance, nShort)
17 if solution.stochMakespan < bestSolution.stochMakespan:
18 bestSolution = solution
19 eliteSolutions.append(bestSolution)
20 # Update the elapsed time before evaluating the stopping criterion
21 currentTime = time.process_time()
22 elapsedTime = currentTime - startTime
23 # Simulate and sort the pool of elite solutions
24 for solution in eliteSolutions:
25 simulateSolution(solution, detMakespan, instance, nLong)
26 eliteSolutions = sorted(eliteSolutions, key=lambda s:s.stochMakespan)
27 return eliteSolutions

Listing 1: Simheuristic procedure.

The algorithm receives the following input parameters: (i) the instance which comprises demand
points, facilities and travel times; (ii) the makespan of the best deterministic solution; and (iii) a random
number generator. The simheuristic algorithm works as follows: first, it generates an initial solution using
a deterministic savings-based heuristic (line 3). We will explain the detailed savings-based heuristic later.
Then, in line 4, we estimate the objective function (Equation 2) of the initial solution using the simulation
model (we run nShort replications). The generated solution will be used by the MS framework as the
best solution found so far (line 5). In line 6, we create a list to store the elite solutions. In this case, we will
select the best three solutions. The initial solution (line 5) is considered to be the first elite solution and
inserted into the list (line 6). Next, the multi-start process is executed until a maximum execution time is
reached (lines 10-22). In each iteration, a new solution is generated using the biased-randomized version
of the savings-based heuristic (line 14). The new solution is compared against the current best solution.
If the former is better in the deterministic scenario (line 15), a few simulation replications (nShort) are
performed on the new solution to obtain its performance in the stochastic scenario (line 16). If the new
solution improves the performance of the best solution found so far in the stochastic scenario (line 17),
then the current best solution is updated and the new solution is inserted in the pool of elite solutions. If
the size of the elite solution list is greater than three then the worst performing solution will be removed
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from the list (lines 18-19). The elapsed time since the start of the multi-start process is updated in lines
21-22. Once the stopping condition is met, a much higher number of simulations replications (nLong)
are performed over the pool of elite solutions (lines 24-25). This allows more accurate estimations of
the different moments associated with the stochastic performance measure generated by each solution,
e.g., mean, standard deviation, etc. Finally, the pool of elite solutions is sorted based on the expected
performance measure (line 26) and returned to the caller of the procedure (line 27).

The savings-based heuristic works as follows. First, the heuristic starts with an initial solution where all
the facilities are open and each facility is assigned to serve the demand point where the facility is located.
Then, we create a saving list where each element stores the makespan savings associated with closing a
given facility. In particular, the makespan savings are computed as follows: the maximum travel time from
the facility to all its demand points, minus the maximum travel time of its demand points when assigned to
their alternative facilities. For each demand point, its alternative facility is the open facility closest to the
demand point in case its current facility is closed. The list is then sorted in descending order according to
the described makespan savings. Starting from the initial solution (where all facilities are open), the savings
list is then traversed until the number of open facilities meets the budget constraint (see constraint 4). Unlike
the greedy version of the heuristic, a biased-randomized heuristic considers each element in the list with a
probability that follows a decreasing geometric distribution (i.e. the one with higher makespan saving has
a higher probability to be selected). By employing a biased-randomized version of the greedy heuristic, we
can generate multiple alternative solutions without losing the logic behind the original heuristic. Some of
this solutions will naturally outperform the one provided by the greedy heuristic (Dominguez et al. 2014). At
each iteration, the demand points assigned to the facility that is being closed will be reassigned to their sec-
ond nearest facility, and the savings list will be updated according to the new configuration of open facilities.

1 def simulateSolution(solution, detMakespan, instance, nIter):
2 makespans = np.empty(nIter)
3 for i in range(nIter):
4 stochMakespan = 0
5 for facility in solution.openFacilities:
6 for node in facility.nodes:
7 stochDelay = 0
8 travelTime = facility.travelTimes[node.id]
9 if travelTime != 0 and travelTime < detMakespan:

10 # Travel delays follow a log normal distribution
11 mean = r * travelTime
12 variance = c * mean
13 mu = math.log(mean) - 0.5 * math.log(1 + variance / mean**2)
14 sigma = abs(math.sqrt(math.log(1 + variance / mean**2)))
15 stochDelay = np.random.lognormal(mu, sigma)
16 # Calculate the travel times stochastic makespan
17 stochTime = travelTime + stochDelay
18 stochMakespan = max(stochMakespan, stochTime)
19 makespans[i] = stochMakespan
20 solution.stochMakespan = np.mean(makespans)
21 solution.stochMakespans = makespans

Listing 2: Simulation procedure.

The simulation model is detailed in listing 2. The simulation model receives the following input
parameters: (i) the solution to simulate; (ii) the makespan of the best deterministic solution; (iii) the
instance that comprises the demand points, facilities and travel times; and (iv) the number of simulation
replications. First, a list of stochastic makespans is created (line 2), which will be used to store the makespan
estimated by each simulation replication. Then, the simulation is run multiple times based on the given
parameter (line 3) to estimate the expected makespan of the solution. This is achieved by going through
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each open facility in the solution and to every demand point that is assigned to the facility (lines 5-6). In
lines 7-17, we sample the travel time of each pair of facility and demand point (Ti j) to find the maximum
makespan. The estimated travel time is a summation of the deterministic travel time (ti j) and the estimated
travel delay (Di j). In disaster management, a long tail distribution is frequently used to sample the travel
delay. In this paper, we choose lognormal distribution but any other long tail distribution can also be used.
The sampling is only done for a pair in which the travel time is shorter than the makespan of the best
deterministic solution (line 9). After the travel time is sampled, the current stochastic makespan is updated
(line 18). After the travel times between all facilities and the node assigned to them are sampled, the
stochastic makespan is calculated (line 18) and saved in the list of stochastic makespans (line 19). Finally,
after all simulation replications are complete, the expected makespan of the solution is calculated and saved
(line 20) and the list of stochastic makespan is also saved (lines 21).

5 EXPERIMENTAL RESULTS

The proposed algorithm has been implemented using Python 3.8 and tested on a workstation with a multi-
core processor Intel Xeon E5-2650 v4 with 32GB of RAM. To the best of our knowledge, there are no
benchmarks for the stochastic FLP. Therefore, we have adapted the benchmark proposed by Ahn et al.
(1988), which was originally designed for the p-median problem, and later used in the context of FLP by
Barahona and Chudak (2005). We have used the set of instances called MED, since they are the largest and
most challenging ones. Each instance is composed of a set of points, which are randomly chosen in the unit
square. A point represents both a demand point and a facility, and the corresponding Euclidean distance
determines travel costs. The MED set consists of six different subsets, each with a different number n of
facilities and demand points (500, 1000, 1500, 2000, 2500, and 3000). There are three different opening
cost schemes for each subset:

√
n/10,

√
n/100, and

√
n/1000 corresponding to 10, 100, and 1000 instance

suffixes, respectively. In our experiments, the number of facilities to open for each instance is computed
as follows: 5%, 10%, or 20% of the total number of facilities are opened depending on the instance name
suffix, respectively. For example, the number of open facilities for the instance 1500−10 would be 75,
and their opening cost would be proportional to

√
1500/10.

The objective of the first experiment is to evaluate the performance of our simheuristic approach when
solving the stochastic FLP in disaster management. The evaluation is done by comparing the simheuristic
solutions and the deterministic solutions. Due to space limitation, we only show the results of some
instances in Table 1. The first column show the instances (combinations of number of demand points
and opening cost scheme). The subsequent two columns show the best-found solution to the deterministic
version of the problem (OBD) and the computational time to reach it, respectively. The next three columns
show the solutions to the stochastic version of the problem. Please note that in the experiments, we set the
lognormal mean and variance parameters to: E[Di j] = r ·Ti j with r = 1 and Var[Di j] = c ·E[Di j] with c = 20.
Column (OBD-S) shows the expected makespans when the best deterministic solution OBD is evaluated
in a stochastic scenario using the simulation model. The last two columns report the expected makespan
obtained by our simheuristic approach, OBS, and the computational time to reach it. Figure 2 depicts the
box-plots of the results of all instances, where the vertical axis represents the gap between the stochastic
solutions (OBD-S and OBS) and the deterministic solution (OBD). As the deterministic solution (OBD) does
not include the stochastic delay, it provides a lower bound for the makespan. Therefore, the results from the
stochastic solutions (OBD-S and OBS) demonstrate the significant effect of damages to road infrastructure
on performance. The result also shows that for each instance, the simheuristic solution outperforms the
deterministic solution when they are compared in a stochastic situation (i.e. comparing between OBD-S and
OBS). On average, the solutions provided by our simheuristic approach (OBS) outperform the deterministic
solutions by about 8.9%. In other words, an optimal solution for the deterministic problem might be
sub-optimal in the stochastic version of the problem. This shows the utility of integrating a simulation
model to a metaheuristic when solving stochastic optimization problems.
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Table 1: Computational Results.

Deterministic Scenario Stochastic Scenario
Instance OBD OBD Time (s) OBD-S OBS OBS Time (s)
500-100 1386.0 34.7 2963.3 2829.9 112.5
500-1000 1185.0 68.9 2551.1 2386.4 186.1
1000-1000 996.0 92.7 2133.0 2034.8 126.5
1500-10 1110.0 9.4 2416.5 2366.6 180.5
2000-10 1004.0 31.3 2237.9 2148.3 297.1
2000-100 860.0 58.2 1912.5 1826.9 137.2
2500-10 930.0 68.8 2062.4 1979.0 223.0
2500-100 781.0 88.8 1755.1 1697.7 207.6
2500-1000 738.0 89.5 1590.6 1570.6 137.4
3000-100 764.0 32.8 1720.6 1617.6 200.8
Average: 975.4 57.5 2134.3 2045.8 180.8

The objective of the second experiment is to investigate the relationship between budget and expected
makespan. This is important when dealing with disaster management because we can assess the impact of
extra budget or budget reduction on the performance of humanitarian operations. Thus, an analysis of the
budget required for the number of facilities that could be opened while still ensuring a reasonable makespan
is important. In this experiment, we use the 2000-100 instance. We run the proposed simheuristic method
and vary the number of open facilities from 1 to 20. As expected, Figure 3 shows that the makespan
decreases as the number of open facilities is increased (i.e. more budget). However, the relationship is
not smooth. Notice that there are two instances where the makespan does not decrease much when the
number of facilities is increased (i.e. opening between 4 and 5 facilities and between 9 and 10 facilities).
Therefore, given those choices, managers might be interested in deciding to open 4 or 9 facilities and use
the remaining budget for other important resources.

Finally, the third experiment aims at showing how to complement the above analyses with risk assessment
analysis. For the risk assessment analysis, we consider the probability that we can cover all demand points
within a certain response time target. For example, given a certain configuration of facilities, what is the
probability for the disaster management team to be able to cover all demand points in less than 24 hours?
In other words, we are interested in analyzing the reliability or survival function associated with a given
makespan, i.e., the probability that all the demand points can be covered within a given target time. To
demonstrate this, we have carried out an experiment that applies survival analysis using the Kaplan-Meier
estimator, which is a statistical measure used to estimate the percentage chance of survival of a population
over a given length of time. In our case, the Kaplan-Meier estimator provides the probability that the
humanitarian operation is still ongoing at any target time t > 0 –notice that subtracting this value from one
gives us the probability that the operation has been completed on or before time t.

Figure 4 shows the cumulative probability function of having finished all operations, at each target time
t > 0, for the OBD-S solution and the three elite solutions returned by the simheuristic algorithm. Notice
that the probability of covering all the demand points in less than 1900 time units is approximately 0.80
for the best stochastic solution (Sol1) of the elite solution pool, while for the rest of the solutions is about
0.60 or lower. Consistent with the result in the first experiment, the simheuristic solutions outperform the
OBD-S solution. This analysis shows that managers can make a more informed decision by considering
both the expected performance (i.e. makespan) of the best solution (i.e. the facility locations) and the risk
of not meeting a target response time.
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Figure 2: Gaps between OBD-S and OBS with respect to the OBD.

6 CONCLUSIONS AND FUTURE WORK

Motivated by the lack of simheuristics applications in disaster management, we have proposed a simheuristics
algorithm to solve a facility location problem in disaster management. To evaluate the algorithm, we have
adapted an FLP benchmark to reflect the realistic (but not real) disaster management case in this paper. The
use of a known benchmark in the evaluation has built a confidence into the performance of our algorithm
in in terms of the solution quality and computation speed before we apply it to a real-world application.
The experiment shows that the combination of metaheuristic and simulation is able to find good solutions
within a short computation time. Hence, this demonstrates the benefits of using hybrid modeling in solving
a complex problem. Furthermore, we have demonstrated that using our approach, not only can we help
decision makers by giving them a tool to find the optimal facility locations but also a tool to assess the risk
of not meeting a certain target response time. In this early work, we have to make several simplifications
to the model. In the future, we will relax some of these assumptions, notably, the infinite capacity of the
facilities, the potential damage to the facility itself, and the supply and demand uncertainty. We will also
test our model using real world cases such as the one presented in Onggo et al. (2021).
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Salman, F. S., and E. Yücel. 2015. “Emergency Facility Location Under Random Network Damage: Insights from the Istanbul
Case”. Computers & Operations Research 62:266–281.

Sheu, J.-B. 2007. “Challenges of Emergency Logistics Management”. Transportation Research Part E: Logistics and Transportation
Review 43(6).

Tofighi, S., S. A. Torabi, and S. A. Mansouri. 2016. “Humanitarian Logistics Network Design under Mixed Uncertainty”.
European Journal of Operational Research 250(1):239–250.

AUTHOR BIOGRAPHIES
BHAKTI STEPHAN ONGGO is a Professor of Business Analytics at the University of Southampton. He is a member
of CORMSIS, and the Principal Investigator of the Relief-OpS project. His e-mail address is b.s.s.onggo@soton.ac.uk. His
website is https://bsonggo.wordpress.com/.

XABIER MARTIN is a Predoctoral Researcher at the Universitat Oberta de Catalunya (Spain). He holds a BSc in Computer
Science and a MSc in Computational Engineering and Mathematics. His email address is xmartinso@uoc.edu.

CANAN GUNES CORLU is an Associate Professor in the Administrative Sciences Department of Metropolitan College at
Boston University. Her primary research interest is in the area of design and analysis of stochastic simulations under input
uncertainty. Her email address is canan@bu.edu.

JAVIER PANADERO is an Associate Professor at the Universitat Oberta de Catalunya (Spain). He is also a Lecturer at the
Euncet Bussines School. His major research areas include Simulation-Optimization Algorithms and Parallel and Distributed
Systems. His email address is jpanaderom@uoc.edu.

ANGEL A. JUAN is a Full Professor at the Universitat Politècnica de València (Spain). His main research interests
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