The University of Southampton
University of Southampton Institutional Repository

Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment

Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment
Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment

We have used DNase I footprinting to examine the effect of a triplex-binding ligand on the formation of parallel intermolecular DNA triple helices at a mixed sequence target site contained within a natural DNA fragment (tyrT). In the presence of 10 μM ligand (N-[2-(dimethylamino)ethyl]-2-(2-naphthyl)quinolin-4-yl-amine), the binding of CTCTTTTTGCTT (12G) to the sequence GAGAAAAATGAA (generating a complex containing 8×T·AT, 1×G·TA and 3×C+·GC triplets) was enhanced 3-fold at pH 5.5. When the oligonucleotide CTCTTTTTTCTT (12T) was substituted for 12G (replacing G·TA with T·TA) there was a large reduction in affinity for the target sequence. However, this was stabilized by about 300-fold in the presence of the ligand, requiring a similar concentration to produce a footprint as 12G in the absence of the ligand. When the sequence of the target site was altered to GAGAAAAAAGAA, generating an uninterrupted run of purines [tyrT(46A)], the binding of 12T′ (generating a complex containing 9×T·AT, and 3×C+·GC triplets) was enhanced 3-fold by 10 μM of the triplex-binding ligand. However, although the binding of 12G to this sequence, generating a complex containing a G·AT triplet, was much weaker, this too was stabilized by about 30-fold by the ligand, requiring a similar concentration as the perfect matched oligonucleotide (12T) in the absence of the ligand. A secondary, less stable footprint was also observed in these fragments when using either 12T or 12G, which was evident only in the presence of the triplex-binding ligand. This site, which contained a number of triplet mismatches, appears to be related to the formation of four or five central T·AT triplets. This reduction in the stringency of oligonucleotide binding by the triplex-binding ligand promotes the formation of complexes at non-targeted regions but may also have the potential for enabling recognition at sites that contain regions where there are no specific triplet matches.

0264-6021
427-432
Brown, Philip M.
c910b8df-2849-4b26-8f69-3ca330836e9b
Drabble, Amelia
6b69548e-5368-4ece-9d3a-3d392c2f495b
Fox, Keith R.
9da5debc-4e45-473e-ab8c-550d1104659f
Brown, Philip M.
c910b8df-2849-4b26-8f69-3ca330836e9b
Drabble, Amelia
6b69548e-5368-4ece-9d3a-3d392c2f495b
Fox, Keith R.
9da5debc-4e45-473e-ab8c-550d1104659f

Brown, Philip M., Drabble, Amelia and Fox, Keith R. (1996) Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment. Biochemical Journal, 314 (2), 427-432. (doi:10.1042/bj3140427).

Record type: Article

Abstract

We have used DNase I footprinting to examine the effect of a triplex-binding ligand on the formation of parallel intermolecular DNA triple helices at a mixed sequence target site contained within a natural DNA fragment (tyrT). In the presence of 10 μM ligand (N-[2-(dimethylamino)ethyl]-2-(2-naphthyl)quinolin-4-yl-amine), the binding of CTCTTTTTGCTT (12G) to the sequence GAGAAAAATGAA (generating a complex containing 8×T·AT, 1×G·TA and 3×C+·GC triplets) was enhanced 3-fold at pH 5.5. When the oligonucleotide CTCTTTTTTCTT (12T) was substituted for 12G (replacing G·TA with T·TA) there was a large reduction in affinity for the target sequence. However, this was stabilized by about 300-fold in the presence of the ligand, requiring a similar concentration to produce a footprint as 12G in the absence of the ligand. When the sequence of the target site was altered to GAGAAAAAAGAA, generating an uninterrupted run of purines [tyrT(46A)], the binding of 12T′ (generating a complex containing 9×T·AT, and 3×C+·GC triplets) was enhanced 3-fold by 10 μM of the triplex-binding ligand. However, although the binding of 12G to this sequence, generating a complex containing a G·AT triplet, was much weaker, this too was stabilized by about 30-fold by the ligand, requiring a similar concentration as the perfect matched oligonucleotide (12T) in the absence of the ligand. A secondary, less stable footprint was also observed in these fragments when using either 12T or 12G, which was evident only in the presence of the triplex-binding ligand. This site, which contained a number of triplet mismatches, appears to be related to the formation of four or five central T·AT triplets. This reduction in the stringency of oligonucleotide binding by the triplex-binding ligand promotes the formation of complexes at non-targeted regions but may also have the potential for enabling recognition at sites that contain regions where there are no specific triplet matches.

This record has no associated files available for download.

More information

Published date: 1 March 1996

Identifiers

Local EPrints ID: 475870
URI: http://eprints.soton.ac.uk/id/eprint/475870
ISSN: 0264-6021
PURE UUID: 8e96ca63-767e-440b-8fe5-00b858e100a0
ORCID for Keith R. Fox: ORCID iD orcid.org/0000-0002-2925-7315

Catalogue record

Date deposited: 29 Mar 2023 16:47
Last modified: 17 Mar 2024 02:34

Export record

Altmetrics

Contributors

Author: Philip M. Brown
Author: Amelia Drabble
Author: Keith R. Fox ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×