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Despite current-voltage hysteresis in perovskite solar cells (PSCs) having been the subject of
significant research over the past decade, inverted hysteresis (IH), although frequently observed,
is still not properly understood. Several mechanisms, based on numerical simulations, have been
proposed to explain it but a satisfactory description of the underlying cause remains elusive. To
rectify this omission we analyse a drift-diffusion model of a planar three-layer PSC, using asymptotic
techniques, to show how inverted hysteresis comes about. The asymptotic analysis of the drift-
diffusion model yields a simple approximate model that shows excellent agreement with numerical
simulations of the full drift-diffusion model, provides fundamental insights into the causes of IH
and reconciles the alternative explanations found in the literature. This approximate model is
analysed further to isolate the material properties and external conditions that contribute to inverted
hysteresis, and constitutes a diagnostic tool in which the appearance of IH can be used to infer
properties of the cell.
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I. BACKGROUND

A. Development of PSCs

Perovskite solar cells (PSCs) have received tremen-
dous attention from the photovoltaics community over
the past decade, as their power conversion efficiencies
(PCEs) have climbed to be comparable to that of silicon
solar cells (see, e.g. [1]), the current market leader. In
2012, efficiencies began to cross the 10% threshold [2, 3],
sparking a significant research effort in the understanding
and development of these devices. PSCs quickly became
the fastest growing PV technology in terms of PCE, with
a current record of 25.7% [4]. Another attractive benefit
of PSCs is the possibility of cheap large-scale manufactur-
ing, enabled by a variety of fabrication methods, involv-
ing solution processing [5, 6] and vapour deposition [7],
many of which can be performed at low temperatures [8].
Following world record-breaking advances in perovskite-
silicon tandem cells, large scale commercial production
has been planned for 2022 [9].

While the efficiencies of ‘champion cells’ have increased
rapidly, significant challenges to the commercial develop-
ment of these devices remain, including long-term sta-
bility, reliance on toxic materials, and understanding of
the effects of ion motion on the optoelectronic perfor-
mance [10, 11]. The electrical characterisation of PSCs
using standard techniques is hampered by showing long-
lived transients on timescales of several seconds to hours.
Current-voltage (J-V ) measurements (intended to show
steady state performance), which are typically performed
at constant sweep rates, are therefore dependent on the
bias history of the cell, and lead to so-called current-

voltage ‘hysteresis’, as first reported by Snaith et al. [12].
These measurements proceed first with a precondition-
ing step in which the cell is held at some constant volt-
age Vpre > VOC, for a fixed length of time, followed by a
voltage sweep in which the applied voltage is reduced to
short-circuit (the reverse scan) and then a sweep back to
VOC (the forward scan). Typically a range of scan rates
exhibit hysteresis, meaning there is a marked difference
between the forwards and reverse current-voltage mea-
surements [13]. Even so-called hysteresis-free cells will
show hysteresis if a wide enough range of scan rates and
temperatures are investigated.

The use of drift-diffusion (DD) models [14–18] offers a
powerful tool to improve understanding of PSCs, guid-
ing further development and providing theoretical insight
to address some of the remaining challenges. Follow-
ing the first observations of current-voltage hysteresis in
PSCs, several mechanisms were proposed in the literature
[19, 20]. Ion migration became the favoured candidate
due to findings that halide ions were mobile on timescales
matching those of hysteresis [21, 22]. Drift-diffusion mod-
els of electrons and holes are an established technique in
semiconductor modelling [23, 24] and were used to test
theories of ion migration in PSCs by incorporating slow-
moving ionic species into the model [14, 15, 25]. This ad-
dition, however, introduces extreme spatial and temporal
stiffness to the system, requiring tailored approaches to
obtain accurate solutions. Stiff equations are those in
which solutions undergo substantial variations over short
timescales or over small spatial regions, and render many
numerical techniques unstable. Temporal stiffness oc-
curs due to the disparity in the timescales of motion of
ionic (slow) and electronic (fast) species and spatial stiff-
ness due to carrier accumulation in thin Debye layers
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(∼ 1.5 nm) near interfaces, predicted by the high den-
sity of ion vacancies in the perovskite [15]. While early
numerical approaches to solving the DD equations were
not capable of solving for physical parameter sets [14],
Courtier et al. [26] and Calado et al. [27] have both de-
veloped reliable numerical approaches without excessive
computation times. In the former case the resulting finite
element scheme has been made publicly available with
the release of the open-source PSC simulation software,
IonMonger [28] whilst in the latter it has been released
as the open source code Driftfusion.

To avoid the computational difficulties of solving
such stiff equations, a different approach was taken by
Richardson et al. [15, 29] in which matched asymptotic
analysis was employed to systematically obtain a sim-
ple approximate model (termed the surface polarisation
model (SPM)), which accurately captures the behaviour
of the underlying mixed-ionic drift diffusion model over a
large portion of the physically relevant parameter space.
In the SPM, ions are decoupled from electronic carriers
in the perovskite (meaning the electric potential is de-
termined solely by the ionic charge) and the cell is char-
acterised by the charge density stored within the Debye
layers near each material interface (discussed in more de-
tail in Section III). Courtier et al. later extended the SPM
to explicitly include the transport layers [16]. Although
the SPM is not always as accurate as numerical solutions
to the full DD model, the simplicity of the SPM pro-
vides significant additional insight into the mechanisms
underlying PSC behaviour. Several other studies have
also arrived at simplified models of PSCs that approxi-
mate the behaviour of the full DD model while offering
greater insight, although none of them have been sys-
tematically derived from the underlying DD model (as
the SPM has). Ravishankar et al. [30] developed a sim-
ilar surface polarisation model, however the capacitance
relation used for the ionic Debye layers is not compatible
with the DD model and, in particular, results in a non-
zero surface charge density at the perovskite/transport
layer interfaces when the potential difference across these
interfaces is zero. Moia et al. [31] obtained an equivalent
circuit model comprising an ionically gated transistor-
interface and Bertoluzzi et al. [32] provided an analytical
model of the band diagrams loosely based on Richard-
son’s surface polarisation model.

Whilst all four of these simplified models can be said to
approximate the full PSC DD model in certain parameter
regimes, none are capable of recreating the inverted hys-
teresis scans that are seen in numerical DD simulations
(shown for the SPM in Figure 2) in certain parameter
regimes and which are discussed in detail in the next sec-
tion. It is the aim of this work to systematically extend
the SPM, by deriving to regimes in which inverted hys-
teresis is observed.

B. Inverted hysteresis

A hysteretic current-voltage sweep usually exhibits
greater current output throughout the reverse sweep
(from open-circuit to short-circuit) than on the forward
sweep (from short-circuit to open-circuit) [12, 21], some-
times referred to as normal hysteresis (NH). Some cells,
however, have shown larger current output on the for-
ward sweep than the reverse [33–35]. This has been
termed inverted hysteresis (IH) [36, 37]. While a consen-
sus has not been reached on an exact distinction between
NH and IH, the latter includes a higher open-circuit volt-
age on the forward sweep and/or at least some region of
the sweep in which the current output is greater on the
forward sweep. Examples of both normal and inverted
hysteresis are shown in Figure 1. Since the phenomenon

FIG. 1. Schematics of normal (left) and inverted (right) hys-
teresis.

was first observed, there have been attempts to replicate
IH in simulations and models in order to understand the
underlying cause, with some success (as discussed below).
A consensus on the underlying mechanism has, however,
not been reached.

Jacobs et al. reproduced IH in numerical drift-diffusion
simulations [39], and suggest that preconditioning at
voltages much larger than the cell’s built-in voltage in-
duced IH due to reverse accumulation of ion vacancies i.e.
positive vacancies accumulate near the ETL, in contrast
to normal operating conditions. However, their simula-
tions were performed with ions immobilised in some pre-
bias configuration, rather than being allowed to evolve in
time, despite being conducted over timescales on which
ions are likely to be mobile. This thus limits their ability
to infer likely mechanisms for IH from experimental data.

Shen et al. [40] also replicated IH with numerical sim-
ulations but drew different conclusions from Jacobs et
al. as to its underlying causes. In particular they dis-
cussed two possible mechanisms; the first based on band-
bending and the second on accumulation of ionic charge
in the perovskite bulk. They suggested that highly asym-
metrical band alignment between the transport layers
and the perovskite causes a significant population of elec-
trons to build up within the perovskite, leading to it
becoming n-type. And that any subsequent change to
the applied voltage then affects the HTL/perovskite p-
n junction, leaving the electric potential uniform over a
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FIG. 2. Validation of the SPM against numerical solutions. Panel (a) shows the current-voltage curve for a 500mVs−1

sweep of the parameter set from Tables 3.2 and 3.3b of [38] that does not exhibit inverted hysteresis and represents a typical
TiO2/MAPI/spiro-MeOTAD cell while panel (b) shows a 50mVs−1 sweep of a parameter set shown to exhibit strong inverted
hysteresis (listed in table S1 of the Supplementary Information) and representative of a PCBM/MAPI/NiOx cell. Red lines
are numerical solutions of the full three-layer drift-diffusion model obtained with the PSC simulation software IonMonger [28]
and blue lines are numerical solutions of the SPM (Eq. 19 from [16]).

large region of the cell near the ETL interface. In this
region, carrier transport is diffusion-limited, resulting in
increased bulk recombination losses. The drift-diffusion
model used explicit dynamic coupling of mobile ions to
carriers and electric potential.

Garćıa-Rodŕıguez et al. used the PSC simulation tool,
IonMonger, in conjunction with experimental data to in-
vestigate the role of cell architecture on IH [41].They
found that IH can be observed in both p-i-n and n-i-p
architectures and that hysteresis typically switches from
normal to inverted as scan rate increases. The scan rates
at which maximal normal and inverted hysteresis were
shown to be sensitive to the ion vacancy diffusion co-
efficient, the ion vacancy density and the nature of the
transport layer materials.

Recently, Gonzales et al. [42] identified a link between
inverted hysteresis and the so-called negative capacitance
feature frequently observed in impedance spectra of PSCs
[43]. It was found that both phenomena can be well de-
scribed by the addition of a ‘chemical inductor’ to the
equivalent circuit model of a PSC. Despite being able to
recreate experimental data, the equivalent circuit models
were not derived systematically from the drift-diffusion
equations, meaning the physical origin of each circuit ele-
ment is unclear. Indeed, it was stated that the molecular
origin of the chemical inductance has not yet been iden-
tified.

Another recent work by Minbashi and Yazdani [44]
modified the drift-diffusion model to simulate IH, allow-
ing mobile ions to cross material interfaces. However,
two mobile ion species were assumed to have equal mo-
bilities, a scenario shown to be unlikely by Bertoluzzi
et al. [32]. As we shall show here, no additions to the

standard drift-diffusion model of PSCs are required to
reproduce inverted hysteresis.

Although these studies [39–41] have shown that mixed-
ionic drift-diffusion models are capable of exhibiting in-
verted hysteresis, their numerical simulations do not
provide an unambiguous explanation of the underlying
mechanism behind this phenomenon. The ambiguity can
largely be attributed to the complexity of the mixed-ionic
three-layer DD model. As discussed in the previous sec-
tion, simplified models can offer additional insight into
the behaviour of the full cell but none reported thus far
are capable of recreating IH as observed in numerical
simulations. In what follows we systematically derive a
modified surface polarisation model (mSPM), from the
mixed-ionic DD model, with the goal of elucidating the
mechanisms that underlie inverted hysteresis. We begin,
in Section II, by stating the familiar mixed-ionic three-
layer drift-diffusion (DD) model of a perovskite solar cell.
Section III includes a brief description of the standard
surface polarisation model, as derived in Richardson et
al. [15] and extended in Courtier et al. [16]. We show
that while the SPM is very accurate for typical parame-
ter sets, it performs poorly for parameter sets exhibiting
inverted hysteresis, and this motivates modifications to
the assumptions used to derive the SPM. The mSPM,
and the assumptions on which it is based, are discussed
in Section IV, where solutions are successfully validated
against solutions of the full three-layer DD model. In Sec-
tion V, we present further analysis of the problem under
external conditions of preconditioning at a fixed voltage
and a linear voltage sweep, obtaining a relation between
timescales of inverted hysteresis and material parame-
ters. Finally, in Section VI, we show that the mSPM
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reconciles the partial explanations of IH put forward in
the literature under a single, complete description and
provides a pathway to use IH as a diagnostic tool, which
can be used to help guide the design of cells with im-
proved steady state performance.

II. THE DRIFT-DIFFUSION MODEL

We begin by stating the full drift-diffusion model of
the three-layer planar PSC. This model (or minor varia-
tions of it) has been widely adopted and shown to accu-
rately reproduce the current-voltage characteristics and
impedance response of PSCs [15–18, 28, 29, 31, 45–47].
A perovskite absorber layer is sandwiched between an n-
type electron transport layer (ETL) and a p-type hole
transport layer (HTL). Both n-i-p and p-i-n architec-
tures can be modelled by simply changing the direction
of the light. A schematic of the cell is shown in Fig-
ure 3. In each layer, we model transport of each mobile
charge species by a conservation equation coupled to a
flux equation that is the sum of responses to gradients in
electric potential (drift) and number density (diffusion).
All charged species are then fully coupled to the electric
potential via Poisson’s equation. Ion motion is modelled
explicitly, allowing for spatial and temporal variation.

A. The perovskite layer

In this layer we assume three mobile charged species:
anion vacancies (P ), electrons (n), and holes (p), with
fluxes FP , jn, and jp, respectively. The conservation
equations and their corresponding fluxes are

∂P

∂t
= −∂F

P

∂x
,

FP = −DP

(
∂P

∂x
+

q

kBT
P
∂φ

∂x

)
, (1)

∂n

∂t
=

1

q

∂jn

∂x
+G−R,

jn = qDn

(
∂n

∂x
− q

kBT
n
∂φ

∂x

)
, (2)

∂p

∂t
= −1

q

∂jp

∂x
+G−R,

jp = −qDp

(
∂p

∂x
+

q

kBT
p
∂φ

∂x

)
. (3)

Here G and R are the rates of electronic carrier gener-
ation and recombination respectively, forms of which are
given in (27)-(31). The three charged species are coupled
to the electric potential (φ) via Poisson’s equation,

∂2φ

∂x2
=

q

εp
(N0 − P + n− p). (4)

We have assumed a uniform background density (N0)
of immobile cation vacancies, following the findings of

FIG. 3. Schematic of the planar PSC model. The continuum
variables modelled in each layer are shown.

Bertoluzzi et al. [32]. Definitions of material parameter
symbols and the values adopted can be found in Table
S1 of the Supplementary Information.

B. The ETL

The electron transport layer is assumed to be highly
n-doped. It is assumed that the hole density in this layer
is negligible, as are the effects of carrier generation and
recombination. In this region the model therefore com-
prises a single conservation equation for electrons,

∂n

∂t
=

1

q

∂jn

∂x
, (5)

coupled to the electron current density

jn = qDE

(
∂n

∂x
− n

VT

∂φ

∂x

)
. (6)

The electron density is also coupled to the electric poten-
tial via Poisson’s equation,

∂2φ

∂x2
=

q

εE
(n− dE) (7)

where dE is the effective doping density, equal to the
(uniform) density of donor atoms in the lattice. The
ETL is assumed to form an Ohmic contact with the metal
cathode, leading to the boundary conditions

n|x=−bE = dE , φ|x=−bE = −V (t)− Vbi
2

, (8)

where V (t) is the voltage applied across the cell and

Vbi =
1

q

(
EEc − EHv

)
− VT ln

(
gEc g

H
v

dEdH

)
(9)

is the built-in voltage, equal to the difference in the equi-
librium quasi-Fermi levels of the transport layers.

C. The HTL

Similarly, the minority carrier density in the highly p-
doped HTL is assumed to be negligible, as are the effects
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of carrier generation and recombination. The model in
this region comprises a single equation for conservation
of holes,

∂p

∂t
=
−1

q

∂jp

∂x
, (10)

coupled to the hole current density

jp = −qDH

(
∂p

∂x
+

p

VT

∂φ

∂x

)
. (11)

The hole density is coupled to the electric potential via
Poisson’s equation,

∂2φ

∂x2
=

q

εH
(dH − p), (12)

where dH is the effective doping density, equal to the
density of acceptor atoms in the lattice. The HTL is
assumed to form an Ohmic contact with the metal anode,
leading to the boundary conditions

p|x=b+bH = dH , φ|x=b+bH =
V (t)− Vbi

2
. (13)

D. Interface Conditions

Electric potential, electric displacement field, and ma-
jority carrier QFL are assumed to be continuous across
the material interfaces. Similarly, electronic currents are
conserved over the interfaces and anion vacancies are con-
fined to the perovskite layer, meaning the ion flux is zero
on both interfaces. The resulting continuity conditions
are

FP |x=0 = 0, (14)

jp|x=0 = −qRl, (15)

jn|x=0− = jn|x=0+ − qRl, (16)

φ|x=0− = φ|x=0+ , (17)

εE
∂φ

∂x
|x=0− = εp

∂φ

∂x
|x=0+ , (18)

kEnE |x=0− = n|x=0+ , (19)

at the ETL interface and

FP |x=b = 0, (20)

jn|x=b = qRr, (21)

jp|x=b− − qRr = jp|x=b+ , (22)

φ|x=b− = φ|x=b+ , (23)

εp
∂φ

∂x
|x=b− = εH

∂φ

∂x
|x=b+ , (24)

p|x=b− = kHpH |x=b+ . (25)

at the HTL interface. Here Rl and Rr are the rates
of interfacial recombination at the ETL/perovskite and

HTL/perovskite interfaces, respectively, in which major-
ity carriers from the transport layers recombine with mi-
nority carriers from the perovskite. The ratios of ma-
jority carrier densities either side of the transport layer
interfaces are determined by the band offsets between the
adjecent materials,

kE =
gc
gEc

exp

(
EEc − Ec
kBT

)
,

kH =
gv
gHv

exp

(
Ev − EHv
kBT

)
. (26)

E. Generation and recombination

The rate of carrier generation in the perovskite is as-
sumed to follow the Beer-Lambert law of light absorption
for a single wavelength and absorption coefficient,

G(x, t) = Is(t)Fphαe
−αx, (27)

where Fph is the incident photon flux, α is the per-
ovskite absorption coefficient, and Is(t) is the light inten-
sity. Note that this form of the generation rate assumes
the cell has so-called normal architecture (light entering
through the ETL). Inverted architectures, in which the
light enters through the HTL, can be modelled with the
generation rate G(b− x, t). In this cell, bulk recombina-
tion is assumed to be dominated by Shockley-Read-Hall
(SRH), the rate of which is given by

R(n, p) =
np− n2

i

τnp+ τpn+ (τn + τp)ni
. (28)

The intrinsic carrier density in the perovskite is defined
as

n2
i = gcgv exp

(Ev − Ec
kBT

)
. (29)

Interfacial recombination is assumed to be dominated by
SRH recombination with rates

Rl =
np− n2

i
kE
νn,E

p+ 1
νp,En+

(
kE
νn,E

+ 1
νp,E

)
ni
, (30)

Rr =
np− n2

i
1

νn,H
p+ kH

νp,Hn+
(

1
νn,H

+ kH
νp,H

)
ni
. (31)

III. THE SURFACE POLARISATION MODEL

While the drift-diffusion (DD) model detailed in the
previous section can be solved numerically [27, 28],
deeper physical insight may be gained from approxi-
mating the model, in relevant parameter regimes, using
asymptotic methods to obtain a simpler, albeit slightly
less accurate, model which is more readily analysed.
Many PSCs have physical parameter values for which the
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FIG. 4. Electric potential in the SPM. The dashed line shows
the adaption to the modified SPM.

DD model is well-approximated by the so-called Surface
Polarisation Model (SPM) (see [15, 16, 29]) such that
their behaviour is accurately captured by this much sim-
pler model. In this section we give a brief overview of
the SPM and discuss its validity for parameter sets that
exhibit inverted hysteresis.

The large densities of the dominant mobile charge
species in each layer (ion vacancies in the perovskite,
electrons in the ETL, holes in the HTL) lead to Debye
lengths much smaller than the width of each layer. This
motivated Richardson et al. [15, 29] to apply the method
of matched asymptotic expansions to the DD model. In
the case of a planar cell with three-layers, as depicted in
Fig. 4, this leads to a solution with a seven layer struc-
ture (see Ref. [16] and Figure 4) consisting of four nar-
row boundary layer regions (the so-called Debye layers)
that lie adjacent to the interfaces between the perovskite
absorber layer and the transport layers and three bulk
regions that lie away from these interfaces. In the Debye
layers there is significant charge accumulation whilst in
the bulk regions there is almost exact charge neutrality.

The systematic derivation of the SPM from the drift-
diffusion equations relies on five key assumptions:

i The Debye length in the perovskite, defined by

LD =
√

εpVT

qN0
,is small in comparison to the width

of the perovskite layer, LD

b = O(10−3).

ii Electron and hole densities in the perovskite layer
are very much smaller than that of the mobile ions.

iii The timescale for electronic carrier motion is very
much faster than that of ion motion in the per-
ovskite.

iv The Debye lengths of electrons and holes in their
respective transport layers are much smaller than
the widths of the transport layers.

v The electronic carriers in the transport layers are
highly mobile.

Under these assumptions, the electric potential is
found to be linear throughout each of the three bulk lay-
ers, a consequence of near total charge neutrality in these

regions. Furthermore, each of the Debye layers can be
characterised by the surface charge density that it stores
(for the four layers, proceeding from left to right, these
are denoted by QE , QL, QR and QH , respectively) and
the potential drop across it (V1, V2, V3 and V4, respec-
tively). The charge density in the perovskite Debye layers
is dominated by anion vacancies, accumulating near one
interface and depleting from the other. Confining these
vacancies to the perovskite layer and assuming a constant
uniform background density of immobile cation vacancies
leads to a condition of net neutrality on the perovskite
Debye layers, QL = −QR. Similarly, applying continu-
ity of displacement electric field across the two interfaces
leads to the relations QE = −QL and QH = −QR. This
allowsQE , QL, andQH to be eliminated in favour ofQR,
and results in a single ODE for QR, the charge density
stored in the right-hand perovskite Debye layer,

dQR
dt

=
qN0DP

bkBT
(Vbi − V (t)− V1 − V2 − V3 − V4) ,

(Eq. 19 from [16])
where

V1 = −V(−ΩEQR), V2 = −V(−QR),
V3 = V(QR), V4 = −V(−ΩHQR),

(32)

are the potential drops over each of the Debye layers,
V(Q) is the non-linear capacitance relation of the Debye
layers, defined as the inverse of

Q(V) =
√
qN0εpVT sign(V)

√
2
(
eV/VT − V/VT − 1

)
,

(33)

and ΩE =
εpN0

εEdE
and ΩH =

εpN0

εHdH
are non-dimensional

constants that determine how the potential difference
across the device is divided between the three layers.
Once a time-dependent solution for QR has been ob-
tained through numerical solution of the ODE, the cur-
rent density can be found through solutions of carrier
densities in the perovskite bulk on the background elec-
tric potential.

Current-voltage curves obtained from the SPM are
shown against numerical solutions in Figure 2. As was
shown by Courtier et al. [29], the SPM shows excellent
agreement with numerical results for typical parameter
sets that do not exhibit IH (Figure 2a), and provides sig-
nificant insight into the behaviour of the complex three-
layer drift-diffusion model. However, the model shows
poor agreement with numerical solution to the full drift-
diffusion model for parameter sets that exhibit IH (Figure
2b) and the understanding of PSCs built upon the SPM
needs to be revised in these cases.

IV. THE MODIFIED SURFACE
POLARISATION MODEL

Numerical simulations exhibiting IH typically show a
large density of one species of electronic carrier in the



7

perovskite bulk before the sweep begins [40, 41], a fea-
ture not usually seen in simulations showing normal hys-
teresis. Motivated by the link between inverted hys-
teresis and large carrier densities, we present the mod-
ified surface polarisation model (mSPM), in which the
asymptotic assumptions of the SPM are altered to re-
flect this carrier population and the systematic analysis
of the drift-diffusion equations is repeated with the up-
dated assumptions. In this section, the mSPM is briefly
outlined in terms of dimensional variables. The full sys-
tematic derivation from the drift-diffusion equations is
given in the Supplementary Information.

The typical ratios of electrons and holes to anion va-
cancies in the perovskite bulk in steady state conditions
are given by

n

P
≈ dEgc
N0gEc

exp

(
EEc − Ec − V1 − V2

VT

)
, (34)

p

P
≈ dHgv
N0gHv

exp

(
Ev − EHv − V3 − V4

VT

)
, (35)

where V1 − V4 are the potential drops illustrated in Fig.
4 and the parameters in this expression are as defined
in Table S1 of the Supplementary Information. In the
standard SPM, the assumption is that both electron and
hole densities are sufficiently small that they do not con-
tribute significantly to the net charge density across the
perovskite layer (including the Debye layers at its edges).
The electron and hole problems thus decouple, at leading
order, from the ion problem (reflected in assumption ii
in §III). As discussed in the previous section, numerical
simulations suggest that this assumption is not justified
for parameter sets that exhibit IH due to the presence
of significantly larger carrier densities. Here we shall as-
sume that only one of the electron and hole densities is

sufficiently small that it can be neglected from the overall
charge density across the perovskite layer and that it is
the other charge carrier that has a significant effect on
the evolution of the ion density. When preconditioning
at voltages larger than Vbi (as is common protocol), ion
vacancies migrate away from the HTL, leaving a deple-
tion region near the interface [29]. Due to the asymme-
try of the Debye layer capacitance relation (Figure S1
of the Supplementary Information), a greater potential
drop occurs across depletion regions than accumulation
regions. This presents holes with a greater extraction
barrier than electrons. For this reason, the carrier im-
balance is assumed to favour holes over electrons. This
manifests itself as an alteration to asymptotic assump-
tion iii, which now becomes

iii The hole density in the perovskite bulk is much
greater than the electron density, but much less
than that of mobile anion vacancies, and the over-
all contribution to the charge density from holes in
the perovskite layer is significant.

The inverse scenario, in which electrons outnumber holes
during preconditioning, is discussed in the Supplemen-
tary Information.

In the Supplementary Information, we generalise the
systematic asymptotic approach, adopted in [15, 16, 29]
to derive the SPM from the DD model, to this new sce-
nario. The results of this analysis show that, while the
Debye layers are still characterised by the same capaci-
tance relation (33), the electric potential (φ) is no longer
approximately linear (i.e. it is no longer true that the
electric field is spatially uniform) in the central (bulk)
region of the perovskite (i.e. away from the Debye layers
on the edges of the perovskite). Instead, φ satisfies the
the following PDE in this region:

DPN0
∂2φ

∂x2
=
dHgv
gHv

exp

(
V (t)− Vbi − 2φ

2VT
+
Ev − EHv
qVT

)
∂

∂t

(
φ− V (t)

2

)
− εPVT

q

∂

∂t

(
∂2φ

∂x2

)
, (36a)

which couples to the perovskite Debye layer charge den-
sities via the ODEs

dQL
dt

=
qDPN0

VT

∂φ

∂x
|x=0+ , (36b)

dQR
dt

= −qDPN0

VT

∂φ

∂x
|x=b− , (36c)

and satisfies the boundary conditions

φ|x=0+ = −V (t) + Vbi
2

− V1 − V2, (36d)

φ|x=b− =
V (t) + Vbi

2
+ V3 + V4, (36e)

where the Debye layer potential drops are functions of the
Debye layer charge densities, given by the capacitance

relation (33)

V1 =− V(ΩEQL), V2 =− V(QL), (36f)

V3 =V(QR), V4 =− V(−ΩHQL). (36g)

Note that, in contrast to the standard SPM model, it
is not in general true that QL = −QR; this is because
the charge arising from the holes in the perovskite layer is
significant and therefore affects the overall charge balance
in this layer.

While this system cannot, in general, be solved an-
alytically, the complexity of the full three layer drift-
diffusion model has been greatly reduced, retaining only
the leading order processes. Further analysis on this sys-
tem under specific external conditions of interest will be
presented in §V. Alternatively, this reduced system can
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FIG. 5. Validation of the modified SPM against numerical solutions. As in Figure 2, panel (a) shows the current-voltage curve for
a 500mVs−1 sweep of the parameter set from Tables 3.2 and 3.3b of [38] that does not exhibit inverted hysteresis and represents
a typical TiO2/MAPI/spiro-MeOTAD cell while panel (b) shows a 50mVs−1 sweep of a parameter set shown to exhibit strong
inverted hysteresis (listed in Table S1 of the Supplementary Information) and representative of a PCBM/MAPI/NiOx cell. Red
lines are numerical solutions of the full three-layer drift-diffusion model obtained with the PSC simulation software IonMonger

[28] and green lines are numerical solutions of the modified SPM (36).

easily be solved numerically with a suitable PDE solver
as the severe spatial and temporal stiffness of the DD
systems is removed by the boundary layer analysis of the
Debye layers that gives rise to (36b)-(36e), and the as-
sumption that electronic carriers are in a quasi-steady
state (asymptotic assumption v).

In order to validate the modified SPM (36), we first
consider the example of a current-voltage sweep at
50mVs−1 after the cell has reached steady state at a
preconditioning voltage of 1.4V. The scan rate was cho-
sen as it shows significant inverted hysteresis for this
parameter set, which corresponds to a p-i-n cell with
a PCBM/MAPI/NiOx structure (listed in Table 1 of
the Supplementary Information). Solutions to the mod-
ified SPM are compared against numerical solutions to
the full three-layer drift-diffusion model obtained using
IonMonger [28]. Figure 5b shows the current-voltage
curve produced by the modified SPM plotted against a
numerical solution of the full three-layer model. The
mSPM shows excellent agreement with the numerical
solution. In addition to being able to predict the be-
haviour of the J-V hysteresis curves, quantitative proper-
ties, such as the forward VOC, reverse VOC, and the short-
circuit current are accurately predicted by the modified
SPM, with relative errors of 0.69%, 0.32%, and 1.50%, re-
spectively. However, the standard SPM (shown in Figure
2b) performs poorly, failing to replicate even the qualita-
tive shape of the J-V curve. We also note that the mSPM
is capable of reproducing normal hysteresis to the same
accuracy as the already-validated SPM (Figure 5a).

Solutions to the electric potential during a reverse volt-
age sweep are shown in Figure 6, where they are com-
pared against numerical solutions to the full three-layer

FIG. 6. Solutions of the electric potential during the 50mVs−1

reverse sweep of a PCBM/MAPI/NiOx parameter set that
exhibits strong inverted hysteresis (see Table 1 of the Sup-
plementary Information). Red lines correspond to numerical
solutions from IonMonger and green lines to numerical solu-
tions of the modified SPM (36). The arrow shows the di-
rection of increasing time. Note that here electric potential
has been shifted by a time-dependent function such that the
right hand boundary condition is now φ|x=b+bH = 0 in order
to more clearly show the behaviour of the solution.

DD model. Once again, excellent agreement is seen.
While solutions from the standard SPM are not shown,
the assumption that the electric potential is linear (i.e.
the electric field E(t) is spatially uniform) in the per-
ovskite bulk is clearly not accurate in this case. This
confirms that the underlying mechanism of inverted hys-
teresis that is displayed by this parameter set cannot be
explained by the SPM, but requires the additional effects
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FIG. 7. Hysteresis factor (37) as a function of scan rate from
three methods of solution. The red line shows full numerical
solutions using IonMonger, the blue shows solutions of the
SPM, and the green shows the modified SPM.

of a large hole population in the perovskite bulk.
The excellent agreement between the modified SPM

and numerical solutions is not restricted to this single
scan rate, but extends across the entire range of hys-
teretic scan rates. This is shown in Figure 7, where
hysteresis factor is shown as a function of scan rate as
predicted by the three methods of solution. Once again,
the modified SPM performs very well, while the standard
SPM does not, failing to predict a non-negligible negative
hysteresis factor at any scan rate. While the hysteresis
factor, defined by

HF =

∫ VOC

Vmin
(Jrev − Jfor)dV∫ VOC

Vmin
JrevdV

, (37)

obscures much of the information regarding the nature of
the hysteresis [37, 48] and should not be used as the only
measure of hysteresis, it does offer convincing evidence
that the modified SPM can be considered accurate across
a broad range of scan rates.

V. ANALYSIS

The modified SPM is a much simpler model of a PSC
than the full DD model, and predicts its behaviour from a
single non-stiff PDE for the electric potential (φ(x, t)) in
the perovskite bulk coupled to two ODEs for the charge
densities (QL(t) and QR(t)) in the Debye layers. Fur-
thermore numerical solutions to the modified SPM show
close agreement (in the relevant regimes) to those of the
full DD model. In this section, we further analyse the
modified SPM to obtain a travelling wave solution which
accurately describes the reverse sweep of a hysteresis ex-
periment and can be used to explain the phenomenon of
inverted hysteresis. Standard procedure for these mea-
surements is to precondition the cell at some voltage
V pre > VOC until steady state is reached, then linearly
sweep the applied voltage to short-circuit and back at

some fixed rate [33, 36, 40]. This motivates us to look for
a solution that starts from steady state at V = V pre and
then evolves in response to a linearly decreasing applied
voltage.

A. Preconditioning

To investigate the behaviour of the mSPM during
the preconditioning stage, we look for steady-state solu-
tions of the modified SPM at some applied voltage V pre.
Steady-state is enforced by setting all time derivatives
in the governing equations (36a-c) to be equal to zero.
Under these conditions, the electric potential solution in
the perovskite bulk is flat, (i.e. independent of x),

φpre =
V pre − Vbi

2
+ V pre

3 + V pre
4 (38)

where V pre
1,...,4 are the four Debye layer potential drops, de-

termined by the Debye layer charge densities (Qpre
L ,Qpre

R )
according to (36f)-(36g). As no potential difference oc-
curs across any of the bulk regions, the sum of the Debye
layer potential drops must equal the total potential across
the cell,

V pre
1 + V pre

2 + V pre
3 + V pre

4 = Vbi − V pre. (39)

A third constraint is required to completely solve the
system, provided by a statement of conservation of ionic
charge. While the drift-diffusion equations require the
total ionic charge in the perovskite to be constant, we also
require ionic net neutrality, a condition usually supplied
by initial conditions for the problem. This condition of
ionic charge conservation and neutrality takes the form∫ b

0

(P −N0)dx = 0. (40)

This third constraint shows that (unlike in the standard
SPM) the ionic charge densities stored in the two per-
ovskite Debye layers are not necessarily equal and oppo-
site and depend on the preconditioning voltage,

Qpre
L +Qpre

R = qdHkHb exp

(
V pre − Vbi + V pre

1 + V pre
2

VT

)
.

(41)
This is caused by large hole densities flooding the per-
ovskite when the preconditioning voltage is high. This
accumulation of positive charge in the bulk forces anion
vacancies to move from the bulk into the Debye layers,
disturbing their net neutrality. Both the anion vacancy
density and the hole density are uniform in the perovskite
bulk being given by the expressions

P pre = N0 −
1

bq
(Qpre

L +Qpre
R ) , (42)

ppre =
1

bq
(Qpre

L +Qpre
R ) . (43)
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B. Analysis of the reverse sweep

The preconditioning step results in the cell reaching a
steady state in which a large hole population in the per-
ovskite bulk pushes ion vacancies from the bulk into the
Debye layers. Here, the voltage scan from this precon-
ditioning towards short-circuit conditions is considered.
When a change occurs in the applied voltage, the elec-
tric field takes some finite time to permeate through the
entire perovskite layer, seen in the time dependence of
(36). To analyse the motion of the electric field through
the device, we non-dimensionalise as follows:

x∗ =
x

b
, t∗ =

t

τion
, φ∗ =

φ

VT
, (44a)

Q∗L,R =
QL,R√
qN0εpVT

, V∗1,...,4 =
V1,...,4

VT
. (44b)

Here τion, the typical timescale of ion vacancy motion,
is defined by

τion =
b

DP

√
VT εp
qN0

. (45)

Henceforth, the asterisk, denoting a dimensionless vari-
able, is dropped as all quantities in what follows (unless
otherwise stated) are dimensionless. In addition, we de-
fine ϕ, the shifted electric potential, by

ϕ = φ− φpre − Φ(t)− Φpre

2
(46)

where Φ(t) = V (t)/VT denotes the dimensionless applied
voltage , and the superscript ‘pre’ denotes a quantity from
the steady-state preconditioning solution. Note that φpre

is the spatially independent electric potential in the per-
ovskite bulk from the steady state reached during pre-
conditioning.

After applying these scaling factors, the dimensionless
governing equations of the modified SPM (36) become

dQL
dt

=
∂ϕ

∂x
|x=0 , (47a)

mpλαe
−ϕ ∂ϕ

∂t
− λ ∂

∂t

(
∂2ϕ

∂x2

)
=
∂2ϕ

∂x2
, (47b)

dQR
dt

= −∂ϕ
∂x
|x=1 , (47c)

and satisfy the boundary conditions

ϕ|x=0 = ψ0(t), ϕ|x=1 = ψ1(t), (47d)

where

ψ0(t) = −Φ(t) + Φbi − V1 − V2 − Vpre
3 − Vpre

4 (47e)

ψ1(t) = V3 + V4 − Vpre
3 − Vpre

4 . (47f)

The three dimensionless constants appearing in equation
47b are defined as follows:

λ =
1

b

√
VT εp
qN0

, (48a)

mp =
dHb

2qgv
VT εpgHv

exp

(
Ev − EHv
qVT

)
, (48b)

α = exp

(
−V

pre
3 + V pre

4

VT

)
, (48c)

Here λ corresponds to the ratio of the Debye length to
the width of the perovskite layer, mp to the typical ratio
of holes to ion vacancies, and α is a factor that measures
how easily holes can enter the perovskite from the HTL
during the preconditioning step. The ratio of holes to ion
vacancies, mp, is of particular importance as it is this
that determines the susceptibility of the cell to inverted
hysteresis in terms of material parameters.

The cell is in steady-state at the preconditioning volt-
age for times t < 0. The commencement of the voltage
sweep, which starts at t = 0, perturbs the cell from its
steady-state. The steady-state preconditioning solutions
found in the previous section are used to determine ini-
tial conditions for (47) and, in particular, lead to the
conditions ψ0(0) = ψ1(0) = 0.

From the boundary conditions (47e) and (47f), it is
clear that a decrease in the applied voltage will mani-
fest itself as an increase in ϕ at the left-hand boundary
of the perovskite bulk, inducing a positive electric field
in this region. Due to the nonlinear diffusion of ϕ, this
electric field takes a finite time to permeate through the
perovskite layer. Until the field reaches the right hand
boundary, QR (and consequently V3 and V4) remain con-
stant and equal to their values in the preconditioning
step. During this period, the right hand boundary con-
dition on ϕ is therefore ψ1(t) = 0.

1. Travelling wave solutions

Numerical solutions to this problem show the solution
split into three regions: two large linear regions con-
nected by a thin internal-boundary-layer region that mi-
grates from left to right across the perovskite layer, as
shown in Figure 8. Motivated by these results, we investi-
gate this solution using matched asymptotic expansions.

In the two outer regions, ∂2φ
∂x2 is small, such that the left

and right hand outer solutions are, to leading order,

ϕL = ψ0(t)− EL(t)x, (49)

ϕR = ψ1(t)− ER(t)(x− 1), (50)

respectively, where EL and ER are the electric field
strengths in these regions, which are determined by
matching to the inner (internal-boundary-layer) solution.
Furthermore, numerical solutions imply that the electric
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FIG. 8. The three regions of the solution to (47b) during the
reverse sweep. The blue line is a numerical solution to (47b)
and the purple dotted line shows an extrapolation of the two
outer solutions into the boundary region. Arrow shows the
direction of motion of the inner region.

potential in the right hand outer solution remains flat
which suggests that ER(t) = 0.

We assume that the boundary region is of width ε,
where ε� 1 and will be determined as part of the solu-
tion, and that it migrates at a speed c, starting from the
left-hand boundary (x = 0) at t = 0. This motivates us
to expand Equation (47b) about the point x = ct (the
location of the internal-boundary layer) and write the
problem in the stretched travelling wave coordinates

x̂ =
x− ct
ε

, t̂ = t. (51)

Under this transformation, (47b) becomes

ε

λc

∂2ϕ

∂x̂2
=
mpαε

3

c
e−ϕ

∂ϕ

∂t̂
−mpαε

2e−ϕ
∂ϕ

∂x̂

− ε

c

∂

∂t̂

(
∂2ϕ

∂x̂2

)
+
∂3ϕ

∂x̂3
. (52)

A suitable choice for the boundary layer width is

ε = (mpα)−
1
2 , (53)

such that (52) can be rewritten as

β
∂2ϕ

∂x̂2
=
ε

c
e−ϕ

∂ϕ

∂t̂
− e−ϕ ∂ϕ

∂x̂
− ε

c

∂

∂t̂

(
∂2ϕ

∂x̂2

)
+
∂3ϕ

∂x̂3
(54)

where the parameter β is defined by

β =
ε

λc
. (55)

Since we implicitly assume that ε � c, both terms con-
taining a time derivative can be neglected, to give the
leading order balance in the inner region

d3ϕ

dx̂3
− β d

2ϕ

dx̂2
− e−ϕ dϕ

dx̂
= 0 (56)

In order to match the solution to the right hand outer
solution, we impose the matching condition ϕ → 0 as

FIG. 9. Phase plane of the inner problem (57) where β = 1.
Arrows show the direction of increasing x̂. Solid lines show the
two solutions that meet the right hand matching condition.
Only the blue line can meet the left hand matching condition.

x̂→∞. We integrate (56) once and apply this condition
to obtain

d2ϕ

dx̂2
− β dϕ

dx̂
+ e−ϕ − 1 = 0. (57)

We now make use of a phase plane (Figure 9 shows
an illustrative example for β = 1). Notably all phase
planes with β > 0 exhibit the same qualitative features
and exhibit two solutions that satisfy the right hand
matching condition by terminating at the critical point
(ϕ, dϕdx̂ ) = (0, 0). However, the solution in the second
quadrant (green curve in Fig. 9) becomes infinitely neg-
ative as x̂ → −∞, and so is clearly inconsistent with
the left-hand boundary condition (which is positive for
a reverse sweep). We therefore adopt the solution in the
fourth quadrant (blue curve in Fig. 9). Matching to
the left-hand outer solution and applying the boundary
condition at x = 0 will identify β (and therefore c also)
as a function of the sweep rate. As seen in the phase
plane, the gradient dϕ

dx̂ tends toward a finite constant as

x̂ → −∞, identifiable from (57) as dϕ
dx̂ →

−1
β . Thus far,

we have not defined the point x = ct and therefore have
the freedom to define it as the point at which the left-
hand outer solution becomes zero, i.e. ϕL|x=ct = 0. The
far-field behaviour of the inner solution on the left hand
side is therefore ϕ ∼ −x̂β as x̂→ −∞. On rewriting x̂ in

terms of outer coordinates and matching to the left-hand
outer region, we see that the left-hand outer solution is,
to leading order,

ϕL =
1

εβ
(ct− x) for x < ct (58)

On imposing the boundary condition (47d) on x = 0, and
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referring back to the definitions of ε and β ((53) and (55)),
we obtain the following expression for the wavespeed

c =
ψ0(t)εβ

t
=

√
ψ0(t)

mpαλt
(59)

We also note that the leading order outer electric field is
given by

EL(t) =
1

εβ
= mpαcλ. (60)

It remains to relate the function ψ0(t) to the applied
voltage, and to redimensionalise to obtain the wavespeed
as a function of the material parameters.

The boundary condition (47e) contains a linear compo-
nent corresponding to the applied voltage and two highly
nonlinear components corresponding to the Debye layer
potential drops, and begins from ψ0(0) = 0. When the
sweep rate is large, the sweep will finish before the De-
bye layers can discharge due to the slow nature of the
ion motion, meaning ψ0 is dominated by the change in
applied voltage, and can be approximated by

ψ0(t) ≈ −dΦ

dt
t, (61)

where dΦ
dt is the (constant) sweep rate. At slower scan

rates, the Debye layers have time to discharge but nu-
merical simulations show that the wavefront typically
crosses the layer faster than timescales of Debye layer
discharge. For this reason, (61) is a valid approximation
for slow scan rates during the time before the wavefront
has crossed the layer. Under this approximation, the
wavespeed (59) becomes a constant,

c =

√
−dΦ

dt

1

mpαλ
. (62)

After reapplying the scalings in (44), we obtain the di-
mensional speed of the wavefront in terms of material
parameters,

cdim. =

√
−DPN0gHv
VT dHgv

dV

dt
exp

(
V pre

3 + V pre
4 + EHv − Ev
2VT

)
.

(63)
This approximation for the wavefront speed displays
excellent agreement with the numerical solutions of
the full three-layer drift-diffusion model obtained from
IonMonger, as shown in Figure 10.

C. The effect of recombination on hysteresis

The travelling wave solution to the bulk electric po-
tential problem divides the perovskite bulk into two re-
gions: (I) ahead of the wavefront (x > ct), the electric
field strength is negligible, and (II) behind the wavefront

travelling wave (63)

three-layer DD model

FIG. 10. Comparison between the travelling wavefront solu-
tion and the full three-layer DD model for wavefront speed
across a range of experimentally relevant scan rates. Squares
are data from numerical solutions using IonMonger and the
solid line is the travelling wavefront solution (63).

(x < ct), the electric field strength is strong and posi-
tive. In the first region, carrier distributions remain at
their (approximately uniform) steady state distributions
found during preconditioning with a large density of holes
(given by (43)) and a much smaller density of electrons,
as shown in Figure 11. Once the wavefront has passed
through through a region however, the strong electric
field quickly removes carriers, pushing them toward their
respective transport layers for extraction. Both hole and
electron densities are therefore small in this region.

The effect on the observed hysteresis of this wavefront
is determined by the recombination parameters. Here
we consider three distinct regimes: (i) hole-limited SRH
recombination in the bulk; (ii) interfacial SRH recom-
bination only; and (iii) a combination of the first and
second types.

(i) Hole-limited bulk recombination When recom-
bination in the perovskite bulk is strongly hole-limited
(τp � τn), current losses occur in the hole-rich region
ahead of the wavefront but not in the region behind, as
shown in Figure 11, meaning performance is inhibited at
the beginning of the sweep but recovers as the wavefront
reaches the HTL interface, and the cell approaches short-
circuit. In this scenario, Jrev < Jfor for most or all of the
power-generating region, giving a negative hysteresis fac-
tor (37).

(ii) Interfacial recombination only When bulk re-
combination is neglected and interfacial recombination
considered, the behaviour of the electric potential wave-
front is unchanged but the resulting effect on the cur-
rent density is significantly different. As the wavefront
traverses the perovskite layer, generated carriers are no
longer lost to bulk recombination but instead eventually
drift or diffuse toward their respective transport layers.
During this period therefore, current output is not inhib-
ited by the wavefront. Once the wavefront has crossed
the entire layer, however, the (now-uniform) electric field
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FIG. 11. Carrier densities (red) and bulk recombination rate
(blue) in the perovskite layer at a point during the reverse
sweep as calculated by IonMonger. Recombination param-
eters determine that bulk recombination is strongly hole-
limited and interfacial recombination is neglected. The re-
gion of large current losses occupies the entire layer at the
beginning of the sweep but recedes, resulting in the recovery
of current density throughout the sweep symptomatic of IH.

FIG. 12. Hysteresis factor as a function of scan rate under
different recombination regimes. All simulations were per-
formed in IonMonger using the parameter set in Table S1 with
the recombination parameters in Table S2 of the Supplemen-
tary Information following preconditioning at 1.4V. All three
simulations exhibit the same wavefront behaviour. The black
dashed line is the scan rate, given by Eq. (64), at which nor-
mal hysteresis is predicted to switch to inverted hysteresis by
the wavefront analysis.

in the perovskite bulk will eventually switch sign, driving
carriers toward the wrong transport layers, resulting in
large surface recombination losses at the interfaces. Cur-
rent density is therefore inhibited only after the wave-
front has completed its journey, resulting in a positive
hysteresis factor (Jrev > Jfor).

(iii) Interfacial and bulk recombination Introduc-
ing a combination of bulk and interfacial recombination
leads to mixed normal and inverted hysteresis, as shown
in Figure 12. At high scan rates, most or all of the sweep
occurs before the wavefront has traversed the perovskite
layer, leading to the bulk losses described in (i) that
cause inverted hysteresis. At lower scan rates, however,

most of the scan occurs after the wavefront has traversed
the layer, causing the interfacial losses described in (ii)
that cause normal hysteresis. This switchover from nor-
mal to inverted hysteresis as scan rate becomes higher
has been observed experimentally [41, 42].

The scan rate at which the hysteresis switches from
positive to negative can be related to material parame-
ters using the wavefront analysis performed in the previ-
ous section. This scan rate is that at which the wavefront
crosses the perovskite layer in the same time as taken
for the reverse sweep, such that the bulk recombination
losses occur on the reverse sweep and surface recombi-
nation losses on the forward sweep. Using the wavefront
speed (63), this scan rate is found to be∣∣∣∣dVdt

∣∣∣∣ =
DPN0V

2
preg

H
v

VT b2dHgv
exp

(
V pre

3 + V pre
4 + EHv − Ev
VT

)
,

(64)
where Vpre is the voltage from which the sweep begins.
At lower scan rates, the wavefront completes its journey
before the cell reaches short-circuit, meaning most of the
sweep is spent in the regime in which surface recombi-
nation, and therefore normal hysteresis, dominate. Sim-
ilarly, at larger scan rates, the wavefront does not com-
plete its journey until after the cell reaches short-circuit,
meaning more time is spent in the region in which bulk
recombination, and therefore inverted hysteresis, dom-
inates. This prediction of the switchover scan rate is
compared against solutions of the full DD model in Fig-
ure 12.

Whereas the timescales of hysteresis (normal or in-
verted) are determined by material parameters, the sign
and magnitude of the hysteresis can signify the location
and severity of the dominant recombination mechanism
in the cell. A cell that shows inverted hysteresis across
the full range of hysteretic scan rates is dominated by
hole-limited bulk recombination, whereas the presence of
a positive peak at a lower scan rate than the negative
peak (as measured experimentally by Garcia-Rodriguez
et al. [41]) indicates interfacial recombination where the
relative sizes of the two peaks are determined by the rel-
ative magnitudes of the two recombination sources.

VI. CONCLUSIONS

In summary, an asymptotic analysis of the drift-
diffusion model of a three-layer planar PSC has been
used to show that a high density of one of the carriers in-
side the perovskite layer after preconditioning results in
a wavefront (in electric potential) propagating across the
perovskite layer during the reverse voltage sweep. The
electric field propagates with this wavefront and therefore
takes some time to permeate the entire perovskite layer,
with the region ahead of the wavefront being diffusion-
limited. If bulk recombination is strongly limited by
the majority carrier in the perovskite, significant cur-
rent losses occur in the region ahead of the front (where
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the electric field is weak and there is a high density of
majority carriers) and it is not until the wavefront has
crossed the entire perovskite layer that the losses are re-
duced to a low level. This leads to the observation of
inverted hysteresis since current losses are higher on the
reverse sweep than the forward sweep that follows it.

This description of IH unifies the mechanisms proposed
in the literature based upon numerical simulations of the
DD model [39–41]. However, none of the explanations
offered in these works provide a comprehensive explana-
tion of the phenomenon. Plots of carrier density and re-
combination rate by Garćıa-Rodŕıguez et al. [41] exhibit
the large variation between the regions in front of and
behind the wavefront only for parameter sets that dis-
play inverted hysteresis but the movement of the wave-
front across the layer or the conditions necessary for it
to appear were not discussed. Similarly, the large pre-
conditioning voltage found to be necessary by Jacobs et
al. [39] is one way of inducing large hole populations in
the perovskite due to the asymmetric extraction barriers
caused by the capacitance relations of the Debye layers
but, once again, the wavefront was not identified (per-
haps due to the limitations of the model used). Unlike
these works, Shen et al. [40] correctly identified the ex-
istence of a diffusion-limited region during sweeps that
show inverted hysteresis as a result of significant accu-
mulated charge in the bulk. This work has been built
upon here by analysis of the evolution of this diffusion-
limited region, linking timescales of inverted hysteresis
to macroscopic material parameters. It has also been
shown that, in principle, IH could be seen as a result
of either electrons outnumbering holes or holes outnum-
bering electrons. However, preconditioning at large volt-
ages presents a greater extraction barrier to holes than
electrons, due to the asymmetry of the Debye layer ca-
pacitance relation , and the conclusions of Stranks et al.
[49] suggest that SRH recombination in perovskites is
typically hole-limited. Both of which suggest that holes
outnumbering electrons is a far more likely scenario when
inverted hysteresis is observed. The conditions that in-
fluence this are summarised in the next section.

Inverted hysteresis as a diagnostic tool

In recent years, interest in current-voltage hysteresis
has begun to wane in the PSC community, due to its
focus on pushing the PCE of ‘champion’ cells and the
mistaken belief that hysteresis is only seen in poor cells
[50] (for example, Refs. [51–53] report high performance

cells that still exhibit hysteresis). However, in order to
continue to increase the efficiency and stability of average
cells, and the consistency across many batches, it is vital
to develop our understanding of the internal mechanisms
of devices.

The results of the modified SPM therefore suggest that
observation of inverted hysteresis offers a glimpse into the
limiting factor of a cell’s performance and a chance to im-
prove a cell’s steady-state efficiency. The dimensionless
constants that determine the influence of electrons and
holes, respectively, on the electric potential in the per-
ovskite (usually thought to be negligibly small in previ-
ous models) are defined in terms of dimensional material
parameters as

mn =
dEb

2qgc
VT εpgEc

exp

(
EEc − Ec
kBT

)
, (65a)

mp =
dHb

2qgv
VT εpgHv

exp

(
Ev − EHv
kBT

)
. (65b)

The exponential dependence of these constants on trans-
port layer band offsets suggests that these are the mate-
rial properties to which inverted hysteresis (and the large
carrier densities of which it is symptomatic) is most sen-
sitive. Therefore, if inverted hysteresis is still observed
when the preconditioning voltage is decreased, approach-
ing VOC , it is likely that one of the transport layer band
offsets is insufficient for efficient carrier extraction and
the cell could be improved by substitution of an alterna-
tive transport layer material that forms a greater band
offset with the perovskite. Furthermore, the magnitude
of inverted hysteresis has been shown to indicate the level
of bulk recombination occurring in the cell, with the mag-
nitude of normal hysteresis indicating the corresponding
level of surface recombination occurring at the interfaces.
Together, these observations from the modified SPM pro-
vide a pathway to improve the stabilised efficiency of a
cell that displays inverted hysteresis.
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E. Ghahremanirad, C. Aranda, A. Guerrero, F. Fabregat-
Santiago, A. Zaban, G. Garcia-Belmonte, and J. Bis-
quert, The Journal of Physical Chemistry Letters 8, 915
(2017).

[31] D. Moia, I. Gelmetti, P. Calado, W. Fisher, M. Stringer,
O. Game, Y. Hu, P. Docampo, D. Lidzey, E. Palomares,
J. Nelson, and P. R. F. Barnes, Energy & Environmental
Science 12, 1296 (2019).

[32] L. Bertoluzzi, C. C. Boyd, N. Rolston, J. Xu,
R. Prasanna, B. C. O’Regan, and M. D. McGehee, Joule
4, 109 (2020).

[33] W. Tress, J. P. Correa Baena, M. Saliba, A. Abate,
and M. Graetzel, Advanced Energy Materials 6, 1600396
(2016).

[34] Y. Rong, Y. Hu, S. Ravishankar, H. Liu, X. Hou, et al.,
Energy & Environmental Science 10, 2383 (2017).

[35] E. Jokar, H.-S. Chuang, C.-H. Kuan, H.-P. Wu, C.-H.
Hou, J.-J. Shyue, and E. Wei-Guang Diau, The Journal
of Physical Chemistry Letters 12, 10106 (2021).

[36] G. A. Nemnes, C. Besleaga, V. Stancu, D. E. Dogaru,
L. N. Leonat, et al., The Journal of Physical Chemistry
C 121, 11207 (2017).

[37] F. Wu, R. Pathak, K. Chen, G. Wang, B. Bahrami, et al.,
ACS Energy Letters 3, 2457 (2018).

[38] N. E. Courtier, Modelling ion migration and charge
carrier transport in planar perovskite solar cells, The-
sis, School of Mathematical Sciences, University of
Southampton (2019).

[39] D. A. Jacobs, Y. Wu, H. Shen, C. Barugkin, F. J. Beck,
et al., Physical Chemistry Chemical Physics 19, 3094
(2017).

[40] H. Shen, D. A. Jacobs, Y. Wu, T. Duong, J. Peng,
et al., The Journal of Physical Chemistry Letters 8, 2672
(2017).
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