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Abstract
In this paper, we study the existence of solution of the generalized equilibrium
problem (GEP) in the framework of an Hadamard manifold. Using the KKM lemma, we
prove the existence of solution of the GEP and give the properties of the resolvent
function associated with the problem under consideration. Furthermore, we
introduce an iterative algorithm for approximating a common solution of the GEP
and a fixed point problem. Using the proposed method, we obtain and prove a
strong convergence theorem for approximating a solution of the GEP, which is also a
fixed point of a nonexpansive mapping under some mild conditions. We give an
application of our convergence result to a solution of the convex minimization
problem. To illustrate the convergence of the method, we report some numerical
experiments. The result in this paper extends the study of the GEP from the linear
settings to the Hadamard manifolds.
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1 Introduction
Fixed point theory is an area of nonlinear analysis that has been extensively studied by
mathematicians. Fixed point theorem, in particular, applies in proving the existence of
solutions of differential equations, integral equations, and the existence of solutions of
optimization problems. Let K be a nonempty, closed, and convex subset of a space X, and
let T : K → K be a mapping. The fixed point problem (FPP) seeks a point x ∈ K such that

x = Tx.

We denote by Fix(T) the fixed point sets of the mapping T , i.e Fix(T) = {x ∈ K : x = Tx}.
Let K be a nonempty, closed, and convex subset of a topological space X, then the vari-

ational inequality problem (VIP) is to find a point x ∈ K such that

〈Ax, y – x〉 ≥ 0, ∀y ∈ K , (1.1)
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where A : K → X∗ is a nonlinear mapping, and X∗ is the dual space of X. The theory of the
VIP was introduced independently by Kinderlehrer and Stampacchia [21], Stampacchia
[36], and Fichera [14]. The VIP applies in traffic network equilibrium modeling, economic
equilibrium modeling, and bimatrix equilibrium. The model has also been used in the
analysis of piece-wise linear restrictive circuits, elasticity and structural analysis [9, 11, 21].

An important generalization of the VIP is the so-called equilibrium problem (EP), which
was first introduced by Ky Fan [12] as a minimax inequality. The term equilibrium problem
was coined in a paper by Blum and Oetlli [4], which followed an earlier paper by Muu and
Oetlli [26]. In the latter paper, some standard examples of the EP were discussed, namely:
optimization problem, variational inequality and fixed point problems. The EP provides a
unified framework for the study of several optimization problems, such as the saddle point
problem, minimax inequality, complementarity problem, and so on. The applications of
the EP have been reported in several articles (for more details, see [4, 7, 8, 26]). The EP is
given as: find x ∈ K such that

F(x, y) ≥ 0, ∀y ∈ K , (1.2)

where F : K × K →R is a bifunction.
By combining the concepts of the VIP and EP, Takahashi and Takahashi [37] considered

the generalized equilibrium problem (GEP) with the following formulation: Let K be a
nonempty, closed, and convex subset of a real Hilbert space H . Let F : K × K → R be a
bifunction and A : K → H be a nonlinear mapping, then the GEP consists of obtaining a
point x ∈ K satisfying

F(x, y) + 〈Ax, y – x〉 ≥ 0, ∀y ∈ K . (1.3)

The relationship between the GEP, the EP and the VIP is obvious. The EP and VIP are
easily obtained from the GEP by setting F and A to zero. The motivation for the study of
the GEP stems from the fact that many important problems can be modeled as a problem
of finding points that solve the GEP. In particular, the GEP is applicable in sensor networks,
data compression, robustness to marginal changes and equilibrium stability, etc. (see [2,
3, 15, 18, 30, 37]).

On the other hand, there has been a growing interest in extending some concepts and
ideas of nonlinear analysis from the Euclidean spaces to the Riemannian manifold. The ad-
vantages of doing this are well documented. For example, by choosing a suitable Rieman-
nian metric, optimization problems with nonconvex objective functions can be viewed as
convex [20, 31, 41]. Also, from the perspective of the Riemannian geometry, constrained
optimization problems can be seen as unconstrained [31, 32, 41]. For these reasons, such
extension becomes necessary and natural.

In 1999, Németh [27] introduced the study of the VIP on an Hadamard manifold as
follows: Let M be a Hadamard manifold, TM the tangent bundle of M, K a nonempty,
closed, and geodesic convex subset of M, exp an exponential mapping with inverse exp–1.
Then the VIP is to seek a point a point x ∈ K such that

〈
Ax, exp–1

x y
〉 ≥ 0, ∀y ∈ K , (1.4)
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where A : K → TM is a single-valued vector field. The author in [27] extended and gener-
alized some basic existence and uniqueness ideas of the classical VIP from the Euclidean
frameworks to the Hadamard manifolds. Since then, there have been several results on
the approximation of the VIP in this framework (see [19, 23, 25, 27] and the references
therein).

In 2012, the existence result for the equilibrium problem in a similar vein was introduced
into the Riemannian manifolds by Colao et al. [8]. By developing the KKM lemma in this
framework, they obtained an existence result for the EP, where the associated bifunction
is monotone. Zhou and Huang [44] also studied the relationship between the vector vari-
ational inequality and the vector optimization problem on a Hadamard manifold. Other
existence results in this regard include the existence result of Tang et al. [39] for a class
of hemivariational inequality problem, also the existence of the solution of equilibrium
problem by Salahudin [35].

Following Takahashi and Takahashi [37], we extend the study of the generalized equilib-
rium problem to the framework of a Hadamard manifold under the following formulation:
Let K be a nonempty, closed, and geodesic convex subset of a Hadamard manifold M. Let
F : K × K → R be a bifunction and A : K → TM be a single-valued vector field, then the
GEP consists of finding a point x ∈ K such that

F(x, y) +
〈
Ax, exp–1

x y
〉 ≥ 0, ∀y ∈ K , (1.5)

where exp–1 is the inverse of the exponential mapping exp : TM → M with TM the tangent
bundle of M. This class of problem is more general since it includes as special cases the
variational inequalities and equilibrium problems.

Furthermore, iterative approximation of the various optimization problems is another
interesting area of research in nonlinear analysis, especially in the twin concepts of fixed
point and optimization theory. For extensive literature on the iterative methods for solving
variational inequalities (see [16, 17, 20, 22, 25, 29] and the reference therein). Also, for
methods of approximating a solution of the EP in both the linear and nonlinear spaces,
see [1, 20, 28, 40]. We refer the readers to see the following [18, 30] for methods of solving
the GEP in the Hilbert and Banach spaces.

In this paper, our motivation is twofold: first, we study the existence of a solution of the
generalized equilibrium problem thus extending the work of Takahashi and Takahashi
[37] from the linear settings to the framework of a Hadamard manifold. Second, we in-
troduce an effective algorithm for approximating a common solution of the GEP and a
fixed point problem for a nonexpansive mapping in a Hadamard manifold. Using the pro-
posed method, we obtain a strong convergence result under some mild conditions and
monotonicity of the bifunction.

The rest of the paper is organized as follows: We recall some geometry of the Hadamard
manifold and give some useful results and important definitions in Sect. 2. In Sect. 3, we
establish the existence result for the GEP and prove the uniqueness of the resolvent opera-
tor of the associated function and bifunction. In Sect. 4, we propose a strong convergence
algorithm for approximating a common solution of the GEP and FPP and discuss the con-
vergence analysis of the method. In Sect. 5, we give an application of one of our results
to an optimization problem. We report some numerical experiments in Sect. 6 and give a
conclusion of the work in Sect. 7.
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2 Preliminaries
Let M be an m-dimensional manifold and x ∈ M; let TxM be the tangent space of M at
x ∈ M. We denote by TM =

⋃
x∈M TxM the tangent bundle of M. An inner product R〈·, ·〉

is called the Riemannian metric on TxM. The corresponding norm to the inner product
Rx〈·, ·〉 on TxM is denoted by ‖ · ‖x. In this paper, we will adopt ‖ · ‖ for the norm and drop
the subscript x. A differentiable manifold M endowed with a Riemannian metric R〈·, ·〉 is
called a Riemannian manifold. In what follows, we denote the Riemannian metric R〈·, ·〉
by 〈·, ·〉 when no confusion arise. Given a piecewise smooth curve γ : [a, b] → M joining x
to y (i.e γ (a) = x and γ (b) = y), we define the length l(γ ) of γ by l(γ ) =

∫ b
a ‖γ ′(t)‖dt. The

Riemannian distance d(x, y) is the minimal length over the set of all such curves joining x
to y including the original topology on M. Let ∇ be the Levi–Civita connection associated
with the Riemannian metric. Let γ be a smooth curve in M, a vector field X along γ is said
to be parallel if ∇γ ′X = 0, where 0 is the zero tangent vector. If γ ′ itself is parallel along
γ , we say that γ is a geodesic, and ‖γ ′‖ is a constant. Suppose ‖γ ′‖ = 1, then γ is said
to be normalized. A geodesic γ joining x to y in M is said to be minimal if l(γ ) = d(x, y).
A Riemannian manifold M equipped with the Riemannian distance d is a metric space
(M, d). A Riemannian manifold M is said to be complete if for all x ∈ M, all geodesics
emanating from x are defined for all t ∈ R. The Hopf–Rinow theorem posits that if M is
complete, then any pair of points in M can be joined by a minimizing geodesic. Moreover,
if (M, d) is a complete metric space, every bounded closed subset of M is compact. Also,
if M is a complete Riemannian manifold, then the exponential map expx : TxM → M at
x ∈ M is defined by

expx v = γv(1, x), ∀v ∈ TxM,

where γv(·, x) is the geodesic starting from x with velocity v (i.e γv(0, x) = x and γ ′
v(0, x) = v).

Then, for any t, we have expx tv = γv(t, x) and expx 0 = γv(0, x) = x. Note that the mapping
expx is differentiable on TxM for every x ∈ M. The exponential map has a differentiable
inverse exp–1

x : M → TxM. For any x, y ∈ M, we have d(x, y) = ‖ exp–1
y x‖ = ‖ exp–1

x y‖, (see
[34], for more details). A subset K ⊂ M is said to be convex, if for any two points x, y ∈ K ,
the geodesic γ joining x to y is contained in K , i.e. if γ : [a, b] → M is a geodesic such
that x = γ (a) and y = γ (b), then γ ((1 – t)a + tb) ∈ K for all t ∈ [0, 1]. Throughout this se-
quel unless otherwise stated, we denote by K a nonempty, closed, and convex subset of
M. A complete simply connected Riemannian manifold of nonpositive sectional curva-
ture is said to be a Hadamard manifold. From now, we denote by M a finite dimensional
Hadamard manifold with a constant sectional curvature κ ∈R.

We now present some valuable results and definitions that will be helpful in the conver-
gence analysis of our main result.

Proposition 2.1 ([34]) Let x ∈ M. The exponential mapping expx : TxM → M is a diffeo-
morphism, for any two points x, y ∈ M, there exists a unique normalized geodesic joining x
to y, which is expressed by the formula

γ (t) = expx t exp–1
x y, ∀t ∈ [0, 1].

A geodesic triangle �(x, y, z) of a Riemannian manifold M is a set containing three points
x, y, z and three minimizing geodesic joining these points.
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Proposition 2.2 ([34]) Let �(x, y, z) be a geodesic triangle in M. Then,

d2(x, y) + d2(y, z) – 2
〈
exp–1

y x, exp–1
y z

〉 ≤ d2(z, x) (2.1)

and

d2(x, y) ≤ 〈
exp–1

x z, exp–1
x y

〉
+

〈
exp–1

y z + exp–1
y x

〉
. (2.2)

Moreover, if α is the angle at x, then we have

〈
exp–1

x y, exp–1
x z

〉
= d(y, x)d(x, z) cosα.

Also,

∥∥exp–1
x y

∥∥2 =
〈
exp–1

x y, exp–1
x y

〉
= d2(x, y).

For any p ∈ M and K ⊂ M, there exists a unique point q ∈ K such that d(p, q) ≤ d(p, r)
for all r ∈ K . The point q is called the projection of p onto the convex set K and is denoted
PK (p).

Lemma 2.3 ([42]) For any p ∈ M, there exists a unique projection q = PK (p). Furthermore,
the following inequality holds:

〈
exp–1

q p, exp–1
q r

〉 ≤ 0, ∀r ∈ K .

A mapping f : M → M is said to be ψ-contraction if

d
(
f (x), f (y)

) ≤ ψ
(
d(x, y)

)
, ∀x, y ∈ M,

where ψ : [0, +∞) → [0, +∞) is a function satisfying:
(i) ψ(s) < s for all s > 0,

(ii) ψ is continuous.
For more properties of this class of mapping, we refer the readers to [5]. Let K be a
nonempty, closed, and convex subset of a Hadamard manifold M. A mapping T : K → K
is called firmly nonexpansive (see [24]) if for any x, y ∈ K , the function � : [0, 1] → [0,∞]
defined by

�(t) = d
(
γ1(t),γ2(t)

)

is nonincreasing, where γ1 and γ2 represent geodesics joining x to Tx and y to Ty, respec-
tively. From this definition, it is easy to see that every firmly nonexpansive mapping T is
nonexpansive. That is for any x, y ∈ K ,

d(Tx, Ty) ≤ d(x, y).

The following result was proved in [24]:
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Proposition 2.4 A mapping T : K → K is firmly nonexpansive if and only if for any x, y ∈
K

〈
exp–1

Tx Ty, exp–1
Tx x

〉
+

〈
exp–1

Ty Tx, exp–1
Ty y

〉 ≤ 0.

The following lemma establishes the relation between geodesic triangles in Riemannian
manifolds and triangles in R

2 (see [6]).

Lemma 2.5 ([6]) Let �(x1, x2, x3) be a geodesic triangle in M. Then, there exists a triangle
�(x̄1, x̄2, x̄3) for �(x1, x2, x3) such that d(xi, xi+1) = ‖x̄i – x̄i+1‖, with the indices taken modulo
3. This is unique up to isometry of R2.

The triangle �(x̄1, x̄2, x̄3) in Lemma 2.5 is said to be the comparison triangle for
�(x1, x2, x3) ⊂ M. The points x̄1, x̄2 and x̄3 are called comparison points of the points
x1, x2, and x3 in M.

A function h : M → R is called geodesic if for any geodesic γ ∈ M, the composition
h ◦ γ : [a, b] → R is convex, that is

h ◦ γ
(
ta + (1 – t)b

) ≤ th ◦ γ (a) + (1 – t)h ◦ γ (b), a, b ∈R,∀t ∈ [0, 1].

The subdifferential of a function h : M → R at the point x ∈ M is given by

∂h(x) :=
{

u ∈ TxM : h(y) ≥ h(x) +
〈
u, exp–1

x y
〉
,∀y ∈ M

}
.

The elements of ∂h(x) are called the subgradients of h at x. The set ∂h(x) is a closed convex
set, and it is known to be nonempty if h is convex on M.

Lemma 2.6 ([23]) Let x0 ∈ M and {xn} ⊂ M such that xn → x0. Then, for any y ∈ M, we
have exp–1

xn y → exp–1
x0 y and exp–1

y xn → exp–1
y x0;

Proposition 2.7 ([13]) Let M be a Hadamard manifold and d : M × M :→ R be the dis-
tance function. Then, the function d is convex with the product Riemannian metric. In other
words, given any pair of geodesics γ1 : [0, 1] → M and γ2 : [0, 1] → M, then for all t ∈ [0, 1],

d
(
γ1(t),γ2(t)

) ≤ (1 – t)d
(
γ1(0),γ2(0)

)
+ td

(
γ1(1),γ2(1)

)
.

In particular, for each y ∈ M, the function d(·, y) : M →R is a convex function.

The following proposition given as Lemma 3.1 in [8] plays a key role in the proof of the
existence of solution of GEP (1.5).

Proposition 2.8 (KKM Principle). Let K be a nonempty, closed, and convex subset of a
Hadamard manifold M. Let G : K → 2K be a mapping such that for each x ∈ K , G(x) is
closed. Suppose that

(i) there exists x0 ∈ K such that G(x0) is compact,
(ii) for all {xi}m

i=1 ∈ K , conv({xi}m
i=1) ⊂ ⋃m

i G(xi).
Then,

⋂
x∈K G(x) �= ∅.
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Let K be a nonempty, closed, and convex subset of a Hadamard manifold M and X (K)
denote the set of all single valued vector fields A : K → TM such that Ax ∈ TxM for every
x ∈ K . Then, a vector field A ∈X (K) is called monotone if

〈
Ax, exp–1

x y
〉
+

〈
Ay, exp–1

y x
〉 ≤ 0.

Proposition 2.9 ([43]) Let M be a Hadamard manifold of constant curvature. Given x ∈
M and z ∈ TxM, then the set Lx,y = {y ∈ M : 〈z, exp–1

x y〉 < 0} is convex.

Lemma 2.10 ([38]) Let x, y ∈ K and λ ∈ [0, 1]. Then, the following properties hold on K .
(i) ‖λx + (1 – λ)y‖2 = λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)‖x – y‖2;

(ii) ‖x ± y‖2 = ‖x‖2 ± 2〈x, y〉 + ‖y‖2;
(iii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 2.11 ([33]) Let {an} be a sequence of nonnegative real numbers, {αn} be a sequence
of real numbers in (0, 1) such that

∑∞
n=1 αn = ∞ and {bn} be a sequence of real numbers.

Assume that

an+1 ≤ (1 – αn)an + αnbn, ∀n ≥ 1.

If lim supk→∞ bnk ≤ 0 for every subsequence {ank } of {an} satisfying the condition

lim inf
k→∞

(ank +1 – ank ) ≥ 0,

then limn→∞ an = 0.

3 Existence result
In this section, we prove the existence of solution of the GEP (1.5). The following remark
will be used in the proof of the first theorem.

Remark 3.1 Let K be a nonempty, closed, and convex subset of a Hadamard manifold
M. For all x ∈ K , let F(x, ·) be convex, then Lx,z := F(x, y) + 〈z, exp–1

x 〉 < 0, where z ∈ TxM is
convex. Indeed, from the convexity of F(x, ·) and Proposition 2.9, we see that Lx,z being the
sum of two convex functions is also convex. Hence, we have that the set {y ∈ K : F(x, y) +
〈z, exp–1

x 〉 < 0, } is convex.

Theorem 3.2 Let K be a nonempty, closed, and convex subset of a Hadamard manifold
M. Let A : K → TM be a single valued monotone vector field and F : K × K → R be a
bifunction such that F(x, x) = 0 satisfying

(A1) F is monotone. That is, F(x, y) + F(y, x) ≤ 0, for all x, y ∈ K .
(A2) For all x ∈ K , F(x, ·) is convex.
(A3) There exists a compact subset D ⊂ K containing a point u0 ∈ D such that

F(x, u0) + 〈Ax, exp–1
x u0〉 < 0 whenever x ∈ K \ D.

Then, the generalized equilibrium problem (1.5) is solvable.

Proof For each y ∈ K , let G : K → 2K be a multivalued mapping defined by G(y) = {x ∈
K : F(x, y) + 〈Ax, exp–1

x y〉 ≥ 0}. Since F(y, y) = 0, for all y ∈ K , we have that G(y) �= ∅. We
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obtain by (A2) that G(y) is closed in K for all y ∈ K . Next, we claim that G is a KKM
mapping. Assume the contradiction, then there exists ȳ ∈ K such that ȳ ∈ conv({yi}n

i=1) but
ȳ /∈ ⋃n

i G(yi). That is

F(ȳ, yi) +
〈
Aȳ, exp–1

ȳ yi
〉

< 0, ∀i = 1, 2, . . . , n.

This implies that for any i ∈ I = (1, 2, . . . , n), yi ∈ {y ∈ K : F(ȳ, y) + 〈Aȳ, exp–1
ȳ y〉 < 0}, which

is convex by Remark 3.1. Thus,

ȳ ∈ conv
({yi}n

i=1
) ⊂ {

y ∈ K : F(ȳ, y) +
〈
Aȳ, exp–1

ȳ y
〉

< 0
}

.

That is

0 = F(ȳ, ȳ) +
〈
Aȳ, exp–1

ȳ ȳ
〉

< 0,

which is a contradiction. Hence, G is a KKM mapping.
Now from (A3), there exists a compact subset D of K with y0 ∈ D such that for any

x ∈ K \ D, we have

F(x, y0) +
〈
Ax, exp–1

x y0
〉

< 0

implying

G(y0) =
{

x ∈ K : F(x, y0) +
〈
Ax, exp–1

x y0
〉 ≥ 0

} ⊂ D.

Thus, G(y0) is compact. It follows from Proposition 2.8 that
⋂

y∈K G(y) �= ∅. This implies
that there exists x∗ ∈ K such that

F
(
x∗, y

)
+

〈
Ax∗, expx∗ y

〉 ≥ 0, ∀y ∈ K .

That is GEP (1.5) is solvable. �

3.1 Properties of the resolvent
Lemma 3.3 Let K be a nonempty, closed, and convex subset of a Hadamard manifold M.
Let F : K × K → R be a bifunction satisfying assumption (A1)–(A3), A : K → TM be a
mapping. For r > 0, define a set-valued mapping TF ,A

r : K → 2K by

TF ,A
r (x) =

{
z ∈ K : F(z, y) +

〈
Az, exp–1

z y
〉
–

1
r
〈
exp–1

z x, exp–1
z y

〉 ≥ 0
}

, ∀y ∈ K

for all x ∈ M. Then, there hold
(i) TF ,A

r is single-valued;
(ii) TF ,A

r is firmly nonexpansive;
(iii) Fix(TF ,A

r ) = GEP(F , A);
(iv) GEP(F , A) is closed and convex;
(v) Let 0 < r ≤ s, then for all x ∈ K ,

d
(
x, TF ,A

r x
) ≤ 2d

(
x, TF ,A

s x
)
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(vi) For all x ∈ K and p ∈ Fix(TF ,A
r ),

d2(p, TF ,A
r x

)
+ d2(x, TF ,A

r x
) ≤ d2(x, y).

Proof: (i) Let x ∈ K and z1, z2 ∈ TF ,A
r x. Then

F(z1, z2) +
〈
Az1, exp–1

z1 z2
〉
–

1
r
〈
exp–1

z1 x, exp–1
z1 z2

〉 ≥ 0

and

F(z2, z1) +
〈
Az2, exp–1

z2 z1
〉
–

1
r
〈
exp–1

z2 x, exp–1
z2 z1

〉 ≥ 0.

Adding both inequality and using (A1), we obtain

1
r
〈
exp–1

z1 x, exp–1
z1 z2

〉
+

1
r
〈
exp–1

z2 x, exp–1
z2 z1

〉 ≤ 0,

Thus by (2.2), we have

rd(z1, z2) ≤ 〈
exp–1

z1 x, exp–1
z1 z2

〉
+

〈
exp–1

z2 x, exp–1
z2 z1

〉 ≤ 0.

Since r > 0, we obtain z1 = z2. Therefore, TF ,A
r is single-valued.

(ii) We show that TF ,A
r is firmly nonexpansive. Choose z1 and z2 in K such that for x, y ∈

K , we have z1 = TF ,A
r x and z2 = TF ,A

r y. Then,

F(z1, z2) +
〈
Az1, exp–1

z1 z2
〉
–

1
r
〈
exp–1

z1 x, exp–1
z1 z2

〉 ≥ 0

and

F(z2, z1) +
〈
Az2, exp–1

z2 z1
〉
–

1
r
〈
exp–1

z2 y, exp–1
z2 z1

〉 ≥ 0.

Adding both inequalities and using the fact that A and F are monotone, we obtain

〈
exp–1

z1 x, expz2
z1

〉
+

〈
exp–1

z2 y, exp–1
z2 z1

〉

≤ r
(
F(z1, z2) + F(z2, z1) +

〈
Az1, exp–1

z1 z2
〉
+

〈
Az2, exp–1

z2 z1
〉) ≤ 0.

Thus, by Proposition 2.4, TF ,A
r is firmly nonexpansive.

(iii) Observe that

x ∈ Fix
(
TF ,A

r
) ⇐⇒ x = TF ,A

r x

⇐⇒ F(x, y) +
〈
Ax, exp–1

x y
〉
–

1
r
〈
exp–1

x x, exp–1
x y

〉 ≥ 0 ∀y ∈ K

⇐⇒ F(x, y) +
〈
Ax, exp–1

x y
〉 ≥ 0 ∀y ∈ K

⇐⇒ x ∈ GEP(F , A)
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(iv) It is known that firmly nonexpansive mappings are nonexpansive. It is also well
known that the fixed point of nonexpansive mappings are closed and convex, thus by (ii)
and (iii), we obtain (iv).

(v) Fix x ∈ M and let 0 < r ≤ s. Let z1 = TF ,A
r x and z2 = TF ,A

r x, then

F(z1, z2) +
〈
Az1, exp–1

z1 z2
〉
–

1
r
〈
exp–1

z1 x, exp–1
z1 z2

〉 ≥ 0

and

F(z2, z1) +
〈
Az2, exp–1

z2 z1
〉
–

1
s
〈
exp–1

z2 x, exp–1
z2 z1

〉 ≥ 0.

Adding both inequalities and using the monotonicity of A and F , we obtain

1
s
〈
exp–1

z1 x, exp–1
z1 z2

〉
+

1
s
〈
exp–1

z2 x, exp–1
z2 z1

〉 ≤ 0,

which implies by (2.1) that

1
r
(
d2(x, z1) + d2(z2, z1) – d2(x, z2)

)
+

1
s
(
d2(x, z2) + d2(z1, z2) – d2(x, z1)

) ≤ 0.

Thus,

d2(x, z1) + d2(z2, z1) – d2(x, z2) ≤ r
s
(
d2(x, z1) – d2(x, z2) – d2(z1, z2)

)

implying

(
1 +

r
s

)
d2(z1, z2) ≤

(
1 –

r
s

)
d2(x, z2) +

(
r
s

– 1
)

d2(x, z1),

that is,

(
1 +

r
s

)
d2(TF ,A

s x, TF ,A
r x

) ≤
(

1 –
r
s

)
d2(x, TF ,A

s x
)

+
(

r
s

– 1
)

d2(x, TF ,A
r x

)
.

Since r ≤ s, we obtain

(
1 +

r
s

)
d2(TF ,A

s x, TF ,A
r x

) ≤
(

1 –
r
s

)
d2(x, TF ,A

s x
)
.

Hence,

d
(
TF ,A

s x, TF ,A
r x

) ≤
√(

1 –
r
s

)
d
(
x, TF ,A

s x
)
.

Finally, we obtain by triangular inequality that

d
(
x, TF ,A

r x
) ≤ d

(
TF ,A

r x, TF ,A
s x

)
+ d

(
TF ,A

s x, x
)

≤ 2d
(
x, TF ,A

s x
)
. (3.1)
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(vi) For x, y ∈ K , let z1 = TF ,A
r x and z2 = TF ,A

r y, then by (ii), we have

〈
exp–1

z1 z2, exp–1
z1 x

〉
+

〈
exp–1

z2 z1, exp–1
z2 y

〉 ≤ 0.

It implies by Proposition 2.2 that

1
2
[
d2(z1, z2) + d2(x, z1) – d2(x, z2)

]
+

1
2
[
d2(z1, z2) + d2(y, z2) – d2(y, z1)

] ≤ 0

�⇒ d2(z1, z2) +
1
2

d2(x, z1) +
1
2

d2(y, z2) ≤ 1
2

d2(x, z2) +
1
2

d2(y, z1).

Now suppose y = p ∈ Fix(TF ,A
r ), then p = TF ,A

r p = z2. The above inequality thus becomes

d2(p, TF ,A
r x

)
+ d2(x, TF ,A

r x
) ≤ d2(p, x).

4 Convergence result
In this section, we state and prove our convergence result.

Theorem 4.1 Let K be a nonempty, closed, and convex subset of a Hadamard manifold M.
Let A : K → TM be a monotone vector field and F : K × K →R such that F(x, x) = 0 for all
x ∈ K be a bifunction satisfying conditions (A1)–(A3). Let f : M → M be a ψ-contraction
and S : K → K be a nonexpansive mapping. Assume Fix(S) ∩ GEP(F , A) �= ∅. For arbitrary
x1 ∈ K , sequences {rn} ∈ (0,∞), βn,αn ∈ (0, 1), let the sequence {xn} be defined iteratively
by

⎧
⎨

⎩
yn = expxn (1 – βn) exp–1

xn Sxn,

xn+1 = expf (xn)(1 – αn) exp–1
f (xn) TF ,A

rn yn.
(4.1)

Suppose the following conditions hold:
(i) limn→∞ αn = 0 and

∑∞
n=1 αn = 0;

(ii) 0 < a ≤ βn ≤ b < 1 for some a, b > 0 for all n ≥ 1;
(iii) 0 < r ≤ rn.

If 0 < κ = sup{ψ(d(xn ,p))
d(xn ,p) : xn �= p, n ≥ 0} < 1 for all p ∈ Fix(S) ∩ GEP(F , A), then the sequence

{xn} converges to a point p ∈ Fix(S) ∩ GEP(F , A)

Proof Let p ∈ Fix(S) ∩ GEP(F , A). We can rewrite yn as yn = γ 1
n (1 – βn), where γ 1

n : [0, 1] →
M is a sequence of geodesics joining xn to Sxn. Then by the nonexpansivity of S, we have

d(yn, p) = d
(
γ 1

n (1 – βn), p
)

≤ βnd
(
γ 1

n (0), p
)

+ (1 – βn)d
(
γ 1

n (1), p
)

= βnd(xn, p) + (1 – βn)d(Sxn, p)

≤ βnd(xn, p) + (1 – βn)d(xn, p)

= d(xn, p). (4.2)

Note also that xn+1 can be written in the form xn+1 = γ 2
n (1 – αn), where γ 2

n : [0, 1] → M is a
sequence of geodesics joining f (xn) to TF ,A

rn yn, i.e γ 2
n (0) = f (xn) and γ 2

n (1) = TF ,A
rn yn. By the
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convexity of Riemannian distance and the fact that 0 < κ = sup{ψ(d(xn ,p))
d(xn ,p) : xn �= p, n ≥ 0} < 1,

we obtain

d(xn+1, p) = d
(
γ 2

n (1 – αn), p
)

≤ αnd
(
γ 2

n (0), p
)

+ (1 – αn)d
(
γ 2

n (1), p
)

= αnd
(
f (xn), p

)
+ (1 – αn)d

(
TF ,A

rn yn, p
)

≤ αn
[
d
(
f (xn), f (p)

)
+ d

(
f (p), p

)]
+ (1 – αn)d

(
TF ,A

rn yn, TF ,A
rn p

)

≤ αn
[
ψ

(
d(xn, p)

)
+ d

(
f (p), p

)]
+ (1 – αn)d(yn, p)

≤ αn
[
κd(xn, p) + d

(
f (p), p

)]
+ (1 – αn)d(xn, p)

≤ [
1 – αn(1 – κ)

]
d(xn, p) + αnd

(
f (p), p

)

≤ max

{
d(xn, p),

1
(1 – κ)

d
(
f (p), p

)}

...

≤ max

{
d(x1, p),

1
(1 – κ)

d
(
f (p), p

)}
.

It implies that the sequence {xn} is bounded. It follows from (4.2) that {yn} is bounded, and
thus {Sxn} and TF ,A

rn yn are bounded.
Fix n ≥ 1, let un = f (xn), vn = TF ,A

rn yn, w = f (p), v = Sp, pn = xn and qn = Sxn. Con-
sider the geodesic triangles �(un, vn, p), �(w, vn, p), �(un, vn, w) and �(pn, qn, p). Then by
Lemma 2.5, there exist comparison triangles �(u′

n, v′
n, p), �(w′, v′

n, p′), �(u′
n, v′

n, w′) and
�(p′

n, q′
n, p′) such that

d(pn, qn) =
∥∥p′

n – q′
n
∥∥, d(pn, p) =

∥∥p′
n – p′∥∥ and d(qn, p) =

∥∥q′
n – p′∥∥,

d(un, vn) =
∥∥u′

n – v′
n
∥∥, d(un, p) =

∥∥u′
n – p′∥∥ and d(vn, p) =

∥∥v′
n – p′∥∥

and

d(w, p) =
∥∥w′ – p′∥∥, d(un, w) =

∥∥u′
n – w′∥∥ and d(qn, v) =

∥∥q′
n – v′∥∥.

Let θ and θ ′ be the angles at p and p′ in the triangles �(w, xn+1, p) and �(w′, x′
n+1, p′),

respectively. Hence θ ≤ θ ′ and cos θ ′ ≤ cos θ . Let y′
n and x′

n+1 be the comparison point of
yn and xn+1, respectively, then

y′
n = βnp′

n + (1 – βn)q′
n and x′

n+1 = αnu′
n + (1 – αn)v′

n.

Then by Lemma 2.10, we have

d2(xn+1, p) ≤ ∥∥x′
n+1 – p′∥∥2

=
∥∥αnu′

n + (1 – αn)v′
n – p′∥∥2

≤ ∥∥αn
(
u′

n – w′) + (1 – αn)
(
v′

n – p′)∥∥ + 2αn
〈
x′

n+1 – p′, w′ – p′〉
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≤ (1 – αn)
∥∥v′

n – p′∥∥2 + αn
∥∥u′

n – w′∥∥2 + 2βn
∥∥x′

n+1 – p′∥∥∥∥w′ – p′∥∥ cos θ ′

≤ (1 – αn)d(vn, p) + αnd(un, w) + 2αnd(xn+1, p)d(w, p) cos θ

= (1 – αn)d
(
TF ,A

rn yn, p
)

+ αnd
(
f (xn), f (p)

)
+ 2αnd(xn+1, p)d

(
f (p), p

)
cos θ

≤ (1 – αn)d
(
TF ,A

rn yn, p
)

+ αnψ
(
d(xn, p)

)
+ 2αnd(xn+1, p)d

(
f (p), p

)
cos θ .

Using Lemma 3.3, 0 < κ = sup{ψ(d(xn ,p))
d(xn ,p) : xn �= p, n ≥ 0} < 1 and the fact that 〈exp–1

p xn+1,
exp–1

p f (p)〉 = d(xn+1, p)d(f (p), p) cos θ , we obtain

d2(xn+1, p)

≤ (1 – αn)d2(TF ,A
rn yn, p

)
+ κd(xn, p) + 2αn

〈
exp–1

p xn+1, exp–1
p f (p)

〉

≤ (1 – αn)d2(yn, p) – (1 – αn)d2(yn, TF ,A
rn yn

)
+ κd(xn, p) + 2αn

〈
exp–1

p xn+1, exp–1
p f (p)

〉

≤ (1 – αn)d2(xn, p) + κd(xn, p) + 2αn
〈
exp–1

p xn+1, exp–1
p f (p)

〉
– (1 – αn)d2(yn, TF ,A

rn yn
)

≤ [
1 – αn(1 – κ)

]
d2(xn, p) + αn(1 – κ)bn – (1 – αn)d2(yn, TF ,A

rn yn
)
, (4.3)

where bn = 2
(1–κ) 〈exp–1

p xn+1, exp–1
p f (p)〉. It follows from (4.3) that

(1 – αn)d2(yn, TF ,A
rn yn

) ≤ d2(xn, p) – d2(xn+1, p) + αn(1 – κ)M′, (4.4)

where M′ = supn∈N bn.
We proceed to show that {xn} converges strongly to p = PFix(S)∩GEP(F ,A)f (p). Let an =

d2(xn, p) and δn = αn(1 – κ), then we have that

an+1 ≤ (1 – αn)an + δnbn

holds from (4.3). Next, we show that lim supk→∞ bnk ≤ 0 whenever a subsequence {ank } of
{an} satisfies

lim inf
k→∞

(ank +1 – ank ) ≥ 0.

Suppose such a subsequence exists, then by (4.4) and condition (i), we obtain

lim sup
k→∞

(1 – αnk )d2(ynk , TF ,A
rnk

ynk

) ≤ lim sup
k→∞

(ank – ank +1) + (1 – κ)M′ lim
k→∞

αnk

= – lim inf
k→∞

(ank +1 – ank )

≤ 0, (4.5)

thus

lim
k→∞

d
(
ynk , TF ,A

rnk
ynk

)
= 0. (4.6)

It implies by Lemma 3.3, that

lim
k→∞

d
(
ynk , TF ,A

r ynk

)
= 0. (4.7)
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Observe also that

d2(yn, p) ≤ ∥∥y′
n – p′∥∥2

=
∥∥βn

(
p′

n – p′) + (1 – βn)
(
q′

n – p′)∥∥2

= βn
∥∥p′

n – p′∥∥2 + (1 – βn)
∥∥q′

n – v′∥∥2 – βn(1 – βn)
∥∥p′

n – q′
n
∥∥2

≤ βnd2(pn, p) + (1 – βn)d2(qn, v) – βn(1 – βn)d2(pn, qn)

≤ βnd2(xn, p) + (1 – βn)d2(Sxn, Sp) – βn(1 – βn)d2(xn, Sxn)

≤ d2(xn, p) – βn(1 – βn)d2(xn, Sxn). (4.8)

Using this in (4.3), we have

d2(xn+1, p) ≤ (1 – αn)d2(yn, p) + κd(xn, p) + 2αn
〈
exp–1

p xn+1, exp–1
p f (p)

〉

≤ (1 – αn)
[
d(xn, p) – βn(1 – βn)d2(xn, Sxn)

]

+ κd(xn, p) + 2αn
〈
exp–1

p xn+1, exp–1
p f (p)

〉

≤ [
1 – αn(1 – κ)

]
d2(xn, p) + 2αn

〈
exp–1

p xn+1, exp–1
p f (p)

〉

– βn(1 – βn)(1 – αn)d2(xn, Sxn).

Proceeding as before, we obtain

lim
k→∞

βnk (1 – βnk )(1 – αnk )d2(xnk , Sxnk ) ≤ lim sup
k→∞

(ank +1 – ank ) + (1 – κ)M′ lim
k→∞

αnk

= – lim inf
k→∞

(ank +1 – ank )

≤ 0,

which implies using condition (i) and (ii) that

lim
k→∞

d(xnk , Sxnk ) = 0. (4.9)

Now, from convexity of the Riemannian manifold, we have

d
(
xnk +1, TF ,A

rnk
ynk

)
= d

(
γ 2

nk
(1 – αnk ), TF ,A

rnk
ynk

)

≤ αnk d
(
γ 2

nk
(0), TF ,A

rnk
ynk

)
+ (1 – αnk )d

(
γ 2

nk
(1), TF ,A

rnk
ynk

)

= αnk d
(
f (xnk ), TF ,A

rnk
ynk

)
+ (1 – αnk )d

(
TF ,A

rnk
ynk , TF ,A

rnk
ynk

)

≤ αnk d
(
f (xnk ), TF ,A

rnk
ynk

)
,

which by condition (i), implies

d
(
xnk +1, TF ,A

rnk
ynk

) → 0 as k → ∞. (4.10)
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In a similar vein, we have

d(ynk , xnk ) = d
(
γ 1

nk
(1 – βnk ), xnk

)

≤ βnk d
(
γ 1

nk
(0), xnk

)
+ (1 – βnk )d

(
γ 1

nk
(1), Sxnk

)

= βnk d(xnk , xnk ) + (1 – βnk )d(xnk , Sxnk )

≤ (1 – βnk )d(xnk , Sxnk ),

it implies using (4.9), that

lim
k→∞

d(ynk , xnk ) = 0. (4.11)

It is easy to see from (4.6) and (4.10) that

d(xnk +1, ynk ) → 0 as k → ∞.

Using this and (4.11), we get

lim
k→∞

d(xnk +1, xnk ) = 0. (4.12)

To conclude this process, we now show that limk→∞ bnk ≤ 0. Indeed, since {xnk } is
bounded, there exists a subsequence {xnkj

} of {xnk }, which converges weakly to q ∈ M.
Thus, we obtain by (4.12) that

lim sup
k→∞

〈
exp–1

p f (p), exp–1
p xnk +1

〉
= lim

j→∞
〈
exp–1

p f (p), exp–1
p xnkj +1

〉

=
〈
exp–1

p f (p), exp–1
p q

〉
, (4.13)

It also follows from xnkj
⇀ q and (4.11) that ynkj

⇀ q. Therefore, by (4.9) and (4.11),
we obtain that q ∈ Fix(S) and q ∈ Fix(TF ,A

r ) = GEP(F , A), respectively. Thus, q ∈ Fix(S) ∩
GEP(F , A). From Lemma 2.3, (4.13), and p = PFix(S)∩GEP(F ,A)f (p), we get

lim sup
k→∞

〈
exp–1

p f (p), exp–1
p xnk +1

〉
= lim

j→∞
〈
exp–1

p f (p), exp–1
p xnkj +1

〉

=
〈
exp–1

p f (p), exp–1
p q

〉

≤ 0. (4.14)

Therefore, we conclude by Lemma 2.11 on (4.3) that xn → p. �

The following is a corollary of our main result. For A = 0, we obtain a result for approxi-
mating a common solution of an equilibrium problem and a fixed point of a nonexpansive
mapping.

Corollary 4.2 Let K be a nonempty, closed, and convex subset of a Hadamard manifold
M. Let F : K ×K →R such that F(x, x) = 0 for all x ∈ K be a bifunction satisfying conditions
(A1)–(A3). Let f : M → M be a ψ-contraction and S : K → K be a nonexpansive mapping.
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Assume Fix(S)∩GEP(F , 0) �= ∅. For arbitrary x1 ∈ K , sequences {rn} ∈ (0,∞), βn,αn ∈ (0, 1),
let the sequence {xn} be defined iteratively by

⎧
⎨

⎩
yn = expxn (1 – βn) exp–1

xn Sxn,

xn+1 = expf (xn)(1 – αn) exp–1
f (xn) TF ,0

rn yn.
(4.15)

Suppose the following conditions hold:
(i) limn→∞ αn = 0 and

∑∞
n=1 αn = 0;

(ii) 0 < a ≤ βn ≤ b < 1 for some a, b > 0 for all n ≥ 1;
(iii) 0 < r ≤ rn.

If 0 < κ = sup{ψ(d(xn ,p))
d(xn ,p) : xn �= p, n ≥ 0} < 1 for all p ∈ Fix(S) ∩ GEP(F , 0), then the sequence

{xn} converges to a point p ∈ Fix(S) ∩ GEP(F , 0).

Suppose M = H is a real Hilbert space, then we have the following as a consequence of
Theorem 4.1:

Corollary 4.3 Let K be a nonempty, closed, and convex subset of a real Hilbert space H .
Let A : K → K be a monotone vector field and F : K × K → R such that F(x, x) = 0 for
all x ∈ K be a bifunction satisfying conditions (A1)–(A3). Let f : M → M be a contraction
and S : K → K be a nonexpansive mapping. Assume Fix(S) ∩ GEP(F , A) �= ∅. For arbitrary
x1 ∈ K , sequences {rn} ∈ (0,∞), βn,αn ∈ (0, 1), let the sequence {xn} be defined iteratively
by

⎧
⎨

⎩
yn = βnxn + (1 – βn)Sxn,

xn+1 = αnf (xn) + (1 – αn)TF ,A
rn yn.

(4.16)

Suppose the following conditions hold:
(i) limn→∞ αn = 0 and

∑∞
n=1 αn = 0;

(ii) 0 < a ≤ βn ≤ b < 1 for some a, b > 0 for all n ≥ 1;
(iii) 0 < r ≤ rn.

Then, the sequence {xn} converges to a point p ∈ Fix(S) ∩ GEP(F , A).

5 Application
In this section, we apply our main result in Sect. 4 to the problem of finding a common
solution of fixed point and convex minimization problem. In particular, we consider a
solution of the convex minimization of the sum of convex functions of the following form:

min
x∈M

h1(x) + h2(x), (5.1)

where M is a Hadamard manifold, h1 : M → R ∪ {∞} is a proper, lower semicontinuous
and convex function, h2 : M → R is a convex and differentiable function. We note that
the problem of finding x ∈ M such that 〈Ax, exp–1

x y〉 ≥ 0 for all y ∈ M is the optimality
condition of the convex minimization problem

min
x∈M

h2(x),
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when A = ∇h2. On the other hand, the Moreau–Yosida regularization h1,λ : M → R of a
function h1 defined by

h1,λ(x) = arg min
y∈M

(
h1(y) +

1
2λ

d2(x, y)
)

is the resolvent of the bifunction F : M × M → R defined by F(x, y) = h1(y) – h1(x). It is
known (see [13]) that there exists zλ = h1,λ(x) for any x ∈ M and λ ≥ 0 with the property
1
λ

exp–1
zλ

x ∈ ∂h1(x). The mapping h1,λ is consistent, and the fixed point of h1,λ is a solution
of the minimization problem

min
x∈M

h1(x).

Using h = h1 + h2 and the adaptations above, we obtain the following result for ap-
proximating a common solution of the fixed point and convex minimization prob-
lem. Find x ∈ M such that x ∈ F(S) ∩ arg min h, where arg min h is the solution set
of

min
x∈M

h(x).

Theorem 5.1 Let K be a nonempty, closed, and convex subset of a Hadamard manifold M.
Let h1 : M →R∪ {∞} be a proper, lower semicontinuous and h2 : M →R be a convex and
differentiable function with h = h1 + h2. Let f : M → M be a ψ-contraction and S : K → K
be a nonexpansive mapping. Assume Fix(S)∩ arg min h �= ∅. For arbitrary x1 ∈ K , sequences
{rn} ∈ (0,∞), βn,αn ∈ (0, 1), let the sequence {xn} be defined iteratively by

⎧
⎨

⎩
yn = expxn (1 – βn) exp–1

xn Sxn,

xn+1 = expf (xn)(1 – αn) exp–1
f (xn) hrn yn.

(5.2)

Suppose the following conditions hold:
(i) limn→∞ αn = 0 and

∑∞
n=1 αn = 0;

(ii) 0 < a ≤ βn ≤ b < 1 for some a, b > 0 for all n ≥ 1;
(iii) 0 < r ≤ rn.

If 0 < κ = sup{ψ(d(xn ,p))
d(xn ,p) : xn �= p, n ≥ 0} < 1 for all p ∈ Fix(S) ∩ arg min h, then the sequence

{xn} converges to a point p ∈ Fix(S) ∩ arg min h.

6 Numerical example
In this section, we present some numerical illustrations in the framework of Hadamard
manifolds to represent convergence of Algorithms 4.1. All programs are written in
Matlab R2022a and computed on PC Intel(R) Core(TM) i7 @2.40 GHz, with 8.00 GB
RAM.

Let M := R
++ = {x ∈ R : x > 0} and (M, 〈·, ·〉) be the Riemannian manifold with 〈·, ·〉 the

Riemannian metric defined by 〈p, q〉 = 1
x2 pq, for all p, q ∈ TxM, where TxM is the tan-

gent space at x ∈ M. For x ∈ M, the tangent space TxM at x equals R, i.e TxM = R. The
Riemannian distance (see [10]) d : M × M → R

+ is defined by d(x, y) = | ln x
y |∀x, y ∈ M.
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Then (M, 〈·, ·〉) is a Hadamard manifold and the unique geodesic γ : R → M starting from
γ (0) = x with q = γ ′(0) ∈ TxM is defined by γ (t) = x exp

qt
x . Thus,

expx qt = x exp
qt
x .

The inverse exponential map is defined by

exp–1
x y = γ ′(0) = x ln

y
x

.

Example 6.1 Let K = [1, +∞) be a geodesic convex subset of R++, F : K × K → R be a
bifunction defined for all x, y ∈ K by F(x, y) = – 1

2 ln y
x and A : K → R be a single valued

vector field defined by Ax = x ln x for all x ∈ K . Then, it is easy to see that Assumptions
(A1)–(A4) are satisfied; by Lemma 3.3, we can find z ∈ K such that

0 ≤ F(z, y) +
〈
Az, exp–1

z y
〉
–

1
r
〈
exp–1

z x, exp–1
z y

〉

= –
1
2

ln
y
z

+
〈
z ln z, z ln

y
z

〉
–

1
r

〈
z ln

x
z

, z ln
y
z

〉

= –
1
2

ln
y
z

+ ln z ln
y
z

–
1
r

ln
x
z

ln
y
z

,

which implies

1
r

ln
x
z

= ln z +
1
2

⇒ ln x +
r
2

= r ln z + ln z

⇒ ln z =
2 ln x + r
2(r + 1)

⇒ z = exp

(
2 ln x + r
2(r + 1)

)
.

Therefore, z = TF ,A
r x = exp( 2 ln x+r

2(r+1) ).
Let f : M → M be defined by f (x) = x

2 . Choose rn = 1
2 , αn = 1

n+1 and βn = 1
2n+3 . Using

En = d2(xn, xn+1) ≤ ε with ε = 10–4 as the stopping criterion, we perform this experiment
for varying values of x1.

Case (1): x1 = 0.896;
Case (2): x1 = 1.062;
Case (3): x1 = ln 2 + e2;
Case (4): x1 = ln(

√
2).

The report of this experiment is given in Fig. 1.

Example 6.2 Let M := R
++
2 = {x = (x1, x2) ∈ R

2 : xi > 0, i = 1, 2}. Let (M, 〈·, ·〉) be the
Hadamard manifold with the metric defined 〈p, q〉 := pT P(x)q, for x ∈R

++
2 and p, q ∈ TxR

++
2

where P(x) is a diagonal metric defined by P(x) = diag( 1
x2

1
, 1

x2
2

). In addition, the Rieman-

nian distance is defined by d(x, y) =
√

(ln2 x1
y1

+ ln2 x2
y2

) where x = (x1, x2), y = (y1, y2) ∈ R
2.

Let K = {x = (x1, x2) : 1 ≤ xi ≤ 5, i = 1, 2} be a closed, geodesic convex subset of R++
2 . Let
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Figure 1 Example 6.1, Top left: Case 1; Top right: Case 2; Bottom left: Case 3; Bottom right: Case 4

F : K × K → R and A : K → R
2 be defined as in Example 6.1, then TF ,A

r x = exp( 2 ln x+r
2(r+1) ) for

all x = (x1, x2) ∈ R
2. Let f : M → M be defined by f (x) = x

16 . Choose r = 3
4 ,αn = 1

n+1 and
βn = 1

2n+5 . We use En = d(xn+1, xn) ≤ ε as the terminating criterion with ε = 10–4. For this
numerical experiment, we consider the following cases of the starting point x1.

Case (I): x1 = (ln(
√

2), ln(1.1));
Case (II): x1 = (0.89, 1.12);
Case (III): x1 = (2.03, 0.09);
Case (IV): x1 = (1.36, 1.36).

The report of this experiment is given in Fig. 2.

7 Conclusion
By combining the notions of an equilibrium problem and a variational inequality problem,
we introduced the concept of a generalized equilibrium problem in a Hadamard manifold.
We studied the existence of the solution of the GEP and proved the properties of the asso-
ciated resolvent function. Further, we proposed a convergence algorithm for approximat-
ing a common solution of the GEP and a fixed point problem. Using the proposed method,
we proved a strong convergence theorem for approximating a solution of the GEP, which
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Figure 2 Example 6.2, Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right: Case IV

is also a fixed point of a nonexpansive mapping. Some numerical experiments were also
given to illustrate the convergence of the method.
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