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Improving Diagnosis of Genetic Disease through Computational Investigation of
Splicing

by Yaron Strauch

Despite an estimate of 50% of pathogenic genomic mutations being related to splicing,
this inherently complex mechanism is not yet fully understood. Identifying splice dis-
ruption is a complicated expert task requiring manual labour and expensive sequenc-
ing. With the emergence of Machine Learning for targeted medicine, modelling splicing
computationally allows faster and less expensive analysis and ultimately, treatment.
This project curates, analyses, optimises, and utilises Machine Learning datasets and
algorithms for splicing related disease using supervised and unsupervised techniques.
A clinical dataset of splice disrupting variants is curated, processed, and validated to
assess algorithmic predictive performance in clinically relevant data. Predictions are
improved by data engineering to include isoforms with lower expressions. Other av-
enues such as including protein binding sites, incorporating genomic conservation, and
semantic encoding of DNA data are explored. CI-SpliceAI, a new algorithm to predict
aberrant splicing, is developed and made available to the wider scientific community.
Methods of how to explain shallow and deep learning are applied in order to visualise
feature contribution of otherwise black-box algorithms to extract new insights about
the underlying biological problem.
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Chapter 1

Introduction

1.1 Splicing

Ribonucleic Acid (RNA) splicing is a biological process where the spliceosome, a complex
assembly of different proteins and functional RNAs (Wahl et al., 2009), binds and folds
pre-messenger RNA (mRNA) to remove introns, areas that do not code for protein, and
to maintain exons that do (Singh and Cooper, 2012). The boundary at the 3’ end of the
intron is called the acceptor site, the site at the 5’ end is called the donor. Whether a
region is spliced out or not depends on both cis factors, i.e. the nucleotide sequence,
and trans factors, i.e. protein regulation (Singh and Cooper, 2012).

Figure 1.1 illustrates constitutive splicing, which describes the process of removing all
intronic regions and retaining all exons. The most important nucleotide motifs occur
around the intron-exon boundary and are visualised as frequency diagrams. The clear-
est motifs are the consensus sites AG at the acceptor and GT at the donor site. Introns

ESSISE

5'

ESE
U2 U1

Intron

3'

Acceptor SiteDonor Site

Exon 1

Branch Point

+ +
ISS

B) Regulatory Protein
Binding Sites

A) Splicing Motifs

C) Regulatory Protein

D) Constitutive Splicing

E) Mature mRNA

Exon 2

Exon 1 Exon 2

FIGURE 1.1: Constitutive Splicing. (a) Frequency diagrams at splice sites reveal nu-
cleotide sequence motifs; GT/AG are the consensus sequences for donor and acceptor
sites respectively. (b) Regulatory protein binding sites attract splicing enhancers or
silencers (c). (d) In a constitutive splice, all exons are joined together by removing all

intronic regions. (e) the resulting mature mRNA codes for the protein.
Branch point sequences in (a) taken from Corvelo et al. (2010); protein binding se-
quences in (b) taken from Cáceres and Hurst (2013); Venables (2007); Wang et al. (2013,

2004); splice motif sequences generated in this work
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often end in a polypyrimidine tract, a tail of C/T bases. Another motif, called the branch
point, is an adenine nucleotide generally located 23 to 27 bases upstream of the acceptor.
While 99.24% of introns follow the GT-AG pattern and are spliced by the U2 spliceo-
some (major spliceosome), the U12 spliceosome (minor spliceosome) also binds to AT-AC
in 0.05% of splice sites (Burset et al., 2000; Turunen et al., 2013). Other splice motifs
include GC-AG (0.69%), and a remainder of 0.02% of other motifs (Burset et al., 2000).

1.1.1 Alternative Splicing

The constitutive splice that retains all exons and removes all introns is not the default
case. In fact, it is believed that 92%-95% of multi-exon genes are expressed through
alternative splicing (Pan et al., 2008; Wang et al., 2008), which means that the same pre-
mRNA can be processed into different mature mRNAs, largely depending on trans fac-
tors, potentially resulting in vastly different protein expression. The resulting different
mRNA and protein structures are also called isoforms.

Figure 1.2 illustrates different ways of alternative splicing. Exons can be skipped, alter-
nated, or mutually excluded. Introns can be retained partially or completely. Combi-
nations of these can result in vastly different isoformic proteins with similar, different,
or even opposing functions. (Wang et al., 2008).

Splice sites that are contained within most isoformic expressions are often referred to
as strong and include very clear consensus motifs, whereas weak splice sites refer to al-
ternative junctions with weaker patterns that are only included in a subset of isoforms.
Weak splice sites can be strengthened by promoting regulatory binding sites. (Dvinge,
2018).

Regulatory Proteins can bind to RNA motifs to excite or inhibit splice sites in their prox-
imity in both exons and introns (Figure 1.1c); they are therefore termed Exonic Splicing
Enhancers (ESEs), Exonic Splicing Silencers (ESSs), Intronic Splicing Enhancers (ISEs), and
Intronic Splicing Silencers (ISSs). Enhancers, often serine/arigine-rich (SR), stabilise the
binding of U1, U2 or SF1 while many protein in the Heterogeneous nuclear ribonucleopro-
tein (hnRNP) family bind to silencer sequences and inhibit splicing. This might how-
ever be a simplification as some proteins were shown to promote or inhibit sites de-
pending on their relative position to the splice site. Mechanisms for regulation include
attraction of the spliceosome, blocking splice sites, and altering distances between sites.
(Dvinge, 2018; Kelemen et al., 2013)

Protein can further interact with each other. Such interaction can be antagonistic, for
example when the two SR proteins RBM4 and PTB compete with another to bind to
a 11-mer motif in TPM1 to either excite or inhibit exon expression respectively (Lin
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FIGURE 1.2: Alternative Splicing. The same pre-mRNA can produce different mature
mRNA. Exons can be skipped, there can be alternative splice sites on both ends of the
exon, introns can be included, and exons can mutually exclude each other. Adapted

from Sen (2018).

and Tarn, 2005). Regulatory protein can also co-activate, for example PSF recruits Fox-
3 which binds to a a motif, upregulating exon expression in neural cells (Kim et al.,
2011).

Splicing can also regulated by microRNA (miRNA), short non-coding sequences of typ-
ically 19–22 nucleotides of RNA, which typically bind to the 3’ end and often suppress
translation or cause mRNA cleavage or degradation. miRNA expression originates
from introns between coding and non-coding genes, exons, or intergenic regions and
can in turn be regulated per tissue; some mRNA regulatory elements were shown to
also regulate in miRNA expression, forming complex and intrinsic regulatory relation-
ships. (Ratnadiwakara et al., 2018)

Although often modelled as that, splicing is not a distinct process that happens inde-
pendently after transcription. Instead both processes appear to be co-dependent and
part of a shared macronuclear complex. During transcription, part of the RNA poly-
merase II recruits splicing factors to the complex, directly changing alternative splicing
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factors through spatial coupling in the Deoxyribonucleic Acid (DNA) transcription pro-
cess. Pre-mRNA splicing and folding appears to be further affected by the elongation
rate, the speed of transcription and pauses thereof. It was suggested that sequences
transcribed earlier have longer time to recruit splice modifiers than regions closer to
the transcription end. These pauses in transcription might even be part of a two-way
coupled system as studies have observed slower transcription at splice sites. Whether
this pause is required for co-transcriptional splicing has not been shown yet and it is
unclear if this represents cause or effect of splicing. (Saldi et al., 2016)

Alternative splicing is often observed to be specific to tissue (Wang et al., 2008) and
observed isoforms can change depending on the developmental stage (Kalsotra and
Cooper, 2011). For example, the protein family PTB consists of three protein coding
genes: PTBP1 which is expressed in the majority of cells except the neurons, PTBP2
which is limited to the nervous system, and PTBP3 that is mostly associated with the
immune system. Expression is found to be regulated through splicing (hnRNP 1). Dur-
ing neural development, PTBP1 is inhibited and PTBP2 is excited, and after neuron
maturity, both are regulated down. This regulatory dependency plays an essential role
during cell differentiation of neurons and disruptions of expression can cause failure to
mature (Hu et al., 2018; Keppetipola et al., 2012).

This is an example of a common PTB mechanism responsible for both tissue and de-
velopmental stage specific splicing (Black, 2003). PTB is commonly expressed through-
out the body and downregulates highly specific exons in many genes. In some tissue,
such as neurons, PTB concentration is generally lower which allow these exons to be
expressed. Other tissue might have higher concentration of competing protein. For
example, ETR-3 is a direct antagonist to PTB that upregulates cTNT exon 5 expression
in embryonic muscle cells. When ETR-3 binds to intronic binding sequences in these
cells, it binds in lieu of PTB and exon 5 switches from skipping to inclusion (Charlet-B
et al., 2002). PTB expression itself might also be changed depending on tissue type and
developmental stage, for example by changing its isoform to an inactive transcript or
to homologues that bind differently (Black, 2003).

1.1.2 Diagnosing Splicing Disease

Splicing occurs in many eukaryotic organisms and is highly conserved from evolu-
tionary drift (Blakes et al., 2022). Disrupted splicing can have devastating impacts on
the health of patients. It is estimated that a majority of pathogenic Single Nucleotide
Variants (SNVs) disrupt splicing (Truty et al., 2021); discussion of Multi Nucleotide Vari-
ants (MNVs) is rarer and no such statistics exist to my knowledge. How reliably these
estimates that sometimes reach over 60% quantify the actual contribution of splicing
towards genetic disease however is hard to asses and disputed across literature (Gono-
razky et al., 2019; López-Bigas et al., 2005; Truty et al., 2021); one major cause for this
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is that many bioinformatic pipelines filter down to protein-coding regions and remove
synonymous variants that don’t affect amino acid coding directly (Richards et al., 2015),
but still might cause aberrant splicing.

The effect of splice disruption can be as versatile and complex as healthy alternative
splicing. Mutations can disrupt, alter, or create splice sites and regulatory binding
sites, which in turn can cause abnormal partial or whole exon skipping or inclusion,
intron retention or skipping, or otherwise disrupt the splicing processes. Disruption
of regulatory sequences, including in non-coding and intergenic regions, may hinder
binding and cascade to abnormal expression. All of these effects can affect the 3D pro-
tein structure and may cause phenotypic dysfunction. For example, the severity of
Spinal muscular atrophy (SMA), a genetic disease causing severe muscle degeneration
through a mutation in the gene SMN1, correlates with how well the gene SMN2 is reg-
ulated and alternatively spliced. Depending on the expression of SMN2, the patients’
life expectancy can range from mere weeks to months or well into adulthood (Lunn
and Wang, 2008). Even intronic and silent variants can change mRNA expression and
cause genetic disease like dementia and parkinsonism (D’Souza et al., 1999).

Due to the inherent complexity of the splicing process, it is not understood completely
yet. When finding a variant of uncertain significance through genomic DNA sequenc-
ing, the effect on the splicing mechanism is often not obvious and diagnosis requires
functional analysis in vitro. Experts need to either transfect the wild type and variant
DNA sequence into a minigene and compare both RNA expressions (minigene assay)
(Gaildrat et al., 2010), or sequence a patient’s RNA and compare it to a healthy reference
(Wai et al., 2020). Both approaches, while accurate, are expensive and time consuming
expert tasks that seem unfit for broad, personalised genetic screening.

In clinical practice, evidence of pathogenicity of genetic variants are commonly classi-
fied using the American College of Medical Genetics (ACMG) guidelines (Richards et al.,
2015). Variants that are shown to cause a frame-shift or nonsense mutation, exon dele-
tion, or disrupt a canonical splice site sequence or start codon in a gene where loss
of function is known to cause disease are rated to very strongly indicate pathogenicity
(PVS1). Variants shown to have a damaging effect on the gene or protein in vitro or in
vivo, such as in a minigene essay, are classified as PS3, corresponding to strong evidence
of pathogenicity.

If we understood and modelled the splicing process in silico, we could improve genetic
diagnoses significantly. While under ACMG guidelines computational results are only
accepted as supporting evidence (PP3), they are often used as a pre-filtering tool to select
for variants of interest that can then be further analysed through more reliable and
expensive means.

There is a vast number of computational tools that predict splice sites (Jian et al., 2014;
Rowlands et al., 2019), and a discussion of all of them is not within the scope of this
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work. This review rather contains the most predominantly used and best performing
tools.

Early research focused on Position-Weight Matrix (PWM) (Stormo et al., 1982) analysis
to extract common motifs of splice sites. PWM analysis extracts individual nucleotide
frequencies through information theory (detailed methodology in section 3.2.3), classi-
cally plotted into so-called logos: Visualisations where nucleotides are scaled according
to importance and stacked upon each other. As an example, Figure 1.1 used logo visu-
alisations to illustrate splicing motifs. The derived PWM can then be combined with
expert knowledge and functional analysis into computational tools. Human Splicing
Finder (Desmet et al., 2009) used a data-driven approach and derived site strengths
from observed frequencies for n-mer sequences. ESEFinder (Cartegni et al., 2003) ex-
tracted PWM ESE motifs from functional analysis. RESCUE-ESE (Fairbrother et al.,
2002) partitioned 6-mers at exon boundaries based on frequency analysis and cluster-
ing to derive 10 ESE 6-mer motifs that were experimentally validated to ”rescue” weak
splice sites.

A basic flaw in all tools based on PWM analysis is that they assume the frequency
of observing a nucleotide at a certain position to be independent of the frequency of
all other nucleotides. This assumption must be wrong due to the nature of protein
binding of the spliceosome. MaxEntScan (MES) (Yeo and Burge, 2004) mitigates this
issue by using maximum entropy models that calculate the likelihood of one nucleotide
occurring in the context of its neighbourhood. The authors further used hierarchical
clustering to distinguish acceptor from donor sites, which then can be visualised as
a PWM themselves, providing more insight into context dependencies of nucleotide
sequences.

Many of these tools often output conflicting results of poor quality (Jian et al., 2014;
Rowlands et al., 2019). With the recent emergence of Machine Learning (ML), statistical
tools to recognise patterns in data, and deep learning, very complex algorithms with up
to millions of parameters, we hope to model splicing more reliably and to extract new
knowledge of the underlying mechanisms.

Cheng et al. (2019) published Modular Modeling of Splicing (MMSplice) which uses mul-
tiple smaller neural networks (”modules”) to predict splice sites given 18 or 53 nucleoti-
des of context. The algorithm Super-quick Information Content and Random Forest Learning
for Splice Variants (SQUIRLS) published in Danis et al. (2021) uses carefully engineered
features from around the variant to classify splice disruptions using two decision trees
and a logistic regression, and SpliceAI (Jaganathan et al., 2019) uses five deep Convo-
lutional Neural Networks (CNNs) to predict splice sites based on 10,000 nucleotides of
context. SpliceAI models the splicing process directly on a per-nucleotide basis, which
may lead to insights into the splicing mechanism itself. Its authors attribute their model
performing more accurately than its competitors predominantly to the bigger context
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size, allowing SpliceAI to classify even very deep variants (variants located hundreds
of bases from a splice site) that cannot be detected by the other algorithms listed.

Modelling splicing per nucleotide allows granular predictions; if we could understand
how the model reaches these conclusions, we could potentially gain insights into new
splicing patterns and maybe even into the underlying biology itself. This might how-
ever prove infeasible due to the complexity of both deep learning and the raw input
encoding of DNA sequences, which is a format that is hard for humans to understand.
This complexity might explain why nobody was able to explain how SpliceAI reaches
its conclusions yet. SQUIRLS on the other hand uses engineered features that have al-
ready incorporated many biological insights into the splicing process, making interpre-
tation of feature contributions easier. There may be a fruitful middle ground between
completely manually curated features and raw input sequences, such as encoding sim-
ilar sequences close to each other in a semantic space such as Word2Vec (Mikolov et al.,
2013) does, or through an overall incorporation of protein binding sites or conservation.

1.2 Overall Aims and Objectives

This work aims to improve diagnosis of splicing disease through computational analy-
sis, and to extract insights into the underlying biological process. Datasets and ML tools
are to be optimised towards their application to clinical diagnosis in order to assist, add
to, or even replace parts of current genomic pipelines. Models are then analysed with
the aim to extract insights into their workings, limitations, and to ultimately gain new
biological insights into splicing related disease.

This is to be achieved through the following objectives:

1. Develop, test, and analyse algorithms to recognise splice sites (chapter 3)

(a) Create ML datasets

(b) Analyse datasets using statistical and unsupervised methods

(c) Build simple baseline classification algorithms and compare them to SpliceAI

(d) Incorporate weaker splice sites from the Gene Encyclopedia of DNA Elements
(GENCODE)

(e) Compare performance between models when training on primary splice
sites versus inclusion of weaker GENCODE sites

(f) Explain splice site classification results

2. Apply supervised algorithms to annotate aberrant splicing in variant data (chap-
ter 4) :
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(a) Aggregate variant data from the literature

(b) Investigate and resolve conflicts where sources disagree

(c) Compare baseline classifiers to deep learning

(d) Quantify how inclusion of weaker isoforms changes predictive accuracy

3. Improve splice site recognition through data engineering (chapter 5) :

(a) Annotate protein regulation binding motifs

(b) Incorporate conservation scores

(c) Encode DNA in vector space through DNA to vector (DNA2Vec)

4. Make the newly developed Collapsed Isoform SpliceAI (CI-SpliceAI) algorithm ac-
cessible (chapter 6) :

(a) Train CI-SpliceAI using a re-implementation

(b) Predict if splice disruptions occur and what the exact effect on the pre-mRNA
is

(c) Compare it to other splice prediction tools

(d) Package it into a command line tool

(e) Publish it as a freely accessible website
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1.3 Background

Machine Learning (ML) is a collection of techniques that apply statistical methods to
model, recognise, and learn patterns in data. In contrast to rule-based approaches
where engineers model a problem domain through expert knowledge, ML is a data-
driven approach that fits parameters of a generalised and well-defined model. The fit-
ted model can be used to make inferences (predictions) on both seen and unseen data.
(Géron, 2019)

1.3.1 Supervised Machine Learning

Supervised Machine Learning requires data to be annotated so that for every input, a de-
sired output is defined. A model can range from simple linear regressions to complex
neural networks that try to imitate basic brain functionality. The two sub types of su-
pervised algorithms are regression (models that return continuous values, such as how
often a site is spliced), and classification (models that output which class from a fixed set
of classes is most likely, such as acceptor / donor / neither). (Géron, 2019)

Overfitting is the process where a supervised model learns specific solutions to the given
training data instead of finding a generalised approach that can predict well on unseen
data. To test if a model generalises well, the available data is split into training and
testing partitions which allows evaluation of the trained model on unseen data. If train-
ing performance is significantly higher than testing performance, the model is overfit.
(Géron, 2019)

Depending on the task, different scores for measuring model performance are com-
mon. For classification tasks, accuracy is the percentage of correctly classified instances
while the Area Under the Precision-Recall Curve (AUC-PR) represents the integral over
different thresholds balancing the ratio of true positive rate to false positive rate; for
both measurements bigger values are better. (Géron, 2019)

The average precision score is very similar to the AUC-PR with the main difference being
how the integral is calculated; while AUC-PR interpolates the curve to compute the
integral with a trapezoidal rule and may return too optimistic results, average precision
does not interpolate. (Davis and Goadrich, 2006; Flach and Kull, 2015)
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1.3.1.1 Support Vector Classifiers

(A) (B) (C)

FIGURE 1.3: Three SVCs on the same artificial data set. (a) The linear SVC separates
the data reasonably well. (b) An RBF SVC with a small gamma (g = 0.1) allows the
non-linear kernel to curve the street, capturing the data distribution even better. (c)
The RBF overfits with extremely big gamma values (g = 1.25) and use every data

point as a support vector, resulting in a highly unstable boundary.

Support Vector Classifiers (SVCs), (also often called Support Vector Machines, SVMs), try
to fit a hyper plane between two data distributions so that they are separated by as
much space as possible. This space in between is often called street as illustrations of-
ten utilise three lines resembling a road (Figure 1.3a). The hyper plane and its margins
are described by their supporting vectors, hence its name. After finding the separation
between the two distributions, classifications of data points are calculated by determin-
ing which side of the street they fall on. (Cristianini et al., 2000)

Due to the linearity of a hyper plane, a linear SVC works best on data that has a lin-
ear boundary, which is often not the case. Kernel SVCs allow non-linear boundaries by
transforming the data using a non-linear kernel function, such as a Radial-Basis Function
(RBF), allowing a linear hyper plane to separate non-linear data (Figure 1.3b). (Cristian-
ini et al., 2000)

In the kernel case, the hyper parameter g regularises the importance of data points
depending on their distance to the decision boundary; higher values weigh close points
higher and might result in an overfitted boundary, lower values flatten the boundary
and might underfit. How to optimise regularisation parameters is described in section
1.3.1.10 on page 19.
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1.3.1.2 Logistic Regression

(A) (B)

FIGURE 1.4: Comparison between a linear regression and a logistic transformation.
Both are configured with a = 0.1, b = 0. (a) The output of a linear function leaves the
interval [0..1] for small and large values, which does not result in sensible probabili-
ties. (b) The logistic transformation limits the output to the interval [0..1] and can be

interpreted as a probability

Despite its name containing ‘regression’, Logistic Regression (Logit) is used for classifi-
cation tasks. The core idea is to use a linear model to predict the probability of a sample
belonging to a class (i.e. the probability of a site being spliced). As illustrated in Fig-
ure 1.4a, a linear function y = ax + b emits values outside of the interval [0, 1] which
are invalid probabilities. This is compensated by using a logistic transformation (also
known as sigmoid function) p = 1

1+e�y that saturates between zero and one and can
therefore be interpreted as a probability, see Figure 1.4b. (Menard, 2002)

Training is achieved by maximizing the log-likelihood of the classifier. This is equiva-
lent to maximum entropy (MaxEnt) modelling (Cristianini et al., 2000).

1.3.1.3 Multi-Class Classification

SVCs and Logit are binary classifiers, i.e. they can only distinguish two outcomes at a
time. If more than two distributions are to be classified (multi-class classification), i.e.
acceptor sites, donor sites, and neither, multiple binary classifiers are fitted.

For N > 2 classes, one-versus-rest classification (also called one-versus-all) trains N clas-
sifiers, each distinguishing one class versus the remainder. One-versus-one (also called
all-versus-all) fits one classifier for every possible pair of classes, resulting in K(K�1)

2
classifiers (Aly, 2005). For N = 3 classes, such as acceptor / donor / neither, both
approaches result in 3 classifiers.
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1.3.1.4 Decision Trees, Random Forest

FIGURE 1.5: A simple decision tree of depth 2 to distinguish acceptors from donors.
To determine the classification output for a location on the genome, follow each deci-
sion, starting at the root node. If the datapoint fulfils the decision criterion, follow the
left arrow, else follow the right arrow. This specific model first checks the nucleotide
upstream is a G; if yes and the nucleotide one further up is an A, the canonical AG
motif is detected and the point is classified as an acceptor. The ”value” property of
the corresponding leaf node (bottom left) also shows that 4% of training data that this

path represents is misclassified.

A Decision Tree (Rokach, 2016), as illustrated in Figure 1.5, represents a number of suc-
cessive data splits. Every parent node represents one decision to make, every leaf node
represents a classification result. Each decision splits data into two disjoint partitions,
one variable at a time. All nodes connected build a binary tree with one root node.
Incoming data is classified by starting at the root node, following all applicable connec-
tions, until a leaf node determines the classification result.

A tree is trained using information theory: Given data, the best decision of a node is
found by minimising impurity (i.e. gini score) of its children or by maximising the
information gain of each split (Rokach, 2016). Formulae are found in Tangirala (2020).

One of the main issues with decision trees is overfitting. A decision tree where each leaf
node represents a single class has most likely overfitted to the training data set and will
evaluate poorly on unseen data. A number of regularisation parameters exist to miti-
gate overfitting, including (but not limited to) capping the number of layers, number
of samples required to issue a split, or the number of leaf nodes. The effect of prevent-
ing overfitting through regularisation is semantically similar to the g parameter of the
SVC; how to optimise regularisation parameters is explained later in section 1.3.1.10
(page 19).
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Decision trees are inherently unstable, meaning small changes in the data set will im-
pact the topology drastically. Furthermore, most decision tree implementations are
breaking ties randomly, introducing stochastic effects that further disturb stability.

Random Forests (RFs) have their roots in ensemble learning methods and mitigate insta-
bility by the law of big numbers. Instead of having one unstable decision tree, a forest
of trees is grown, each based on a different subset of data. By combining a large num-
ber of very different classifiers and taking the majority vote, random side effects are
reduced and the model becomes stable as a whole. The prediction performance grows
with the number of trees but saturates eventually. (Rokach, 2016)

1.3.1.5 Simple Artificial Neural Networks

N3w1,3N1

N2

w2,3
F= 

(A)

N1

N2

N3

(B)

H1,1I1

H1,2I2

O1

O2

1 1

(C)

FIGURE 1.6: Simple Artificial Neural Networks. ANNs consist of neurons (circles),
weights (arrows), and biases (squares). An activation function F is applied to all
weighted inputs (not just where indicated). (a) Three neurons with two connections.
The output of N3 is calculated by applying the activation function to its weighted
inputs: N3 = F(w1,3 ⇤ N1 + w2,3 ⇤ N2). (b) A fully connected RNN with three neu-
rons. Every neuron is connected to every neuron, including itself. The number of
weights therefore grows exponentially with the number of neurons. (c) A fully con-
nected three-layer feed-forward network, also called Multi-Layer Perceptron Classi-
fier. There are no loops feeding back, values are only passed forward. Biases emit
a constant value of 1, allowing their corresponding weights to offset the input by a

constant number.

Artificial Neural Networks (ANNs) are a drastic abstraction of biological neural networks
used for both classification and regression. Neurons are connected through learnable
weights (Figure 1.6a); each input neuron represents one feature, each output neuron
one outcome variable. Each neuron sums up its weighted input signals and applies
an activation function to determine its output signal. Most commonly used activation
functions include the logistic function (sigmoid, see Figure 1.4b), a Rectified Linear Unit
(ReLU), and variations thereof. If outcomes are mutually exclusive (i.e. classification
task), a softmax function is applied on the output neurons. The softmax is related to the
logistic transformation (section 1.3.1.2) in that it transforms raw outputs to a probability
distribution of classes. The weights of an ANN are initialised randomly and found
by propagating the training error between ground truth and current output back to
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earlier neurons, adjusting the weights iteratively by a certain learning rate. (Basheer
and Hajmeer, 2000; Géron, 2019)

Recurrent Neural Networks (RNNs), as depicted in Figure 1.6b, describe the most flexible
class of ANNs that allows loops, including neurons that are connected to themselves.
Loops are unrolled over time, allowing to store and retrieve time-dependent informa-
tion. However, since the number of parameters of a fully connected RNN explodes
exponentially with the number of neurons, deep RNNs with thousands or even mil-
lions of neurons are infeasible with current technology.

Multi-Layer Perceptrons (MLPs) (Figure 1.6c), often also called multi-layer feed-forward
networks, mitigate the number of connections by arranging neurons into a strict hi-
erarchical, loop-free layer structure. The output of one layer is fully connected to the
next layer. The layers in between input and output layers and their neurons are called
hidden layers and hidden neurons respectively. MLPs are a common trade-off between
complexity and accuracy. Multi-Layer Perceptron Classifiers (MLPCs) are MLPs with a
softmax layer for classification.

1.3.1.6 Convolutional Neural Networks
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FIGURE 1.7: A Convolutional Neural Network recognising a hand-written digit.
Early convolutional layers recognize small features; their input can be padded to pre-
vent the data from shrinking. Pooling layer resize the data, allowing the following
convolutional layers to create more complex features. Features are flattened and clas-

sified by a softmax-MLP. (Strauch, 2019)

CNNs were originally developed for image recognition, but today they are part of
many other disciplines and represent a state-of-the-art ML algorithm, especially for
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deep learning. Their main distinction is that they re-use weights by moving kernels
over their input, allowing them to analyse a sub section of the data at a time and utilise
relationships of neighbouring features. (Géron, 2019; LeCun et al., 1989)

Early layers in the stack detect small basic motifs that are then re-combined by later
layers to find macro patterns. Features are recognised in Convolutional Layers by mul-
tiplying their input data with learnable kernels. These kernels are moved over the
input matrix like a torch, emitting one output value per position into an output matrix.
Pooling Layers shrink their input data by applying a max or mean function, allowing
the following convolutional layers to combine previous features and recognize bigger
patterns. The same effect can be achieved by dilation which means that gaps between
feature maps are introduced to allow a kernel to cover bigger areas. Batch normaliza-
tion layers centre batches of data by subtracting the mean and dividing by standard
deviation to provide better convergence.

1.3.1.7 SpliceAI

Jaganathan et al. (2019) presented ensemble models of five deep CNNs each to predict
splice sites from raw DNA sequence. While their publication discusses different model
architecture variations trained on different context sizes and layer depths, their best
model presented, SpliceAI10k (Figure 1.8), is commonly referred to as SpliceAI. This
architecture utilises five 35-layer deep CNNs with an input context length of 10,000
bases flanking the 5,000 nucleotides to predict (5,000 flanking nucleotides on either
side).

The authors illustrate that bigger context sizes and deeper networks achieve higher ac-
curacies. They also work with two datasets. First, they only train and test on primary
GENCODE transcripts (i.e. those isoforms that are predominantly expressed through-
out the body and developmental stages), and their SpliceAI10k model achieves an av-
erage precision1 of 98% on test data. They then enrich their data with weaker and
novel splice sites from the Genotype Tissue-Expression (GTEx) database, which they ob-
served to perform better on clinical variant data. Their final published SpliceAI model
is trained on 19 chromosomes (excluding the test chromosomes 1,3,5,7,9) on the GEN-
CODE+GTEx data. The authors did not publish how well this model performs on the
test split of the combined dataset, but a third party measured an average precision of
around 84% which was confirmed by the authors (Riepe and Jaganathan, 2022).

Using a CNN has great advantages in the context of splicing. As explained in the previ-
ous section, CNN kernels are applied to neighbouring nucleotides and can model their
relationship. They detect small detailed features and combine them into new macro

1The authors report this score as AUC-PR
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FIGURE 1.8: The SpliceAI10k architecture. The network is very deep. The main layer
stack splits into two strands. The left strand consists of four skip blocks of each four
skip layers that in turn have two convolutional layers, each with a batch normalization
and ReLU layer. The right strand functions as an additional skip connection consist-
ing of four convolutional layers. The first and last convolutional layers in the stack
are there to provide data shapes. All other convolutional layers have 32 filters, and
their window size and dilation increase in later layers to compile smaller features into
bigger ones. In the end, the output is truncated to the 5,000 nucleotides in the middle

and a softmax determines classification.
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features on later layers. This is important because as shown by MES, neighbouring nu-
cleotides have relations to one another and compile into macro motifs (section 1.1.2).
Another advantage of a CNN is that it can output a matrix, allowing SpliceAI to pre-
dict not only a single splice site at a time, but thousands of neighbouring nucleotides
at once.

The big disadvantage of deep neural networks however is that the reasoning behind
the algorithm can be hard to understand. Through investigation of the kernels found,
one can extract some information, but the deeper a CNN, the less interpretable they are.
Analysis is further impacted by SpliceAI using dilation, which means that kernels are
spread out and have gaps. Their algorithm therefore is great as a tool, but extracting
new insights into the splicing process is non-trivial.

Furthermore, the choice of training the final SpliceAI model on the combined dataset
of primary GENCODE transcripts enriched with ”novel splice junctions commonly ob-
served in the GTEx cohort” (Jaganathan et al., 2019) might introduce problems. Firstly,
the inclusion of novel junctions from GTEx data, filtered to those observed in at least
five patients, was not validated by humans. This could mean batch effects or noise be-
ing sampled from the data. Secondly, if there are related genetic conditions in at least
five patients, those conditions will be part of an otherwise assumed healthy dataset.
Thirdly, the combination with GTEx data means that the input and output of the ma-
chine learning data is de-correlated. Their training code generates input sequences
sampled from the reference genome and not from GTEx donors. Output annotations
on the other hand contain splice sites subject to all of the donors’ genetic variation.
This may teach the ML algorithm to detect splice sites in DNA where there are none,
potentially creating confusing and even conflicting annotations. To prevent this, one
should either use GTEx inputs for GTEx annotations (and the reference genome for
GENCODE annotations), or stick to GENCODE by filtering it to also contain weaker
splice sites and not combining it with GTEx. Lastly, the choice of excluding five chro-
mosomes from the train data of the final model might bias the algorithm and hinder its
clinical application.



18 Chapter 1. Introduction

1.3.1.8 Cross-Validation Partitioning
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FIGURE 1.9: How K-Fold operates on 3 folds. K-Fold splits the data into K (3 in this
case) partitions and evaluates the model in K folds, selecting one partition as test data

and the remainder for training.

In order to measure how well algorithms adapt to unseen data, the general procedure is
to split the data into train and test partitions. Despite various techniques and best prac-
tises in how to find a sensible split, the choice of split will impact model performance
on any finite data set. To prove that the performance of a model does not rely signifi-
cantly on the split, Cross Validation (CV) operates on multiple splits, each consisting of
a train and test run. (Wong, 2015)

K-Fold is one of the most popular CV techniques. As illustrated in Figure 1.9, it splits
the data into K partitions of equal size. The model is trained and tested K times; for
every run, one partition is selected as a test set and the remainder is used for training.
(Wong, 2015)

The model performance between runs will fluctuate; the less fluctuation, the higher the
confidence in the stability of the model. A standard practice is to report the mean m
and the standard deviation s of the performance measure on the test partition across
all runs in the format m ± s.

There is an obvious trade-off with computational cost. SpliceAI trains on ten Graphics
Processing Units (GPUs) for each 12 hours, i.e. 120 hours of total GPU time per fold.
CV would therefore be very expensive. The authors instead decided to evaluate their
model on a single train/test split.

1.3.1.9 Regularisation

Regularisation can help in simplifying and stabilising models. Models with fewer
weights, represented by their b coefficients, can be easier to interpret and reduce com-
plexity, fewer extreme weights can help the model stabilise.

Lasso regularisation adds the l1 norm of all parameters, defined as Â |b|, to the optimi-
sation problem (subject to minimisation), which punishes non-zero weights and drives
the model coefficients towards sparsity. Similarly, ridge regularisation utilises the l2
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norm defined as Â b2, punishing big weights and driving the model towards a more
even weight distribution (Hastie et al., 2009). The combination of both is called Elastic
Net. In scikit-learn, the lasso parameter in a linear regression is called a, and for algo-
rithms that support both l1 and l2, the weight is called C independent of which exact
norm was used. Either way, this parameter determines how much the regularisation
affects training, bigger values increase the weight of the regularisation factor.

1.3.1.10 Hyper Parameter Optimisation

As opposed to the model parameters found during training, hyper parameters are set-up
a priori. For the algorithms discussed so far, hyper parameters are i.e. the depth of
a decision tree, the learning rate for ANNs, or the regularisation coefficient C. Apart
from setting parameters by hand, based on experience and trial and error, they can be
found systematically.

Grid Search is the systematic exploration of all hyper parameter combinations within
a search space. That means that for every hyper parameter, a search domain is de-
fined by hand. Every possible combination of all parameters in the search space form a
grid; each combination is trained and tested on, and the best test result defines which
parameter configuration is assumed to be optimal. Since grid searches scale expo-
nentially with the search domains defined, an engineer still needs to define sensible
search spaces, extending the search space manually if necessary. A modern approach
is Bayesian Optimisation (Kandasamy et al., 2020) that models the loss function subject
to hyper parameters themselves using bayesian inference and gaussian processes.

Grid Search CV is the process that for every parameter configuration on the grid, a CV
determines the performance of the parameter configuration. This strengthens the trust
in the hyper parameters found.

1.3.1.11 Explaining Supervised ML Decisions

Understanding the reasoning why and how a supervised ML algorithm comes to a
conclusion is important for understanding classification results, errors, and could even
reveal insights about the underlying problem. Especially with tasks where humans are
not able to recognise the patterns reliably and have to use expensive analysis, such as
in the splicing domain, understanding the reasoning could help us not only refine the
data pipelines and models, but we might even generate new insights into patterns and
the underlying biology.

One decision tree is inherently comprehensible since its decisions can be plotted out,
illustrating the decisions made transparently (see Figure 1.5). This comes at some cost:
A single decision tree is unlikely to model complex problems. Picking models is often
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a trade-off between accuracy and interpretability. RFs utilise many decision trees in an
ensemble which detriments transparency. On the other end of the spectrum, there are
deep learning methods which can predict on complex problem domains but are often
treated as a black box; One of the big challenges to date is to understand their decision
making.

Probing is the process of estimating feature importance by examining model parame-
ters or structures. When training decision trees, each split decreases the impurity of
the data set in respect to a specific feature, allowing to estimate feature importance
by measuring total impurity reduction. For RFs, one can mean over this score for all
trees. Probing SVCs, Logit and linear regressions is achieved by looking at the absolute
weights of each feature (|b|) - assuming the data was normalised, bigger weights mean
bigger feature influence. (Azodi et al., 2020)

Feature importance can also be determined through Sensitivity Analysis: Manipulating
one feature at a time by either leaving it out or meaning over it, and measuring the
change in predictions. The bigger the change, the more important a feature is. This
technique can be applied to any ML algorithm. (Azodi et al., 2020)

Both techniques are unreliable if features are heavily correlated. If two features have a
high degree of shared information, probing them might either split feature importance
between both, or estimate one to be vastly more important than the other. Leaving
either out during sensitivity analysis might not affect performance much, but leaving
both out might drop results significantly. (Azodi et al., 2020)

Recursive Feature Elimination (RFE) (Guyon et al., 2002) mitigates this problem by com-
bining both methods. Feature importances are estimated through probing, and the
weakest N features are removed. The model is re-trained on the remainder of features,
and this process is repeated until a desired number of strongest features remain. The
elimination path is equal to the reverse ranking of features. Small N values return more
accurate rankings. This method is applicable for a moderate amount of features and if
the underlying ML algorithm can be trained repeatedly on a smaller feature set, which
normally does not apply to deep learning methods.

Deep Neural Networks can be analysed by investigating their model weights. CNN
kernels can reveal some insights into their working. Alternatively, one can also track
their gradients. This however is much more complicated due to the hierarchical struc-
ture and co-dependency of weights. Early approaches tracked gradients between a
neutral input (i.e. a black image or DNA made up of the unknown nucleotide ’N’)
through the network using backpropagation to derive which inputs affect the gradients
most (Baehrens et al., 2010; Simonyan et al., 2013). Tracking gradients was shown to be
non-optimal since they might flatten at an input despite it being important, which can
be overcome by integrating them (Sundararajan et al., 2017). These Integrated Gradients
can then be used to visualise input feature contributions for a specific data point.
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Integrated Gradients are local explanations, i.e. they explain feature contributions for
a specific data point; RFE is a global explanation over the whole corpus of data. Both
techniques are used in this work to shed light into the workings of ML algorithms in
the context of splicing.

1.3.2 Unsupervised ML

While Supervised ML is about training an algorithm on an annotated ground truth,
unsupervised Machine Learning has no desired output annotation. Instead it detects pat-
terns in the data itself in order to provide new insights. There are two main areas of
unsupervised ML - clustering and dimensionality reduction.

1.3.2.1 Clustering

(A) (B)

FIGURE 1.10: Comparison between K-Means and Gaussian Mixtures on synthetic
data. Both algorithms, K-Means and Gaussian Mixtures, need the number of clusters
a priori, and both fit centroids to the data so that they converge to the centre of their
surrounding data points. The main difference is in their assumption about the data
distribution. (a) The assumption of circular distribution does not hold for this artifi-
cial dataset, meaning it will cluster some data points incorrectly. (b) The centres of
a Gaussian Mixture converged to about the same location as with K-Means. But the
clustering fits the data distribution better due to respecting covariances and (in this

example) will not mis-cluster data points.

K-Means is a simple clustering algorithm that finds K centroids (reference points in N-
dimensional space) to the data, one centroid per cluster (see Figure 1.10a). The number
of centroids K needs to be defined in advance.
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Centroids are initialised (pseudo-) randomly. Each data point is assigned to the closest
centroid, and the centroid is moved to the mean position of all assigned data points.
This process is repeated until centroid positions converge. (Jain et al., 1999)

The algorithm has some known drawbacks such as stochasticity due to random initial-
isation and the assumption of spherical data distributions. Stochasticity can be com-
pensated through repeated application.

The assumption of spherical distributions can be relaxed: Gaussian Mixtures (Figure
1.10b) allow modelling of feature co-dependency through a hyper parameter defining
the shape of the covariance matrix between features. A further advantage of Gaussian
Mixtures over K-Means is that they model the probability for each data point belonging
to each cluster (i.e. a mixture of mappings), which allows soft partitioning as opposed
to a hard assignment of each data point to exactly one cluster. (Jain et al., 1999)

1.3.2.2 Dimensionality Reduction

(A) (B) (C)

FIGURE 1.11: PCA finds principal components and projects data onto them. (a) The
first principal component is the eigenvector of the data where it has the highest vari-
ance. All following components lie orthogonal, if multiple components are possible
(higher dimensional data), the one with highest variance is chosen. (b) This PCA
projects the data onto two components. Dimensionality stays the same, but the data
is rotated and rescaled. (c) Projecting the data onto the first component reduces the
dimensions to one but preserves the axis with highest variance. If one would just drop
the Y axis from the original data, the outlying point at the top-right corner would not

be distinct any more.

Principal Component Analysis (PCA) is a popular algorithm that projects data from high
to low dimensional space using Singular Value Decomposition (SVD). Projecting to two
or three dimensions allows plotting a representation of high dimensional data. For
N target dimensions, PCA projects data on N principal components. The first princi-
pal component is extracted by finding the direction that retains the highest variance,
which is the eigenvector of the data. All following principal components are orthogonal
hyper planes, again retaining highest variance in the data. The data is transformed by
projecting it on each hyper plane. (Wold et al., 1987)
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Conventional PCA needs to hold all data in memory and perform batch operations on
it, which is infeasible for big datasets. Incremental PCA resolves this by incremental
SVD calculations over batches of data. Due to the immense number of splice sites in
the human genome, incremental PCA is used when plotting the data in chapter 3.

The PCA projection is linear and works best on multi-variate normal distributions. A
drawback of PCA however is that close points in high dimensional space do not neces-
sarily end up close to each other in low dimensional space.

If one desires neighbours to be preserved, a better approach is to apply T-distributed
Stochastic Neighbour Embedding (t-SNE). This non-linear, neighbour-preserving algo-
rithm transforms the similarity (or, originally the euclidean distance) between any
two points into a probability of them staying next to each other in low dimensional
space. The low dimensional space is constructed to retain this probability distribution
as closely as possible by reducing entropy (Kullback–Leibler divergence). (Van der Maaten
and Hinton, 2008)

While the projections of PCA can be repeated for unseen data, t-SNE cannot be applied
to new data points without some new predictive measures, which is why t-SNE is rarely
found in supervised ML pipelines.

1.3.3 Types of Data

ML needs numerical data such as age, height, or white blood cell count. Ordinal data
such as non-smoker / rare smoker / regular smoker have a hierarchy and can be
translated to numerical data, as can binary data (immunosuppressed /not immunosup-
pressed). (Géron, 2019)

This leaves nominal data such as acceptor / donor / neither, natural language and DNA
nucleotides. These values are often one-hot encoded, which is equal to transforming each
distinct value into a vector of zeros with exactly one one (Géron, 2019). The position
of the one is unique per term in the vocabulary. For example, a one-hot encoding of the
vocabulary acceptor / donor / neither could be [1, 0, 0] / [0, 1, 0] / [0, 0, 1].

It’s easy to see that the encoding vector grows with the number of distinct values. If
the English language with a vocabulary of around 150,000 words serves as the vocab-
ulary corpus, encoding a single word results in about 150,000 zeros and a single one.
Some arising technical challenges such as memory and disk usage have been resolved
by software engineering. However many ML algorithms work suboptimally on such
sparse data. For example ANNs need to multiply and add many zeros unnecessarily.
One-Hot encoding also worsens the Curse of Dimensionality, unfavourable properties of
geometry and distance measures in high dimensional space (Verleysen and François,
2005).
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Another notable shortcoming of one-hot encoded data is that since every term has its
own dimension, all terms have the same distance to each other. Ideally, similar terms
should be closer to another and opposing terms further apart. Such a semantic space can
be generated through Word2Vec (Mikolov et al., 2013), which leans how to map one-hot
encoded data to vector space given only natural language. Application of Word2Vec to
DNA and splicing is described in chapter 5.

1.3.4 Handling Imbalanced Datasets

A balanced dataset means that all outcomes are (roughly) equally frequent in the data.
If that’s not the case, there are various implications and pitfalls.

For example, on a dataset where only 1 in 1,000 patients has a disease, a classifier pre-
dicting everybody to be healthy would achieve an accuracy of 99.9%. Training a classi-
fier on such an imbalanced dataset might also skew its abilities to distinguish the two
classes. However, simply balancing the data to a 1/1 ratio through down-sampling will
remove a big partition of data and might make the problem seem easier, also affecting
training score. Sampling up to a 1/1 ratio would need a method to generate new or re-
sample existing data, which introduces new, domain specific challenges. (Ganganwar,
2012)

In any case, imbalanced datasets require special care during evaluation, and using
AUC-PR or average precision score should be preferred in order to account for im-
balances.
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Chapter 2

Methodology

The research presented in this work is highly computational and great care needs to
be taken to produce a sound technical development strategy both locally and on the
university’s High-Performance Computer (HPC) called IRIDIS. While every chapter fo-
cuses on different research questions with distinct objectives, the overall ML approach
is often similar.

This chapter is dedicated to the development practices and software engineering re-
quired in the following experiment chapters. Each chapter may then extend this gen-
eral framework with its own methods as required.

2.1 General Technical Framework

ML code is developed locally using a small development data set containing less than
50 splice sites across 8 genes. This data set can be processed almost instantly and al-
lows code to be tested for syntactic errors. Code is debugged locally using the python
debugger provided by Visual Studio Code.

Bash scripts coordinate the queue scheduler slurm (Yoo et al., 2003) used by IRIDIS5 and
utilise a custom implemented helper library that abstracts slurm functions, allowing
scripts to be tested locally first. This prevents slurm scripts with syntactic errors being
stuck in a queue just to fail immediately once they are scheduled to start.

Python dependencies and environments are maintained using conda. This allows (al-
most) the same dependencies to be used on IRIDIS and locally, minimising integration
error.

The published SpliceAI code (McRae et al., 2019b) utilises TensorFlow-GPU (Abadi et al.,
2016) version 1.4.1 and keras version 2.0.5 in python2 (Van Rossum and Drake Jr, 1995).
Python2 has been deprecated since the beginning of 2020, however migrating to newer
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versions caused many problems due to dependencies. The newly developed CI-SpliceAI
is contained in its own python3 (Van Rossum and Drake, 2009) project.

DNA2Vec (Ng, 2017a) uses gensim (Řehůřek et al., 2011) in a python3 implementation,
forcing the main project to be split into two branches with their own dependencies.

BEDtools (Quinlan and Hall, 2010), BEDOPS (Neph et al., 2012) and pyfaidx (Shirley,
2014) provide genetic tooling. Big data sets are stored using hdfpy (Colette, 2014). Ge-
nomic variant annotations are created using Ensemble Variant Recoder (Ensembl, b) and
parsed using Ensemble Variant Effect Predictor (Ensembl, a); coordinates are lifted over
using hgLiftOver from University of California, Santa Cruz (UCSC) (University of Califor-
nia, a).

Most ML algorithms, except for CNNs and DNA2Vec, are implemented with scikit-learn
(Pedregosa et al., 2011). Python standard toolings (numpy for maths, pandas for csv files,
requests for web communication, xlrd for excel support) were used where appropriate.

Data visualisations were created using matplotlib (Hunter, 2007). Visualisations of in-
tron/exons were implemented from scratch using matplotlib as well. Results were ob-
tained locally and through the university’s IRIDIS HPC where needed.

Code is versioned through git which is also used to deploy to IRIDIS.

Due to extensive local testing, integration and deployment on IRIDIS was mostly with-
out problems. Due to differences in the operating system and hardware configuration
between IRIDIS and the local machine, updating dependencies and tracking bugs due
to version differences were time consuming and needed manual research. Especially
migration towards newer Keras/Tensorflow slowed down development substantially
due to their untransparent constraints to each other as well as CUDA (NVIDIA et al.,
2020a) and CuDNN (NVIDIA et al., 2020b) versions.

2.2 Supervised Training Methodology for Splice Site Recogni-
tion

2.2.1 Performance Measure

Due to the imbalanced data set, accuracy cannot be used as a performance measure. To
produce comparable results, the performance measure of SpliceAI, the mean average
precision score1 of the binary classification tasks acceptor / rest and donor / rest, was
adopted.

1The SpliceAI authors refer to the average precision score as AUC-PR in their publication
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2.2.2 Hyper Parameters for Baseline Classifier

Baseline algorithms (SVC, Logit, RF, and MLPC) first need their hyper parameters op-
timised for a given data set. This is done using GridSearchCV with three partitions
(random partitions ignoring paralogs). For each model, the best hyper parameters are
found by selecting the one that maximises mean AUC-PR on the test splits.

2.2.2.1 Support Vector Classifiers

All SVCs are configured to use one-versus-rest classifications and 10,000 max iterations.

Three separate grid searches, one for each SVC kernel (linear, RBF and polynomial) are
conducted. Each spans over the grid of b that compensates class imbalances (true/-
false), l2 regularisation coefficient C 2 {0.0001, 0.001, 0.01, 0.1, 1, 10, 100} and regulari-
sation parameter g 2 {0.0001, 0.001, 0.01, 0.1, 1, 10}. The grid of the polynomial SVC
includes polynomials of degree d 2 {2, 3, 4}.

2.2.2.2 Logistic Regression

The base configuration was set to use one-versus-rest classification, 2,000 max iterations
and utilise the saga solver, which scales to bigger data sets and allows l1 and l2 penalties.
The dual parameter was further set to false, which is recommended when nsamples >

nfeatures. The grid was initialised over regularisation l 2 {l1, l2} penalties using C 2
{0.001, 0.01, 0.1, 1, 10}.

2.2.2.3 Random Forest

During search, the RF was configured to utilise 20 trees, each with a max depth dm 2
[10..25]. When a good hyper parameter configuration was found for 20 trees (RF20),
the forest is also extended to 500 trees (RF500). This assumes that parameters found for
a small ensemble are transferable to bigger forests.

2.2.2.4 Multi-Layer Perceptron Classifier

The hidden layer configuration of a MLPC is documented as tuples, where each num-
ber represents the number of hidden neurons in that layer. The configuration (50, 100)
therefore represents a four layer MLPC with two hidden layers that have 50 and 100
neurons respectively.

The grid was configured over the hidden layer configurations
L 2 {(50, ), (100, ), (300, ), (500, ), (100, 20), (20, 100)}.
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2.2.3 Hyper Parameters for SpliceAI

The SpliceAI10k architecture was not changed and is depicted in Figure 1.8, page 16.

2.2.4 Training and Testing Methodology

2.2.4.1 Baseline Classifiers

After hyper parameters are found as described in section 2.2.2, all baseline algorithms
are evaluated using CV on partitions shown in table 3.1 (page 42). This is done on the
whole corpus of data; if algorithms are not able to return CV results after 60 hours, the
process is repeated on a subset of data (as described in experiment design). Mean and
standard deviation of the performance measures of test partitions are reported.

2.2.4.2 SpliceAI

The code to train and test SpliceAI (McRae et al., 2019b) was ported to the IRIDIS sys-
tem.

Five independent CNNs are trained in total and used as an ensemble predictor. Each
CNN is split on two GPUs and trained using stochastic gradient descend, adam opti-
mizer, categorical cross-entropy loss and a batch size of 12. Each training epoch iter-
ates over a random chunk representing 100 successive genes, each gene represented by
slices of 15,000 nucleotides (10,000 nucleotides of context and 5,000 nucleotides to be
predicted). Training is repeated for 10 times the number of chunks. The learning rate
starts at 0.001 and halves at 60%, 70%, 80%, and 90% of training.

SpliceAI is not evaluated using CV because of 1) its computational complexity and 2)
to produce comparable scores to the ones published by the original paper (Jaganathan
et al., 2019), instead it is trained on chromosomes 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, X, and Y.

The ensemble of 5 CNNs is then tested on the test partition 1 of table 3.1 (chromosomes
1, 3, 5, 7, 9 excluding paralogs) using a batch size of 6. The ensemble averages over all
predictions, and the performance on the test set is reported.

2.2.5 Explaining Supervised ML Decisions

To explain how the trained classifiers reach their conclusions, RFE will be applied to
baseline algorithms and Integrated Gradients to SpliceAI models (see section 1.3.1.11).
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2.2.5.1 Explaining Baseline Classifiers

Feature contributions towards decisions of baseline classifiers are determined using the
RFE implementation provided by scikit-learn (Pedregosa et al., 2011), unless stated oth-
erwise. The weakest four features are removed at a time and the classifier is retrained
on the remainder. This process is repeated until four features or fewer are left. The
ranking of features is then plotted out with a cut-off so the top 20% of features are
visible.

This implementation determines feature importance via probing (section 1.3.1.11), which
is not available for neural networks. While a custom probing algorithm for neural net-
works could be implemented in theory, it was out of scope of this project; therefore
MLPCs cannot be interpreted.

2.2.5.2 Explaining Deep Learning / SpliceAI

Feature contributions towards predictive classes were calculated using Integrated Gra-
dients (Sundararajan et al., 2017): Gradients between a neutral input and a concrete
example are propagated from the output back through the network to the input. By
approximating gradient integration though linear interpolation, feature contributions
are be derived.

To calculate this, an Integrated Gradients implementation for keras (Hiranuma, 2018)
was adopted. This implementation uses the keras API, requiring all calculations to be
done within the keras framework.

This algorithm is applied to the published SpliceAI models. The published SpliceAI
code (see section 2.2.4.2) calculates the ensemble average using numpy, which would
not allow the calculation of gradients within keras. Ensemble averaging was therefore
migrated into the keras framework. This would however cause all five CNNs and the
averaging to be calculated on the GPU at the same time, which consumed too much
memory. Keras was therefore configured to run on the Central Processing Unit (CPU);
this was possible as the networks were already trained and prediction on a CPU is
performant enough. While migration to keras was relatively straight forward for splice
site recognition, adaptation to variant annotation was significantly harder as described
in chapter 4.3.3 (page 74).

To provide explanations for the classification result at a specific basepair, a function that
returns DNA slices of one nucleotide at an arbitrary offset plus 10k flanking context
was created. A neutral output of same length is generated, this is the all-zero vector
which represents the unknown nucleotide N. Gradients between the neutral input and
a specific input are calculated, traced back through the network, and integration is
approximated with 50 steps.
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The Integrated Gradients return one measure per input feature representing feature
contributions. For a single decision, i.e. splicing or not, this returns 10,001 feature con-
tributions (10,000 of flanking context plus the nucleotide in question). Contributions
can be both positive and negative and are plotted in frequency diagrams, similar to
logo visualisations used to analyse PWMs.

Feature contributions, both negative and positive, are used to derive the height of each
letter / nucleotide. Negative weights cause their letter representations to be drawn
downwards. Loci don’t need to sum up to 1 as they would do in a frequency diagram.
To aid visualisation of small contributions, feature contributions are also depicted using
a symmetrical log10 transform with a linear threshold component. The linear compo-
nent prevents the log transform to output extreme numbers near zero and is estimated
by the biggest absolute feature contribution divided by 25. This value resulted in a
trade-off between the visualisation of small weights and retained some indication of
their relative differences.

2.3 Data and Ethics

Patient variant data was sourced from publications (Ellingford et al., 2019; Houdayer
et al., 2012; Ito et al., 2017; Jian et al., 2014; Leman et al., 2018; Maddirevula et al., 2020).
One source was not published yet during early experimentation; the study was cleared
through the university ethics committee (ERGO II 23056.A1). Since then, the data was
published in Wai et al. (2020).

All remaining data used has been previously published. This work incorporates the
Human Reference Genome (Church et al., 2011; Schneider et al., 2017), GENCODE
(Frankish et al., 2019), gene annotations from Ensembl (Yates et al., 2020) and the Na-
tional Center for Biotechnology Information (NCBI) (NCBI; Pruitt et al., 2002), REST APIs
from Ensembl (Ensembl, a) and UCSC (University of California, a), splice sites from
McRae et al. (2019b), protein binding sites from Cáceres and Hurst (2013); Venables
(2007); Wang et al. (2013, 2004), and conservation scores from University of California
(b), namely phyloP (Pollard et al., 2010) and PhastCons (Siepel et al., 2005).
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Chapter 3

Application of Machine Learning to
Splice Sites

3.1 Introduction

One of the main goals of this thesis is to improve diagnosis of splicing related disease
using ML. Before doing so, we first need to find and evaluate algorithms to model and
predict the splicing process itself on the Human Reference Genome, i.e. only using
healthy sequence data. The more accurately splice sites can be recognised, the better
these algorithms are expected to perform when applied to clinical variants later on.

This chapter describes the application of ML algorithms to classify any position in the
Human Reference Genome into acceptor, donor, or neither. To do so, a training dataset
is created and analysed using statistical tools and unsupervised ML.

As this is an application of data science, great care needs to be taken during data set
creation and the data needs to be validated. The data should be up to date to include
any fixes in data sources and minimise noise. Different algorithms need different data
set formats: Deep learning (i.e. CNNs) can utilise massive parallel processing to output
a matrix of predictions and therefore train on very big genomic slices; simpler models
(baseline classifiers) can only emit one class at a time and need to be trained and tested
on a smaller dataset. Algorithms that need a long time to train need a further subset of
data. Validation of classifiers needs to ensure that the split in train and test data is not
lucky or unlucky. To mitigate this issue, a CV partitioning table needs to be introduced
and utilised when feasible.

Two main variations of the data need to be introduced: One to only contain strong
splice sites and one containing all splice sites. These two variations will be compared
to each other throughout.
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Different supervised ML algorithms are trained and evaluated on this data, and the
decision making of the best algorithms are investigated.

3.1.1 Aims and Objectives

This chapter relates to the general objective 1: Develop, test, and analyse algorithms to
recognise splice sites.

First, two main datasets are to be created: 1) One that includes all primary transcripts,
i.e. those predominantly expressed in the human body, by re-implementing the SpliceAI
GENCODE data pipeline; and 2) a new dataset that additionally includes weaker GEN-
CODE splice sites, collapsed into one pseudo-transcript. To ensure that these two datasets
are representative of the problem, and to quantify and compare the problem complex-
ity, the two datasets are visualised: Both datasets are plotted and clustered; motif fre-
quencies are compared to literature; and the primary dataset is compared to the data
published with SpliceAI.

To explore if deep learning is actually needed for this problem domain, baseline classi-
fiers (i.e. SVCs, Logits, RFs, and MLPCs) are to be optimised and trained. To do so, the
two datasets need to be adjusted and reduced in size. Cross-validation is introduced
where appropriate to help quantifying performance of algorithms. Algorithmic perfor-
mance is then compared to SpliceAI. The training process of the SpliceAI architecture
is ported to the high performance system IRIDIS to allow training CNNs on the newly
created data.

Lastly, splice site classification results are to be explained by investigating feature con-
tributions using RFE and Integrated Gradients on baseline classifiers and CNNs respec-
tively.

3.2 Background

3.2.1 Public Sources of Genomic Sequences and Annotations

The Human Reference Genome is curated from anonymous donors of mostly Western
heritage. The latest assembly at the time of writing is published as Genome Reference
Consortium human (GRCh) on build 38 version p13 (GRCh38.p13). The build indicates
the version of genomic coordinates that specify which offset each gene lies on, and the
version relates to how new the data is respective to this build. GRCh37 is deprecated,
and conversion between GRCh37 and GRCh38 is called lifting. (Church et al., 2011;
Schneider et al., 2017)
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The one big advantage of the Human Reference Genome is also its biggest disadvan-
tage: It contains exactly one fictitious genome. This has two drawbacks: 1) It cannot
possibly cover all benign variants and 2) it is inherently biased towards the heritage
of the individuals that donated their sequences (mostly American/African, Schneider
et al., 2017). On the other hand, the Human Reference Genome is broadly used and
believed to be healthy.

There are many approaches to resolve the first challenge by including more benign se-
quences. GenBank (Benson et al., 2017), maintained by the American NCBI, is a database
containing sequences submitted by many laboratories from around the world and up-
dated monthly. GTEx (Carithers et al., 2015) is a major collection of reference RNA data
with an emphasis on tissue specific expression. Samples were collected post-mortem
from just under a thousand human donors in various tissue across the body. Most
patients died from traumatic injuries and heart disease. Patients suffering from im-
munodeficiency or metastatic cancer were excluded, however some samples collected
may be related to hereditary disease. The 100,000 Genomes Project (England, 2016) is an
ongoing effort to sequence many genomes from British patients.

Controlling for heritage and ethnicity however is much more challenging both logis-
tically and scientifically. The 1,000 Genomes Project (Siva, 2008), a predecessor of the
100,000 Genomes Project, included more ethnically diverse genomes from healthy pa-
tients. The biggest effort to date to diversify sequencing is gnomAD (Karczewski et al.,
2020), which analysed and stratified over the genetic heritage of their sample donors.

Based on these reference sequences, there are databases to annotate genes, transcripts,
and exons. GENCODE (Frankish et al., 2019) is a project annotating genes of the Human
Reference Genome with a primary focus on protein coding regions. This includes En-
sembl (Yates et al., 2020) annotations, derived from clinical experimentation pipelines,
and HAVANA, a corpus of manually annotated data. Genes, transcripts and exons are
identified by their Ensembl ID. GENCODE includes annotation levels to distinguish
HAVANA from Ensembl transcripts: Level 1 represents verified annotations, level 2
manual annotations, and level 3 are automatically annotated instances.

The main alternative to GENCODE, curated by the European EMBL-EBI, is RefSeq
(Pruitt et al., 2002) which is mainly developed by the NCBI and based on their Gen-
Bank data. It annotates genes, transcripts, exons, and even some common variants.

Whereas many bioinformaticians might choose between GENCODE and RefSeq de-
pending on whether they reside in the Americas or Europe, Frankish et al. (2015)
shows that GENCODE is ”richer in alternative splicing, novel in CDS [protein coding
sequences], novel exons and has higher genomic coverage than RefSeq”.

The two maintainers joined efforts to form the Matched Annotation from NCBI and EMBL-
EBI (MANE) collaboration and published an approach to finding transcripts of high



34 Chapter 3. Application of Machine Learning to Splice Sites

quality, which curated two main collections of transcripts for 97% of protein coding
genes: The MANE Select set which consists of one representative transcript per gene
and the MANE Plus Clinical set that curates more than one transcript where clinically
relevant (Morales et al., 2022). MANE also directly maps Ensembl and RefSeq identifiers
to standardise the field and bring together the two systems.

The SpliceAI authors train their final model on the Human Reference Genome as in-
put to predict annotations derived from primary GENCODE transcripts combined with
novel splice junctions observed in at least 5 GTEx samples (Jaganathan et al., 2019).
Their publication also discusses an intermediate model that only recognises primary
GENCODE transcripts.

3.2.2 Selection of Primary Isoform for Training Data

Figure 3.1 shows all isoforms for the gene SH3YL1 contained in GENCODE v37GRCh38.
Not all isoforms contain all splice sites. When parsing this data set for Machine Learn-
ing, using each isoform as a separate data point would annotate ambivalent ground
truth and hinder training.

Instead, Jaganathan et al. select one isoform to generate an unambiguous ground truth
with exactly one input mapping to one output. What exactly they determine to be
the primary transcript however is not accurately described in their publication, and
attempts to clarify this with the authors were unsuccessful (Erdem and Jaganathan,
2021). At the time their paper and most of this dissertation was written, the MANE sets
were unpublished, meaning MANE Select transcript could bot be not be used instead.
The selected GENCODE isoform is then enriched with novel splice sites observed in at
least five GTEx samples, creating a pseudo-isoform.

This approach however might introduce significant problems. First, the enrichment
of novel splice sites from five samples might introduce sequencing noise that has to
be validated by humans, and it is unclear how the threshold of five samples affects
the number of false positives. Secondly, and more importantly, it decouples the ML
in- and output data. The authors included novel RNA splice sites of patients, but still
train on the DNA of the reference genome. If a patient suffered from hereditary and
splice-related disease, which was not an exclusion criterium in the GTEx study, their
genes might be subject to different or aberrant splicing compared to the reference. This
potential discrepancy might train the CNNs to try to associate healthy DNA with ab-
normal expression.

From the visualisation it is apparent that a number of exons are left out and some
potential pseudo-exons where included, which might skew both train and testing of
SpliceAI. Not only does the training data have a significant number of novel splice sites,
some of which could be false positives, there are also some false negatives, i.e. sites that



3.2. Background 35

FIGURE 3.1: All SH3YL1 isoforms on GENCODE v37GRCh38, and the training data
used for SpliceAI. SH3YL1 is the first gene on the SpliceAI training data with more
than one validated transcript. All transcripts are level 1-2 (verified and/or annotated
by humans). The first one is the one Jaganathan et al. selected as a primary isoform,
which was then enriched with novel junctions from GTEx which results in the pseudo
transcript of the last row. Ambivalent regions that can code for both exons and introns
are depicted by dotted lines. On this gene, 26 (46%) of splice sites in the SpliceAI
training data are novel GTEx sites and have not been validated by humans; 7 (18%) of

verified splice sites are not present in SpliceAI training data.
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human researchers annotated or verified in GENCODE. Because of the selection of only
the primary GENCODE isoform, validated sites were excluded from the SpliceAI data.
A possible consequence is that if a mutation disrupts a site that is not spliced in this
training transcript, the algorithm might falsely classify it as benign, and vice versa. To
improve clinical application, a more straight forward approach would be to combine all
transcripts that were annotated and/or checked by researchers and have been observed
relative to the reference genome.

The choice of GENCODE over other data sources is probably a computational one to
facilitate ML model development. GENCODE annotates a single input sequence from
the Human Reference Genome that SpliceAI can be trained on. The training process
was optimised for hardware acceleration, which entails training on one long RNA in-
put sequence (15,000 nucleotides) with 5,000 splice annotations, which can directly be
extracted from the Human Reference Genome and GENCODE. Other data sources dis-
cussed earlier, such as GenBank, are not based on a single input sequence. While these
alternative data sources could widen the scope and remove bias towards the reference
genome, it would also require more storage, memory, and training time. It was there-
fore decided to retain the data pipeline and base annotations on GENCODE and the
reference genome.

3.2.3 Logo Visualisation of Position-Weight-Matrix Analysis

Splicing motifs are often depicted as logos, diagrams of nucleotide sequences that were
scaled according to frequency. This technique can also help debugging the data pipeline
as we can compare its output to literature. One particularly helpful way of doing so
are logo visualisations of PWMs; this method uses Information Theory to quantify how
surprising the observation of a certain nucleotide frequency is.

We can measure how much information observations bear using the logarithmic func-
tion (Van der Lubbe and Hoeve, 1997). When the log2 function is used, this unit is called
bits (binary digits). Bits can also be used as a measure of how surprising the outcome
is. In DNA, we can observe four different nucleotides. Under the assumption that nu-
cleotides occur with the same background probability of b = 1

4 , always observing a
specific nucleotide at a specific location would be �log2(b) = 2bit surprising, which is
the maximum measure of surprise for DNA.

A PWM (Stormo et al., 1982) finds motifs and measures their information gain com-
pared to b using information theory. By aligning1 splice sites and deriving nucleotide
frequencies, we can create a Position-Probability Matrix (PPM) which specifies the prob-
ability of observing each nucleotide at an offset. The matrix P describes a PPM where

1Alignment does not refer to sequence alignment of smaller fragments, in this context DNA slices are
simply stacked upon so that splice sites are at the same position
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Pn,p is the probability of observing nucleotide n at position p. Under the assumption
that all four nucleotides have the same base probability b, we can then can derive a
PWM M by using the log transform Mn,p = log2(Pn,p/b).

The PWM motifs are often drawn as graphs referred to as logo, where the information
of each nucleotide is represented by a scaled letter; letters at each position are stacked
on top and often sorted by size and coloured. Figure 3.2 shows an example PWM logo.

FIGURE 3.2: PWM Logo visualisation of acceptor sites. 2 bits mean that this base is
observed at every single nucleotide. If there are no letters visible, there is no significant

difference to the expected background frequencies b.

3.3 Methods

3.3.1 Adapting the Data Pipeline of SpliceAI

It was decided to re-implement the SpliceAI data pipeline (Jaganathan et al., 2019) as,
at the time of writing, it is the most popular and promising tool. Figure 3.3 1-4(a)
illustrates this process with example data for CNNs.

GENCODE protein coding transcripts are extracted and filtered. Transcripts are filtered
for either the principal transcript (creating the primary dataset, see section 3.3.1.3), or
for the GENCODE annotation level<3 (creating the collapsed dataset, section 3.3.2). Se-
quences are extracted from the Human Reference Genome and one-hot encoded; tran-
scripts on the negative strand are reverse-complemented. This will be referred to as
feature matrix; its further processing will differ between CNNs and baseline classifiers
(sections 3.3.1.1 and 3.3.1.2 respectively).

Exon annotations are matched to their transcripts using their transcript ID2. Exon bound-
aries that align with a transcript start or end annotation are removed since they rep-
resent non-splice sites, implicitly removing transcripts/genes consisting of only one
exon. Paralogs are annotated by joining GENCODE with Ensembl (Yates et al., 2020)
data, using gene ids to match the two2. Paralogs are later excluded from testing, re-
moving potential overlap between training and test data due to gene repetition.

2This detail was not described by Jaganathan et al.
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3. Junction Extraction

A
C
G
T

C A G G T A A T T C A G G T...

0 1 0 0 0 1 1
1 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 1 0
1 1 0 0 0 0 1

...

 No Splice Site
 Acceptor
 Donor

1 1 0 1 1 1 1
0 0 0 0 0 0 0
0 0 1 0 0 0 0

1 1 1 1 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 0

...

2. Sequence extraction

1. Transcript Extraction

 transcript_id  chromosome  start  end  tags  strand
ENST00000420190.5  chr1  860260  874671  protein_coding, appris_principal_1 +

-  chr1  11869  14409  pseudogene +

GENCODE Transcript Annotations

GENCODE Exon Annotations

eitherFilter to
protein_coding

Filter to 
primary transcript

Reference Genome

Slice into 15,000 nuc.
windows with

optional padding

Randomly sample
10N non-splice sites

Feature
Matrix

4a) CNN

One-hot encoding

4b) Base

 gene_name  jn_start  jn_end paralog
 SAMD11  [860328, 861393, ...]  [861302, ...] True

 exon_id transcript_id  gene_name gene_id  chromosome  start  end  strand
 ENST00000420190.5:1 ENST00000420190.5  SAMD11 ENSG00000187634  chr1  860260  860328 +
 ENST00000420190.5:2 ENST00000420190.5  SAMD11 ENSG00000187634  chr1  861302  861393 +

4. Create Nucleotide Windows

0 0 2 0 0 0 0 0 0 0 0 0 1 0...

Junction
Table

T T C A G G TC A G G T A A ...

Sample all
N splice sites

Output
Matrix

gene_id  paralog_type
ENSG00000187634  other_paralog
ENSG00000273481

ensembl Paralog Annotations

Convert to
boolean

Filter to
level < 3

primary

collapsed

Standardise
and flatten

Vector encoding

Output
Scalar

Slice sites into
81 nuc. vectors

Feature
Matrix

Feature
Vector

Site
Subset

......

Scalar encoding

0 for Neither
1 for Acceptor
2 for Donor

Extract junctions

Extract
Sequence

Filter to selected
transcripts

Feature
Matrix

One-Hot
Encoding

5. Machine Learning Data
from 2.
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FIGURE 3.3 (cont.): Data Pipeline.
1) GENCODE transcripts are filtered for protein coding, and optionally for either the

primary transcript or transcript level. Ensembl provides paralog annotations.
2) Transcripts are extracted from the reference genome, building the reverse comple-
ment for negative stranded genes. A numerical transcript matrix representation is

created using one-hot encoding.
3) Junctions are calculated by parsing GENCODE exon annotations. The first and last
exon boundaries are removed so that only splice sites are retained, implicitly dropping
all transcripts that consist of only one exon. Junctions are then encoded into a vector

that indicates where exons start and end (acceptor/donors).
4) From both, the features and exon data (ground truth), nucleotide windows are ex-
tracted depending on the algorithm. 4a) For the CNN, the exon vector is one-hot
encoded and each gene is sliced into windows of 15,000 bases, short genes are padded
with unknown (dedicated one-hot representation). 4b) For baseline classifiers, all splice
sites and ten times more non-splice sites are sampled from the exon vector. A nucle-
otide window of 40 bases left and right around each site is sliced to provide input,
forming a window of 81 nucleotides. The ground truth for each window is a scalar
determining if the nucleotide in the middle is an acceptor, donor, or neither. Data is

then standardised by subtracting the mean and dividing by standard deviation
5) The features and ground truth are split into training and test sets chromosome-
wise. Paralogs are excluded from test split. The algorithms are trained and tested, and

a score is calculated for comparison.

3.3.1.1 CNN specific encoding

Following SpliceAI, each transcript is enlarged by 5,000 nucleotides on both sides to
provide 10,000 nucleotides of context. For this enlarged window, sequences are ex-
tracted from the feature matrix and sliced into windows of 15,000 bases, where each
slice predicts 5,000 nucleotides at a time. Short genes are padded with ’N’ (unknown
nucleotide) if necessary so that no nucleotides outside of gene annotations are included.
This nucleotide vector is then one-hot encoded, resulting in an input matrix of 15,000x4
(A,C,G,T). The N nucleotide is encoded as a vector of all zeros.

For the 5,000 positions in the middle, an exon vector is created for the ground truth,
where 0 indicates non-splice sites, 1 indicates the first exon nucleotide at an acceptor,
and 2 indicates the last exon nucleotide at a donor position. This vector again is one-hot
encoded, resulting in a 5,000x3 matrix.

3.3.1.2 Extension for Baseline Classifiers

In contrast to CNNs, most formulations of splicing predictions with ML algorithms
cannot predict an output matrix, but only a single splice site along the sequence. That
means, instead of using windows of 15,000 bases to predict annotations for 5,000 nucle-
otides at once, simpler algorithms can only predict one site at a time. The data therefore
had to be further transformed, so it could be used with baseline classifiers.
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With more than one billion nucleotides, an inherent challenge is the mass of data.
Thanks to hardware acceleration and clever algorithmic design, this immense data vol-
ume can be fed to CNNs, but for baseline classifiers this is infeasible with current tech-
nology.

A second challenge is the imbalance of the data. Preliminary experimentation has
shown that rebalancing to a 1/1/1 (acceptor/donor/neither) ratio by random sub-
sampling simplified the problem too much and skewed classification metrics. It was
therefore decided to include ten times more negative splice sites than positives. Sam-
pling negative splice sites also resolves the first challenge for the most part, except for
SVCs where the data was further subsampled (see section 3.3.3).

Negative splice sites were sampled from uniformly random3 positions between tran-
script start and transcript end that are not marked as splice sites.

Each site is then assigned a numerical output value and the feature matrix is cropped to
windows of 40 bases to the left and right of each site. This nucleotide window therefore
represents 81 nucleotides as an input of a ML algorithm, and the output is 0 for non-
splice sites, 1 for acceptor, and 2 for donor sites. The nucleotide sequence was then one-
hot encoded and standardised by subtracting mean and dividing by standard deviation
(using a partial fitting of 500 samples at a time). This results in a 81x4 input matrix; a
sample data point is visualised in Figure 3.4. This matrix is then flattened to a vector
(324x1) because baseline classifiers cannot work with multi-dimensional data.

FIGURE 3.4: One training instance in the base dataset. The sequence can be read by
following the black squares representing ones (resulting in CACG..). The splice site in
question is at offset 0 and is a donor site where we can see consensus GT sequence.

Matrix is flattened for machine learning.

3.3.1.3 Extracting Primary Transcripts

Filtering for principal transcripts was not straight forward despite GENCODE annota-
tions. Annotations contain appris principal and appris principal X where X 2 [1..5]. The
transcript(s) with the lowest X were selected2 under the assumption that appris principal
is equal to appris principal 12. If a gene has less or more than one annotated primary
transcript, the transcript with the most associated exons is selected2. Transcripts on the
Y chromosome that also exist on the X chromosome are dropped2.

3Uniform random: All outcomes are equally likely
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3.3.2 Collapsing Isoforms into Single Datapoint

If more than one isoform exists because of alternative splicing, Jaganathan et al. select
the principal transcript. Their main training data is later enriched with junctions ob-
served in GTEx data. As described in section 1.3.1.7, this might introduce novel splice
sites and disrupt the mapping between input and output data.

Instead, the collapsed dataset from this work uses all exon annotations of different iso-
forms and compiles them together. To not introduce bias of annotation software, the
pipeline filters to only those transcripts that were annotated by a human (HAVANA
annotations): GENCODE exons are labelled with confidence levels (GENCODE, 2020);
level 3 means that the exon was annotated automatically and was therefore filtered
out. The remaining splice sites were compiled into one pseudo isoform that does not
exist biologically due to duplicate acceptor or donor sites next to each other, but rather
indicates all potential sites. This selection is expected to teach the algorithm to recog-
nise splice sites independent from their isoform. The compiled gene for SAMD11 is
shown in Figure 3.5. Note that there are ambivalent regions that code for both exons
and introns, as depicted by dotted lines.

The dataset described will be referred to as gencode.v33grch38.collapsed.

FIGURE 3.5: Zoomed in version of the collapsed isoform of SAMD11. It includes all
splice sites from validated isoforms. Dotted lines indicate ambivalent regions where
multiple donors or acceptors follow another. For a better visualisation, intron/exon
regions longer than 300bps were shortened as indicated (�N, where N is the number

of nucleotides removed).

3.3.3 Data Subsets for Convergence

The subsetN.D dataset takes the first (i.e. smallest genetic coordinates) N non-paralog
genes from each chromosome from the dataset D. For example, subset2.gencode.v33-
grch38.collapsed will take the first 2 non-paralog genes within each genome from gen-
code.v33grch38.collapsed.

Subsets will be used when base classifiers do not converge within 60 hours.
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3.3.4 Limiting Data Leakage through Cross-Validation Partitioning

Jaganathan et al. partitioned their data into train and test chromosome-wise. The
chromosome-specific split was presumably introduced to make testing harder by ex-
cluding paralogous genes or gene families with similar function and splice motifs and
therefore prevent data leakage from the training to testing partition. Their code uses
chromosomes 1, 3, 5, 7 and 9 for testing, and the remainder for training. For algo-
rithms that converge faster than deep learning, a better approach would be to use a CV
partitioning table.

Because human chromosomes differ significantly in size, this table was curated man-
ually so that the proportion of train to test data was maintained. The partitioning is
shown in table 3.1.

Partition Chromosomes in Test Set Test Set Size
Jaganathan et al. GENCODE GENCODE

v33GRCh38 v33GRCh38
primary collapsed

1 1, 3, 5, 7, 9 (original test partition) 29.23% 29.54% 29.13%
2 2, 4, 6, 8, 13, 14, 20, 22 29.44% 29.27% 29.18%
3 10, 11, 15, 17, 19, 21, X, Y 29.82% 29.73% 30.00%
4 1, 2, 12, 16, 18 29.53% 29.49% 29.35%

TABLE 3.1: Cross-Validation Partitioning Table. The testing set within all four folds
and all three datasets is between 29% and 30%.

With this 4-fold partitioning table, the models developed can be tested using a K-Fold
method. Note however that the CNN is still only evaluated on the first partition due to
the long time required to train it. This could be a future extension.

3.3.5 Position-Weight Matrix Analysis of Splice Motifs

PWM is used to visualise frequencies in the dataset and compare them to literature and
each other.

From the datasets gencode.v33grch38.primary and gencode.v33grch38.collapsed, acceptor
and donor sites are extracted with a window size of 20 nucleotides around the anno-
tated site. The extracted and aligned DNA slices are then converted to a PWM and
their logo representation is drawn.

PWM and logo implementations are based on a github code base (Azofeifa, 2017) which
was adapted. The original implementation draws nucleotide letters manually using
matplotlib’s plot tools, which doesn’t scale to very long sequences of DNA.

Instead, the logo drawing was implemented by using a system font. Unfortunately,
standard system fonts have letters of varying height and offset. Since both letter height
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and offset are crucial to PWM visualisations, each nucleotide letter had to be calibrated
by converting them to their vector graphic representation, measuring their actual size
and offset, and transforming them to the desired values.

Furthermore, the code was adapted to also depict the unknown nucleotide N in grey,
and to sort all letters by weight so that the most frequent letter sits on top of the stack.

3.3.6 Plot Analysis of Acceptors, Donors, and Neither

Nucleotide windows around each splice site were extracted from gencode.v33grch38.pri-
mary and gencode.v33grch38.collapsed, following the pipeline for baseline classifiers (Fig-
ure 3.3).

Different nucleotide windows of size N 2 {1, 2, 5, 20, 40} around each annotated splice
site were extracted, forming sequences of length 2N + 1. These sequences were plotted
using incremental PCA of batch size 200 in two dimensional space.

3.3.7 Clustering Analysis of Acceptor and Donor Sites

To help explore the complexity of distinguishing acceptors from donors, a clustering
algorithm to distinguish between them is evaluated. Since these two data distributions
seem to overlap to a certain degree, some sites are expected to be mis-clustered. These
mis-clustered sites can be interesting since they would represent splice sites that do not
follow most obvious patterns and might give new insights into the underlying biol-
ogy. During development, this also helped find and correct for mistakes in the data
processing pipeline.

The same data set introduced in the plot analysis (section 3.3.6) was used, with one
exception: The plot analysis reveals that the neither class overlaps heavily with the
other two, and is therefore expected to not cluster at all, and was removed.

Again, all window sizes, N 2 {1, 2, 5, 20, 40}, were used and the N with fewest mis-
clustered data points was selected.

All clustering algorithms described in section 1.3.2.1, namely K-Means and Gaussian
mixtures with all Covariance Types (CVTs), tied, diagonal, and spherical, were evaluated
using scikit-learn. The results for the clustering algorithm with the fewest mis-clustered
sites per dataset and window size N are reported; the best configuration found is then
further analysed by PCA visualisation, manual exploration, and per-class PWM analy-
sis.
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3.3.8 Comparison to Original SpliceAI Dataset

5 CNNs (ensemble classification) per dataset are trained and tested as described in
section 2.2.4.2, one ensemble is trained and tested on the original primary GENCODE
data set from Jaganathan et al., the other is trained and tested on gencode.v33grch38.pri-
mary. If both test scores are comparable to each other, trust in the new data pipeline can
be further strengthened.

3.3.9 Training of Baseline Classifiers and Comparison to Deep Learning

Baseline classifiers, namely SVCs, Logits, RFs, and MLPCs are optimised and trained.
This allows a comparison between different algorithms and allows future investigation
of these algorithms and their workings.

Hyper parameters for baseline classifiers are found on gencode.v33grch38.primary using
a 3-fold validation (for implementation details, see section 2.2.2). Hyper parameters
found and their intermediary performance measures are reported. SVCs and Logit
are optimised on subset2 (see section 3.3.3) due to them scaling exponentially with the
number of training points. The remainder of models is optimised on the complete
corpus.

The best model configurations are then evaluated using CV on both gencode.v33grch-
38.primary and gencode.v33grch38.collapsed as described in section 2.2.4.1, and their final
performance scores are reported.

3.3.10 Explaining Splice Site Classifications

The best baseline algorithm found and the SpliceAI models trained on gencode.v33grch-
38.primary were analysed using RFE and Integrated Gradients respectively (see sec-
tion 2.2.5 on page 28).

The best baseline algorithm found was the MLPC followed by the RF500. As MLPCs
cannot be probed using scikit-learn, the RF was investigated using RFE. Conducting an
RFE analysis on RF500 did not complete within 24 hours, the number of trees was
therefore reduced to 100. The RFE search was configured to remove the four least
important features at a time on gencode.v33grch38.primary until four or less features are
found. The reverse path of feature elimination represents the ranking of features and
the top 25% of features are plotted.

SpliceAI feature contributions were calculated using Integrated Gradients and plotted
as described in section 2.2.5. Two sites, an acceptor at chr1:930155 and a donor at
chr1:9935492, were chosen to be representative for this report.
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3.4 Results

3.4.1 Splice Site Dataset Comparisons

The reimplementation of the primary transcript dataset on GENCODE version 33 using
GRCh38 comes close to the original, however it is not exactly the same. The overlap of
selected genes is 97%. Out of the intersection of selected genes, paralog annotations are
equal in 98% and transcript start and stop annotations match in 90%. CNN classifiers
use all non-splice sites on the genes, baseline classifiers use ten times more non-splice
sites than splice sites.

Identifier No. No. Proportion
Genes Splice Sites Acceptor/Donor

GENCODE primary (Jaganathan et al.) 18,677 369,660 Equal
gencode.v33grch38.primary 18,559 373,420 Equal
subset2.gencode.v33grch38.primary 46 766 Equal
subset15.gencode.v33grch38.primary 345 6,328 Equal
GENCODE+GTEx (Jaganathan et al.) 18,678 556,174 2% more acceptors
gencode.v33grch38.collapsed 18,563 423,182 3% more donors

TABLE 3.2: Numeric data description of data sets, measured on all chromosomes.

Table 3.2 shows the numeric description of the original SpliceAI data sets and all new
data sets created. The number of genes and the number of primary splice sites are sim-
ilar between the original SpliceAI datasets and the ones produced. The number of col-
lapsed splice sites created in this work is smaller than the combined GENCODE+GTEx
dataset, which is due to the addition of novel splice sites in Jaganathan et al.. While
the newly produced collapsed dataset has slightly more donor than acceptor sites, the
SpliceAI dataset is slightly skewed towards acceptors. The primary splice sites are all
split equally between acceptors and donors, as would be expected for a collection of
single transcripts.

3.4.2 Consensus Site Analysis between Primary and Collapsed Dataset

Consensus site frequencies of the PPM are listed in table 3.3. The vast majority of both
datasets consists of the canonical splicing motifs AG and GT, with almost no difference
between the primary and collapsed collection. Compared to the primary dataset, col-
lapsed data points have slightly more canonical motifs in acceptor sites and slightly
fewer canonical donor sites, indicating more alternative splicing affecting the donor
end of a splice.
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Dataset Acceptor Donor
A G G T

gencode.v33grch38.primary 99.94% 99.85% 99.82% 99.14%
gencode.v33grch38.collapsed 99.95% 99.86% 99.86% 98.70%

TABLE 3.3: Nucleotide frequencies in consensus locations. Not all splice sites con-
tain consensus sites, but almost all do. The two datasets do not differ substantially.

(A) Acceptor sites on gencode.v33grch-
38.primary

(B) Donor sites on gencode.v33grch38.pri-
mary

(C) Acceptor sites on gencode.v33grch-
38.collapsed

(D) Donor sites on gencode.v33grch38.col-
lapsed

FIGURE 3.6: Acceptor and donor logo comparison between primary and collapsed
transcripts. Consensus motifs AG and GT stand out, and intronic regions right before
the acceptor have a higher density of C/T nucleotides (polypyrimidine tract). The
PWM visualisations do not change much when including weaker splice sites, there

are barely any differences visible.

Figure 3.6 shows acceptor and donor logos for both datasets, one containing only pri-
mary sites, and one containing all validated isoforms. There is no obvious difference in
the splicing motifs between the two datasets. Both datasets show the polypyrimidine
tract preceding acceptor sites and the canonical splicing motifs. There is a gap at -4 in
acceptor sites - the frequency of this nucleotide appears random from an Information
Theory perspective.

3.4.3 Splice Site PCA Plot

Naturally, very small nucleotide windows produced little variety, and the bigger the
window, the bigger the distribution spread. For N = 1, no obvious clusters were visi-
ble. For N 2 {2, 5, 20}, the distributions grow and acceptor and donor clusters become
more distinguishable while the neither cluster overlaps with both heavily. For N > 20,
the distributions overlap more and more; bigger values than 40 make the two distribu-
tions anneal and overlap more due to the increased diversity in sequences.
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It is hard to decide which N is ”best”, because there clearly is not one correct answer.
For consistency with other experiments, Figure 3.7 shows N = 40 for gencode.v33grch-
38.primary and Figure 3.8 shows N = 40 for gencode.v33grch38.collapsed. We can see that
the acceptor and donor distributions overlap a bit, but they do look like two clusters;
a few data points overlap substantially between the two. The sampled non-splice sites
are distributed circularly and overlap heavily with the acceptor and donor clusters.
This might be 1) because the window size of 81 nucleotides is quite small, or 2) because
the ground truth has missing or faulty annotations, or 3) because of other cis-factors,
or 4) because of shortcomings of PCA, or 5) because binding patterns can be anywhere
around a splice site and are not bound to a specific offset, which can’t be modelled in
this experiment. Most likely all reasons apply. Again, there is no obvious difference
between the distributions for primary and collapsed isoforms.



48 Chapter 3. Application of Machine Learning to Splice Sites

FIGURE 3.7: PCA visualisation of the gencode.v33grch38.primary dataset. 81 nucle-
otide windows (40 left and 40 right from the last nucleotide of an exon). The clusters
overlap, but there are obvious acceptor and donor clusters. The neither partition over-

laps with the other two quite drastically.
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FIGURE 3.8: PCA visualisation of the gencode.v33grch38.collapsed dataset. 81 nucle-
otide windows (40 left and 40 right from the last nucleotide of an exon). It looks almost

identical to the primary transcripts depicted in Figure 3.7.
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3.4.4 Clustering of Acceptors and Donors

Table 3.4 shows the best clustering algorithm per window size N and how many sites
were mis-clustered each. None of the clustering algorithms investigated performed
consistently better than the rest. As expected, windows of N < 5 are too small and
return a high number of mis-clustered points. For both datasets, the best result was
achieved using N = 20 with only a small fraction of sites mis-clustered. Application to
windows smaller than 40 nucleotides increases the number of mis-cluster donor sites
significantly; N = 40 has the best trade-off between mis-clustered acceptor and donor
sites of 50-55%. The percentages of mis-clustered sites on gencode.v33grch38.primary are
lower than on gencode.v33grch38.collapsed, indicating that weaker isoforms are harder
to classify. In all mis-clustered partitions, the consensus motif of the correct class is
the strongest pattern except for in one case: Incorrectly clustered donor sites on gen-
code.v33grch38.collapsed have a stronger AG than the consensus GT motif. This partition
is therefore a good candidate for future research.

N Best algorithm Mis-clustered sites
Total % of all No. % of mis-clustered

number splice sites acceptors acceptors/donors

gencode.v33grch38.primary

1 K-Means 21,073 5.64% 65 0.31%
2 Gaussian[CVT=diag] 7,454 2.00% 119 1.60%
5 K-Means 1,587 0.42% 650 40.96%

20 Gaussian[CVT=spherical] 834 0.22% 341 40.89%
40 K-Means 929 0.25% 472 50.81%

gencode.v33grch38.collapsed

1 K-Means 25,519 6.03% 67 0.26%
2 Gaussian[CVT=full] 8,710 2.06% 72 0.83%
5 Gaussian[CVT=diag] 2,007 0.47% 710 35.38%

20 Gaussian[CVT=full] 1,029 0.24% 212 20.60%
40 K-Means 1,453 0.34% 798 54.92%

TABLE 3.4: Clustering results per data set and window size N.

Figures 3.9 and 3.10 show the clustering result on a PCA plot for the two datasets and
the window size of N = 40. The vast majority of data points were clustered correctly,
and all mis-clustered points are on the border of the two distributions, which estab-
lishes that clustering and PCA returns sensible results, and that again the wider context
is important to distinguish the two types of splice sites.

On gencode.v33grch38.collapsed (Figure 3.10), mis-clustered points spread more on the
Y axis and overlap more with the acceptor and donor cluster, than for the primary
dataset. This indicates that some non-primary sites are harder to classify.
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FIGURE 3.9: PCA visualisation of the cluster analysis results on gencode.v33grch-

38.primary dataset. 41 nucleotide windows (20 left and 20 right from the last nucleo-
tide of an exon). Mis-clustered data points are in between the two distributions.
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FIGURE 3.10: PCA visualisation of the cluster analysis results on gencode.v33grch-

38.collapsed dataset. 41 nucleotide windows (20 left and 20 right from the last nucleo-
tide of an exon). Compared to the primary transcripts, Figure 3.9, mis-clustered points

spread more on the Y axis.

Correctly and incorrectly clustered data points were visualised as PWM logos in Fig-
ure 3.11. The PWM motifs of successfully clustered sites include clear consensus motifs
(AG or GT for acceptors and donors respectively). Wrongly clustered acceptor sites al-
ways have a stronger AG than GT motif which shows that the algorithm does not only
use consensus sites for its classification. The same upholds for mis-clustered donor
sites on the primary set where the canonical GT motif is observed more frequently than
AG. The exception to this are incorrect clustered donors belonging to the collapsed
representation, where the AG is stronger than the GT pattern. Comparing primary to
validated isoforms, the motifs for correctly clustered splice sites are the same. Incor-
rectly clustered PWM signatures are different, indicating that non-primary isoforms do
differ in their signatures.
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(A) Correctly clustered acceptor sites on gencode.v33grch38.primary (B) Correctly clustered donor sites on gencode.v33grch38.primary

(C) Incorrectly clustered acceptor sites on gencode.v33grch38.primary (D) Incorrectly clustered donor sites on gencode.v33grch38.primary

(E) Correctly clustered acceptor sites on gencode.v33grch38.collapsed (F) Correctly clustered donor sites on gencode.v33grch38.collapsed

(G) Incorrectly clustered acceptor sites on gencode.v33grch38.collapsed (H) Incorrectly clustered donor sites on gencode.v33grch38.collapsed

FIGURE 3.11: PWM visualisations for clustered splice sites using N = 20 nucleotide windows left and right of a splice site. Correctly clustered
sites have very dominant consensus sites, incorrectly clustered sites show both acceptor and donor patterns. (h) Incorrectly clustered donor sites

on gencode.v33grch38.collapsed have a stronger AG pattern than GT.
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3.4.5 Comparison of Supervised Splice Site Recognition

Table 3.5 compares CNN test scores on the original and new dataset. The measures on
the three primary datasets are very similar to each other, and my measures match the
original published SpliceAI scores. This indicates that both the technical re-implemen-
tation of the SpliceAI training and the primary data set has worked. The two datasets
that contain weaker splice sites at the bottom show both a drop in performance score,
with the GENCODE+GTEx data being considerably harder to predict than the novel
collapsed dataset.

Dataset Measured in Test
avg.prec.

GENCODE (Jaganathan et al., 2019) This work 97.58%
GENCODE (Jaganathan et al., 2019) Jaganathan et al. (2019) 98%
gencode.v33grch38.primary This work 97.88%

GENCODE+GTEx (Jaganathan et al., 2019) Riepe and Jaganathan (2022) 87.70%
gencode.v33grch38.collapsed This work 94.18%

TABLE 3.5: Comparison of trained CNNs on different datasets.

The best hyper parameters and their respective average precision on the 3-fold valida-
tion of gencode.v33grch38.primary are shown in table 3.6. The hyper parameters are doc-
umented for reproduction purposes, their corresponding AUC-PR is an intermediary
result due to the 3-fold validation not respecting chromosomes and paralogs, therefore
enabling data leakage between the train and test partitions. The best algorithms are
MLPC and RF20.

Algorithm Best Parameters AUC-PR

SVC-linear b = true C = 0.0001 93.53%
SVC-RBF b = true C = 1 g = 0.001 93.81%
SVC-poly b = true C = 1 g = 1 d = 3 89.43%
Logit l = l2 C = 0.001 92.82%
RF20 dm = 20 95.86%
MLPC L = (50, ) 98.05%

TABLE 3.6: Hyper parameters found for baseline algorithms on gencode.v33grch-

38.primary. AUC-PR is an intermediate result.

The best hyper parameters found were used to evaluate all algorithms on the actual
CV table, see table 3.7. None of the SVC algorithms completed even the first CV par-
tition within 24 hours; they were therefore tested on subset2.gencode.v33grch38.primary
and subset2.gencode.v33grch38.collapsed respectively. All baseline models are reasonably
stable (i.e. low standard deviation), the most stable models are the MLPC and RF500,
which are also the best base models overall (95-98% AUC-PR). Across all algorithms,
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the collapsed representation is consistently harder to classify than the primary dataset
and donors are easier to recognise across both datasets.

AUC-PR (%)

Model Mean Acceptor Donor

gencode.v33grch38.primary

SVC-RBF 94.076 ± 1.539 92.553 ± 0.269 95.600 ± 0.165
Logit 93.180 ± 1.731 91.459 ± 0.136 94.901 ± 0.223
RF20 95.774 ± 1.394 94.391 ± 0.251 97.156 ± 0.044
RF500 96.738 ± 0.959 95.787 ± 0.160 97.689 ± 0.053
MLPC 98.032 ± 0.480 97.557 ± 0.097 98.506 ± 0.011

gencode.v33grch38.collapsed

SVC-RBF 93.358 ± 1.447 92.383 ± 1.190 94.333 ± 0.934
Logit 92.272 ± 1.971 90.322 ± 0.373 94.223 ± 0.147
RF20 94.983 ± 1.635 93.354 ± 0.107 96.613 ± 0.144
RF500 96.018 ± 1.225 94.794 ± 0.025 97.242 ± 0.081
MLPC 97.373 ± 0.690 96.685 ± 0.070 98.060 ± 0.048

TABLE 3.7: Cross-Validated AUC-PRs. SVCs were evaluated on the respective subset2.

3.4.6 RF Feature Contributions

Figure 3.12 visualises the top 25% most important features for acceptor and donor sites.
Many motifs found in the PWM analysis can be rediscovered in the RFE features: The
T trail prior to acceptors, the gap at -4 preceding acceptors, the canonical AG and GT
motifs, and their surrounding patterns. The most important motifs are at the immediate
exon-intron boundary and its surroundings. Nucleotides in the exon at the 3’ site are
less relevant than on 5’. However not all important features match what we know exist
biologically: There are some relatively important T nucleotides on the exon preceding
donor sites that we know do not exist in sequencing data. A possible explanation is that
the absence of higher concentrations of Ts is important for classifying donor sites. This
is a shortcoming of the feature estimation process; it reminds us that no direct transfer
from RFE importance to biological features is possible. This discrepancy makes it hard
to reach new conclusions about the underlying biology based on RFE analysis.



56 Chapter 3. Application of Machine Learning to Splice Sites

(A) Acceptor sites

(B) Donor sites

FIGURE 3.12: Top feature contributions found by RF100 classifying splice sites. The
darker, the higher the importance of a feature. All ranks below 25% were cut off
(white). (a) Prior to acceptor sites, there is a T/C trail prior to the sites, and a gap
on offset -4. Most nucleotides on the exon are unimportant. A clear (C/T)-AG-GT
pattern is found at the consensus site. (b) Donor sites have a strong AG-GT motif at
the consensus site. Features are found in both exon and intron. There is a spaced out

trail of important Ts preceding donor sites.

3.4.7 SpliceAI Feature Contributions

Figure 3.13 shows feature contributions towards an acceptor and a donor site. Due the
immense input size (5,000 flanking nucleotides on either side), only the 600 nucleotides
in the middle are shown. The results are very granular and subjective to the actual data
point investigated. As expected, canonical motifs are the most significant positive con-
tributions towards the classification results, followed by the immediately surrounding
nucleotides. Nucleotides further away have less of an impact on the classification, but
feature contributions span over the whole input sequence. C and G nucleotides are
generally preferred in the end of an exon and opposing acceptor sides in the beginning
of an exon. As and Ts at the end of an exon oppose the donor classification result.
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(A) Acceptor site at chr1:930155.

(B) Donor site at chr1:9935492.

FIGURE 3.13: Integrated Gradients visualising deep learning feature contributions. Only 600 out of 10,001 input positions shown. Positive
contributions are in favour of the classification class, negative contributions are opposing this result. (a) The CAGA motif at the consensus site is
the biggest contributing factor, and the immediate surrounding Cs in the intron and Gs in the exon are not in favour of an acceptor class. There is a
TG motif at -9, and Cs and Gs deeper in the exon generally strengthen the acceptor classification. (b) The intronic GTAAGTATA sequence is a clear
contributor towards this splice site. Exonic A and T nucleotides are considered opposing this splice, where Gs and Cs in the exon are contributing

factors.
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3.5 Discussion

3.5.1 Differences to SpliceAI GENCODE Dataset

As described in section 3.4.1, the primary dataset from McRae et al. (2019a) could not
be reproduced completely. The following shortcomings of the data sources were found
to relate to this mismatch:

3.5.1.1 GENCODE Updates, Lifting, and Naming Issues

Between the two genome builds called GRCh37 and GRCh38, gene coordinates changed
completely. This means that when GENCODE releases an update (new gene annota-
tions), they create their database on the recent 38 build and lift (re-map) the data back
to GRCh37, allowing them to release a lifted legacy build as well. This however only
lifts coordinates, if gene symbols change, they are not mapped to their legacy names.
Updates of GENCODE annotations are released in versions, the latest version being v33
at the project start4. Jaganathan et al. used the GRCh37 build for v24.

Duplicate gene symbols with unique Ensembl IDs per chromosome were found, i.e.
on GENCODE v24lift37, the gene PIK3R3 has two unique IDs (ENSG00000278139 and
ENSG00000117461), so does TMEM236 (ENSG00000148483 and ENSG00000184040) and
54 others. The data set of Jaganathan et al. uses gene symbols as unique identifiers,
therefore duplicates have to be filtered out, which is questionable. The number of
naming collisions reduce with both newer GENCODE versions and by migrating to
GRCh38, see table 3.8 on page 59.

A similar problem was observed on transcript names and IDs. There are some duplicate
transcript names with unique gene IDs, i.e. the gene XAGE2: GENCODEv24 has two
transcripts for the gene XAGE2, one on each strand, and they share the same transcript
name.

This implementation uses Ensembl IDs rather than names in order to circumvent these
issues.

Another problem found on GRCh37 are tiny introns. For example, after filtering to
protein coding transcripts and level < 3, the gene ZNF280A has one transcript called
ENST00000302097.3, which exists on both builds. On GRCh38, this transcript consists
of two exons, on GRCh37 it has ten. On GRCh37 they are annotated with remap status=
partial; they are separated by very small introns and make little sense. 1,455 protein-
coding exons are marked with this flag.

4At the time of writing, the latest version is v37. Future experimentation will use an updated version,
however so far all experimentation is based on v33.
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3.5.1.2 Mismatches between Ensembl and GENCODE

GENCODE has archived all legacy versions to download, allowing recreation of older
data pipelines, however the Ensembl website providing paralogs has only the newest
version for build 37 and 38, and it is unclear how their annotations relate to GENCODE
versions. This is an issue as it was already shown that gene symbols may change
between GENCODE versions. More confusingly, this is inconsistent between GEN-
CODE and Ensembl: Using the Ensembl database, it was found that the gene symbol
of ENSG00000142920 changed somewhere in the past from ADC to AZIN2, and both
names are used in Ensembl build 37 and 38 respectively. GENCODE on the other hand
refers to it as AZIN2 in both builds, because their lifting algorithm only translates co-
ordinates and not names. Jaganathan et al. annotated the gene AZIN2 as ’no paralog’,
but both Ensembl on build 37 and 38 claim ENSG00000142920 is. AZIN2 does not exist
on Ensembl 37, which would indicate that they fill mismatches between GENCODE
and Ensembl with ’no paralog’. To not fall into the same trap, this implementation again
uses the Ensembl ID rather than its name to join the two sources. Another sensible ex-
planation is that Jaganathan et al. are not working with the most recent Ensembl data
set, but instead with an outdated list of paralogs. The exact issue is hard to reconstruct
without the code of their data pipeline or a history of Ensembl annotations.

Mismatched paralog annotations between Ensembl and GENCODE were counted. Ta-
ble 3.8 shows that there is still a considerable amount of these mismatches, and that the
number goes down when using more recent GENCODE versions or build 38. The 18
mismatches on v33 build 38 are all on chromosome Y.

GENCODE Name Duplicates Ensembl Mismatches between
(Genome within GENCODE, (Genome GENCODE and Ensembl,
version) on protein coding version) on primary protein

transcripts coding transcripts

v24lift37(p5) 50 GRCh37(p13) 328
v24(p5) 86 GRCh38(p13) 269
v33lift37(p13) 34 GRCh37(p13) 581
v33(p13) 30 GRCh38(p13) 18

TABLE 3.8: Gene and name duplications respective to GENCODE versions and
builds. The number of gene symbol duplicates and missing Ensembl annotations
for protein coding primary transcripts goes down when using GRCh38 and/or GEN-

CODE version 33.

It was therefore decided that the last row is most fit as a dataset.
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3.5.1.3 Selection of Transcripts

In their work, Jaganathan et al. document to have selected protein coding transcripts,
but not their exact process. Filtering transcripts for associated protein IDs returns the
exact same set of genes in the resulting splice table. However, it would also mean
including annotations tagged as transcript type=nonsense mediated decay, which are of
poor quality and unlikely actual splice sites. The same problem would apply filtering
to gene type=protein coding. A third variant is to filter transcripts for transcript type=
protein coding. Some of these annotations are faulty, i.e. TRBV6-4 has an associated
protein but no transcripts tagged as transcript type=protein coding, but it was included
in SpliceAI. I decided to commit to the latter method in order to exclude nonsense
mediate decay data, trading off a 3% mismatch in the selection of genes.

In the same manner, Jaganathan et al. did not document how they select primary
transcripts, and clarification requests remain unsolved to date (Erdem and Jaganathan,
2021). Different filtering was evaluated, and no perfect reimplementation was found.
As described in section 3.3.1, the process selects the transcript with the lowest ap-
pris principal tag, under the assumption that appris principal 1=appris principal, and breaks
ties by selecting the transcripts with more exons. This comes close: Out of the 97%
matching genes, transcript annotations are equal in 90%. This score obviously depends
on the pre-selection of protein coding transcripts.

Instead of selecting for the appris principal tag, selecting the MANE Select transcript
would be a more modern and promising strategy. Pozo et al. (2022) evaluated these
two against other popular selection strategies, such as taking the longest transcript,
and have shown that in the context of splicing, appris principal and MANE Select are
superior. At the time of experimentation, MANE was still under development and
could not be used; for future experimentation the MANE selection could improve the
selection and reproduction issues observed in this work, and might improve data qual-
ity even further.

The data pipeline is based on the Human Reference Genome and two subsets of GEN-
CODE annotations. As motivated in section 3.2.1, the Human Reference Genome is
biased towards Western heritage and cannot include benign variants. This might hin-
der application, both regarding benign variants, and application to the general public
of varying ethnicity. While the substitution of data to more diverse sequences will raise
technical challenges due to the inflation of data, it might produce a more comprehen-
sive model. It would also require much more care when evaluating performance as
results would need stratification over different backgrounds, which, as demonstrated
by gnomAD (Karczewski et al., 2020), is by no means an easily achieved task.
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3.5.2 Splice Site Quality

The motifs found for primary splice sites closely resemble literature (i.e. Lord et al.,
2019, Figure 1-2), indicating that the data pipeline extracted sensible splice sites. The
consensus motifs AG and GT are found at almost 100% frequency (2bits), which is what
is to be expected from literature (Burset et al., 2000).

Based on both the plot and clustering analysis, it seems that algorithms should be able
to distinguish acceptors from donors quite well, but being less effective in separating
splice sites from non-splice sites. This explains why supervised classification is pre-
ferred to unsupervised clustering in the wider are of splice site classification.

A subset of mis-clustered sites was inspected manually to assure data quality. Some
splice sites are not annotated on UCSC (Karolchik et al., 2003) such as ENSG00000003756:
50092043, indicating the potential need for additional filtering to improve data qual-
ity. Some sites do not follow consensus patterns for the major spliceosome, which is
expected to be mis-clustered due to the small number of sites. The vast majority of
instances extracted seem to be real splice sites.

It must be emphasised that the results from the clustering process have to be taken
with some reservations. The pipeline already filtered down to validated splice sites,
which simplifies the problem of splice site detection drastically. Furthermore, the clus-
tering algorithms, especially K-Means, are very simple and known to often result in
unexpected and stochastic results.

3.5.3 ML Model Comparison

When rounding to the same precision as Jaganathan et al., the CNNs score on the orig-
inal data set are equivalent to their publication. This shows that the train and test code
was adapted to IRIDIS successfully. The performance on gencode.v33grch38.primary is
similar; variances in performance are to be expected due to the data being slightly dif-
ferent and random stochasticity in the training process.

The baseline classifiers return unexpectedly high test scores compared to the CNNs.
However, all of these scores need to be taken with a pinch of salt: One cannot compare
base classification metrics with those measured on CNNs due to the difference in their
train and test data. Baseline algorithms were only trained and evaluated on a subset
of non-splice sites. The SVC results cannot even be compared to the rest of baseline
classifiers due to it being trained on an even smaller dataset.

The collapsed representation seems to make the problem considerably harder as the
performance for all algorithms dropped, which is somewhat surprising since the plot
and cluster experimentations have found only minor differences between the two datasets.
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The drop in predictive quality between primary and collapsed isoforms is unlikely a
mistake as it was also observed for the GENCODE+GTEx data published with SpliceAI
(Riepe and Jaganathan, 2022), where the average precision score dropped from 98% to
88%. The gap between their 88% and the 94% measured on the collapsed data is likely
due to 1) the collapsed data only including splice sites previously annotated by a hu-
man, 2) their inclusion of novel splice sites, and 3) through the mismatching input and
output data due to the Human Reference Genome being different to the genome of
GTEx patients. At this stage it is however hardly possible to state which dataset is
better for clinical use; this has to be analysed in a different experiment.

The comparison of feature contributions between shallow and deep learning reflects
their difference in complexity. While feature contributions for the RF were global and
didn’t reveal much detail, the weights on the CNN input were local to one datapoint.
Both levels of granularity made learning about the splicing process much harder. The
log scaling of SpliceAI feature contributions however revealed that the whole input
sequence affects the classification result, strengthening the thesis that bigger context
sizes are important made by both Jaganathan et al. and mentioned in the preceding
cluster analysis. Unfortunately, while positive and negative feature contributions are
certainly insightful, there seems to be no obvious learning from this as results are too
detailed and no apparent rules could be derived.

3.6 Conclusion

Despite many challenges during the reimplementation of the SpliceAI data due to miss-
ing documentation in the literature, it was shown that the new dataset was of at least
comparable quality. The resulting gencode.v33grch38.primary dataset was updated to a
more recent GENCODE version and build, and it was fit for usage for different ML al-
gorithms. A subset mechanism allows fast creation of smaller data sets, and a CV table
was introduced to facilitate testing of baseline algorithms.

In the context of rare genetic disease, classification of weaker splice sites is important.
The novel gencode.v33grch38.collapsed dataset was created differently to the main train-
ing data of SpliceAI: It was filtered to include only transcripts that were annotated by a
human, instead of joining them with novel splice sites from GTEx. The resulting dataset
is easier to classify than SpliceAI’s GENCODE+GTEx data, however that does not nec-
essarily mean that it is better or worse in a clinical setting; this has to be explored in an
independent experiment.

Motif analysis was used throughout to visualise the datasets as a whole as well as
investigate mis-predictions, and it was shown that logo patterns are sensible and com-
parable to literature. It can therefore be concluded that both data sets curated are of
good quality representing the problem domain. However some challenges remain:
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Non-canonical patterns are naturally under-represented, the subset of negative sites
will affect classification results, and some annotations are disputed between Ensembl
and UCSC.

Motif and plot visualisations have shown that distinguishing donors from acceptors
is generally easy, so easy in fact that simple unsupervised clustering methods can do
so with very high accuracies. The challenge however is clustering negative samples
versus rest: There is a big overlap between spliced sequences and those that aren’t.
Inclusion of weaker splice sites did not change this.

All ”top-down” analysis (i.e. excluding supervised learning) revealed no immediately
obvious differences between the primary and collapsed dataset. This is because these
experiments look at the data very superficially and do not reveal subtle patterns in data;
neither do they look at the wider context of splicing. During supervised training, it
was shown that weaker splice sites are actually harder to recognise, and the Integrated
Gradients revealed feature contributions are indeed distributed across thousands of
nucleotides; the context size therefore is very important and a ”top-down” look of the
data is not an appropriate representation of the problem complexity.

The RFE analysis conducted revealed global feature contributions. Many known splic-
ing motifs could be traced back to these features, however the inverse did not hold
and no new insights into the workings could be generated. In contrast, Integrated Gra-
dient analysis offered a very granular view into the feature contributions of a deep
neural network, however that view was way too detailed for intuitive interpretation.
If explaining simple cases with clear splicing motifs and significant predictions is hard
to do, using this system to explain mis-classifications or even learn about the splicing
process itself doesn’t seem feasible.

Both CNNs and baseline classifiers returned impressive scores classifying splice sites.
Baseline models were shown to be stable, indicating sufficient data for Machine Learn-
ing. However, these scores could not always be compared due to different ways of
how their train and test datasets are created. This means no conclusion of what the best
algorithm is can be reached; to do so, a more fair comparison is needed.

As all goals set in this chapter were made, the general objective 1 is considered resolved.

Two main questions are left unanswered: Whether the collapsed representation is, de-
spite being harder to classify, more useful in a clinical setting, and if simple baseline
algorithms can substitute the deep learning algorithms. This will be answered in the
next chapter, where all algorithms trained on both datasets are evaluated on an inde-
pendent dataset of genomic variants.
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Chapter 4

Application of Machine Learning to
Variant Data

4.1 Introduction

The previous chapter described how to train a set of supervised classifiers that are
able to recognise splice sites in the Human Reference Genome with high test scores.
Recognising splice sites is however of limited clinical use because most splice sites in
the Human Reference Genome are already known (and required to train the algorithms
to begin with). Two major questions remained unanswered: 1) Whether the collapsed
representation that also includes weaker splice sites is better than the one containing
primary isoforms, maybe even better than the GENCODE+GTEx data used to train
SpliceAI, and 2) if simpler baseline classifiers can be a substitution to the deep CNN
architecture of SpliceAI.

This chapter investigates the application of all trained supervised ML tools onto patient
variant data to replicate functional analysis results, i.e. if variants affect splicing. This
also allows a fair comparison between deep learning and simpler baseline classification,
which was not possible before due to data constraints.

Finding an algorithm, no matter the training dataset or model architecture, that can de-
tect splice disruptions more reliably than previously published tools would be a major
achievement as it can be transferred towards an application usable for both clinical and
research purposes.

Great care needs to be taken to balance the number of variants and their quality. While
a larger number of variants helps in determining which algorithm is best, the quality
of annotation is just as important to strengthen confidence in the results.
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This chapter partially overlaps with chapter 6, which expands the dataset, methods,
and analysis described here further. There are however important methodological dif-
ferences described in section 6.1.1.

4.1.1 Aims and Objectives

Objective 2, applying supervised algorithms to annotate aberrant splicing in variant
data, is to be achieved. To do so, patient data from previously published functional
studies is collected and aggregated. Collected data needs to be normalised into a com-
mon format, and shared variant annotations between different sources need to be com-
pared. Any conflicts need to be resolved.

A method of using the supervised ML models from chapter 3 to determine if variants
affect splicing, especially for insertions and deletions, needs to be developed. All ML
algorithms, deep and shallow, trained on the two datasets of primary and collapsed
isoforms, are then to be evaluated on the variant dataset to allow a fair and independent
comparison.

4.2 Background

4.2.1 Splice Variant Classification using ML

There are generally two approaches on variant classification using ML: Teaching the al-
gorithm to detect variants, or teaching the algorithm to model splicing and investigate
the difference between reference and variant predictions.

SQUIRLS (Danis et al., 2021) is a Machine Leaning tool consisting of two RFs (one for
acceptors, one for donors) followed by a Logit, and is trained directly on splicing vari-
ants. Training on variants directly optimises the algorithm on its primary application.
On the other hand, tools like MMSplice (Cheng et al., 2019) and SpliceAI (Jaganathan
et al., 2019) have never seen a variant during training and therefore cannot overfit on
any variant data. If tools that were not trained on variant data can classify splice dis-
ruptions well, they demonstrate that they at least partially understand the underlying
splicing process. This design seems preferable to training on variant data itself.

To use a model trained on splice site recognition alone, Jaganathan et al. (2019) build
the difference between predictions for canonical and alternative sequences called the
d-score. As their model classifies thousands of neighbouring nucleotides at once, both
outputs and d-scores are inherent matrices. Figure 4.1 illustrates this process exempli-
fied on a synthetic variant datapoint.
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...

...

Input

Model

Classification

Subtract
 

(optional indel
compensation)

No Splice Site
Acceptor
Donor

Reference Prediction
0.9 0.8 0.9 1.0 0.2 1.0
0.1 0.1 0.0 0.0 0.8 0.0
0.0 0.1 0.1 0.0 0.0 0.0

...
1.0 0.2 0.7 0.9 1.0 1.0
0.0 0.0 0.3 0.1 0.0 0.0
0.0 0.8 0.0 0.0 0.0 0.0

...

No Splice Site
Acceptor
Donor

Variant Prediction
0.9 0.8 0.9 1.0 0.8 1.0
0.1 0.1 0.0 0.0 0.1 0.0
0.0 0.1 0.1 0.0 0.1 0.0

...
1.0 0.6 0.7 0.9 1.0 1.0
0.0 0.0 0.3 0.1 0.0 0.0
0.0 0.4 0.0 0.0 0.0 0.0

...

Prediction Creating Delta Score

...

...
0 0 1 0 0 0
1 1 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

1 0 0 0 1 1
0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0

0 0 1 1 0 0
1 1 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1

1 0 0 0 1 1
0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0

A
C
G
T

...

Reference Sequence

A
C
G
T

Variant Sequence

...

... ...

No Splice Site
Acceptor
Donor

Delta Score
0.0 0.0 0.0 0.0  0.6 0.0
0.0 0.0 0.0 0.0 -0.7 0.0
0.0 0.0 0.0 0.0  0.1 0.0

... ...
0.0  0.4 0.0 0.0 0.0 0.0
0.0  0.0 0.0 0.0 0.0 0.0 
0.0 -0.4 0.0 0.0 0.0 0.0 

... Output

SpliceAI Output
0.0
0.7
0.1
0.4

Acceptor Gain
Acceptor Loss
Donor Gain
Donor Loss

Variant Annotation

FIGURE 4.1: Synthetic example of how to apply ML models recognising splice sites onto variant annotation. The ML models output two
predictive matrices, one for the reference and one for the variant sequence. Their difference builds the d score. The classification output for SpliceAI
extracts the highest and lowest values for acceptor and donor predictions. SpliceAI also returns the genomic location relative to the variant for each
of these measures (not depicted). This example illustrates how a variant in an acceptor site disrupts the canonical AG motif and causes predictions

to change for both the acceptor and donor site; the model variant annotation therefore represents an exon skip event.
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In most cases the d score is the direct subtraction of the two predictive matrices, with the
exception of deletions and insertions where SpliceAI compensates by filling the variant
sequence with zeros or truncating it with the max function respectively (McRae et al.,
2019a). If the |d|-score is significant at any nucleotide, i.e. max(|d|) > D, the variant is
determined to be splice affecting. For significance, the authors recommend a threshold
of D = 0.2, however other thresholds may be used to balance false positive and false
negatives as desired. As the input sequence is of finite length, one has to choose the
maximum distance to a variant. The SpliceAI paper advises to restrict analysis of the d-
score to a window around the variant; this threshold was fixed to 50 in their publication
(Jaganathan et al., 2019) but since then was enlarged to 500 nucleotides (McRae et al.,
2019a) to account for deeper variants.

4.2.2 Gene and Variant Annotation Formats

RefSeq, the system to describe genes and variants published by the NCBI (see sec-
tion 3.2.1 on page 32) uses prefixed IDs to indicate the type of annotation, most notably
(in the context of splicing) ”NC ” for chromosomes, ”NM ” for protein coding RNA,
”NP ” for protein and ”rs” for SNVs. Clinical variant IDs defined by RefSeq however
are limited to the ones in their database and can therefore not be used for novel vari-
ants.

The predominant notation to describe generic variants is the one published by the Hu-
man Genome Variation Society (HGVS) (Cotton and Horaitis, 2001). These IDs are in
the format ”Reference:Description”. ”Reference” can be any sequence ID (i.e. RefSeq
or Ensembl ID). ”Description” contains the location within the sequence, the type of
variant (substitutions, deletions, insertions, duplications, or deletion/insertions) and
reference/variant sequences if appropriate. (Horaitis and Cotton, 2004)

Despite HGVS IDs allowing different sequence identifiers, for splicing the vast majority
of literature report IDs that are based on RefSeq IDs describing protein coding RNA
(prefixed with ”NM ”).

4.3 Methods

4.3.1 Aggregation of Splice Variant Data

The bigger the dataset, the more confidently we can identify which algorithms are ap-
propriate, however the dataset quality is also very important. As a trade-off, all mas-
sive parallel splice essays were excluded; while they would provide a substantial cor-
pus, they are often not representative of the clinical practice. It was decided to include



4.3. Methods 69

both primary and secondary sources of splicing related variants, as long as their an-
notations of splice disruption have been functionally validated. I further limited my
data sources to only include variants that are either already in the public domain, or
were in the process of being published, so that the aggregated dataset can be published
as well. To be usable, they should either annotate variant coordinates with a base-pair
resolution, or use HGVS IDs.

The following sections describe how variant data was aggregated from six sources
(Houdayer et al., 2012; Ito et al., 2017; Jian et al., 2014; Leman et al., 2018; Maddire-
vula et al., 2020; Wai et al., 2020). As described later, Jian et al. (2014) was excluded
from the final dataset. The source data was parsed, genomic coordinates extracted or
fetched, and data was aggregated into a common format.

During data analysis, multiple challenges were identified in the source material. Some
sources reported HGVS IDs without genomic coordinates, some reported genomic co-
ordinates without HGVS IDs. When genomic coordinates were provided, both GRCh37
and GRCh38 were used. For negatively stranded genes, some sources report reverse-
complemented reference and variant annotations, some report them according to the
forward strand. All these issues were rectified as described below.

To bring all data in a shared format, it was decided to follow convention and use HGVS
IDs as primary identifiers. Since these are not unique, the same variant may be de-
scribed with very distinct IDs; duplicates were therefore removed based on their ge-
nomic location on GRCh38.

The following general process was used:

1. Parse sources into structured data where needed and aggregate

2. Fill in missing HGVS IDs based on ”NC ”-RefSeq descriptors, as described in
section 4.3.1.3

3. Adjust HGVS IDs:

(a) Replace non-ASCII characters with their ASCII equivalent

(b) Remove line breaks

(c) Remove leading and trailing whitespaces

4. Query GRCh38 locations for all variants

5. Reverse-complement incorrect annotations on negatively stranded genes where
necessary

6. Investigate and manually resolve conflicts where sources disagree

7. Resolve duplicates based on genomic location
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Furthermore, since many publications cite others, the citation chain was retained. This
allows investigations into disagreeing sources (and their sources) in section 4.4.1.

4.3.1.1 Incorporating Wai et al.

This study (Wai et al., 2020) sequenced RNA from whole blood to assess splicing de-
fects. Their table S1 consists of 258 (actually 259) variants across 65 genes.

There is a duplicate HGVS ID (variants 32/33), where apparently there was a copy-and-
paste error. In the original publication, variant 32 was incorrectly called NM 007294.3:-
c.5024C>T (duplicating the entry below) and with the authors help the ID was cor-
rected to NM 007294.3:c.5074+7C>T. Variant 220 is really two; the authors could not
determine which variant was causing the effect, so both variants were removed.

The splicing annotation from the source was changed to a binary form (”Normal” /
everything else). After parsing the RefSeq IDs to genomic coordinates, 12 variant loca-
tions were found to be offset by 1bp, which was rectified.

4.3.1.2 Incorporating Maddirevula et al.

The publication Maddirevula et al. (2020) assesses splice disruptions by analysis of
mostly blood RNA sequences. Some RNA expression was derived from cultured skin-
derived fibroblasts and urine-derived renal epithelial cells. Their data, table S1, con-
tains an aggregate of 272 (269 really since 3 were not disclosed) variants, 124 new ones,
50 previously published variants across 45 publications, and 98 without attribution.

The HGVS IDs needed to be manually healed extensively. Missing colons that are sup-
posed to delimit transcripts from variants and mangled protein annotations of differ-
ent kinds were healed manually. Furthermore, only data points where the RT-PCR
outcome indicated a conclusive splicing disruption were included.

NM 001040656.1 was deprecated by NCBI and NM 001077416 is not supported by En-
sembl Variant Effect Predictor (VEP), both variants were removed.

4.3.1.3 Incorporating Jian et al.

Table S2 from this purely computational study (Jian et al., 2014) aggregates 2,961 vari-
ants: 1,164 splice altering variants from DBASS (Buratti et al., 2010), Human Gene Muta-
tion Database (HGMD) (Stenson et al., 2020), and SpliceDisease (Wang et al., 2012) and
1,795 healthy variants from the 1,000 Genomes Project phase 1 (Siva, 2008). The cited
data sources are in turn aggregations of many different studies with vastly different
experimental methods to assess splice predictions.
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During validation of their reference annotations, 9 benign variants (originally from
1000G), where the reference genome was updated to reflect exactly that variant, were
found. This illustrates how important it is to keep the reference genome up to date.

They report genomic coordinates, but no HGVS ID. To create a coherent data set, HGVS
IDs were created: First their coordinates were lifted to GRCh38, then translated to
HGVS IDs in the ”NC ” format (i.e. NC 000001:g.78429408G>C corresponds to chro-
mosome 1, position 78429408, variant G>C). These ”NC ” IDs were parsed into ”NM ”
IDs using Ensembl variant recoder (Ensembl, b). If this process fails, it was retried with
GRCh37 IDs (using the original coordinate and the build 37 Ensembl service). This
failed in 11 instances, in which the ”rs” NCBI ID was used.

4.3.1.4 Incorporating Leman et al.

Tables S1-S3 from Leman et al. (2018) were incorporated, containing a total of 254 vari-
ants across 67 publications (141 breast cancer variants of their own, the rest across 66
publications) across 11 genes. Splicing was assessed using minigene assays and RNA
sequencing from lymphoblastoid cell lines, whole blood, and stimulated T lympho-
cytes.

NM 007294.3:c.133 136del is an invalid ID that could not be healed manually as it’s
unclear if this is a single nucleotide deletion or if it’s removing a range of nucleotides.
Transcript/Variant annotations were used to generate HGVS IDs, and the Splicing Effect
field was used as ground truth.

4.3.1.5 Incorporating Houdayer et al.

This study (Houdayer et al., 2012) assessed aberrant splicing using minigene assays and
RNA sequencing of lymphoblastoid cell lines, blood, and stimulated T lymphocytes.
Their publication includes 272 variants for BRCA1 and BRCA2 and partially overlaps
with the Leman et al. dataset (in fact, Houdayer et al. worked on the Leman et al. paper
too, and the Leman et al. paper accredits some variants to this paper).

65 of the variants are published as a HTML table and 207 variants on a PDF table across
17 pages. Annotations from HTML were extracted through copy-and-paste into Mi-
crosoft Excel (Microsoft Corporation), the PDF table was parsed using Tabula (2018),
followed by manually healing of character recognition issues.

15 annotations where the outcome was not obvious were removed, only retaining en-
tries tagged as acceptor/donor loss/gain / skipping / retention. One variant had no
annotated observation (NM 000059.3:c.7056T>A), which was also removed. Some IDs
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contained recurrence annotations in their ID, which were cleaned as they are syntac-
tically invalid. Two variants (NM 000059.3:c.7397C>T, NM 007294.2:c.5074+68T>C)
have mismatching reference annotations and were removed. NM 007294.3:c.5077 5080
del4ins10 has a missing insertion annotation and was removed.

When resolving duplicates, it was found that five variants that Leman et al. accredit
this paper for, are not actually published by this paper.

4.3.1.6 Incorporating Ito et al.

Ito et al. (2017) published 57 LMNA variants in their table S5, 139 MYBPC3 variants
in their table S6, and another 43 and 31 (30 due one duplicate) LMNA and MYBPC3
genes respectively in their table S7. Using splice assays in kidney cells, they compared
normal and abnormal splicing reads and their statistical significance.

For LMNA, the RefSeq ID NM 170707.4 was used, MYBPC3 was translated to NM
000256.3. Variants NM 170707.4:c.89C>A, NM 170707.4:c.95C>T, and NM 170707.4:
n.890G>T have mismatching reference annotations, likely due to updates of the refer-
ence genome. These variants were not splice affecting and were removed.

The remaining 267 variants were extracted. Following their paper, variants with an
annotated p-value < 0.01 were annotated as splice affecting; the remainder as non-
affecting.

4.3.1.7 Extracting Genomic Coordinates

Except for the Jian et al. (2014) paper, GRCh38 coordinates for the HGVS IDs were
fetched automatically using Ensembl VEP (Ensembl, a). This web service accepts batches
of input, however if there is an invalid or unknown ID, the complete batch is rejected
without indication which one caused the error.

IDs were therefore processed by Ensembl VEP one by one. Most of the IDs that re-
turned an error had outdated RefSeq transcript versions. For every transcript, Ensembl
can only serve a specific version, which most of the time is the latest for GRCh38. This
was resolved by automatically querying the RefSeq ID in NCBI Nucleotide (NCBI) that
will link to the latest RefSeq transcript version. For some IDs this still failed, in which
the version was removed completely. Neither of these two strategies (version updating
versus removing) is optimal and works in all cases. Finally, if both strategies failed,
manual investigation was needed. Some faults (missing colons, mangled protein anno-
tations, missing right-bounds) could be fixed, others had mismatching reference anno-
tations, deprecated transcripts, missing variant annotations, or ambivalent range anno-
tations.
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For transparency, all changes to the IDs were documented in the dataset (published in
Strauch et al., 2022).

4.3.2 Splice Variant Classification

All ML models from chapter 3 were trained on the whole corpus (train and test) of gen-
code.v33grch38.primary and gencode.v33grch38.collapsed using the corresponding hyper
parameters reported. By teaching it splicing based on all chromosomes, it is expected
that the overall understanding will grow due to the bigger size of data. The test split
is unimportant for this experiment as the algorithm is evaluated on a completely inde-
pendent validation set of variants. Additionally, the published SpliceAI models (McRae
et al., 2019a) were included for comparison.

Base classifiers can only predict one site at once, while CNNs can predict thousands of
neighbouring nucleotides. Base classifiers were therefore applied repeatedly for each
position to generate a sequence output in the same format. Variant classification for
baseline algorithms was implemented in the same way as described for deep learning
(see Figure 4.1), so that all outputs have the same data format.

All models were run on the raw DNA input in a custom python script, which means
that the annotation library from SpliceAI (McRae et al., 2019a) was not used, only the
five CNN models.

Apart from reporting the accuracy between ground truth and significant changes, the
AUC-PR between max(|d|) and annotations is reported to allow for better comparison
of different thresholds. To account for deep variants, the maximum distance from a
variant was set to 5,000 in this experimentation (i.e. baseline classifiers are run 5,000
times per variant, and the input sequence for CNN was set to 5,000 nucleotides plus
10,000 nucleotides providing context).

ML algorithms were run on all variants to measure how well they can predict if splic-
ing is affected or not. The optimal threshold on this data is calculated by maximising
accuracy respective to all possible thresholds.

4.3.2.1 Insertions and Deletions

For SNVs (and multiple successive SNVs), the d-score can be built by direct subtraction.
For insertions and deletions, the two matrices are not of equal length and cannot be
subtracted directly. One needs to either pad the shorter or truncate the longer predictive
vector. This problem was analysed thoroughly in table 4.1.

Nine scenarios were identified. As stated, the most trivial scenario is when the number
of nucleotides between canonical and variant sequence do not change. Insertion and
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deletion was each broken down into four scenarios: If an annotated1 nucleotide was
deleted/inserted and/or if the variant affects splicing or not. Table 4.1 illustrates all
nine scenarios, the underlying mathematical problem, and three mitigation strategies.

There are two basic strategies: Padding the shorter vector with zeros, and shortening
the longer vector using a max function. The third strategy, used by SpliceAI (McRae
et al., 2019a), is a hybrid that only changes the prediction vector of the variant and fails
in one scenario.

Therefore, the max strategy seems to be the theoretically optimal solution as it has no
scenario in which it fails. There is however a practical problem with it: For deletions,
the strategy requires truncation of the reference sequence; if the delta score is highest
at this position, the position of the variant on the reference genome is not immediately
clear. The exact position however is of interest for clinical interpretation (more on that
in chapter 6). Instead of further complicating the algorithm to rectify this through track-
ing of which original nucleotide returned the highest score, it was decided to adapt the
strategy by Jaganathan et al. (2019). The scenario in which this approach fails, the dele-
tion of an annotated nucleotide without affecting splicing, is a very rare (if not highly
unlikely) edge case that was not observed to occur in the experimentation conducted.

4.3.3 Explaining SpliceAI Variant Annotations

To try to explain how the network reaches its conclusions, Integrated Gradients (see
section 2.2.5.2 on page 29) were applied to the original SpliceAI models. To allow doing
so, the whole variant prediction architecture was ported to keras and a DifferenceModel
was implemented that allows integrating over the whole process. It takes two DNA
input vectors, one for each the reference and variant genome, pipes them through the
ensemble models, applies the insertion/deletion strategy if needed, and outputs the
predictive change for all three classes per nucleotide, representing acceptor/donor loss
and gain. Gradients between a specific variant input and a neutral all-zero input can
then be traced back and integrated using the code described in section 2.2.5.2 (page 29).

The output of this new DifferenceModel is the change in prediction, the delta matrix. To
exemplify how powerful and complex this analysis can be: Each of these 10,001 predic-
tions (5,000 nucleotides max distance to the variant plus the variant itself, assuming an
SNV) can be traced back to two input RNA sequences of each 20,001 nucleotides (out-
put size plus 5,000 nucleotides of context either side), that in turn have four dimensions
(A,C,G,T), totalling over 1.6 billion possible gradients to track.

This experimentation focuses on the clinically most relevant gradients: Those ending
in the most significant acceptor/donor loss and gain (|d| > 0.2 per class).

1The machine learning algorithm annotates the first and last nucleotides of an exon as acceptor or
donor
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Scenario

Annotated nucleotide involed?

Splicing affected?

Predictions

Example Canonical Sequence A G T G T T G G T A G T A G T T T T A
Canonical Donor Prediction 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
Example Variant Sequence A G G T T T A G T T G G T A G T A G T

Variant Donor Predictions 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0

Direct Subtraction

|δ|-Score 0 1 0 0 n/a 0 1 n/a 0 0 n/a 0 0 1 n/a 0 n/a 0 1 n/a 0 0 n/a 0 0 1 n/a
Classification

Fill Shorter With Zeros

Processed Canonical Donor Prediction 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0
Processed Variant Donor Predictions 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0
|δ|-Score 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0
Classification

Truncate Longer With Max

Processed Canonical Donor Prediction 0 1 0 0 0 0 0 0 0 0 0
Processed Variant Donor Predictions 0 0 0 0 0 0 0 0 0 0 0
|δ|-Score 0 1 0 0 0 0 0 0 0 0 0
Classification

SpliceAI: Only change variant

Untouched Canonical Donor Predictions 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
Processed Variant Donor Predictions 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
|δ|-Score 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0
Classification

Predictions are example data. The real algorithm emits three vectors, one for each class (acceptor/donor/neither).

Same Length Deletion Insertion

irrelevant 0 1 1 0 0 1 1 0

irrelevant 0 0 1 1 0 0 1

G G A G
1 1 0 0

1

G G A G
1 1 0 1

1 0 1 1 1

n/a n/a n/a1 n/a n/a n/a n/a n/a

0 11 1 1 1 1 1

0 1 1 1

1 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1

0 1 11 0 0 1 1 0

1 1 1 0
0 0 1 1

1 1 0 1

0 1 1

Same Length Deletion Insertion

1 0 1 1 1 0

TABLE 4.1: Strategies to calculate the |d|-score between a canonical and variant sequence for the predictive donor vector. When the canonical
and variant sequence have the same length, this vector can be built directly by simple subtraction. For insertions and deletions, one can fill
missing predictions with zeros or truncate the longer predictive vector using a max function. Filling missing predictions with zeros fails in two
scenarios. Reducing the longer prediction vector with a max function works in all scenarios. Combining both approaches to only change the variant

predictions, as SpliceAI (McRae et al., 2019a) does, fails in one scenario: When the annotated nucleotide is deleted without affecting splicing.
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4.4 Results

4.4.1 Duplicate and Conflict Resolution of Variant Ground Truth

142 duplicates were resolved based on their genomic locations, reference and variant
annotation. This resulted in 3,867 distinct variants, however 5 of them were found to
have conflicting splicing annotations, see table 4.2. In four out of five instances, Jian
et al. citing HGMD (Stenson et al., 2020) was involved. Out of these four, only two
original sources within HGMD were found, and both times the source comes to no
conclusive result.

Variant Splice Citation Chain(s) Observation Resolution
Affecting

NM 000059.3:c.6935A>T 0 Houdayer et al. No change Keep and Merge
NM 000059.3:c.6935A>T 0 Leman et al. [Houdayer et al.] No change Keep and Merge
chr13:32918788A>T 1 Jian et al. [HGMD [Brandão et al.] ] Remove Source

NM 000059.3:c.9116C>T 0 Houdayer et al. No change Keep and Merge
NM 000059.3:c.9116C>T 0 Leman et al. [Houdayer et al.] No change Keep and Merge
chr13:32954049C>T 1 Jian et al. [HGMD [Llort et al.] ] Remove Source

NM 000138.4:c.3963A>G 0 Wai Keep
chr15:48773853T>C 1 Jian et al. [HGMD [?] ] Remove Source

NM 000138.4:c.1588G>A 0 Wai Keep
chr15:48805746C>T 1 Jian et al. [HGMD [?] ] Remove Source

NM 000059.3:c.9502-12T>G 0 Houdayer et al. No change Remove Variant
1 Leman et al. [Houdayer et al.] Exon 26 skipped Remove Variant

TABLE 4.2: Five variants where literature disagrees. Brackets indicate citation chains.
Four of five disputes contain Jian et al., one is a mis-citation of the Houdayer et al.-
Leman et al. research group. Conflicts were resolved by removing the complete Jian
et al. source and the last dispute was resolved by removing both the variant annota-

tions.

For the first variant, chr13:32918788A>T (GRCh37), HGMD references Brandão et al.
(2011). The original publication states:

”BRCA2 c.6935A>T, besides expressing the full-length transcript, increased
expression of [..] BRCA2D12 [..]. As these are naturally occurring isoforms,
also observed in controls, the clinical relevance is unclear.”

(Brandão et al., 2011)

This is unlikely a splice site disruption.
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The second variant, chr13:32954049C>T (GRCh37) comes from Llort et al. (2002), which
calls it ”Pro3039Leu”. A footnote at this variant specifies:

”These variants occur in conserved bases adjacent to intron/exon junctions
and are predicted to interfere with acceptor site recognition (http://www.
fruitfly.org/seq_tools/splice.html, Splice Site Prediction by Neural
Network).”

(Llort et al., 2002)

The link refers to a web interface for NNSPLICE (Reese et al., 1997). This reads as
if this variant was not actually tested using functional analysis, but rather a result of
automated annotation.

The other two instances where Jian et al. cites HGMD (chr15:48773853T>C and chr15:-
48805746C>T, both GRCh37) could not be found in HGMD.

All these results indicate that the quality of the Jian et al. data set is not sufficient, and
even the data quality without conflicts is hard to assess: One of the sources used by this
paper, ”SpliceDisease” (Wang et al., 2012), is not available any more. It was therefore
decided to completely drop the Jian et al. source.

The last disputed entry was Leman et al. incorrectly citing Houdayer et al.; which
found NM 000059.3:c.9502-12T>G to not affect splicing (1S), and Leman et al. cites
Houdayer et al. and reports exon 26 to be skipped (2S). In the Leman et al. table,
this is the last entry, but there is an almost empty row under it with an orphaned 1S
annotation, making this line likely to be a copy-and-paste error in the Leman et al.
table. To be sure, this variant was removed completely.

4.4.2 Overview of Aggregated Splice Variants

The curated dataset contains 1,209 functionally validated variants. Figure 4.2 visu-
alises the data: There is almost a 50/50 split of strandedness and between affecting vs
non-affecting variants. There is 1.4% overlap between sources (excluding all overlaps
between direct reproductions of Houdayer et al. and Leman et al.). Most variants are
SNVs, and most MNVs2 are insertions. The data is considerably biased towards chro-
mosomes 13, 17, 11, 1 and 15, mostly due to many sources investigating breast cancer.
VEP predicts a third of all variants to be relating to splicing and a quarter to be in-
tronic. The effect on the protein code is annotated to be vastly missense and a quarter
are predicted to be synonymous. All variants affecting splicing are ACMG PS3 due to
functional validation of the sources.

2This chapter will use the term MNV to refer to everything that is not an SNV, i.e. multi-nucleotide
substitutions, insertions, and deletions

http://www.fruitfly.org/seq_tools/splice.html
http://www.fruitfly.org/seq_tools/splice.html


78 Chapter 4. Application of Machine Learning to Variant Data

FIGURE 4.2: The final variant data set consists of 1,209 unique variants. (a) Apart
from some direct citations between Houdayer et al. citing Leman et al., there is an
overlap of 1.4% of variants, all with consensus. (b) The data set has an almost 50/50
split between variants affecting splicing and those without effect. (c) The data set is
reasonably balanced between negatively and positively stranded genes. (d) Chromo-
somes 1, 11, 13, and 17 make up 75% of the variant data set. This could produce biased
results. (e) The vast majority of variants are SNVs. The 4.7% MNVs are shown in (f):
There is a significant bias towards deletions, followed by insertions. (g) VEP predicts
a third of variants to be related to splicing and (h) the vast majority of consequences

for the protein to be missense.
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Three reverse-complemented data points in the source data were annotated on the
wrong strand. After flipping their reference and variant annotation to the reverse
strand, all three classified correctly by the CNN on gencode.v33grch38.collapsed (and
three others), indicating that reversing the strand was an appropriate fix.

4.4.3 Binary Classification of Splice Disruption

Table 4.3 shows the resulting AUC-PR between the max(|d|)-score and annotated labels
and the accuracy of significant changes given an optimal threshold. The CNNs perform
best, led by the one trained on collapsed isoforms with about one percentage point im-
provement in the AUC-PR. The CNN trained on the primary dataset produced in this
work performs as good as SpliceAI. There is a significant drop of six percentage points
and more between CNNs and baseline classifiers. While the CNN performed better on
the collapsed representation, almost all baseline classifiers produce better results when
trained on primary isoforms (except for the accuracy measure for Logit).

Algorithm Training Dataset AUC-PR Opt. Threshold Accuracy

CNN gencode.v33grch38.collapsed 96.37% 0.204 90.74%
SpliceAI Published by McRae et al. 95.50% 0.306 90.32%
CNN gencode.v33grch38.primary 95.46% 0.248 89.99%
RF500 gencode.v33grch38.primary 89.20% 0.205 81.56%
RF500 gencode.v33grch38.collapsed 88.91% 0.237 81.14%
RF20 gencode.v33grch38.primary 87.78% 0.268 81.06%
RF20 gencode.v33grch38.collapsed 87.40% 0.275 79.98%
MLPC gencode.v33grch38.primary 86.20% 0.312 79.16%
MLPC gencode.v33grch38.collapsed 85.74% 0.333 78.58%
SVC-RBF gencode.v33grch38.primary 78.48% 0.254 75.68%
SVC-RBF gencode.v33grch38.collapsed 78.41% 0.219 75.35%
Logit gencode.v33grch38.primary 76.29% 0.190 74.86%
Logit gencode.v33grch38.collapsed 76.01% 0.167 75.02%

TABLE 4.3: Performance of the different algorithms respective to their training data
evaluated on the binary variant classification task.

The published SpliceAI model produces very similar scores to the models that were
trained on gencode.v33grch38.primary and gencode.v33grch38.collapsed, again strengthen-
ing that the migration to IRIDIS was successful.
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4.4.4 Explaining ML SpliceAI Variant Annotations

Figure 4.3 (spanning across two pages) visualises Integrated Gradients for NM 016124.4:-
c.1152A>C. Due the immense input size, only the 600 nucleotides in the middle are
shown. This specific variant was chosen because it is a clear example of a skipped exon
and should help understanding how to use Integrated Gradients to explain variant an-
notations.

SpliceAI correctly predicts a skipped exon. There are two inputs, one for the reference
and one for the variant genome, and on both splice sites, these contributions cancel each
other out except for the nucleotide at the variant position. This makes sense: Running
the model on identical REF and ALT sequences should return no change in splicing,
and this must not be attributed to any one input. However, the summed acceptor
loss returns positive contributions while the summed donor loss returns negative ones.
Why that is could not be determined.

The granularity and high number of features makes it hard to extract and understand
the underlying classification process and no insights into the underlying biology could
be generated.
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FIGURE 4.3: Integrated Gradients for NM 016124.4:c.1152A>C; continued on next page
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FIGURE 4.3 (cont.): Integrated Gradients for NM 016124.4:c.1152A>C. This variant (yellow backdrop) was shown to skip the whole exon using
functional analysis. SpliceAI agrees; this is an example of it correctly predicting a pairwise loss. Only 600 input positions are shown around the

variant.
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4.5 Discussion

This dataset, consisting of 1,209 variants, is one of the biggest freely accessible datasets
of splice sites and their functionally validated impact on splicing to date. Great care
was taken to bring them into a shared data format and resolve disagreements. It is
mostly balanced except for genes, chromosomes, and variant types. Achieving a bal-
ance however would be infeasible as it would greatly reduce the number of datapoints;
it would also not reflect the distribution of variants observed in clinical practice.

The comparison between baseline and deep classifiers on variant data allowed a direct
and fair comparison, in contrast to previous experiments that ran on different subsets
of splice site data. Unfortunately, none of the baseline classifiers were found to be
competitive; the deep learning methods with big context sizes are better at recognis-
ing splice sites from DNA sequences alone. Deep learning also performed better on
the collapsed isoform dataset while almost all shallow learners could not cope with the
added complexity. This might be due to hyper parameters of the baseline classifiers not
being optimised on this data set, baseline classifiers being too simple, or the collapsed
dataset being too hard. One of the strengths of deep learning is that it can be applied
to raw data such as the sequencing input such as Jaganathan et al. were doing. For
shallow machine learning, it is common to apply feature engineering to introduce do-
main knowledge and help the algorithm process information. For example, SQUIRLS
uses decision trees and a Logit on engineered variant data and does not process any
raw sequencing input.

The best algorithm, the CNN trained on collapsed isoforms, classifies variants a per-
centage point better for both AUC-PR and accuracy than the second best classifier,
which is the published SpliceAI model. This is an exciting result and shows that our
filtering to only include splice sites annotated by a human, rather than enriching GEN-
CODE with novel GTEx junctions, is more appropriate on this set of variants.

One dataset (Jian et al., 2014) was removed due to concerns about its quality and direct
conflicts with other sources. The remainder of sources disagreed in one other instance
most likely representing a mis-citation. Conflicts could also be explained by the dif-
ferent ways to assess aberrant splicing: A variant could alter expression in a minigene
assay but not in whole blood or vice versa. The data sources used a variety of different
ways to assess splicing defects which could allow for such conflicts. Resolving conflicts
by filtering the data to a single method of splice assessment however would not neces-
sarily be appropriate for this analysis as the ML algorithm predicts all isoforms at once.
Isoform- and especially tissue-specific predictions could solve this fundamental issue
in the future.
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4.6 Conclusion

A substantial dataset for the binary prediction of splice affecting vs not affecting was
curated.

Based on the annotation of splice sites, a novel strategy to cope with insertions and dele-
tions was introduced. While it was theoretically better than the one used in SpliceAI, in
practice it would not return correct positions and therefore offset annotation of which
sites are disrupted and was therefore abandoned.

The dataset with collapsed representations based on a new GENCODE filtering was
shown to return the best results on the variant data when being fed to the SpliceAI
CNN architecture. It was was able to reproduce functional analysis results with high
scores from DNA sequences alone for both annotation tasks. We can therefore conclude
objective 2, applying supervised algorithms to annotate aberrant splicing in variant
data, to be resolved successfully.

Now that there is a novel algorithm, trained on the collapsed representation, that was
shown to outperform the models of SpliceAI, it should be made accessible to the wider
scientific community. It also needs to be compared to other tools from the field, and an
annotation library to facilitate running it needs to be developed. Chapter 6 describes
how the software package CI-SpliceAI was created to do so.

The Integrated Gradients approach did not return interpretable results; deep learning
appears to remain a black box in this context. It might be preferable to try to optimise
baseline algorithms instead as they are easier to interpret.

The baseline classifiers however did not return competitive results. It was suggested
that their input needs to be engineered as their models may not be complex enough to
process raw sequence input. The next chapter will explore strategies of annotating and
encoding the sequencing data more appropriately.
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Chapter 5

Improving Splice Site Recognition
through Data Engineering

5.1 Introduction

In the previous chapter, it was shown that deep learning is superior on using raw se-
quence input to predict splice site disruption due to model complexity. While deep
learning is known to work well on raw data, baseline classifiers seem to perform badly
when given raw DNA sequences as input. Classical ML (i.e. not deep learning) needs
more data engineering to produce competing results. For example, SQUIRLS (sec-
tion 1.1.2 on page 4) is trained on engineered features like information content and delta
scores at the closest splice sites to predict if a variant affects splicing or not. As moti-
vated in section 4.2.1 (page 66), it would be preferable to not train on variant prediction
and remain training on sequence input to allow analysis of the underlying models and
try to gain insights into the mechanism itself.

There are some notable differences between baseline classifiers and deep learning meth-
ods in the context of splicing. Baseline classifiers take each input separately (i.e. ”is
there a T nucleotide at position 5?”) whereas the filters of CNNs look at groups of
neighbouring nucleotides at the same time, inherently looking at context. CNN filters
are also moved over the input and therefore recognise features independent of their
location, whereas baseline classifiers will treat a motif differently depending on its rel-
ative position. Lastly, the immense depth of the deep learning methods may allow the
network to treat dissimilar sequences with similar functions in the same way, while
baseline classifiers cannot model this complexity on their own and features need to be
engineered to compensate.

We know that protein binding sites can occur anywhere around a splice site (see sec-
tion 1.1), which will surely not be recognised by simpler ML algorithms. Binding sites
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will be annotated explicitly to help baseline algorithms recognise them independent of
their position.

The one-hot encoding (see section 1.3.3 on page 23) might not be the best way to encode
sequences for baseline classifiers as it forces the algorithm to focus on one nucleotide
at a time. Instead, a new semantic encoding will be evaluated that allows variations of
similar input sequences to be encoded similarly and hopefully require less complexity
within the ML model itself. A potential way of engineering features better is DNA2Vec
(Ng, 2017a), encoding DNA in a continuous vector representation where similar se-
quences lie close to each other, a so called semantic space. This could help ML algorithms
to have more general rules since similar sequences are encoded similarly, therefore al-
lowing them to focus on bigger patterns and requiring less complexity.

Lastly, we also know that splice sites are conserved more highly throughout evolution
(section 5.2.1). Previous applications included conservation scores into their method-
ology (i.e. Cheng et al., 2019; Danis et al., 2021). Annotation of genomic conservation
might help classification to recognise splice sites more easily and will be explored for
baseline classification.

5.1.1 Aims and Objectives

The aim of this chapter is to improve baseline classification through data engineering,
see objective 3. Three strategies for feature engineering of baseline classification are
to be evaluated in independent experiments. For each strategy, the impact of baseline
classification performance on splice site recognition is to be measured. If any strategy
successfully improves splice site recognition, the trained algorithm is then applied to
the variant data from section 4 to measure if they improve clinical utility.

Three strategies are to be evaluated:

1. Annotation of regulatory binding motifs from the literature

2. Annotation of evolutionary conservation

3. Transformation of one-hot encoded data into semantic vector space
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5.2 Background

5.2.1 Measuring Evolutionary Conservation

By comparing genomes of different species, one can observe high conservation at canon-
ical splice sites (Blakes et al., 2022). The exact method to derive this however can
vary, and the two predominant methods are PhastCons that uses a hidden markov
model to represent evolutionary mutations of regions (Siepel et al., 2005), and phy-
loP (”phylogeneticP-values”) which models the probabilities of such mutations at each
individual nucleotide (Pollard et al., 2010). PhastCons are smoother and better in mod-
elling longer regions, whereas phyloP returns more granular results. This is illustrated
in Figure 5.4 on page 92.

Both methods need a pool of species to align to the Human Genome. The set of species
is the same for both methods, and the two predominant vertebrate supersets include 46
or 100 species across the subsets Primate, Euarchontoglires, Laurasiatheria, Afrotheria,
Mammal, Aves, Sarcopterygii, and Fish. These data sets are referred to as PhastCons46,
PhastCons100, phyloP46, and phyloP100.

SQUIRLS include the mean phyloP100 score of the reference allele in their feature set
(Danis et al., 2021). MMSplice also experimented with phyloP scores (Cheng et al.,
2019). The best idea might be to empirically try out all variations of evolutionary con-
servation and pick the best.

5.2.2 Regulatory Splice Motifs

Alternative splicing is regulated through complex protein regulation and interaction
(see section 1.1 on page 1). A general approach to categorise regulatory proteins is into
splicing enhancers and silencers, which in turn can occur within the exon or intron.
As described in section 1.1.1, while the general categorisation of protein into enhancers
and silencers is a common one, it might be an oversimplification as some protein are
known to both excite and exhibit splicing depending on where they are relative to the
splice site (Dvinge, 2018). How this will affect predictive accuracy is unknown.

The freely accessible INT3-400 dataset by Cáceres and Hurst (2013) contains 54 ESE
6-mers. 130 ESS 8-mers were published by Wang et al. (2004).



88 Chapter 5. Improving Splice Site Recognition through Data Engineering

5.2.3 Semantic Encoding of DNA Sequences

As an alternative to the one-hot encoding of sequences, encoding DNA in a semantic
space through DNA2Vec (Ng, 2017a) might help the algorithms to understand context.
DNA2Vec is an adaptation of Word2Vec (Mikolov et al., 2013) which in turn is a vari-
ation of an autoencoder. The following sections describe the background in relation to
Natural Language Processing, where these concepts originated in, before transferring
them to the nucleotide encoding of DNA.

5.2.3.1 Autoencoders

X h X'

Input Projection 
Continuous Space

Output

Encoder Decoder

FIGURE 5.1: An autoencoder is a simple neural network with one hidden layer.
Input and output layers have the same number of neurons. The encoder part of an
autoencoder compresses the input X to a representation h in continuous space. This
representation can then be decoded into X0, where X0 ⇡ X. Adapted from Pinaya et al.

(2020)

Autoencoders (Figure 5.1) are two layer ANNs where the input and output layers have
the same number of neurons. The training target is for the output to be as similar to
the input as possible. This would be a non-trivial task if the hidden layer h in the
middle had not significantly fewer neurons, forcing the model to learn a compression
and decompression strategy called encoder and decoder respectively. (Baldi, 2012)

The projection h is a representation of the data in compressed, continuous space, which
is equal to what PCA returns (Bourlard and Kamp, 1988). Apart from using autoen-
coders as a (de-)compression algorithm, they are also used for denoising, as a gener-
ative model emitting novel data, for pretraining of deep Neural Networks, and even
machine translation of natural language (Lample et al., 2017; Pinaya et al., 2020).
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5.2.3.2 N-Gram and K-Mer Encoding

In Natural Language Processing, encoding every word independently from each other
can lose the surrounding context, depending on further data processing and algorithmic
choice. Retaining the context of neighbouring data might be desirable.

For a fixed context length, one could just stack all one-hot encoded neighbouring words
to form a matrix. For sentences of varying length, this would produce matrices of
varying shape which are unfit for many applications. Instead, N-Grams (ordered tuples
of N successive words) are often one-hot encoded themselves, meaning each distinct
N-Gram is encoded as its own vector (Shannon, 1948). In the genetic context, N-Grams
would be equivalent to K-Mers, i.e. successive nucleotides of length K, and the same
ideas apply.

By encoding each N-Gram or K-Mer into one dimension, the embedding vector length
grows significantly. The bigger the tuple size (i.e. the more context is encoded), the
rarer the N-Grams, and the bigger the vocabulary. This worsens the curse of dimen-
sionality and its drawbacks drastically.

5.2.3.3 Continuous Vector Encoding of N-Grams
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(B) Skip-Gram Method

FIGURE 5.2: Word2Vec projects one-hot encoded language data into h, a semantic
continuous space. There are two architectures of Word2Vec. (a) In the Continuous
Bag of Words method, the context, that is the surrounding words of w, is used as an
input, and the model predicts w. (b) The Skip-Gram architecture trains the model to

predict the surrounding context of the word w. Adapted from Mikolov et al. (2013)

Word2Vec (Mikolov et al., 2013) is an unsupervised two layer feed-forward ANN used
to project one-hot encoded N-Grams into continuous space, resolving the shortcomings
of one-hot encoding.
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There are two training architectures. The Continuous Bag of Words method (Figure 5.2a)
predicts a word w from its context alone. The context is the set of immediately neigh-
bouring words. The Skip-Gram architecture (Figure 5.2b) is reversed: The network pre-
dicts the surrounding context from w. The authors describe this architecture to train
more slowly, but better fitting for infrequent words (Mikolov et al., 2015).

Looking at Figure 5.2, we can imagine joining the two networks on the vector space h
and derive an autoencoder architecture (compare with Figure 5.1) that predicts the con-
text from itself. We can therefore say that Word2Vec is closely related to autoencoders.

Both Word2Vec architectures have a continuous vector space in the hidden layer that
allows vector arithmetic with surprisingly intelligent results. The vector function V(w)

returns the representation of word w in vector space. The authors found syntactical
properties of that space: V(mouse)�V(mice) ⇡ V(dollar)�V(dollars), or V(biggest)�
V(big) + V(small) ⇡ V(smallest). Even more exciting, the authors found semantic
properties such as V(Athens) � V(Greece) ⇡ V(Oslo) � V(Norway) or V(king) �
V(man) + V(woman) ⇡ V(queen). This shows that the model did learn about rela-
tionships of words, and the encoding is not statistical noise. Compared to the initial
one-hot encoded representation where all terms had the same distance to each other,
similar terms are now grouped together and some syntactical and semantical relation-
ships are preserved in the vector space.

5.2.3.4 Continuous Vector Encoding of K-Mers

Word2Vec was adapted to DNA by DNA2Vec (Ng, 2017a). Since DNA has not a fixed
vocabulary, the authors decided to iterate over DNA and take overlapping K-Mers of
size [3..5] (k sampled randomly). They then trained a Skip-Gram architecture on this
data set to optimise for rare sequences.

There are syntactic properties of the vector space for concatenating K-Mers. For exam-
ple V(GAT) + V(ATC) ⇡ V(GATATC) ⇡ V(ATCGAT) or V(ACGAT) � V(GAT) +
V(ATC) ⇡ V(ACATC) ⇡ V(ATCAC). Since the addition in vector space is symmetric,
the concatenation cannot distinguish if vectors are appended to the beginning or the
end and are symmetric too.

These syntactic properties hold in most instances. For example, when concatenating
two 3-mers in vector space, (i.e. add the vectors together), the five closest 6-mer vectors
contain the desired 6-mer in 80.3% of cases (Ng, 2017a). Semantic properties were not
found yet, which is remarkable since for natural language, the Skip-Gram architecture
has been shown to produce better semantic qualities than the continuous bag of words
model (Mikolov et al., 2013).
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5.3 Methods

5.3.1 Incorporating Protein Regulation for Splice Prediction

The data pipeline for baseline classifiers is extended to include ESE and ESS motifs,
provided by the INT3-400 dataset by Cáceres and Hurst (2013) containing 54 ESE 6-
mers, and a 130 ESS 8-mers dataset by Wang et al. (2004).

Each nucleotide in gencode.v33grch38.primary is annotated by counting how many bind-
ing motifs align with the reference genome per position. This creates two new feature
vectors, each 81x1, that are appended to the one-hot encoded data before standardisa-
tion (end of step 2 in Figure 3.3 page 39). Figure 5.3 shows an example data point.

FIGURE 5.3: Example data point with annotated ESE/ESS motifs. There are two ESE
annotations overlapping around +30, and one ESS motif starting at -8.

Even though the data sets contain exonic splicing enhancers and silencers, both exons
and introns are annotated. Limiting annotations to exons would tell the algorithm
where exons and introns are located, making splice site detection trivial.

ESE and ESS annotations enlarged the number of features by 50%. Models are expected
to need more complexity, it was therefore decided to repeat the hyper parameter opti-
misations presented in section 2.2.2.

Bigger MLPCs (300 and more neurons in a hidden layer) did not finish training due to
their memory consumption. The grid search was reduced to the hidden layer configu-
rations L 2 {(50, ), (100, ), (100, 20), (20, 100)}.

5.3.2 Incorporating Conservation Scores for Splice Prediction

It was unclear which conservation score data set would be most appropriate, therefore
four conservation data sets, namely PhastCons46, PhastCons100, phyloP46 and phyloP100
(see section 5.2.1) were evaluated independently.

Annotations were downloaded from UCSC (University of California, b) which pro-
vides per-nucleotide conservation scores as starch files. These annotations were ex-
tracted using BEDOPS (Neph et al., 2012), filling missing values with 0. How the two
conservations score methods differ is illustrated in Figure 5.4. The annotation vector is
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(A) PhastCons100 scores are smooth with few details.

(B) phyloP100 scores are detailed and rugged.

FIGURE 5.4: An acceptor site in SAMD11 with annotated conservation scores.

stacked on gencode.v33grch38.primary before standardisation and flattening (see step 4b
of Figure 3.3). This results in four different new data sets.

For each conservation measure, baseline classifiers were optimised as described in sec-
tion 2.2.2 and then evaluated using CV as described in section 2.2.4.1. SVCs and Logit
are optimised on subset2.gencode.v33grch38.primary (see section 3.3.3), the remainder is
optimised on the complete corpus. Due to bigger MLPCs (300 and more neurons in a
hidden layer) not finishing training due to an unknown error (segmentation fault), the
grid search was reduced to the hidden layer configurations L 2 {(50, ),(100, ),(100, 20),
(20, 100)}.

5.3.3 Training DNA2Vec

The published DNA2Vec model (Ng, 2017a) was originally trained on K-Mers of size
[3..8]. Due to consensus sites being commonly referred to as 2-mers, DNA2Vec was
retrained to include K-Mers of size [2..6].

The DNA2Vec training code (Ng, 2017b) was adapted to IRIDIS and to include K-Mers
of size [2..6]. The code is built on gensim (Řehůřek et al., 2011), a state-of-the-art library
for Natural Language Processing that Word2Vec is based on as well.

K-Mers are generated from UCSC hg38 (Human Reference Genome p12). The genome
is sliced into fragments based on gap characters. Fragments are reverse-complemented
with a probability of 0.5 per fragment. While iterating over each fragment, the K for
each K-Mer is selected uniformly random from [2..6]. This overlaps neighbouring K-
Mers and fixes the number of K-Mers to about the length of the sequence.

A two-layer MLP is trained for 100 epochs using the Skip-Gram Method (see Fig-
ure 5.2b page 89), i.e. given one K-Mer, the 10 preceding and 10 following K-Mers
are predicted.

Two Word2Vec models were generated. One that maps K-Mers to 100-dimensional
space and one to output two dimensions. The latter is used for visualisation of the
model only, while the former is used as input for further experimentation.
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Both models are expected to return mappings for all possible K-Mers. For K 2 [2..6]
there are Â6

k=2 4k = 5, 456 distinct K-Mers to be found. If K was too big, not all possible
K-Mers can be found, however with a K < 8 (which has been published by the original
authors), this should not be a problem.

Both DNA2Vec models are to be visualised in a plot; the 2-dimensional space directly
and the 100-dimensional space using PCA and t-SNE (see section 1.3.2 on page 21).

All K-Mers consisting of only one distinct base (i.e. AA, GGGG, TTT, etc., which will
be referred to as pure K-Mers) are labelled, plus some more to illustrate the vector space
and dimensionality reduction.

5.3.4 Application of DNA2Vec to the Splice Site Dataset

The data pipeline for baseline classifiers from chapter 3.3.1.2 (page 39) is to be changed
from one-hot encoding to DNA2Vec encoding. Each data point spans over 81 nucleoti-
des, and there are millions of data points. Since there is no intuitive way of separating
”words”, i.e. where each K-Mer starts and stops, the most thorough approach to build
all possible sub-sequences followed by a feature selection was implemented. This work
introduces the notion of a KI-Mer: A sequence slice of a specific length K at a specific
offset I. Notice that a KI-Mer does not refer to a specific nucleotide sequence since it
is applied across all data points in the dataset; it merely functions as a reference to a
region relative to a potential splice site. This is due to the RFE algorithm being a global
feature selection algorithm.

In a window of 81 nucleotides there are 81� (K� 1) KI-Mers, resulting in Â6
k=2 82� k =

390 KI-Mers per data point. Due to each KI-Mer consisting of 100 dimensions of 32bit
floats, the nucleotide data of a single splice site would require 390 ⇤ 100 ⇤ 32bit = 156KB
of data before compression.

The base data of gencode.v33grch38.primary consists of 373,420 splice sites (see table 3.2)
and ten times more non-splice sites, totalling in 373, 420 ⇤ 11 = 4, 107, 620 sites. Encod-
ing each site with 156KB would result in a data set of over 640GB for nucleotide data
alone, excluding metadata and labels. Compression of the hdfpy format will decrease
the size, but the data set will still be very big. This calculation did not even include
considerations for baseline classifiers, which will hardly scale to such a big dataset.
It was therefore decided to use subset15.gencode.v33grch38.primary with its 6,328 splice
sites (6, 328 ⇤ 11 = 69, 608 sites in total), resulting in 6, 328 ⇤ 11 ⇤ 156KB ⇡ 10.9GB of
data.
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5.3.5 Correlation Analysis of KI-Mers

Important KI-Mers need to be found for feature selection. Before conducting a lengthy
RFE search, correlation analysis was conducted for preliminary assessment of data
quality. This helped track errors in the data pipeline and is to give some intuitions
about data usability.

The data set (subset15.gencode.v33grch38.primary) is sliced into KI-Mers, meaning that
the algorithm only looks at one KI-Mer at a specific offset across all 69,608 data points
at a time. Each slice is standardised by subtracting the mean and dividing by standard
deviation, and a linear SVC is fitted on the binary classification tasks acceptor/rest
and donor/rest. Feature importance for all 100 dimensions is estimated by probing the
weights (see section 2.2.5.1 on page 29), and the importance of each KI-Mer is estimated
by taking the maximum value of its 100 feature importances.

5.3.6 RFE Analysis of KI-Mers

This experiment was conducted after the correlation analysis produced sensible results
and all data pipeline mistakes were fixed.

Hyper parameters for RF20 were found as described in section 2.2.2 on the complete
data corpus (subset15.gencode.v33grch38.primary).

These parameters were then applied to RF500 in a RFE analysis, subject to two binary
problem formulations (acceptor / rest and donor / rest) and one multi-class classifica-
tion for all three classes (acceptor / donor / neither). Parallel to the correlation analysis,
the data set is sliced into KI-Mers, however RFs require no feature standardisation and
the analysis was conducted on all KI-Mers at the same time, rather than investigating
each independently. The data corpus was split into train and test, according to parti-
tion 1 of table 3.1 (page 42). The classifier is fit on train data and tested on test data as
described in section 2.2.1. Feature importances were estimated and the least important
KI-Mer was removed at a time.

The removal of the weakest KI-Mer could not be implemented by the RFE function
provided by scikit-learn, which only considers each feature separately. This is not flex-
ible enough to select for individual KI-Mers, and a custom RFE algorithm was im-
plemented. Both implementations are equivalent except for what happens after prob-
ing for feature importance: The custom RFE allows groupings of features by maxing
over all 100 dimensions per KI-Mer while the library function only selects feature-wise.
Therefore, the new RFE process 1) fits the model on all features; 2) estimates feature
importance by probing the model; 3) calculates KI-Mer feature importance by taking
the maximum feature weight of its 100 dimensions, 4) removes the KI-Mer of lowest
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importance with all its 100 dimensions; and 5) repeats elimination until one KI-Mer
remains.

Due to the significant computational effort and IRIDIS not accepting jobs that run
longer than 60 hours, the state of the algorithm after each elimination is saved to disk,
allowing to resume computation if needed. The complete process (fit, test, probe, elim-
inate) is repeated until one KI-Mer remains and the elimination path is equal to a rank-
ing in ascending order. Train and test AUC-PRs are plotted for analysis.

5.3.7 Training and Testing on Splice Site Recognition using top KI-Mers

The top 50 KI-Mers found through RFE analysis were used to encode subset15.gen-
code.v33grch38.primary and subset2.gencode.v33grch38.primary. On this data, hyper pa-
rameters were found as described in section 2.2.2: Linear SVC, RF20, and MLPC were
optimised on subset15.gencode.v33grch38.primary and the remainder on subset2.gencode.v33-
grch38.primary due to time constraints. Models were then evaluated using CV as de-
scribed in section 2.2.4.1 (page 28).

Because some SVCs with non-linear kernels and Logit timed out, the feature grid for
SVCs was reduced to C 2{0.0001, 0.01, 1, 100} and g 2 {0.0001, 0.01, 0.1, 1, 10}; the
search over C parameters for Logit was reduced to C 2 {0.001, 0.1, 10}

5.3.8 Application of Semantic DNA Representation to Variant Annotation

To evaluate if the DNA2Vec encoding improves annotation of splice disruptions, an
experiment similar to chapter 4 was conducted.

First, all base algorithms were trained on all chromosomes of subset15.gencode.v33grch-
38.primary in DNA2Vec encoding, filtered to the 50 selected KI-Mers. The code to pre-
dict variants, described in section 4.3.2 on page 73, was adapted to encode sequences
in semantic DNA2Vec space and, again, filter to the 50 features. This experiment was
only conducted on the dataset of primary isoforms.
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5.4 Results

5.4.1 Incorporating Protein Regulation for Splice Site Recognition

The resulting hyper parameters are shown in table 5.1. Notice that this AUC-PR is not
a final result as it was not measured on the proper CV table and has potential data
leakage between the train and test partitions. All measures decreased compared to
the dataset without annotated ESE/ESS sites (table 3.6 on page 54), it was therefore
decided not to continue with the CV analysis. Per-nucleotide annotation of protein
binding sites appears to not help baseline classifiers recognise splice sites based on raw
sequence input.

Algorithm Best AUC-PR
Parameters Measure Improvement

SVC-linear b = true C = 0.001 73.02% -20.51
SVC-RBF b = true C = 10 g = 0.001 75.33% -18.48
SVC-poly b = true C = 0.001 g = 0.1 d = 2 60.59% -28.84
Logit l = l1 C = 0.1 73.47% -19.35
RF dm = 22 90.60% -5.26
MLPC L = (50, ) 95.46% -2.59

TABLE 5.1: Hyper parameters found for baseline algorithms on gencode.v33grch-

38.primary with annotated ESE/ESS motifs and the improvements against the base
experiment. Negative improvements represent worse results.

5.4.2 Incorporating Conservation Scores for Splice Site Recognition

The resulting hyper parameters are shown in table 5.2. Again, the AUC-PR is not a fi-
nal result as it was not measured on the proper CV table, and again it was decided not
to proceed with CV because the interim AUC-PRs were worse than the ones without
conservation score annotations (table 3.6 on page 54). Generally, 100 vertebrate species
performed better than 46 species throughout, and there is no consistent or significant
difference between PhastCons and phyloP. Models did not grow more complex com-
pared to the configurations found before (i.e. max-depth dm of the RF), so it appears as
if the annotations are just unnecessary.
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Algorithm Best Parameters AUC-PR
Measure Improvement

PhastCons100

SVC-linear b = true C = 0.001 76.78% -16.75
SVC-RBF b = true C = 10 g = 0.001 78.63% -15.18
SVC-poly b = true C = 0.01 g = 0.01 d = 3 65.09% -24.34
Logit l = l1 C = 0.1 79.65% -13.17
RF dm = 20 90.28% -5.58
MLPC L = (50, ) 95.10% -2.95

PhastCons46

SVC-linear b = true C = 0.001 75.63% -17.90
SVC-RBF b = true C = 1 g = 0.0001 77.86% -15.95
SVC-poly b = f alse C = 0.01 g = 0.1 d = 3 64.23% -25.20
Logit l = l1 C = 0.1 78.33% -14.49
RF dm = 18 90.19% -5.67
MLPC L = (50, ) 94.92% -3.13

phylop100

SVC-linear b = true C = 0.001 76.32% -17.21
SVC-RBF b = true C = 1 g = 0.0001 78.42% -15.39
SVC-poly b = true C = 0.1 g = 0.01 d = 2 65.31% -24.12
Logit l = l1 C = 0.1 79.66% -13.16
RF dm = 19 90.22% -5.64
MLPC L = (50, ) 95.02% -3.03

phylop46

SVC-linear b = true C = 0.001 75.08% -18.45
SVC-RBF b = true C = 10 g = 0.001 78.18% -15.63
SVC-poly b = f alse C = 1 g = 10 d = 2 64.97% -24.46
Logit l = l1 C = 0.1 78.49% -14.33
RF dm = 21 90.35% -5.51
MLPC L = (50, ) 95.04% -3.01

TABLE 5.2: Hyper parameters found for baseline algorithms found on gencode.v33-

grch38.primary and subset2.gencode.v33grch38.primary with annotated conservation
scores and their improvements to the base experiment. Negative improvements rep-

resent worse results.
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5.4.3 Analysis of Trained DNA2Vec Semantic Space

After 3-4 days of training each, the two generated DNA2Vec models contain all possible
5,456 K-Mers. The 2D representation of the derived semantic space (Figure 5.5a) forms
a non-linear curve ranging from A/Ts to C/Gs with mixed sequences in between. The
distribution overall is not exactly symmetric; the A/T portion is longer and thinner
than the G/C part, however it is notable that the model learned the overall reverse-
complementary relationship between A/Ts and C/Gs. Many reverse-complemented
strands are found next to each other, probably caused by the data pipeline choosing to
reverse-complement randomly. The TATATA/ATATAT K-Mers are separated substan-
tially at the bottom-left. The first assumption that this is a semantic property due to
TATA boxes starting transcripts did not hold up since variations of the TATA box are
found throughout the plot and do not stand out similarly.

The PCA representation of the 100 dimensional space (Figure 5.5b) is not intuitive.
Three main distributions are found, however there is no obvious interpretation for this.
Pure K-Mers are all contained in roughly the same neighbourhood within the left dis-
tribution. As and Cs are close to each other, but do not have the same relationship as
Cs and Gs.

The 100D space is better represented by t-SNE (Figure 5.5c), showing that similar se-
quences were mapped to similar regions in high dimensional space. All pure K-Mers
are within direct neighbourhood and except for CC, all were mapped to almost the
same coordinates. CC is not too far away from the other C K-mers. All TATA-Boxes
were mapped to the same neighbourhood and are close to the pure A K-Mers; the
TATAG K-Mer lies further down on the Y axis range where some Gs are observed.

From these visualisations we can infer that DNA2Vec learned two syntactical relation-
ships of K-Mers: 1) Similar K-Mers are mapped close to each other in vector space,
and 2) Reverse-Complemented K-Mers retained some relationship between each other.
Concatenation was tested on a sample basis and held up as described in Ng (2017a).
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(A) 2D Vector Space of all K-Mers. When mapping to two dimensions, the K-Mers form a non-
linear curve. At the end at the bottom-left, only Ts and As can be observed. The further ”up-
stream” (meaning moving along the distribution), the fewer As and Ts and the more Cs and
Gs can be observed, and the distribution ends in only Cs and Gs. Reverse-Complements are

generally very close together.

(B) 100D Vector Space of all K-Mers, reduced to 2D using PCA. Three clusters emerged, however
there are no obvious patterns to be found. All K-Mers consisting of the same nucleotide are in
the left distribution and reasonably close to another. The K-Mers consisting of only Cs are at the
top-right of the first distribution, and mirrored to the bottom there are the K-Mers consisting of

only Gs. This relation does not hold for all As to Gs.

FIGURE 5.5: Continuous vector space; continued on next page
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(C) 100D Vector Space of all K-Mers, reduced to 2D using t-SNE. The K-Mers that consist of only
As lie very close to another, as do the Ts, Gs and most of the Cs. The TATA-Variants are close to

the As. Overall, similar K-Mers are grouped together.

FIGURE 5.5 (cont.): Continuous vector space. 3,456 K-Mers have been mapped to
vector space and visualised in three different ways. A subset of K-Mers has been

annotated manually; all three visualisations have the same set of annotations.

5.4.4 Ranking of KI-Mers using Correlation Analysis

Figure 5.6 shows the top 50 KI-Mers ranked by their correlation (most significant at the
top); for visual aid they are aligned to the logo visualisation obtained in section 3.3.5
on page 42. KI-Mers around the consensus site are ranked highest, followed by those
in the polypyrimidine tract of acceptor sites. There are only very few KI-Mers outside
of the PWM logos within the top 50 features. Many KI-Mers are overlapping for both
acceptors and donors. This is due to the correlation analysis analysing each KI-Mer in-
dependently at a time and the significant overlap between KI-Mers during generation.
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(A) Top 50 KI-Mers Acceptor versus Rest

(B) Top 50 KI-Mers Donor versus Rest

FIGURE 5.6: The top 50 KI-Mers found for the binary classification tasks accep-
tor/rest and donor/rest according to their individual linear correlations. KI-Mers are
sorted by their importance in descending order from top to bottom. KI-Mer colouring
does not bear information. (a) The KI-Mers with highest correlation are at the con-
sensus site with generally high Ks. There are no 2-mers found. KI-Mers with lower
correlation are mostly within the polypyrimidine tract. (b) Donor sites also have the
most significant KI-Mers at their consensus site, also with generally high Ks. The con-
sensus 2-mer is ranked 45th. There are some KI-mers to the right outside of the motifs

visible in the logo.



102 Chapter 5. Improving Splice Site Recognition through Data Engineering

5.4.5 Ranking of KI-Mers using RFE Analysis

Before feature selection, the max-depth found for RF20 is 46 with an intermediate AUC-
PR score of 93.73%. This is substantially deeper than the depth of 20 and 2.13 percent-
age points worse than for the one-hot encoded base experiment.

Using this architecture, the top 50 KI-Mers were ranked by their importance in descend-
ing order using RFE; the results are plotted in Figure 5.7. The two binary classification
tasks were aligned to the logo visualisation obtained in section 3.6. The top 50 KI-Mers
found for the acceptor classification look similar to the ones found in the correlation
analysis, i.e. all KI-Mers found are within the consensus region and T/C trail. The top
50 KI-Mers for the donor class spread further out and cover regions with no known
motifs, this does however not hold up in the multi-class case where all top 50 KI-Mers
found are within known patterns.

Figure 5.8 shows the convergence of train and test data during RFE for the multi-class
case. The train and test values are stable for a big number of KI-Mers, with the train
score higher than the test score, as expected. This stability holds until about 50 KI-
Mers, selecting fewer decreases the test and train scores, indicating that not enough
features are being used. This strengthens the trust that the 50 KI-Mers found (Figure
5.7c) represent an appropriate selection of features.

FIGURE 5.8: Convergence of train and test AUC-PR during recursive feature elimi-
nation for the multi-class case. 100 features correspond to one KI-Mer. The test score

did not drop until after 5000 features (50 KI-Mers).
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(A) Top 50 KI-Mers Acceptor versus Rest

(B) Top 50 KI-Mers Donor versus Rest

(C) Top 50 KI-Mers Donor for all three classes

FIGURE 5.7: The top 50 KI-Mers found using RFE analysis. KI-Mers are sorted by
their importance in descending order from top to bottom. KI-Mer colouring does not
bear information. (a) The G from the acceptor consensus site is not included within
the top 5 KI-Mers, the features found rather focus on the preceding nucleotides. The
polypyrimidine tract is covered extensively. Only three of the KI-Mers within the top
50 utilise nucleotides of the exon. (b) The main focus of KI-Mers around donor sites
is the consensus site and its immediate surroundings. There are some KI-Mers lying
relatively far away from the site within both exon and intron, more within the intron,
but with significantly less overlap than around the site itself. (c) None of the outlying
KI-Mers found for donor sites are found in the top 50 of KI-Mers for all three classes,

the KI-Mers rather cover the site itself and the preceding nucleotides.
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5.4.6 Prediction of Splice Sites using DNA2Vec representation

The hyper parameter and their intermediate AUC-PR is documented in table 5.3. The
intermediate AUC-PRs improved for SVCs and Logit compared to when run on the
one-hot encoded dataset, the scores for the remaining algorithms decreased; RBF with
a polynomial kernel did not complete within time.

Algorithm Best AUC-PR
Parameters Measure Improvement

SVC-linear b = f alse C = 0.0001 95.62% +2.09
SVC-RBF b = true C = 10 g = 0.0001 96.00% +2.19
Logit l = l2 C = 0.001 95.04% +2.22
RF20 dm = 42 93.76% -2.10
MLPC L = (500, ) 93.92% -4.13

TABLE 5.3: Hyper parameters found for DNA2Vec encoded data and how much
they improved compared to one-hot encoded data in percentage points. Linear SVC,
RF20, MLPC were optimised on subset15.gencode.v33grch38.primary and the remainder
on subset2.gencode.v33grch38.primary. Negative improvements represent worse results.

Using these hyper parameters found, the actual CV experiment (table 5.4) revealed
that the ability to recognise splice sites improved for SVCs and Logit when trained
on the semantic space compared to the one-hot encoded data. The general stability of
the models decreased (higher standard deviation). Judging by these results, splice site
recognition by SVCs improved; whether these improvements hold up for the variant
classification case is determined in the next experiment.

5.4.7 Prediction of Aberrant Splicing using DNA2Vec representation

Table 5.5 shows how base classifiers improved predicting aberrant splicing on the vari-
ant dataset when being trained on the semantically encoded data. While there are gains
for three classifiers, none of the baseline algorithms can compete with the CNNs from
chapter 4 with measures of 90% and more. The gain of a few percentage points on
some algorithms, without making them competitive, hardly outweighs the consider-
ably higher technical depth of introducing DNA2Vec, which will also make any poten-
tial future feature analysis harder.
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Model Acceptor and Donor Acceptor Donor
mean m std. s mean m std. s mean m std. s

AUC-PR

Logit 93.215% 2.636 91.039% 1.677 95.390% 1.275
RF20 93.597% 2.505 91.186% 0.919 96.007% 0.301
MLPC 93.919% 2.493 91.543% 0.700 96.295% 0.806
RF500 94.772% 1.899 93.051% 0.899 96.492% 0.699
SVC-RBF 95.600% 1.875 93.811% 0.716 97.389% 0.344
SVC-Linear 95.769% 1.835 94.020% 0.651 97.519% 0.435

AUC-PR difference to One-Hot encoded base experiment

Logit +0.035 +0.905 -0.420 +1.540 +0.489 +1.052
RF20 -2.177 +1.111 -3.205 +0.668 -1.149 +0.257
MLPC -4.113 +2.013 -6.014 +0.603 -2.211 +0.795
RF500 -1.966 +0.940 -2.736 +0.739 -1.197 +0.646
SVC-RBF +1.524 +0.336 +1.258 +0.447 +1.789 +0.179
SVC-LinearD +1.693 +0.296 +1.467 +0.382 +1.919 +0.270
D SVC-Linear did not complete in the base experiment. This comparison is

against the SVC-RBF from the one-hot encoded experiment.

TABLE 5.4: Cross-Validated AUC-PRs measured on recognition of splice sites
trained on semantic space and how their mean and standard deviation changed
compared to the One-Hot encoded data. Non-linear SVCs and Logit were evaluated
on the subset2.gencode.v33grch38.primary, the rest on subset15.gencode.v33grch38.prima-
ry. Positive values in the mean reflect improvements in predictions, negative values

in the standard deviation represent predictions becoming more stable.

AUC-PR Optimal Accuracy
Measure Improvement Threshold Measure Improvement

MLPC 78.13% -8.07 0.799 73.86% -5.30
Logit 81.19% +4.90 0.361 77.09% +2.23
RF20 82.16% -5.62 0.350 76.84% -4.22
SVC-RBF 82.37% +3.89 0.427 77.92% +2.24
SVC-Linear 82.88% +4.40D 0.286 78.08% +2.40D

RF500 84.08% -5.12 0.478 78.16% -3.4
D SVC-Linear did not complete in the base experiment. This comparison is

against the SVC-RBF from the one-hot encoded experiment.

TABLE 5.5: Application of the baseline classifiers trained on semantic space to vari-
ant data and comparison to one-hot encoded experiment. All were trained on sub-

set15.gencode.v33grch38.primary.
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5.5 Discussion

5.5.1 Incorporation of Protein Regulation for Splice Site Recognition

Protein binding sites for ESE and ISE were annotated to help baseline classifiers find
splice sites, however, the results have shown that this annotation strategy did not im-
prove splice site recognition.

It is however not entirely surprising that annotation of regulatory elements did not
help ML. Abrahams et al. (2021) classified Nonsense-associated Alternative Splicing (NAS)
using MMSplice on data annotated with INT3 ESE motifs and concluded ”that presence
of ESEs at the site of the mutation is not a good predictor of which nonsense mutations
do or do not induce NAS in this dataset”.

The cause of why the annotation process presented in this work failed is likely due to
the modelling of protein regulation being too simple; it only roughly models the under-
lying biology. Firstly, it does not distinguish between different protein binding motifs
and assumes all ESE and all ESS motifs to be equally important. This is clearly not
the case. It was also noted that protein may either inhibit or excite splicing depending
on context. Both of these factors may be mitigated by annotating each protein on its
own separate vector; this would however inflate the data significantly. Our annotation
further allows overlapping motifs. In the real world, protein binding to the same motif
prevent each other antagonistically. This model assumes protein bindings to be inde-
pendent from each other and modelling protein-protein interactions is a very complex
task that could be introduced into this domain in its own research context. Further,
this algorithm only annotates potential binding sites and does not model actual protein
concentrations in tissue or developmental stage. It would be very interesting to instead
look at local splicing in a certain tissue and only annotate binding sites of protein that
are actually present in this environment. Finally, only motifs within the 81 nucleotide
windows around a splice site are given to the classifier. While regulatory protein bind-
ing close to a splice site are often more important, further interaction with regulatory
elements up- and downstream were not modelled.

There are other potential reasons why this experiment did not work apart from the
simplifications of the annotation process. The ESE/ESS motifs could be of low quality
or inappropriate for the global way the algorithm looks at splicing. Through the de-
sign of the data pipeline, some of the models such as the RFs could also have picked
up binding motifs without explicit annotation, making the information redundant and
confusing. Maybe the presence of ESE/ESS motifs are not that important for finding
global primary splice sites. While even canonical splice sites are often associated with
regulatory sites, it is foremost alternative splicing that needs weaker splice motifs to be
strengthened by protein regulation.
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5.5.2 Incorporation of Conservation Scores for Splice Site Recognition

It is surprising that the incorporation of conservation scores did not improve classi-
fication as it is part of competing models. SQUIRLS (Danis et al., 2021) for example
includes the mean phyloP measure of the ref allele region, which is included in this
training data. MMSplice on the other hand (Cheng et al., 2019) reports how their model,
trained on sequence data without conservation scores, outperformed HAL and SPANR
which in term outperformed conservation-score based tools CADD and PhastCons in
Kircher et al. (2014). They also report phyloP and CADD to have good exonic perfor-
mance ”but close to random in the evaluated intronic variants” (Cheng et al., 2019). As
negative samples in the test dataset are sampled uniformly random, it has an even split
between exonic and intronic data points.

Further, it should be emphasised that while splice sites are often conserved more highly,
the dataset at hand is only respective to the human genome. Even if a significant
amount of splice sites were conserved and similar to other vertebrates, evolutionary
drift and selection may introduce differences in both the splicing process and its motifs
and regulatory elements.

5.5.3 Application of Semantic Encoding to Splice Prediction

The semantic space was visualised and it was found, that the model learned about
reverse-complemented sequences and arranged the sequences semantically sensible.
The t-SNE representation of the 100 dimensional space was less confusing than the PCA
plot that had a three layer architecture. Literature suggests that t-SNE is indeed more
appropriate than PCA for application to Word2Vec encoded data due to its neighbour
preserving feature (i.e. Komenda et al. (2016); Malmqvist et al. (2021)), so the three
layer architecture in the PCA plot doesn’t need to be over-interpreted.

Two methods of deriving the importance of KI-Mers were evaluated: A correlation
analysis where each KI-Mer is evaluated independent of the rest, and RFE that removes
only the worst one and therefore evaluates KI-Mers in relation to each other. This al-
lows the RFE to ignore strongly correlated and overlapping features. As a result, the
most important acceptor sites (Figure 5.7a) are significantly more spread out than the
ones found in the correlation analysis. This difference is not that significant for donor
sites (Figure 5.7b).

Donor site analysis resulted in some unexpected KI-Mers for both experiments. Corre-
lation analysis found two intronic and RFE found at least two exonic and five intronic
KI-Mers where the logo visualisation shows no obvious patterns. Initially it was as-
sumed that this analysis found some regions with novel patterns. After analysing the
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multi-class case and RFE convergence (Figures 5.7c and 5.8 respectively), this assump-
tion did not hold: The AUC-PR on test data for 50 nucleotides did not drop, indicating
that the top 50 KI-Mers contain all important KI-Mers, and within these top 50 KI-Mers
there are no KI-Mers spanning over nucleotides outside of the known motifs.

Unfortunately, the semantic space was ultimately found not to help baseline classifiers
to predict variant effects on splicing, despite some intermediate results showing minor
improvements.

5.6 Conclusion

The data pipeline for baseline classifiers was extended to include protein regulation or
conservation scores. Neither of these produced better classification results.

DNA2Vec achieves sensible representation of K-Mers in vector space. Building KI-Mers
for every position inflates the dataset substantially, and feature selection was able to
bring the number of KI-Mers down to 50 without sacrificing model performance. Un-
fortunately, while some scores improved both when recognising splice sites and clas-
sifying variants, baseline classification could not compete with deep learning models;
baseline classifiers seem to not be able to predict splicing based on DNA sequence and
need manually engineered features as done in SQUIRLS.

Objective 3 (improve splice site recognition through data engineering) was reached on
an implementational level, but the resulting algorithms were found not to be useful in
clinical practice.
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Chapter 6

CI-SpliceAI: Software Engineering
of an Annotation Tool

6.1 Introduction

Chapter 4 found the best ML model of those investigated to be a CNN with the SpliceAI
architecture, trained on the collapsed isoform dataset. It outperforms all other models,
and more importantly, the original SpliceAI models. At this stage, the model consists
of five files, each representing the weights of one CNN, which will hardly be of use for
biomedical colleagues in this domain. In order to facilitate usage of these models for
clinicians and bioinformaticians, a software package needs to be developed. This soft-
ware is called CI-SpliceAI, and has been published with the journal PLOS One (Strauch
et al., 2022).

For this publication, the tool should be compared against other application from this
field with a focus on differences to the original SpliceAI algorithm.

6.1.1 Differences to Previous Analyses

The focus of this chapter is on software engineering of a splice disruption annotation
tool to compete with SpliceAI. Therefore there are important differences to the methods
from chapter 4.

While chapter 4 focused on the ML part of a binary classification, this chapter focuses
on the annotation part. A good annotation tool encapsulates a ML model into a usable
interface that outputs which genes are affected and how. Chapter 4 applied all ML
models in a custom data pipeline, i.e. without using the SpliceAI python annotation
library, to focus only on the ML part. This chapter instead develops a new annotation
module and compares it to existing tools in their out-of-the-box configuration, as most
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people would. For SpliceAI specifically, this means that areas outside of annotated
genes are masked and certain MNVs are not annotated by their module.

Overall, the research objectives in this chapter is not ”Which ML algorithm is the best?”,
which was already answered in chapter 4, but ”How can we transfer the best model
found into production” and ”How does it compare to competing variant annotation
tools?”.

6.1.2 Aims and Objectives

The overarching aim 4 is to allow users of varying technological backgrounds to use
CI-SpliceAI, and to hold all licences and copyright on the code base for both academic
and commercial use. CNNs were previously trained using the published SpliceAI train
code (McRae et al., 2019b) which allows academic, but not commercial use. To allow
potential commercialisation, the training code is to be reimplemented.

This is to be achieved through 1) reimplementation of the ML training code so no li-
cencing will be held by McRae et al.1; 2) implementation of a python package that
allows variants in Variant Call Format (VCF) to be classified using both CPU and GPU
computation, assuming the user has appropriate computational background; and 3) by
implementation of a freely accessible website to run VCF files with minimal technolog-
ical background.

The train and classification code are made open source to facilitate adaptation in the
scientific community. The website should be freely accessible with a non-commercial
clause in its terms and conditions.

To ensure availability of the website, appropriate usage limits, spam prevention, and
security hardening need to be implemented, as well as analytics and tracking about its
usage.

In order for a publication to find impact, the new tool needs to be compared against
popular tools in the field. It was chosen to compare it with SQUIRLS (Danis et al.,
2021), MMSplice (Cheng et al., 2019), MES (Yeo and Burge, 2004), and SpliceAI (McRae
et al., 2019a). These tools were already described in sections 1.1.2 (page 4) and 4.2.1
(page 66).

1This might change as the original authors have patents pending on the SpliceAI architecture which, if
accepted, might cover significant parts of this re-implementation



6.2. Background 111

6.2 Background

From a user’s perspective, SpliceAI consists of 5 main components: 1) The training
code (McRae et al., 2019b, SpliceAI train code folder); 2) the SpliceAI command line
module (McRae et al., 2019a); 3) pre-computed scores for SNVs and MNVs (McRae
et al., 2019b, genome scores v1.3 folder); 4) the website SpliceAI lookup (TGG, 2022);
and 5) an Ensembl VEP (McLaren et al., 2016) plugin (Lemos, 2019).

6.2.1 SpliceAI Training Code

The SpliceAI training process was already described in section 2.2.4.2; this process was
re-implemented.

Besides a 1-to-1 reimplementation, some avenues for improvements were found. The
training code uses the deprecated python 2 dependency, which was upgraded. Further
it did not use the keras logging abilities which would help monitoring algorithmic
convergence. The original training code did not include the data pipeline to derive the
splicing tables; due to the nature of the modifications to CI-SpliceAI, this needs to be
changed so that the codebase encapsulates all steps to produce new models. Lastly, the
original SpliceAI model is trained on only 19 chromosomes, excluding the test fold of
chromosomes 1,3,5,7, and 9. For clinical application, it would be desirable to instead
train on all chromosomes.

The GENCODE version can further be updated to GRCh38.v37, which at the time of
writing is the latest version.

6.2.2 SpliceAI Python Annotation Module

The SpliceAI command line module is a python module published to Python Package
Index (PyPI) (PackagingWG, 2018). A python module allows installation via the pip
command, which gives access to its functionality to both python code and the com-
mand line. Publication to PyPI allows anybody to install this module.

The module comes with two splicing tables for GRCh37 and GRCh38 respectively.
These tables lists gene symbols, their primary transcript and matching start and stop
coordinates, and all splice sites contained within this isoform. Users can choose which
table to use or even reference one of their own.

The command line tool accepts input files as VCF and annotates them in the same for-
mat. Internally, the module extracts the reference sequence from the reference genome
in a window of configurable size (up to 4,999 nucleotides on either side) around the
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position of interest plus a fixed 5,000 nucleotides of context on either side. Gene an-
notations are found by filtering the splicing table to overlapping primary isoforms; if
more than one gene is found, the first is chosen; if none overlap the algorithm does not
annotate the variant. All nucleotides outside of this primary isoform are encoded as
unknown (”N”). The variant sequence is derived by applying the variant, generating a
second input. The five CNN models are run on both one-hot encoded sequences, the d-
score matrix is calculated, and the position and score of the most significant losses and
gains for acceptor and donor sites are returned in the output annotation file. Details on
how this is done exactly and how to cope with insertions and deletions is described in
section 4.3.2 (page 73). Variants where both reference and variant sequences are longer
than one nucleotide are not annotated; the reason for this is unclear.

The python module can run on either CPU or GPU (on Compute Unified Device Architec-
ture (CUDA) supported graphics card); users however must set up CUDA themselves
which is a non-trivial task and requires expertise.

Input annotations are accepted for both builds, GRCh37 and GRCh38. This is done by
including splice sites for both builds, and requires the user to also point the algorithm to
a matching reference genome. Lastly, the module allows masking scores to only include
gains in splicing for non-canonical sites and losses of splicing for canonical sites. This
reflects clinical practice where losses of non-splice sites and gains of known splice sites
are sometimes prioritised down.

There are some possible technical improvements on this. If the sequence extracted
overlaps with more than one gene, the better strategy would be to run predictions on
all genes and either return all effects, or only the most significant one. If there are no
annotated genes within the sequence, the algorithm should run on the forward and
backward sequence without any masking of regions outside of the gene, and again
either return both or only the more significant effect. The masking of scores to only
account for losses of canonical and gains of non-canonical sites is also implemented
suboptimally: Instead of masking the d-score matrix before the final annotation is com-
pleted, which would allow the most significant disruption that is not masked to be re-
turned, the implementation first calculates the most significant changes and then masks
it, which will not return the next-best score.

6.2.3 Pre-Computed Splice Variant Scores

The authors also pre-computed scores for 1 base insertions and 1-4 base deletions
within all genes for both masked and unmasked scores on GRCh37. Scores were also
lifted to GRCh38 and published. All files together make up over 364GB of gzipped
data.
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These pre-computed scores are in VCF format and serve as a simple lookup table, so
that the same variants do not need to be re-computed repeatedly. They were calculated
for a window size of 50 bases around a splice site, which was the value recommended
in the original publication (Jaganathan et al., 2019).

Their python module today defaults to a bigger window size of 500 nucleotides around
the variant, rendering the pre-computed scores of limited use. Also the lifting process
might introduce problems when using GRCh38. Lastly, the pre-computed scores can-
not cover all potential variants, so tools using this lookup table cannot perform as well
as applications running SpliceAI from scratch.

6.2.4 SpliceAI Online Lookup

The SpliceAI Lookup website, accessible at spliceailookup.broadinstitute.org, was not
released with the original SpliceAI publication, instead is was developed and is main-
tained by the Broad Institute. It is open sourced on github (TGG, 2022).

It allows submission of one variant at a time, batch processing is not supported. Vari-
ants can be looked up in the pre-computed scores discussed earlier, or are calculated
in real time. Builds GRCh38 and GRCh37 (through lifting) are supported, as well as
optional masking of scores and configuration of the maximum distance. To prevent
excessive or malicious use, users are only allowed to calculate 4 variants and lookup a
total of 15 variants per minute.

Under the hood, this website uses the SpliceAI pre-computed scores and python mod-
ule, with all of their advantages and disadvantages. Results are cached in a redis da-
tabase to prevent re-calculation of the same input. The website itself is hosted on a
python flask server; the server generating ML predictions is therefore identical with
the one hosting the website.

Using this architecture has some drawbacks. If the ML backend crashes due to over-
load, the website serving cached results will go offline too. All unseen predictions are
created ad-hoc, there is no queueing mechanism, which is not scalable and limits its
use. It therefore cannot provide batch inference. From a user perspective, entering one
variant at a time is impractical. On the other hand, the website is easy to use and greatly
facilitates usage of the SpliceAI models without any technical background.

6.2.5 Splicing VEP Plugins

The SpliceAI VEP plugin is a lookup adapter to find variants from the precomputed
scores. It is therefore limited to the drawbacks of this collection.

https://spliceailookup.broadinstitute.org
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In contrast, the MMSplice VEP plugin (Hasan, 2018) requires the MMSplice python
module to be installed. It works as an adapter between the VEP framework (pro-
grammed in perl) and the python backend, and runs predictions in real time. This
however requires the user to set up the python tool anyway, at which point they should
be technologically capable of running it without VEP. This plugin is also not offered by
the official VEP web interface, as they seem to not run any third-party applications
outside of their perl framework.

Lastly, one could in theory write a VEP plugin which sends each variant to the SpliceAI
lookup website. This however would violate their scope; the lookup website must not
be queried programmatically.

6.3 Methods

6.3.1 Training Data Pipeline Reimplementation

The main data source was upgraded to gencode.v37GRCh38 (in this chapter only re-
ferred to as collapsed data) and re-implemented using multi-processing to significantly
speed up both generation of the splicing table and the ML dataset itself.

The splicing table was implemented to contain collapsed splice sites as described in sec-
tion 3.3.2 (page 41). Sites annotated as both acceptor and donor sites (i.e. chr7:44122282)
were filtered out to improve data quality.

The splice annotation table has two functions. First it is used to train the ML model.
Second, it is used in the variant annotation module (see section 6.3.3). To allow both
builds, GRCh38 and GRCh37, the splice annotation table was created based on both
builds without lifting.

6.3.2 Training and Testing Methodology on Splice Sites

The SpliceAI training code (Jaganathan et al., 2019) was reimplemented and improved
on.

The batch size during training was increased from 6 to 32 slices per GPU to speed
up training on the IRIDIS system. When a gene has an uneven number of slices and
therefore cannot be distributed on the two GPUs, SpliceAI drops the last slice. The new
implementation instead drops a random slice to not bias against the end of a gene.

While the final model (i.e. the one to be published) is trained on all chromosomes, an
additional model was trained only on the same subset of chromosomes that SpliceAI
was trained on. This was only done to facilitate fair comparisons between the two
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SpliceAI models. This secondary model is tested on the remainder of chromosomes
(1,3,5,7 and 9).

6.3.3 Design of a Python Variant Annotation Module

The annotation module is the main piece a user interacts with to predict the effect of
a variant on splicing. It uses the splice site annotation table described in section 6.3.1.
From a technological standpoint it is a python module with a command line interface
as its primary touchpoint.

The general interface of the SpliceAI python module (McRae et al., 2019a) was imitated
to ease adaptation, but the whole module code was newly developed and improved
on.

Users can input VCF variants and results are annotated in an output VCF file. Many
of the general processes are the same as with SpliceAI, for example it supports both
GRCh37 and GRCh38 and it allows configuration of the maximum distance from the
variant.

When more than one gene overlaps with the variant, it does not choose the first gene
as SpliceAI does, instead it runs on all overlapping genes. Similar to SpliceAI, the
strandedness of gene annotations in the splicing table affects whether the sequence is
reverse complemented, and regions outside of gene annotations are masked as ’N’. This
last detail can be disabled when running the tool (”–outside” flag). Additionally, when
the extracted DNA sequence from the reference genome overlaps with no gene, it runs
on both the forward and backward strand instead. The annotation therefore documents
how a region is affected, which can either be a gene or the forward or backward strand
if no genes were found in the vicinity.

By default, only the annotation of the most significant region is returned; this can be
changed to include all annotations with the ”–all” flag.

The optional masking of splice sites to only contain gains of novel and losses of existing
sites has been improved by masking the d-score matrix rather than the final output,
allowing the next-highest annotation to be returned rather than capping the output to
zero.

The CI-SpliceAI module also allows configuration of the batch size. This is important
when running the model on a GPU - bigger batch sizes improve speed through parallel
computation, whereas batch sizes that are too big cause the GPU to run out of memory
and crash the application. The ideal batch size is subject to the memory capabilities of
each user, therefore it makes sense to give users a parameter to tune it to their needs.
As the max-distance from the variant and the length of reference/alt sequences directly
affects the size of each single variant, it would not make sense to use a classical batch
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size that quantifies the number of samples. A batch of 100 samples of each 50 nucleoti-
des each side of the variant (plus context) is vastly smaller than a batch of 100 samples
with 5,000 nucleotides of either side (plus context). It was therefore decided to define
the batch size in MB so that this dependency is accounted for. The application therefore
aggregates variants until the next variant would accumulate more input than the batch
size, processes the full batch, and starts a new one. On the CPU, the batch size does not
really bring a merit.

Lastly, the CI-SpliceAI module was also designed in such a way that it can be used and
extended from python code. This made it easier to extend on this module for the next
components.

6.3.4 Extending the Splice Variant Dataset

The variant dataset described in chapter 4 was further enlarged with two recent sources
following the methods outlined to include even more variant data. No further disputes
between sources were found.

6.3.4.1 Incorporating Ellingford et al.

Table 1 of Ellingford et al. (2019) published 21 variants and their functional assess-
ment of splice disruption which have been extracted manually. Splicing defects were
assessed through RNA expression in lymphoblast cell cultures, whole blood, and cell
based minigene assays.

6.3.4.2 Incorporating MutSpliceDB

MutSpliceDB (Palmisano et al., 2021) is a freely accessible genome database consisting
of, at the time of writing, 86 variants, their RNA sequences, and their effects on splicing.
All variants are disruptive. Variants were exported using their web interface.

6.3.5 Annotation of the Exact Variant Effect

To evaluate if ML algorithms can predict the exact position and variant effect, i.e. at
which basepair an acceptor/donor is lost/gained, the variant dataset was annotated
with four columns. This was only possible when the source commented on the exact
effect: For example, if a variant is annotated with ”Exon 2 skipped”, by looking up the
transcript and its second exon, the precise position of the acceptor and donor loss can
be derived.
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The annotation process was done manually. During this process it was ensured that
1) annotations are not contradicting each other, 2) both 1-based and 0-based coordi-
nates are supported, 3) annotations that are obviously referring to another site were
corrected, 4) inconsistencies of what constitutes ”upstream” and ”downstream” in Wai
et al. (2020) was resolved, and 5) exon skipping of the first and last exon of the tran-
script was excluded, as it can’t be modelled as an acceptor/donor loss. During this
process it was found that intron inclusion refers to partial intron inclusion most if not
all of the time, however no source specified up to where introns were included. All
intron inclusion annotations were therefore removed from the exact variant effect.

Annotations of splice site losses were then checked against GENCODE computation-
ally to ensure that there indeed is an acceptor or donor site present. Motifs of novel
junctions were checked for sensible consensus sites.

6.3.6 Comparison to Competing Splice Variant Annotation Software

Five algorithms (CI-SpliceAI, SpliceAI, MES, SQUIRLS, and MMSplice) were tested on
the extended variant dataset to measure how well they can predict if variants affect
splicing or not.

In contrast to chapter 4, SpliceAI and CI-SpliceAI were run using their respective VCF
annotation modules rather than a custom implementation running predictions manu-
ally. This represents the way the vast majority of users run the models. As a conse-
quence, regions outside of genes were masked as N and SpliceAI will omit predictions
of indels and substitutions with more than one nucleotide in REF and VAR annotations.

SQUIRLS was run directly on all data in VCF format as described in Danis et al. (2021).

Two MMSplice (Cheng et al., 2019) models, splicing efficiency and pathogenicity, were run
through kipoi (Avsec et al., 2019), a python manager for genomic models. As described
on the kipoi guide, the VCF file was first normalised and left aligned.

MES (Yeo and Burge, 2004) was run twice: 1) As a Ensembl VEP (McLaren et al., 2016)
plugin (Shamsani et al., 2019) in a docker (Docker, 2013) container. This plugin checks
for splice losses of canonical donor or acceptor sites 9 or 23 bases away from the variant
respectively and calculates a reference and variant score. This implementation cannot
predict novel or cryptic sites. And 2) as a custom implementation of a sliding win-
dow, similar to what was done in Danis et al. (2021), where both acceptor and donor
predictors were moved over the variant, resulting in a d-matrix of acceptor and donor
predictions. This d-matrix can then be compensated for indels and interpreted in the
same way as deep learning models (see section 4.3.2 on page 73). The second imple-
mentation therefore allows recognition of novel splice sites.
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Further, it was evaluated how well algorithms can predict the exact variant effect on
the mature mRNA, based on the subset of variants described in section 6.3.5.

The exact variant effect was extracted from all algorithms with a per-nucleotide d-score
for acceptors and donors, i.e. SpliceAI, CI-SpliceAI, and the sliding window MES. The
position of the most significant loss or gain in predictions for acceptors and donors is
compared to the annotated ground truth. An algorithm with 50% accuracy predicting
acceptor losses would therefore have the biggest drop in its acceptor prediction score
at the annotated position across half of the variants annotated as acceptor loss.

6.3.7 Generation of Pre-Computed Scores

Similar to the pre-computed variant scores published for SpliceAI, it was evaluated if
generation of pre-computed scores for CI-SpliceAI was computationally feasible.

To measure throughput, a program to systematically generate and annotate variants
was developed (Figure 6.1). ML input (with 5,000 nucleotides of context) is generated
and added to an asynchronous multi-processor queue. Four processes, each assigned
to feed one GTX1080 TI, pull from this queue to process and annotate a variant at a
time. Annotations are pushed into another asynchronous queue for a process to write
the results to a VCF file. This decoupled design allows to scale up very easily as new
processes to generate, process or write data can be added as needed.
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FIGURE 6.1: Code architecture to pre-compute scores. The generation of sequences,
annotation, and output writing is decoupled to allow maximum throughput. Predic-

tions are calculated on a GPU with its own worker thread.

6.3.8 Design of CI-SpliceAI Web for Online Variant Annotation

The intention behind the CI-SpliceAI Web application is to facilitate usage of CI-SpliceAI
without technological knowledge, and to make the tool accessible for academic and
non-profit use free of charge.

As described in section 6.2.4, the software design of the SpliceAI lookup tool ties the ML
server predicting variants to the web server the user interacts with. It was decided to



6.3. Methods 119

de-couple these two components, allowing a more resilient architecture. Since the CI-
SpliceAI python module allows batch computation on the GPU, it would also make no
sense to only allow one input at a time. Instead, the CI-SpliceAI website allows input of
VCF files containing hundreds of variants. In term, it needs a queueing mechanism to
allow these computations. Another important difference between the SpliceAI lookup
and this new site is that the CI-SpliceAI website does not lift genomic data and instead
treats variants on GRCh37 completely separate to variants on GRCh38, limiting issues
related to lifting but in term requiring more computation in the long run.

Instead of buying dedicated servers to calculate ML predictions, it was decided to use
cloud computing resources to batch process predictions. Microsoft Azure (Mund, 2015)
and Google Cloud services (Bisong, 2019) were evaluated. Due to both technical and
budgetary constraints, it was decided to use Google Cloud services as it was more
lightweight and includes a free tier that was deemed sufficient for this project.

6.3.8.1 Tech Stack

The main backend is implemented in PHP (Welling and Thomson, 2003). HTML tem-
plates are generated with the PHP templating engine Twig (Ronacher and Potencier,
2019). Styling is mostly done through Bulma (Aubry, 2008) with some minor adjust-
ments in plain CSS. The logic to reload estimates for newly enqueued variants is pro-
grammed in plain JavaScript (Flanagan, 2006).

The database is implemented in mySQL (Welling and Thomson, 2003). Tracking is im-
plemented using Matomo (Aubry, 2008), a PHP tracking library that was built around
privacy. Matomo and Twig are installed via composer (Adermann and Boggiano, 2012).

Workers on Google Cloud are encapsulated in a docker (Docker, 2013) container that
starts a python web service.

6.3.8.2 System Architecture

Figure 6.2 shows the CI-SpliceAI architecture. The user interacts with a frontend made
of regular web technologies (HTML, CSS, JavaScript). The frontend allows submis-
sion of VCF files which are parsed by the VCF backend. The VCF backend looks up
all variants in a cache, which is a relational mySQL database. It immediately returns
all previously annotated variants and enqueues new variants to the cache. It further
calculates an estimation of when all variants should be calculated by interpolating pro-
cessing times from the past. This estimate is returned to the user; the frontend refreshes
periodically and after the expected time estimate to allow partial analysis if desired.
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FIGURE 6.2: CI-SpliceAI Web architecture and where each component is executed.

The backend then determines the number of new workers to be started, and fires them
up on the Google Cloud. Each worker processes one variant at a time by querying them
from the database, running the CI-SpliceAI python annotation module, and writing
the results back to the cache. Partial results are therefore immediately available to the
user if they decide to re-submit. Due to constraints on the Google Cloud, workers
do not have their own copy of the reference genome to extract DNA from. Instead,
they contact a FASTA microservice which extracts and returns the sequence for them.
Google workers run for up to ten minutes or until all variants are processed, and their
running status is kept in a database.

Lastly, there are cronjobs (code scheduled to be executed regularly) in place. They mon-
itor if workers hang, i.e. do not start or do not end in their expected time. If jobs do
not start this is most likely due to budgetary constraints and a message will be shown
to the user. If jobs did not exit regularly, variants marked as being processed by this
worker need to be unlocked to allow new workers to annotate them.

Apart from the web frontend which obviously runs on the device of the user, there
are two service providers involved. All-Inkl (2000) is the service provider hosting all
backend and database services except for ML predictions. These in turn are hosted
with Google Cloud services.
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6.3.8.3 Database Design

Figure 6.3 illustrates the database design of the CI-SpliceAI Web application as an en-
tity-relationship diagram (Song and Froehlich, 1994) . It depicts database tables as en-
tities and their columns as attributes. The joined set of underlined attributes and rela-
tionships symbolise the identifying unique constraints on a table, except for ID which
itself is a numerical unique identifier. Relationships allow a column to reference an ID
field of another table.

The Reference table holds the genomic coordinates (chrom, pos, ref sequence, and the
boolean grch38) which together build the unique definition of a reference.

A Variant alters a Reference annotation and describes what the reference changes to (alt).
There can be a number of Variant annotations for one Reference, but only one Reference
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per Variant. One Variant specification encapsulates the input to the ML algorithm and
therefore also specifies the maximum distance from the variant (md) and whether to
keep the nucleotides outside of annotated regions (keep outside). Status flags and time
stamps help monitor progress and estimate completion.

Variants are assigned to a Worker; one Worker can be assigned multiple Variants but not
the other way round. Because workers are started and run asynchronously on Google,
they are queued, then booted and finally done; these three fields are timestamps to allow
monitoring of jobs. When working, they will update the evaluation start and evalua-
tion end timestamps for each Variant accordingly.

When a worker finishes its ML process, it adds Annotations to describe a Variant. Be-
cause a single Variant can affect more than one area (i.e. genes), and the d-score may be
masked, one Variant is mapped to multiple Annotations. The Worker always enqueues
two Annotations per region; one masked and one without masking as there is no signif-
icant computational overhead once the d-score is calculated. The Annotation then in-
cludes all acceptor/donor gains/losses and their position in the usual SpliceAI format.
The columns created and updated are timestamp fields for estimation of time until new
variants are calculated.

A Worker also logs to database by enqueueing Log messages (msg) at a certain time-
stamp (ts) and log LEVEL enum type. A very similar CronLog provides almost the same
structure bar the Worker relationship to allow cronjobs to log info as well.

A simple key/value table for Constants currently only holds one constant for budget
control (see section 6.3.8.7 on page 124).

Lastly, there are three tables to hold user quotas and limits. All three track a user’s
anonymised IP address. The Request table holds the timestamp of when a user last ac-
cessed a Service to prevent malicious request spamming. The tables CreateVariantQuota
and ReadVariantQuota track the number of newly enqueued variants and the number of
variants read from the cache respectively in their count column. They also track the first
access as quotas are within a window started from the first request. Quotas and limits
are further described in section section 6.3.8.7.

6.3.8.4 VCF Backend

The VCF backend was custom implemented in PHP. It parses an uploaded VCF format
of an untrusted source, validates it, and parses it into a structured representation.

It validates the general format, like number of columns, nucleotides consisting of only
A,C,G and T, and some limit-related constraints. Any constraint violations are reported
back to the user as an error. It also validates the reference sequence by comparing it
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to the output of the FASTA microservice (which is discussed later in section 6.3.8.6),
preventing faulty variant definitions to reach the database and Google Cloud.

The VCF backend also allows configuration of all parameters, such as build (GRCh37
/ GRCh38), maximum distance from variant, masking of nucleotides outside of the
annotated transcript, filtering to only the most significant offset, and masking of scores
towards splicing gains in non-splice sites and loss in splicing of known sites.

After input validation, new variants are enqueued, and variant annotations are re-
turned if possible. The backend will look up all missing annotations and returns an
estimate of when the last variant in the batch will be returned. The estimate is calcu-
lated by taking the mean annotation time of the past 200 variants times the number
of variants in queue before the batch is completed, and dividing it by the appropriate
number of workers.

The current configuration allows up to 5 Google workers to run at a time, and starts
one worker per 25 variants in the queue. If there are less than the desired number
of workers, new workers are started by calling the URL of the Google Cloud service
instance.

6.3.8.5 Workers

Workers can be started by calling an URL provided by Google. Additionally, workers
were secured with a password to prevent invocation outside of the intended use.

Each worker processes one variant at a time in a first-in first-out queue. Variants are
marked in the database so that concurrent workers will not evaluate the same variant.
Workers will monitor their run and current evaluation time and shut themselves off
early to not overrun the 10 minute mark. It is important to shut down gracefully, if they
were to execute for longer than 10 minutes, Google will force a shut down, leaving the
currently evaluated variant locked to the ghost worker. This will be caught be a cronjob
eventually to prevent indefinitely locked variants.

Currently, the workers are using CPU predictions for ML, as GPU predictions ar enot
supported by the free Google Cloud services tier. The design however allows the work-
ers to be adapted to GPU processing quickly; in that case batch sizes of more than one
variant can be fetched from the cache.

Each variant is annotated through the CI-SpliceAI python module. The module is al-
ways configured to annotate all splice sites, not only the most significant one, and both
the d-scores with and without masking are put into the database. This will prevent the
same ML inputs to be run multiple times.
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6.3.8.6 FASTA Microservice

The Human Reference Genome for both builds is too big to deploy to the Google Cloud
instance directly. Instead, access to FASTA is provided as a REST microservice on the
PHP server that also provides the main application.

The microservice was custom implemented in PHP. The service can be queried with ge-
nomic coordinates, the desired length and a password and returns the DNA sequence.
Because there are no PHP implementations to read FASTA files, the service was imple-
mented without any third party dependencies from the ground up.

The Human Reference Genome FASTA files (Church et al., 2011; Schneider et al., 2017)
contain all chromosomes sequentially. Each line has a fixed maximum length plus a
carriage return. By indexing the FASTA files first, the start and stop of each chromo-
some in bytes and their line lengths with and without carriage return can be obtained,
allowing to calculate the file seek as follows:

Let the start of the desired chromosome be c and the length of each line with and with-
out line breaks lb and l respectively (all in bytes), and let the desired position within
the chromosome (i.e. start or stop of the region to output) be o. Then the file seek s in
bytes is calculated as s = c + b o

l c ⇤ lb + o mod l.

With this logic, the FASTA service can extract DNA very efficiently. It is used to vali-
date reference annotations during variant creation and to return full DNA slices to the
Google worker.

6.3.8.7 Limits and Quotas

To prevent excessive and malicious use, user-specific quotas and limits were intro-
duced. These may be subject to change depending on usage and are not directly com-
municated to the user.

First, VCF submission is limited to once every 10 seconds to prevent malicious spam.
Any submission outside of this limit is delayed accordingly. A VCF file may not have
more then 2000 variants; bigger submissions are rejected with an appropriate warning.

A user may only submit 1,500 new variants and query only 10,000 variants within 24
hours, starting with the first submission or query. As submission of a new variant re-
quires a read query to establish its novelty first, a submission will increment both quo-
tas. If a quota would be exceeded, a partial result will be returned with an appropriate
message.

There is also a quota on Google. The free tier allows 2 million service requests, 360,000
GB-seconds of memory, 180,000 vCPU-seconds of compute time, and 1 GB network
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egress per month. Anything exceeding these quotas is charged to my credit card every
month. To limit spending, a Google budget alert was set up. The alert is connected
to a pub/sub topic which is then subscribed to call the PHP backend, effectively calling
the application every time the budget changes. If the budget is exceeded, the backend
writes the date of when the budget replenishes (i.e. the first of the following month) to
the database. This causes all currently running Google workers to stop working after
the current variant and stops the system from queuing up new workers. It also displays
a message to the user when unseen variants are enqueued. As new variants are still
added to the database, they will be processed in the next month automatically through
the cronjob system. Since going live, the system cost me a few pence per month. A
better way with no cost could not be found as Google does not support automatically
cutting its services when the free tier is exceeded.

The number of Docker containers on the Google Cloud is managed by Google and
scaled up or down according to usage. Currently there are up to five containers config-
ured to run in parallel, one per request.

6.3.8.8 Security and Data Protection

All user-provided input is sanitised to prevent injection of malicious code. Frontend
code generated via twig automatically escapes all data to prevent code injections. Da-
tabase queries are all formulated with placeholders to prevent database injections.

All services that are not supposed to be accessed by a user (i.e. FASTA microservice,
Google service invocation URL) are password protected.

As opposed to other popular tracking tools, Matomo is entirely self hosted so no data
is processed by third parties. Further all cookie-based tracking was disabled so that no
cookie layer was needed. A page with the terms of service to limit the use to academic
and non-profit use only was added, also talking about what data is logged.

No identifying data is logged. IP addresses are anonymised by removing the last three
digits both in the quota calculations and in the matomo tracking.

6.3.9 VEP Splice Disruption Plugin Development

The SpliceAI VEP plugin uses pre-computed scores to look them up offline. If pre-
computed scores were feasible to compute, this would be the desired method. How-
ever, as will be described in section 6.4.5, calculation of pre-computed scores is infeasi-
ble.

Running predictions in real time on the computer as MMSplice does is not an opti-
mal solution. Installation of the required python framework is non-trivial; and doing



126 Chapter 6. CI-SpliceAI: Software Engineering of an Annotation Tool

so would render the plugin useless as the main annotation logic can be run instead
without the need for the VEP plugin.

The last option would be to send variants from the plugin to the website, re-using
already existing tooling. However, unseen variants could potentially take days to com-
pute, which is not what VEP is designed for; it expects real-time computation.

CI-SpliceAI was therefore not released as a VEP plugin.

6.4 Results

6.4.1 Overview of the Aggregated Splice Variant Dataset

The curated dataset contains 1,316 functionally validated variants, 388 of which have
their exact effect on the mature mRNA annotated with basepair resolution. Figures 6.4
and 6.5 visualise the data and its biases.

Figure 6.4 shows that there is almost a 50/50 split of strandedness and between af-
fecting vs non-affecting variants. 8% of variants are published in multiple sources, all
with consensus. Most variants are SNVs, and most of MNVs are deletions. The data is
skewed toward certain chromosomes, mostly due to many sources investigating breast
cancer.

The variants are distributed across splice sites (Figure 6.5). As expected, variants nearer
to a splice site are more frequently disruptive. The dataset includes some deep intronic
variants that affect splicing and variants near splice sites that do not, both of which are
challenging to predict.
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FIGURE 6.4: The final variant data set consists of 1,316 unique variants. (a) There is an 8% overlap, mainly due to Houdayer et al. (2012)
citing Leman et al. (2018), all with consensus. (b) The data set has an almost 50/50 split between affecting/not affecting and (c) strandedness.
(d) Chromosomes 1, 11, 13, 15, and 17 make up 80% of the variant data set. This could produce biased results. (e) The vast majority of variants are
SNVs; The 7% MNVs are biased towards deletions (f). (g) The 1,316 variants and their broad effect on the mature mRNA is a superset of (h) where,

for 388 variants, the exact position of the skipped acceptor or donor and alternative sites are known with base-pair resolution.
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FIGURE 6.5: All 1,316 variants in relation to their closest splice site. Their binary effect on splicing is indicated by the shaded area and numerator
in the fraction. 57% of sites are closer to a donor than an acceptor site. 23% of variants are in the consensus motif (equally split between acceptors

and donors); 98% of variants within consensus regions are splice affecting.
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6.4.2 Comparison of Training Data to SpliceAI

The collapsed isoform training set contains more splice sites, genes, and chromosomes
than the original SpliceAI training data (Table 6.1). When filtered to the same chromo-
somes, the number of genes and transcripts in CI-SpliceAI is smaller due to the newer
GENCODE version containing fewer transcripts of low quality. The SpliceAI training
data is slightly skewed towards acceptor sites and the new one is slightly skewed the
other way.

No. No. No. Proportion
Chroms Genes Splice Sites Acceptor/Donor

SpliceAI (Train) 19 13,385 391,515 2.1% more acceptor sites
CI-SpliceAI (Filtered) 19 13,240 301,835 3.5% more donor sites
CI-SpliceAI (All) 24 18,580 428,475 3.4% more donor sites

TABLE 6.1: Numeric comparison between the original SpliceAI training set and the
novel collapsed dataset. The novel collapsed training dataset used for training the
final model (bottom row) includes all chromosome, more genes, and more splice sites
than SpliceAI. For comparison only, if filtered to the same chromosomes as SpliceAI
(middle row), the collapsed dataset would have slightly fewer genes and splice sites
than SpliceAI. While the SpliceAI dataset has slightly more acceptor than donor sites,

mine has slightly more donor sites.

18% of start and stop annotations of genes (primary transcript for SpliceAI, all isoforms
for CI-SpliceAI) and 58% of splice sites overlap between the lifted SpliceAI training set
and ours when filtered to the same chromosomes.

6.4.3 Performance Comparison of Aberrant Splice Annotation Tools

The models trained on the train split recognises unseen splice sites on chromosomes
1,3,5,7 and 9 with 94% average precision. This is comparable to what was previously
achieved on gencode.v33grch38.collapsed using the train and test code from SpliceAI (sec-
tion 3.4.5 on page 54).

Table 6.2 shows how well all algorithms predict splice disruptions on the binary clas-
sification task. Only three algorithms, the sliding MES, SQUIRLS and CI-SpliceAI an-
notate all variants, the original SpliceAI and MMSplice reach 99% coverage and MES
run via VEP annotates just over half. Missing annotations were handled as if they
annotated no splicing effect, which is how in-silico systems are utilised when filtering
variants. Despite missing almost half of all annotations, MES as run on VEP returns
scores of around 90%. The sliding MES returns the worst scores followed by SQUIRLS.
CI-SpliceAI returns the highest scores with a lead of over a percentage point in all mea-
sures above the second-best algorithm, SpliceAI.
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Coverage AUC-PR Optimal Accuracy (on
Threshold opt. thresh.)

MES (Sliding) 100% 55.68% 2.500 53.42%
SQUIRLS 100% 91.32% 0.074 85.64%
MES (VEP) 58% 92.52% 2.109 86.40%
MMSplice (Splicing Efficiency) 99% 93.03% 1.119 87.23%
MMSplice (Pathogenicity) 99% 94.13% 0.961 88.53%
SpliceAI 99% 96.21% 0.300 90.88%
CI-SpliceAI 100% 97.25% 0.190 92.17%

TABLE 6.2: Annotation coverage and predictive performance of all algorithms an-
notating if splicing is disrupted or not, on all 1,316 variants. Coverage refers to how

many variants were annotated.

Figure 6.6 visualises the precision-recall curves of all algorithms which shows how
well the algorithms investigated can balance these two measures by adjustment of the
threshold. The area under the curve is highest for CI-SpliceAI and its curve is smooth,
indicating good adaptability to different thresholds. In contrast, the plateaued high
recall values on the MES (VEP) curve for example shows that it cannot detect some
splicing defects without classifying everything as disruptive. This is due to it only be-
ing applied on an existing splice site with a small context size, causing it to miss deeper
variant effects and pseudo exon creation. For every algorithm (except for the sliding
window MES), the area under the curve is high. The sliding MES performs barely bet-
ter than random chance and its curve is very rugged, indicating unstable and unusable
results. The deep learning curves are significantly more smooth which should facilitate
balancing of sensitivity and specificity, with CI-SpliceAI scoring higher than SpliceAI
for almost all thresholds.

The area under the Precision Recall (PR) curve describes how well the algorithms per-
form under all possible thresholds. This is however not how clinicians would use
the algorithm: For variant diagnostics, a researcher is not interested in every possi-
ble threshold. Instead, the threshold will be set to trade off false positives and false
negatives as the study requires. This means that even if the gap between CI-SpliceAI
and SQUIRLS is only 6 percentage points for all thresholds, at high recall there is a sig-
nificant gap in precision. For example, at a recall of ⇠ 0.96, the difference in precision
between the two algorithms is 19 percentage points.

Performance on predicting the exact effect of a variant on the mature mRNA is doc-
umented in table 6.3. CI-SpliceAI ties with SpliceAI when predicting donor gains
and performs at least one percentage point better modelling acceptor gains and splice
losses. The sliding MES again not produce usable results. None of the other algorithms
models splicing on a per-nucleotide basis which is needed for this analysis.
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FIGURE 6.6: Precision-Recall curves of all algorithms on all 1,316 variants. The area
under each curve is indicated in the legend. CI-SpliceAI outperforms all competitors

at almost every position. Its shape is evenly round.

Acceptor Gain Acceptor Loss Donor Gain Donor Loss

MES (Sliding) 0.00% 1.16% 2.33% 2.25%
SpliceAI 87.50% 77.10% 79.07% 78.93%
CI-SpliceAI 93.75% 78.55% 79.07% 82.02%

TABLE 6.3: How well algorithms predict the exact variant effect on the mature
mRNA, based on the subset of 388 variants
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Figure 6.7 compares how well SpliceAI and CI-SpliceAI (trained on the 19 training
chromosomes) can predict splice sites on the gene CFTR (comparable to Figure 1B in
Jaganathan et al., 2019), located on chromosome 7 which is excluded from the training
data. SpliceAI predicts a range of splice sites that are not contained within the vali-
dated isoform data, including one exon, and misses a few, with 15 mispredictions in
total, half of which are false positives. CI-SpliceAI, when being trained the same sub-
set of chromosomes, mispredicts seven sites with no false positives, and when trained
on the whole dataset, it still misses four. The new algorithm performing better is not
entirely surprising as it was trained on only junctions in GENCODE, whereas the orig-
inal SpliceAI was also trained on novel junctions from the GTEx cohort. Due to the
higher concentration of junctions in the SpliceAI data (table 6.1), SpliceAI recognises
many more false positives than CI-SpliceAI. When the CI-SpliceAI model is trained on
all chromosomes, splice site recognition improves further, however the model does not
learn every single splice site.

The predictive error, i.e. the absolute difference between prediction and ground truth,
is compared between SpliceAI and CI-SpliceAI and visualised in Figure 6.8. It shows
that predictions improved (compared to the original SpliceAI algorithm) on all posi-
tions, the model did not get biased towards acceptors, donors, or consensus regions,
independent of the distance to their closest respective variant. It also shows however
that there are data points where predictive quality decreased for some variants. The
majority of predictions produced already small errors originally due to the high per-
formance, and the majority of them improved even more. Confidence improved for a
magnitude of correctly classified variants, with some significantly high improvements.
A cluster of highly confident mis-predictions was identified where CI-SpliceAI is even
more certain of the wrong label; this might indicate systematic flaws in both deep learn-
ing models or even in the ground truth.
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FIGURE 6.7: Predictions of splice sites in CFTR in comparison to the ground truth from GENCODE. Mispredictions are marked with a red X. The
original SpliceAI algorithm misses one exon, adds one extra, and mispredicts 15 sites in total, many of which are false positives. When trained on
the training chromosomes of collapsed data, CI-SpliceAI misses two exons, does not add any extra exons, and mispredicts 7 sites in total. Extending
training to all chromosomes (including this gene) causes only one missing exon prediction and the overall error decreases to 4 mispredicted sites

in total.
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(A) Offset of predictive error (B) Magnitude of predictive error

FIGURE 6.8: Comparison of the predictive error between SpliceAI and CI-SpliceAI on all 1,316 variants. The predictive error is the absolute
difference between the most significant predicted annotation score and the ground truth. 78% of predictions in CI-SpliceAI have a different output
than when annotated with SpliceAI, out of which 73% have a smaller predictive error. (a) Predictions for CI-SpliceAI improved relative to SpliceAI
for almost every position; there is no obvious bias where predictions worsened at a specific distance from a splice site, neither for the site type
nor the distance from it. (b) The magnitude of the change in predictive error. Variants on the identity line did not change their score; points lying
above the identity line improved, points below worsened. The big cluster at the bottom left corner represents points where our algorithm shows

improved confidence in correct predictions. A small cluster of mispredicted variants of high confidence have worsened (top right corner).
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6.4.4 Installation and Usage of the Annotation Module

The python annotation module improves on some small flaws of the original module.
It also supports batch predictions on the GPU by automatic padding of sequences of
different length and dynamic batching based on data size, which should increase its
applications significantly. It does not only annotate VCF files, it can also be used pro-
grammatically in a python script.

The python module for variant annotation can be installed with the command

pip install cispliceai[cpu]

The ”[cpu]” suffix installs tensorflow without GPU support. Alternatively, the user
can install and set up CUDA and a compatible tensorflow version with GPU support
manually and omit the CPU suffix. An in-depth guide on how to install and use the
module was published to https://ci-spliceai.com/install and PyPI.

At the time of writing, the CI-SpliceAI python module was downloaded 1,118 times
from PyPI (Flynn, 2022).

6.4.5 Infeasibility of Pre-Computed Scores and VEP Plugin

The prototypical implementation has shown that pre-computing all scores is infeasi-
ble on the IRIDIS infrastructure. Within 60 hours, the algorithm annotated 8.5 million
variants using four GPUs, equal to 35,617 variants per GPU hour. All 1 base inser-
tions and 1-4 base deletions make up 12.6 billion variants. It was estimated that even
with a potential 3% performance gain (by optimising the prototypical implementation)
and using every single GPU on the IRIDIS supercomputer, calculating the same vol-
ume of variants as published by the SpliceAI authors would take over a year. Even in
a more realistic framework, such as only annotating SNVs in protein coding regions,
eight GTX1080 and four Tesla V100 were estimated take over 100 days.

As this would be infeasible, it was decided to not pre-compute any scores. This also
means that no VEP plugin was developed.

6.4.6 Usability and Throughput of CI-SpliceAI Web

6.4.6.1 Frontend Concept

The website (Figure 6.9) is designed with focus on the VCF input. A big, central text
area in the middle allows copy and paste of VCF files. All command line parameters
are be accessible through form elements such as buttons, checkboxes, and dropdowns.

https://ci-spliceai.com/install
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FIGURE 6.9: The CI-SpliceAI Web main page. Users can submit a VCF file and choose
parameters as needed.

A main navigation links to all code repositories, the PLOS One publication, and an
installation guide. Before submitting any variants, the user must consent to terms and
conditions underlying the academic non-profit scope of the project.

Faulty inputs and errors due to quotas are communicated transparently to the user. A
simple footer links to all uni resources.

The website works on all resolutions and is fully responsive even on mobile devices,
although it’s improbable anybody would want to use it on a mobile phone. It was
tested to work on the latest desktop versions of Firefox, Chrome, Safari, Edge, and on
the latest mobile Chrome and Safari (Android and iOS respectively).

All error cases relating to the Google backend are being handled, i.e. if the system runs
out of money or if Google workers fail, an appropriate message is shown to the user.
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6.4.6.2 Website

The CI-SpliceAI Web page is accessible under https://ci-spliceai.com.

In the current configuration, CI-SpliceAI Web can process between 23 and 100 variants
per minute, depending on the requested maximum distance from a variant. This can
easily be increased by scaling the number of concurrent workers up.

Based on the monthly Google limits on request count, computation, storage, and mem-
ory, CI-SpliceAI Web should be able to process between 70,000 and 300,000 variants per
month, again depending on the requested maximum distance form a variant. There is
however another constraint on network egress, which is hard to estimate due to HTTP
traffic commonly using a gzipped protocol; so far this constraint did not constitute a
bottleneck of the application.

In the 20 weeks following the release of CI-SpliceAI, 1,075 unique anonymised IP ad-
dresses visited the website. In this period, 49,790 variant annotations have been queried
from the database plus another 5,596 where the input reference did not match the Ref-
erence Genome. Nobody reached the maximum daily quota of read or create vari-
ant quotas, one submission exceeded the restriction of 2,000 variants per VCF input.
The average computation time on Google is 5 seconds per variant (between 3 and 23
seconds in the extremes). At the time of writing, the database consists of 16,346 an-
notations describing 7,494 variant inputs for machine learning. Variants affect 6,471
reference annotations.

There was a bug with certain deletions (those using ”.” as ALT annotation) that caused
these variants to not being computed and, after a week, clogged the whole queue. This
bug started on the 09/10 and was fixed 9 days later after a user reached out. To prevent
future issues from being undetected this long, error monitoring and reporting was set
up on the Google cloud. Excluding these 9 days and the pre-publication period, the
total waiting for a variant annotation from submission to insertion into the database is
1:36 minutes on average, ranging from 3 seconds to 24 minutes in the extremes.

6.5 Discussion

The variant dataset of 1,316 variants is one of the biggest datasets of its kind to date. 388
variants were additionally annotated with the exact effect on the mature mRNA with
basepair resolution, which allows measurement of how well the underlying process
is modelled by the algorithm. To my knowledge, this kind of dataset and analysis is
completely novel and shows that the deep learning predictions from sequence alone
can do more than just binary annotation, in contrast to MMSplice, MES (through VEP),
and SQUIRLS.

https://ci-spliceai.com
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The CI-SpliceAI software package should allow the wider scientific community to use
the application and hopefully prove useful for their research. All code to train, test, and
apply the application was re-implemented and open sourced.

The new CI-SpliceAI model outperforms all competitors in all measures, except at pre-
dicting donor gains where it tied with SpliceAI. It is important to highlight that the
final SpliceAI model was not trained on all chromosomes and excluded chromosomes
1,3,5,7 and 9. It was verified that re-training SpliceAI on all chromosomes improved
performance by only 0.05 percentage points on the average-precision, which is negligi-
ble.

MES performed competitively when used as intended, as a VEP module, even though
it only annotated 58% of variants. The algorithm design however does not allow recog-
nition of non-canonical and novel splice sites. It was evaluated if an application of
the algorithm around each variant would compensate that. While in theory this allows
MES to recognise gains of novel sites, in practice its predictive utility for both the binary
and exact classification tasks was so poor that using MES in this way is not advisable.
It shows that 9 or 23 bases around a site in question are not sufficient to predict splice
sites and how genetic variants affect mature mRNA.

The train code is technologically equivalent to the SpliceAI training code, except for
some technical optimisations. However there are no new algorithmic choices concern-
ing the CNN architecture. Optimising the underlying ML model is an important av-
enue to be further investigated, which was unfortunately not possible due to limited
experience in the design of deep learning algorithms and time constraints.

For ease of use, a website with batch interference on the Google Cloud was imple-
mented. This website is more versatile than the one provided by the Broad Institute as
it allows many variants to be queried or submitted in a batch. It should also be much
more resilient due to the decoupling of the prediction logic from all the other admin-
istrative tasks. A quick extension could be to also allow predictions using SpliceAI.
Depending on usage, an email notification system could be added to let users know
when their results are ready. This is currently not needed as waiting times observed
are very short.

Unfortunately, it was too computationally expensive to pre-compute scores, and the in-
tegration into Ensembl VEP was therefore not possible. The website should be enough
of a replacement as it accepts VCF files and is even easier to use than VEP.

6.6 Conclusion

Supervised ML algorithms can never be better than the ground truth they were trained
on. Research into the quality of training data is time consuming but an important step
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for ML research.

CI-SpliceAI, trained on recent GENCODE data, collapsed splice sites annotated by hu-
mans rather than including novel sites from GTEx data, was shown to outperform all
of its competitors.

To measure application to the clinical setting, the dataset from chapter 4 was further
enriched with two new sources to a total of 1,316 variants, on which CI-SpliceAI was
not only the best algorithm predicting if variants disrupt splicing, but also outperfomed
or tied SpliceAI on a subset of 388 variants where the exact effect on the mature mRNA
was known.

CI-SpliceAI was published in PLOS One (Strauch et al., 2022), and all of its train, test,
and variant data is available to the general public open source. To help adaptation, a
new website was created where users can annotate variants online free of charge, with a
Google Cloud backend and a database cache allowing submission of new and querying
known variants. Objective 4, publishing CI-SpliceAI, is considered resolved.
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Chapter 7

Conclusions

7.1 Summary of Investigations

Splicing was shown to not only be an inherently complex task from a biological stand-
point that can cause versatile disease, but understanding and modelling it through
computational methods was shown to be of comparable difficulty. Chapter 1 set the
scene for this work by establishing how computational investigation of splicing disease
can help speed up diagnosis at larger scale for personalised medicine. Statistical and
ML techniques were introduced and used throughout this project. Concrete applica-
tions of these techniques and strategies supporting development, data, and ethics were
laid out in chapter 2, connecting the theoretical background with practical strategies.

Chapter 3 investigated how to predict mature mRNA from DNA sequence. Investiga-
tions were conducted from the ground up, starting with curation of splice data, statisti-
cal analyses and visualisations thereof, leading to trained ML models to predict splicing
from raw DNA sequence. Two major dataset variations were created and investigated,
one representing strong splice sites from primary isoforms and one incorporating a col-
lapsed representation from all isoforms curated by researchers. Shallow models were
trained and functioned as a baseline for comparison.

To evaluate clinical utility, all models were compared in a separate experiment on pa-
tient variant data in chapter 4. To do so, variant data and their effect on splicing was
aggregated from literature. All ML algorithms were evaluated and it was found that
deep learning models are significantly better than shallow learners.

Chapter 5 investigated if shallow learning models working on raw sequence data can
be improved through feature engineering. Annotation of conservation scores and pro-
tein binding sites did not improve predictions. Neither did a new encoding of DNA
sequences in semantic space, where similar sequences are encoded close to each other,
which was hoped to compensate for the limited context sizes of basline classifiers.
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With this knowledge, the best model found in chapter 4 was made production-ready
and compared to competing algorithms in the field in chapter 6. This novel deep learn-
ing model, named CI-SpliceAI, is a variant of SpliceAI where only the train data was
replaced. While the authors of SpliceAI took primary isoforms and enriched them with
novel splice sites from GTEx data, CI-SpliceAI is trained on the collapsed representa-
tion of HAVANA annotations which arguably are of higher quality. A whole software
package around CI-SpliceAI was created and published to hopefully encourage other
researchers to evaluate it on their data. The software package supports offline annota-
tions via command line or python scripts. A website with corresponding infrastructure
and software engineering was created where researchers can submit variant data for
free. Splice annotations are generated in the cloud and cached to a database free of
charge and without registration. To further test its predictive capabilities, a subset of
variants was annotated with their exact variant effect on the mature mRNA, and it was
shown that the new CI-SpliceAI perfomed better in predicting the variant effects on the
mature mRNA, or at least tied with SpliceAI in one measure.

7.2 The Relevance of Weaker Splice Sites

The initial statistical investigations conducted in chapter 3 did not find big differences
between the dataset consisting of primary isoforms and the one that collapsed all man-
ually curated isoforms into one. However when applying supervised ML, the differ-
ences became very much apparent and it was shown that classification of weaker splice
sites was a harder task to achieve, which is something reported by the SpliceAI authors
as well.

This is an example of an ongoing discussion in the ML field. Lower scores do not
always indicate lower applicability. It relates to a fundamental decision every ML re-
searcher needs to face: When should we focus our research to increase performance,
and when do we need to re-focus our experiments towards application and accept neg-
ative results. The fail-fast mentality introduced by Silicon-Valley certainly has its ben-
efits for rapid prototyping and translation to production, but the wider ML research
community needs to be careful not to overly focus on preliminary results and abort
investigation when negative results occur.

Despite objectively worse prediction scores on the dataset containing weaker splice
sites, the deep CNNs trained to recognise all splice sites (including weaker ones) out-
performed all other models in the variant data experiment of chapter 4. The models’
ability to predict aberrant splicing is a better indicator for clinical utility and to deter-
mine if the algorithms model splicing correctly. This result shows that higher perfor-
mance scores need to be contextualised and might not always tell the whole story. By
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training on harder examples, performance measures went down but clinical utility in-
creased. From a biological perspective, this makes sense: Recognition of weaker splice
patterns is intuitively harder, so a reduction in performance of recognising harder splice
sites is to be expected. It also makes sense that despite lower scores, clinical utility
grows, because variants might affect these weaker transcripts.

Of course the clinical experiment transfers the bias of ”strong sites are easier to recog-
nise” from one evaluation dataset to another. In the same way that recognition of
weaker splices is harder, prediction of how weak sites are altered or created by a variant
is intuitively expected to be harder as well. If therefore all variants in the clinical data
were related to weak splice sites, of course the model trained to recognise those would
come out on top. This reduces the confidence in the higher scores and revives the dis-
cussion of higher scores versus utility. I tried to mitigate this bias by the law of big
numbers and collecting as many variants as I could, so that variants affect both strong
and weak isoforms. There also is a likely selection bias in my source material. Scien-
tists are more likely to run functional analysis to determine splice defects on obvious
candidates, which might bias my data towards strong splice sites. Nevertheless which
way the data is skewed, I would also argue that by collecting data from many studies,
my methods are sampling a set of variants of interest to the scientific community, so
the data bias might actually in favour of current research needs.

The SpliceAI authors observed the discrepancy of lower scores in splice recognition
and higher clinical utility too. In the domain of ML, publication of lower scores is often
frowned upon and we as researchers are often forced to re-focus publications accord-
ingly. They did so by splitting the relevant parts of their publication in two: Reporting
performance on splice site recognition of the primary isoform, then training on a much
more difficult set of sites without reporting their (lower) splice site recognition scores,
and applying this model to variants. That way they could always report the higher
score. The paper reports on this arguably quite briefly compared to the overall size of
their publication, which caused some confusion on my side during re-implementation
and when publishing my CI-SpliceAI algorithm. Ultimately I followed the same pat-
tern of reporting measures on two models, which I followed up with a dedicated dis-
cussion in the paper.

We can therefore conclude that incorporation of weaker splice sites of high quality is
indeed very important to improve clinical utility.
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7.3 Deep versus Shallow Learning

To determine if the immense model depth and context size of SpliceAI is actually re-
quired for this task, simpler baseline algorithms were trained and tested on reduced
data sets using cross-validation (chapter 3). Direct comparison of how well deep and
shallow learning can recognise splice sites was not feasible due to the computational
complexity and the immense size of the human genome. This is a common problem:
Deep learning models can make use of parallel computation on the GPU, allowing to
process significantly more data, while shallow models cannot.

Again, the variant analysis described in chapter 4 provided a fair comparison to com-
pare deep and shallow learners. It was found that shallow models are not good at
predicting (aberrant) splicing from DNA sequence alone. The deep learning models
outperformed shallow learners significantly and were able to predict splice disrup-
tions very accurately. The big context size and model complexity allowed the CNNs
to predict even deep intronic variants, and the design of convolutional layers allows
the deep learning networks to consider many neighbouring nucleotides at a time and
can therefore detect patterns independent of their relative position, such as binding
sites.

Novel strategies to close the gap between shallow and deep learning models were ex-
plored in chapter 5. Literature shows basically two ways of how to predict splicing
disease: Either using raw sequences and deep learning, as SpliceAI does, or by using
engineered features and simple algorithms such as the approach taken by SQUIRLS or
MES. SQUIRLS uses heavily engineered features where parts of the problem, for exam-
ple the distance to the next splice site, are already known; researchers have introduced
their domain knowledge and arguably parts of the solution to assist simpler algorithms
in their predictions. This work evaluated a compromise between both worlds by using
DNA sequences annotated with features we know are part of or indicative of splicing
without disclosing too much of the solution. Annotation of conservation scores and
regulatory binding sites and encoding of the DNA sequences in a semantic space were
tried out to bridge the gap. Unfortunately, none of these strategies worked and it seems
that one has to decide between deep learning on raw data or heavily engineered data
with simpler algorithms.

Which of these two options is preferable is a mix of personal taste and how we focus
our engineering towards a desired use case. To me the approach of using raw sequenc-
ing data is preferable for annotation of splice disruptions because the algorithm needs
to model the splicing process itself. Its ability to predict aberrant splicing directly corre-
lates with how well it understands the mechanism. An algorithm that has never seen a
splice variant during development and is not handed parts of the solution is preferable
to tools that have been trained specifically on variant data where parts of the solution
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are in its input, especially considering that in chapter 6 deep learning was observed to
actually outperform SQUIRLS.

Inputting parts of the solution is a potential bias and is another example that comparing
scores is not the only measure to assess the utility of a tool. Engineering existing splice
sites as input to MES or SQUIRLS causes predictive performance to increase, but at a
potential price of reducing their utility. This price was measured for MES in chapter 6.
By design, MES as run through VEP was not able to classify novel splice sites because
it is only run on known junctions from the reference genome. By exploiting parts of
the problem through algorithmic design, the VEP implementation of MES is unable
to predict novel junctions. When accommodating this by running MES in a window
around the variant rather than the known splice site, predictions were comparable to
random. MES does not understand or model splicing. The deep learning tools on the
other hand seem to do: They outperformed all competitors including shallow learners
with highly engineered features.

The deep learning approach also enabled prediction of the exact effect of a variant on
the mature mRNA with reasonably high success rates. Excluding SpliceAI and the
near-random results for MES (when applied around the variant), none of the competi-
tors could even provide this analysis. The experiment to predict the exact variant effect
in this scale is, to my knowledge, completely novel. The 388 annotated variant effects
were released to the general public to encourage the community to repeat similar anal-
yses and focus on how to refine algorithms to model splicing this granularly. As a tool
for large scale screening and variant prioritisation, based on the experimentation con-
ducted, it can be concluded that CI-SpliceAI might be the best tool currently available.

But even if SpliceAI and CI-SpliceAI are the best tools to predict splice disruptions as
argued earlier, the argument made that higher scores are not always equal to better
application remains to be made again. While the results suggest that deep learning can
model splicing better than shallow learning, it was not possible to demonstrate how.
Feature contributions of deep learning were analysed towards both recognition of splic-
ing and annotation of splice variants. The results were so detailed and the big context
size made it impossible to understand how the algorithm reached its conclusions. This
is the other side of the coin: Deep learning is an inherent black-box algorithm and no
insight into the underlying biological mechanism could be derived. If features were al-
ready engineered by a human with intent and domain knowledge, even if it contained
parts of the solution, investigating feature contributions could return more meaningful
insights. Selecting model architectures and designing data pipelines is always subject
to the investigations conducted. As a research instrument to generate insights into the
underlying biology, deep learning might not be the best approach yet, at least not with
the techniques evaluated.
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7.4 Standards in Bioinformatics

There is no single standard of how transcripts, genes, or variants are reported and de-
scribed in the literature. The SpliceAI development team reported splice sites per gene
symbol which is ambiguous, rather than utilising a more standardised ID such as the
one provided by Ensembl. This complicated merging datasets of different sources and
versions such as when annotating paralogs. Gene symbols change on different builds
and often a gene has more than one symbol, rendering them as a means of identification
less ideal.

For the description of variants, the standard from HGVS unfortunately does not solve
this problem. As described in chapter 4, despite the HGVS ID describing variants in a
standardised format, it actually encapsulates many sub systems and different ways to
describe relative positions. Allowing many different IDs to describe the same variant
on the DNA defies the purpose of an ID, which by definition is to identify something
uniquely. Variant IDs are also often reported incorrectly due to the complexity of the
system. There are efforts to help validation and correction of these IDs, for example
VariantValidator, a freely accessible online tool (Freeman et al., 2018). Making such
harmonisation tools mandatory upon publication would certainly help studies aggre-
gate data in a more streamlined way.

Similarly, there is not one gold standard for the laboratory experimentation conducted
in the data sources. Evidence for or against aberrant splicing in the literature was de-
rived by many different methods, ranging from high quality functional evidence based
on sequencing over minigene assays to merely computational indications in one of the
sources, which had been removed due to insufficient data quality. Efforts to standard-
ise this aspect, such as the ACMG guidelines, are helpful if applied, however this is
not always the case and studies often employ multiple labs with different protocols,
making classification under these guidelines more intransparent.

These problems are certainly rooted in the diversity of nations, programs, and corpo-
rations where genetic research is conducted in. It is easy to point out these flaws as
an interdisciplinary researcher coming from a different field, and even more so with-
out suggesting better strategies. Computer Science however is an example of how a
community introduced standardisation, even if, arguably, it might have overshot some
times in doing so, on an international scale with many directly competing organisa-
tions. In the bioinformatics domain, it would be recommendable for the leading jour-
nals in the discipline to come together to decide on one standard so that others would
follow for convenience.

Another important technological standard that is currently changing is the sequenc-
ing technology itself. One of the popular techniques to date for sequencing data is
next generation sequencing, a cost-effective method which sequences millions of short
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reads in parallel which then have to be re-assembled and aligned to each other (Beh-
jati and Tarpey, 2013). This puzzle process is done in-silico and cannot be perfect: Due
to many repetitions on the human genome, many short reads will be the same and
it’s impossible to decide if they constitute duplicate reads of the same area or are ac-
tual repetitions on the genome. This invariably leads to regions that are not sequenced
my next-generation sequencing and might be important in the overall regulatory pro-
cesses. This can be solved by long read sequencing techniques like nanopore technol-
ogy, which in the last few years became reliable enough to potentially become a new
gold standard (De Coster et al., 2021). Long read sequencing allows sequencing of
heavily repeated regions such as telomere regions, which are impossible to sequence
correctly with short reads. The Telomere-to-Telomere consortium is an effort to se-
quence the full human genome with nanopore technology to derive the first complete
human reference genome without gaps and including all repetitions and they recently
published the full sequence of the X chromosome (Miga et al., 2020). Substitution of
the human reference genome (GRCh38) for a completely sequenced genome derived
by this technology will certainly improve data quality and lead to new insights. Judg-
ing by how many labs and publications are still using the deprecated GRCh37 genome
however, wide-spread adaptation is unlikely to happen timely after a hypothetical full
publication of a long-read reference genome.

7.5 Tissue-Specific Splicing

The annotations used throughout this work are based on GENCODE and HAVANA
annotations. Identification of the primary transcript from GENCODE was not always
straight forward and did not match with the selection from SpliceAI. A more contem-
porary data set to identify primary transcripts for future work would be the MANE
Select transcript, which was not available at the start of research. The selection of the
primary isoform through either method is the strictest one and is not specific to alterna-
tive splicing. While SpliceAI introduced many novel splice sites from GTEx to account
for tissue specific splicing, this work used the more conservative approach of incorpo-
rating HAVANA annotations by filtering of the GENCODE source and collapsing them
to one pseudo transcript. The results have shown that this more conservative approach
seems to be easier for splice site and variant classification, and it improved clinical ap-
plication. By collapsing them into one, the information on tissue-specific mechanisms
however is lost. This might be the biggest drawback of the investigations conducted,
and explain some discrepancy to the ground truth in the variant data experiment.

The ground truth to the variant data from chapter 4 is evaluated in different tissues,
for example whole blood and kidney. Some splice irregularities might not occur in the
tissue where functional analysis was performed on. If a computational model could
provide tissue specific predictions, not only could this potential bias be evaluated, it
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may also be of great clinical utility. Obtaining certain tissue samples such as from the
brain is not feasible for diagnosis of many patients. If we could instead sequence their
DNA and predict tissue-specific mRNA expression, diagnosis of disease might be sig-
nificantly easier and precise.

By filtering GTEx junctions to a specific tissue, relevant splice sites could be extracted to
form a new training dataset. Instead of the binary annotation format as used through-
out this work, splice site strength could be used as ground truth, which in itself might
improve predictive accuracy and clinical application. ML algorithms could then be
trained to predict splice site strength, one algorithm per tissue-specific dataset. How
well these models perform could be evaluated in a common tissue such as whole blood
before application to more inaccessible regions.

A second, more sophisticated approach would be to combine isoform predictions into
one model instead of separating each tissue. The model architecture would need to
have some input to indicate the desired tissue context. Expression of biomarkers of
regulatory elements respective to certain tissue may be used to do so, how exactly to
derive these needs to be explored.

I believe this is the most promising next step that will help bringing more precise and
more relevant diagnosis to patients in the near future.
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Appendix A

Code and Data Availability

A.1 Splice Site and Variant Prediction

All data and code used in chapters 3, 4, and 5 are persisted into one project accessible
within the university git repository located at https://git.soton.ac.uk/yls1n18/

spliceai.

Different versions of the codebase are found in git branches of this project:

1. Conservation score experiments are found in the branches feat/phylop46, feat/phy-
lop100, feat/phast46, and feat/phast100

2. Semantic encoding using the trained DNA2Vec model is saved to the branch
feat/dna2vec

3. Protein regulation binding sites were incorporated on the branch feat/ese

4. Pre-computed scores were evaluated on the branch feat/precompute

5. GTEx encoding of the variant pipeline was started at the branch feat/gtex (not
finished and not part of this thesis)

6. The master branch contains all remaining experiments

A.2 DNA2Vec

The code used to train DNA2Vec on IRIDIS (chapter 5) is found at https://git.soton.
ac.uk/yls1n18/dna2vec.

https://git.soton.ac.uk/yls1n18/spliceai
https://git.soton.ac.uk/yls1n18/spliceai
https://git.soton.ac.uk/yls1n18/dna2vec
https://git.soton.ac.uk/yls1n18/dna2vec
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A.3 CI-SpliceAI

CI-SpliceAI was described in chapter 6.

The intermediary code bases used for peer-review are saved within the university git
repository, available at https://git.soton.ac.uk/ci-spliceai.

All final data and code for CI-SpliceAI was released to the general public:

1. CI-SpliceAI was published with PLOS One (Strauch et al., 2022)

2. The online annotation website (CI-SpliceAI portal) is available at https://ci-spliceai.
com

3. Variant data in VCF format is available at https://ci-spliceai.com/external/
?resource=variants/variants.vcf

4. Variant data with all metadata in CSV format is available at https://ci-spliceai.
com/external/?resource=variants/variants.csv

5. Code to train CI-SpliceAI is available at https://ci-spliceai.com/external/
?resource=code/train

6. Code to annotate variants using CI-SpliceAI is available at https://ci-spliceai.
com/external/?resource=code/annotation

7. Code used to evaluate and compare CI-SpliceAI with competitors is available at
https://ci-spliceai.com/external/?resource=code/comparison

https://git.soton.ac.uk/ci-spliceai
https://ci-spliceai.com
https://ci-spliceai.com
https://ci-spliceai.com/external/?resource=variants/variants.vcf
https://ci-spliceai.com/external/?resource=variants/variants.vcf
https://ci-spliceai.com/external/?resource=variants/variants.csv
https://ci-spliceai.com/external/?resource=variants/variants.csv
https://ci-spliceai.com/external/?resource=code/train
https://ci-spliceai.com/external/?resource=code/train
https://ci-spliceai.com/external/?resource=code/annotation
https://ci-spliceai.com/external/?resource=code/annotation
https://ci-spliceai.com/external/?resource=code/comparison
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Glossary

ACMG American College of Medical Genetics 5, 77, 146

ANN Artificial Neural Network xii, 13, 14, 19, 23, 88, 89

AUC-PR Area Under the Precision-Recall Curve xvi, xix, xx, 9, 15, 24, 26, 27, 54, 55, 73,
79, 83, 95–97, 102, 104, 105, 108, 130

CI-SpliceAI Collapsed Isoform SpliceAI xvi, xvii, 8, 26, 84, 109–111, 115–121, 123, 126,
129–139, 142, 143, 145, 150

CNN Convolutional Neural Network xiii, xix, 6, 14, 15, 17, 20, 26, 28, 29, 31, 32, 34, 37,
39, 40, 42, 44, 45, 54, 61–63, 65, 73, 79, 83–85, 104, 109, 110, 112, 138, 142, 144

CPU Central Processing Unit 29, 110, 112, 116, 123, 124, 135

CUDA Compute Unified Device Architecture 112, 135

CV Cross Validation 18, 19, 28, 31, 42, 44, 54, 62, 92, 95, 96, 104

CVT Covariance Type 43, 50

DNA Deoxyribonucleic Acid 4, 5, 7, 8, 15, 17, 20, 23, 24, 29, 34, 36, 42, 73, 74, 83–86, 88,
90, 108, 115, 120, 124, 141, 144, 146, 148, 151

DNA2Vec DNA to vector xx, 8, 26, 86, 88, 90, 92, 93, 95, 98, 104, 108, 149

ESE Exonic Splicing Enhancer xvi, xix, 2, 6, 87, 91, 96, 106

ESS Exonic Splicing Silencer xvi, xix, 2, 87, 91, 96, 106

GENCODE Gene Encyclopedia of DNA Elements xiii, xvii, xix, 7, 15, 17, 30, 32–37,
39–42, 44, 45, 54, 58–60, 62, 65, 83, 84, 111, 117, 129, 132, 133, 139, 147

GPU Graphics Processing Unit xvi, 18, 25, 28, 29, 110, 112, 114, 115, 118, 119, 123, 135,
144

GRCh Genome Reference Consortium human xiii, xix, 32, 34, 35, 42, 45, 58, 59, 69, 71,
72, 76, 77, 111–115, 119, 123, 147
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GTEx Genotype Tissue-Expression xiii, 15, 17, 33–35, 41, 45, 54, 62, 65, 83, 132, 139, 142,
147–149

HGMD Human Gene Mutation Database 70, 76, 77

HGVS Human Genome Variation Society 68–72, 146

hnRNP Heterogeneous nuclear ribonucleoprotein 2, 4

HPC High-Performance Computer 25, 26

ISE Intronic Splicing Enhancer 2, 106

ISS Intronic Splicing Silencer 2

Logit Logistic Regression xx, 11, 20, 27, 32, 44, 54, 55, 66, 79, 83, 92, 95–97, 104, 105

MANE Matched Annotation from NCBI and EMBL-EBI 33, 34, 60, 147

MES MaxEntScan 6, 17, 110, 117, 118, 129–131, 137, 138, 144, 145

miRNA microRNA 3

ML Machine Learning xv, 6, 7, 9, 14, 17, 19–21, 23, 25, 26, 31, 32, 34, 36, 39, 40, 62, 65–67,
73, 83, 85, 86, 106, 109, 110, 113, 114, 116, 118–120, 122, 123, 138, 139, 141–143, 148

MLP Multi-Layer Perceptron xii, 14, 92

MLPC Multi-Layer Perceptron Classifier xii, xx, 13, 14, 27, 29, 32, 44, 54, 55, 79, 92,
95–97, 104, 105

MMSplice Modular Modeling of Splicing 6, 66, 87, 106, 107, 110, 114, 117, 125, 129,
130, 137

MNV Multi Nucleotide Variant xv, xvii, 4, 77, 78, 110, 111, 126, 127

mRNA messenger RNA xi, xvii, xx, 1–5, 8, 118, 126, 127, 130, 131, 137–139, 141, 142,
145, 148

NAS Nonsense-associated Alternative Splicing 106

NCBI National Center for Biotechnology Information 30, 33, 68, 70–72

PCA Principal Component Analysis xiii, xiv, 22, 23, 43, 47–52, 88, 93, 98, 99, 107

PPM Position-Probability Matrix 36, 45

PR Precision Recall 130

PWM Position-Weight Matrix xiii, xiv, 6, 30, 36, 37, 42, 43, 46, 52, 53, 55, 100
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PyPI Python Package Index 111, 135

RBF Radial-Basis Function xi, 10, 27, 54, 55, 79, 96, 97, 104, 105

ReLU Rectified Linear Unit xii, 13, 16

RF Random Forest xiv, xx, 13, 20, 27, 32, 44, 54–56, 62, 66, 79, 94–97, 102, 104–106

RFE Recursive Feature Elimination xvi, 20, 21, 28, 29, 32, 44, 55, 63, 93–95, 102, 103,
107, 108

RNA Ribonucleic Acid 1–3, 5, 33, 34, 36, 68, 70, 71, 74, 116, 152

RNN Recurrent Neural Network xii, 13, 14

SNV Single Nucleotide Variant xv, xvii, 4, 68, 73, 74, 77, 78, 111, 126, 127, 135

SQUIRLS Super-quick Information Content and Random Forest Learning for Splice
Variants 6, 7, 66, 83, 85, 87, 107, 108, 110, 117, 129, 130, 137, 144, 145

SR serine/arigine-rich 2

SVC Support Vector Classifier xi, xix, xx, 10–12, 20, 27, 32, 40, 44, 54, 55, 61, 79, 92,
94–97, 104, 105

SVD Singular Value Decomposition 22, 23

t-SNE T-distributed Stochastic Neighbour Embedding 23, 93, 98, 100, 107

UCSC University of California, Santa Cruz 26, 30, 61, 63, 91, 92

VCF Variant Call Format xvii, 110, 111, 113, 115, 117–119, 122–124, 135–138, 150

VEP Variant Effect Predictor xv, 70, 72, 77, 78, 111, 113, 114, 117, 125, 126, 129, 130, 135,
137, 138, 145
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