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Abstract

A meta-model of the input-output data of a computationally expensive simulation is often
employed for prediction, optimization, or sensitivity analysis purposes. Fitting is enabled by a
designed experiment, and for computationally expensive simulations, the design efficiency is of
importance. Heteroscedasticity in simulation output is common, and it is potentially beneficial to
induce dependence through the reuse of pseudo-random number streams to reduce the variance
of the meta-model parameter estimators. In this paper, we develop a computational approach to
robust design for computer experiments without the need to assume independence or identical
distribution of errors. Through explicit inclusion of the variance or correlation structures into the
meta-model distribution, either maximum likelihood estimation or generalized estimating equa-
tions can be employed to obtain an appropriate Fisher information matrix. Robust designs can
then be computationally sought which maximize some relevant summary measure of this matrix,
averaged across a prior distribution of any unknown parameters.

1 Introduction
The fitting of a model to a sample of input-output data of a computationally expensive simulation
is an important task in simulation analytics (Santner et al., 2003). This model of a model (meta-
model) can then be efficiently employed for prediction, optimization, or sensitivity analysis purposes.
Sensitivity analyses are often well served by low-order polynomial (usually quadratic) meta-models,
as they enable the characterisation of impact (main effects), synergies (two factor interactions) and
diminishing returns (squared terms) (Gill et al., 2018; Sanchez et al., 2012).

Fitting of the meta-model is enabled by a designed experiment, and for computationally expensive
(often stochastic) simulations, the efficiency of the design is of importance (Fedorov, 1972). For
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linear meta-models, factorial-based designs (often fractional and supplemented with central and axial
points if fully quadratic) are typically prescribed (Montgomery, 2012), as these are efficient under
D-optimality if the typically assumed condition of independent and identically distributed (iid) errors
holds.

Kleijnen (2015) is perhaps the seminal text on experimental design for simulation, and discusses
the implications of departures from iid conditions for the analysis of linear meta-models, which Gill
(2019) illustrates. However, while the assumption of independence can actually be assured in simula-
tion by employing unique pseudo random number (PRN) streams at each design point, this overlooks
an important variance reduction (design efficiency) opportunity. Schruben and Margolin (1978) were
the first to devise a design efficient PRN assignment strategy for linear meta-models and (generally)
factorial-based designs (Gill (2021) illustrates with a simple example).

However, Kleijnen (2015) is relatively silent on the question of design when iid conditions do
not hold for linear meta-models (“the literature pays little attention to the derivation of alternative
designs for cases with heterogeneous output variances” and “the literature pays no attention to the
derivation of alternative designs for situations with common random numbers (CRN)”). Furthermore,
simulation outputs are often discrete and sometimes only binary, so the broader range of generalized
linear (meta-)models (GLMs) are typically required (i.e., linear, Poisson, and logistic) (Dunn and
Smyth, 2018). Woods et al. (2006) point out that the design efficiency for GLMs depends on the
regression parameters yet to be estimated, so that robust designs are often sought by computational
optimization.

In this paper, we seek to bring to the attention of the simulation analytics community literature
which address some of these design-related gaps. In particular, we illustrate in some detail design
construction for linear meta-models in the presence of heteroscedasticity (drawing on Atkinson and
Cook (1995)) and GLMs in the presence of correlation (Woods and van de Ven, 2011), before con-
cluding with a proof of concept for the idea of jointly optimizing both the design and PRN assignment
for linear meta-models.

2 Robust design construction for GLM

2.1 GLM designs
In the GLM framework, for each input of q factors xi = [xi,1,xi,2, . . . ,xi,q] ∈ Rq i = 1, . . . ,n we have
a simulation response Yi with a probability mass/density function p(yi) assumed to come from the
exponential family of distributions and where there is an appropriate link function g(·) such that
g(EY [Yi|xi]) = fT(xi)βββ . Here βββ = [β0,β1, . . . ,βd−1]

T is a column vector of d (q < d ≤ n) unknown
parameters and fT(xi) : Rq→ Rd is a row vector of d terms that may include first order and higher
order interactions of the q input factors.

The goal is to choose the set of n design points X = [x1,x2, . . . ,xn]
T ∈ Rn×q to efficiently esti-

mate βββ . Minimizing the approximate volume of the covariance ellipsoid of the maximum likelihood
estimator of βββ is equivalent to maximizing the determinant of the Fisher information matrix (hence
called D-optimal)

X∗ = argmax
X
|IX(βββ )|, IX(βββ ) j,k =−EY

[
∂ 2`(Y,F,βββ )

∂β j∂βk

∣∣∣∣βββ] (1)

where F = [fT(x1), fT(x2), . . . , fT(xn)]
T is an n× d matrix and `(y,F,βββ ) = ∑

n
i=1 log p(yi|fT(xi,βββ )) is

the (assumed twice differentiable) log-likelihood for the observations y= [y1,y2, . . . ,yn]
T at the design

points X given the parameters βββ .
Using second order partial derivatives of log p(yi|fT(xi),βββ ) with respect to βββ , then taking expec-

tations with respect to Yi, we obtain the following expression for the expected Fisher information
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matrix
IX(βββ ) = FTPF (2)

where P= diag
(
1/
[
g′(EY [Yi|xi])

2VarY [Yi|xi]
])

which is a known function of F and βββ for the relevant
exponential family distribution using in the GLM.

Designs based on (1) and (2) assume a fixed number of design points n (an exact design). If
instead we ascribe to xi a weight 0 ≤ wi ≤ 1 (with ∑i=1 wi = 1 thus representing how sampling
effort is distributed across design points) and relabel xi = [xi,1,xi,2, . . . ,xi,k,wi], so that X ∈ Rn×q+1,
then the approximate design problem is to find X∗ = argmaxX |IX(βββ )| where IX(βββ ) = FTWPF where
Wii = wi. From this approximate design, an exact design of a particular size can be generated by
sampling according to the weights w∗i .

2.2 Robust design
Obviously the requirement to know βββ a priori is not useful for finding designs for estimating βββ .
A common approach to remove the βββ dependency is to average (some monotonic function of) the
optimality criterion across a prior distribution π(βββ ) of possible values of βββ

X∗ = argmax
X

∫
log(|IX(βββ )|)π(βββ )dβββ (3)

where the logarithm of the determinant is often used for numerical stability purposes. We call this
pseudo-Bayesian approach (Chaloner and Verdinelli, 1995; Englezou, 2018) robust design, as it is
robust to misspecification of the parameters (though not the meta-model - see Section 6). The prior
can be based on previous investigations or subject matter expertise, or a non-informative probability
distribution if required.

Often, the integral in (3) is not analytically tractable, so numerical integration is required. Quadra-
ture rules are possible but are more cumbersome in higher dimensions, so here we use a direct Monte
Carlo estimator, so that

X∗ ≈ argmax
X

1
M

M

∑
m=1

log(|IX(βββ m)|) ,

where βββ 1,βββ 2, . . . ,βββ M are iid draws from the prior π(βββ ).
Robust design using a Monte Carlo estimate of the expected Fisher information requires the max-

imization of a random quantity with variance of O(1/M). Many standard non-linear optimization
algorithms, such as Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963), cannot handle ran-
dom variables in the function to be optimized. Instead, we apply simulated annealing, which is a
probabilistic optimization technique (Kirkpatrick et al., 1983). Other methods for stochastic opti-
mization such as the Approximate Coordinate Exchange algorithm (Overstall and Woods, 2017) can
be more efficient for more complex functions, but simulated annealing is sufficient here.

3 Robust designs for departures from iid conditions

3.1 Linear meta-model in the presence of heteroscedasticity
Consider a q = 2 design problem x = [x1,x2] ∈ [−1,1]2 for the full second-order polynomial linear
meta-model, so fT(xi) = [1,xi,1,xi,2,xi,1xi,2,x2

i,1,x
2
i,2] and g(·) is the identity function, but where Yi ∼

N(fT(xi)βββ ,σ
2v(xi)) with v(xi) = exp(xiααα[1+2xiααα]). Here ααα is a column vector with the same

dimension as xi but otherwise unknown. Thus, the Yi are independent, but ||ααα||22 controls the degree
of heteroscedasticity.
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To find robust designs, we need the expected information matrix for this meta-model. Since Yi is
normally distributed, it’s log-likelihood at design point xi is

`i(yi, fT(xi),βββ ,ααα) =
−(yi− fT(xi)βββ )

2

2σ2 exp(xiααα[1+2xiααα])
− xiααα[1+2xiααα]

2
− log

(√
2πσ

)
and it is relatively easy to show that EYi

[
∂ 2`i

∂β j∂αk

]
= 0 given EY [Yi|xi] = fT(xi)βββ , which means the

Fisher information matrix in (1) will be block diagonal with two blocks; one for βββ and the other for
ααα . For these

∂ 2`i

∂β j∂βk
=

−Xi, jXi,k

σ2 exp(xiααα[1+2xiααα])

∂ 2`i

∂α j∂αk
= −1

2
Xi, jXi,k

(
4−
[
4− (1+4xiααα)2] (yi− fT(xi)βββ )

2

σ2 exp(xiααα[1+2xiααα])

)
.

Clearly, IX(βββ ) takes the form (2) with Pii = (σ2 exp(xiααα[1+2xiααα]))−1 = (σ2v(xi))
−1 and given

EY
[
(yi− fT(xi)βββ )

2|xi
]
=σ2 exp(xiααα[1+2xiααα]) we see that IX(ααα) =XTQX with Qii =

1
2 [1+4xiααα]2.

We note that for linear meta-models, P and Q do not depend on βββ . This accords with Atkinson and
Cook (1995) and their original derivation which showed that the information expected to be obtained
about βββ based on the i−th design point is given by fT(xi)f(xi)/(σ

2v(xi)) while for ααα it is presented
as JT J, where J = (1+4xiααα)xi/

√
2.

As a means of comparison,the prior considered in Atkinson and Cook (1995) for ααα placed equal
mass on the following fives values: [1,0], [0.75,0.25], [0.5,0.5], [0.25,0.75] and [0,1]. The motivation
is that these values span the directions in which the variance increases with x1 and x2, and that there
is no prior knowledge to suggest which direction is more likely than another. Figure 1 shows the local
D-optimal designs for each unique value of ααα along with the robust design, assuming the mean is
known (thus focusing on IX(ααα)).

Simulated annealing was employed to locate each design including the design weights. To do
so, the optimisation was initialised with a random selection of design points and design weights with
a relatively large value of n. Throughout the optimisation, if some weights approached zero, then
the corresponding design points were removed, which is why some optimal designs have different
numbers of unique experimental runs.

Notably, these designs are very similar to those presented in Figure 5 of Atkinson and Cook
(1995) (including the weights wi, not shown here). For the locally optimal designs, symmetry about
ααα is observed. This is expected given how ααα and x exist in the model. The robust design resembles a
compromise between the designs found for each value of ααα with the largest experimental effort being
assigned to x = [1,1]. Further, the points for x1 = 1 and x2 = 1 align with design points selected
for different values of ααα . Lastly, there is an inner point placed near x = [0,0] which appears to be a
compromise between the additional design point found at extreme values for ααα .

3.2 Logistic meta-model in the presence of correlation
3.2.1 Fisher information matrix via generalized estimating equations

Now consider a Bernoulli response Yi, so that P(Yi = 1) = pi =EY [Yi|xi] and g(·) is the logit function,
with q = 3 input factors and their pairwise interactions

logit(pi) = β0 +β1xi,1 +β2xi,2 +β3xi,3 +β4xi,1xi,2 +β5xi,1xi,3 +β6xi,2xi,3 + εi (4)

but where we have added latent random variables εεε ∼ N(0,R) with a general n× n covariance ma-
trix Ri, j = R(xi,x j). Unlike the linear meta-model, the logit(·) introduces non-linear terms into the
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Figure 1: D-optimal designs for various values of ααα and the robust (Bayes) design.

expression for the log-likelihood, which will render the analytical integration over εεε to obtain the
marginal likelihood impossible. Therefore, it is not possible to obtain an exact analytic expression to
the expected Fisher information matrix for the model given in (4).

However, following Woods and van de Ven (2011), we can obtain an approximation using gen-
eralized estimating equations (GEE) (see Liang and Zeger (1986) for details). For the logistic GLM
with correlations, the GEE leads to the following approximation (in the weighted design context)

IX,R(βββ )≈ FT(WP)1/2R−1(WP)1/2F, (5)

where the dependence on βββ is observed through P with Pii = pi(1− pi)= exp
(
fT(xi)βββ

)
(1+exp

(
fT(xi)βββ

)
)−2,

and Wii = wi with weight 0≤ wi ≤ 1 (with ∑i=1 wi = 1 thus representing how sampling effort is dis-
tributed across design points) and relabel xi = [xi,1,xi,2, . . . ,xi,k,wi], so that X ∈ Rn×q+1.

For the purposes of this study, we assume constant (homoscedastic) variance R(xi,xi) = σ2. The
covariance structures we consider are as follows (for i 6= j).

• Independent: The standard assumption in which (5) reduces to (2), i.e. R(xi,x j) = 0.

• Constant: All observations are equally correlated with each other, i.e. R(xi,x j) = σ2ρ.

• Auto-regressive: The observation index is treated as a time index, i.e. R(xi,x j) = σ2ρ |i− j|.

• Distance-kernel: Isotropic spatial correlation between design points, i.e. R(xi,x j)=σ2ρe−
1
4‖xi−x j‖2

2 .
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Here ρ ∈ [0,1] is a correlation parameter (for now considering only positive correlations). Each
correlation structure could, in principle, be valid for a specific computer simulation experiment. If
this structure is know a priori, then that structure should be used for the design. However, for most
experiments, the correlation structure is not known. Therefore, we seek to understand the efficiency
of each correlation assumption under misspecification.

3.2.2 Evaluating design efficiency under misspecification

To consider the question of design efficiency for the logistic GLM with correlations (4), we perform
a simulation study. For each of the above correlation structures we obtain a robust design using
our computational approach, and assess the efficiency under misspecification of that correlation. We
define some notation to express this comparison more formally. Let X∗(R) denote a robust design
under the D-optimality criterion (3) using the GEE approximation (5) with covariance matrix R. Then
define

J(X,R) =
∫ ∣∣IX,R(βββ )

∣∣1/d
π(βββ )dβββ ≈ 1

M

M

∑
m=1

∣∣IX,R(βββ m)
∣∣1/d

where the d−th root is routinely used to allow fair comparisons between designs. The ratio J[X1,R]/J[X2,R]
gives the D-efficiency of a design X1 relative to a reference design X2 given a covariance matrix R
(Woods and van de Ven, 2011). The D-efficiency can be interpreted as the amount of additional ex-
perimental effort needed, whereby if D-efficiency is 0.5, then you would need to run the design twice
to obtain as much information as the optimal design.

Now consider two covariance matrices R1 and R2, then X∗(R1) denotes the robust design assum-
ing R1, and similarly X∗(R2) is robust assuming R2. It follows, that

Misspecification D-Efficiency(R1,R2) =
J[X∗(R1),R2]

J[X∗(R2),R2]
, (6)

represents the D-efficiency of a design using the misspecified R1 when R2 was the true covariance.
We evaluate this misspecification efficiency (6) for each pair of covariance functions and do this

for a range of ρ ∈ [0.05,0.95] to investigate how the efficiency depends on the correlation strength.
For each design simulation, we optimize n weighted design points for the q = 3 factor model using
the robust design expected utility estimated with M = 1,000 prior samples. When evaluating the
final efficiency losses we use a more precise Monte Carlo estimate with M = 20,000. The resulting
efficiency as a function of correlation strength is provided for each pair of covariance structures in
Figure 2.

Note that the efficiencies > 1 suggest too small a value of the Monte Carlo sampling rate (M =
1,000). However, to produce Figure 2 required 25 robust designs (8 values of ρ for each of the 3
covariance options dependent on ρ with an additional independent case), with each design run costing
approximately 16 hours of CPU time on a Intel Xeon Gold 6140 processor (total of approximately
400 CPU hours distributed over 18 cores) which motivated the chosen value of M for this study.

Several important patterns are observed in Figure 2. Firstly, there is almost no penalty for as-
suming a correlation structure when independence is valid. That is, the efficiency of constant, auto-
regressive or distance correlation relative to independence is > 0.9 (Figure 2, blue lines). A similar
insensitivity is apparent for misspecification relative to constant correlation. However, the situation
becomes quite different when considering misspecification relative to auto-regressive or distance-
based correlation. In both cases, the penalty of misspecification increases as the correlation strength,
ρ , increases. Assuming distance correlation when auto-regressive is true performs better overall that
the converse relationship. However, when ρ > 0.7, constant correlation starts to be the better assump-
tion under misspecification by auto-regressive or distance correlation.

Thus, if sufficient knowledge is available to prescribe a correlation assumption with certainty, then
this will always be the best choice. Beyond this unrealistic case, one clear result is that the indepen-
dent assumption should only be used if the risks of misspecification is low. The same can mostly be
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Figure 2: The efficiency of designs under different combinations of assumed (R1) under true (R2)
correlation assumptions plotted against correlation strength.

said for the constant assumption, unless the correlation strength is higher, in which case the more spe-
cific structural distinctions between auto-regressive and distance correlation become apparent. The
choice of auto-regressive or distance based correlation assumptions do not reduce the quality of the
design substantially if independent or constant correlations would have been also been valid choices.
However, the choice of auto-regressive and distance correlation is more complex and depends on the
correlation strength. If one can rule out auto-regressive correlation, that represents temporal correla-
tion, then this causes few problems and distance correlation should be used. However, if it is unclear
if distance or auto-regressive are possibilities, then additional exploration is needed. In general we
arrive at the following recommendations.

1. If R(xi,x j) is known, use this in the design process.

2. If R(xi,x j) is uncertain, but auto-regressive correlation can be excluded, then use distance-
kernel correlation.

3. If R(xi,x j) is completely uncertain, some understanding of the range of ρ is required. If ρ ≤ 0.7
then distance-kernel correlation is more robust, otherwise constant correlation is more robust.

We also investigated the qualitative differences in the design patterns for the various correlation
structures and values of correlation strength ρ . The example spatial patterns shown in Figure 3 corre-
spond to a view along the x1-axes (the other axes views are very similar qualitatively).

Given the efficiency results, it is not surprising that the design patterns look similar for different
values of ρ . However, for a fixed ρ we can observe some differences between designs under different
correlation assumptions. Both the independent and constant correlation cases are characterised with
fewer points, but with relatively constant weights, however, auto-regressive and distance correlation
tend to have more points with lower weights.

4 Joint optimization of design and PRN assignment
Sections 2 and 3 describe design construction for GLMs where iid conditions may not be present. Un-
like physical experiments, where dependence or correlation may arise due to unavoidable constraints
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Figure 3: The weighted design points under different correlation assumptions. The weight of a design
point is represented by the circle radius. View is along the x1-axis.

and nuisance blocking effects need to be accounted for, simulation experiments can guarantee inde-
pendence by using different PRN streams for each design point. However, simulation experiments
can conversely induce correlations by the use of CRN. Schruben and Margolin (1978) were among the
first to clearly illustrate how doing so can improve the D-efficiency of a given design, and provided
an assignment strategy for mostly factorial-based designs. Of interest in this section is the merging of
that idea with the design construction approaches of the previous sections.

4.1 Linear meta-model in the presence of correlation
Suppose there are 2g PRN streams given by g streams (denoted R1, . . . ,Rg) and their antitheses (de-
noted R̄1, . . . , R̄g). Denote the 2g streams R1, . . . ,R2g with Rg+ j = R̄ j, for j = 1, . . . ,g and let b(R j) be
the random block effect associated with PRN stream R j. Suppose now that design point xi is assigned
PRN stream Rk(i) for some assignment strategy k(·). Let Z be the n×2g matrix with

Zih =

{
1 if Rh is used for experimental run i;
0 otherwise,

and b =
[
b(R1), . . . ,b(R2g)

]T be the 2g× 1 column vector of unique random block effects. Then,
γγγ = Zb =

[
b(Rk(1)), . . . ,b(Rk(n))

]T is the column vector of n random block effects as assigned in the
experiment. Now E(γγγ) = 0n and Var(γγγ) = R, where R is the n×n matrix with

Ri, j = Cov
(
b(Rk(i)),b(Rk( j))

)
=


σ2ρ+ if k(i) = k( j);
−σ2ρ− if |k(i)− k( j)|= g;
0 otherwise,

8



where ρ− > 0 and ρ+ > 0 are unknown.
Here ρ+ and −ρ− are positive and negative correlations induced by using the same PRN stream

or its antithesis for experimental points i and j. Following Schruben and Margolin (1978), the model
is

Yi = fT(xi)βββ + γi + εi (7)

where E(εεε) = 0 and Var(εεε) = σ2 (1−ρ+)I. For a linear meta-model, we can use the Ordinary Least
Squares estimator β̂ββ =

(
FTF

)−1 FTy, which can be shown to have variance (under (7))

Var
(

β̂ββ

)
= σ

2 (FTF
)−1 FTVF

(
FTF

)−1
where V = (1−ρ+)I+ZRZT .

4.2 Optimal blocked designs
Optimal design for blocked experiments has been considered previously (see, for example, Chapters
7 and 8 of Goos and Jones (2011) or Chapter 15 of Donev et al. (2007)). What is different here
is that there is positive correlation between elements of b whereas these are usually assumed to be
independent. Design specification here involves both the choice of X = [x1, . . . ,xn]

T and the PRN
allocation k = [k(1), . . . ,k(n)] where k(i) ∈ {1, . . . ,2g}.

While before we used the (determinant of the) Fisher information matrix, as the goal is to mini-
mize the volume of the covariance ellipsoid, here we can directly and equivalently use the (log of, for
numerical stability) determinant of Var

(
β̂ββ

)
(X∗,k∗) = argmin

(X,k)

(
log |FTVF|−2log |FTF|

)
.

However, V depends on unknowns ρ− and ρ+ through R. As before, we instead seek a robust
design under a joint prior distribution π(ρ−,ρ+) with domain [0,1]2

(X∗,k∗) = argmin
(X,k)

(∫ 1

0

∫ 1

0
log |FTVF|π(ρ+,ρ−)dρ−dρ+−2log |FTF|

)
(8)

and as the integral in (8) is not typically available in closed form, it is evaluated here using a 2-
dimensional Gauss-Legendre quadrature rule (see, for example, Weiser (2016))

(X∗,k∗)≈ argmin
(X,k)

(
M

∑
m=1

ωm log |FTVmF|−2log |FTF|

)
where ω1, . . . ,ωM are the quadrature weights and Vm is V evaluated at the corresponding quadrature
nodes (ρ(m)

− ,ρ
(m)
+ ). For illustrative purposes it suffices here to use a rudimentary joint optimization

(X∗,k∗)≈ argmin
X

(
min

k

(
M

∑
m=1

ωm log |FTVmF|

)
−2log |FTF|

)
(9)

where the inner minimization is performed by enumerating over all possible k and the outer using a
simple coordinate exchange algorithm (Meyer and Nachtsheim, 1995).

4.3 Proof of concept

Suppose n = 10, and there are q = 2 inputs with X = [−1,1]2, fT(xi) =
[
1,xi,1,xi,2,xi,1xi,2,x2

i,1,x
2
i,2

]
so that d = 6, and there is g = 1 PRN stream. The discrete set of values in the coordinate exchange
algorithm is {−1,−0.9,−0.8, . . . ,0.8,0.9,1}. A robust design (denoted (XR,kR)) is found via (9)

9



where the prior joint distribution for ρ− and ρ+ used were independent uniform distributions. This
is compared to the design (denoted XC) found by minimizing (9) but where the same PRN stream
is used for all design points (i.e., CRN where k(i) = 1, i = 1, . . . ,n), and to the design (denoted XI)
found by minimizing (9) but with a different PRN stream for each design point (i.e., independent,
which is equivalent to minimizing − log |FTF| and is the standard D-optimal design). Note that these
are the same comparisons as made by Schruben and Margolin (1978).

Both the independent and CRN designs converged to the face-centered central composite de-
sign with center point, while the robust design had repeated points at [−1,−1] and [+1,+1] and did
not utilise the center point. The minimum values of log |Var

(
β̂ββ

)
| are −9.1,−11.8 and −13.0 for

the independent, CRN and robust designs, respectively, thus demonstrating the benefit of inducing
correlation over favouring independence and of the benefit of using a combination of common and
antithetic random number streams.

Finally, an interesting comparison is the performance of the independent and CRN designs under
the optimal allocation of the two PRN streams (R1 and R̄1). It turns out that log |Var

(
β̂ββ

)
|=−11.8 >

−13.0 in both cases. This demonstrate the utility of jointly optimizing over the design points X and
PRN assignment k, i.e. simply using a standard D-optimal design and then applying the optimal PRN
assignment strategy to that design (as originally performed by Schruben and Margolin (1978)) can be
outperformed by joint optimization.

5 Summary
Kleijnen (2015) provides important guidance on how to analyse simulation experiments in the event of
departures from the ubiquitous independent and identically distributed assumptions. Heteroscedas-
ticity in simulation output is not uncommon, and it is potentially beneficial to induce dependence
through the reuse of pseudo-random number streams to reduce the generalized variance of the meta-
model parameter estimators.

In this paper, we focus on the experimental design (vice analysis) aspects, and employed a com-
putational approach to robust design for expensive computer experiments without the need to assume
independence or identical distribution of errors in the meta-model to be developed. Through explicit
modelling of the variance component for linear meta-models, the Fisher information was obtained
within a maximum likelihood inference framework, while explicit modelling of the correlation struc-
ture for generalized linear meta-models and generalized estimating equations can be employed to
approximate the Fisher information matrix. In both cases, robust designs can then be computationally
sought which maximize some relevant statistic of this matrix, averaged across a prior distribution of
any unknown parameters.

Moving away from the assumption of independence implies that a correlation structure be intro-
duced, the misspecification of which could have a negative effect on the performance of the design.
We built upon Woods and van de Ven (2011) to begin investigation of robust designs for GLMs with
correlations. However, our work is distinct to Woods and van de Ven (2011) as we investigated the
effect of covariance matrix misspecification for a variety of correlation structures, in the context of a
3-factor logistic GLM with pairwise interactions. While our results are not exhaustive, the cases of
constant correlation, auto-regressive correlation, and distance correlation represent major classes of
correlation structures (uniform, temporal, spatial) and are helpful to inform some recommendations.

As illustrated in Section 4, it may be effective to consider ρ as part of the vector of unknown
parameters and hence integrate over a joint prior probability density. The choice to look at the effi-
ciencies of designs as a function of ρ was primary to identify any dependencies between the effect
of misspecification and the correlation strength. Since we mainly observe this dependency for the
auto-regressive cases, robust design over ρ may only be required if auto-regressive is a feasible cor-
relation structure. It is also important to note that this simulation approach is designed to obtain some
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heuristics for dealing with correlation assumptions. In practice, the D-efficiency for a real problem
will never be available. However, the results provide some means to assist in the interpretation of con-
fidence regions that are obtained for a design. That is, one must assume some misspecification and
therefore treat predicted parameter uncertainty estimates as underestimates for the true uncertainty
that could arise when the computer experiment is performed.

Finally, Schruben and Margolin (1978) pioneered the search for effective assignment strategies
of pseudo-random numbers to design points, but did so with fixed (textbook) designs (and for linear
meta-models only). In this paper, we provide an example proof of concept of the possibility of
jointly optimizing the design and pseudo-random number assignment and show that gains in statistical
efficiency can be made.

6 Future research
This paper has assumed the vector of covariates, representing the simulator inputs and configuration
settings, are continuous. However, discrete covariates must also be dealt with. Challenges arise in this
case since the structure of covariances can be more complex. Furthermore, stochastic optimization is
substantially more challenging to deal with in the discrete covariate case. While simulated annealing
can deal with discrete spaces (Kirkpatrick et al., 1983), it will be more computationally intensive.
Unfortunately, methods like Approximate Coordinate Exchange (Overstall and Woods, 2017) can
only deal with continuous design spaces, however, other methods may exist to handle a discrete
design space (Meyer and Nachtsheim, 1995). Further work is needed to determine the most effective
computational scheme for this case.

Model misspecification is a broad challenge in robust design for computer experiments. While
accounting for heteroscedasticity and correlations improves the situation substantially, there is still
the potential for bias in the design due to the meta-model being unable to replicate some behaviours
of the complex computer model. One approach to deal with this is the inclusion of an additional
discrepancy term using Gaussian processes (Englezou, 2018; Kennedy and O’Hagan, 2000).

For the joint optimization of the design and PRN assignment, the coordinate exchange algorithm
used relied on complete enumeration of all possible k(·) assignments. The size of this set grows fast
with the number of PRN streams g and would appear difficult to apply even for g > 1 and is therefore
not particularly scalable. A more sophisticated approach will be required.

For non-linear meta-models we have focused on the logistic GLM that corresponds to a bi-
nary outcome from a simulation. However, the computational approach we consider here for ro-
bust design would also be applicable to other GLMs of interest, such as binomial and Poisson re-
sponses. For the joint optimization problem, a generalized linear mixed model (GLMM) approach
might be applicable (see Chapter 17 of Pawitan (2013)). The meta-model would then have the form
g(EY [Y|X]) = Fβββ +γγγ , where γγγ = Zb as in Section 4. The unknown parameters βββ could be estimated
via maximum likelihood where Var(β̂ββ )≈

(
FT MF

)−1 and there are various forms for M under differ-
ent approximations (Pawitan, 2013) . This modelling approach is an example of a GLMM, for which
optimal design have been considered previously (see Xu and Singh (2021) and references therein).
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