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Multi-mode Hollow-core Anti-resonant Optical Fibres

by William Henry Warren Shere

The demonstration, during the course of this doctoral project, of an effectively
single-mode hollow-core anti-resonant optical fibre with loss rivaling that of
single-mode silica fibre represents a huge milestone in the development of
hollow-core fibre technology that has the potential to transform the field of fibre optics
and its many applications. As attention increasingly turns to a focus on deploying
hollow-core fibre in real world applications, one largely unexplored topic is that of
multi-mode hollow-core anti-resonant optical fibres. Unlike in solid-core fibre where
multiple modes can be guided with virtually the same attenuation, multi-mode
guidance in hollow-core fibres presents a unique challenge in the form of large
differential loss - and in general optical properties - between modes. Nevertheless
multi-mode guidance in a hollow core presents opportunities in many application
areas, including high-power laser delivery, short-haul telecommunication systems and
light-gas interaction systems, whilst offering lower loss, nonlinearity and latency
across larger bandwidths than solid-core fibres.

This thesis presents research concerning the nature of multi-mode guidance in
anti-resonant optical fibres, their characteristics and their design for practical
applications. Numerical simulation is applied extensively to study in detail the origins
of the differential modal properties of these fibres, including attenuation and
dispersion, leading to a new understanding of the processes involved. This facilitated
the development of methods to engineer the differential properties of the
anti-resonant fibres in order to achieve multi-mode guidance in fibres with a variety of
micro-structure designs. Methods based on structural design and deployment
conditions are explored. Design techniques are presented for multi-mode
anti-resonant fibres targeting specific requirements in several application areas:
short-haul telecommunications, delivery of high-power laser light and finally, fibre
based gas sensors.
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1

Chapter 1

Introduction

Fibre optics has fundamentally altered our technological relationship with light,
providing the ability to guide light in flexible optical fibres, and has now become
ubiquitous in many technological areas. Laser light can be delivered in flexible fibres
over metre distances for medical and surgical applications or high-power machining.
Unparalleled precision sensors can be implemented based on fibre inferometry and
multi-kilometre long distributed sensors can be created in optical fibre. The widest
deployment of optical fibre however, and where their impact has been felt most
strongly, is in telecommunications. This is also perhaps the application area where it is
easiest to chart the revolutionary rise of fibre optics in modern technology. It also
indicates the point, soon to be reached and arguably already present, where current
state-of-the-art solid-core silica fibres can rise no further.

The first transatlantic optical fibre communication system, “TAT-8”, was deployed in
1988 and connected Lands End, United Kingdom, Penmarch, France and Tuckerton,
United States with a capacity of approximately 560 Mbit/s [1]. Today, in 2022,
networks consisting of 1000s of kilometres of optical fibre in globe-spanning terrestrial
and undersea cables form the backbone of the internet and a single optical fibre can
transmit more than 10 Tbit/s over 10000 km [2]. This revolutionary advancement of
fibre optic technology was spurred by the observation of Kao and Hockham in 1966
that silica optical fibre could become a viable telecommunications platform if material
impurities could be reduced to bring optical losses below 20 dB/km [3]. This
threshold was reached and then surpassed, and in a little over a decade solid-core
silica fibres with losses of 0.2 dB/km at a wavelength of 1550 nm were demonstrated
[4, 5]. However, any significant improvement of solid-core silica fibres is unlikely
beyond this point as the optical performance in these fibres is fundamentally limited
by the intrinsic properties of the silica material itself. Chief among them are:
attenuation, driven by the fundamental Rayleigh scattering limit at short wavelengths
below 1.3 µm and intrinsic material absorption beyond 1.6 µm; nonlinearity; and
dispersion [6–8]. Current systems are almost within a factor 2x of achieving the
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theoretical maximum capacity offered by solid-core fibre [6, 9]. It is believed that a
fundamentally different class of optical fibre, not governed by the intrinsic material
limitations of solid-core silica, will be required to enable a continued growth of the
capabilities and capacity of fibre optic technology.

The advent of hollow-core fibres is arguably the most exciting development in optical
fibre technology for the past twenty years. Hollow-core fibres which confine light by
anti-resonant guidance exhibit ultra-low nonlinearity, latency and dispersion owing to
guiding more than 99.99% of light in air and have the potential for attenuation lower
than solid-core fibres over larger bandwidths [10, 11]. The unique guidance properties
of hollow-core anti-resonant fibre (ARF) promises a solution to the data capacity
demand in decades to come [12] and suggests the potential for enhancement of
current applications and development of novel technologies [13–17]. So far, ARF
technology has sought to emulate only the dominant solid-core platform which is
based on the standard single mode fibre, but opportunities and a huge untapped
potential lies in multi-mode hollow-core fibres, an investigation of which is the main
topic of this thesis.

1.1 Motivation

The idea of guiding light in hollow-core optical fibres is as old as the field of fibre
optics itself [18]. Air guidance is attractive for the ability to avoid the dispersion,
nonlinear response, latency and material absorption incurred by propagating light in
optical materials. Hollow-core fibres therefore combine the best features of
air-guidance with the benefits of optical fibre, namely flexible and reliable guidance. It
was not until the advent of fibre with micro-structured cladding, first demonstrated
practically in 1999 [19], that the optical loss in hollow-core fibres was reduced to the
level of dB/m, the minimum acceptable for most applications. Since the first
hollow-core fibres, research progressed at a blistering pace and, in addition to making
use of their novel properties in a range of applications [16], just 5 years later a
hollow-core fibre was fabricated with losses of just 1.7 dB/km [20]. These early
hollow-core fibres were based on photonic-bandgap guidance (PBGF) but more
recently anti-resonant fibres were suggested. ARFs were initially thought necessarily
to have higher losses, but in 2014 Poletti showed theoretically that by careful design of
the micro-structure cladding, losses could be be reduced not just below PBGFs but in
principle also to lower values than the minimum loss of solid-core silica fibre [10].

Once again, research progressed at a phenomenal pace. Figure 1.1 shows the reported
minimum loss values since 2015 for fabricated single-mode hollow-core fibres based
on anti-resonant guidance. In less than a decade ARFs, and in particular the
nested-element anti-resonant nodeless fibre (NANF), have gone from a purely
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numerical concept to realised fibres with sub-0.5 dB/km losses across the
telecommunication wavelengths [21]. Finally, in 2022 the slightly modified
double-nested anti-resonant nodeless fibre (DNANF) was fabricated for the first time
with measured loss of just 0.174 dB/km, equal to the minimum loss recorded in
single-mode solid-core fibre [22, 23]. In parallel with these efforts, single-mode ARFs
have been investigated for practical applications which included telecommunication
demonstrations [24, 25] and theoretical analysis suggests that existing NANFs are
capable of between 2x and 5x the data bandwidth of current long-haul
telecommunication solid-core fibres [12]. In high-power laser fibre delivery a NANF
has been demonstrated delivering 1 kW continuous power over 1 km, an order of
magnitude greater than state of the art in solid-core fibres [26]. Meanwhile, a strong
understanding of the fabrication process has been developed [11, 27–29]; 100s of
kilometres of single-mode NANF have been fabricated in the lab and commercial
NANF cables are currently available [30].

FIGURE 1.1: Reported minimum loss values for fabricated hollow-core anti-resonant
fibre between 2015-2022 [21, 22, 31–36] compared to the minimum reported loss in
solid-core fibre [23]. Loss is measured at the telecommunications wavelength, 1550
nm, in post-2018 fibres. Minimum loss values for pre-2018 fibre were recorded at

shorter and longer wavelengths in the near-infrared and visible.

With phenomenal accomplishments demonstrated in the design and fabrication of
single-mode ARFs, attention is increasingly turning to applications that can exploit
their potential. In this thesis, a different class of ARFs are investigated, specifically
those that guide multiple optical modes.

1.1.1 Why Multi-mode

Research into hollow-core anti-resonant fibre has so far largely focused on achieving
low-loss, single-mode guidance. This is representative of the fact that many fibre optic
applications strongly benefit from the modal purity of single-mode guidance,
including long-haul telecommunications. A great many applications, however, benefit
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or even require multi-mode guidance in areas as diverse as short-haul
telecommunications, power delivery and gas sensing [37–40]. When using
multi-mode lasers as sources, multi-mode fibres are necessary for high coupling
efficiency and even single-mode sources benefit from reduced alignment and focusing
tolerances with multi-mode fibres. The topic of multi-mode nonlinear optics has
attracted significant interest in recent years; enhanced non-linear effects in multi-mode
fibres can be exploited for spectral engineering or soliton formation in ARFs by filling
the hollow-core with particular gasses that exhibit desirable nonlinear effects [40–45].
In sensing, the most sensitive hollow-core fibre sensors based on light-gas interaction
employ inter-modal interferometry in few-mode fibre [46, 47] whilst novel distributed
sensors based on inter-modal coupling have been suggested [48].

Despite the myriad of applications, both novel and existing, that are suggested by
multi-mode guidance in ARFs, there has been very little research into this topic with
only a few examples of fabricated few-mode ARF and very little theoretical
investigation reported in literature [48–50]. In this thesis the principles of multi-mode
guidance in ARF are investigated, techniques for designing low-loss few- and
multi-mode ARFs are devised and the practical considerations for several real-world
applications are considered.

1.2 Thesis Outline

A background of the topic is presented in Chapter 2. The chapter begins with a broad
introduction to the physics of fibre optics, describing the fundamental equations and
properties of optical modes that are of crucial importance for understanding the
behaviour of optical fibres. This is followed with a brief history and description of the
fundamentals of of hollow-core anti-resonant fibre and their unique guidance
properties. An introduction to the finite element method, the numerical technique
used to simulate ARF in this thesis, is given next.

Chapter 3 is concerned with investigating the sources of differential leakage losses
between the modes of multi-mode ARF. By considering the transverse power flow in
tubular ARF structures based on a single ring of non-touching capillaries, the
geometric cladding features that are associated with leakage loss are identified. An
analysis of loss is conducted based on considering the strength of coupling to cladding
modes guided within these geometric features. This is used to identify the existence of
phase-mismatch windows, a useful concept for designing multi-mode ARF. A model
for leakage loss, based on coupling to cladding modes, is shown to give good
agreement to numerically simulated fibres. A comparison with NANFs suggest that
this model would be applicable to these structures also.
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Chapter 4 investigates the challenge of designing low-loss, few-moded ARF with a
fixed core size that would be compatible with current short-haul multi-mode
telecommunication standards. The limit of NANFs for multi-mode guidance with
such a core is identified including when the fibres are deployed under bend. Using the
concept of phase mismatch windows, described in Chapter 3, a technique is devised
for designing the cladding for NANFs to maximise multi-mode guidance. It is
discussed how this technique applies to double-nested nodeless anti-resonant
nodeless fibres (DNANFs). Further geometries with additional adjacent nested
elements are considered and the anti-resonant leakage inhibited fibre (ALIF) is
identified as a promising candidate for short-haul telecommunications. A method for
approximating the cladding modes of this structure, crucial for designing ARF, is
described. Using this method an ALIF is designed that guided 7 mode-groups with
lower loss than the solid-core multi-mode short-haul standard. This fibre design is
investigated further for the purposes of short-haul telecommunications and
differential modal delay is identified as a limiting factor in this application.

Chapter 5 focuses on three potential application spaces for few- and multi-mode
ARFs. Following on from Chapter 4 the dispersion of multi-mode ARF is studied with
a particular focus on differential modal delay, which would limit the achievable data
rate in a single wavelength channel and significantly impact MDM-based links. Two
potential methods of reducing inter-modal dispersion are investigated. Enforcing a
constant bend is shown to be capable of significant reductions in inter-modal
dispersion, however, the additional losses incurred and practicality of an enforced
bend made it an unfeasible technique. Built-in twisting of the fibre is also investigated
but is found ineffective for reducing inter-modal dispersion. Next, the applicability of
ARFs for delivering high-power, multi-mode lasers is considered. The required
modality of an ARF for efficient coupling to lasers of a given beam quality is
determined. A technique is presented for designing NANFs to capture light from
lasers with power in excess of 10 kW. Two such fibres are designed and their optical
loss, damage threshold and dispersion is discussed for the given application. Finally, a
novel approach to improving the sensitivity of fibre gas sensors based on spontaneous
Raman scattering is discussed. Theoretical analysis suggests that by employing
few-mode ARFs signal power can be more than doubled.

Finally, Chapter 6 summarises the conclusions from the work described in this thesis
and suggests direction for further investigations on the topics covered within.
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Chapter 2

Background

This chapter describes the fundamental principles of optical fibres, hollow-core
technology and the modelling techniques employed in this work.

2.1 Optical fibre physics

An optical fibre is a type of electromagnetic waveguide capable of confining and
guiding light. Optical fibres are flexible, made from glass or plastic with a circular
cross section, a diameter less than a millimetre and are used in lengths anywhere from
tens of centimetres to hundreds of kilometres. The waveguide may be given a
polymer coating for protection. There is a wide variety of optical fibre designs but
analysis of the simplest case, step-index fibre, can provide a great deal of insight into
fibre in general.

2.1.1 Electromagnetic waveguides

The behaviour of a light as an electromagnetic wave can be understood by considering
Maxwell’s equations [51]. These are a set of coupled equations that describe the
behaviour and interactions of electric and magnetic fields and underpin much of the
technology of the modern world. Written in differential form these are:

∇ ·D = ρ (2.1)

∇ · B = 0 (2.2)
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∇× E = −∂B
∂t

(2.3)

∇×H = J +
∂D
∂t

(2.4)

with electric displacement field D, electrical charge density ρ, magnetic flux density B,
electric field E, magnetic field H and electrical current density J. In this thesis bold
typeface is used to distinguish vector values. For the dielectric materials discussed in
this thesis there is no charge or current, hence ρ = 0 and J = 0. The constitutive
relations between flux density and field strength for electric and magnetic fields are:

D = εE = ε0εrE and B = µH = µ0µrH (2.5)

where ε0 is the electric permittivity of free space, µ0 the magnetic permeability of free
space and εr and µr are the relative permittivity and permeability. ε0 and µ0 are
fundamental constants which Maxwell showed are related to the speed of light in a
vacuum by c0 = 1√

ε0µ0
. The relative permittivity and permeability meanwhile

characterise the optical properties of a medium, for example the wave impedance,
Z =

√
µ0µr
ε0εr

, and refractive index, n =
√

εrµr. The optical properties of a material are
generally dependent on the optical frequency. Whilst omitted for simplicity in Eq. (2.5)
this dependency implies that those equations are defined in the frequency domain.
Transforming these relations into the time domain would result in a convolution
integral.

In this thesis, of interest are materials which are isotropic, for which εr and µr are
scalar quantities, and non-magnetic for which µr = 1. The refractive index of such a
material can be defined as: n(λ) =

√
εr, where the dependence on the optical

wavelength, λ, is made explicit. The approximate refractive index of pure, fused silica
and air at wavelength λ = 1550 nm is 1.4440 and 1.0003 respectively [52]. At this
wavelength both materials are transparent and n is purely real. In this regime a
powerful model for the wavelength dependence of refractive index is the Sellmeier
equation: n2(λ) = 1 + ∑i Biλ

2/(λ2 − C2
i ) [53]. Each term in the summation describes

the empirically determined strength, Bi, of an absorption resonance at wavelength Ci.
For characterising the refractive index of optical glasses a three term expression is
common. The refractive index of fused silica glass is well described by [54]:

n(λ) =

√
1 +

0.6961663λ2

λ2 − 0.06840432 +
0.4079426λ2

λ2 − 0.11624142 +
0.8974794λ2

λ2 − 9.8961612 (2.6)

in the visible and near-infrared. Equation (2.6) is used to determine the refractive
index of silica in numerical simulations throughout Chapters 3-5.
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The wave equation, for electromagnetic waves in a charge and current free medium, is
derived by taking the curl of Eq. (2.3) and Eq. (2.4), then substituting the constitutive
relations Eq. (2.5) and simplifying:(

∇2 − µε
∂2

∂t2

)
E(x, y, z, t) = 0 and

(
∇2 − µε

∂2

∂t2

)
H(x, y, z, t) = 0 (2.7)

where the electric and magnetic fields are generally 4-dimensional vector fields.
Intuitively the solutions to Eq. (2.7) for a monochromatic field oscillate in time at the
optical frequency, f = c0/λ and it is both convenient and common to extract this
component of the solution. When expressed using a complex exponential, the
time-harmonic term is exp(−iωt) where i is the complex unit satisfying i =

√
−1 and

ω = 2π f is the angular frequency. In this format the electric and magnetic fields can
be expressed in the time-invariant phasor format and Eq. (2.7) reduces to the
Helmholtz equation:

(
∇2 + k2

0n2)E(x, y, z) = 0 and
(
∇2 + k2

0n2)H(x, y, z) = 0 (2.8)

where k0 = ω/c0 is the freespace wavenumber. Solving Eq. (2.8) for a waveguide will
describe how light propagates in that waveguide. In the following section the
analytical solution for a simple optical fibre is discussed. For a structure that is
longitudinally invariant the problem is reduced to that of a 2-dimensional
cross-section of the waveguide, n(x, y). Analytical solutions are of great interest for the
insight which they can provide, however, in general Eq. (2.8) is not possible to solve
analytically. The numerical approaches used in this thesis are described in Section 2.3.

2.1.2 Step-index optical fibre

Step-index fibre is used extensively for long distance telecommunication and as such
is the most common and widely deployed. A conventional step index fibre is also the
simplest to analyse and understand. The cross section of a step-index fibre is shown in
Fig. 2.1. It consists of a high refractive index core of radius R and index ncore

surrounded by a lower refractive index cladding and index ncladding. By convention x
and y are the transverse directions and z is the longitudinal direction in which light
propagates. The core radius of the popular SMF-28 fibre is 8.2 µm and the outer
diameter is 125 µm. At 1550 nm step-index fibres have losses as low as 0.15 dB/km
[23].

Some insight into the optical behaviour of step-index fibre can be gained by applying
a ray optics approach. Snell’s law describes how light in the core hitting the cladding
boundary at a slight, grazing angle will be totally internally refracted and remain
confined to the core. Hence the method of guidance in this fibre is total internal
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FIGURE 2.1: Cross section of a step-index optical fibre overlaid with the refractive
index profile.

reflection (TIR). For a deeper understanding of the the fibre’s behaviour however, a
wave optics approach must be employed.

For simplicity the cladding can be considered infinite since solutions of interest are
exponentially decaying in the cladding and in practice a higher index coating ensures
that there is negligible reflection at the cladding/coating interface. Taking advantage
of the circular symmetry of the fibre Eq. (2.8) can be written in polar coordinates
{ρ, θ, z}:

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2 +
∂2

∂z2 + n2k2
0

)
E = 0 (2.9)

and similarly for the magnetic field, H. The electric and magnetic fields are both vector
fields and in total there are 6 scalar components, but only two of these components are
independent. Here the longitudinal electric field, Ez, will be determined and an
identical technique can be applied to the longitudinal magnetic field, Hz. The solution
to Eq. (2.9) can be written in separable form Ez = F(ρ)Θ(θ)Z(z) and thereby solved by
separation of variables. This results in three ordinary differential equations:

(
d2

dz2 + β2
)

Z(z) = 0 (2.10)

(
d2

dθ2 + l2
)

Θ(θ) = 0 (2.11)

(
d2

dρ2 +
1
ρ

d
dρ

+ n2k2
0 − β2 − l2

ρ2

)
F(ρ) = 0 (2.12)
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having introduced the propagation constant, β, and the azimuthal order, l. The
physical significance of these quantities becomes apparent if we substitute the general
solutions for Eq. (2.10), Z(z) = exp(−iβz), and Eq. (2.11), Θ(θ) = exp(−ilθ) into our
separable definition for Ez. For clarity the previously omitted time dependence has
been included:

Ez(ρ, θ, z, t) = Fl(ρ) exp(−ilθ) exp(−iωt) exp(−iβz) (2.13)

From Eq. (2.13) it is clear that l must take only integer values as Ez must be 2π periodic
in θ. The azimuthal index, l, defines the number of cycles of phase in one round trip in
the azimuthal direction. Note l is included as a subscript of F since from Eq. (2.12) the
radial field dependence clearly also depends on the azimuthal order. The phase
constant β describes how the phase varies in the propagation direction, z, for a given
wavelength. Often more convenient, however, is the effective index, ne f f = β

k0
= β λ

2π .
It is the effective refractive index for light propagating in the waveguide according to
a particular solution.

Equation (2.12) is a well known differential equation, the solutions to which are the
Bessel functions. For a guided solution the field must be finite in the core and
exponentially decaying in the cladding. The solution must therefore take the form of a
Bessel function of the first kind, J, in the core and in the cladding a modified Bessel
function of the second kind, K.

Ez(r, θ, z) =

{
C1 Jl(κ1ρ) exp(−ilθ) exp(−iωt) exp(−iβz) for ρ ≤ R
C2Kl(κ2ρ) exp(−ilθ) exp(−iωt) exp(−iβz) for ρ > R

(2.14)

where κ1 =
√

k2
0n2

core − β2 and κ2 =
√

β2 − k2
0n2

clad are the transverse phase constants
in the core and cladding regions and C1 and C2 are constants to be determined from
the boundary conditions. A similar equation can be determined for Hz with two
additional constants. Using Maxwell’s equations the transverse field components can
be derived in terms of Ez, Hz. The 4 constants can be determined by utilising the fact
that the tangential field components, Ez, Eθ , Hz, Hθ , must be continuous at the
core-cladding interface, ρ = R, which leads to the characteristic equation:

(
J′l (κ1R)

κ1 Jl(κ1R)
+

K′l(κ2R)

κ2Kl(κ2R)

)(
n2

core J′l (κ1R)

κ1 Jl(κ1R)
+

n2
cladK′l(κ2R)

κ2Kl(κ2R)

)

=

[
lβ

k0R

(
1
κ2

1
+

1
κ2

2

)]2

(2.15)
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where J′(x) and K′(x) are the first derivative of the Bessel functions J(x) and K(x).
Equation (2.15) will generally have multiple solutions for each value of l which are
labelled with p = 1, 2, 3... in order of decreasing propagation constant: (Elp, βlp). These
solutions, which are called the guided modes, form a set which describe the ways light
can possibly propagate in the fibre. Depending on the wavelength and geometry of
the fibre there will be a different number of modes guided in the fibre. There also exist
solutions of Eq. (2.12) that do not exponentially decay in the cladding. These solutions
are described as radiative modes. Light in radiative modes does not propagate
longitudinally and rather radiates out of the fibre. The combination of guided and
radiative modes form a complete set in step-index fibres.

2.1.3 Optical modes and multi-mode guidance

A formal definition of an optical mode can be given as a field that maintains the same
transverse distribution and polarisation at all locations along the waveguide. The
properties of an optical mode describe how light will behave in that mode.

By observing a few special cases of the electric field profiles of the guided modes for a
step-index fibre, a common nomenclature can be determined which is applicable to
circularly symmetric optical fibres. For azimuthal index, l = 0, the solutions are either
transverse electric, TE, or transverse magnetic, TM. The electric field lines of TE0p

modes consist of concentric circles whilst the field lines of TM0p modes are in the
radial direction. For l 6= 0, modes are hybrids with l > 0 named HElp and l < 0 named
EH−lp. For each HE and EH mode there also exist two orientations of the electric field
as shown in Fig. 2.2 which, for a perfectly circularly symmetrical optical fibre will be
degenerate, that is their propagation constants, β, will be identical.

The fundamental mode of a fibre is the mode which has the highest propagation
constant. In a single-mode fibre this will be the only guided mode. The fundamental
mode is not the TE01 or TM01 mode for which l = 0 but the HE11 for which l = 1. In
the HE11 and indeed for all HE1p modes the axial field component compared to the
transverse components is very small and often taken as negligible whilst the
transverse field lines are all orientated in a single direction, which is to say that the
mode is linearly polarised (LP). In this case the two degenerate orientations of the
electric field are generally described as the x and y polarisations. This system can be
extended to the higher order modes to form a different orthogonal basis. A set of four
orthogonal, linearly-polarised modes can be formed as linear combinations of the two
HE21 and the TE01 and TM01 modes; likewise for the two HE31 and two EH11 modes
and in general for the four modes of EHx,p and HEx+2,p for any x ≥ 1 as shown in
Fig. 2.2. The aforementioned sets of modes are only strictly degenerate under the
weakly guiding approximation, ncore ≈ nclad, and to describe modes as linearly
polarised is also only an approximation. Despite this the LP basis is often more
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FIGURE 2.2: Transverse profiles of the first few core modes of a circular fibre. Vector
modes are shown alongside their LP modes. Shaded regions indicate the transverse
intensity profile and arrows indicate the electric field vector. Adapted from [55] and [18]

convenient and furthermore allows vector modes to be simply divided into groups
which have similar propagation constants, dispersion etc.. Figure 2.2 shows
illustrative plots of LP and vector modes and demonstrates the mode groups to which
they belong.

2.1.3.1 Modal coupling

When a fibre end-face is illuminated by an electric field, in general 100 % of the
incident power will not be transferred into a single optical mode, but rather multiple
modes will be excited and carry some fraction of the power. Since light in different
modes behaves differently, and indeed may not be guided at all, determination of the
coupling into the fibre is of great importance.
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The discrete guided modes and continuum of radiative modes in an waveguide form
a complete and orthogonal set. The orthogonality condition for the normalized,
guided modes can be expressed as:∫∫

~z ·
(

Ek × H∗q + E∗q × Hk

)
dA = δk,q (2.16)

where Ek and Hk are the electric and magnetic field profiles of the kthmode,~z is the
unit vector in the longitudinal direction, ∗ denotes the complex conjugate and δk,q is
the Kronecker delta function which evaluates to 1 if k = q and 0 otherwise. Since the
modes form a complete set any incident field, E(i) and H(i), can be described as a
linear summation of the fibre modes:

E(i) = ∑
k

ckEk and H(i) = ∑
k

ckHk (2.17)

By combining Eqs. (2.16) and (2.17) the field transmission coefficient, ck, for a mode k
can be determined as:

ck =
∫∫

~z ·
(
Eq × H∗k + E∗k × Hq

)
dA (2.18)

The power transmission coefficient into mode k is then |ck|2 and if the incident field is
also normalized according to Eq. (2.16) then |ck|2 is also the input coupling efficiency
into mode k. Coupling efficiency into multi-mode fibres is considered in Section 5.2.1.

In Section 2.2 hollow-core fibres are described which guide light by a different
guidance mechanism and results in a different class of leaky modes that are inherently
lossy. These fibres are the subject of this thesis and will later be discussed in detail,
however, a brief mention should be made of how the coupling theory discussed here
applies to hollow-core fibres. Equation (2.16) is only approximate for leaky modes.
There are stricter orthogonality conditions which can be applied to leaky modes but
they are a purely mathematical construct and do not provide any physically intuitive
insight [56]. Despite being only approximately valid, Eq. (2.16) is adequate for
performing modal decomposition where the optical loss is small as is the case for the
fibres discussed in this thesis [57].

2.1.3.2 Group velocity and dispersion

The phase constant is the phase velocity of a mode, the rate at which a phase front
changes with respect to position. In fibre optic applications it is usually more useful to
consider the rate at which optical power propagates along the fibre, the group velocity:
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vg(λ) =

(
∂β

∂ω

)−1

= c0

(
ne f f − λ

∂ne f f

∂λ

)−1

(2.19)

which is the rate at which an amplitude envelope propagates. Hence, the group
velocity could, for example, be used to calculate the time of flight for a pulse to
propagate down the length of a fibre or in a distributed sensing application to
determine the spatial position from which light is being backscattered. A waveguide
is a dispersive medium and there are several factors that could lead to temporal
spreading of a pulse.

Group velocity is generally a function of wavelength and so two different optical
frequencies will experience a different delay. This chromatic dispersion is quantified
by the group velocity dispersion (GVD):

Dλ(λ) =
∂

∂λ

(
1
vg

)
= − λ

c0

∂2ne f f

∂λ2 (2.20)

which is defined as the differential delay per unit wavelength difference, per unit
propagation distance. The GVD can be positive or negative, referred to as anomalous
and normal respectively, and will generally be zero for specific wavelengths. For a
silica step-index fibre this is near 1300 nm, however, since the zero dispersion
wavelength can impose severe non-linear effects there are a wide variety of
modifications to shift it to longer or shorter wavelengths [58]. Non-dispersion-shifted
SMF-28 fibre has a GVD of around 20 ps/nm km at 1550 nm.

A modulated, or pulsed, light source occupies an optical bandwidth. For an
unchirped, temporally-Gaussian pulse with full width half maximum pulse duration,
τ0, and central wavelength, λ0, the wavelength bandwidth is:

∆λ0 =
λ2

c0

4 ln(2)

τ0
(2.21)

where ln(x) is the natural logarithm. For example a 100 fs Gaussian pulse centred at
1550 nm has a bandwidth of 35 nm and will experience pulse broadening in a
waveguide. Shorter pulses, which in telecommunications can be equated to faster
single-channel data rates, occupy larger bandwidths and therefore generally suffer
increased chromatic dispersion. One measure of the severity of chromatic dispersion
is the dispersion length which is defined as the distance of propagation over which the
pulse duration increases by a factor of

√
2. For an initially unchirped Gaussian pulse

the dispersion length is:

LGVD =
2πc0

λ2
0

τ2
0
|Dλ|

(2.22)
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Clearly, a shorter pulse duration or higher GVD will reduce the length over which that
pulse can be transmitted before it suffers from severe temporal broadening.

Another dispersion mechanism in few- or multi-moded fibres is inter-modal
dispersion. Non-degenerate modes have different dispersion relations and therefore
different group velocity. When pulsed light is propagating in multiple modes the
different group velocity introduces a delay between them and therefore the overall
pulse duration is increased. Inter-modal dispersion can be quantified using the
differential group delay (DGD) which is defined as the differential delay between the
slowest and fastest modes per unit length of propagation. DGD can be very limiting
for high data rates in multi-mode fibres and is a significant topic of research in
Chapter 5.

One design of solid-core, multi-mode fibre with reduced DGD is the graded index (GI)
fibre. The refractive index profile in this design changes gradually from the centre to
the edge of the cladding. This allows a greater degree of control of the modes
compared to a step-index fibre. The use of a parabolic refractive index profile
minimises the DGD and thereby the penalty on data-rate.

2.1.3.3 Power flow and loss

The Poynting vector, Sinstantaneous = E×H, describes the 3-dimensional, instantaneous
flow of power within a mode in a waveguide. When dealing with sinusoidally
varying fields, however, it is more common to work with the time averaged version
also referred to as the Poynting vector

S =
1
2

Re(E×H∗) (2.23)

Unless otherwise stated, mode profiles in this thesis refer to a plot of the axial
component of Sz. In Chapter 3 the Poynting vector is used to understand the
geometric sources of loss in fibres of interest.

When solving for the modes of a step-index fibre, since an infinite cladding and a
completely transparent medium was assumed, the modes were lossless: possessing a
purely real propagation constant. More generally the propagation constant and hence
effective index are complex numbers with the imaginary component describing the
attenuation of the field amplitude along the length of the fibre. For guided modes,
such as those in a TIR fibre, optical losses arise from material concerns such as
absorption and Rayleigh scattering. The fibres discussed in this thesis have different
guidance mechanisms which result in leaky modes for which some optical power
leaks from the fibre. This is termed confinement, or leakage, loss. Bending a fibre is a



2.2. Hollow-core Fibre 17

geometric deformation which will also generally lead to an increase in confinement
loss. Sources of loss in optical modes are discussed further in Section 2.2.1.2.

2.2 Hollow-core Fibre

Hollow-core refers to fibres with an air core and in which almost the entirety of the
light is transmitted in air. The incentive toward hollow-core is that chromatic
dispersion, scattering losses, material absorption and non-linearity can all be
drastically reduced. Unlike TIR fibres, hollow-core fibres have a low to high refractive
index change between the core and cladding. They must therefore employ different,
inherently lossy, guidance mechanisms to their solid core counterparts which until
recently have limited their appeal in application. Phenomenal progress into
hollow-core fibre research in recent decades, however, has demonstrated remarkably
low loss. As a very limited example, Fig. 2.3 shows the loss spectrum of three
single-mode hollow-core fibres. Not only is the loss limit of solid-core reached at the
very important C and L telecommunication bands [22], but it is also fundamentally
beaten at shorter wavelengths [59] that nevertheless have significant uses.
Applications at wavelengths across all these bands are discussed in this thesis. These
designs and more are discussed in detail in Section 2.2.3. This section begins with a
short historical overview followed by a description of the theory underlying these
remarkable achievements.

FIGURE 2.3: The loss spectrum of three fabricated hollow-core ARFs (red, green and
purple) compared to that of Corning SMF-28 solid-core fibre (blue). Highlighted
are several wavelength ranges of interest for this work: (OM5) the optical multi-
mode 5 specification used in short haul telecommunications, (Yb) the operating
wavelength of 1 µm Yb3+ based lasers, (O,E,S,C,L,U) the wavelengths used in long-
haul telecommunication. The fibres shown are: (purple and green) 2ndwindow
NANFs [59] and (red) a first window DNANF [22]. First and second window refers to

the concept of anti-resonant windows, described in Section 2.2.1.

Investigations of hollow-core fibres goes back to the advent of fibre optics as a field. In
the early 1960s the invention of the laser led to great interest in using light for data
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transmission and at the time glass had yet to be made transparent enough to transmit
over great distance. Marcatili and Schmeltzer found the loss of hollow, cylindrical,
dielectric waveguides could be made arbitrarily low by increasing the size of the core.
At a wavelength of 1 µm with a core radius 1000 times larger at 1 mm attenuation of
1.85 dB/km was predicted. Bending loss however, was found to be prohibitively high
even for infinitesimal bends. In the previous example the attenuation was doubled for
a bend of radius 10 km [18]. It was concluded that such sensitivity to bending would
make hollow-core fibres unsuitable for long haul telecommunications. Then in 1966
Kao and Hockham published their seminal paper, enabling the manufacture of high
transparency silica TIR fibres. Solid-core fibre became the indisputable, dominant
technology for the next 5 decades.

FIGURE 2.4: A selection of early scanning electron microscope images charting the
development of micro-structured optical fibres: (a) the first fabricated solid-core PBGF
by Knight et al. in 1996 [60], (b) a fabricated hollow-core PBGF from the 90s [19]. (c-e)
are all examples of anti-resonant fibres moving from (a) the Kagomé lattice [61] to the

simplified tubular fibres [62] and finally to the NANF [35].

This started to change in the 1990s; microstructured optical fibres began to be
developed aiming to incorporate photonic crystals into the cladding [63]. At first these
fibres were fabricated by drilling holes into bulk silica, e.g. Fig. 2.4(a), but soon more
complex structures with an intricate microstructure were being made by stacking
hollow silica tubes in the preform, e.g. Fig. 2.4(b), [19]. As well as reducing loss at
conventional wavelengths, hollow-core guidance presented novel opportunities, for
example transmission in the mid-IR [64, 65], novel nonlinear interactions [58] or
enhanced light-gas interaction [66]. Since then there has been an incredible rate of
development of hollow-core technologies resulting in entirely new designs, greater
theoretical understanding and ever increasing performance. This is a far from an
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exhaustive history and further information can be found for example in the reviews of
Russell, Hayes et al. and Yu et al. [67–69]. In the following sections the guidance
mechanism and properties of the class of fibres which are the subject of this thesis are
described.

2.2.1 Anti-resonant fibres

Anti-resonant fibre (ARF) is a design of hollow-core fibre where guidance is by
coherent reflections from a micro-structure cladding. In ARF, reflections from thin
glass membranes in the cladding interfere constructively at certain wavelengths,
where they are at resonance, presenting poor confinement, but at anti-resonance the
light is strongly confined to the core. The earliest example of anti-resonant guidance
was in the Kagomé fibre, a hollow-core fibre geometry first demonstrated in 2002 for
which the cladding consists of a lattice configuration as shown in Fig. 2.4(c) [66]. More
recent designs with a simpler micro-structure and better performance are discussed in
Section 2.2.2.

The transmission spectra of AR fibres is a series of low-loss anti-resonant windows
bounded by high-loss resonant peaks [70]. The positions of the resonant frequencies
are well described by the ARROW model which treats cladding membranes as optical
resonators and therefore the resonant and anti-resonant frequencies depend on their
thickness [71]. In the ARROW model the resonant wavelengths are described by:

λm =
2t
m

√
n2

glass − n2
air (2.24)

where m = 1, 2, 3..., nair and nglass are the refractive index of the hollow-core and glass
regions, and t is the thickness of the cladding membranes. For an air-filled
hollow-core fibre, nair ≈ 1. The fundamental window will generally allow the largest
operation bandwidth but higher order windows may be targeted if, for example, the
required thickness makes a fibre difficult to fabricate [35, 72]. It has also been shown
that almost 2% higher input coupling efficiency is possible for single-mode ARFs
operating in the second anti-resonant window [73]. Control of the position of the
transmission windows is crucial in ARF design and it is useful to normalize the
operating wavelength to these windows. The normalised frequency [68]:

F =
2t
λ

√
n2

glass − n2
air (2.25)

For example, a silica membrane 600 nm thick would have the first resonance at
1250 nm placing the telecommunications wavelength 1550 inside the fundamental
anti-resonant window with a normalised frequency, F = 0.8. This is demonstrated in
Fig. 2.5 which shows the numerically simulated loss spectrum of an ARF with
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thickness 600 nm. The simulation techniques used will be described in Section 2.3.
Positions of the anti-resonant windows are well predicted by Eq. (2.25) and since they
are evenly spaced in frequency, higher-order windows are narrower in wavelength
bandwidth.

FIGURE 2.5: The leakage loss spectrum of a 6-tube NANF similar to those typically
fabricated. The geometry of the fibre is shown in the inset and has core radius 15 µm,

capillary thickness 600 nm and inter-capillary gap 4 µm.

2.2.1.1 Higher order modes

The behaviour of higher-order modes (HOMs) differs significantly in ARFs compared
to TIR fibres. The core-guided modes of ARFs are not guided in the sense of TIR
fibres; neither exclusively guided or radiative but somewhere between the two, leaky
modes exhibit some leakage as light is guided along the fibre [74, 75]. Since the modes
of hollow-core fibres are not guided there is no strict guided cut-off condition and
ARFs have an infinite number of leaky modes. However, unlike in TIR fibres where
loss is largely governed by material properties, the guidance mechanism of ARFs
introduces large differential loss between HOMs. For example, using the model of
[18], in the 1 mm hollow-core cylindrical, dielectric waveguide described in the
previous section, the fundamental mode loss is 1.95 dB/km whereas the next lowest
loss mode is more than double, 5 dB/km. With high differential loss between modes,
practically leaky modes can only be considered as guiding light if the loss of those
modes is sufficiently low for the application they are to be used in. The origin of
differential loss in ARFs of interest is the subject of Chapter 3.

Effectively single-mode guidance is achieved in ARFs by designing the fibre such that
HOMs are selectively stripped from the fibre. The microstructure cladding in ARF
includes air cavities that guide their own set of leaky modes but with substantially
higher losses than core-guided modes. Cladding modes are in close proximity to the
core and so core guided modes will readily couple into the cladding if their phase
constants are similar, a situation called phase matching [76]. The cladding
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microstructure can be designed so that cladding modes are phase matched to
higher-order core modes and therefore, any power in these modes is transferred into
the cladding and then radiates out of the fibre over a very short distance [10]. The
ability to selectively strip HOMs is one of the great strengths of ARF and in many
cases simple design rules exist to achieve this [77].

In this thesis, it is of interest to achieve few- and multi-moded guidance in ARFs.
Clearly this requires fibres to be designed to avoid phase matching between
higher-order core and cladding modes, but equally to avoid or mitigate the high
differential loss between modes in ARF. This is the subject of Chapter 4.

2.2.1.2 Sources of loss

Leakage is an inherent source of loss in the modes of ARFs but it is not the only, nor
necessarily the greatest, source of loss. The different loss mechanisms are briefly
described here and it will be discussed in Section 2.3 how, in this thesis, they are
determined from numerical modelling.

Since the confinement of low-loss ARFs is high, the vast majority, typically > 99.99%
[10], of optical power flows in the air core, for which Rayleigh scattering is negligible
[78]. The cladding microstructure, however, does incur some surface scattering loss
(SSL). The fabrication process of ARFs inevitably leads to roughness at the air/glass
boundaries due to frozen-in thermodynamic fluctuations. Where the mode fields
overlap with the boundary, light is scattered proportional to the power flow at the
boundary [79]. Since reduced confinement generally results in higher electric field
intensity at the air/glass interfaces higher-order modes with increased leakage loss
will also exhibit higher SSL.

A uniform or gradual bend applied to a fibre causes additional leakage loss as the
fields and propagation constants of the fibre modes are modified [80]. Bending loss is
generally more severe for tighter bends and larger core radius. In ARFs, modification
of the phase constant, the real component of the propagation constant, due to bending
can additionally cause increased coupling between core and cladding modes [81, 82]
which is often the significant source of bending loss. More details of this effect are
given, for example, in Section 4.2.2. Since the ability to guide light in flexible fibres is
one of the great strengths of optical fibre, determination of the limits of bending due to
loss is of crucial importance for most practical applications.

Micro-bending describes the impact of small-scale mechanical perturbations on the
modes. Discrete perturbations are understood to cause local coupling of power
between the modes of the fibre [83]. In an ARF with high differential modal loss this
generally results in additional loss. Although micro-bending can be purposefully
induced [48], generally of more interest is the effect of randomly distributed bends
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along the fibre length. In such cases power is lost at an average rate per unit distance.
In a single-mode ARF, for example, micro-bending will cause a fraction of power
guided in the fundamental mode to couple into the next HOM with adjacent
azimuthal index. This mode is designed to have high loss in an effectively
single-mode ARF and so the transferred power is radiated away before further
perturbation can cause it to be coupled back into the fundamental mode [84]. The
extreme low-loss of current single-mode ARFs being fabricated makes micro-bending
an important consideration [36, 85]. The increased leakage loss of HOMs in
multi-mode ARFs considered in this work generally makes micro-bend of less interest
than reducing differential leakage loss.

2.2.2 Tubular and nested tubular anti-resonant fibres

Tubular fibre is a type of ARF that possesses a far simpler cladding but has been
shown to be capable of excellent performance. Whereas PBGFs and Kagomé are
fabricated with lattices of tubes, tubular fibres consist of a single ring of capillary tubes
surrounding the core. The first tubular fibre was fabricated in 2011 and is shown in
Fig. 2.4(d) [62]. The relative simplicity of this structure belies its potential for
performance and in the years following there have been a series of improvements on
the initial tubular design capitalising on this potential.

One undesirable feature of fibres formed of a lattice of touching tubes, such as
Kagomé, arises during fabrication where the touching of capillaries leads to nodes
acting as additional optical resonators [62, 86]. These nodes support high spatial-order
glass-guided modes which easily couple to the core-guided modes at their resonant
wavelengths leading to significant losses [87]. While reducing the cladding to a single
ring of tubes significantly reduces the number of glass nodes, they still existed in early
tubular fibres where the tubes are touching. The introduction of non-touching tubes
all but eliminated this problem [71].

Figure 2.6(a) shows the geometry of a tubular fibre with non-touching tubes. The size
of the inter-tube gap, d, is well known to have a significant impact on loss [11]. To
target low-loss operation at specific wavelengths, it is common to design tubular ARF
with a specific gap size, core size, R, number of capillaries, T, and capillary wall
thickness, t. The inner radius of the cladding capillary tubes, R1, in terms of these
parameters is:

R1 =
2 sin(π/T)(R + t)− 2t− d

2− 2 sin(π/T)
(2.26)

The designs of most ARFs currently fabricated and under investigation are based on
this tubular design. In the following sections, several such designs are described and
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FIGURE 2.6: The geometries of (a) a tubular fibre, (b) a NANF, (c) an ALIF and (d) a
DNANF.

discussed. Whilst these designs demonstrate superior performance compared to
tubular fibres, they require a more complex cladding microstructure whilst exploiting
the same basic guidance principles. For this reason the investigation into the origins of
differential modal loss in Chapter 3 focuses on tubular fibre.

2.2.2.1 Nested-element anti-resonant nodeless fibres

The Nested-Element, Anti-Resonant, Nodeless Fibre (NANF) is a novel design first
proposed by Poletti in 2014 [10]. A fabricated NANF is shown in Fig. 2.4(e) and
Fig. 2.6(b) shows a diagram of its cross section compared to a tubular fibre. The nested
element of a NANF is an additional smaller tube placed inside the outer capillary and
fixed at the outer edge of the cladding. This modification shows not only a dramatic
decrease in confinement loss but also a significant decrease in bending losses [88], e.g.
more than 4 orders of magnitude lower losses for 80 µm core diameter at 8 cm bend
radius [10, 82]. The outer capillaries are non-touching and there are no extra glass
nodes compared to a tubular fibre.

As discussed previously the confinement loss of this family of fibres is comparable to
their scattering losses. Numerical studies have found that the minimum loss in
subsequent anti-resonant windows is well fitted by a λ7 curve [10]. Scattering losses
meanwhile are well known to follow a λ−1 trend. A larger core radius also decreases
both confinement and scattering loss with an R−8 and R−3 dependence respectively.
NANFs can also be designed to be effectively single mode without compromising the
low-loss behaviour. One then record-low-loss NANF demonstrated in 2019 also
achieved a higher order mode extinction ratio of over 1000 times [36]. This
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demonstrates one of the great strengths of NANFs; beyond their impressive
performance NANFs afford great control by simple geometric parameters. For
example, by scaling up the entire fibre whilst maintaining tube thickness the
confinement and scattering loss can be reduced whilst maintaining single-mode
operation [10]. NANFs are generally considered a proven technology, with 100s of km
of single-mode fibre produced in the lab, demonstration of coherent WDM data
propagation through multi-thousand km distances [89] and commercial NANF cables
already available. For all these reasons, the investigations into multi-mode ARF in
Chapters 4 and 5 begin or focus on NANFs.

2.2.2.2 Anti-resonant leakage inhibited fibres

One modification of the NANF design came by using a geometric approach to
analysing the sources of loss in the fibre. Jasion et al. conducted numerical simulation
of NANFs and analysed the results using transverse power flow streamlines. This
analysis revealed a counter-intuitive approach to improving on the NANF design [85].
Decreasing the size of the gap between outer capillaries is well known to reduce
confinement loss which suggests that these gaps are a source of loss. The transverse
power flow analysis, however, showed that the majority of the leakage was actually
occurring through the nested capillary and that the gap was effective at confining
light.

Anti-Resonant Leakage Inhibited Fibres (ALIFs) replace the nested element of a
NANF with a pair of nested tubes. A cross section of this design compared to a
tubular fibre or NANF is shown in Fig. 2.6(c). ALIFs have been shown in simulation to
achieve over two orders of magnitude reduction in confinement loss versus NANFs
[85]. In Chapter 4 ALIFs are considered for few-mode, low-loss guidance for
short-haul telecommunication applications.

2.2.2.3 Double nested-element anti-resonant nodeless fibre

The double nested-element anti-resonant nodeless fibre (DNANF) uses two nested
elements, as in an ALIF, but in a nested configuration, as shown in Fig. 2.6(d).
DNANFs were first proposed at the same time as the NANF structure [10] but a
fabricated example has only recently been reported [22]. The additional nested
element provides an extra degree of confinement and reduces leakage loss. The
fabricated DNANF described in Ref [22] is the first hollow-core fibre to reach the loss
level of solid-core fibre at 1550 nm. Design of the cladding of DNANFs for multi-mode
operation is discussed in Chapter 4.
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2.2.2.4 Overview of additional anti-resonant fibre designs

Since the great potential of anti-resonant fibres has become clear, a great many designs
have been suggested and in some cases fabricated. A complete and detailed review of
these works would be a difficult and nuanced undertaking and shall not be attempted
here. Instead, a few designs which have shown particular promise theoretically or
practically will be mentioned.

The conjoined tube structure has outer tubes formed of two capillaries bonded
together in a figure-of-eight-like configuration with a straight bar between them. This
design was fabricated in 2018 and exhibited impressive 2 dB/km attenuation at 1512
nm [34]. This might be considered an early example of anti-resonant fibre formed of
two concentric rings of outer cladding tubes instead of or in addition to nested
elements. Several variations on these double-ring ARFs have been studied
theoretically and show some promise for low-loss guidance in a single-mode regime
[90–93]. A similar concept that has been practically fabricated is the hybrid
Kagomé-tubular fibre design which in 2021 exhibited 1.6 dB/km at 1050 nm [94].

None of these designs are discussed further in this thesis, with the focus instead on
fibres such as the NANF and ALIF, previously discussed, which possess a simpler
micro-structure that has proven easier to fabricate. These fibres also present the
opportunity for an excellent degree of control over the air regions in the
micro-structure by simple geometric parameters which it will be shown is important
for multi-mode guidance.

2.2.3 Recent achievements in fabricating single-mode ARF

Anti-resonant fibres are most commonly fabricated by a 2-stage stack and draw
process. An initial preform is constructed of capillary tubes stacked in the desired
orientation of the final fibre, the outer diameter of a preform is typically on the order
of several cm, this is drawn through a vertical furnace where it contracts transversely.
This results in a cane, with an outer diameter of several mm, which is placed in a thick
jacket tube and once again drawn down, in a furnace, under tension to the dimensions
of the final desired fibre design. During this second stage there are a variety of factors
at work including but not limited to, surface tension, gas pressure and variable
temperature and viscosity, which result in complex and difficult to control process
[27]. This thesis does not seek to describe in any detail the fabrication process but it is
important to note that it is a very complex one and that many of the loss reductions in
single-mode ARFs demonstrated in the past decades have come about by
improvements in fabrication. Some notable recent achievements are listed here.
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2.2.3.1 0.22 dB/km NANF at 1550 nm

The lowest loss NANF to date of which I am aware was reported in 2020 by Jasion et
al. [21]. Targeting the telecommunication wavelengths around 1550 nm, the NANF
had 6 outer tubes and a core diameter of 37 µm. 0.28 dB/km loss was measured from
1510 to 1600 nm.

2.2.3.2 0.174 dB/km DNANF at 1550 nm

The first ever reported DNANF, reported by Jasion et al., also targeted the
telecommunication wavelengths and was comprised of 5 outer tubes each with 2
nested capillaries and a core diameter of 28 µm [22]. It was also the first hollow-core
fibre ever to match the loss of solid-core fibre, 0.174 dB/km, at telecommunication
wavelengths, a significant step for hollow-core fibre research. The loss spectrum of
this fibre is shown in Fig. 2.3.

2.2.3.3 Low-loss NANFs at 850 and 1070 nm

The telecommunication bands are chosen since they are the lowest loss points of
solid-core silica which makes matching this loss in hollow-core an impressive result.
One of the great strengths of hollow-core fibres is to guide light at wavelengths where
the absorption or scattering of solid-core silica is too high. NANFs have been reported
by Sakr et al. which have loss lower than the fundamental limits of solid-core silica at
shorter wavelengths: 0.6 dB/km at 850 nm and 0.3 dB/km at 1070 nm [59]. These are
both very important wavelengths for short-haul telecommunications, which are
discussed in Chapter 4, and for power deliver with high-power 1 µm Yb3+ based
lasers, discussed in Chapter 5.

2.3 Numerical modelling of ARFs

In this thesis numerical simulation is used to study ARF. Analytical solutions exist for
many azimuthally symmetric geometries, that is geometries for which the refractive
index is a function of radius only. Bird, for example, presents models of ARFs
consisting of concentric rings alternating between air and glass [95]. Estimation
techniques have also been developed for a variety of types of geometry from arbitrary
index profiles of solid cores to the complex cladding micro-structures and lossy,
radiative modes of hollow-core fibres [96, 97]. None of these solutions, however, have
the accuracy and robustness of numerical simulation which are discussed here.
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Most properties of an optical fibre can be measured experimentally. Determination of
the modes is a more difficult task. Light not perfectly matched to a single mode will
couple into multiple modes and separating them is complex, for example S2 imaging
[98]. Numerical simulation allows a depth of interrogation far beyond what is possible
experimentally, for example, separating out the loss contributions from scattering,
absorption and leakage or resolving the loss contributions spatially. With simulation a
wide range of fibres can be studied without the need for costly fabrication and
without the influence of any fabrication defects on the results. Even fibre that could
never be fabricated can be simulated and often has analytical significance.

The finite element method (FEM) is by far the most common numerical simulation
technique, not just in optics but across a great many fields in physics, engineering etc..
It is a fully vectorial technique that allows flexible and efficient determination of the
range of fibres investigated by simulating a 2-dimensional cross section and exploiting
the symmetry of the problem. A commercial FEM software package, COMSOL
Multiphysics, is used in this work. In addition, bespoke software is employed to
setup, run, extract data from the COMSOL software and analyse it. A version of this
simulation code, collectively developed by this project’s supervisors, Prof. Francesco
Poletti, Dr. Eric Numkam-Fokoua and Dr. Gregory Jasion, was generously shared at
the inception of the doctoral project. Over the course of the project I implemented a
great many modifications and enhancements in order to, for example, simulate a
range of novel fibre geometries, enhance the ability to simulate multi-mode fibres
(some of which are described in Section 2.3.1), perform novel analysis of simulation
results and simulate fibres with a built-in twist (described in Appendix B).

In the body of this thesis ideal fibres are simulated, but the fabrication process
generally results in variation in the thickness of the capillary walls, the position and
size of capillary tubes and the emergence of larger glass nodes in the cladding.
Appendix A presents an overview of some of the techniques and work completed
during the course of this project simulating realistic, fabricated fibres largely with the
aim of supporting the work undertaken in the Optoelectronics Research Centre to
fabricate low-loss single-mode NANFs.

2.3.1 Modelling steps in finite element simulation

The wave equation, Eq. (2.8), can readily be converted to a 2-dimensional problem by
considering the general solution for an optical mode:

E(x, y, z) = Ẽ(x, y) exp(−iβz) (2.27)

where Ẽ is the transverse electric field. Substituting Eq. (2.27) into Eq. (2.8) and
simplifying yields a Eigenvalue problem with the complex valued eigenvalue, β
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describing the fibre dispersion and loss and the eigenvector Ẽ describing the
transverse electric field profile from which the magnetic field can also be calculated.

The geometry of the fibre can be described as a series of polygons and input into
COMSOL. Each region in the domain can then be assigned a material which dictates
the refractive index in that region. In this work the refractive index of air was taken to
be 1 and the wavelength dependent Sellmeier equation, Eq. (2.6) was used to
approximate the refractive index of fused silica. The finite element process involves
dividing the simulation domain into a large but finite number of subdomains,
commonly known as meshing. For a 2-dimensional cross section triangular elements
allow flexible filling of the geometry. COMSOL allows a significant degree of
automation in this step via powerful meshing algorithms, designed with knowledge
of the physical problem, that can adjust the density of the mesh to better describe the
expected solution. A denser mesh more closely resembles the true, continuous nature
of the physics and therefore generally results in a more accurate solution; however it
also increases the computation time and memory required to complete the simulation.
Convergence tests based on the mesh parameters showed that practically the most
significant factor for accurate results when simulating ARFs was enforcing several
mesh elements, i.e. at least 5 elements, across the thickness of the thin glass capillary.
Convergence tests were conducted whenever significantly different geometries or
wavelengths were to be simulated.

By meshing, the problem is discretised and for each finite element the equation
describing the Eigenvalue problem is enforced, forming a set of equations. Each set of
element equations can use the local material properties which allows discontinuous or
exotic material properties to be modelled. The element equations are then combined
into a global set which can be solved using the optimised numerical algorithms built
into COMSOL. When solving the Eigenvalue problem it is important to specify how
many solutions are to be found before finishing the search. In single-mode fibres, only
the first few modes are of interest. When investigating multi-mode fibres, up to
several 100 solutions might be required. Knowledge of the number of expected modes
for a given geometry is important since finding additional solutions also increases
computational time. This also presented a challenge for conducting post-processing
the data, since all the solutions must be labelled in order to the identify, for example,
core modes, cladding modes and in many cases the full vectorial designation of a
mode (see e.g. Fig. 2.2). A number of algorithms were developed over the course of
this work to assist in this process. These considered the effective index and fraction of
power in the core to estimate the nature of the mode although some manual
verification or correction was almost always required.

When solving a structure that possesses mirror-symmetry in one or multiple axes it is
possible to exploit this symmetry and simulate only a subdomain of the whole
geometry. Any tubular-based fibre with evenly spaced and regular outer capillary
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tubes has one axis of symmetry and it is possible to simulate a half structure, a π

sector. Any tubular-based fibre with an even number of evenly spaced and regular
outer capillaries (for example those shown in Fig. 2.6) can be simulated with a quarter
structure, a π/4 sector. Doing so greatly reduces the computational time and
resources required to solve the problem. Boundary conditions must be applied to
these symmetry boundaries which can be chosen as Dirichlet (perfect electric
conductors) or Neumann (perfect magnetic conductors) conditions which results in
solutions being limited to a set of modes, as described by McIsaac [99]. When
simulating a half structure there are two possible boundary conditions, in a quarter
structure there are 4 possible permutations. Since multi-mode fibres are investigated
in this work it is useful to have knowledge of all the modes of the fibre. The solution
employed here was to simulate the reduced geometry but repeat the simulation for all
the possible permutations of boundary condition. Despite the need for multiple
simulations, this was found to result in significant improvement in overall
computation time. In addition, knowledge of the boundary conditions for which a
particular solution was found limited the possible set of modes it could belong to,
which simplified the mode identification algorithms mentioned above.

2.3.2 Perfectly matched layers

In FEM is is necessary to truncate the infinite area of the real world to a finite,
preferably small, computational domain. In purely guided modes such as those of a
TIR fibre it may be possible to simulate a large cladding but to accurately model the
leaky modes of ARF it is necessary to employ a perfectly matched layer (PML).

By adding an extra layer around the edges of the simulation region that is designed to
attenuate any signals passing through it, the field strength can be artificially reduced
to negligible levels at the edge of the computational domain. In so doing any spurious
reflections are suppressed [100]. PMLs must also have the same impedance as the
edge of the fibre to prevent reflections at the fibre / PML interface. It has been shown
that a well performing PML allows accurate computation of the leaky modes of
hollow-core fibre [10, 101, 102]. In this work the built-in PML of COMSOL is found by
convergence experiments to be sufficient for the fibres considered here; a cylindrical
PML no less than 1/8th the radius of the core is used. The exception to this is the
twisted fibre simulations described in Section 5.1.3 for which a bespoke PML was
developed that is described in that section.

2.3.3 Modelling of bent fibres

Conformal transformations provide a method for the analysis, simulation and
intuitive understanding of fibres with a gradual, constant bend. Heiblum et al. showed
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that by considering the geometric transformation between a curved and straight
waveguide, the material refractive index can be modified to model the curved
waveguide [103]. Strictly the transformation involves multiplication of the refractive
index of the curved waveguide by exp(x/Rbend), however it is more common to use a
first order approximation. In this case the modified refractive index n̂ is described by:

n̂(x, y) =

(
1 +

x
Rbend

)
n(x, y) (2.28)

for a bend around a vector parallel to the y-axis at a distance of Rbend from the centre of
the fibre (the bend radius) where n(x, y) is the refractive index of the bent waveguide.
A bend about the x-axis can be modified by replacing x with y in Eq. (2.28). Note that
simulating a bent fibre in this manner will modify the mirror-symmetry of the fibre
cross section and it is necessary to simulate a half- or full-structure to model bending.

2.3.4 Calculating loss in numerical simulation

The use of well-designed PMLs allows the leakage loss of leaky modes to be
calculated directly from the propagation constant. If simulating a bent fibre this will
include the additional leakage loss due to bending. Bending loss can be determined
by comparing the loss of the bend fibre with that of the same straight fibre. Although
not described in the work shown in this thesis, the effects of material absorption can
also be included in FEM, in which case the imaginary component of the propagation
constant also incorporates the additional loss due to material absorption. The total
loss can be calculated from the effective index and is most commonly expressed in
decibels per unit length:

αdB/m =
20

ln 10
2π

λ
Im(ne f f ) (2.29)

Surface scattering loss occurs where the mode fields overlap with the air/glass
boundary. Light is scattered proportional to the power flow at the boundary and the
loss associated with SSL can be estimated from the results of FEM. The normalised
electric field intensity is given for a mode k by [104]:

Γk =

√
ε0

µ0

∮
B
|Ek|2dl∫∫

~z · (Ek × H∗k )dA
(2.30)

where the line integral in the numerator covers the air/glass interfaces in the fibre
cross section, B. Strictly, the scattering due to the electric field will depend on the
power spectral density of the surface roughness [105], a very difficult quantity to
measure. In practice an estimate that assumes the roughness is process-independent,
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and that therefore all fabricated fibres have the same roughness, has shown accurate
results against measured fibres [21, 36, 106]. Under this assumption the SSL can be
estimated as:

α
(SSL)
k = η

(
λ

λ0

)−3

Γk (2.31)

where η is a normalisation parameter, calibrated at a wavelength λ0. In this work a
normalisation parameter of η = 300, calibrated at a wavelength λ0 = 1550 nm is used
[10].

2.4 Summary

In this chapter, a broad introduction to the physics of fibre optics has been presented,
discussing the fundamental equations which describe the operation of a waveguide
and the emergence of optical modes that are of crucial importance for understanding
optical fibres. Properties such as latency, dispersion and optical loss have been
discussed and how these relate to fibre optic applications. Next, the background and a
brief history of hollow-core and in particular ARF was described. The unique
guidance properties resulting in high differential modal loss as well as low-latency,
low non-linearity and the potential for unique gas-light interaction were discussed.
This culminated in a brief review of some of the phenomenal results recently achieved
in fabricating low-loss NANFs and DNANFs, including those with loss matching that
of solid-core fibre at 1550 nm and some achieving lower loss at shorter wavelengths.
Finally FEM, used to numerically simulate and investigate ARF in this thesis was
discussed.

In the next chapter the results of an investigation into the origins of differential modal
loss in ARF geometries of interest are presented.
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Chapter 3

Origins of Differential Modal Loss
in Multi-mode Anti-resonant Fibre

Despite the abundance of work and interest into designing, analysing and fabricating
single-mode ARF, an all-encompassing model for predicting the loss of the
fundamental and higher modes of ARFs remains beyond reach, as solving Maxwell’s
equations even for the simplest such structures must make use of numerical tools.
Higher-order modes have in fact received little attention as the research focus has
firmly been on effectively single moded fibres. Indeed, simple design rules have been
developed [10, 77] to make the fibres effectively single mode, whereas few works have
considered multi-mode operation in these fibres [47, 49].

In this thesis the goal is to design and study the possibilities of multi-mode ARFs. In
this chapter the mechanisms of leakage loss in ARF are explored. It is shown by an
intuitive understanding of this mechanism in ARFs and numerical simulation that,
away from the glass resonances, leakage results from the coupling between the
core-guided and the radiative modes supported in the rest of the structure. When core
and lossy cladding modes are phase-matched, the result is prohibitively high leakage
loss for the core mode. Reducing the loss therefore requires a large separation in
effective index between core and cladding modes as well as minimum spatial overlap
between their mode fields. Results are presented describing this relationship, which
demonstrate which cladding modes are most significant for different geometries and it
is discussed how to leverage these ideas for the design of few-moded hollow core
fibres.

The chapter is organised as follows. Section 3.1 describes how leakage loss depends
on mode order and the basic geometric parameters of the fibre. It is also discussed
how leakage loss is related to other modal properties such as scattering loss and
fraction of power propagating in air. Analytical models for simpler ARF geometries
exist and their relevance to the tubular fibres of interest is discussed. In the remainder
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of the chapter a deeper understanding of leakage loss in higher-order modes is sought
by considering leakage as coupling to radiative modes in the cladding; Section 3.2
describes the theoretical basis for this postulate. In Section 3.3 it is demonstrated that
the most significant source of leakage in low-loss geometries is the cladding modes
confined in the tubes surrounding the core. The leakage loss of the fundamental and
higher-order core modes is shown to be directly related to the degree of coupling to
these cladding modes. This allows the study to continue only considering leakage by
coupling between core and cladding tube modes, greatly simplifying the analysis and
permitting deeper insight. In Section 3.4 the methods described and justified in the
previous sections are used to quantitatively analyse leakage loss. A model for
approximating leakage loss is developed that considers the strength of coupling
between core and cladding modes. Comparison to loss attained by numerical
simulation shows good agreement with this model which considers only the first three
cladding tube modes.

The work described in Sections 3.2-3.4 has been previously been published in [107].

3.1 Higher-order mode properties

In order to illustrate the differential properties of higher-order modes in ARF, tubular
fibres with a range of core sizes were numerically simulated. The geometry of one of
these fibres is shown in Fig. 3.1(a). The radius of the cladding capillaries and the
inter-capillary gap were kept constant, both with a value of 5 µm (R1/λ = d/λ = 3.2),
and the number of tubes was modified to control the core radius. Figure 3.1 shows the
modal leakage loss (see Section 2.3.4) for the first 9 mode groups of these fibres near
the minimum loss point of the fundamental anti-resonant window, normalized
frequency F = 0.6. Leakage loss is increased for higher-order modes; for the largest
fibre shown, with normalized core radius R/λ = 22.8, the leakage loss of the
fundamental LP01 mode group is 0.05 dB/km compared to 0.6 dB/km in the LP03

mode group, a differential loss of 0.55 dB/km. As with the fundamental mode,
leakage loss of HOMs increases with smaller core sizes, as does the differential loss
between modes. For the fibre with R/λ = 12.1, the differential loss between the LP03

and LP01 mode group is 40 dB/km.

The loss of a mode group in Fig. 3.1(b) is considered to be the average loss of all the
modes belonging to that group. Some mode groups have non-negligible differential
loss between their constituent modes, notably those with azimuthal index 1 (LP11,
LP12, LP13 etc.) due to the presence of transverse-electric and transverse-magnetic
modes [18, 95]. This is discussed later in this chapter; however commonly there is
negligible differential loss between modes belonging to the same mode group (see e.g.
Fig. 3.6).
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FIGURE 3.1: (a) the cross section of a tubular fibre with 11 tubes, gap and tube radius
d = Z1 = 5 µm and normalized core radius R/λ = 12.1. The modal (b) leakage and
(c) surface scattering loss of the first 9 mode groups of a series of tubular fibres with

increasing core size.

In ARF, surface scattering can be a significant source of loss in the fundamental mode,
dependent on the nature of the geometry (tubular, NANF etc.), core size and
wavelength [10]. The scattering loss, calculated using the techniques described in
Section 2.3.4, for the same fibres and modes as discussed previously is shown in
Fig. 3.1(c). The trend is very similar to that of leakage loss; loss is increased for
higher-order modes and both loss and differential loss is decreased for larger cores.
The magnitude of scattering loss in these fibres is approximately three orders of
magnitude lower than leakage loss, as expected in tubular fibre.

The similarity in behaviour between leakage and scattering loss suggests a link
between these two mechanisms. Indeed, scattering loss is proportional to the electric
field intensity at air/glass interfaces [104] whilst leakage loss is a measure of the
confinement of the mode with lower confinement leading to higher intensity at the
core/cladding boundary. This relationship is captured in Fig. 3.2 which shows both
the fraction of power propagating in the core and the scattering loss as a function of
leakage loss. Data points are taken from a large set of simulations of tubular fibres
with normalized core size ranging between R/λ = 20 - 116. All the core-guided
modes found in simulation, up to 64 modes per geometry, are plotted. In both plots
(the fraction of power in the core, Fig. 3.2(a), and the scattering loss, Fig. 3.2(b)) there is
a strong correlation with leakage loss: regardless of the dimensions of the tubular fibre
considered, modes with the same leakage loss have very similar scattering loss.
Higher leakage loss results in higher scattering loss and less power propagating in the
core. Here the relationship is only shown for the modes of tubular fibre at a single
wavelength but the same is true of other ARF geometries at wavelengths far from
coupling to dielectric modes [87] although the exact proportionality is different.

This observation is not directly useful since leakage loss is typically determined by
numerical simulation in which case exact information about scattering and power is
readily available. It does, however, indicate that leakage loss is the quantity to study
when considering the behaviour of these modes; at the same wavelength and without



36 Chapter 3. Origins of Differential Modal Loss in Multi-mode ARF

FIGURE 3.2: The (a) fraction of power inside the core region and (b) the scattering loss
as a function of leakage loss for all the modes of a large range of tubular fibres. The

colour and shape of the markers denote the geometry of the fibre.

drastic modification of the geometry (i.e. a NANF versus a tubular fibre) improving
the leakage loss results in a commensurate improvement in scattering loss and
air-guidance fraction. Likewise a theoretical understanding of the leakage loss can
improve our understanding of those properties of the fibre and is the focus of this
chapter. This is not, generally, the case for the dispersion properties of the modes, e.g.
group delay and chromatic dispersion which are considered in Section 5.1.1.

3.1.1 Analytical solutions of similar geometries

The loss of ARF geometries which consist of concentric rings of air and glass has been
calculated analytically by Bird [95]. Although these concentric ring fibres are
structurally dissimilar to tubular fibres, and indeed typically cannot exist practically,
these models can provide useful insight into tubular fibres. Concentric ring fibres can
be characterised by an integer, N, the number of anti-resonant layers (including both
air and glass regions) which make up the cladding. Examples of geometries are shown
in Fig. 3.3(a) for a range of values of N. The fibre with N = 0 is not anti-resonant but
rather is the hole-in-bulk-silica structure studied by Marcatili et al. [18]. The fibre with
N = 1 is a floating thin-walled capillary, N = 2 is a thin-walled capillary surrounded
by an air region surrounded by a glass jacket etc..

The leakage loss of the mode of a concentric ring ARF has been determined in decibels
per unit length as [95]:

α =
20

ln 10
λN+2

RN+3

(umn

2π

)N+2
ν

N

∏
i=1

1
sin2(φi)

(3.1)

with R the core radius, λ the wavelength and N the previously described number of
anti-resonant rings. Equation (3.1) clearly describes how the dependence of loss on
core size and wavelength increases with additional anti-resonant layers. The leakage
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FIGURE 3.3: (a) Geometries of several concentric ring structures characterised by the
number of anti-resonant layers, N, as in [95]. (b) The geometric parameters of an N = 5
concentric ring fibre alongside a NANF. (c) The first 5 Bessel functions and their zeros

in the interval 0-8 which characterise the modes of the first 7 mode groups of ARF.

loss of the fundamental mode of a NANF is proportional to λ7 and R−8 [10],
indicating equivalence to a N = 5 concentric ring structure consistent with Eq. (3.1).
Figure 3.3(b) compares the geometry of a N = 5 concentric ring structure to a NANF.
Their equivalence in loss dependence suggests that the combination of the thin-walled
capillaries near the jacket and the jacket itself act similarly to an additional
anti-resonant glass layer. The behaviour of tubular fibre, without a nested element,
lies somewhere between an N = 2 and N = 3 concentric ring structure but practically
an N = 3 structure it typically used for comparison [49]. It should be stressed that
although similar in dependence on core size and wavelength, tubular and NANF
structures typically exhibit lower loss than their “equivalent” concentric ring
structures for the same core size and wavelength [10]. For example, in this thesis, loss
reductions by a factor of around 5x were commonly found in NANFs compared to
similar concentric ring structures but this is highly dependant on the exact geometry
of both fibres. The source of this increased confinement is attributable to reduced
coupling between core and cladding modes in tubular fibres and NANFs, a concept
which is investigated in this chapter. Equation (3.1) is used in Section 5.2 to calculate
the minimum core size of multi-mode NANFs.

In Eq. (3.1) umn is a dimensionless quantity related to the transverse wavevector in the
core and characterises the mode order, depending on the radial and azimuthal index.
For the modes belonging to the LPmn group umn is the nth non-trivial zero of the Bessel
function Jm. The value of the Bessel zeros dictates the order of mode groups in ARF.
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The first 7 zeros are associated with the first 5 Bessel functions and their values are
shown in Fig. 3.3(c). The order of Bessel zeros is the same order as the order of modes
arranged by leakage loss, e.g. in Fig. 3.1(b).

The constant ν describes the dependence of loss on the refractive index of the
dielectric material and depends on the nature of the mode:

νTE =

(
1√

εr − 1

)N+1

νTM =

(
εr√

εr − 1

)N+1

νHE/EH =
νTE + νTM

2
(3.2)

with εr the relative dielectric constant of the glass regions. For any effective
waveguide εr > 1 (for silica at 1550 nm εr ≈ 2.1), therefore, in the same mode group
loss is minimal in the TE mode, maximal in TM mode and HE/EH modes are
approximately the average of the TE and TM modes.

The final product term in Eq. (3.1) extends over the cladding layers and describes the
transverse phase accumulated across each layer:

φ
(glass)
i =

2π

λ0
ti
√

εr − 1 φ
(air)
i =

umn

R
ti (3.3)

with ti the thickness of the ith cladding layer. The phase accumulated in the glass
regions leads to the anti-resonant behaviour of the fibre: low-loss windows in the
wavelength spectrum in-between high-loss resonant wavelengths, identical to those
predicted by the ARROW model, Eq. (2.24), and well describing the behaviour of
realistic ARFs of interest, e.g. Fig. 2.5. The optimum glass thickness where loss is
minimised, as predicted by this model, is identical for all modes. An optimal thickness
of air layers, however, is also predicted that depends on the mode order, unm. Eq. (3.1)
predicts that loss is minimised when the ratio between the air thickness and the core is
t(air)
i /R = π/(2unm). Whilst there is no equivalent concept of optimal air thickness in

realistic ARFs, the opposite, where loss of a particular mode is maximised is similar to
the way in which single-mode guidance is engineered (see e.g. Section 2.2.1.1).
Indeed, ratios between the size of the air region in the tube and the core have been
found at which the loss of the LP11 mode is maximised [10, 77]. These geometric ratios
correspond to maximum coupling between the LP11 core mode and the cladding
mode guided in the air region inside the tubes. This observation suggests that
cladding modes play a significant role in leakage loss and in this chapter the goal is to
develop a model for understanding and predicting loss by considering the interaction
of core and cladding modes.
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3.2 Dependence of loss on geometric features

In ARFs, a carefully designed cladding allows light to be confined and guided in the
central core region. Here, it is considered that the partitioned air regions created by
the arrangement of the cladding tubes themselves form a collection of waveguides
capable of supporting their own modes when isolated. These regions are the central
hollow-core, the dielectric tubes, the hollow air-filled regions enclosed by the tubes,
the spaces between the tubes, and the surrounding silica jacket.

When seen this way, the modes supported by the fibre are effectively supermodes of
the full, complex structure and can therefore be conceived as a linear superposition of
the modes of the individual constituent waveguides. Figure 3.4(c-g) shows contour
plots of power distributions of modes confined predominantly in each of these
constituent waveguides. It can be postulated that at wavelengths away from the
resonances in the glass membranes, it is the coupling between the core guided modes
of interest and these “cladding modes”, which themselves suffer substantial
attenuation as they can easily couple to radiation modes, which leads to leakage or
confinement loss. The modes of the cladding are often far more readily analysed than
those of the core. In this case, assuming the loss of these cladding modes is known,
coupled-mode analysis can provide an important insight into the loss process of the
core modes of interest. Indeed, such an approach has been employed previously in
literature to explain the high loss suffered by the fundamental mode of hollow-core
photonic-bandgap fibers in the vicinity of anti-crossing events with lossy surface
modes [108, 109], and also extensively to interpret the loss in ARFs near the cut off of
the modes confined in the glass membranes [110, 111]. In [108] it was shown that the
additional loss due to coupling with a lossy surface mode would scale approximately
as:

α ∝
γ|κ|2
(∆β)2 (3.4)

where γ is the assumed known loss of the cladding mode, κ the amplitude coupling
coefficient between core and cladding mode and ∆β is the difference between their
phase constants. Despite being an approximation, Eq. (3.4) shows powerfully that the
stronger the spatial overlap between the two mode fields (as captured by the coupling
coefficient κ), the stronger the loss. Further, and more importantly, the closer the
separation between their phase constants (smaller |∆β|), the higher the loss. It is
precisely this latter effect that is exploited in designing effectively single mode
hollow-core fibers, i.e. by matching the phase constant of the lowest-order HOM to
that of the fundamental lossy cladding mode, ensuring that all other HOMs also suffer
significantly high loss [10, 59, 77]. Interestingly, the Lorentzian shape of Eq. (3.4) has
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been found to explain very well the loss of core modes in ARFs near the cut-off of the
dielectric tube modes [110, 111].

FIGURE 3.4: (a) The geometry of a tubular fibre. (b) Confinement loss spectrum of
the fundamental core mode of (a) showing the fundamental anti-resonant window
plotted as a function of normalized frequency F. Representative examples of (c,d)
the core modes and (e,f,g) the cladding modes existent in tubular and NANF ARFs;
contour plots describe power flow in the axial direction and arrows denote the
transverse electric field. In order to show clearer examples of cladding modes,
different geometries have been chosen; these series of modes are present in all tubular

fibres.

With this understanding, one can therefore postulate that the loss of a given core
mode, αcore

p , is given by:

αcore
p ≈∑

q

γk|κp,q|2

(∆βp,q)2 (3.5)

where the summation extends over all the discrete cladding modes and takes the
meaning of an integral over the continuum of radiation modes of the silica jacket
cladding. Whilst conceptually straightforward, the great difficulty in estimating the
loss of the fibre using this expression lies in the fact that the summation extends over a
large number of modes, many of which are not easily computed without the use of
numerical simulation. This difficulty is greater still if the anti-resonant structure of
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interest has non-uniformities in tube thicknesses or contacting tubes, because the
contact points result in glass nodes which support modes of their own. It is
paramount in the design of low-loss structures to avoid such contact points altogether,
or alternatively to ensure they are located far away from the core region where the
modes of interest are confined (to minimize the coupling coefficient κ) [10, 112–114].

The geometry of the fibre determines the modes to which the coupling is strongest
and that result in leakage. In particular, for the same number of tubes a design with
large gaps will necessarily have smaller capillaries which brings the surrounding silica
jacket closer to the core region, thus increasing direct coupling between the core
modes and the continuum of radiation modes supported by the silica jacket. When the
gaps are smaller however, the silica jacket is sufficiently far away from the core and in
the following sections a simpler analysis considering only the modes in the hollow
regions of the cladding is shown to provide adequate insight. The analysis presented
in this chapter is therefore restricted to such structures with small inter-tube gaps as
they have higher potential for low-loss operation. In this thesis a small inter-tube gap
is defined as d < 4λ for operational wavelength λ, Fig. 3.4(a).

Under these conditions, useful simplifications can be made, leading to important
physical insight into the core-guided modes and their differential loss. In particular, it
is found that when the gaps between the tubes are small, loss of the core modes is
dominated by coupling to the modes confined within the tubes, Fig. 3.4(e), as they are
the largest of the cavities in the cladding. The loss of cladding tube modes is
significantly higher than those guided in the core due to the proximity of the jacket
glass, the smaller radius of the tubes compared to the core and the lack of a light
confining micro-structure. For example, using Eq. (3.1) a tube of radius 19.5 µm,
thickness 530 nm at wavelength 1550 nm, the loss is 50 000 dB/km [115]. Because the
field distributions within such cylindrical tube waveguides and their propagation
constants can be calculated analytically, this makes the analysis of the coupling
process more tractable.

In the following section, the relationship between these cladding tube modes and the
loss of the core-guided modes from a coupled-mode perspective is examined.
Beginning with detailed numerical simulations that justify the restriction to the
analysis of tube modes, the calculated loss is then compared to quantitative
predictions from this analysis.

3.3 Core mode loss through coupling to tube modes

Great insight into the loss of ARF can be obtained by analyzing the Poynting flux in
the radial direction at the perimeter of the fibre which indicates the local leakage loss
from the structure. This azimuthally resolved radial Poynting flux, together with
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transverse power flow analysis is a powerful tool that can link leakage loss to specific
geometric features. For example, its use has led to the design of new fibre geometries
with ultra-low leakage loss [85]. Here, similar analysis is applied to a tubular fibre, to
reveal which cladding modes the light is coupled into as it leaves the core and show
the results in Fig. 3.5. Using numerical simulation, the modes of a large-core ARF
(R = 32λ0), having 12 cladding tubes of radius r = 0.26R, thickness t = 530 nm and
gap size d = 5.8 µm are found. A structure with 12 tubes was chosen that will guide
many core modes with low loss. The wavelength of operation was chosen at
λ0 = 1550 nm that corresponds to a normalized frequency (Eq. (2.25)), F = 0.71 and is
located at the minimum loss of the fundamental anti-resonant window (see
Fig. 3.4(b)). At this wavelength, no mode guided in the thin silica membranes,
Fig. 3.4(g), interacts appreciably with the core modes [87], suggesting that leakage via
modes located in air alone should be able to account for the loss.

FIGURE 3.5: (a-d) Mode plots of several core modes that have been numerically
simulated, black arrows superimposed on the mode denote the transverse electric field
vectors. Around the perimeter of each mode figure is plotted the radial power flux (red
line), normalized to the total modal power, as a function of the angular coordinate
φ. (e-h) The percentage of the total modal power flow in the axial direction inside
individual cladding tubes (blue bars) is superimposed with the normalized radial flux.
In order to emphasize the relationship between the two quantities the bar for the tube

at 0° is repeated at 360°.

In Fig. 3.5(a-d) shows the mode profiles of a representative selection of modes: the (a)
HE11, (b) HE12, (c) HE41 and (d) EH12 core modes. The azimuthally-resolved loss at the
outer boundary with the geometry of the fibre is overlaid. It can be seen that leakage
loss peaks at the azimuthal locations of the tubes, indeed for all modes studied more
than 90% of leakage loss occurs within ±5° of the centre of the tubes (in this structure
each tube covers an angle of approximately 30°). This is indicative of the fact that the
loss is caused by the coupling to the cladding tube modes. It can be observed that the
magnitude of the peaks is different, depending on the azimuthal position of the
cladding tube, e.g. in Fig. 3.5(a) the peaks are minimum at 30° and 210° and maximum
at 150° and 330°. This can be attributed to the electric field polarisation; leakage loss is
higher where the transverse electric field is normal to the jacket as expected when
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considering the difference in reflection coefficient, described by Fresnel’s equations,
for s and p polarizations.

To confirm that coupling to tube modes is the origin of loss, the extent to which core
modes are hybridised with cladding modes is examined. Note that this section does
not discuss the mechanisms of coupling, but rather attempts to observe and quantify
its effect in order to show that it is the cladding tube modes which are the significant
source of loss. For each core mode the fraction of modal power is measured, given as
the time averaged Poynting vector in the direction of propagation, that is located and
propagating inside the cladding tube. Fig. 3.5(e) compares, for the fundamental HE11

mode, the power inside each tube to the azimuthally-resolved power flux. For all
tubes, the relative magnitude of the tube power almost exactly matches that of the
corresponding peak in the power flux. This is the case for all of the core modes
considered (e.g. Figs. 3.5(f-h)). Considering other modes it can also be observed that
the fraction of power in tubes increases with the mode order as does the total amount
of leakage through the tubes; the maximum and minimum powers for the
fundamental HE11 mode (Fig. 3.5(e)) are 2 orders of magnitude lower than the EH12

(Fig. 3.5(h)) mode. Given the strong association of loss to the degree of coupling it is
logical to say that the primary source of loss is via the tubes. This is an indication that
confinement loss can be directly linked to coupling to tube modes and that a tube
coupling model can be used for quantitative prediction of the modal leakage loss.

As further evidence, Fig. 3.6 shows the correlation, for 40 core-guided modes, between
the confinement loss and total fraction of power in the cladding tubes tubes. The
fraction of power in the entire cladding (Region B in the inset of Fig. 3.6) increases
with mode order as expected for less confined modes. However this is not
proportional to the increase in confinement loss. The fraction of power in the tubes
(Region A) on the other hand shows excellent correlation with confinement loss,
supporting the claim that that the loss of all core-guided modes in tubular
anti-resonant fibre is primarily due to coupling to tube modes.

An argument might be made that the described correlation between leakage loss and
power guided in the cladding tubes can be explained with the statement that
higher-order modes are less confined and therefore have more power propagating
outside the core. However, using this analysis it is evident that, although increasing
with mode order, power in the entirety of the cladding (Region B, green line in Fig. 3.6)
does not show any meaningful correlation with confinement loss. It is interesting to
note that despite this, for the relatively low-loss, lower-order, core-guided modes,
most of the power in the cladding is propagating outside the tubes (in Region C). For
the HE11 modes in this fibre, 0.12% of the total power propagates in the cladding (in
Region B) over 96% of which resides outside the cladding tubes (Region C). As the
loss increases a higher fraction of the cladding power is found to reside inside the
tubes: for the HE22 mode 1.3% of the power propagates in the cladding of which 87%
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FIGURE 3.6: The confinement loss of the core modes of a large core tubular ARF (blue
bars) and the percentage of the total modal power propagating in various regions of

the cladding (lines), the regions A, B and C are highlighted in red in the insets.

propagates outside the tubes. Modes very near phase matching are strongly
hybridised with cladding modes and the tubes are found to contain more power than
the rest of the cladding: the EH22 mode has only 16% of power in the cladding
propagating outside the tubes. This further supports the conclusion that the
magnitude of leakage loss is strongly linked to the cladding tube modes.

3.3.1 Relation to NANF geometries

Air modes that are guided in the gap regions between the tubes account for some of
the extra power in the cladding. From all that is shown above, it is logical to expect
that these gap modes contribute significantly to loss in tubular anti-resonant fibres
when the gap between the tubes is large as confirmed by the study in ref [116]. For
lower loss geometries with smaller gaps, for example as defined in this thesis d < 4λ,
these gap-modes have a much smaller impact compared to the tube modes. To
compare this behaviour to designs with reduced leakage through tubes a 12-tube
tubular fibre is contrasted with a NANF that is identical with the exception of the
addition of a nested tube. Both fibres are shown together in Fig. 3.7(a) with their radial
power flow at the outer boundary of the fibre. The fraction of the power lost through
the tubes is compared to that lost through the gaps. In the case of the tubular fibre in
Fig. 3.7(a), less than 5% of the total leakage is through the gaps. For the NANF in
Fig. 3.7(b) the nested tube reduces the size of the cladding tube air regions and
therefore increases the phase-mismatch between the core and cladding tube modes.
This results in lower loss by, according to Eq. (3.4), reducing coupling to the tube
modes. One can imagine that coupling to gap modes would be unaffected and
therefore leakage associated with these modes would become a greater proportion of
total loss. There is indeed a higher proportion of the total loss associated with the gaps
in a NANF: 7.6%, 2.7% more than in the tubular fibre. This is a very small increase,
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however, suggesting that leakage through gap modes is also decreased in a NANF
compared to tubular fibre. The exact value of leakage through the gaps depends on
the size of the nested element, with lower loss geometries having a higher proportion
of that loss through the gaps [85]. The significance of tube and gap modes is discussed
in detail in Section 4.2.3.

FIGURE 3.7: The normalized radial power flux at the jacket of the fundamental mode
in (a) tubular and (b) NANF fibre. The black arcs centred on the gaps show a 12° angle.
The loss through this angle is calculated and displayed as a percentage of the total loss.

What is clear from this analysis is that the majority of leakage loss in NANFs, as in
tubular fibre, is associated with coupling to cladding tube modes. Therefore, although
this study focuses on tubular fibre, the insights gained herein remain applicable to
more complex ARFs with nested elements such as the NANF.

3.4 Model for analysing leakage loss

Having demonstrated that the primary source of confinement loss in low-loss tubular
fibre is via coupling to the modes of the cladding tubes, the coupling process between
core-guided modes and those tube modes is investigated. From Eqs. (3.4) and (3.5),
the loss of a given core mode scales with the strength of its coupling to the tube modes
and inversely with how well it is phase matched to such modes.

In this further investigation, it is studied how the loss of any core mode depends on
the separation between its propagation constant and that of cladding tube modes.
This required the simulation of a range of ARFs for which the propagation constant of
the core and cladding modes can be specified. In [115], an analytical formula for
propagation constants of HE modes confined inside a dielectric tube waveguide is
presented as:
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FIGURE 3.8: Numerical simulation of the tubular fibre (Fig. 3.4(a)) for which the
refractive index of the air within the cladding tubes is controlled. (a) The propagation
constant of the core and cladding modes relative to βref which is taken as the
propagation constant of the fundamental, LP01, core mode. The propagation constant
of the cladding modes is calculated using Eq. (3.6). (b) The confinement loss of the first
4 core modes. The x-axis of (a) and (b) are shared; the vertical dashed lines highlight
the points at which the propagation constant of the first 4 core modes intersects with
that of the fundamental cladding tube mode. (c) The confinement loss of all the core
modes plotted against their difference in propagation constant to the fundamental
cladding modes. The black crosses indicate the predicted loss of the first two cladding

modes using the model of Bird [95].

with nair the refractive index of the air or gaseous medium. In this study, of interest is
the propagation constant of the cladding tube modes and therefore R is taken as the
radius of the cladding tubes, R1. All other variables have the same definitions as in
Eq. (3.1). It follows from Eq. (3.6) that the propagation constant of the cladding tube
modes can be modified either through changing the size of the tubes, R1, or by
changing the medium with which they are filled, nair. Changing the tube size to
increase or decrease the effective index of the tube modes would result in either
changing the number of tubes or the size of the gaps between them and the proximity
of the jacket glass. Such changes to the geometry are known to impact the loss of the
core modes on their own. Instead, in the simulations presented here the refractive
index of the hollow regions inside the cladding tubes, nair, is modified whilst keeping
that of the core and of the glass constant and with no changes to the overall geometry.
The magnitude of the change in refractive index is less than 0.1% of the contrast of air
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and glass and so has a negligible impact on the anti-resonance conditions. Numerical
simulations using this technique are used to study the effects on loss of the difference
in phase constant between core and cladding tube modes.

3.4.1 Low-loss phase-mismatch windows

Figure 3.8 shows the results of this study in which the geometry of Fig. 3.4(a) is
simulated with modified refractive index of the material within the cladding
capillaries, varied between 0.9999 and 1.0005, in order to manipulate the propagation
constant of the cladding tube modes. The fibre studied has an inner capillary radius of
19.5 µm and a wall thickness of 530 nm and the wavelength studied is 1550 nm. With
these parameters the effective index of the HE11 mode, calculated using Eq. (3.6), is the
same for a gas with refractive index 0.9999 as for air, refractive index 1, with a tube
radius 1.9 µm smaller. Acquiring solutions for core modes with propagation constant
lower than that of the HE21 cladding tube mode proved to be computationally
expensive and time consuming, so the study is limited without loss of generality to
modes above it.

Figure 3.8(a) confirms that the propagation constants of the core modes (coloured
horizontal lines) are effectively constant, whilst those of the cladding modes (black
dotted lines) vary approximately linearly with the refractive index. The propagation
constant is plotted relative to that of the fundamental mode to make clearer the
relationship with phase matching, quantified by the difference in propagation
constant, ∆β in Eq. (3.4). Where the propagation constant of the core modes and
fundamental cladding tube mode intersect, the phase match condition, ∆β ≈ 0 is
satisfied and strong coupling occurs according to Eq. (3.4). Core modes belonging to
the same LP mode group are typically approximately degenerate, their phase
constants are nearly equal. Therefore the discussion is simplified by referring to
modes using their LP group name from this point onward. When calculating cladding
tube modes the phase constant and loss of the group is taken to be that of the HE
mode belonging to that group.

In Fig. 3.8(b) the confinement loss of the first 4 core mode groups is plotted against the
refractive index of the cladding gas medium and the points of phase matching are
highlighted (dashed vertical lines). For each mode the loss increases as phase
matching is approached. Very near to phase matching, owing to the strong
hybridisation between core and cladding modes, it is very difficult to label the
solutions of the numerical solver as specific core modes and so they are not included
in this graphic. This results in the gaps noticeable near phase matching.

Figure 3.8(c) plots the confinement loss of all core modes versus the difference in
propagation constant between the core and fundamental cladding tube mode. Here,
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the notation is introduced: ∆βq = βcore − βq having the meaning of the difference in
propagation constant between each core mode and the cladding tube mode group
specified by the subscript q. Hence, phase matching with the fundamental, LP01,
cladding tube modes occurs at ∆βLP01 = 0. The difference in phase constant between
cladding modes remains approximately constant (see Eq. (3.6)) so phase matching to
the second cladding mode, HE21, occurs at ∆βLP01 = −2800 m−1. Very near phase
matching, ∆β ≈ 0, the strong coupling between core and cladding tube modes means
that the loss suffered by the core mode is very similar to that of an isolated tube mode.
The loss of such modes can be estimated as the N = 1 structure of Eq. (3.1). In
Fig. 3.8(c) it is found that this analytically calculated loss well describes the asymptotic
peak value of the core modes at phase matching.

Looking at the plots of Fig. 3.8(c), the Lorentzian-like behaviour of the loss as a
function of ∆β can clearly be observed, as may be expected from Eq. (3.4). Indeed, at
phase matching, all the core modes experience high loss as a result of the resonant
out-coupling to tube modes. As |∆β| increases, the loss falls off sharply towards a
minimum value. This results in a series of low-loss “windows” between the phase
matching points, conceptually similar to anti-resonant windows in wavelength that
occur between the resonant modes in the glass membranes [110]. This phenomenon
shall be referred to as “phase-mismatch” windows in this thesis.

For all the modes, the lowest loss is achieved in the first phase-mismatch window, i.e.,
∆βLP01 > 0 on the figure. Looking at Fig. 3.8(c), the minimum loss in the second
phase-mismatch window is nearly two orders higher than the lowest loss achievable
in the first. This can be explained by considering that in the second window not only
the HE11 tube mode will contribute but also the lossier HE21 mode. This observation
has practical significance when designing ARFs with specific modal properties. If for
example multi-mode guidance is desired with relatively low differential loss between
the modes, a strong goal in this thesis, then all desired core modes should preferably
be guided in the first phase-mismatch window, ∆βLP01 > 0. Conversely, when aiming
to out-couple a specific mode, for example to achieve effectively single mode
guidance, it can be more desirable to target a geometry that guides that core mode just
inside the second phase-mismatch window rather than exactly at phase matching. For
small, negative ∆βLP01 loss remains high and the fibre will be more robust against
variations in fabrication or bending that would alter the propagation constants of core
and cladding modes.

3.4.2 Quantifying coupling losses

To further investigate this coupling behaviour, the magnitude of the amplitude
coupling coefficient, κ of Eq. (3.4), is examined. For two modes, p and q, described by
their normalized electric fields, Êp and Êq, for simplicity the overlap integral is
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considered [116]:
ηp,q =

∫∫
Êp · Ê∗q dA (3.7)

that is proportional to the coupling coefficient, κ. In coupled mode theory where we
would effectively regard the fibre as a directional coupler made of the core and the
lossy cladding tubes, one ought to rigorously consider the modes of these different
structures when they are isolated and uncoupled. In this case however, an
approximation is needed because the core cannot be defined as an isolated waveguide
and therefore no analytical solution is available. With the knowledge of this difficulty,
the core modes are approximated as those guided within the core when surrounded
by the cladding tubes and which are obtained by finite element simulations. A similar
approach to the approximation used here has previously been used by Deng et al.
[116]. The electric fields of the cladding tube air modes can therefore be calculated
analytically by treating them as isolated tubes, an approach previously employed in
analysing the dielectric modes of the cladding tubes [110, 111]. In this section
therefore, overlap integrals are calculated between core modes, the numerical
solutions of the full fibre, and modes of isolated cladding tubes which are determined
analytically.

There are a large number of tube air modes as each tube supports its own full set of
modes. Since all the tubes in an ideal fibre are identical, however, all tube modes
belonging to the same mode group have equal propagation constants. An overlap
integral between a core mode p and a cladding tube mode group Q is therefore
defined as:

∣∣ηpQ
∣∣2 = ∑

q

∣∣ηp,q
∣∣2 (3.8)

where the sum extends over all tubes and all modes belonging to group Q.

Using the data set previously studied (i.e. Fig. 3.8), the overlap integral between the
first three analytically determined cladding tube modes and the numerically solved
core modes of the first 5 core mode groups, is calculated and in Fig. 3.9 is plotted
against the difference in propagation constant of that tube mode. The lower x-axis
describes the difference in propagation constant between the core mode and the
cladding tube mode for which the overlap is calculated. The same upper x-axis,
∆βLP01, is repeated for Fig. 3.9(a-c) to emphasize that they share the same range of
data. In Fig. 3.9(a) the coefficient of coupling to the fundamental cladding tube mode,
ηLP01, also exhibits a Lorentzian-like behaviour centred at ∆β = 0 where each core
mode has a maximum value of η that falls off sharply as |∆β| increases. This can be
understood by considering that core modes become strongly hybridised with cladding
modes near phase matching and therefore the electric field overlap with a pure tube
mode increases as described by Eq. (3.7).
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FIGURE 3.9: The overlap integral, Eq. (3.7), between several core modes (line colour)
and (a) the LP01 cladding tube mode, (b) the LP11 cladding tube mode and (c) the LP21
cladding tube mode. These values are plotted against the difference in propagation

constant between the given core mode and the specified cladding tube mode.

For the geometry and cladding refractive index range considered, the core modes
plotted here are far from phase matching to higher-order cladding tube modes (see
Fig. 3.8(a)). When the overlap integral to these tube modes is calculated, therefore,
|∆β| is large and Fig. 3.9(b,c) show the tails of a Lorentzian curve.

For all tube modes the magnitude of the overlap integral increases with the core mode
order. In Fig. 3.9(b), the overlap integral of the LP02 core mode is roughly double that
of the fundamental LP01 core mode at ∆βLP11 = 3000. Considering Eq. (3.4), this result
goes some way to explain the large differential loss between core modes even when
both are in the first phase-mismatch window which has the lowest loss (see Fig. 3.8(c)).

Seeking to quantify the loss of the core modes, it is found, as in [111], that the loss of
core modes can be well approximated by a modified version of Eq. (3.5), that is:

αcore
m ≈∑

k

γk|ηm,k(∆βm,k)|2

δ2 + (∆βm,k)2 (3.9)

where δ is introduced to account for the finite loss when ∆β = 0 and the dependence
of the coupling strength on ∆β has been made explicit.

Fitting Eq. (3.9) to the simulation data, there is indeed good agreement. In Fig. 3.10 the
predicted loss from this simple coupling model is compared with the results of
numerical simulations for two core modes: LP01 in (a,b,c) and LP21 in (d,e,f). Initially,
in Fig. 3.10(a) and Fig. 3.10(d) only the contribution from coupling to the fundamental
LP01 cladding tube modes are included. The low-order core modes are near the phase
matching condition with the fundamental cladding tube mode, indeed the point of
phase matching (∆βLP01 = 0) is contained in this data set. It can clearly be seen that
this cladding mode is the most significant contributor to the loss; when considering
only the fundamental cladding tube mode in Figs. 3.10(a,d) there is already some
agreement to the data; in Fig. 3.10(a) near phase matching at ∆βLP01 = 250 the model
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FIGURE 3.10: The confinement loss for (a,b,c) the LP01 core mode and (d,e,f) the LP21
core mode found by fitting Eq. (3.9) to the simulation data. Shown is the contribution
of (a,d) the fundamental LP01 cladding tube mode, (b,e) the LP01 and LP11 cladding
mode groups and (c,f) the LP01, LP11 and LP21 cladding mode groups. Loss is plotted
versus the difference in propagation constant between the core mode of interest and

the specified cladding tube mode, i.e. in (b) ∆βLP11 = βcore
LP01 − β

cladding
LP11 .

overestimates the loss of the LP01 core mode by factor 2x and the error is reduced for
increasing ∆βLP01, moving away from resonance.

When including the contributions of all three cladding tube modes considered here
(Figs. 3.10(c,f)) this model does slightly overestimate the loss very near the
phase-matching point which is likely due to the approximations made by the
introduction of δ in Eq. (3.9). A very localised underestimate of loss can be observed in
the region at the edge of the second phase-mismatch window (e.g. ∆βLP21 = 5900 in
Fig. 3.10(f)). In this region, although the fit is improving as additional tube modes are
considered, the model appears inadequate to describe the complex interplay between
modes. Improvements could be found by considering the phase change of the tube
modes in the presence of strong hybridization and due to coupling between
individual tube modes.

Equation 3.9 describes a summation over all cladding modes but here the contribution
of modes only up to the third, LP21, cladding tube mode are included. As the
contributions of additional cladding tube modes are included, the fit improves. To
truly capture the loss using this model it would be required to calculate the phase
mismatch and overlap with all of the cladding modes including the dielectric modes
and the air modes of the inter-tube regions. There is, however, very reasonable
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agreement using 3 or even only 2 cladding tube modes in the first phase-mismatch
window (∆βLP01 > 0), that is where low-loss modes are typically desired to be guided.

Here the powerful concept of mode-coupling is explored for understanding and
analysing the behaviour of anti-resonant fibres in the low-loss regimes in which they
are typically operated. Although the concept of modifying material index explored
here can be studied in practice by modifying for example the gas pressure inside the
tubes [117], in a more typical deployment, controlling the phase matching condition
must be achieved by controlling the difference in size between the core and cladding
tubes. Without adding additional tubes and maintaining the core size, smaller tubes
have wider gaps and larger air regions between them. The gap modes therefore
become more significant and, in addition to the effect of coupling to tube modes one
must also consider the effect of coupling to gap modes even for low-loss structures
where gap modes have a lesser effect. The effect of gap modes in NANFs is increased
by virtue of loss to cladding tube modes being reduced and so gap modes are
expected to be more important to the analysis of NANFs.

The results shown here could be applied to a number of practical applications, for
instance in designing multi-mode ARFs. Previous work has shown how the size of the
core impacts the number of low-loss modes guided [49] but these studies ignored the
effect of resonant out-coupling when in fact this is currently the primary method of
engineering the modes of ARFs. Here, it is shown that the first phase-mismatch
window is the only regime in which low-loss guidance can be achieved and that phase
matching to the fundamental cladding tube mode well describes the loss of the
fundamental and higher order core modes in this region. This knowledge can guide
the development of a technique for designing ARF geometries which guide a desired
number of modes under a loss threshold.

3.5 Conclusions

In this chapter the sources of differential modal leakage loss in multi-mode
anti-resonant tubular fibre are investigated. In fibres that have small inter-tube gaps in
the cladding, common in low-loss geometries, the confinement loss for core-guided
modes operating in anti-resonant windows, far from resonance with dielectric modes,
can be analysed and understood as the result of coupling to air-guided cladding tube
modes. Air guided modes propagating in the gaps between tubes and dielectric
modes in the tubes themselves on the other hand have very little impact on the loss.

A crucial quantity that drives the strength of coupling from core modes to tube modes
and thus loss, is the separation between the propagation constants of the core and
cladding tube modes which can be readily determined from the geometry. When
exactly phase matched, core modes suffer leakage loss as high as that of the cladding
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modes themselves. From the results here some useful insight are derived into the
design of few-moded, multi-moded and effectively single-mode ARF; in particular the
concept of phase-mismatch windows. All desired modes must be guided in the
fundamental phase-mismatch window, with propagation constant greater than that of
the cladding tube modes, to achieve low loss operation. In tubular fibre this might
require choice of small cladding tubes which can cause high loss due to the jacket
glass being closer to the core, however, geometries with nested elements such as
NANFs can guide multiple low-loss modes without prohibitively high losses.

Using this understanding a model was developed to approximate leakage loss based
on the concept of resonant coupling to tube modes. By considering only the
contributions of the first three cladding tube modes good agreement to numerical
simulation was attained. This model demonstrates that the loss of core modes is
dependant on not just coupling to the fundamental cladding tube mode but also to the
higher-order cladding tube modes. Future work could improve on this model by
taking a similar approach to also include the impact of other cladding modes, for
example those propagating in the gaps between tubes or the glass modes. The insight
gained in this chapter is used in Chapter 4 to develop techniques for understanding
and reducing differential modal loss in a ARFs with a variety of micro-structure
cladding designs, including the NANF.
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Chapter 4

Designing Few-moded
Anti-resonant Fibres with Low
Differential Loss

In Chapter 3 differential modal loss and the sources of loss in multi-mode ARFs were
investigated. Although applicable to ARF in general, that chapter focused on tubular
fibre due to the simplicity of that geometry. Of more interest are other structures, such
as the NANF, DNANF and Anti-resonant Leakage Inhibited Fibre (ALIF) which are
predicted [10, 85], and have been demonstrated [21, 22], to be capable of very low-loss
single-mode operation compared to tubular fibres. These structures are the focus of
this chapter.

Section 3.1 demonstrated that the simplest route to achieving low-loss higher-order
modes is to increase the size of the core. For example, in 2019 Winter et al.
demonstrated a 10-mode hollow-core fibre by fabricating a very large, 164 µm
diameter core, tubular fibre which guided 10 modes [49]. Chapter 5 will discuss ARFs
with large cores for guiding many tens of mode groups. By contrast, in this chapter,
the objective is to achieve few-mode guidance, which shall be defined here as fewer
than 10 guided mode groups. Towards this goal, a greater understanding of the
behaviour of the cladding modes in ARF geometries of interest, which Chapter 3
demonstrates are critical for low-loss guidance, is required.

Current short-haul links, with reaches up to a few 100 metres, employ multi-mode
graded-index fibres with a strict core radius specification of 25 µm and operate at a
wavelength of 850 nm [118]. Short-haul is deployed extensively in data centres where
the demand for higher data rates is always increasing and yet solid-core fibres are
rapidly reaching the limits of what is achievable. By contrast, single-mode NANFs
have been demonstrated with lower loss than solid-core fibres at 850 nm [59] and the
wide bandwidth and low dispersion of ARFs suggests that they may be capable of
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improving on the data-rate and link length achievable in solid-core graded-index
fibre. The question of whether few-mode, hollow-core fibres can be designed with low
differential loss is integral to the task of using hollow-core fibres for short-haul
telecommunications. Meanwhile the fixed core size requirement provides a useful
constraint to explore the techniques required to design the cladding of NANFs, ALIFs
and DNANFs in order to achieve low-loss few- and multi-mode guidance.

The chapter is organised as follows. Section 4.1 presents a brief background on the
current standards and requirements for short-haul, multi-mode telecomms. Section 4.2
investigates few-mode guidance in NANFs. The effects of the number of tubes and
cladding parameters on loss and higher-order mode limitations is discussed. The
cladding modes are studied and techniques are developed to both predict the
quantitative effects of bending on HOM suppression and to design the cladding of a
NANF or DNANF to optimise multi-mode guidance. Section 4.3 considers other ARF
geometries with additional nested, adjacent elements. Although demonstrating very
impressive confinement of HOMs, the effect of glass resonances due to additional
glass nodes is found to be severely limiting and the investigation is limited to the
ALIF with 2 nested, adjacent tubes. In Section 4.4 the ALIF design is investigated
further. Similarly to the NANFs and DNANFs, a technique is developed to predict the
effective index of the cladding modes and thereby design ALIFs for multi-mode
operation. Finally, this technique is used to develop a 10-tube ALIF fibre for
short-reach telecommunications, capable of double the bandwidth and significantly
reduced loss compared to current standard multi-mode, graded-index fibres.

The work described in Section 4.4 has been previously been published in Ref. [119].

4.1 Short-Haul Telecommunications

As demand for internet services increases, the end-to-end transmission capacity must
increase, but so too must the capacity of data centres which store, process and
generate the massive amounts of data communicated. While individual links are
typically only several tens of metres or at maximum a few hundred metres in length,
in total there may be tens of thousands of kilometres of fibre deployed in a single data
centre. For the companies running these data centres it is imperative that the links,
from source to receiver, are low-cost whilst also meeting the low power and high data
rates they require. For short-haul links in the region of 100 m or less a common
solution is Vertical Cavity Surface Emitting Lasers(VCSELs), which are very low-cost
to manufacture at scale compared to other solutions, coupled with graded index
multi-mode fibres. Other short-haul deployments employ single-mode lasers to
leverage the higher data-rates generally possible in single-mode fibres but lower-cost
multi-mode VCSEL-based links remain wide-spread and are the target of this chapter
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[120]. It is likely that single-mode ARF would prove beneficial in single-mode
short-haul links as they are predicted to be in long-haul [12].

4.1.1 Vertical Cavity Surface Emitting Lasers

VCSELs are a type of semiconductor diode laser unique in that emission is
perpendicular to the top or bottom surface, rather than a cleaved edge as in edge
emitting diode lasers. The key advantage of this is that the laser is functional on the
slab upon which it is manufactured. They can be tested during production allowing
manufacturing defects to be caught early on. This in turn makes them very cheap to
produce. It is even possible for VCSELs be deployed on the slab in large
two-dimensional arrays, raising the possibility of very tightly integrated multi-laser
systems for WDM, highly-parallel data transmission or high-power applications [121,
122].

FIGURE 4.1: Cross section of a selectively oxidised VCSEL [123]. The structure is
broadly that of a PN junction. The oxidized layers are insulators confining the current

to the small active region formed in this instance of three quantum wells (QW).

VCSELs were first demonstrated operating at room temperature in 1988 [124]. The
structure is that of a PN junction forming a diode as shown in Fig. 4.1. Reflectors on
the top and bottom turn the diode into an optical resonator with the active region
formed of one or more quantum wells in the middle. Due to the comparatively short
active region, high reflectance is required to produce sufficient lasing. Distributed
Bragg reflectors are therefore employed, producing reflectivity greater than 99%.
Current is injected into the top surface and passes through to the bottom.

Due to the short cavity, the longitudinal mode spacing of a VCSEL is typically tens of
nm, two orders of magnitude greater than that of an edge emitting laser. Therefore, for
most applications, surface diode lasers emit a single longitudinal mode [125]. VCSELs
however, typically display multiple transverse modes. The exact nature of these
modes is highly dependent on the driving current and the optical feedback on the
device [126]. Emitted modes are very well approximated by Laguerre-Gaussian beams
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and will tend to emit at slightly different wavelengths, typically a few nm difference.
As the driving current is increased the output power will shift towards the higher
order modes and it is quite common in a multi-moded VCSEL for most of the output
power to not be in the fundamental mode [125]. In communications, VCSELs can
typically be modulated directly very effectively and up to 25 Gb/s direct modulation
has been demonstrated [127].

Active diameters for the modes of telecommunication VCSELs are designed to be
between 15 µm and 25 µm, similar to the core dimensions of multi-mode optical fibre
allowing efficient butt coupling [128, 129]. Although VCSELs are typically fabricated
in the GaAs platform which supports wavelengths from around 700 nm to 1300 nm,
850 nm is used for many purposes including telecommunications [125].

Power conversion efficiencies greater than 50% have been demonstrated since the
advent of selective oxidisation [121, 130]. It follows that there is far less heat generated
and VCSELs are typically operated without any cooling or heat dissipation system. It
should be noted however, that despite their high efficiency and low driving currents
compared to edge emitting lasers, VCSELs have not approached the maximum output
power of other devices.

4.1.2 Short-Haul Fibre and Standards

Coupling a high fraction of the light emitted by a multi-mode VCSEL generally
requires a multi-mode fibre. To reduce the impact of inter-modal dispersion large,
50 µm core, graded-index (GI) fibres are chosen. The Optical Multi-mode (OM) series
is a collection of performance standards for multi-mode optical fibres used in
short-haul telecommunications. The data rates of VCSEL/GI links are limited by the
fibres’ inter-modal dispersion, driven by differential group delay (DGD) between the
modes. GI fibres are highly multi-mode, often guiding more than 1000 modes. The
actual performance of the fibre is therefore very sensitive to the launch conditions; if
most of the light couples into lower order modes then the DGD will be small but as
more light propagates in higher order modes the DGD will increase. The OM
standards therefore define bandwidth-distance product for a certain encircled-flux
launch condition such that DGD is within tolerances and desired data rates are
achievable.

OM3 fibres have a maximum DGD of the order of 0.22 ns/km [131]. The OM4
standard released in 2009 improves on the maximum data rate but further
improvement is limited by the fundamental limits imposed by solid-core guidance in
silica [118]. The most recent, OM5 standard from 2017, instead of further reducing the
fibre dispersion expands the optical bandwidth from single-wavelength operation at
850 nm to instead covering the band 850 - 950 nm, optimizing it for shortwave WDM
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OM3 OM4 OM5
TIA 492-AAAC TIA 492-AAAD TIA 492-AAAE

Year 2002 2009 2016
Attenuation 2.5 dB/km 2.5 dB/km 2.5 dB/km
Bandwidth-Distance
Product

1500 MHz− km 3500 MHz− km 3500 MHz− km

Wavelength Range 850 nm 850 nm 850 - 950 nm

TABLE 4.1: A summary of the laser-optimized, optical multi-mode fibre specifications
for graded index fibre. The OM1 and OM2 specifications are both for light emitting
diode sources and are not applicable to this work. The year is the date that the original

version of the specification was published.

Standard Cable Modulation Minimum Distance
OM3 OM4

100GBASE-SR10 2x12 / 1x24 fibre 10 x 10G, PAM2 100 m 150 m
100GBASE-SR4 1x12 fibre 4 x 25G, PAM2 70 m 100 m
100GBASE-SR2 2x2 fibre 2 x 25G, PAM4 70 m 100 m

TABLE 4.2: A summary of the 100 Gb Ethernet connection standards for short-haul
optical fibre links.

applications. The usable bandwidth is again limited by the optical loss and dispersion.
A summary of the pertinent data is given in Table 4.1. The OM specifications also
define the fibre performance at 1310 nm; however they are optimised for 850 nm,
which is the more common wavelength for short-haul telecommunications.

Current Ethernet standards achieve 100 Gb/s transmission by deploying bundles of 4
or 8 GI fibres, each carrying 50 or 25 Gb/s, up to 100 m as described in Table 4.2.
Increasing the number of fibres in a cable also requires scaling of the optical switches
and connectors which generally must occupy the same physical footprint [120].
Emerging requirements for 200 and 400 Gb/s Ethernet require a new approach to
achieve the required bandwidth over usable distances and without an excessive and
unsustainable (in terms of expense and practicality) increase in the already substantial
hardware infrastructure. Hollow-core anti-resonant fibres suggest a route for meeting
future demands on data rate in multi-mode short-haul links, as they are predicted to
do in single-mode long-haul links [12]. In addition to lower dispersion and
nonlinearity [10] ARF has already been demonstrated with lower loss that solid-core
fibres at 850 nm [59]. Furthermore, lower latency [24] and thermal sensitivity [132]
may be beneficial in data-centre applications.

4.2 Few-moded guidance in NANFs

The NANF is a very well understood and proven technology for single-mode
operation: multiple hollow-core low-loss records have been achieved in NANFs [21,
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59, 133], hundreds of km of single-mode NANF have been produced in the lab and
commercial NANF cables are already available [30]. The excellent performance
demonstrated makes NANF a logical structure with which to begin the investigation.
Single-mode NANF is engineered so that the cladding modes strongly couple to the
LP11 core mode group, ensuring high loss amongst the high-order modes [77].
Chapter 3 discussed the origins of differential modal loss in ARF and demonstrated
that low-loss operation demands that ARFs be designed such that the phase constant
of the core modes are within a phase-mismatch window where coupling to cladding
air modes is reduced. In Section 3.4.1 I demonstrated that core modes in the
fundamental phase-mismatch window, with effective index greater than that of the
fundamental cladding tube mode, have the lowest leakage loss.

Figure 4.2 shows examples of the modes of a NANF. The core modes, Fig. 4.2(a-d), are
similar to those of a tubular fibre and are labelled in this chapter by their LP group
using the notation described in Section 2.1.3. The nested capillary subdivides the tube
air cavity and each region guides its own set of inner-cladding (IC) modes. The
notation IC1 is adopted to refer to modes guided inside the innermost tube, Fig. 4.2(e),
and IC2 for modes in the outer region, Fig. 4.2(f). As in tubular fibre there also exists
an air cavity bounded by the jacket glass and the outer capillary tubes and the
outer-cladding (OC) modes guided in this region are referred to by the notation OC1.
It is important to note that each of these cladding air cavities guide a full set of modes
just as in the core region. Typically the only cladding mode of interest is the
fundamental, HE11-like mode (which is shown in Fig. 4.2(e-g)) that has the highest
phase constant (see Eq. (3.6)). For simplicity, therefore, ICn and OC1 shall henceforth
refer to the fundamental mode group of the respective set and where necessary
specific mode groups shall be referred to by e.g. IC1-LP11.

FIGURE 4.2: Mode profiles of the first few modes in the core (a-d) and cladding (e-g)
of a NANF found by numerical simulation.
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Increasing the size of the core reduces leakage loss (Eq. (3.1)) and raises the effective
index of core modes (Eq. (3.6)) causing more modes to be guided in the fundamental
phase-mismatch window. In this chapter, however, a fixed core size of 25 µm is
targeted and of interest is the design of the cladding and the modes guided therein
which define the phase-mismatch windows. Section 3.3.1 describes how
outer-cladding modes, OC1, are not significant for low-loss NANF designs with small
inter-tube gaps (this will be elaborated on further in Section 4.2.3). The phase constant
of the IC1 and IC2 cladding modes define the edge of the fundamental
phase-mismatch window.

4.2.1 Effect of cladding design on multi-mode guidance in NANFs

A direct route to reducing the effective index of the IC1 and IC2 cladding modes is to
increase the number of tubes in the cladding, whilst keeping constant the size of the
core and of the inter-tube gap, which results in smaller outer tubes and consequently
smaller air cavities in the cladding (Eq. (2.26)). This lowers the effective index of the
IC1 and IC2 cladding modes. Several NANF designs with core radius R = 25 µm, gap
d = 5 µm and a number of outer tubes between 6 and 12, have been numerically
simulated. A tube thickness of 330 nm is selected such that the operational
wavelength, 850 nm, is near the low-loss point of the fundamental anti-resonant
window. This corresponds to a normalized frequency, F = 0.82 (Eq. (2.25)). Figure 4.3
shows the modal loss of a selection of these structures, including leakage and SSL,
calculated using the techniques described in Section 2.3.4. For each number of tubes,
several different nested tube ratios (Z1/R) were simulated and in Fig. 4.3 the best
performing designs are shown. While 6-tube NANFs are often designed to be
single-mode [35, 36] the choice of nested tube ratio here results in a few-mode fibre
that guides 5 mode groups with less than 10 dB/km loss. Of these 5 mode groups, the
LP21 and LP02 mode groups exhibit moderate coupling to cladding modes. This is
evidenced, for example, by their higher loss compared to the higher-order LP31 mode
group; in the absence of strong coupling a higher-order mode would be expected to
have higher loss (e.g. Eq. (3.1)). Increasing the number of tubes lowers the loss of
HOMs that exhibited coupling to cladding modes. By moving to an 8-tube structure
the loss of the LP02 mode group is reduced from 5.5 dB/km to less than 1 dB/km. The
overall trend in loss, however, is increasing with the number of tubes. The
fundamental LP01 group scattering and leakage loss is less than 0.1 dB/km in the
6-tube structure but in the 12-tube structure this is increased to 5.5 dB/km. This is to
be expected when considering that reducing the size of the outer cladding tube also
decreases the separation between the core and the jacket glass, which is well known to
increase leakage loss. Indeed, as the size of the cladding tubes tends towards zero the
loss of the structure tends towards that of a hole-in-bulk-silica fibre with no
micro-structure. Without modification of the size of the core, an increased number of
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outer tubes can increase the modality of NANFs but at cost of higher loss for all
modes.

FIGURE 4.3: The modal loss at a wavelength 850 nm for a range of 25 µm core radius
NANFs designed for multi-mode operation. Loss is found by numerical simulation
and is considered the sum of leakage and SSL. All structures have gap d = 5 µm and

thickness t = 330 nm.

It is also possible to control the IC1 and IC2 cladding modes by modifying the size of
the nested capillary tube, and therefore the relative size of the regions in which those
modes are guided. The geometric parameters which determine the size of these
regions are Z1 and Z2 and are shown in Fig. 4.4. Figure 4.5(a) shows the modal loss of
three 6-tube NANF designs characterised by the diameter of the nested capillary
relative to the core radius, Z1/R. All other geometric parameters are identical to the
structures previously described therefore the size of the outer tube, R2, is the same in
each structure and the size of the outer cladding region, Z2 decreases as Z1 increases:
Z2 = R2 − 2t− Z1 (see Fig. 4.4).

FIGURE 4.4: The geometric parameters of a NANF.

The Z1/R = 1.1 design in Fig. 4.5(a) is the 6-tube NANF shown in Fig. 4.3 and guides 5
mode groups with less than 10 dB/km loss. The loss of the LP31, LP02 and LP21 mode
groups is increased for the designs with Z1/R = 1.0 as the cladding modes are
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brought closer to phase matching with those core modes. The Z1/R = 0.9 design has
even stronger phase matching between the the cladding modes and the core LP02 and
LP31 mode groups but the LP21 has reduced coupling strength to cladding modes and
reduced loss. The phase mismatch between the cladding modes and the core LP01 and
LP11 mode groups is sufficiently large for all designs shown that there is negligible
difference in the loss of those core modes.

FIGURE 4.5: (a) Confinement and scattering loss at 850 nm of three 25 µm core radius
NANF designs with identical outer capillary size and varying nested capillary size.
All designs have gap d = 5 µm and thickness t = 330 nm. Mode profiles for the (b)

even and (c) odd LP31 modes of the Z1/R = 1.1 structure.

It is of interest to note that only two of the four modes belonging to the LP31 group
appear in Fig. 4.5(a), indicating large (> 10 dB/km) differential loss within this mode
group. Figure 4.5(b-c) shows mode profiles of the even and odd LP31 modes
respectively The two LP31 modes shown in Fig. 4.5(a) are the two polarizations of the
even parity. The even LP31 in Fig. 4.5(b) has lobes at the azimuthal position of the gaps
between capillary tubes and therefore can expand into them whereas the lobes of the
odd LP31 mode in Fig. 4.5(c) are aligned with the cladding tubes. This can be
understood as the effective core radius observed by the even modes being larger than
that of the odd modes with the result that the even modes have increased phase
constant and are no longer degenerate with the odd modes. It is expected that a
smaller effective core radius would lead to higher leakage loss (e.g. Eq. (3.1));
however, in this instance more significant is the reduced phase constant which leads to
stronger coupling to cladding modes. Non-degeneracy and differential loss is a
general observation in ARFs common to core modes with an azimuthal index that
matches the symmetry of the fibre geometry. For example in Fig. 4.3 the same effect is
visible in the LP41 mode group of the 8-tube design and in the LP51 mode group of the
10-tube design.

It appears in Fig. 4.5 that the Z1/R = 1.1 design has the best performance, with the
lowest loss across the first 5 core mode groups. Closer examination however, reveals
that only the LP01 and LP11 core modes are operating in the fundamental
phase-mismatch window and higher-order core modes are in higher phase-mismatch
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windows: strong coupling to cladding modes is avoided but their effective index is
lower than that of the highest cladding mode, in this case the IC1 mode. It is apparent
that low-loss operation is possible in the higher phase-mismatch windows of NANFs,
but this is not the case for practical fibres which will be demonstrated by considering
the fibre under bending.

4.2.2 Cladding modes under bending

It is common to model an optical fibre with a constant rate of bend using a conformal
mapping, described in Section 2.3.3. To first order approximation this mapping is
given by Eq. (2.28) which describes a tilted refractive index distribution. Figure 4.6(a)
overlays the geometry of a 6-tube NANF with an indicative plot of the refractive index
of air for a fibre bent around the y-axis. The average refractive index of air inside the
core region is the same in the bent and straight fibre and the effective index of modes
propagating inside the core is unchanged except for extreme bends. Each air region
however will in general have a unique refractive index (taken as the average across
that area) and for the nested capillary this will be the refractive index at the centre of
the nested tube and is given by:

n̂(Z1)
air =

[
1 +

(R + R2 − Z1/2) cos(φ)

Rbend

]
nair (4.1)

where Rbend is the radius of the bend and φ is the azimuthal position of the tube
measured from the transverse bend axis. Clearly the maximum and minimum values
of Eq. (4.1) occur for tubes with φ = 0 and φ = π, that is tubes aligned with the
transverse bend axis which is the situation shown in Fig. 4.6(a). For a 6-tube fibre
aligned with the transverse bend axis there are 4 unique values of n̂Z1

air which are
described in Fig. 4.6 Position 1-4.

To understand the effects of bending on cladding modes the 6-tube NANF with
Z1/R = 1.1, described in the previous section, has been numerically simulated with a
range of bend radii using the technique described in Section 2.3.3. Figure 4.6(b) shows
the effective index of the most important cladding modes. The IC1-LP01 modes found
numerically are denoted with blue crosses and clearly shows the 4 sets of discrete,
non-degenerate modes that correspond to positions 1-4. The separation in phase
constant of these modes increases for smaller bend radius, as predicted by Eq. (4.1).
An estimate for the phase constant of the IC1 cladding modes is obtained by
substituting Eq. (4.1) into Eq. (3.6), a technique previously employed by Frosz et al.
[82]. The results of this model are plotted as solid lines in Fig. 4.6(b) and show
excellent agreement to the results of numerical simulation.

For the geometry considered, the outermost cladding tube air region, Z2, is small
compared to other cladding air regions and the next most significant cladding mode
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FIGURE 4.6: (a) The cross section of a bent NANF superimposed with an indicative
plot of the refractive index according to the conformal map technique, Eq. (2.28). The
insets show the mode fields of the IC1 cladding mode guided in each unique tube
position. (b) The effective index of the IC1-LP01, OC1 and IC1-LP11 cladding modes of
a 6-tube NANF as a function of bend radius. Markers and dot-dashed lined denote
the results of numerical simulation and solid lines are the predictions of the model

described in the text. ”Position i“ is abbreviated as ”P i“

(with highest effective index) is the fundamental OC1 mode; these modes are plotted
in Fig. 4.6(b) with purple squares. Again, since a pair of tubes is aligned with the
transverse bend axis, there are 3 unique positions for this mode to propagate. The
phase constant of the mode on the outside of the bend increases with smaller bend
radius. The average refractive index of the centre gap region is unchanged with
bending and so the mode guided in this region is approximately unchanged in phase
constant with bending. The mode on the inside of the bend has not been found in the
numerical simulation and so is not plotted but is expected to decrease in phase
constant with smaller bends, mirroring the effect of the OC1 mode on the outside of
the bend. This mode could have been found numerically if more solutions were
searched for but this becomes increasingly computationally expensive. Note that no
analytical model exists for the phase constant of the OC1 modes (this is discussed in
Section 4.2.3) and in Fig. 4.6(b) the numerical solutions are joined with straight,
dot-dash lines. The next most significant cladding modes are the IC1-LP11 mode. As
with the IC1-LP01 set of modes, there are four unique positions. In numerical
simulation however, only two of these were found for the same reasons as the OC1 set.
The IC1-LP11 modes are plotted with red circles. The results of the model using
Eq. (4.1) are plotted in solid red lines and once again show excellent agreement with
numerical simulation.

Numerical simulation is a very useful tool for understanding the response of cladding
modes to bending. In this instance, however, it does not provide a realistic indication
of the fibre behaviour. Practically, a deployed fibre will experience some twist and
therefore the alignment of tubes relative to the bend axis will generally be random.
Also to consider are: the effects of variable bend radius along the length of a deployed
fibre, slight geometric variation between tubes in fabricated fibre and the formation of
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super-modes between similar cladding modes [134]. The result will be that cladding
modes occupy a continuous range of effective indices, here referred to as bands, rather
than discrete modes. The edges of these bands can be approximated by taking the
minimum and maximum values of Eq. (4.1) (φ = 0 and φ = π) over a range of bend
radius between straight and the minimum bend applicable to the application in which
the fibre is to be employed. In Fig. 4.7 the edges of the cladding bands for the IC1-LP01,
OC1 and IC1-LP11 are taken from the results of the numerical simulation and the
effective index of the first 5 core modes are overlaid. For the straight fibre (Rbend = ∞)
the LP01 and LP11 mode groups are guided in the fundamental phase-mismatch
window whilst the LP21, LP02 and even LP31 modes are guided in the second window.
As shown in Fig. 4.5 these modes have less than 10 dB/km loss when straight. As the
fibre is bent however, the size of the cladding bands increases, shrinking the
phase-mismatch windows. This occurs much more rapidly for higher order windows
which are bounded by multiple cladding modes. For a bend radius, Rbend = 50 cm, all
the core modes previously in the second window are within the cladding mode bands
and can be expected to demonstrate strong coupling to cladding modes and high loss
in a practical deployment. For the same bend, the LP11 mode in the fundamental
window is on the edge of the IC1 cladding band and demonstrates increased loss
(numerical simulation predicts approximately 70x higher leakage loss compared to the
straight fibre). This indicates that practically, this is only a dual-mode fibre with a
minimum bend radius of more than 50 cm, which would make this NANF impractical
for short-haul telecomms applications.

FIGURE 4.7: The effective index of the core modes of a 6-tube NANF, found by
numerical simulation, as a function of bend radius. The grey blocks show the bands
of cladding modes determined by the minimum and maximum effective index of
cladding modes found by numerical simulation. Note that the x-axis employs a broken
scale in order to compare the results of the bent fibre to those of a straight (with infinite
bend radius) fibre. The limits of the first three phase-mismatch windows are indicated.

Clearly, bending has a significant impact on the behaviour of cladding modes which
must be taken into account when designing multi-mode ARFs. This, for example,
precludes the possibility in practical fibres of guiding core modes in higher-order
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phase-mismatch windows, with lower effective index than the fundamental cladding
tube modes, even when numerical simulation indicates low-loss behaviour since once
bent these modes would suffer dramatic loss increases. This also suggests a
convenient method of understanding and quantifying the increased leakage loss when
bending: the effect of reduced phase-mismatch with cladding modes and therefore
stronger coupling between core and cladding modes. This is similar to the models
described for straight ARF in Chapter 3. By describing the bend as a conformal map of
refractive index, the phase constants of the IC1 cladding modes can be well predicted
from the geometry of the fibre and this is an effective technique for predicting the
bend resilience of multi-mode ARFs which is used in Chapter 5 to design ARF for
specific applications.

4.2.3 Engineering NANF and DNANF cladding

Engineering the phase constant of cladding modes is crucial to avoiding phase
matching to core modes. In this section a simple technique is investigated to design
the cladding of tubular fibres such that all cladding modes guided within the tubes
have approximately equal phase constant. Due to the similarity of the structures this
technique is applicable to a NANF with one nested tube or a DNANF with two nested
tubes.

The cladding of a DNANF is shown in Fig. 4.8(a) which is defined by the width of
each air cavity in the radial direction, Zi. The most nested tube, i = 1, has Z1 equal to
the inner diameter of that tube. It can be observed in both NANFs and DNANFs that
the mode field of the outer cladding-tube modes is locally confined to a region of the
cavity most proximal to the core (see for example Fig. 4.2(f)). This region can be
approximated with simple primitives as an ellipse, as in Fig. 4.8(b). The diameter
along the minor axis is the radial width of the region, Zi and the diameter of the major
axis is chosen such that the apogee of the curve touches the containing tube. I propose
that if the area of these primitives are equal then the phase constants of the modes
guided within will be approximately equal. This situation is shown in Fig. 4.8(b) for
which the highlighted red areas have equal area. When the cladding modes are near
phase matching, their effective index is minimised which strongly reduces phase
matching to core modes and maximises potential for multi-mode guidance.

The radial cladding cavity widths are defined relative to the size of the innermost
tube: Zi = xiZ1 with xi the ratio of the ith region. In this way the analysis is
approximately independent of the absolute dimensions of the cladding. With the
above definitions it can be shown that the equal area requirement is met when the
following equation is satisfied:
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FIGURE 4.8: (a) The geometric parameters of the cladding of a DNANF, the same
notation is used for a NANF with the Z3 region omitted. (b) The approximate air

regions in which the cladding modes of NANFs and DNANFs are guided.

x4
i + 4

(
t + Ri−1

Z1

)
x3

i − 1 = 0 for i = 2, 3, ..., n (4.2)

R1 =
Z1

2
Ri =

Zi

2
+ t + Ri−1

Equation (4.2) can be solved sequentially for increasing values of i and generally
depends on the thickness of the capillary walls t and thereby on the operating
wavelength of the fibre. The wall thickness, however, is typically small compared to
the size of the air cavities and under the assumption Z1 � t, Eq. (4.2) has a single real,
positive solution for each value of i. For a NANF x2 = Z2/Z1 ≈ 0.717. The relative
sizes of the two nested capillaries in a DNANF are identical to those of a NANF,
x2 ≈ 0.717, and the outer tube is described by x3 = Z3/Z1 ≈ 0.627. The relative radial
width of air cavities, xi, decreases for increasing i as the modes are less confined in the
tangential direction by the larger tubes.

To test the efficacy of this technique a range of DNANFs were simulated where the
dimensions of the cladding satisfies Eq. (4.2). The effective index of the core and
cladding modes of one such 6-tube DNANF is shown in Fig. 4.9. The core radius is 32
µm and the inter-tube gap is 4 µm resulting in a nested tube radius R1 = 11.5 µm. The
first 5 core mode groups, up to LP31, are guided in the first cladding phase window,
with effective index greater than the fundamental cladding modes. The first two tube
cladding modes, IC1 and IC2, have very similar phase constants, separated by less
than 4× 10−5 across the entirety of the wavelength range shown here. Indeed, their
mode fields, shown in the inset of Fig. 4.9, indicate that the phase constants are so
similar that the modes are strongly hybridised. The solutions labelled IC1 + IC2 are
those that have a higher intensity in the innermost cladding tube and likewise the IC2

+ IC1 labelled solutions are those with higher intensity in the Z2 air cavity. The phase



4.2. Few-moded guidance in NANFs 69

constants of these modes is very well predicted by approximating the innermost tube
as a isolated, floating capillary, as was done for tubular fibres in Eq. (3). The dotted
black line in Fig. 4.9 shows the result of using Eq. (3.6) with R = R1 = Z1/2 and has
excellent agreement with the numerical solutions. Although shown here for a
DNANF, near identical results were observed for these two sets of modes that are
present in NANF for all the NANF designs tested. The ability to easily design a
NANF with strongly phase matched cladding modes and accurately predict the phase
constant of those cladding modes is extremely useful and this technique is used
extensively to design the cladding of multi-mode NANFs in Chapter 5.

FIGURE 4.9: The effective index of several core and cladding modes of a 6-tube
DNANF which has been designed to match the effective index of the tube cladding
modes together. Solid, coloured lines are the results of numerical simulation. The
insets show the mode fields of the cladding modes. The predicted effective index of

the IC1 according to Eq. (3.6) is plotted with a dotted, black line.

When considering the additional IC3 mode in the Z3 region of a DNANF, the phase
matching is not as strong as for the other cladding modes and the separation of phase
constant is approximately 1× 10−4 although visual inspection of the mode field
shown in the inset of Fig. 4.9 indicates a degree of very weak hybridisation with the
IC2 cladding mode. When designed using our technique the IC1 and IC2 modes have
larger phase constants and therefore the IC3 mode does not limit the multi-mode
guidance of the fibre, indeed due to the closer proximity to the core and consequently
greater field overlap with core modes it may be beneficial to have a greater separation
in phase constant (see Section 3.2). The work presented here as well as additional
simulations undertaken suggest that Eq. (4.2) is effective at designing the cladding of
multi-mode NANFs. In multi-mode DNANFs, whilst further improvement is possible,
Eq. (4.2) is useful for designing and predicting the cladding tube modes, although
other cladding modes must be taken into consideration. This is discussed next.
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Although inconsequential in low-loss NANFs, the cladding mode propagating in the
air cavity between capillaries and the jacket, OC1, typically becomes significant in
multi-mode DNANFs. In Fig. 4.9 the OC1 mode is the closest to phase matching to
core modes and the phase constant is more than 1× 10−4 higher than any of the tube
cladding modes. To understand this behaviour, the area in which the mode is confined
is once again considered. In Fig. 4.10(a) a circle is defined, the perimeter of which
touches the inner jacket wall and the outer wall of the capillaries. The diameter of this
circle, Z(gap)

1 , is described by:

Z(gap)
1 =

2
(

R2 + 2(Rn + t)2 + 3R(Rn + t)
)
(1− cos(π/T))

3(Rn + t) + R− cos(π/T)(R + Rn + t)
(4.3)

where R is the core radius, T is the number of outer cladding tubes and Rn is the inner
radius of the outermost cladding tube as defined in Eq. (4.2). Although Z(gap)

1

approximately describes the area in which the OC1 mode field is confined, similarly to
the ellipses used to approximate the IC2 modes, Z(gap)

1 with Eq. (3.6) cannot be used to
accurately predict the phase constant of the OC1 mode. For example, in the geometry
of the fibre in Fig. 4.9, Z1 and Z(gap)

1 are approximately equal yet the OC1 mode has a
significantly higher phase constant, around 1× 10−4 similar to the difference between
the LP11 and LP21 core modes. This suggests that the surrounding layers of
anti-resonant walls provide the OC1 mode with an extra degree of confinement
compared to the IC1 mode. Despite this, comparing the sizes of the air regions remains
a useful tool to gain insight.

FIGURE 4.10: (a) The geometry of a tubular, NANF and DNANF fibre, superimposed
together. The coloured circles denote the significant cladding air regions, under the
model described in the text, for (red) the tubular, (green) the NANF, (purple) the
DNANF and (blue) all structures. (b) The size of the significant cladding air regions
for different number of tubes, relative to the core radius, assuming the tube ratios

described by the model in the text.

When Eq. (4.2) is applied, the cladding tube modes are approximately phase matched
and can be described using the air Z1 region. The other potentially significant air
regions are described by Z(gap)

1 . Figure 4.10(b) shows the sizes of these cavities relative
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to the core radius in tubular, NANF and DNANF geometries as the number of tubes is
varied and the core kept constant. Clearly, moving to NANF and DNANF structures
brings significant reductions in the cavity sizes:
Z(DNANF)

1 ≈ Z(tubular)
1 /(1 + x2 + x3) = 0.43 · Z(tubular)

1 . However, this also makes the
size of the air cavity between tubes, Z(gap)

1 , comparable to those inside the tubes and
the OC1 cladding mode becomes significant for multi-mode guidance as observed in
Fig. 4.9. Figure 4.10 demonstrates that increasing the number of outer tubes, T, can
effectively reduce the size of these air gaps: Z(gap)

1 is reduced by a factor of 3.5x in a 12
tube DNANF compared to 6 tubes. Without increasing the size of the core however,
this results in the jacket being closer to the core. For the same comparison the jacket is
5x closer to the core, which will increase leakage loss. It should also be noted that this
does not change the relationship between the size of the air cavities in and outside the
cladding tubes, with Z(DNANF)

1 demonstrating a commensurate decrease. The size of
Z(gap)

1 , relative to the core, is insensitive to the absolute dimensions of the core and the
inter-tube gap distance, d. For large values of d however, the circle model described by
Eq. (4.3) may become a poor approximation of the region in which the OC1 mode is
confined.

Whilst DNANFs are a promising geometry for low-loss operation, when used for
multi-mode operation, air-guided cladding modes both inside and outside the
cladding tubes must be considered. Modes inside the tubes can be well controlled by
selection of the sizes of the nested tubes. There is no clear method for controlling the
air modes guided in the cavities between tubes without increasing the size of the core
or potentially incurring higher losses. A potential solution which is not investigated in
this thesis is the addition of smaller tubes between the outer tubes which could
subdivide those cavities without reducing the distance between core and jacket glass.
Similar techniques have been suggested, for example to achieve better single-mode
operation [135] or highly bi-refringent fibres [136], although to date no attempt to
fabricate such a fibre has been reported. Such a significant modification to the fibre
geometry would be a large undertaking to understand theoretically and fabricate
practically. In the remainder of this chapter alternative geometries are studied based
on nested tubes which are promising for multi-mode guidance.

4.3 Additional Nested Elements

The approach investigated here is to increase the number of nested elements inside the
outer capillary tubes. Intuitively this allows the size of the air cavities in the cladding
to be subdivided into more, smaller areas which can be controlled by both the size and
position of the nested element. For example a DNANF has each outer-tube divided
into three air regions whereas a structure with 2 nested adjacent elements has up to 4
significant air regions in each outer tube: inside each nested element and the outer
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region divided by the small gap between the nested tubes. More attention is given to
the cladding modes in such a structure in Section 4.4.1. In this section the focus is on
the general properties of geometries with multiple adjacent nested tubes.

The structure with two nested elements is an ALIF which has been studied by Jasion et
al. [85]. Single-mode ALIF designs have been shown to achieve over two orders of
magnitude reduction in confinement loss versus NANFs [85]. The 3-nested structure
has also already been studied in detail by Habib et al. where, again, leakage loss was
shown to be reduced by roughly 2 orders of magnitude compared to a similar
single-mode NANF [137]. In studying the 3-nested structure, however, it was found
that achieving a large HOM extinction ratio required sacrificing the low-loss of the
fundamental mode. This suggests that these structures are promising for low-loss
multi-mode operation.

The investigation begins by considering adding additional nested elements into the
cladding tubes. For this initial speculative study, a smaller core radius of 13 µm was
chosen to reduce the computational time required to complete simulations. The wall
thickness is chosen to be 300 nm for which an 850 nm operating wavelength
corresponds to a normalized frequency, F = 0.74. The size of the inter-tube gap is
2 µm. The insets of Fig. 4.11 shows the geometries of 6-tube fibres with 2, 3, 4 and 5
nested tubes. The nested tubes are located at equally spaced positions around the
inner circumference of the outer tube and alignment is such that the tubes are
symmetric about a radial line from the core whilst ensuring the weld points between
outer and nested tubes are as far removed from the core as possible.

FIGURE 4.11: The modal confinement loss at 850 nm of 6-tube fibres with between 2
and 5 nested elements equally spaced around the outer tube. The insets below the

labels show the simulated geometries.

Figure 4.11 shows the leakage loss of the described multiple-nested geometries at a
wavelength of 850 nm. For simplicity the average loss across each mode group is
shown. Despite the smaller core size compared to the NANF designs discussed in the
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previous section, the 2-nested and 3-nested structures here have substantially reduced
loss in the fundamental and HOMs; the leakage loss of the fundamental is more than
halved in both designs and the 3-nested structure guides 5 mode groups with less
than 1 dB/km leakage loss. As additional nested elements are added, however, whilst
the loss of higher-order modes is reduced and more modes are guided low-loss, the
loss of lower-order modes is increased. The 4-nested structure guides 7 mode groups
with less than 30 dB/km leakage loss. In both the 4-nested and 5-nested structures the
higher-order modes are limited by coupling to OC1 cladding mode, with core modes
above the LP31 mode guided in the second phase-mismatch window. If these fibres
were to be considered practically for multi-mode operation, they should be designed
with more outer tubes as discussed in Section 4.2.3. The high leakage loss in low-order
modes however, makes this unappealing. The increased leakage loss in low-order
modes is next explained by examining the loss across wavelength.

Figure 4.12(a-c) shows the modal loss of the 2-nested, 3-nested and 4-nested structures
as a function of wavelength in the fundamental anti-resonant window. For the
2-nested structure in Fig. 4.12(a) the loss spectrum is relatively flat; on the short
wavelength edge there is a slight increase in loss as the edge of the anti-resonant
window is approached; less than 0.02 dB/km additional leakage loss at 750 nm
compared to 850 nm for the LP11 mode group. At longer wavelengths of the 2-nested
structure there are small peaks, for example at 905 nm and 930 nm in the LP11 mode
group. They are small in magnitude however: the worst example incurs an additional
0.03 dB/km loss. The cause of these spurious peaks is the glass nodes that occur
where nested elements attach to capillaries or capillaries attach to the outer jacket, a
well documented effect [10, 85].

FIGURE 4.12: The leakage loss as a function of wavelength for 6-tube fibres with (a)
2-nested tubes (an ALIF), (b) 3-nested tubes and (c) 4-nested tubes.

As more nodes are introduced and they are brought closer to the core the effect of
glass nodes becomes more pronounced. In the 3-nested structure in Fig. 4.12(b) they
are visible in the LP01 and LP11 mode group across the entire simulated spectrum from
750 nm to 950 nm. For additional nested elements, such as the 4-nested structure of
Fig. 4.12(c), these peaks are the dominant loss contribution and appear to increase the
leakage loss by multiple orders of magnitude. Practically, these nodes have been
found to be problematic in ARFs design based on Kagomé lattice [68] or tubular
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designs with touching capillaries [71] but are largely eliminated in most NANFs.
During fabrication, nodes will grow due to surface tension to be even larger than the
ideal case in these simulations. This effect can, to some extent, be included in
simulation but their behaviour is highly dependent on the exact geometry and
dimensions fabricated and beyond predicting their presence it is very difficult to
manage. The deleterious effects of glass nodes tend to be worse in fabricated fibres
than simulations would predict and without eliminating the glass nodes there is no
effective way to mitigate the additional glass resonances.

Tubular fibre with 2 or more adjacent, nested elements are promising options for
multi-mode guidance due to their increased confinement and, intuitively, the potential
for greater control of the cladding air regions, compared to a NANF or DNANF. The
problem of glass resonances due to increased glass nodes close to the core
unfortunately is severely limiting. For this reason, designs with 3 or more nested
elements are discounted in the remainder of this thesis. Structures with 2-nested
tubes, ALIFs, still demonstrate low-loss however, and are the focus of further study in
the next section.

4.4 Few-mode anti-resonant leakage inhibited fibres

4.4.1 Engineering multi-mode ALIF cladding

Greater ability to predict the phase constant of the cladding modes in an ALIF without
time-consuming numerical simulation would be highly beneficial to understand their
behaviour and to engineer their cladding for particular requirements. The modes
guided within the nested tube, IC1, behave very similarly to those of a NANF or
tubular fibre as does the mode in the interstitial gap between outer tubes, OC1. The
mode propagating in the air region of the outer cladding tube, however, is unlike
other modes previously considered. Despite the different behaviour this mode
propagates in the same region as the IC2 cladding mode of a NANF and the same
notation is adopted. This section investigates techniques that can be used to engineer
the cladding modes of an ALIF, similar to those for NANFs and DNANFs presented in
Section 4.2.3.

Figure 4.13(a) shows the geometric parameters that describe the cladding. As in a
NANF, Z1 describes the inner diameter of the nested capillary whilst the radius of the
outer capillary is given by R2. The position of the nested tubes are determined by the
minimum separation, or gap, between them, d2, with the assumption that each outer
capillary is symmetric about a radial line from the core. Under this definition the
greatest separation between the core and nested tubes occurs for d2 = 0, which
describes touching nested tubes. The maximum value of nested-tube gap,
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d2 = 2(R2 − Z2 − 2t), occurs when the nested tubes are equidistant between the core
and the jacket. In this work the situation of nested tubes closer to the core than the
jacket is ignored since this would result in equally sized air cavities but reduce the
separation between the glass nodes (at the weld points between the nested and outer
capillaries) and the core modes.

FIGURE 4.13: (a) The geometric parameters of the cladding of an ALIF. (b) The
maximum circle which can fit in the outer cladding region which touches the inner
circumference of the outer tube and the outer circumference of the inner tubes. (c) The
area of the outer cladding region which is considered in the equivalent area model

described in the text.

It can be observed that the mode field of the IC2 mode of an ALIF is bounded in a
specific area of the air cavity and a simple primitive can be determined to approximate
this area. This is similar to the technique used to determine the IC2 of a NANF in
Section 4.2.3. Figure 4.13(b) shows a circle bounded by the inner circumference of the
outer capillary and the outer circumference of the nested capillaries. This is the largest
circle that can fit completely inside this air cavity and so the model based on this is
denoted “maximum circle”. The radius of this maximum circle can be determined
from the geometry of the cladding as:

Rmax =
R2

2 + 2R2 p cos(υ) + p2 − (t + R1)2

2(R1 + t + R2 + p cos(υ))
(4.4)

using p = R2 − t− R1 and cos(υ) =

√
1−

(
Z1 + 2t + d2

2p

)2

By approximating the cavity as a circular region in which the IC2 mode is guided an
estimate for the phase constant of the mode is obtained by using e.g. Eq. (3.6). A
comparison with the results of numerical simulation will be used to improve the
accuracy of the model. A simulation of a full ALIF structure is computationally
expensive compared to that of a tubular or NANF fibre as more mesh elements are
required in the more complex cladding micro-structure to produce a mesh that can
accurately describe the solution. In addition, a greater variety of cladding modes leads
to more discrete solutions within the bands of cladding modes. Generally, therefore,
more solutions must be solved in finite-element simulation to obtain information
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about the cladding modes of interest and this also increases computation time and
requires additional time to identify and label solutions. The approach employed here
to mitigate these problems and enable detailed simulation of cladding modes in a
wide variety of ALIF geometries is to simulate the ALIF cladding structure in
isolation. The simulated geometry is an isolated outer capillary with nested capillaries
(e.g. Fig. 4.13(b)) without jacket glass and surrounded by infinite air (achieved by the
use of a suitable PML, see Section 2.3.2). Clearly, this is an approximation which
discounts the impact of the jacket glass and the aforementioned interaction between
the modes of different capillaries [134]. The same approximation, however, is used in
Eq. (3.6) (which describes the effective index of a floating, isolated capillary [115]) and
therefore for determining the IC1 and IC2 modes of a NANF in Section 4.2.3. In that
section, excellent agreement to the results of numerical simulation of the full structure
was demonstrated.

The capillaries of a wide variety of ALIF geometries have been numerically simulated.
Figure 4.14 shows the phase constant of the IC2 ALIF mode as a function of the
normalized nested gap, d2/R2, for an outer capillary radius, R2 = 17 µm and
normalized nested tube diameter, Z1/R2 = 0.7. The wavelength is 850 nm and the
capillary wall thickness is 330 nm, a normalized frequency of F = 0.82. The solutions
plotted in Fig. 4.14 are for the fundamental, HE11-like (LP01 group) for which there are
two polarizations that are plotted with upward- and downward-pointing triangles
respectively. The two polarizations are approximately degenerate and will not affect
the model. The effective index of the IC2 is maximised for small nested-capillary gap
and decreases as d2 increases to its maximum value. The dependency is not linear,
with the sensitivity to change in d2 increasing for larger value of d2. The effective
index predicted by the maximum circle model is shown in Fig. 4.14 with a dashed line.
The general trend in the numerical results described above, is well captured by the
maximum circle model. The phase constant is underestimated, however, across the
entire range of possible value of d2. For near touching tubes, d2/R2 = 0.03 the
maximum circle underestimates by 1× 10−4 and near the maximum gap,
d2/R2 = 0.51, the error is almost 3× 10−4. In the insets of Fig. 4.14 the mode fields at
selected points are plotted and overlaid with the maximum circle described by
Eq. (4.4). The area of the maximum circle contracts with increasing d2 at a
commensurate rate to the IC2 mode field, yielding the same trend in phase constant.
The mode field, however, is more expansive than predicted across the range which
leads to the underestimate of phase constant.

To improve the estimate, a second model was developed based on the total area of the
outer cladding region which is highlighted in Fig. 4.13(c). The area of this region is
Aequiv = π

[
R2

2 − 2(Z1/2 + t)2] and corresponds to a circle of equivalent area with
radius:
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FIGURE 4.14: The effective index of the IC2 cladding mode for different ALIF cladding
designs (triangle markers) found by numerical simulation and predicted by (dashed
line) the maximum-circle model, (dotted line) the equivalent area model and (dot-dash
line) the final model. For each design the outer tube’s inner radius is R2 = 17 µm. The
insets show the mode field of the IC2 cladding mode for a representative range of

geometries in this figure and have the area predicted by Eq. (4.4) superimposed.

Requiv =

√
R2

2 − 2
(

Z1

2
+ t
)2

(4.5)

which can again be used to determine an approximate effective index by substituting
into e.g. Eq. (3.6). This is described as the “equivalent area” model and is shown with
a dotted line in Fig. 4.14. Clearly the equivalent area does not depend on the position
of the nested tubes, only their size, and therefore takes a constant value in this case. As
might be expected this model over-estimates the effective index, particularly for large
values of d2 where the outer region is effectively divided in two. It does, however,
incorporate the effect of the more expansive mode-field (this is made more clear in
subsequent figures). The final model therefore is taken by averaging the value of the
two previous maximum-circle and equivalent-area models. This final model is shown
as the dot-dashed line in Fig. 4.14 and gives excellent agreement in this data set; the
maximum error is less than a hundredth of a percent. Next, the accuracy is assessed
more rigorously across a wider range of geometries.

In Fig. 4.15 the results of more numerical simulations, for a range of nested capillary
size Z1/R = 0.45 - 0.78, are shown. The simulation techniques are the same as those
previously described and the numerical effective index is compared to the final model;
the average effective index of the maximum-circle and equivalent-area model. For all
results shown the outer capillary radius, R2 = 17 µm, although similar agreement is
found in a range of other tube sizes. Five nested tube sizes are plotted between
Z1/R2 = 0.45 and Z1/R2 = 0.78. For small nested tubes, Z1/R2 < 0.61, and nested
gap size near the maximum, the final model underestimates the effective index. This
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can be understood by considering the mode fields of the IC2 shown in the insets of
Fig. 4.15. For Z1/R2 = 0.78, even at the maximum gap size the mode is well confined
in the region near the core and described by Eq. (4.4). As the size of the nested tube
decreases, the maximum gap increases and the mode field can expand into the
interstitial region between nested tubes. For the smallest nested tube here considered,
Z1/R2 = 0.45, the mode field occupies the entire outer air cavity and the
maximum-circle model is therefore no longer valid. The final model also
underestimates the effective index for very small, near-touching nested tubes. All
instances of highest error correspond to designs where the phase constant of the IC2 is
largest. These are unlikely for multi-mode guidance since the phase constant is
generally desired to be reduced in order to reduce phase matching to core modes in
the fundamental phase-mismatch window. Nevertheless, the largest error is of the
order of 5× 10−5 and the agreement with numerical simulation is generally
significantly better.

FIGURE 4.15: The effective index of the IC21 cladding mode for different ALIF
cladding designs (triangle markers) found by numerical simulation and (dot-dash
line) predicted by the final model described in the text. For each design the outer tube’s
inner radius is R2 = 17 µm. The insets show the mode field of the IC2 cladding mode
for geometries which have maximum nested-tube gap for the given size of nested tube.

The final model presented uses the geometry of the ALIF cladding tube to effectively
predict the phase constant of the IC2 cladding mode of ALIFs. There is no need for
time-consuming numerical simulation and for designs of interest for multi-mode
guidance excellent accuracy is achieved. The IC2 cladding mode is predicted using the
model described in this section and the IC1 cladding mode by Eq. (3.6) with the size of
the nested capillary tube, Z1. With this knowledge designs that would incur strong
coupling between desired core modes and cladding air modes can be discounted
without the need for numerical simulation and methods for reducing coupling are
indicated by plots such as Fig. 4.15. For example, in that plot, coupling between core
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modes and the IC2 cladding mode would be minimised for the geometry with Z1/R2

(green curve) but the larger nested capillary would incur stronger coupling to the IC1

cladding mode and so geometries with smaller nested tubes are suggested to balance
the effect of coupling to all the cladding tube modes. Larger gaps between the nested
tubes can effectively reduce the IC2 effective index without significant modification of
the IC1 cladding mode but this also reduces the separation between the glass nodes
and the core and may lead to problematic resonances with the dielectric modes guided
within, an effect that must be studied by numerical simulation. The techniques here
discussed can provide insight into the behaviour of ALIFs and in the next section is
used to aid the development of few-moded ALIF designs.

4.4.2 ALIF Design

To further investigate the potential for few-mode guidance in ALIFs, numerical
simulations were conducted for ALIFs with between 6 and 12 tubes. To target the
VCSEL-based short-haul telecomms application, the core radius is R = 25 µm and the
wall thickness is 330 nm, which places the operating bandwidth, 850 - 950 nm, near
the minimum loss point of the fundamental anti-resonant window (at 950 nm the
normalized frequency, F = 0.73). The inter-tube gap is 2 µm and the nested tube size
and position are chosen using the technique described in Section 4.4.1 to maximise
multi-mode operation. Figure 4.16 shows the modal loss (here taken to be the sum of
leakage and scattering losses) for the described ALIF geometries at 850 nm. The 6-tube
ALIF design guides 4 mode groups, up to the LP02 group, below 2 dB/km. Increasing
the number of tubes reduces the loss of HOMs as the phase constant of the cladding
modes is reduced; the 8-tube structure guides 7 mode groups below 1 dB/km. A
similar trend was observed in Fig. 4.3 for few-moded NANFs however in that instance
an increase in loss of the low-order modes as the jacket glass was brought closer to the
core. The additional confinement provided by the ALIF structure means that in this
case the additional loss in low-order modes for additional tubes is negligible [85].
Additionally, due to the greater segmentation of the cladding region all modes shown
in Fig. 4.16 are guided in the fundamental phase-mismatch window.

The trend of HOM loss reduction continues as further tubes are added. The trade-off
however, was the reduction in bandwidth induced by the spurious resonances caused
by glass nodes, as described in Section 4.3. Figure 4.17 shows the loss bandwidth of
the first 7 mode groups of the 10-tube ALIF design. Between 850 - 1050 nm all mode
groups have less than 0.6 dB/km loss and the loss spectrum is relatively flat with no
spurious resonances. At shorter wavelengths loss increases as the edge of the
anti-resonant window is approached. At wavelengths beyond 1100 nm there are glass
resonances that cause local peaks in loss up to 1 dB/km in magnitude. In simulation
the effect of glass resonances can be mitigated by moving the nodes further away from
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FIGURE 4.16: Losses of the core guided modes of the indicated ALIF geometries. The
core diameter and tube wall thickness of each design is 50 µm and 330 nm.

the core. This strategy becomes relatively ineffective when the design featured more
than 10 elements. Additionally, this will increase the phase constant of the IC2

cladding mode (see e.g. Figure 4.15) and generally results in increased loss of HOMs
as the strength of phase matching to cladding modes increases.

For the 10-element fibre, the glass resonances limit the usable bandwidth to 1050 nm.
For the 12 tube fibre the effect is more pronounced and appears at shorter
wavelengths. The 10-element geometry is therefore chosen as the best trade-off
between few-moded operation and bandwidth. It supports 7 mode groups all with a
loss (scattering + leakage) under 0.6 dB/km over a bandwidth of 200 nm. This is
almost 4x lower loss that the specification of the OM standards and over twice the
bandwidth of the OM5 specification. In the next section the dispersion properties of
the fibre are briefly discussed.

FIGURE 4.17: The modal loss spectrum, including leakage and scattering loss, of the
10-tube ALIF geometry shown in Fig. 4.16.
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4.4.3 Dispersion in few-mode ALIFs

The single channel data rate in fibre links is often limited by the dispersive properties
of the fibre. Single-mode ARFs offer a significant advantage over solid-core fibres in
terms of latency and chromatic dispersion [24]. In multi-mode fibres however,
chromatic dispersion and latency generally increase for higher order modes and the
effects of inter-modal dispersion must also be considered. Indeed, this is typically the
limiting factor of bandwidth-distance product in solid-core GI fibres for short-haul
links.

The chromatic dispersion of the first seven mode groups of the optimised 10-tube
ALIF, described in the previous section, is plotted in Fig. 4.18(a) (see Eq. (2.20)). In the
low-loss bandwidth between 850 - 1050 nm, the dispersion of the fundamental mode
is less than 1 ps/nm·km. Dispersion increases with mode order but all modes
considered here have lower than 8 ps/nm·km across the bandwidth of interest, an
order of magnitude lower than what is typical in GI fibres [138]. At shorter
wavelengths the dispersion of all modes cross zero as the edge of the fundamental
window is approached.

FIGURE 4.18: The (a) chromatic dispersion and (b) differential group delay of the 10
tube fibre shown in Fig. 4.16 as a function of wavelength.

Multi-mode ARFs may suffer from larger DGD than typical OM fibres. In Fig. 4.18(b)
the DGD for the 10-tube ALIF design is shown. DGD is calculated as the difference in
group delay (see Eq. (2.19)) between a HOM and the fundamental mode. The DGD of
the fundamental mode is therefore zero by definition and is omitted from Fig. 4.18(b).
As with chromatic dispersion, DGD increases with mode order. For the LP41 mode
group, DGD is as high as 3 ns/km at 950 nm, compared to OM3 in the order of 0.22
ns/km [138]. This makes DGD a potentially limiting factor for data rate in single
wavelength transmission in these hollow-core designs, if they are to be used with
multi-mode sources such as the VCSEL. In Section 5.1.1 dispersion in multi-mode
ARFs is investigated in more detail and strategies are tested to reduce DGD. This
section is concluded with a brief discussion of the potential uses of ARF in short-haul
telecomms, suggested by these results.
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The large bandwidth of the ALIF design, double that of the OM5 specification,
suggests that WDM can be deployed at lower single wavelength channel data rates.
The impediments induced by inter-modal dispersion can be further mitigated by
launching light into only a subset of the modes, a technique employed by the OM
specifications in their encircled flux requirements. Digital equalisation methods exist
to reverse the effects of DGD and would permit higher single wavelength channel
data rates, but the computational complexity, and therefore power requirements and
hardware expense, increase with higher DGD and as such may be unappealing for
large scale deployment with ARFs.

A final clear approach to reducing DGD is to reduce the number of modes guided in
ARF. This could result in higher single-channel data rates but may also reduce the
coupling efficiency from a multi-mode VCSEL. Whilst single-mode VCSELs exist they
typically have lower output power than their multi-mode counterparts [139].
Therefore in selecting the number of modes guided in the fibre there would have to be
a tradeoff between the power coupled into the fibre and the single-channel data rate,
limited by inter-modal dispersion. The DGD of the LP11 mode group in Fig. 4.18(b) is
0.5 ns/km at 950 nm suggesting a dual-mode ALIF could have as little as double the
DGD of GI fibre [138]. In combination with the lower loss, wider bandwidth and other
dispersion compensation techniques, few-moded ARFs could be a promising option
to achieving 100 Gb/s data rates over longer distances than is possible in GI fibres.
While encouraging, investigation of this option would require significant
experimental work and is beyond the scope of this thesis.

4.5 Conclusions

In this chapter several ARF designs have been investigated by numerical simulation to
achieve low-loss, few-moded guidance. With a fixed core size of 25 µm, to target
existing multi-mode short-haul telecomms links, the behaviour and effects of different
cladding designs were studied.

In NANFs, at a fixed core size, the number of guided modes can be increased by
increasing the number of tubes which reduces the size of the air regions in the
cladding and phase constants of the cladding modes guided within. This also reduces
the separation between the jacket glass and the core, increasing the loss of all core
modes. For a small number of tubes, the loss of higher order modes is limited by
coupling to cladding modes. The various cladding modes in both NANFs and
DNANFs were identified and studied and a technique was developed for designing
the cladding of these structures to maximise multi-mode performance. This technique
requires no time-consuming numerical simulation and allows the phase constants of
different modes propagating in the cladding modes to be matched together and
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predicted with a high degree of accuracy, greatly aiding the design of multi-mode
NANFs and DNANFs. The behaviour of cladding modes in NANFs under bending
was also studied. Although higher-order core-modes guided in the second
phase-mismatch window can exhibit low-loss operation in a straight fibre, the effect of
bending on cladding modes leads to high loss in these core modes. The insight gained
may also be applied to the design of single-mode fibres.

Beyond NANFs and DNANFs, the multi-mode performance of ARF geometries based
on outer tubes with 2 or more adjacent, nested capillaries was assessed. Whilst
impressive HOM loss reduction was possible, the effect of additional glass nodes close
to the core caused significant glass resonances which would likely make these fibres
impossible to fabricate with low leakage loss practically. The structures with two
nested, adjacent capillaries, the ALIF design, showed promising results and was
studied in greater detail.

The unique cladding modes of an ALIF were investigated and a model was developed
for predicting the effective index of these modes. As for NANFs, the ability to predict
the effective index of cladding modes without time-consuming numerical simulation
is very useful for designing multi-mode fibres and indeed can provide insight into
improving the performance of single-mode fibres. Numerical studies show that it is
possible to achieve low-loss, few-moded guidance in hollow-core fibre designs based
on the ALIF. An ALIF was designed that was capable of guiding 7 mode groups,
compared to the current OM5 standard for solid-core multi-mode graded-index fibres,
with lower loss and over more than double the bandwidth. It is indicated, however,
that DGD will strongly limit the achievable single-channel data rates. Inter-modal
dispersion compensation technologies would benefit from the higher signal power
arising from lower loss in ARFs and in combination with WDM could exploit their
wider usable bandwidth.

In the next chapter the techniques developed here for designing the cladding of
multi-mode ARFs are used to investigate more practical considerations beyond low
loss in several applications that require or benefit from multi-mode operation in ARFs.
Their potential in short-haul telecomms is examined in more detail by considering the
dispersion of multi-mode ARFs and techniques are investigated to reduce DGD.
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Chapter 5

Designing Multi-mode
Anti-resonant Fibres for Practical
Applications

In Chapter 3 of this thesis, the theory underlying differential modal loss in
anti-resonant fibre was studied. Then, in Chapter 4, using that theory, various designs
of ARF were investigated to achieve low-loss multi-mode operation. Few-mode and
multi-mode ARFs can potentially be used in a wide range of applications however, for
which there are many more considerations than low-loss guidance. In Chapter 4 for
example, a cursory examination of inter-modal dispersion identified differential group
delay between modes as a likely limiting factor for the short pulse delivery, as in
telecommunications. In this chapter, the advantages and challenges of designing
multi-mode ARF are investigated for a selection of the most promising applications.

The chapter is organised as follows. Section 5.1 studies the chromatic and inter-modal
dispersion of MM ARF and how the geometric parameters of the fibre impacts these
properties. The question of whether there is a practical method of reducing them is
addressed. Both bending and twisting of the fibre is studied by numerical simulation
to determine whether these techniques allow the differential group delay to be
controlled. The section concludes with a discussion on the significance of the
outcomes for MM ARF in short-haul telecommunications. In Section 5.2 the possibility
of using MM ARF for high-power laser fibre delivery is investigated. This is an area
where the solid-core delivery typically used are often multi-mode but are limited by
the nonlinearity and damage threshold of silica. Hollow-core guidance is therefore a
very promising alternative. Section 5.3 begins with an overview on the wide variety of
uses for multi-mode ARFs in sensing applications, typically exploiting the possibility
of very long gas-light interaction in low-loss hollow-core. Aside from existing
applications, a novel use of MM ARF investigated here is their usage in spontaneous
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Raman scattering for trace gas detection. Section 5.3 studies theoretically the
possibility for markedly increased detection of Raman scattered light in multi-mode
fibre and therefore increased sensitivity in such fibre sensors.

Some of the work described in Section 5.2 has been published in Ref [140].

5.1 Short haul datacomms

5.1.1 Dispersion

In the previous chapter DGD was identified as a limiting factor for the use of
multi-mode ARF fibres in practical applications, particularly in short-haul datacomms.
Chromatic dispersion is also increased for higher-order modes. In this section, how
the geometry of a fibre affects the group delay and dispersion of high-order modes is
investigated, and how they are impacted by bending and twisting.

The effective index of the modes of a hole-in-bulk-silica fibre was determined by
Marcatili and Schmeltzer [18]:

βnm = k0n(nm)
eff =

2π

λ

[
1− 1

2

(
unmλ

2πR

)2
]

(5.1)

where λ is the wavelength and R the core radius and unm is the Bessel zero
characterising the mode (see Section 3.1). This structure is not anti-resonant and
therefore only approximates the behaviour of anti-resonant fibres in the centre of the
anti-resonant window, away from glass resonances which do not exist in the structure
described by Marcatili et al. By substituting Eq. (5.1) into Eq. (2.19) the group delay can
be derived:
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where c0 is the vacuum speed of light. Similarly Eq. (5.2) can be substituted into
Eq. (2.20) to determine the GVD:
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λ

c0

( unm

2πR

)2
(5.3)

To test the accuracy of these equations for ARFs, numerical simulations were
conducted of a range of tubular fibres. Figure 5.1 shows the modal effective index,
group delay and GVD in the first anti-resonant window for two such fibres that
respectively guide 5 and 13 mode groups. In Fig. 5.1(a,b) the effective index predicted
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FIGURE 5.1: The (a,b) effective index, (c,d) group delay and (e,f) chromatic dispersion
of two tubular fibres. In (a,c,e) the fibre has R = 18µm and in (b,d,f) the fibre has
R = 38µm. The results of numerical simulation are marked with crosses. Lines are

generated with (a,b) Eq. (5.1), (c,d) Eq. (5.2) and (e,f) Eq. (5.3).

by Eq. (5.1) is always less than the true value, with error increasing with mode order.
The approximation shows excellent agreement however, with error consistently
within 0.1 % of the true value. The group delay calculated by Eq. (5.2) compared to the
numerical values is shown in Fig. 5.1(c,d). There is excellent agreement across the
wavelengths shown. The GVD is shown in Fig. 5.1(e,f). Since Eq. (5.1) does not include
the effects of glass resonances, at the long wavelength edge of the anti-resonant
window Eq. (5.3) underestimates the GVD. For the same reason, at the short
wavelength edge there is a significant overestimate. In Fig. 5.1(e) the predicted GVD of
the LP31 mode group is approximately double the true value at F = 0.8 where the
maximum error is observed. Near the centre of the anti-resonant window, F = 0.65,
where leakage loss is lowest, the effects of anti-resonance are minimised and Eq. (5.3)
shows excellent agreement to the true value. Other analytical expressions exist for the
phase constant of the modes guided in anti-resonant structures, such as Eq. (3.6) for a
floating capillary. Using Eq. (3.6) does not, however, improve the fit to GVD values
compared to Eq. (5.3).

Figure 5.2(a) shows how the characteristic Bessel zero, unm, depends on mode order.
The Bessel zero is proportional to the square root of mode order and applying a linear
best fit to the first 50 mode groups yields the expression u2

n = 8.37n− 4.26.
Figure 5.2(b,c) shows the group delay and GVD at a normalized frequency, F = 0.65,
as a function of mode order for tubular fibres with a range of core sizes between 7x
and 25x the wavelength. The data is described very well by Eq. (5.2) and Eq. (5.3).
Both group delay and GVD increase approximately linearly with mode order and
decrease with the square of the core radius. This is significant for applications
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involving transmission of short pulses: guiding more modes in the fibre will result in
increased inter-modal and chromatic dispersion and therefore increased temporal
spreading of the pulses. In data transmission, dispersion will limit the maximum rate
at which pulses, which carry modulated data as symbols, can be transmitted before
inter-symbol interference makes recovering the data with acceptable error rates
impossible. Unlike in solid-core fibres, ARF can with careful design of the cladding
(see Chapter 4) be fabricated with larger cores without guiding more modes and this
powerfully reduces both chromatic and inter-modal dispersion. Some applications
may not permit larger cores however, e.g. direct coupling to a laser source without a
focusing setup, and additionally larger cores in ARF will generally lead to increased
losses due to macro- and micro-bending [84]. In the next section, alternative
techniques are investigated for reducing inter-modal dispersion by bending or
twisting the fibre.

FIGURE 5.2: (a) The first 50 zeros, when taken in order of numerical value, of the
Bessel functions. Black stems denote the true value. The red line is a curve of best fit
described by u2

n = 8.37n − 4.26. (b) Group delay and (c) dispersion as a function of
mode order for tubular geometries with a range of core sizes at a normalized frequency

F = 0.65.

5.1.2 Effects of bending

In solid-core graded-index fibres, a variable refractive index profile in the core is well
known to reduce DGD. An equivalent approach is not practically possible in
hollow-core fibres but there are physical manipulations that could conceivably modify
the DGD of anti-resonant fibres. A curved optical fibre can be modelled as a straight
fibre with a conformal transformation of the refractive index [103].

To investigate the effects of bending on DGD, the tubular fibres described in the
previous section were simulated for a range of bends. Figure 5.3(a,b) shows the delay
of the first 5 mode groups of two fibres as a function of the bend radius, relative to the
core diameter, Rb/D. All modes have increased delay for smaller bends and this effect
is increased for lower order modes. Compared to straight, for the fibre in Fig. 5.3(a)
the LP01 group has 2 ns/km increased delay at Rb/D = 500 whereas the LP31 group is
slowed by less than 0.1 ns/km. DGD for the same fibre is shown in Fig. 5.3(c). The
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increased retardation of the fundamental mode leads to a reduction in DGD which is
similar in absolute magnitude for all modes, approximately 2 ns/km.

FIGURE 5.3: The (a,c) group delay and (b,d) DGD of two tubular fibres as a function
of normalized bend radius. In (a,c) the fibre has R = 23 µm and in (b,d) the fibre has

R = 38 µm.

The fibre in Fig. 5.3(b,d) has a larger core that reduces both the delay and the DGD,
Eq. (5.2). The DGD of the LP31 mode group when the fibre is straight is 3 ns/km, less
than half that of the previously described fibre. Due to the larger core, the fibre is also
more sensitive to bending; at normalized bend Rb/D = 500 all modes shown are
retarded by 0.5 ns/km at minimum. The group delay of the fundamental mode is
most affected by bending and the result is a reduction in DGD of the HOMs. The DGD
of the larger fibre is shown in Fig. 5.3(d). At a normalized bend Rb/D = 400 the DGD
of all modes is less than 1 ns/km. For the LP31 mode group this is a reduction of 1/3
compared to the straight fibre, showing compellingly that bending a fibre can reduce
the effect of temporal pulse spreading and therefore improve the performance for
multi-mode pulse delivery.

Although bending can reduce DGD, this comes at the expense of increased loss. The
loss increase is greater when the DGD reduction is larger. Reducing the DGD of the
LP31 mode group in Fig. 5.3(d) by bending also doubles the leakage loss to 0.5 dB/m
compared to 0.25 dB/m when straight. If a maximum bend-radius were to be enforced
as a method to reduce DGD, routing - the process of physically positioning a optical
fibre to connect two points - would be significantly more complex and the effective
length over which light could be transmitted would also be reduced; longer fibre
lengths would be necessary to cover a distance while maintaining a constant bend.
These problems make enforced bending an impractical solution to large DGD for
conventional short-haul telecomms applications. Bending due to routing however will
not increase the DGD. Other applications, such as non-distributed sensing, typically
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employ coiled fibre to increase light-matter interaction without increasing device
footprint. Where these applications employ few- or multi-moded fibre e.g. dual-mode
interferometry [37], the dependence of group delay and DGD on the coil radius must
be considered. Further few-mode ARF sensing applications are described in
Section 5.3.

5.1.3 Twisting

Optical fibres can be given a permanent twist either during the draw down process or
using post-processing techniques. In circularly symmetric fibres such as the
step-index fibre this can impact the optical properties due to the photoelastic effect of
silica [141]. In micro-structured, hollow-core the geometry of the fibre itself is
modified. Tubular fibres like the NANF or ALIF become helicoidal, giving rise to
novel optical properties. Research into such fibres is ongoing and has already found
application, for example in enhancing the HOM stripping of a tubular fibre [142]. The
majority of interest however is focused on the potential of data transmission using
orbital angular momentum [141, 143].

When considering twisted fibres it is necessary to work with circularly polarised
modes. For linearly polarised modes the field lines of the electric field are always
aligned in one direction. There are two orthogonal polarisations x and y. Since the
system is linear, any linear combination of two degenerate modes is also a mode. A
different basis can therefore be formed from the x and y polarised modes,
ERC = 1√

2
(Ex−pol + iEy−pol) and ELC = 1√

2
(Ex−pol − iEy−pol). In these new modes the x

and y polarised light are π/2 out of phase. Hence the polarisation angle rotates as the
wave propagates and the modes are called left and right circularly polarised modes,
depending on the direction of rotation. The factor 1√

2
ensures that the circularly

polarised modes carry equal power to the linearly polarised modes, that is if Ex−pol

and Ey−pol are normalized according to Eq. (2.16) then so too will be ERC and ELC.

In this work, of interest is the capacity for twisting to affect the HOM properties,
similar to the effects of bending described in the previous section. Twisting can be
made permanent in the fibre without imposing extra difficulties in the cable or routing
and could present a more practical method of reducing DGD between modes.
Intuitively, the effects of twisting stems from the increase in optical path length
experienced by modes propagating further from the centre of a twisted fibre. This
topological effect leads to an effective refractive index change [144]:

∆ntopological

n0
=
√

1 + α2r2 − 1 ≈ 1
2

α2r2 (5.4)

where α is the rate of twist, n0 is the original refractive index and r is the distance from
the centre of twist.
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5.1.3.1 Transformation optics

In finite-element simulation the problem of simulating an optical fibre is significantly
reduced if it is possible to simulate only a 2-dimensional cross section of the fibre. This
however, relies on translation invariance in the axial direction; the cross section must
not change along the length of the fibre. Translational invariance does not hold true if
the fibre is twisted and so a different approach is required.

In this work, a technique based on transformation optics is employed. Transformation
optics encapsulates a geometric change of coordinates into a material transform. By
describing the geometry of a fibre in a twisted Cartesian space (for which the
geometry at z = 0 is identical to the untwisted fibre) the fibre becomes invariant in the
longitudinal direction. Transformation optics permits the transform into regular
Cartesian coordinates to be implemented by using a complex, anisotropic material and
therefore to be numerically simulated using the finite-element method in the COMSOL
software. The details of this technique are described in detail in Appendix B.

5.1.3.2 Effects of twisting

In order to assess the effects of twisting on the properties of HOMs in ARF, numerical
simulations were conducted of twisted fibre. Since the primary purpose of this section
is to determine the potential for twisting to be used practically, the ALIF design
previously developed in Section 4.4 for few-moded guidance in short-haul telecomms
applications is studied. The geometry of this design is shown in Fig. 5.4(a) and the
fibre is simulated for a range of twists up to 0.5 rad/mm. This maximum twist
corresponds to full 2π radian twist every 12.5 cm and is similar to previously
fabricated twisted ARFs [142, 143].

Figure 5.4(b) shows the confinement loss, at a wavelength of 850 nm, of the first two
mode groups, LP01 and LP11, as a function of the rate of twist. Modes within these
mode groups are labelled with the suffixes a-d for simplicity since they represent both
linearly (for the untwisted fibre) and circularly polarised modes. Loss increases for
most modes as the rate of twist increases whilst other modes in the same group have
the same or marginally decreased loss. The leakage loss of the LP01−b mode at a twist
rate of 0.5 rad/mm is approximately 3x higher than for the untwisted fibre whilst the
LP01−a mode shows negligible change. This circular dichroism emerges since twisting
results in cladding modes carrying orbital angular momentum and therefore coupling
between the core and cladding is only possible for particular circular polarisation
states [143]. Core modes with stronger coupling to the cladding experience higher
leakage losses.
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FIGURE 5.4: (a) The geometry of a 7-mode group ALIF previously designed in
Section 4.4. The (b) confinement loss and (c) differential group delay of the first two

mode groups of the shown fibre as a function of twist rate.

The DGD, at a wavelength of 850 nm, between the LP11 and LP01 mode group as a
function of the rate of twist is shown in Fig. 5.4(c). DGD of the LP11−b and LP11−c

modes increases with twist whilst the remaining modes in this group are
approximately unchanged. The magnitude of the change in DGD is however
extremely small: at 0.5 rad/mm twist the LP11−b mode is retarded by 4 ps/km
whereas the range of DGD values between the approximately degenerate modes of
the LP11 group is 20 ps/km, 5x larger. Since the change in DGD is so small, only the
results of the first two modes are shown in order to demonstrate the effects of
twisting. Higher-order modes were considered and other ARFs simulated with similar
twist rates and found similar results: DGD increases or remains constant with
increasing twist but the effects are negligible. Greater rates of twist can have a greater
impact but this also results in significantly increased leakage loss and is not a positive
change for reducing inter-modal dispersion.

It is apparent from these results that twisting is not a useful tool for current
multi-moded, short-haul telecomms. It remains of interest for other applications
however such as SDM using modes carrying orbital angular momentum [144] or for
the filtering or generation of circularly polarised light [143].

5.1.4 Discussion

Chromatic dispersion and inter-modal DGD of anti-resonant fibres have been
investigated. Despite the complexity of their guidance mechanism, a model based on
the simple hole-in-bulk silica fibre well describes the DGD. In the centre of the
anti-resonant window the GVD is also well described by this model. Practically this is
a very useful determination since the fibres are typically operated near the centre of
the anti-resonant window where loss is minimised.

It was shown analytically and confirmed with numerical simulations that both GVD
and DGD increase linearly with the mode group order and decrease with the square of
the core radius. Chromatic dispersion, even for HOMs, is low compared to similar
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solid-core fibres and, further, will be negligible compared to the effects of DGD for
most practical applications utilising very short pulses e.g. datacomms. Chapter 4
showed that, compared to an equivalent graded-index solid-core fibre, DGD is
approximately an order of magnitude larger. The effects of DGD in ARF could be
reduced by increasing the core size or reducing the number of guided modes but this
would come at the expense of signal power since these parameters were chosen to
achieve high coupling efficiency and mimic the standards of solid-core multi-mode
datacomms fibre.

The methods of reducing DGD in solid-core fibre are not possible in ARF but
alternatives were investigated. Bending can powerfully reduce the DGD: the fibres
considered in this section show reduction by up to a factor 2x. There is a trade-off of
increased loss due to bending as the DGD decreases but this could be tolerated over
short distances (e.g. < 500 m) typically considered if the straight loss of the fibre is
low. However, the practical considerations of enforcing a fibre bend whilst routing
cables make this unfeasible. As a possible alternative the impact of twisting, a
modification which can be relatively easily built into the fibre during or after the draw,
was studied. This did not have the desired effect. Instead, marginal increases in DGD
were observed.

For the purposes of existing VCSEL-based short-haul datacomms I find that despite
large bandwidth, low loss and low latency, prohibitively high DGD make MM ARF
unsuitable as an improvement or even replacement of current graded-index solid-core
fibres. This does not altogether preclude MM ARF from telecomms applications
however. A simple, but computationally expensive for large DGD, mitigation strategy
would be to employ digital equalisation methods. In addition WDM at lower single
channel data rates can also be implemented by exploiting the wide optical bandwidth
and low chromatic dispersion of the fibres.

Employing higher order modulation techniques can address the limitations of DGD
whilst embracing the strengths of hollow-core fibres. Orthogonal Frequency Division
Multiplexing (OFDM) is a a modulation format known for its resilience to multipath
interference such as that caused by inter-modal dispersion [145]. Many (100+)
orthogonal carrier frequencies (in the time domain) are modulated with very low data
rates and multiplexed together. A cyclic prefix is also typically employed which acts
as a temporal guard band. The combination of orthogonal carriers, individually low
symbol rates and the cyclic prefix, mitigate the effects of inter-symbol interference
introduced by multiple propagation paths. The implementation is usually via the Fast
Fourier Transform, making OFDM far more computationally simple compared to
other digital-equalisation-based DGD compensation methods. OFDM has already
been demonstrated in optical links including multi-mode VCSEL/OM fibre links. Kao
et al. achieved 64 Gb/s over 100 m of OM4 fibre [146]. OFDM is one of the schemes
under consideration for future 200 and 400 Gb/s standards. The cost of OFDM is the
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requirement for higher power or more expensive modulation electronics to
compensate for the higher peak to average power ratio. The low-loss of ARFs
however, should reduce the required power budget of the link and help to reduce the
impact of any higher power electronics.

5.2 High power delivery in multi-mode ARF

High-power fibre delivery typically employs solid-core large-mode-area or large-core
multi-mode fibres, primarily limited by the onset of nonlinear processes [147]. The
maximum power distance product, before stimulated Raman scattering significantly
modifies the signal, is given by P · Leff = 16Aeff/gr, where P is the laser power, Leff is
the effective interaction length of the fibre, Aeff is the effective interaction area and gr

is the Raman gain coefficient (for a large core, multi-mode silica fibre Leff ≈ L when
L < 100 m, Aeff ≈ π(0.8R)2 and gr = 1× 10−13 m W−1) [148]. Higher powers
delivered over a short distance experience the same nonlinear behaviour as low power
delivered over long distances. In solid-core fibres, transmission of 1 kW of power over
100 m has been reported in a highly multi-mode (˜750 modes) step-index fibre [149]
and 10 kW over 30 m has been demonstrated in a three-mode photonic crystal fibre
[150]. Commercially available solutions are typically limited to a few 10s of metres e.g.
a commercial multi-mode 10 kW fibre laser has a 100 µm delivery fibre up to 30 m
long [151]. ARFs by contrast intrinsically possess greatly reduced optical nonlinearity
compared to silica fibres since the overlap between the silica and propagating light is
less than 1× 10−4 [10] and the nonlinear coefficient of air is almost three orders of
magnitude lower than silica [152]. The unique properties of ARFs raise the potential
for significant improvements in reach, flexibility and power handling capabilities of
their solid-core counterparts.

Practical demonstrations of laser power delivery through hollow-core fibres have
greatly progressed over the past two decades [38, 153–155], culminating in the recent
remarkable demonstration of 1 kW continuous-wave (CW) power transmitted over 1
km of single-mode NANF [26]. This body of work has so far focused on the
transmission of high quality, single-mode laser beams with low M2. Greater laser
power still is available from few-mode and multi-mode lasers [156], and there are a
broad range of applications which would benefit from the ability to deliver such lasers
across long distances using fibres.

The performance of such few-mode/multi-mode high-power laser sources has also
seen great progress in recent years [156]; the markers in the plot shown in Fig. 5.5
represent a selection of commercially available or research grade lasers of various
architectures, both pulsed or cw, emitting near 1030 nm. Higher power lasers in
general are effectively few-moded or multi-moded, exhibiting larger M2 values. To
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efficiently couple light from these sources into a fibre requires a similarly few-mode or
MM fibre. To illustrate this, the same plot shows the calculated approximate number
of mode groups a hollow-core fibre must guide to achieve at least 95 % coupling
efficiency to a laser source with a given M2 value (details of the calculation are given
in Section 5.2.1). It is clear therefore that to meet the needs of applications requiring
the flexible delivery of optical power from such lasers over some distance, low-loss
multi-mode hollow-core fibres must be designed.

In this section, the range of sources targeted for ARF delivery (highlighted in Fig. 5.5),
comprises lasers with output powers ranging from 1 to 30 kW with reported M2

values from 1.5 to 15. For M2 values below the region of interest, i.e., M2 < 1.5, the
near diffraction-limited, approximately single-mode lasers emitting up to several kW
average power can be delivered, as shown by the results of Mulvad et al. [26], through
single-mode NANFs over several kilometres (e.g. Mulvad et al. predict the delivery of
5 kW over more than 2 km with an air-filled core). Above the region of interest,
M2 > 15 laser sources can emit more than 100 kW average power [151]. These lasers
are highly multi-mode (i.e. more than 100 mode groups) and fibre delivery is typically
through highly multi-mode solid-core fibres with core diameters as large as 800 µm
[151]. It is conceivable that ARFs might one day be designed to guide the several 100s
of mode groups required to efficiently couple light from these sources, however, it is
not the subject of this work. Instead the focus is on the intermediate range
1.5 < M2 < 15 where MM ARFs can offer significant improvements on the
performance of solid-core fibres.

In the following section, calculations are presented determining the required modality
of an ARF to achieve a high coupling efficiency with multi-mode lasers with a given
M2. Next, a procedure is described to design multi-mode NANFs to guide the
required number of modes with low leakage loss and high bend resilience. Finally, the
performance of NANFs for high power delivery is examined and discussed by
designing and simulating two example designs.

5.2.1 Coupling of multi-mode laser beams into ARFs

The quality of a beam is often characterised by the M2 factor, defined as the ratio of
the beam parameter product to that of an ideal, diffraction-limited Gaussian beam
[172]. The highest possible beam quality is achieved with M2 = 1 and the power is
fully transmitted in the lowest divergence fundamental mode. Greater M2 values
correspond to beams with larger divergence angles caused by a fraction of the total
power being transmitted by higher-order and higher divergence modes. Since the
transverse profile of these modes differs from that of the near-Gaussian fundamental
mode, beams with a larger M2 will not couple efficiently into single-mode fibre and
MM delivery fibres are required for adequate coupling efficiency.



96 Chapter 5. Designing Multi-mode ARF for Practical Applications

FIGURE 5.5: (red markers, left axis) The maximum average power output of high
power laser sources and their reported M2 values [151, 157–171]. (blue line, right axis)
the number of mode groups required to be guided in a hollow-core fibre to achieve
95% coupling efficiency for an incident laser beam of a given M2. The laser described

by [170] is characterized only as single-mode and M2 = 1.5 is assumed.

For example, a MM step-index fibre with numerical aperture 0.22 and core diameter
50 µm will guide several 100s of modes and the larger cores typically used for high
power delivery can guide many times more. The highly multi-mode nature of these
fibres mean they are easily capable of efficient coupling with large M2 beams. Due to
the strong differential properties between modes in ARF (see Section 3.1), knowledge
of the number of modes required to accommodate a beam with a given M2 is crucial
in designing a fibre with the best performance possible.

In high-power delivery through fibre, high input coupling efficiency is necessary both
to achieve high throughput and to avoid thermal damage to the input facet of the fibre
since the laser energy that is not coupled into the core may be absorbed by the coating
near the fibre end face and damage it. In this work, the target is the design of fibres
enabling at least 95 % coupling efficiency to a given MM laser source. This is the
highest efficiency I am aware of being practically reported in ARF [173]. Such high
coupling efficiency should reduce the requirement for active cooling at the fibre
coupling and enable further power upscaling. Investigating this target begins by
considering how the modes of an ARF are excited by an incident field.

In order to describe the transverse field of a high M2 laser beam, the
Laguerre-Gaussian formulation is employed which describes a free space laser mode
as:

E(LG)
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(
ρ
√

2
w0

)|ml |

exp
(
− ρ2

w2
0

)
L|ml |

nl

(
2ρ2

w2
0

)
exp(−imlφ) (5.5)



5.2. High power delivery in multi-mode ARF 97

where~t is the electric field polarisation vector, w0 is the beam waist, ml and nl are the
radial and azimuthal mode indices respectively of the lth Laguerre-Gaussian mode
and Lm

n (x) is the Laguerre polynomial. The Laguerre-Gaussian modes form a
complete, orthogonal set and, given normalization according to Eq. (2.16), the emitted
laser beam can be described as a linear sum of those modes.

E(i) = ∑
l

clE
(LG)
l , H(i) = ∑

l
clH

(LG)
l (5.6)

This description has the advantage that the M2 value of a laser beam is obtained from
its modal decomposition as [174]:

M2 = ∑
l

(1 + ml + 2nl)|cl |2 (5.7)

For Eq. (5.7) to hold, the beam must be propagating unit power, i.e. ∑l |cl |2 = 1.

Figure 5.5 shows the number of mode groups required to be guided in a fibre to
achieve the target of 95 % coupling efficiency for a given incident beam, characterised
by its M2 value. A beam with M2 = 15 requires almost 100 mode groups. For this
calculation the modes of the fibre are taken to be those of a hollow, circular fibre (a
circular air hole in bulk silica, see the N = 0 structure in Fig. 5.8) as determined by
Marcatili and Schmeltzer [18]. Coupling efficiency is calculated using Eq. (2.18).
Numerical simulations were conducted of a range of ARF geometries including
tubular, NANF and DNANF and, although the transverse mode profiles are different
for the same mode order in each of these structures, they all exhibited nearly identical
requirements on the number of mode groups as that of the hollow circular fibre shown
in Fig. 5.5. An M2 = 3 beam would require approximately 10 mode groups but the
number of mode groups required to achieve the 95% coupling efficiency increases
rapidly with M2; an M2 = 10 beam requires around 60 mode groups and M2 > 15
requires more than 100 groups. In the next section it is discussed how these
requirements relate to ARF design.

It is clear from Eq. (5.7) that different combinations of the same modes, i.e. beams with
different transverse fields, can result in equal M2. Indeed, M2 alone does not capture
the richness of the corresponding mode field distributions. Figure 5.6(a-c) shows three
different possible modal distributions of an M2 = 3 laser beam and the distribution in
the modes of a fibre after coupling. The laser distributions are distinct and result in the
excitation of different fibre modes. In Distributions 1 and 3 there is negligible power
outside of the first 5 mode groups of the laser but for both distributions, more than 10
% of the power is captured by mode group 6 and above in the fibre. Distribution 2 has
the most evenly distributed power initially and is the most similar to the final
distribution in the fibre. Shown in Fig. 5.6(d) is how the different laser beam
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FIGURE 5.6: (a-c) Several different modal distributions of (black bars) laser beams with
M2 = 3 before and (coloured bars) after coupling into a fibre. (a) Distribution 1 and (b)
Distribution 2 are described by discrete Gaussian functions with standard deviation 1
and 3 respectively and mean chosen to achieve the target M2. (c) Distribution 3 is flat
across lower order modes with the power of the highest order mode chosen to achieve
the target M2. (d) The total coupling efficiency of the beams described by (a-c) incident

on a 10 mode fibre as a function of the beam waist ratio.

distributions affect the coupling efficiency into the fibre as a function of the beam
waist ratio, defined as the ratio between the laser beam waist and the fibre core radius,
w0/R. Regardless of the exact modal distribution, the same number of fibre modes is
capable of capturing > 95% of the beam. The maximum difference between the
distributions shown here is 5 % but, at the optimum beam waist ratio, the discrepancy
is less than 1 % and generally the results are nearly identical across the entire range.
Note that beams with increased higher-order mode content are optimally coupled at
smaller values of beam waist to core radius ratio, w0/R. Coupling to single-mode
beams is known to be maximised near w0/R = 0.7 [73] whereas this M2 = 3 beam has
a maximum coupling at w0/R = 0.45.

Throughout the research for this work, a range of input beams were investigated and,
for all metrics explored, M2 was found to be a robust measurement with beams of
diverse modal composition but equal M2 achieving similar coupling efficiency into the
fibres. Given the similarity between results, for the remainder of the chapter the modal
decomposition described by the parameters of Distribution 2 in Fig. 5.6(b) is used.

5.2.1.1 Coupling efficiency of HOMs in second anti-resonant window

In high-performance applications, when coupling power into an optical fibre, even a
subtle increase in coupling efficiency can make a significant difference to the
performance of that system. This is even more valid in high-power systems, such as
those discussed in this section, where high coupling efficiency improves not only the
power performance but also the safety of the system. Fokoua et al. demonstrated that
in single-mode ARFs, coupling efficiency could be improved by almost 2% by
operating the fibre in the second anti-resonant window rather than the fundamental
window [73]. Although the available optical bandwidth is reduced in the second
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anti-resonant, an improvement to coupling efficiency is more important in this
application.

To investigate the possibility of improved coupling efficiency in the second
anti-resonant window, two 10-tube NANFs, with core radius core radius R = 35 µm
and inter-tube gap d = 4 µm, guiding 12 mode groups at λ = 1030 nm were simulated.
The wall thickness of the NANFs was 350 nm and 700 nm respectively corresponding
to a normalized frequency F = 0.71 in the fundamental window and F = 1.42 in the
second window. The coupling efficiency was calculated between the fibre modes and
their equivalent Laguerre-Gaussian laser modes, e.g. the LP01 fibre mode and the LP01

Laguerre-Gaussian mode. Figure 5.7 shows this like-like modal coupling efficiency for
the first and second window NANFs when the laser beam is focused to the optimal
value for that mode. Both fibres have highest coupling efficiency in the fundamental
LP01 mode group, approximately 98%, which decreases for higher-order modes. The
lowest coupling efficiency amongst the first 12 guided mode groups is, for both fibres,
less than 78% in the LP32 mode group. Coupling efficiency decreases more rapidly
with increasing radial mode order than azimuthal mode order. There is more than a
10% drop between the LP01 and LP02 mode groups and between the LP11 and LP12

groups, whereas between the LP01, LP11 and LP21 mode groups the total drop in
coupling efficiency is less than 3%. This suggests that the number of modes required
in an optical fibre to achieve high coupling efficiency increases more rapidly than the
number of modes in the incident laser beam. It should be stressed that a real
multi-mode laser beam carries power in a some or all of these modes and optimal
focusing will not be possible for all modes simultaneously.

FIGURE 5.7: The modal coupling efficiency of Laguerre-Gaussian laser modes into the
same mode of a multi-mode NANF operating in either the fundamental or second

anti-resonant window.

When comparing the first and second window NANFs, higher coupling efficiencies
are found in the second window NANF. Coupling efficiency in the highest order, LP61,
mode group is 2.5% greater in the second window NANF and the improvement is
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more than 4% in the lowest efficiency, LP32, mode group. The increase in the
fundamental mode however is less than 0.25%. In general, the improvements found
by operating the fibre in the second anti-resonant window are minimal for the
lowest-order modes and increase with mode order. This is understood by considering
the mechanism for the increase in coupling efficiency. The electric field of a mode
operating in the fundamental window changes sign as it crosses the thin capillary
separating the core and the cladding, i.e. it is positive in the core and negative (but
with small magnitude) in the cladding. The mode field of a Gaussian beam is always
positive and so the overlap integral (Eq. (2.18)) is reduced by the contribution of the
cladding regions. See ref [73] for a detailed description. By contrast, in the second
anti-resonant window, the sign of the fibre mode changes twice when crossing the
capillary wall and is therefore positive in the core and cladding. The overlap integral
in a second-window NANF is increased by the cladding contribution. Evidently, not
only is the sign of the fibre mode electric field in the cladding but also the magnitude
relative to in the core since this determines how large the effect on the overlap integral
is.

In Chapter 3 the fraction of power guided in the cladding regions in different modes
was studied. Figure 3.6 shows that the amount of power in the cladding tubes is
proportional to the degree of coupling to the cladding tube modes. In an anti-resonant
fibre with all core modes guided in the fundamental phase-mismatch window, the
highest order core mode always exhibits the strongest coupling to cladding modes
and this decreases for lower-order modes. This agrees with the results shown in
Fig. 5.7; highest-order core modes have the strongest coupling to cladding tube modes,
therefore have the highest fraction of power in the cladding tubes and as a result have
the largest increase in coupling efficiency when operating in the second anti-resonant
window. In a single-mode fibre, as in Ref [73], the fundamental mode is the highest
order mode and has similar coupling strength to cladding tube modes as the highest
order core modes in a multi-mode fibre. The increase in coupling efficiency in both
cases is therefore similar.

For the multi-mode laser beams considered in this section, a significant fraction of
power is coupled into low-order fibre modes, which exhibit marginal increase in
coupling efficiency in the second anti-resonant window. When calculating the modal
requirements of NANFs operating in the second anti-resonant window, therefore,
there was a negligible improvement over NANFs operating in the fundamental
anti-resonant window. For the remainder of this work, only fundamental-window
NANFs are considered since these exhibit larger optical bandwidths.



5.2. High power delivery in multi-mode ARF 101

5.2.2 Designing MM ARF for high power laser delivery

Previously in this thesis, in Chapter 3, the theory underlying differential modal loss
was discussed and in Chapter 4 various designs of ARF were investigated to achieve
an optimised, few-moded ARF with low loss given a strict core size requirement. In
this section the goal is to to investigate the potential of ARFs for high-power delivery
and towards this, a simple yet robust design process is presented for NANFs to guide
the number of modes required to effectively capture and guide radiation from a
multi-mode, high power laser. A minimum core size requirement is derived and the
technique described in Section 4.2.3 is used to design the cladding of a NANF to
achieve multi-mode guidance. The fibres resulting from this process could be further
optimised if they were to be used practically.

5.2.2.1 Minimum core size

To determine the core size of the fibre, the starting point is to define the maximum
acceptable loss coefficient suitable for the intended application. In this work only
losses due to leakage are considered. Because of the larger cores, surface scattering
remains negligible [10] and whilst micro-bending increases rapidly with core size [84],
it is speculated that these fibres could be packaged in such a way that its contribution
is also negligible. For MM guidance the fibre must be designed such that all modes
have losses below the loss threshold. Since, generally, the highest order mode will
have the highest loss and knowing the highest order mode from the coupling
requirements (Fig. 5.5) one need only design the fibre such that the highest-order
mode is below the loss threshold.

As previously described in Section 3.1.1 the leakage loss of an ARF geometry which
consists of concentric rings of air and glass has been determined in closed form by
Bird [95]. Since ARFs of interest cannot be modelled analytically, the closed form
expression for the leakage loss of concentric ring fibres is used as a basis for the
following analysis. In Eq. (3.1) the geometry is characterised by N which is the integer
number of finite concentric rings (including both air and glass regions) which make
up the cladding (see Fig. 5.8 for examples). For the hollow circular fibre considered in
the previous section N = 0, whilst for tubular, NANF and DNANF structures N most
closely resembles 3, 5 and 7 respectively [10, 49] (note that N is independent of the
number of sets of nested capillaries surrounding the core). For the analysis in this
work φglass = 2πt

√
εr − 1/λ and φair = π/2. To target an operating wavelength of

1030 nm, a membrane thickness is chosen, t = 350 nm, that corresponds to a
normalised frequency, F = 0.71 (see Eq. (2.25)) placing 1030 nm near the expected
minimum loss of the fundamental anti-resonant window [68]. The choice of φair

corresponds to an “optimal” width of the air regions in the concentric ring structure.



102 Chapter 5. Designing Multi-mode ARF for Practical Applications

Whilst there is no simple equivalent concept of an optimal width of air regions in
NANF (see discussion in Section 3.1.1), they have been demonstrated to have lower
losses for the same core size than even the most optimal concentric ring structure [10].

Figure 5.8 shows for a range of geometries the minimum core diameter, determined by
Eq. (3.1), to guide 10, 30, 60 and 100 mode groups below a threshold of 10 dB/km. The
10 dB/km threshold is chosen such that these fibres will be capable of delivering
power over 100 m with lower than 1 dB leakage loss. In reality practical fibres are
expected to have lower confinement loss since tubular, NANF and DNANF structures
generally have reduced leakage compared to the most similar concentric ring
structures. Equation (3.1) suggests that tubular fibres with core diameters of 140 µm
can support up to 10 mode groups and hence could be made to efficiently capture
light from M2 ≤ 3 sources. As with solid-core fibres however, the additional loss due
to bending increases with the size of the core in ARFs [82]. Such large core tubular
fibres suffer from very severe bend loss.

FIGURE 5.8: The predicted minimum core size, according to Eq. (3.1), in order to guide
10, 30, 60 or 100 mode groups with a maximum loss less than 10 dB/km at 1030 nm

for different ARF structures.

A NANF with a core diameter of 150 µm is predicted to guide at least 60 mode groups,
whilst 10 mode groups can be guided with a core diameter of around 70 µm. In
addition to the smaller core size, NANFs are well known to have significantly
improved bending resilience compared to tubular fibre (eg more than 4 orders of
magnitude lower losses for 80 µm core diameter at 8 cm bend radius [10, 82]).
Figure 5.8 shows that to guide 100+ mode groups a NANF would require a core
diameter of approximately 300 µm. Such large core NANFs have higher bend loss and
are not capable of low-loss, multi-mode operation with a 35 cm bend radius. If it is
desired to guide a few 100 mode groups in an ARF, Eq. (3.1) suggests that DNANF
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might be the structure of choice, with smaller core requirements and even better
resilience to bending compared to the NANF [22]. This solution may be capable of
guiding similar number of modes to MM solid-core fibre and be suitable for delivering
laser light from highly multi-mode, M2 > 15 sources. The task of investigating this
prospect is left for future work. Here, laser sources with M2 < 15 are targeted and
therefore the analysis is limited to studying NANFs with fewer than 100 mode groups.

5.2.2.2 Cladding design

To make a MM NANF, coupling between core and cladding modes must be avoided.
In Chapter 3 a technique was developed to design the cladding of NANFs to predict
the cladding tube mode effective indices and maximise multi-mode performance.
When the size of the nested tube relative to the outer tube is such that Z2/Z1 ≈ 0.7,
the IC1 and IC2 cladding modes guided in the tube air regions are approximately
phase matched. When using this technique the effective index of both the core modes
and cladding tube modes can be approximated using Eq. (3.6) with the radius of the
core for the core modes and of the nested cladding tube for the cladding tube modes.

Figure 5.9(a) shows the geometry of a NANF with Z2/Z1 = 0.7 and a core radius of
35 µm. The core size is chosen using Fig. 5.8 to meet the loss requirements previously
discussed for a 10 mode group fibre. The size of the nested capillary tube, Z1 can then
be chosen such that phase matching is avoided between the cladding modes and the
desired first 10 core modes. The number of outer tubes and inter-tube gap is selected
to maintain the core radius without introducing too large gaps, which incur high
leakage loss, or too small gaps, which are difficult to fabricate. The fibre in Fig. 5.9(a)
has 10 outer tubes, a gap d = 4 µm and the nested tube diameter is Z1 = 14 µm. For
this geometry, Fig. 5.9(b) shows the effective index, calculated using Eq. (3.6), of the
first 10 core mode groups (coloured solid lines) from the LP01 to LP51 and of the
fundamental cladding tube mode (black dotted line). The effective index decreases for
increasing core mode group index. A phase mismatch of 2× 10−4 between the core
and cladding modes is found to be sufficient to avoid strong coupling.

It is desirable to ensure in the design phase that bending will not introduce significant
losses. This can be also be approximated, without numerical simulation, using the
techniques described in Section 4.2.2. For tolerable bends that do not introduce
significantly higher losses, the effective index of the core modes will be approximately
unchanged compared to the straight fibre. The effective index of cladding tubes is
modified: it is elevated for modes guided in tubes on the outside of the bend (where
the optical path length is increased) and reduced for those on the inside. Substituting
Eq. (4.1) into Eq. (3.6) yields an expression for the modified cladding mode effective
index. The important value is the largest cladding mode effective on the outside of the
bend, which has the smallest phase mismatch with core modes and therefore the
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FIGURE 5.9: (a) The geometry of a 10-tube NANF with core radius R = 35 µm and (b)
the predicted effective index of the first 10 core mode groups using Eq. (3.6) and the
fundamental cladding tube mode when straight and bent using Eq. (3.6) and Eq. (4.1).

strongest coupling. Figure 5.9(b) shows the calculated effective index for this cladding
tube mode when straight and under a 25 and 50 cm bend radius. The effective index is
increased for a smaller bend radius. This allows the fibre to be designed such that
strong phase-mismatch and low-loss operation is achieved for the bends required by
the targeted application.

5.2.3 Performance of Multi-mode NANF for laser delivery

To assess the performance of MM NANFs for laser delivery two fibres are designed at
the extremes of the M2 range of interest. Figure 5.10 shows the cross sections of Design
1 and Design 2, chosen using the techniques of Section 5.2.2 to deliver power from a
laser with M2 = 3 and M2 = 13, respectively. To efficiently guide light from lasers
with such parameters the fibres are required to guide 10 and 62 mode groups,
respectively (see Fig. 5.5). Using Eq. (3.6) to avoid coupling to cladding modes, Z1 is
set to 7 µm and 6 µm, respectively and Z2/Z1 = 0.7. A gap size, d = 4 µm, is chosen
comparable to recently fabricated NANFs [21]. With these parameters the minimum
core diameter requirement can be met with 10 and 24 tubes for Design 1 and 2,
resulting in core diameters of 69 and 176 µm, respectively. To check if fibres designed
with the proposed method exhibit the desired properties, numerical simulations of
Design 1 and 2 were conducted.

5.2.3.1 Propagation and bending loss

Figure 5.11(a) shows the loss spectrum of the highest loss modes of the fibres when
straight. Minimum leakage loss is 1.4 dB/km at 1050 nm for Design 1 and 0.8 dB/km
at 1030 nm for Design 2. Loss increases at shorter wavelengths, as the edge of
fundamental anti-resonant window is approached. At 970 nm, the increase in loss is
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FIGURE 5.10: Geometry of (a) design 1, a 10 mode group fibre and (b) design 2, a 62
mode group fibre.

less than 0.3 dB/km for both designs. The available bandwidth is suitable not only for
CW lasers, but also for ultrashort pulsed lasers operating between 1030 and 1064 nm
(a 100 fs Gaussian pulse at 1064 nm has a bandwidth of less than 20 nm, see Eq. (2.21)).
Figure 5.11(b) shows the maximum loss across all modes of the fibres for a range of
bend radii. The critical bend radius, at which the loss is doubled compared to the
straight fibre, for Design 2 is 35 cm and for Design 1 is less than 25 cm. The similarity
between Design 1 and 2 in the dependence of loss with bend radius suggests that the
additional loss experienced when bending the fibre is primarily due to phase
matching to cladding modes. When the fibre is bent to a smaller radius, the real
component of the effective index of the cladding modes in the tubes on the outside of
the bend increases (Eq. (3.6)) whereas the effective index of the core modes is
approximately unchanged (smaller bends than those considered here may also modify
the effective index of the core modes) [82]. Consequently the core and cladding modes
have increased phase matching and the loss of the core modes increases [107]. Both
designs demonstrate strong resilience to bending and are below the design threshold
of 10 dB/km for bend radii as small as 25 cm radius. This is below the expected
minimum bend radius in practical situations where the fibre is deployed in a
protective cable and bend loss is not expected to be a limitation.

To better capture the throughput capability of the fibre when used in laser delivery,
Fig. 5.11(c) shows the delivered output power after coupling and propagation for a
M2 = 3 beam incident on Design 1 and a M2 = 13 beam incident on Design 2. The loss
values shown here are calculated for a fibre coiled at a constant 35 cm radius bend. In
both cases the initial power loss value at the propagation distance L = 0 is due to
input coupling and will be discussed later. In these calculations the effects of power
coupling between the modes of the fibre are not included. Under these assumptions,
in both designs, after 2 km of propagation the total loss is predicted to be less than 0.5
dB and the leakage loss is less than 0.14 dB/km. Given such low leakage loss it is
reasonable to assume that micro-bending, which increases rapidly with core size [84],
will become the dominant source of propagation loss. Although the impact of
micro-bending can be reduced or mitigated with choice of fibre packaging, given the
lack of relevant experimental or theoretical data on large core, multi-mode ARF, the
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work is restricted to studying the effects of differential leakage loss and multi-mode
guidance. The effective leakage loss is predicted almost an order of magnitude less
than the loss of the highest order mode. This result is understood by considering
Fig. 5.11(d), that shows the confinement losses of the 10 mode groups of Design 1 at
1030 nm. The loss of lower order modes is significantly less than the highest order
mode. Indeed, the loss of the fundamental mode of Design 1 is nearly 3 orders of
magnitude lower than the highest order mode. When launching power into MM fibre
the low order fibre modes capture a significant fraction of the laser power (see
Fig. 2.18) and so the total loss is consequently lower than that of the highest order
mode. The fraction of power that propagates in the glass is shown in the right axis of
Fig. 5.11(d) and increases with mode order. The glass fraction for the highest order
modes is less than 4× 10−5, similar to the fundamental mode in single-mode NANFs
[10], and the nonlinear contribution from silica is not expected to increase in
multi-mode ARFs. Increased glass overlap has an effect on dispersion which is
discussed in Section 5.1.1.

FIGURE 5.11: (a) The maximum modal loss across all modes of Design 1 and 2 when
straight. (b) The maximum modal bending loss at 1030 nm across all modes of Designs
1 and 2. (c) Delivered power after coupling and propagation for a M2 = 3 beam
incident on Design 1 and a M2 = 13 beam incident on Design 2. Loss values consider
a constant 35 cm bend. (d) The maximum leakage loss (blue bar, left axis) and the
fraction of power in the glass (red bar, right axis) of all mode groups of Design 1 at

1030 nm when straight.

Considering the M2 of the laser beam at the output of the fibre, there was a negligible
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change compared to the incident beam, due to the extremely low, < 0.5 dB, losses. The
effects of power coupling between the modes of the fibre may modify the output M2

[48]. Most applications using these large M2 sources will be tolerant to small changes
in beam quality as measured by M2. If necessary, the guidance mechanism of ARF
does suggest a means of limiting the maximum output M2 by designing the fibre such
that any undesired modes, those with higher order than the initial design, have high
enough losses that any power in those modes will be lost after propagation through
the length of the fibre. The output M2 would therefore be effectively limited by the
highest order, low-loss fibre mode. This technique could be used to counter the effects
of inter-modal coupling or indeed to spatially filter the laser source, improving its M2.
Although this would incur additional power loss, it might be more desirable to
develop longitudinal cooling techniques to dissipate power over the length of the fibre
rather than at the fibre coupling where it can result in dangerous heat build-up.
Investigating this possibility could be useful future research.

5.2.3.2 Coupling efficiency

In an industrial environment the coupling between the laser and fibre will generally
experience variations in focus and alignment due to e.g. thermal fluctuations and
mechanical vibration. Maintaining coupling in these conditions is important if the
fibre is to avoid thermal buildup due to lost power at the coupling and maintain the
throughput power delivered to the workstation. The behaviour of the fibre when the
incident beam is perturbed from optimal focus and alignment is now described. The
coupling efficiency of Design 1 for a M2 = 3 beam at different values of beam waist
ratio, w0/R, is shown in Fig. 5.12(a). The coupling efficiency decreases as beam waist
departs from the optimum, w0/R = 0.48, where it reaches 96 %. For Design 1, a
change in beam waist of ±7% still results in 95 % coupling or above. Figure 5.12(c)
shows the coupling efficiency for Design 1 as an incident M2 = 3, w0/R = 0.48 beam
is offset transversely. The coupling efficiency at zero offset, 96 % (the optimum
described above), decreases as alignment offset increases. There is moderate tolerance
to misalignment: a beam with a transverse offset of 10 % of the core radius still
achieves 95 % coupling efficiency. The offset beam excites the fibre modes differently,
with more power coupled into the higher order modes which increases the effective
loss of the fibre. Input coupling remains the dominant source of loss, however, and the
total loss over 2 km with 10 % transverse offset is less than 0.2 dB greater than an ideal
launch with no offset.

Figure 5.12(b) and Fig. 5.12(d) show, for Design 2 and a M2 = 13 beam, the behaviour
of coupling efficiency with variation in focus and misalignment respectively. The
results are qualitatively similar to that of Design 1; there is an optimal beam waist and
the coupling efficiency decreases with detuning from optimum focus or increasing
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FIGURE 5.12: The coupling efficiency (blue solid) and maximum pulse energy (red
dashed) before damage for (a,c) a 10 ns, M2 = 3 pulse incident on Design 1 and (b,d)
a 10 ps, M2 = 13 pulse incident on Design 2. The beam is modified by varying
(a,b) the beam waist ratio at zero alignment offset or (c,d) the alignment offset at
optimal beam waist. Alignment offset is normalized relative to the fibre core radius.
The horizontal dotted line indicates the maximum pulse energies of high-energy,

commercial nanosecond and picosecond lasers. [175, 176].

transverse offset. The maximum coupling efficiency is 95 %. When the transverse
misalignment is 10 % of the core radius or the focus is ±5% from optimal, coupling
efficiency is 2.5 % lower than maximum. The increased higher order mode content of
the M2 = 13 beam results in a smaller optimal beam waist ratio, w0/R = 0.30
compared to the M2 = 3 beam used with Design 1. The maximum coupling efficiency
and tolerance to misalignment and focus is improved by guiding more modes in the
fibre.

5.2.3.3 Damage threshold for pulsed lasers

The light induced damage threshold (LIDT) of an ARF is the maximum power it can
withstand before the intensity on the glass micro-structure exceeds the LIDT of bulk
silica. The LIDT of bulk silica is taken to be 100 J/cm2 at 1030 nm for a 8 ns pulse
[177]. Experimental work on micro-structured hollow-core fibres suggests that this is a
conservative limit, with up to 3x higher values being reported in experimental work
[154].

The dashed red lines in Fig. 5.12 show the LIDT of Designs 1 and 2 as the focus and
alignment is modified with nanosecond and picosecond pulses, respectively. The
maximum 10 ns pulse energy for Design 1 at optimal coupling is 230 mJ, a peak power
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of more than 20 MW. Due to the low glass overlap, the LIDT of the NANFs is well
above the achievable power from CW lasers. Therefore, the case of pulsed lasers, that
produce significantly higher peak powers, is studied here. The LIDT behaves
significantly differently to what might be expected in solid-core fibres since the peak
optical intensity in the core does not damage the micro-structure. In Fig. 5.12(a,b) the
damage threshold increases dramatically as the laser is more tightly focused since the
intensity is reduced at the core/cladding interface. For Design 1 the maximum 10 ns
pulse energy at w0/R = 0.5 is 100 mJ, at w0/R = 0.45 it is 500 mJ and at w0/R = 0.4 it
is more than 4 J. Additionally, there was little improvement from higher M2 beams
that have a more flat-top profile since by far the dominant effect was that of focus.
This means that the practical damage threshold can be significantly increased in MM
ARF compared to few-mode or single-mode fibres since with more modes, tighter
laser focus is possible while maintaining high coupling efficiency. This is evident in
Fig. 5.12(a) which shows that the maximum pulse energy for 10 ns pulses at optimal
coupling is 230 mJ but by decreasing the laser focus by just 7 %, the coupling is still
above 95 %, but the maximum pulse energy before damage increases by almost a
factor 3x to 650 mJ. For comparison, a very high-energy nanosecond laser is chosen
emitting at 1060 nm wavelength with a reported beam M2 suitable for coupling to this
fibre. The commercially available IPG Photonics YLPN has a maximum pulse energy
of 10 mJ with a duration of 30 ns and requires a solid-core delivery fibre with a core
diameter of 400 µm (more than 5x larger than that of Design 1) [175]. Even at optimal
coupling the maximum pulse energy is already more than an order of magnitude
higher than the YLPN and other typical nanosecond pulse lasers [147].

Figure 5.12(b) shows the LIDT of Design 2 when delivering 10 ps pulses. The
maximum pulse energy before damage of Design 2 at optimal coupling is almost 20
mJ. The high energy, commercially available, Trumpf TruMicro 2070 picosecond laser
has a maximum pulse energy of 500 µJ [176]. From this data it is indicated that
suitably designed MM ARF fibres would be capable of handling the typical powers
used in most applications and laser sources currently available, with considerable
margins for further laser power up-scale.

Finally, as one might expect, Fig. 5.12(c,d) show that the damage threshold decreases
as alignment offset increases; for Design 1 a misalignment of 15 % of the core radius
results in almost an order of magnitude decrease in damage threshold. If large
misalignment tolerances are required it may be therefore necessary to tighten the laser
focus to maintain the damage thresholds.

5.2.3.4 Impact of dispersion on short pulse delivery

The delivery of nanosecond and picosecond pulses requires that the dispersive
properties of the fibre are considered, as these may induce significant pulse
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broadening, thus lowering the output peak power and distorting the temporal profile
of the pulses. Both dispersion and DGD increase approximately linearly with mode
order (see Section 5.1.1). Figure 5.13 shows the chromatic dispersion and DGD of the
highest order modes of Designs 1 and 2. Design 2 guides more modes than Design 1,
and this would increase both its maximum DGD and dispersion. This is however
offset by the larger core which commensurately decreases both values. It follows
therefore that both designs offer similar values of maximum DGD and dispersion for
the high order mode with the highest loss.

The two cases described in the previous section are considered: 10 ns pulses
propagating in Design 1 and 10 ps pulses propagating in Design 2. When calculating
dispersion, it is assumed that all power is propagating in the highest order mode
which constitutes the worst possible case. The dispersion experienced by a short pulse
will depend on the precise coupling conditions and, if present, inter-modal power
coupling along the length of the fibre. However, the case of uncoupled modes with the
greatest DGD which is considered here represents again a worst-case scenario.

FIGURE 5.13: For the highest order modes of Design 1 and 2 (a) the dispersion
parameter, D, and (b) the differential group delay as a function of wavelength. (c)

the DGD of every tenth mode group in Design 2 at 1030 nm.

The dispersion length, Eq. (2.22), is defined as the distance over which the duration of
that pulse increases by a factor of

√
2. For a 10 ps pulse in Design 2 the dispersion

length is over 3 km for the highest order mode whilst for a 10 ns pulse the value is 6
orders of magnitude larger. Clearly chromatic dispersion will not have a significant
impact on propagation.

Considering DGD, the dispersion length, LDGD = τ0(
√

2−1)
|DGD| is defined for a square

wave of duration τ0 with 50 % of power in the fundamental fibre mode and 50 %
power in the highest order mode as the distance over which the duration of that pulse
increases by a factor

√
2. For Design 1 a 10 ns pulse has LDGD = 1.7 km. A 10 ps pulse

propagating in Design 2 has LDGD = 1.4 m. Although this is a worst-case scenario
estimation, the DGD will clearly be the limiting factor for delivering high-power, low
beam quality pulses of picosecond duration in MM ARFs. The DGD can be reduced in
ARF by increasing the size of the core or by reducing the number of modes in which
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power is guided. Figure 5.13(c) shows the DGD in Design 2 of every tenth mode group
relative to the fundamental mode (other groups are omitted for clarity of reading).
The dependence on mode order is approximately linear. Picosecond duration pulsed
lasers generally have lower M2 values than what has so far been assumed. Therefore,
considering instead a 10 ps pulse with M2 = 3, very similar to [164], then more than
95 % of the power is coupled into the first 10 mode groups. Taking the DGD as that of
the tenth mode group then LDGD = 10.5 m, comparable to the maximum lengths of
typical solid-core power-delivery fibre. Despite the high DGD compared to solid-core
fibres, MM ARF permits order of magnitude higher damage thresholds and more
flexible fibres due to the low bending loss, < 2.5 dB/km at 35 cm bend radius, and
smaller core size, eg Design 1 has a 5x smaller core than comparable fibres for
nanosecond delivery [175].

5.2.4 Discussion

In this section the potential of MM ARFs for high-power fibre-delivery of few- and
multi-moded laser sources has been investigated. As an example, two MM NANFs
were designed for use with beams of M2 = 3 and 13. Both fibres can provide > 95%
coupling efficiency to their multi-mode laser inputs. Besides, both can deliver power
with negligible leakage loss whilst tolerating bends with radii under 35 cm and seem
capable of multi-km flexible laser delivery with little loss. Delivery of 10s of kW
power over multi-km distances presents several opportunities in novel and existing
applications. Examples of these include: subsurface rock drilling for the extraction of
gas and oil [178] or situations, such as nuclear decommissioning, where the laser
processing target is difficult or hazardous to access [179]. Equally, in existing factory
machining applications, such long distance delivery offers greater flexibility;
high-power lasers, and their associated power and cooling requirements, could be
physically removed from the production line. In applications demanding shorter
distances, the size of the core can be reduced without sacrificing coupling efficiency.
For example if Design 1 were modified to have a 60 µm core diameter it would still be
capable of delivering an M2 = 3 beam with < 0.5 dB loss over at least 100 m whilst
also increasing the flexibility of the fibre.

The damage threshold of the fibres considered here are between 20x and 40x greater
than current typical requirements of nanosecond and picosecond pulses and can be
increased significantly further if the fibres are designed to guide more modes. The
DGD of the highest order modes is likely to limit the reach of picosecond pulses to 10
m but this can be mitigated by increasing the core size (see Section 5.1.1), although this
may reduce the degree of bending the fibre can tolerate.

This work demonstrates that MM ARFs are capable of delivering radiation from
high-power laser sources with large M2 beams over significantly larger distances and
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with greater power damage thresholds than current solid-core fibres and do so with
similar or improved flexibility.

5.3 Multi-mode ARF sensing applications

The interaction between light and gas or liquid provides a variety of tools, e.g.
absorption spectroscopy, photothermal effect or Raman scattering, by which it is
possible to analyse the composition of that matter. Gas detection systems based on
these effects have become widespread in a wide variety of applications such as
environmental monitoring, and industrial processes. The sensitivity of these systems
relies on strong light-gas interaction but free space systems are severely limited in
interaction length whilst also suffering from stability issues [180]. Hollow-core fibres
allow very-long interaction lengths with > 99% of light propagating in the gas
medium. Further, fibre based systems permit distributed sensing over the long fibre
length or very compact systems with long fibre lengths packaged in small coils. A
significant limitation to the maximum interaction length and minimum system size is
the straight and bending loss of the fibre. ARFs are therefore promising due to the
very low losses that are possible.

The majority of research into sensing applications using ARFs has used single-mode
fibre e.g. [181–183], indeed the high modal purity and low dispersion possible in
single-mode ARF are often highly beneficial. There are however several uses for
multi-mode fibre in sensing. Few-mode ARFs have, for example, been investigated for
distributed stress sensing [48]: the perturbation caused by external stress causes
inter-modal coupling that is measured by performing a modal decomposition of the
light at the end of the fibre. In addition, the most sensitive photothermal gas sensors
are based on inter-modal interferometry in dual-mode ARFs [46] with such systems
demonstrated with parts per trillion trace gas sensitivity [47]. This list is not intended
as an exhaustive review but to indicate some of the possibilities with MM ARFs.

In this section a novel use of MM ARF is chosen to study: gas detection by
spontaneous Raman scattering. Light scattering originates from small-scale, random
density variations which lead to local changes in the permittivity distribution. In
Rayleigh scattering the interaction with the medium is elastic and therefore the
incident and scattered light are the same wavelength. Raman scattering is inelastic
and results in a frequency shift characteristic of the chemical structure of the medium.
By collecting the light scattered from a pump beam, information can be discerned
about the presence and abundance of Raman-active materials [184] or to perform
distributed temperature sensing [185]. Stimulated Raman scattering is a technique
that can result in strong signal power but requires a more complex setup with
multiple laser sources depending on the number of gas species interrogated.
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Spontaneous Raman scattering, by contrast, allows a simpler setup with a single
pump laser able to perform multiple gas species detection. The signal power is
typically very weak, however, which limits the detection threshold. The long gas-light
interaction length possible in hollow-core fibres makes them a natural choice for this
application e.g. [184, 186, 187] but longer fibre lengths result in other limitations such
as longer gas filling times [188]. In this section, it is investigated how multi-mode
guidance can increase the Raman signal without increasing the fibre length.

5.3.1 Increased Raman scattering in multi-mode ARF

Multi-mode fibres have a larger numerical aperture than single-mode fibres which
suggests the capability to capture a larger fraction of scattered light and improve the
Raman signal. Numerical aperture is not well defined for anti-resonant fibres and
instead, it is considered how the modes of ARF are excited by the scattering of light.
The volume-current method has previously been used to study Rayleigh scattering by
Numkam Fokoua et al. [189]. If the modes of a fibre, described by their electric field
profile E, are normalised according to Eq. (2.16), then the fibre scattering coefficient
per unit length from mode k into mode l is given by:

Bkl =
6π

k4
0

ω2ε2
0αR

∫∫
|Ek · E∗l |

2dA (5.8)

where αR is the bulk Rayleigh scattering coefficient. The fraction of scattered light that
is captured depends on the overlap integral between the modes in which the incident
and scattered light propagates. The magnitude of the Raman scattering coefficient will
be different and specifically will depend on the gas species, pressure and temperature,
otherwise however, the behaviour is very similar [185]. In this work the same theory is
employed to determine the scattering coefficient of Raman scattering.

A multi-mode tubular fibre is chosen to study similar to multi-mode fibres previously
reported in literature [49]. A cross section of the design is shown in Fig. 5.14(a) which
has a core diameter 56 µm, wall thickness 530 nm and gap size 5 µm. The modes of the
fibre were calculated by numerical simulation. The bandwidth of the fundamental
window in ARFs is typically wide enough to accommodate detection of multiple gas
species [184]. The modes of interest will therefore not behave significantly differently
at the wavelengths of the pump and signal and without loss of generality only a single
operational wavelength is considered: near the centre of the fundamental
anti-resonant window, with normalized frequency F = 0.61, where the fibre guides 5
low-loss mode groups.

In Fig. 5.14(b) the Raman scattering coefficient is calculated for the first 5 mode groups
using Eq. (5.8). The calculation is performed assuming pump light is launched into
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either the LP01 or LP11 mode group. Since the scattering coefficient depends on the gas
species and pressure via αR, the plot is relative to B00, the scattering per unit length of
the fundamental mode into the fundamental mode. Thereby the potential for HOMs
to be excited by Raman scattered light is compared to a single-mode fibre for any gas
species and pressure. Considering a fundamental mode launch, the LP11 mode group
captures 1.3x the power compared to the LP01 mode group whilst the LP21 captures
approximately equal power and the LP02 and LP31 mode groups capture
approximately 0.8x. This suggests that multi-mode guidance can significantly increase
the detectable Raman signal. The case of 100% pump power launched into the LP11

mode is also considered. This is not a common scenario but is used to understand the
behaviour if there is transverse offset in the pump laser launch alignment which
would cause excitation of the LP11 mode group. In Fig. 5.14(b) the fibre scattering
coefficient of the HOMs for LP11 launch is comparable to a LP01 launch when taken as
an average although the power captured by the LP01 mode is less than 0.7x that of a
LP01 launch. This suggests that there is a high tolerance for transverse offset in the
launch conditions.

FIGURE 5.14: (a) The cross section of a the 5-mode group tubular fibre considered for
Raman sensing. (b) The Raman modal scattering coefficients of the first 5 mode groups
of the fibre with either LP01 or LP11 pump launch. Scattering coefficients are relative

to the LP01 mode group. (c) The modal leakage loss of the fibre.

Although HOMs capture a significant fraction of the scattered Raman light, they also
suffer from increased attenuation compared to the fundamental mode. Shown in
Fig. 5.14(c) is the modal confinement loss of the fibre. The 5 mode groups of interest
are guided with less than 1 dB/m loss. The loss of the fundamental mode is over an
order of magnitude less, 64 dB/km. The average loss of the LP11 mode is three times
that of the fundamental, 200 dB/km.

5.3.2 Detection of Raman signal

To understand how increased attenuation affects the detection of Raman signal from
the HOMs an expression is determined for the received Raman signal power in both
backscatter (with the detector at the same end of the fibre as the pump light launch)
and forward-scatter (the detector at the opposite end of the fibre) configurations. In a
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backscatter configuration, for an infinitesimal length dz of fibre at a distance z from
the launch end of the fibre, the returned power from mode l when the pump is
launched into mode k is given by P0 exp(−2αkz)Bkl exp(−2αlz)dz. In this expression
P0 is the pump power at launch and αk is the field attenuation of mode k. In this
analysis Raman scattering is assumed to be negligible compared to confinement loss:

∑l Bkl � αk where the sum extends over all fibre modes. Integrating this expression
over the length of the fibre, L, yields the power returned over the length of the fibre:

P(kl)
b =

P0Bkl

2(αk + αl)

[
1− exp(−2(αk + αl)L)

]
(5.9)

In a backscatter configuration the returned power increases with the length of the
fibre, tending towards an asymptotic maximum proportional to the pump power and
modal scattering coefficient and inversely proportional to the sum of the attenuation
of the pump and signal modes. In Fig. 5.15(a), Eq. (5.9) is used to calculate the
returned Raman signal power of the previously described fibre given a LP01 pump
launch. The resulting power is shown when the contributions of different modes are
included. Signal power is measured relative to the asymptotic maximum of a
single-mode fibre, P0B00/4α0 to compare performance of single-mode and multi-mode
fibre. For long lengths, i.e. L� 1/4α0, including the LP11 mode group results in 1.6x
greater signal power. With the 4th mode group signal power is improved 2x compared
to the single-mode case but the 5th mode group only results in a 2.1x increase. Extra
signal power in HOMs is more significant for shorter fibre lengths. Over 10 m,
compared to single-mode, the signal from 2 mode groups is doubled and including all
5 mode groups the increase is almost 4x. Also considered is the power returned given
a LP11 pump launch. Again, this is an unlikely scenario but is used to demonstrate the
effects of transverse misalignment in the pump launch. Although the modal scattering
coefficients for an LP11 launch are comparable to a fundamental mode launch,
Fig. 5.14(b), due to the higher losses of the LP11 mode group the returned signal power
is capped to roughly half the power of a fundamental mode launch. If the length of
the fibre is short, misalignment in the launch will not have a significant impact but
will limit the maximum signal power for longer fibre lengths.

The Raman signal in a forward-scatter configuration was also determined. Having the
detector at the opposite end of the fibre to the pump launch hardware can reduce the
complexity of the setup. Similarly to the backscatter case, the power from an
infinitesimal length of fibre is P0 exp(−2αkz)Bkl exp(−2αl(L− z))dz and integrating
over the length of the fibre, the modal signal power in a forward-scatter configuration
is derived:
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FIGURE 5.15: Returned Raman signal power as a function of fibre length. In (a,b)
consider backscatter configurations and (c,d) consider forward-scatter configurations.
(a,c) assume pump light launched into the LP01 mode and (b,d) assume 100% LP11

mode launch.

P(kl)
f = P0Bkl exp(−2αl L) ·

 L
1

2(αk−αl)

[
1− exp(−2(αk − αl)L)

] if k = l
otherwise

(5.10)

Unlike the backscatter configuration, when collecting forward scattered light the
signal power increases to a maximum with increasing length and decreases as length
is further increased. For the fundamental mode the maximum occurs when
L = 1/2α0. The captured forward-scatter Raman light as a function of fibre length is
shown Fig. 5.15. To maintain the comparison, power is again plotted relative to the
maximum of a single-mode fibre in a backscatter configuration. Whilst signal powers
are comparable to the backscatter case for very short fibre lengths, L < 20 m, the peak
power is lower and longer fibre lengths return even smaller signal powers. The
relative improvement from including higher-order modes is similar to the backscatter
case: 4 mode groups results in approximately double the peak Raman signal of a
single-mode fibre. The peak in multi-mode guidance occurs at shorter fibre lengths
due to the higher losses e.g. the maximum for 4 mode groups is at 44 m compared to
62 m in a single-mode fibre. When launching pump power into the LP11 mode group
the behaviour is similar to the backscatter configuration: similar signal power for
short lengths but maximum power is limited to approximately half that of a
fundamental mode launch.

5.3.3 Discussion

Multi-mode ARF has the potential to significantly increase sensitivity of gas sensors
based on spontaneous Raman scattering. The 5-mode group fibre studied,
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geometrically similar to previously fabricated MM ARF, was capable of more than
doubling the signal strength of a comparable single-mode ARF. This increase was
limited by the increased attenuation of the HOMs so by reducing the differential loss,
e.g. by using a NANF structure, significantly higher signal powers would be
achievable.

No modification to the pump launch is necessary, with single-mode launch still
optimal, although excitation of HOMs due to transverse offset in the launch will not
have a significant impact on performance. Likewise, if signal light is delivered to the
detector directly from the ARF or via a MM patch cord, no modification to the detector
setup is required. The benefits of MM guidance are achieved purely by design of the
fibre with no additional complexity in the system. Some limitations may arise due to
the DGD inherent in MM ARFs if, for example, short pulses are employed in the
pump laser but due to the relatively short lengths typically employed (typically 10s of
metres [184]) this is not expected to have a significant impact. This work suggests that
multi-mode ARFs are ideal for spontaneous Raman scattering based gas detection.

5.4 Summary

The potential of anti-resonant multi-mode fibre for applications in short-reach
datacomms, high-power laser delivery and spontaneous-Raman based fibre gas
sensors, has been investigated. Whilst differential group delay is very limiting for data
transmission, the fibres show great promise for power delivery and gas sensing owing
to their ultra-low nonlinearity, high damage threshold and low-loss multi-mode
guidance. The evidence presented in this chapter compellingly shows the potential of
multi-mode guidance in anti-resonant fibre in real-world applications and further
applications are expected to be found in the future.
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Chapter 6

Conclusions

The work presented in this thesis has produced a greater understanding of the
behaviour and potential applications of multi-mode anti-resonant fibres. The
conclusions of this work are summarised in Section 6.1. A proposal for future work
indicated by this research is given in Section 6.2. Finally, some concluding remarks are
given in Section 6.3.

6.1 Summary of the chapters

In Chapter 3 the origins of differential modal leakage loss were investigated in tubular
multi-mode ARF using numerical simulations. It was shown, for low-loss fibres, that
the leakage loss for the core modes can be strongly linked to the cladding tubes
themselves. In fact, quantifying the coupling between core modes and cladding air
modes guided in the cladding tubes showed a strong correlation with leakage loss.
Other air-guided cladding modes, as well as dielectric cladding modes, had a
negligible impact on the loss in low-loss regimes.

Understanding leakage loss in terms of out-coupling power to cladding modes
allowed the loss to be described approximately in terms of the strength of coupling
between core and cladding modes. The crucial quantity that drives the strength of
coupling from core modes to tube modes and thus loss, is the separation between the
propagation constants of the core and cladding tube modes which can be readily
determined from the geometry. When exactly phase matched, core modes suffer
leakage loss as high as that of the cladding modes themselves. From this, a model for
leakage loss was developed based on resonant coupling to tube modes; by considering
only the contributions of the first three cladding tube modes the model showed good
agreement to numerical simulation. With this knowledge, the concept of
phase-mismatch windows, analogous to anti-resonant windows, was devised. This
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concept was used throughout the thesis to design and understand the behaviour of
ARFs.

Next, in Chapter 4, several different ARF designs were investigated using numerical
simulation with the aim of achieving low-loss, few-moded guidance. A fixed core
radius of 25 µm was chosen to target existing multi-mode short-haul telecomms link
standards and to better understand the behaviour of different cladding designs. In
NANFs the number of low-loss modes is increased by increasing the number of
cladding tubes. This, however, also reduces the separation between the jacket glass
and the core, increasing the loss of all core modes. The various cladding modes in
both NANFs and DNANFs, which govern the loss of HOMs, were identified. By
studying the behaviour of these modes using numerical simulation, a technique was
developed for designing the cladding of NANFs and DNANFs to maximise
multi-mode performance. Importantly, this technique does not require
time-consuming numerical simulation and demonstrates a high degree of accuracy,
greatly aiding the design of multi-mode NANFs and DNANFs.

Looking beyond NANFs and DNANFs, the multi-mode performance of ARFs
geometries with 2 or more adjacent, nested capillaries in the ALIF configuration was
assessed. These structures were capable of impressive HOM loss reduction. The effect
of additional glass nodes in close proximity to the core, however, caused significant
spurious glass resonances which would likely prevent low-loss operation. The ALIF
design still showed promising results and was studied in greater detail. Using
targeted numerical simulations, a model was developed for predicting the effective
index of the unique cladding modes of an ALIF. This model, which does not require
numerical simulation, showed good agreement with numerical simulations and was
used to design ALIFs for multi-mode short-haul applications. Numerical studies
showed that the designed ALIF is capable of guiding 7 mode groups with lower loss
than the current OM5 solid-core standard fibre with more than double the bandwidth.
Further studies, however, indicated that differential group delay could severely limit
the achievable single-channel data rates.

This is investigated further in Chapter 5. It is shown analytically, and confirmed with
numerical simulation, that whilst both GVD and DGD can be reduced with a larger
core, DGD remains significant for practical fibres. Although the methods of reducing
DGD in solid-core fibre are not possible in ARF, alternatives were investigated. It is
shown by numerical simulation that bending can powerfully reduce the DGD: the
fibres considered showed up to a factor 2 reduction. Increased attenuation from
bending can be tolerable but more important are the practical considerations of
enforcing a fibre bend whilst routing cables which would seem to greatly impair the
purpose of optical fibre and make this approach unfeasible. As a possible alternative
in-built twisting was investigated. This is a modification that can readily be
incorporated into the fabrication process and was studied as a possible means of
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reducing DGD. A method was developed for simulating ARFs with a constant rate of
twist but numerical studies indicated this technique did not have the desired effect;
instead a small increase in DGD was exhibited. The conclusion drawn is that, for the
purposes of existing VCSEL-based short-haul datacomms, despite large bandwidth,
low loss and low latency, prohibitively high DGD make MM ARF unsuitable as an
improvement of current graded-index solid-core fibres. This does not altogether
preclude MM ARF from datacomms applications, with inter-modal dispersion
resistant modulation formats and digital compensation methods a possibility over the
larger bandwidth available in ARF. Single-mode laser sources have been adopted in
many data centre applications and, for those sources, single-mode ARFs remain a very
promising option.

Next, another potential application of MM ARFs is investigated in high-power
fibre-delivery of few- and multi-moded laser sources for industrial machining. The
number of modes required to be guided for efficient coupling to multi-mode lasers of
a given M2 beam quality was determined. Lasers with M2 up to 15 are considered;
current commercial lasers with similar beam qualities are capable of producing up to
10 kW. As an example, two MM NANFs for use with beams of M2 = 3 and 13 were
designed. By numerical simulation it was shown that both fibres are capable of
delivering power with negligible leakage loss whilst tolerating bends with radii under
35 cm and seem capable of multi-km flexible laser delivery with little loss. Maximum
power in ARFs with ultra-low nonlinearity will likely be dictated by the threshold of
optical damage to the micro-structure cladding. In ARFs it is shown that the most
significant factor in determining damage threshold is the focus of the incident laser
beam. The damage threshold of the fibres considered in this thesis are between 20x
and 40x greater than current typical requirements of nanosecond and picosecond
pulses and can be increased significantly further if the fibres are designed to guide
more modes.

Finally, a theoretical investigation was presented aimed at increasing the signal power
in gas sensors based on spontaneous Raman scattering. It is shown that multi-mode
ARF have the potential to significantly increase sensitivity of such systems. A 5-mode
group fibre, geometrically similar to previously fabricated MM ARF, was studied
numerically and shown capable of more than doubling the detected signal strength of
a comparable single-mode ARF. This increase was limited by the increased attenuation
of the HOMs, so by reducing the differential loss, e.g. by using a NANF structure,
significantly higher signal powers would be achievable. No modification to the pump
launch is indicated and, if signal light is delivered to the detector directly from the
ARF or via a MM patch cord, then likewise no modification to the detector setup is
required. This work suggests that multi-mode ARFs are ideal for spontaneous Raman
scattering based gas detection.
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6.2 Future work

Several avenues for future work are indicated by the research presented in this thesis.
Firstly, although I believe the analysis presented and model developed in Chapter 3
are a significant step towards a robust model of leakage loss in both single- and
multi-mode ARF, there remains a great deal of work still to be done. One suggestion
would be to incorporate the effects of, in addition to the cladding tube modes, other
modes guided within the cladding. Prime examples are: the dielectric modes, as
studied by Vincetti et al. [111], which become significant as the edges of the
anti-resonant window are approached; and the air-modes guided in the interstitial
region between tubes which Chapter 4 suggests are significant for multi-mode
DNANFs. In addition, further study of the overlap integral between core and
cladding modes as a function of phase mismatch, which itself follows a
Lorentzian-like behaviour, would likely yield further insight and a simplification of
the model. These improvements could also be applied to the study of loss in other
ARF geometries of interest: namely the NANF and DNANF for which models of
cladding tube modes were developed in Chapter 4.

As mentioned above, models for the cladding tube modes in NANFs, DNANFs and
ALIFs were developed in Chapter 4, which proved invaluable for the task of
designing multi-mode ARFs based on NANFs and ALIFs. I believe that the model for
DNANFs could be improved further. Recent results suggest the DNANF will prove to
be a significant ARF design and since this structure affords a great deal of control over
the individual modes, a more nuanced model predicting individual tube modes
would be very useful, particularly, for example when including the effects of bending.

The work presented in Chapter 5 involved large-core multi-mode NANFs which had a
significant fraction of power coupled into low-order modes. In this regime the overall
leakage loss was calculated to be nearly negligible which suggests that, for such
large-core fibres, microbending would play a significant role in loss. To my
knowledge, no research has been undertaken studying inter-modal coupling in
multi-mode ARFs and in particular no experimental data exists with which to validate
any theoretical work. Nevertheless, a theoretical analysis of the interaction between
core modes would seem to be a very useful undertaking to better understand the
behaviour of such multi-mode fibres, particularly if they are to be assessed for use in
MDM telecommunications.

Finally, whilst the purely theoretical study of multi-mode ARFs permitted analysis of
a wide range of topics and applications in the available time frame, experimental
validation of the findings is clearly needed. The logical next step, building on
promising results presented in this thesis, such as in power delivery and Raman
sensing, is to fabricate multi-mode ARF designs and experimentally validate these
results.
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6.3 Concluding remarks

This project has resulted in new understanding and insight into the vast and hitherto
largely unexplored topic of low-loss multi-mode anti-resonant fibres. With the huge
potential of anti-resonant fibres now beginning to become apparent by the
ground-breaking work of groups such as the Optoelectronics Research Centre, the
University of Bath, the Limoges and CREOL groups, as well as other groups around
the world active in this research field, it is apparent that multi-mode ARF, like
single-mode ARF, is likely to have a decisive impact on the field of fibre optics in the
decades to come. It is hoped that the reader has developed a greater understanding of
the complex behaviour of multi-mode ARFs, has come to learn some of their myriad
applications in varied fields and perhaps has been inspired to imagine some of their
own.
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Appendix A

An Overview of Simulation Work to
Support Fabrication Efforts

One significant component of the work undertaken in the course of this doctoral
project, not described in the body of this thesis, is that of supporting experimental
work undertaken in the Optoelectronics Research Centre (ORC). In particular, several
simulation studies were conducted of fabricated NANFs to aid their characterisation
and to inform the design of future fibres. This involves unpublished experimental
results gathered by colleagues at the ORC which cannot be shown. Nevertheless, a
brief overview of some of the activities I have conducted during this project that, for
example, supported the research published in Ref [59], will be presented here.

Despite remarkable progress both theoretically and practically [11, 22, 27–29],
fabrication of anti-resonant fibre remains, so far, an imperfect process. Throughout
this thesis, fibres have been modelled as ideal structures but real fabricated fibres will
have variation in the thickness of the capillary walls and the position and size of
capillary tubes. There may also be introduced enlarged glass nodes at the welding
points between tubes and the jacket glass. All of these features can significantly
impact the loss and understanding their impact is important to inform what
modifications to the fabrication process should be made to best improve the fibre’s
performance. Numerical simulation provides a means of doing just this.

A scanning electron microscope (SEM) can be used to image the cross section of a
fabricated optical fibre. Bespoke algorithms developed by Gregory Jasion, a researcher
at the ORC and supervisor of this doctoral project, use this SEM image in combination
with macroscopic measurements of the fibre preform (see Section 2.2.3 for an
overview of the fabrication steps) to produce a geometric description that closely
resembles the fabricated fibre. This was enhanced in the course of this project with a
tool which can modify the size of glass nodes, allowing a better manual fit of the
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geometry to the SEM image or providing the opportunity to test the effects of
increased or decreased glass nodes.

The results of numerical simulations using these techniques is presented in the next
section.

A.1 Determining contributions of different loss mechanisms

Figure A.1(a) shows the results of numerical simulation of a fabricated single-mode
NANF. The geometry of this NANF is not shown for the reasons described above.
This NANF targets the C and L telecommunication bands at 1550 nm in the second
anti-resonant window and the 1 µm laser wavelength in the third anti-resonant
window. Around 0.8 dB/km is predicted in the second window and 1 dB/km in the
third. Using numerical simulation it is possible to separate the contributions of the
different loss mechanisms (see Section 2.3.4). Figure A.1(a) shows leakage, surface
scattering, micro- and macro-bending. In the fundamental and second anti-resonant
window, leakage for this fibre is dominated by leakage loss. At the shorter
wavelengths of the third anti-resonant window, loss is instead dominated by
micro-bending losses.

FIGURE A.1: Results of numerical simulations showing (a) the loss contributions from
leakage, scattering, micro- and macro-bending and (b) the differential loss between the

fundamental LP01 and LP11 mode groups in a fabricated single-mode NANF.

The numerical simulation for this fibre showed excellent agreement with experimental
cutback measurements (once more, not shown here). The numerical simulation
therefore indicates how the draw conditions can be modified to improve the fibre
performance. To optimise for low-loss at 1550 nm, a larger core size is indicated which
will reduce leakage loss [10]. At 1000 nm the opposite is required, with smaller cores
leading to reduced micro-bending losses [84]. How targeting a smaller or larger core
will affect the other geometric parameters (e.g. smaller/larger inter-tube gaps) when
drawing from the same cane can also be determined from the drawing principles.
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Since the effect on loss of changing multiple geometric parameters can be complex,
further numerical simulations can be conducted of the projected, modified geometry.

In other cases the numerical simulation does not show good agreement with
experimental results. Often this is the result of geometric defects or gradual geometric
variation along the length of the fibre which cannot be determined from the SEM
image alone. A comparison with the numerical simulation can again provide insight
into the nature of these geometric defects or variations (other, more complex,
experimental techniques can provide greater insight, e.g. optical time domain
reflectometry). One example of this is where the edges of the anti-resonant windows
found experimentally do not match those predicted by simulation which suggests that
the thickness of the capillary walls varies along the length of the fibre. The extent of
this effect can be estimated by comparing the two results using, e.g. Eq. (2.24).

Another useful facility of numerical simulation is to predict the loss of higher-order
modes, and therefore the HOM extinction ratio, a crucial quantity in single-mode
ARFs. This is a much more complex quantity to measure experimentally, compared to
the loss of the fundamental mode. Figure A.1(b) shows the total loss predicted by
numerical simulation of the fundamental and LP11 mode groups in the same
fabricated fibre. The loss of the LP11 mode group is over 100x higher than that of the
fundamental mode in the second anti-resonant window suggesting effective
higher-order mode stripping in this fibre.
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Appendix B

Finite-element Simulation of
Twisted Fibres

This appendix describes a technique, using a transformation optics approach, to
numerically simulate twisted optical fibres using the finite-element method in the
COMSOL software. This technique is used in Chapter 5 to investigate the effect of a
built-in twist on differential group delay between modes of multi-mode anti-resonant
fibre. An introduction to the transformation optics approach is presented and the
equations describing the transform between twisted and regular Cartesian coordinates
are derived. Further considerations for understanding the results of this technique are
presented. Finally, the implementation of a PML in the twisted frame is derived.

B.1 Transformation optics

Transformation optics is a technique that allows Maxwell’s equations to be solved in a
non-Cartesian coordinate system without changing their definition [190]. It entails
encapsulating the change of coordinate into a material transform. In optics we are
commonly working with isotropic materials for which the permittivity and
permeability are scalars. For transparent materials they are also real. In general
however they are complex tensors which allows them to encapsulate a change of
coordinate. If that change of coordinate allows a fibre to be described in a
translationally invariant way then transformation optics can be used to solve for that
fibre in 2-dimensions. This works well for a Finite Element solver with support for
anisotropic materials.

If a geometry is expressed in one coordinate system {u, v, w} and we wish to
transform that fibre into a second coordinate system {x, y, z} then Jacobian matrix, J,
can be formed. Given x(u, v, w), y(u, v, w) and z(u, v, w)
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Jxu =
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 (B.1)

where the xu subscript denotes a change of coordinate from u to x, the reason for the
change of order will become apparent shortly. Given the Jacobian the material
equivalence becomes [191]:

ε
′
= J−1εJ−T det(J) (B.2)

µ
′
= J−1µJ−T det(J) (B.3)

where
′

denotes the new material tensor, J−1 is the inverse of the matrix and J−T is the
transpose of the inverse. In the case that the original ε and µ are scalars, Eq. (B.2) can
be simplified to use a single transformation matrix, T:

ε
′
= εT−1 = ε ·

(
JTJ

det(J)

)−1

= ε ·
(

JTJ
)−1

det(J) (B.4)

and similarly for µ. A useful property of transformation optics is that multiple
transformations can be concatenated together into a single transformation matrix.
Given a series of coordinate systems: {u, v, w}, {X, Y, Z}, {x, y, z} and the
corresponding mapping functions: x(X, Y, Z), y(X, Y, Z), z(X, Y, Z), X(u, v, w),
Y(u, v, w), Z(u, v, w) we can calculate two Jacobian matrices: JxX and JXu. The
compound Jacobian becomes Jxu = JxXJXu which can be determined using either
Eq. (B.2) or Eq. (B.4). Note that the mapping functions are defined from the final
coordinate system to the original whilst the Jacobian matrices are multiplied in the
opposite order.

B.1.1 Twist transform

In order to simulate a twisted fibre we introduce a helicoidal coordinate system in
which we can describe geometry in a twisted Cartesian frame. This system {ξ1, ξ2, ξ3}
for a twist rate, α can be mapped to standard Cartesian coordinates by

x = ξ1 cos(αξ3) + ξ2 sin(αξ3)

y = −ξ1 sin(αξ3) + ξ2 cos(αξ3)

z = ξ3

(B.5)
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Hence a geometry which is 2π/α periodic in z becomes invariant in ξ3. We must
however be able to specify not only the geometry but also the material in a
translationally invariant manner. We can derive the Jacobian for this transform

Jhel =

 cos(αξ3) sin(αξ3) αξ2 cos(αξ3)− αξ1 sin(αξ3)

− sin(αξ3) cos(αξ3) −αξ1 cos(αξ3)− αξ2 sin(αξ3)

0 0 1

 (B.6)

which clearly does depend on ξ3. However, given the rotation matrix R

R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (B.7)

with the well known property that R−1(θ) = RT(θ) = R(−θ), the Jacobian can instead
be written as the product of a rotation and a translation

Jhel = R(αξ3)M = R(αξ3)

1 0 −αξ2

0 1 αξ1

0 0 1

 (B.8)

from which the transform matrix from Eq. (B.4) becomes
Thel = J−1

hel J
−T
hel det(Jhel) = M−1R(αξ3)R−1(αξ3)M−T = M−1M−T from which it can be

shown that

T−1
hel =

1 + α2ξ2
2 −α2ξ1ξ2 −αξ2

−α2ξ1ξ2 1 + α2ξ2
1 αξ1

−αξ2 αξ1 1

 (B.9)

which is clearly only dependent on ξ1 and ξ2. Hence transformation optics allows us
to simulate a fibre with a constant rate of twist using only a 2-dimensional cross
section and since the coordinate system is Cartesian we can describe the geometry
exactly as in the untwisted case. Clearly if α = 0 then Thel becomes the identity matrix
and our twisted frame becomes the regular Cartesian frame.

B.1.2 Post transform

It must be remembered when solving a twisted fibre using transformation optics that
the solution is in helicoidal coordinates. A post-transform must be applied to return
the results into regular Cartesian coordinates. For field quantities this is a simple
matter of applying the inverse of the Jacobian [191]
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E =

Ex

Ey

Ez

 = J−T

Eξ1

Eξ2

Eξ3

 (B.10)

and equivalently for the magnetic field, H. Considering the Jacobian for the helicoidal
coordinates we can derive that (

Ex

Ey

)
= R(αz)

(
Eξ1

Eξ2

)
(B.11)

At z = 0 the transverse components of the electric and magnetic fields in the
untwisted frame are equal to those in the twisted frame. They then rotate at the rate of
twist of the fibre as you move along the fibre axis. The longitudinal power flow,
described by the Poynting vector, Sz, depends only on the transverse field components
(Eq. (2.23)) and so also requires no post-transform at z = 0 [141].

Post-transforming the propagation constant and effective index is more complex. If
we consider a wave in polar coordinates (r, θ, z) as in Eq. (2.13) and the same wave in
twisted polar coordinates (r, ψ, z).

E(r, ψ, z, t) = Ftw
l (r)e−ilψe−i(ωt−βtwz) (B.12)

The field and propagation constant are different in the twisted frame, denoted by the
tw superscript, but the azimuthal mode order l must be the same since in either
coordinate system it is the same light propagating in the same fibre. The map from
twisted to untwisted polar coordinates is simply ψ = θ − αz. Hence Eq. (B.12) can be
rewritten

E(r, ψ, z, t) = Ftw
l (r)e−ilθe−i(ωt−(βtw+lα)z) (B.13)

and by comparison with Eq. (2.13) the propagation constant in Cartesian coordinates is

β = βtw + lα (B.14)

or for a full vectorial solution including the spin angular momentum, s, [141]

β = βtw + (l + s)α (B.15)

Spin angular momentum, s = +1 and −1 for left and right circularly polarised modes
respectively. Hence we can post-transform the propagation constant with knowledge
of the azimuthal mode order and the polarisation of the solved mode.
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B.1.3 Perfectly matched layer transform

A PML can be described as a map from the infinite, real-world domain to a finite one,
the modelling space. It is therefore effectively a coordinate transform and can be
implemented as such. Unfortunately this means additional care must be taken when
applying a coordinate transform to a simulation which includes a PML. Transforms
can be concatenated as described in Section 5.1.3.1 but in general this requires post-
and pre-multiplication of the material tensor. The built-in PML of COMSOL cannot be
extended to general coordinate transforms and therefore to use COMSOL for such
simulations we designed and implemented our own helicoidal-coordinate, cylindrical
PML.

With the theory of transformation optics the application of a PML becomes quite
simple. Successive transforms can be used to move to cylindrical coordinates, apply a
complex stretch factor to the radial coordinate and then return to Cartesian
coordinates. The stretch factor, sr(r), must equal 1 in the simulation space and inside
the PML generally takes on an increasing, complex value. We can then define the
complex stretch coordinate transform from cylindrical coordinates (r, θ, z) to stretched
cylindrical coordinates (r̃, θ, z)

r̃ =
∫ r

0
sr(r′)dr′ (B.16)

and the Jacobian for the complex stretch is

Jr̃r =

sr 0 0
0 1 0
0 0 1

 (B.17)

Selection of a stretch function is a more nuanced question. For this work, several
different functions were tested and evaluated by comparison with COMSOL’s built in
PML for well established simulation results. The final stretch function used was

sr(r′) =

 1

(1− i)
(

1 + as

[
r′−rpmli

rpmlo−rpmli

]m
) r′ < rpmli

otherwise
(B.18)

where rpmli and rpmlo are the inner and outer radii of the PML, as is a constant stretch
coefficient and m is a constant stretch exponent. A coefficient of as = 1.5 and an
exponent of m = 2 was found to produce very similar results to verified data.
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