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Summary

This paper proposes a reinforcement learning-based guidance law for Mars pow-
ered descent phase, which is an effective online calculation method that handles the
nonlinearity caused by the mass variation and avoids collisions. The reinforcement
learning method is designed to solve the constrained nonlinear optimization problem
by using a critic neural network. Specifically, to cope with the position constraint (i.e.
glide-slope constraint) and the thrust force limit constraint, a modified cost function
is proposed, and the associated Hamilton-Jacobi-Bellman equation is solved online
without using an actor neural network, which significantly reduces the computational
burden. The convergence of the critic neural network is proven. Simulation results
show the effectiveness of the proposed method.
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1 INTRODUCTION

As one of the most important space activities, deep space exploration has attracted the attention from various countries all
over the world. Particularly, exploring Mars helps scientists learn about momentous shifts in climate that can fundamentally
alter planets. The development of earth independence extends human presence beyond low Earth orbit and cislunar space and
onto Mars. Missions during this stage of exploration range from 2-3 years with safe return of the crew to Earth taking months.
Several missions have been undertaken recently, such as ’Tianwen-1’1 and ’Perseverance’2. Landing robotic spacecraft, and
possibly someday humans, onMars is a technological challenge as of multiple attemptedMars landings by robotic and uncrewed
spacecraft, only ten have had successful soft landings. It therefore has been recognized that soft and precision landing on Mars
is the solid foundation of Mars exploration3.
Entry, Descent, and Landing, referred to as EDL, is the shortest and most intense phase of Mars landing missions. Before

the powered descent phase, the rover enters the Martian atmosphere during which the guidance is designed to track a pre-
optimized trajectory. There are various guidance laws of Mars entry with Low-L/D vehicle or earth reentry4,5,6. These guidance
laws have high reference values for the Mid-L/D vehicle, and they can be divided into three categories: trajectory planning,
predictor-corrector and tracking guidance.
As the last stage of the EDL process, the powered descent phase takes a vital role in ensuring a safe and precise landing on

the Martian surface. One of the major issues faced by a Mars landing rover is unforeseen obstacles in this flight trajectory and
therefore, a guidance design that takes collision avoidance into account is crucial for a safe landing. This will benefit the scope
of exploration on the Martian surface by overcoming limitations in landing caused due to uneven terrains in the flight path.
For the powered descent phase guidance, guidance designed for lunar landing or other planetary landing missions contribute
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to the design for Mars landing problems7,8. Back in the 1970s, Apollo polynomial guidance was proposed for lunar landing9,
inspired by which gravity turn guidance10 was investigated for Mars landing. Multi-stages guidance11 and feedback guidance12
were proposed for the powered descent phase in Mars landing missions. With the development of deep space exploration, the
focus has shifted from the simple touch-down on the planetary surface to the optimal or sub-optimal guidance design with high
reliability of avoiding collisions on complex terrains.
Various research on the powered descent phase guidance design to avoid collisions has been undertaken. Zero-Effort-

Miss/Zero-Effort-Velocity(ZEM/ZEV) guidance was designed to achieve an energy optimal solution13, based on which a
modified ZEM/ZEV guidance was proposed to ensure no collisions between the lander and martian surface occur14. By con-
sidering a virtual-terminal velocity, a two-phase ZEM/ZEV guidance was designed to avoid the collision15. Considering the
collision avoidance requirement as a constraint on the lander position (such as glide-slope constraints), model predictive control
(MPC) has been utilized to generate the optimal guidance by solving a constrained optimal control problem16. MPC was also
adopted to cope with the rectangle constraint for some flat landing terrains17. Other approaches to avoid collisions are to limit
the terminal landing error within a small range so that the lander is kept close to the pre-select landing site subject to unknown
disturbances, such as sliding mode control-based guidance design18 and minimum-landing-error guidance design19. Due to the
long disturbance between Mars and the Earth, the fuel loaded and consumption has attracted attention in the meantime. Some
guidance design focused onminimizing the fuel consumption20,21,22, which led to a non-convex optimization problem and online
calculation requirements.
The challenges of designing optimal guidance for the powered descent phase can be concluded as follows
• the mass variation is significant so the dynamics is considered as a nonlinear model;
• the unknown disturbances including dust storms and wind acting on the lander prevent the lander from landing on a precise

site;
• the constraints on both the position and the thrust limit should also be considered, which brings challenges to the online

optimization.
Due to the ability to cope with multiple constraints and the nonlinearity of the system, reinforcement learning, such as approx-

imate dynamic programming23,24, has great potential to handle the above challenges simultaneously. It has been recognized that
intelligent algorithms make contributions to spacecraft guidance and control design25. Reinforcement learning-based guidance
design for the powered descent phase was proposed in26, with a calculation algorithm to generate an optimal control signal.
However, the unknown disturbance and calculation burden are remained to be further investigated.
In this paper, we focus on developing novel guidance that ensures high reliability in avoiding collisions and strong robustness

against unknown disturbances. A reinforcement learning method is designed by using a critic neural network to estimate the
optimal cost function and therefore obtain the optimal control input. Meanwhile, the constraints on both the position and the
thrust limit are fully considered during the whole landing process. Unlike the widely used reinforcement learning method in
which an actor neural network (NN) is also used along with the critic NN, this paper only utilizes a critic NN to estimate the
optimal solution whose NNweights are calculated by an adaptive law, which significantly reduces the computational burden and
is attractive for the practical online implementation. The proposed guidance can be straightforwardly applied to other planetary
landing missions.
The rest of the paper is organized as follows. In Section II, the mathematical model of the lander during the power descent

phase is introduced, and physical constraints and control objectives are both analyzed. Section III proposes the reinforcement
learning-based guidance for the powered descent phase. The simulation results are shown in Section IV. Finally, Section V
concludes the paper.

2 MATHEMATICAL MODEL AND CONTROL PROBLEM

In this section, the mathematical model of the lander dynamics during the powered descent phase is introduced indicating the
nonlinearities caused by the significant mass variation and martian surface disturbances. To achieve a precision and safe landing,
several physical constraints during the powered descent phase that should be considered in guidance design are analyzed.
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FIGURE 1 Terrain data27 and coordinate: (a) Elevation profile of Valles Marineris region on Mars; (b) Two-dimensional
coordinate

2.1 Mathematical model
Choose the pre-selected landing site as the origin of the coordinate, as shown in Fig. 1. To avoid collisions between the lander
and the martian surface, the desired landing site is set to be above the pre-selected landing site, so the desired landing site is
denoted by r∗ = [0, zf ]T with zf as the terminal altitude in the powered descent phase. The terminal altitude is preset to fit the
missions, which is approximately within the range from 5 meters to 20 meters above the ground.
During the powered descent phase, the dynamical model of the lander is as follows

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ṙ(t) = v(t)
v̇(t) = a(t) + g + d(t)
F (t) = m(t)a(t)
ṁ(t) = ‖F (t)‖

c

(1)

where r = [rx, rz]T ∈ ℝ2 is the lander position vector with rx and rz as components along x-axis and z-axis, respectively; v =
[vx, vz]T ∈ ℝ2 is the lander velocity vector with vx and vz as components along x-axis and z-axis, respectively; a = [ax, az]T ∈
ℝ2 is the thrust acceleration vector with ax and az as components along x-axis and z-axis, respectively; F = [Fx, Fz]T ∈ ℝ2

is the thrust force vector with Fx and Fz as components along x-axis and z-axis, respectively, with ‖F‖ =
√

F 2x + F 2z , and F
is also the control command to be designed in this paper; d = [dx, dz]T ∈ ℝ2 is the disturbance acceleration vector caused by
wind and dust storms with dx and dz as components along x-axis and z-axis, respectively; m is the mass of the lander which is
time-varying; c is a positive constant parameter calculated as c = geIsp with ge = 9.807 as the gravitational acceleration of the
Earth at sea level and Isp as the specific impulse of the thruster; g = [0,−3.7114]T is the martian gravitational acceleration.
Define the state vector as x = [x1, x2, x3, x4]T = [rx, rz, vx, vz]T, the control input vector as u = [u1, u2]T = [Fx, Fz]T, and

the disturbance vector as w = [0, 0, dx, dz + g]T, we have the state-space model of (1) as follows
ẋ(t) = Ax(t) + B(t)u(t) +w(t) (2)

where
A =

[

02 I2
02 02

]

,B(t) = 1
m(t)

[

02
I2

]

(3)
and (2) is a perturbed time-varying model. Note that due to the external disturbance w(t) and the time-varying system matrix
B(t), the model (2) behaves as a nonlinear system.

2.2 Physical constraints
To avoid collisions during whole landing mission, the landing glide-slope constraint in the powered descent phase shown in Fig.
1 is considered, where � > 0 is a constant representing the glide-slope gradient designed based on the specific terrain around



4 ZHANG ET AL

the target landing site. The smaller value of � is chosen, the stronger constraints on the state is formed. This leads to position
constraints as follows

|rx| ≤ tan�(rz − zf ) (4)

rz ≥ zf (5)
where the correlation of (4) and (5) is ensured by (10).
Due to the thrust limitation, the control input constraint along two axes should be considered as follows

|Fx| ≤ Fx,max (6)

|Fz| ≤ Fz,max (7)
where Fx,max and Fz,max are positive constants representing the maximal thrust force that can be provided by the actuators.

2.3 Control objective
For a fixed fight time denoted by tf , the control objective is to solve the following constrained optimization problem

min
u(t)

‖r(tf )‖2 (8)
subject to

ẋ(t) = Ax(t) + B(t)u(t) +w(t)
|x1| ≤ tan�(x2 − zf ), x2 ≥ zf , |u1| ≤ Fx,max, |u2| ≤ Fz,max ∀t ∈ [0, tf )
ṙ(tf ) = 0

To explicitly cope with state constraints and input constraints, the cost function (8) is reformulated as

V (x, t) = ‖r(tf )‖2 +

tf

∫
t

(X(x(�)) + U (u(�))) d� (9)

where X(x(�)) is to cope with the state constraints, and U (u(�)) is to cope with the input constraints. Design the constraint-
handling terms in the following forms

X(x(�)) =
�1

tan�(x2 − zf ) − |x1(�)|
+

�2
x2(�) − zf

(10)
and

U (u(�)) = 2

u1

∫
0

Fx,maxtanh
−1
(

v1
Fx,max

)

R1dv1 + 2

u2

∫
0

Fz,maxtanh
−1
(

v2
Fz,max

)

R2dv2 (11)

where �1 > 0 and �2 > 0 are arbitrarily small constants, and tanh(∙) is the hyperbolic function, R1 and R2 are positive weights,
which are to be tuned to achieve a good trade-off between control efforts and state regulation.
To minimize the reformulated cost function (9), the state constraints (4) and (5) are satisfied, because from (10),

�1
tan�(x2−zf )−|x1(�)|

→ +∞ holds if |x1(�)| → tan�(x2 − zf ), and �2
x2(�)−zf

→ +∞ holds if x2(�)→ zf .

3 OPTIMAL GUIDANCE DESIGN BASED ON REINFORCEMENT LEARNING

In this section, the optimal guidance is firstly formulated, and the associated Hamilton-Jacobi-Bellman (HJB) equation is derived
and found to be time-varying and nonlinear. Then a reinforcement learning method is proposed to solve the HJB equation by
using a critic NN to estimate the optimal cost function. The convergence of the estimation error of NN weights is proven.
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3.1 Optimal Guidance Design for Constrained Landing Problem
The Hamiltonian function for (9) is in the following form

H(x, u, V , t) = )V
)xT

(Ax + Bu +w) +
�1

tan�(x2 − zf ) − |x1|
+

�2
x2 − zf

+ U (u) (12)
Define u∗ = [u∗1, u∗2]T as the optimal control input. From (9), we have the following optimal cost function

V ∗(x, t) = min
u

‖r(tf )‖2 + minu

tf

∫
t

(X + U (u∗)) d� (13)

The optimal control input u∗ satisfies the HJB equation as follows
−)V

∗

)t
= min

u
H(x, u∗, V ∗, t)

= )V ∗

)xT
(Ax + Bu∗ +w) +X + 2

u∗1

∫
0

Fx,maxtanh
−1
(

v1
Fx,max

)

R1dv1 + 2

u∗2

∫
0

Fz,maxtanh
−1
(

v2
Fz,max

)

R2dv2
(14)

The optimal control input u∗ = [u∗1, u∗2]T can be obtained28 by solving )H(x,u∗,V ∗)
)u∗

= 0, which yields
()V ∗

)xT
B
)T
+
[

2R1Fx,maxtanh
−1(u1∕Fx,max)

2R2Fz,maxtanh
−1(u2∕Fz,max)

]

=
[

0
0

]

which gives
BT )V

∗

)x
+
[

2R1Fx,max 0
0 2R2Fz,max

]

tanh−1
[

u1∕Fx,max
u2∕Fz,max

]

=
[

0
0

]

Therefore, we have
u∗ = −

[

Fx,max 0
0 Fz,max

]

tanh

([ 1
2R1Fx,max

0

0 1
2R2Fz,max

]

BT )V
∗

)x

)

= −
[

Fx,max 0
0 Fz,max

]

tanh(�)

(15)

where � =

[ 1
2R1Fx,max

0

0 1
2R2Fz,max

]

BT )V
∗

)x
, and for a vector � = [�1, �2]T, the function tanh(�) is defined as tanh(�) =

[tanh(�1), tanh(�2)]T.
From (15), it is clear that due to the property of hyperbolic function, the input constraints (6) and (7) are satisfied for all t > 0.
Substituting (15) into (11) gives

U (u∗) =2

u∗1

∫
0

Fx,maxtanh
−1
(

v1
Fx,max

)

R1dv1 + 2

u∗2

∫
0

Fz,maxtanh
−1
(

v2
Fz,max

)

R2dv2

=2Fx,maxtanh
−1(u∗1∕Fx,max)R1u

∗
1 + F

2
x,maxR1ln

(

1 − (u∗1∕Fx,max)
2)

+ 2Fz,maxtanh
−1(u∗2∕Fz,max)R2u

∗
2 + F

2
z,maxR2ln

(

1 − (u∗2∕Fz,max)
2)

=
[

tanh(�1) tanh(�2)
]

[

Fx,max 0
0 Fz,max

]

BT )V
∗

)x
+
[

ln(1 − tanh2(�1)) ln(1 − tanh
2(�2))

]

[

F 2x,maxR1
F 2z,maxR2

]

(16)

To rewrite the HJB equation (14) as a function of optimal cost function V ∗ only, we substitute (16) into (14), which gives
−)V

∗

)t
= )V ∗

)xT
(Ax +w) +

�1
tan�(x2 − zf ) − |x1(�)|

+
�2

x2(�) − zf
+
[

ln(1 − tanh2(�1)) ln(1 − tanh
2(�2))

]

[

F 2x,maxR1
F 2z,maxR2

]

(17)
It is obvious that the optimal cost V ∗ can be obtained by solving HJB equation (17), and then the optimal control input can be

obtained by (15). But it is not possible to get its analytical solution, since the HJB equation is time-varying and nonlinear. In the
next subsection, a reinforcement learning method is utilized to solve the HJB equation online, where the optimal cost function
V ∗(x, t) is estimated and approximated by a critic NN.
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3.2 Reinforcement Learning for Optimal Guidance Implementation
The critic NN is designed in the following time-varying regressor form

V ∗(x, t) =W T (x, tgo) + � (18)
where tgo = tf − t is the time-to-go,W ∈ ℝl denotes a constant NN weight,  (x, tgo) = [ 1(x, tgo),⋯ ,  l(x, tgo)]T ∈ ℝl is the
regressor with l is the number of neurons, and � ∈ ℝ is the residual NN error.
The partial derivative of (18) with respect to x 29 is

)V ∗(x, t)
)x

=
) T(x, tgo)

)x
W + )�

)x
(19)

The partial derivative of (18) with respect to t 29 is
)V ∗(x, t)

)t
=
) T(x, tgo)

)t
W + )�

)t
(20)

Assumption 1. The NN weight W is bounded by ‖W ‖ ≤ Wn, the regressor  is bounded by ‖ ‖ ≤  n, and the partial
derivatives of  with respect to x and t are respectively bounded by ‖ )V ∗(x,t)

)xT
‖ ≤  x and ‖ )V ∗(x,t)

)t
‖ ≤  t, whereWn,  n,  x, and

 t are positive constants.
Considering (19), the optimal control input u∗ given by (15) can be rewritten as

u∗ = −
[

Fx,max 0
0 Fz,max

]

tanh

([ 1
2R1Fx,max

0

0 1
2R2Fz,max

]

BT
(

) T(x, tgo)
)x

W + )�
)x

))

(21)

Since the NN weightW is an unknown vector, so we need to approximate the optimal solution by estimating the NN weight
vector.
Define the estimate of the critical NN V ∗(x, t) as V̂ (x, t), and define the estimate of the weight W as Ŵ . So we have the

following estimated NN
V̂ (x, t) = Ŵ T (x, tgo) (22)

which gives the control input as follows by substituting (22) into (21)

u = −
[

Fx,max 0
0 Fz,max

]

tanh

([ 1
2R1Fx,max

0

0 1
2R2Fz,max

]

BT
) T(x, tgo)

)x
Ŵ

)

(23)

Substituting (19) and (20) into the HJB equation (17) yeilds
−W T ) (t, tgo)

)t
=W T ) (x, tgo)

)x
(Ax +w) +

�1
tan�(x2 − zf ) − |x1(�)|

+
�2

x2(�) − zf

+
[

ln(1 − tanh2(�1)) ln(1 − tanh
2(�2))

]

[

F 2x,maxR1
F 2z,maxR2

]

+ �H

(24)

where �H = )�
)xT
(Ax +w) + )�

)t
is the lumped residual error, which is also bounded.

For simplification purposes, we design two intermediate variables as

Ξ ∶=
) (t, tgo)

)t
+
) (x, tgo)

)x
(Ax +w) (25)

and
� ∶=

�1
tan�(x2 − zf ) − |x1(�)|

+
�2

x2(�) − zf
+
[

ln(1 − tanh2(�1)) ln(1 − tanh
2(�2))

]

[

F 2x,maxR1
F 2z,maxR2

]

(26)
so (24) can be rewritten as

� = −W TΞ − �H (27)
Construct a new vector as

Ω = �1Ŵ + �2 (28)
where �1 and �2 are designed as adaptive parameters with the following adaptive laws

{

�̇1 = −cl�1 + ΞΞT

�̇2 = −cl�2 + Ξ�
(29)
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with �1(0) = �2(0) = 0 and cl > 0 to be sufficiently large to make �1 and �2 bounded.
Lemma 1. (see30) The condition �min(�1) > � > 0 holds for a positive constant � provided that the regressor Ξ is persistently
excited (PE).
Define the estimation error of the NN weight as W̃ = W ∗ − Ŵ . Following the existing result in31, we can rewrite (28) as

Ω = −�1W̃ + C (30)
where C = − ∫ t

0 e
−cl(t−r)�H (r)Ξ(r)dr is bounded by ‖C‖ ≤ CN with CN > 0 as a constant.

The critic NN weight is calculated by
̇̂W = −MΩ (31)

whereM is a positive definite constant matrix.
Theorem 1. Consider the time-varying nonlinear dynamic system (2) and the cost function with multiple constraints (13), the
optimal thrust force (i.e. control input) (23), and adaptive law (31), the estimate error of weight W̃ converges to a small region
around the zero, and the corresponding control input (23) approximates the optimal control input (21). The estimate error of
weight W̃ converges to zero when the residual NN error and its derivatives are zero, i.e. � = )�∕)x = )�∕)t = 0.
Proof. A Lyapunov candidate is selected as

V = 1
2
W̃ TM−1W̃ (32)

and its first time derivative is
V̇ =W̃ TM−1 ̇̃W

= − W̃ T�1W̃ + W̃ TC
≤ − �‖W̃ ‖

2 + ‖W̃ ‖CN

≤ −
(

� − 1
2�

)

‖W̃ ‖

2 +
�
2
C2N

≤ −K1V +K2

(33)

where K1 = 2(� − 1∕2�)∕�(M−1) and K2 = �C2N∕2 are positive constants for selected � satisfying � > 1∕2�.
Therefore, it is obvious that the NN weight estimation error W̃ is bounded and converges to the region around zero that can

be calculated by ‖W̃ ‖ ≤
√

2K2∕K1�min(M−1). It can be found that a greater value of NN residual error bound CN leads to a
large size of convergence region. The size of this region is also determined by the NN residual error bound CN , the adaptive
learning gainM , and the excitation level �.
Furthermore, the corresponding control input (23) also converges to a small region around the optimal input (21).
The optimal control input is the solution of minimization of the cost function (9), in which the system state is forced to

converge. Therefore, when the optimal control input is achieved, the convergence of the state is guaranteed.
Consider a special case where � = )�∕)x = )�∕)t = 0 holds, which means C = 0 in (30) holds. Hence, we have

V̇ = −W̃ T�1W̃ < −�‖W̃ ‖

2 ≤ − 2�
�max(M−1)

V (34)
Therefore, in this special case, the estimation error of NN weight exponentially converges to zero, meanwhile, the proposed

control input (23) approximates the optimal solution (21). This completes the proof.

4 SIMULATION RESULTS

In this section, the effectiveness of the proposed guidance is verified by simulation results. The specific impulse is Isp = 360,
and the initial mass of the lander is m(0) = 56000kg1. The fuel on board is 16000kg. The whole flight time is 50 s. The thrust
limit constraints are Fx,max = 2 × 106 N and Fz,max = 0.5 × 106 N. The final touch-down height is selected as zf = 0.5 m. The
glide-slope constraint shown in Fig.1 is set as � = �

3
rad. The sampling time is 0.1 s. The weight parameters in cost function are

set to beR1 = 0.5 andR2 = 0.8. Following the existing literatures18, we model the external disturbance as sinusoidal functions.
The external disturbance is modelled as dx = dz = 0.5sin(0.2t) + m/s2. We have injected zero-mean white Gaussian noise
 ∼ (0, 0.1)m∕s2 in the external disturbance to match the realistic scenario.
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The regressor in critic NN is chosen as
 (x, tgo) =

[

x1
tgo
tf
, x2x23

t3go
t4f
, x4

t4go
t3f
, sin(x2x4)

t2go
t2f
, x3

tgo
t2f
, x4

tgo
tf
, sin(x1)sin(x4)x2x4x3tgo, x2

t2go
t2f

]T

with the initial estimate as Ŵ (0) = [0, 0, 0, 0, 0, 0, 0, 0]T.
The simulation of the proposed guidance is run on a PC with Intel(R) Core i5 CPU@ 2.70Ghz, 8.00 GB memory, 64-bit OS.

PC running time is 4 minutes. The convergence trajectories of NN weight are shown in Fig. 2, in which it can be found that the
estimate of the 8 NN weights converge within 13 s, and this demonstrates the effectiveness of the proposed adaption method for
ensuring the convergence of NN estimate as proposed in Theorem 1.
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FIGURE 2 Critic NN weights convergence trajectories

4.1 Case 1: Multiple initial positions with variation along x-axis
The initial position along the z-axis is chosen as rz(0) = 1500m, and a range of the initial positions along the x-axis are chosen
as rx(0) = −1800 ∶ 200 ∶ 2000 m. The initial velocity is chosen as v(0) = [100,−75]T m/s.
The landing trajectories are shown in Fig. 3, in which it can be seen that with different initial positions, the lander achieves

precision landings in all cases and the glide-slope constraint is satisfied even when the initial position is close to the bound with
an initial velocity towards the bound (see the light blue line on the far right). From the velocity trajectories in Fig. 4, it can be
seen that the terminal velocity along the x-axis is less than 3 m/s, which can be classified as a soft landing. The thrust force is
demonstrated in Fig. 5, in which it can be found that the input limitation is satisfied all the time, and particularly, at the beginning
when the lander is relatively far away from the landing site, the input constraint is active (see the period from 0 s to 4.5 s), which
also verifies the effectiveness of the proposed guidance in handling input constraints. The mass variation of the lander during
the powered descent phase is shown in Fig. 6, in which it can be found that the maximum fuel consumption is 4356 kg, which
is 7.76% of the original weight and 27.3% of the initial fuel weight.

4.2 Case 2: Multiple initial positions with variation along z-axis
The initial position along the x-axis is chosen as rx(0) = −2000 m, and a range of the initial positions along the z-axis are
chosen as rz(0) = 1520 ∶ 20 ∶ 1900 m. The initial velocity is chosen as v(0) = [100,−75]T m/s.
The landing trajectories are shown in Fig. 7, in which it can be seen that with different initial positions along the z-axis (i.e.

the altitude), the lander achieves precision landings and the glide-slope constraint is satisfied in all cases. From the velocity
trajectories in Fig. 8, it can be seen that the terminal velocity along the z-axis converges to a small region around zero. The
thrust force demonstrated in Fig. 9 shows that the input constraint is active (see the period from 0 s to 3.1 s) and no constraints
violation happened subject to the nonlinear dynamic model and unknown disturbances. The mass variation of the lander during
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FIGURE 3 Landing trajectories
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FIGURE 4 Velocities along x-axis vs time

the powered descent phase is shown in Fig. 10, in which it can be found that the maximum fuel consumption is 5857 kg, which
is 10.45% of the original weight.

4.3 Case 3: Multiple initial velocities with variation along x-axis
The initial velocity along the z-axis is chosen as vz(0) = −75m/s, and a range of the initial velocities along the x-axis are chosen
as vx(0) = 0 ∶ 10 ∶ 190 m/s. The initial position is chosen as r(0) = [1000, 1500]T m.
The landing trajectories are shown in Fig. 11, which verified that with different initial positions along the z-axis (i.e. the

altitude), the lander achieves precision landings and the glide-slope constraint is satisfied in all cases. Therefore, the effectiveness
of the proposed guidance in coping with state constraints is verified. From the velocity trajectories in Fig. 12, it can be seen that
the terminal velocity along the z-axis converges to a small region around zero. The thrust force demonstrated in Fig. 13 shows
that the input constraint is active (see the period from 0 s to 3.7 s) and no constraint violation happens subject to the nonlinear
dynamic model and unknown disturbances. The mass variation of the lander during the powered descent phase is shown in Fig.
14, in which it can be found that the maximum fuel consumption is 6693 kg, which is 11.98% of the original weight.
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FIGURE 5 Thrust forces along x-axis vs time
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FIGURE 6 Mass variation vs time
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FIGURE 7 Landing trajectories
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FIGURE 8 Velocities along z-axis vs time
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FIGURE 9 Thrust forces along z-axis vs time
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FIGURE 10 Mass variation vs time
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FIGURE 11 Landing trajectories
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FIGURE 12 Velocities along x-axis vs time
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FIGURE 13 Thrust forces along x-axis vs time
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5 CONCLUSIONS

This paper proposed a reinforcement learning-based guidance law design method, in which the nonlinearity of the dynamic
model and multiple constraints during the powered descent phase was handled by utilizing a modified cost function. A critic NN
was designed to estimate the optimal cost function online, and its convergence has been proven. Simulation results demonstrated
that the proposed method was effective with both input constraints and state constraints to be satisfied during the whole landing
process. Future work will focus on the reinforcement learning-based guidance law design for 6 degree-of-freedom dynamical
models during the powered descent phase.
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