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OPTIMAL CONTROL APPLIED TO PLANE COUETTE FLOW: (TOWARDS

THE) FULL-INFORMATION STATE-FEEDBACK STABILIZATION OF THE

NAGATA LOWER-BRANCH

by Geoffroy Christian Paul CLAISSE

Turbulence can be seen as deterministic chaos evolving within a finite dimensional dy-

namical state-space, where each invariant solution (IS) of the Navier-Stokes Equations

(NSE) acts as an unstable attractor of the turbulent state. The mechanism by which the

turbulent state remains/leaves the neighborhood of an IS is still not completely known.

Supposedly, the turbulent dynamical state escapes the neighborhood of an IS along its

unstable eigen-space, although recent work suggests that the non-normality of its stable

eigen-space may help the turbulent trajectory to leave along stable directions.

To elucidate this process, we present a procedure to stabilize via linear optimal control

the least-unstable IS of the NSE within a Plane Couette Flow (PCF) configuration, the

Nagata lower-branch (EQ1).

Linear optimal control requires a linearized state-space model. Around an IS, this model

is very high-dimensional, which prevents the solution of the associated Riccati equation

and the finding of the optimal control law. Therefore, a new divergence-free model is

derived and validated: the Orr-Sommerfeld Squire model Extended for an IS as baseflow.

It resulted in a boundary actuated full-matrix state-space model. This model depicts

faithfully the dynamical evolution of the flow in the neighborhood of an IS, reduces the

dimension of the state and enables access to linear control theory.

It is now possible to build a full-information optimal control actuating via wall-transpiration

and targeting the unstable eigenmodes of EQ1. Analytically, it was demonstrated that

these modes are controllable with this actuation type, and that consequently, EQ1 is

stabilizable. Within linear simulations, EQ1 was successfully stabilized. Yet, the stabi-

lization was not achieved for the non-linear case. Further research would be needed to

conclude on this limitation.
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Kopt optimal control feedback gain matrix

κ weighting parameter associated with the actuation for the

cost function



Chapter 1

Introduction

Throughout human history, populations moved and met other nations to love, battle,

trade or learn. Within the last centuries, humans reached a dominant place on Earth,

even becoming significant to its geology, ecosystems and climate (Oreskes, 2004; Rosen-

zweig et al., 2008). The International Commission on Stratigraphy is actually evaluating

the definition of a new geological epoch, the “anthropocene” (Lewis and Maslin, 2015).

In this day and age, it becomes apparent that resources and energy are limited and

precious, concept in opposition with our current consumption (IPCC (2014): AR5 Syn-

thesis Report on Climate Change; IPCC (2018): Special Report: Global Warming of

1.5 °C). Improvement in our scientific comprehension of physical phenomena and sur-

rounding world is necessary, yet not sufficient, for a balanced and durable future. This

Ph.D. aims to join this global movement by improving our fundamental understanding

of fluid mechanics, and particularly fluid dynamics, namely how does a fluid —liquids or

gases— behave in motion? Many disciplines are indeed directly impacted by our mastery

of fluid dynamics: mechanical, civil, chemical and biomedical engineering, geophysics,

oceanography, meteorology, astrophysics, biology, etc. Progress in fluid mechanics will

cascade over these fields, and help us face the challenges of tomorrow.

Fluid Mechanics

Fluid mechanics is the physical science attempting to understand fluid behavior. One of

the main focus of the discipline is the characterization of a phenomenon called “turbu-

lence”. Turbulence is the state of most commonly observed fluid flows. It usually appears

as a disordered combination of unsteady vortices of different dimensions, in opposition

to smooth and regular “laminar” flows, and exhibits a highly chaotic, multi-scale, three

dimensional and non-linear evolution. These properties can be desired for mixing or heat

transfer applications (Dimotakis, 2005; Hanjalić et al., 2019). However turbulence, as

source of drag (Gatti and Quadrio, 2016), noise (Szoke and Azarpeyvand, 2017) or brief

and localized energetic perturbations (Reddy and Henningson, 1993), is often regarded

1
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as unfavorable. Hence researchers often try to delay, avoid or lessen turbulence (Gad-el

Hak, 2000; Joslin and Miller, 2009).

Discovery of invariant solution, Dynamical State-Space, Naming convention

Turbulent flows are particularly complex to analyze due to a wide range of length scale

interacting non-linearly and simultaneously. Nonetheless, experimental and numerical

studies discovered coherent motions embedded in the turbulent flow (Robinson, 1991;

Smits and Delo, 2001). These can be defined as regions where a fundamental flow vari-

able, like velocity or pressure, exhibits a significant correlation with itself or another

variable. In addition, improvement in computational power led to the recent findings of

invariant solutions of the Navier-Stokes equations (the fundamental equations of fluid

motion) by Nagata (1990, 1997); Gibson et al. (2008); Kawahara et al. (2012). Invariant

solutions exist without any of the complex spatio-temporal intermittency characteris-

tic of coherent structures observed in turbulent flows, hence they can be considered as

“exact” (Waleffe, 2001). Invariant solutions are also referenced as “exact coherent struc-

tures” or “exact coherent state” to mark their connection to coherent motions, but this

relation is still under active research (Waleffe, 2001, 2003).

How does the turbulent state leave an invariant solution & Research Problem

The discoveries of invariant solution set a new light on turbulence structure, and strength-

ened Hopf’s (1948) concept of turbulence as a finite dimensional dynamical system. Each

solution of the Navier-Stokes equations (NSE) is associated with a point motion in a

state-space, where its phase motion can be followed — e.g. equilibria are fixed-point.

The turbulent inertial manifold is depicted as a network of invariant solutions acting

as unstable attractors of the turbulent dynamical state and interlinked via heteroclinic

connections. Hamilton et al. (1995); Kawahara and Kida (2001) described the turbulent

state dynamics as a chaotic walk around many of these attractors. Nonetheless, the

mechanism by which the turbulent dynamical state remains and leaves the neighbourd-

hood of an invariant solution is still unknown. By definition, the turbulent state cannot

leave the neighbourhood of an invariant solution via its nonlinear unstable manifold. It

is supposed that the turbulent dynamical state is pulled towards an invariant solution by

its locally stable-attractive eigenmodes, but over some time, escapes its neighbourhood

along its locally unstable-repulsive eigenmodes (Gibson et al., 2008), although recent

work suggests that the non-normality of its locally stable eigenspace may help the tur-

bulent trajectory to leave along locally stable directions (Farano et al., 2019). In the

light of this, we will interfere via state-space control with the mechanism by which the

turbulent dynamical state is leaving an invariant solution, in the hope to either explicate

the process or stabilize the unstable invariant solution.
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Introduction to state-space control

Originating from control engineering, “state-space” or “modern” control theory is a type

of model-based control which exists alongside “classical” and “robust” control theory

(Ogata, 2009). Model-based control denotes the attempt to mathematically design a

given system with a set of differential equations to increase control efficiency, without

appeal to trial and error or efforts based solely on physical intuition. While classical

methods are established for frequency-domain analysis and rely on Laplace and Fourier

transformations, modern state-space methods simplify the control design by analyzing

the model in the time domain via simple matrix algebra and state-vector variables

(Arrowsmith and Place, 1992). Therefore, state space control benefits from a broader

range of applications compared to transfer function methods. Robust methods stand

as an extension of modern control, where penalties are prescribed to mitigate potential

errors in the model or perturbations (Green and Limebeer, 1995). The control approach

in this thesis consists of active “closed-loop control”, or “feedback control”, i.e. it

requires an external source of energy and the actuation is a real-time response to the

measured state of the system. Such control has been applied to fluid dynamics problems

and termed “flow control”, notably with linear models by Joshi et al. (1997), Bewley

and Liu (1998) and Kim and Bewley (2007).

Past studies on state-space flow control

Relaminarization of a channel flow has been accomplished by Sharma et al. (2011), using

a passivity-based controller and actuation on the entire domain. In this approach, the

non-linearity is considered as a passive feedback on the linear terms of the governing

equation. The role of the controller is to enforce the linear system to be passive, such

that the turbulent perturbation energy reduces and the flow becomes less turbulent.

However, Martinelli et al. (2011) showed that a linear state-feedback control acting only

on the domain border, even with full-state knowledge, is unable to ensure a strictly

dissipative closed-loop system. Therefore, we do not expect the relaminarization of a

channel flow to happen with linear state-feedback control whose actuation is limited

to the wall. Despite this result, the turbulent energy production is still bounded and

can be limited by a feedback control. For this reason, Heins (2015) developed a wall-

transpiration controller to reduce the skin-friction drag with sensing of streamwise and

spanwise wall shear stresses and wall pressure, which produces significant drag reduction

when applied on the least passive streamwise constant modes. In this thesis, we will

employ the benchmark developed by Heins (2015) in order to target a PCF invariant

solution. However, the effect of non-normality between the stable-attractive modes

might worsen when applying a controller and lead to quick energy growth and transition

to turbulence.
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Objective

A detailed representation of the turbulent state space, through the discoveries of new in-

variant solutions, and a deep understanding of its evolution mechanism are essential for

technological applications that deal with fluid motion, i.e. the aeronautical, automotive

or naval industries fighting for drag reduction, the chemical industry looking for better

mixing properties or the energy sector troubled by unexpected heat-transfer. In this

sense, certain coherent structures are better than others depending on the domain of

application. Successfully describing the turbulent state-space is a crucial step to under-

stand the non-linear, chaotic and high-dimensional properties of turbulence. Controlling

and mastering its evolution mechanism is another, and this is where this project falls in.

The objective of this thesis is the stabilization via state-space control of the unstable

eigenspace of a Plane Couette Flow (PCF) invariant solution, namely the Nagata (1990)

lower-branch (referred to as EQ1). This requires to investigate the mechanism by which

the turbulent state escapes an equilibrium, and particularly the role of the unstable

manifold in the close neighborhood of the solution. The Nagata (1990) lower-branch so-

lution was studied in detail by Clever and Busse (1997), as well as derived independently

and extended to other boundary conditions by Waleffe (2003). This solution is the least

unstable known invariant solution of the PCF configuration, and therefore constitutes

the most accessible invariant solution to stabilize. To do so, direct numerical simulations

(DNS) of a PCF channel flow initiated at EQ1 and regulated via optimal control are

carried. Precisely, the controller is a state-feedback Linear Quadratic Regulator with

full-information sensing — entire velocity and pressure fields are known — and enforced

via wall-transpiration — blowing and suction at the upper and lower walls. This thesis

is the initial step before trying to manipulate the turbulent state and target different

invariant solution. Once the stabilization of the Nagata (1990) solution is successful,

future works can focus on guiding the turbulent state towards the solution and stabi-

lize it there, or enforcing the transition from one invariant solution to an other with a

succession of specific control methods (see figure 1.1).

Procedure

The application of state-space control theory to invariant solutions requires a linearised

state-space model. With this aim in mind, EQ1 is inserted as base-flow of the Navier-

Stokes equations, instead of commonly used Couette laminar-state, in order to derive

a simplified model the same fashion as the Orr-Sommerfeld Squire model (OSS) (Orr,

1907a,b; Sommerfeld, 1908). However, the derivation no longer diagonalises with Fourier

wave-numbers due to the breaking of translational symmetry of the non-laminar base-

flow. Henceforth, it requires taking account of crossed interactions between modes, which

results in a divergence-free model, referenced in this thesis as the Orr-Sommerfeld Squire
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EQ1

EQ2

EQ3
N-D space

Figure 1.1: Idealized representation of the control of the turbulent state. Starting
from a random initial condition (black dot), the turbulent state evolves in time along a
chaotic trajectory (blue dotted-dashed line) within a high-dimensional manifold. One
within the basin of attraction of a controlled equilibrium (orange-coloured area), e.g.
EQ3, the turbulent state is attracted and stabilized on this specific solution. Through
a different control method, the state is then repelled toward a different equilibrium, e.g.
EQ2, along the connection between EQ3 and EQ3 (red dashed arrow), and stabilized
once again. This “bridging” process is repeated in order to reach a desired equilibrium,

e.g. EQ1, of lower energy level or more favorable for engineering applications.

model Extended for a non-laminar solution (OSSE). The OSSE model depicts faithfully

the dynamical evolution of the flow in the neighbourhood of an invariant solution for

small perturbations. It establishes a full-matrix state-space model that enables access to

linear algebra and linear control theory for any non-laminar solution — not only invari-

ant solutions, but any three-dimensional steady state — while reducing the dimension

of the dynamical state by half. The model was then actuated to suit wall-forcing and

validated against published literature by calculating the leading eigenmodes of different

equilibria (Bewley and Liu, 1998; Gibson et al., 2008). Linear analysis of EQ1 identified

its most unstable modes, i.e. the expected directions followed by the turbulent state to

escape the solution (similarly to Cossu and Brandt (2004) on Tollmien-Schlichting waves

which evaluates the energy production and dissipation of the most unstable waves and

the stability of subharmonic modes). We showed that these modes are controllable by

wall-transpiration, suggesting that EQ1 is stabilizable, and determined the most-effective

actuation modes to target them. To stabilize the unstable mode of EQ1, an optimal

control law is calculated via Linear Quadratic Regulation (LQR) (Green and Limebeer,
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1995). This law stems from the solution of an high-dimensional algebraic Riccati equa-

tion, which consists in a full-order matrix characterized by the same high dimension n

of the state and implies computational costs of order O(n3) and storage requirements

at least of order O(n2) (Benner, 2004). Hence, a direct method is computationally in-

tractable for systems of dimensions n ≈ 103 − 104 (Benner et al. (2008), at the date of

publication). Nonetheless, the reduction of state dimension in the OSSE model enables

the direct solution of the Riccati equations for small yet meaningful dimensions. There-

fore, the optimal control law is calculated once offline for different controller strengths.

Linear analyses of the closed loop system are conducted to evaluate their stability and

normality. We then initiate controlled simulations of the Nagata (1990) lower-branch

solution monitored by these optimal control laws, firstly with the linear OSSE model and

then the non-linear Channelflow software. To improve repeatability and the normality

of the initial condition, simulations are initially perturbed in the direction of the leading

eigenmode of EQ1 at a very small magnitude. Finally, the results and limitations of

these simulations are presented and discussed alongside future directions of research.

Plan

After this introduction in chapter 1, chapter 2 introduces the definition and the rep-

resentation of turbulence as deterministic chaos within a state-space representation. It

particularly focuses on the role of invariant solutions in this description and establishes

this thesis within the literature. Chapter 3 introduces the field of feedback control, and

particularly LQR optimal control, the tool used in this thesis to stabilize an invariant

solution. Chapter 4 constitutes the core of the model development. In this chapter,

the numerical models representing the fluid flow in a channel configuration are derived.

It includes notably the derivation of the Orr-Sommerfeld Squire model Extended for

a non-laminar solution (OSSE) along its real-version, the Real Orr-Sommerfeld Squire

model Extended for a non-laminar solution (ROSSE). Chapter 5 describes the controller

synthesis. It implements the wall-transpiration actuation within the OSSE and ROSSE

models, and defines the matrices composing the cost function of the controller. In this

chapter, different linear analyses are conducted to determine the leading unstable eigen-

modes, their controllability and the most effective actuation modes. It also demonstrates

that the Nagata (1990) lower-branch is indeed the easiest non-laminar solution to stabi-

lize. Chapter 6 delivers the mathematical derivation of the Riccati equation and a brief

literature review on its resolution. It also includes a validation of our control design

and its calculation, made by applying the process on the laminar Plane Couette Flow

profile. Chapter 7 consists in the core result of this thesis, as the optimal control law

is now employed on the Nagata (1990) lower-branch solution. The optimal control law

is calculated along the procedure presented in chapter 6. After a linear analysis of the

closed-loop system, the optimal control law is administered to both linear ROSSE and

non-linear Channelflow simulations and the results of these simulations are presented.
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Chapter 8 finally offers a discussion about these results and a conclusion. It specifies as

well the future tasks necessary to pursue the project and new rising opportunities.

Literature Review

The literature review related to this project is inserted throughout the thesis in order

to introduce some fundamental concepts beforehand. We hereby indicate their precise

location to the reader.

The progress in the understanding of turbulence as a deterministic chaos is reviewed in

section 2.4, notably the dynamical representation of turbulence, the finding of invariant

solutions and the hypotheses about the behavior of the turbulent state in the neighbor-

hood of invariant solutions. This research is introduced within this context in section

2.5.

Previous researches conducted on flow control are reviewed in sections 3.1 and 3.2. In

particular, this project emerged from the previous publications of the main supervisor

of this thesis, Ati Sharma, presented in section 3.6. They are focusing on robust control

and passivity-based control with the purpose to stabilize a turbulent channelflow.

The main obstacle of this thesis consists in finding the solution of the optimal control

problem associated with our system. It requires to solve a high-dimensional Riccati

equation, which has been the focus of mathematicians for decades. Before attempting

its solution, we reviewed the literature in section 6.2.

Finally, we performed a general review of linear algebra and of its fundamental concepts

used in this thesis in appendix H.

Novel Contribution

The novel contribution contained within this thesis are as follows:

1. Update of the ChannelFlow Boundary Condition package of Heins (2015) and im-

plementation of optimal control forcing within Channelflow version 1.5.1 (revison

452).

2. Derivation of the linear Orr-Sommerfeld Squire model Extended for a non-laminar

solution (OSSE), and its real equivalent ROSSE model. Validation of these models

against Channelflow by calculating the eigen-decomposition of different equilibria.

3. Full-information Linear Quadratic Regulation control design based on the OSSE

and ROSSE models actuated via wall-transpiration. Validation against the actu-

ation Channelflow for different actuation modes, for the laminar Plane Couette

Flow profile and Nagata (1990) lower-branch solution.
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4. Controllability and stabilizibility analysis of the Nagata (1990) lower-branch solu-

tion actuated by wall-transpiration: EQ1 is stabilizable via this type of actuation.

5. Procedure to determine to optimal control law based on the OSSE and ROSSE

models. Validation on a laminar PCF profile with linear OSSE time-integrations

and non-linear Channelflow simulations.

6. Linear stability achieved for the Nagata (1990) lower-branch solution actuated by

wall-transpiration.

7. Attempt to stabilize the Nagata (1990) within a non-linear Channelflow config-

uration. Though this point failed, information was ascertained that will benefit

future attempts.

Publications

At the time of the thesis defense on Friday the 10th of July 2020, no paper was yet

sent to scientific journals for publication. Nonetheless, part of this work was presented

during national and international conferences:

� 28 Aug. 2018 - Second Special Interest Group (SIG) Meeting in the UK Fluids

Network: Flow instability, modelling and control, Imperial College London, UK.

� 27-29 Aug. 2019 - UK Fluid Network (UKFN) 2019 Conference, DAMPT Univer-

sity of Cambridge, UK.

� 3-6 Sept. 2019 - European Mechanics Society (Euromech), 17th European Turbu-

lence Conference (ETC), Politecnico di Torino, Italy.

� 23-25 Mar. 2020 - 55th 3AF International Conference AERO2020, Poitiers, France

(delayed to 2021 due to Covid-19 pandemic).



Chapter 2

Turbulence

2.1 Definition

Fluid motion —for liquid or gas— occurs in three different kinds: “laminar”, “transi-

tional” or “turbulent”. Laminar flows are highly ordered in space and time and undis-

rupted. Such clean flows are mainly governed by diffusion and often evolve at a relatively

low velocity, within small domains and/or for very viscous fluids. On the contrary, tur-

bulent flows are highly disordered in both space and time, and often observed at high

flow rate and/or in large domains. Turbulence is an unpredictable phenomenon, de-

scribed by a chaotic, multi-scale, three-dimensional, highly disordered and non-linear

evolution. It is the regime of convection and mixing, characterized by numerous swirls

and wakes.

A “transition” from the laminar to the turbulent state appears when inertial forces

strengthen in the fluid, e.g. at higher velocities. The ratio between diffusive and con-

vective forces is altered: the diffusion is not sufficient to dissipate the inertial energy of

the fluid and disturbances no longer decay. Due to the non-linearity —at least in part—

of the governing equations of fluid motion, local patches of turbulence emerge and stay

embedded within the laminar flows (Kline et al., 1967; Wygnanski and Champagne,

1973; Wygnanski et al., 1975). These patches expand with increasing inertial forces, up

to a tipping point where the flow becomes fully turbulent.

The vast majority of flows generated in our surroundings are turbulent, e.g. wind, mov-

ing car, water in a sink, etc. The turbulent state is advantageous for mixing (Dimotakis,

2005), heat transfer (Hanjalić et al., 2019), or to reduce the drag of bluff bodies (Bear-

man and Morel, 1983). Nonetheless, turbulent flows also observe higher skin friction

and produce more noise. Moreover, such flows are challenging to predict and simulate

precisely. Their velocity and pressure fields can indeed fluctuate quickly and involve a

wide range a length scale interacting non-linearly and simultaneously, whereas laminar

flows can be described in simple equations.

9
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Figure 2.1: Diagram of a plane Couette Flow configuration.

2.2 Plane Couette Flow

The flow configuration considered in this thesis is a Plane Couette Flow (PCF): an

incompressible viscous fluid is confined between two infinite parallel planes at height

+h and −h, moving at constant velocity Uw in opposite directions, see fig. 2.1. The

streamwise, wall-normal and spanwise direction are respectively the x-axis, y-axis and

z-axis, associated with the unit vectors ~x, ~y and ~z. Bold characters will be used for

three-dimensional vectors. As a notation example, the function associating a position

X (x, y, z) of the PCF domain Θ ⊂ R3 and a time t ∈ R+ to a velocity vector U(u, v, w) ∈
R3, is defined as

U : Θ× R+ → R3; (X (x, y, z), t) 7→ U(X , t) = [u, v, w](x, y, z, t). (2.1)

A periodic cell of size Lx × Lz is used to numerically approximate the infinite domain.

Hence the domain Θ of this study is a periodic cell [0, Lx] × [−h,+h] × [0, Lz]. This

configuration is advantageous for later discretisation into Fourier×Chebyshev×Fourier
modes.

Dirichlet and Neumann boundary conditions are applied to the channel upper and lower

walls. An adherent (no-slip) and impermeable wall is specified by the Dirichlet condition

U(x, y = ±1, z, t) = (±Uw~x, 0,±Uw~z) (2.2)

as at the wall, wall-tangential fluid velocities are equal to the wall velocity ±Uw —

adherence— and wall-normal velocities are set to zero —impermeability. Other applica-

tions of Dirichlet boundary conditions are pressure outlet, mass flow inlet, pressure far

field, etc. The Neumann boundary condition

∂U

∂y
(x, y = ±1, z, t) = 0 (2.3)
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imposes a constraint on the derivative of a field at its borders. It is used to express a

zero wall shear stress due to the wall roughness.

The pressure gradient is set to zero, hence no pressure drop occurs in streamwise or

spanwise direction. The laminar Couette solution

U lam(y) =
Uwy

h
(2.4)

can be deduced from the Navier-Stokes equations 2.16 using this assumption as well as

flow symmetries.

A dimensionless quantity called “Reynolds number” is commonly used in fluid mechanics

to express the degree of turbulence within a flow. The Reynolds number is the ratio

of inertial forces to viscous forces within a fluid which is subjected to relative internal

movement due to different fluid velocities, and defined as

Re =
Uwh

ν
=
ρUwh

µ
, (2.5)

where ρ is the fluid density, µ the fluid dynamic viscosity and ν is the kinematic veloc-

ity. This study will focus on low-Reynolds number “transitional flow” (order less than

O(103)).

PCF is the simplest of all shear flows and where roll-streak structures take their sim-

plest form (Waleffe, 1997). It benefits of many symmetries which enable a reduction in

the fluid degree of freedom, therefore reducing the complexity and cost of analytical or

numerical analyses. Moreover, linear stability analyses demonstrated that PCF, along

with Pipe Poiseuille flow, is linearly stable for all Reynolds numbers (Romanov, 1973;

Schmiegel, 1999). The viscous instability does not occur for PCF (Drazin and Reid,

2004). For these reasons, PCF stands as a canonical configuration for new approaches

and experiments, for instances: analyze shear-flow instabilities (Drazin and Reid, 2004);

understand the self-sustaining regeneration mechanism of near-wall turbulence struc-

tures (Hamilton et al., 1995; Waleffe, 1997); describe the bursting phenomenon and

hairpin structures in shear flows (Jiménez et al., 2005; Generalis and Itano, 2010; Itano

and Generalis, 2009); discover invariant solutions of the Navier-Stokes equations (Na-

gata, 1990; Waleffe, 2001, 2003; Gibson et al., 2009); and explore dynamical state-space

(Gibson et al., 2008; Halcrow, 2008). However, performing experimental PCF is difficult

and the number of experimental studies is limited (Tillmark and Alfredsson, 1992).

The domain used here is the “W03 cell” from channelflow.org (Gibson et al., 2008;

Gibson, 2014; Gibson et al., 2019) and first studied by Waleffe (2003), at Re = 400. It
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corresponds to a channel of dimension given by α = 1.14 and β = 2.5, where

Lx =
2π

α
≈ 5.511,

Lz =
2π

β
≈ 2.513.

(2.6)

2.3 Governing equations

The leading governing equations of fluid dynamics are the Navier-Stokes equations

(NSE). They are composed of a set of Partial-differential algebraic equation (PDAE),

essential to describe physical phenomena ranging from flows within blood vessels (Belar-

dinelli and Cavalcanti, 1991) to interstellar gas motion (Boldyrev et al., 2002). Despite

their major significance, their evolution is highly non-linear and chaotic, hence they

stand as one of the most important problems in mathematics, namely the “Navier-Stokes

existence and smoothness” problem. It has indeed not been proven that for arbitrary

initial condition, smooth solutions always exist, or if they exists, that they have bounded

energy. Computational Fluid Dynamics (CFD) aims to circumvent this problem by solv-

ing these equations with the help of numerical approximations, discretization and high

performance computers.

Precisely, the NSE describes the condition of equilibrium between forces in a moving

fluid, linking velocity, pressure, temperature and density. They are named after Claude-

Louis Navier (1822) and George Gabriel Stokes (1842, 1843) and originates from the

Newton (1687)’s second law of fluid motion:

“In an inertial frame of reference, the vector sum of the forces F on an object

is equal to the rate of change of momentum M, namely the mass m of that

object multiplied by its acceleration a”, or in other terms,

∂M

∂t
= F = ma. (2.7)

The derivation of equation 2.7 towards the NSE is presented in Halcrow (2008) and

Wikipedia contributors (2011d) and reproduced below. In a Eularian description, the

change in momentum density over a period of time δt is given as

δM = M(X +Uδt, t+ δt)−M(X , t) (2.8)

for a small parcel of fluid at position X (x, y, z) within a domain Θ ⊂ R3 and at velocity

U(u, v, w) : Θ× R+ → R3. Expanding to the first order in δt gives

δM = δt
∂M

∂t
+ uδt

∂M

∂x
+ vδt

∂M

∂y
+ wδt

∂M

∂z
, (2.9)
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implying that in a Lagrangian description, the rate of change in momentum density from

the reference frame moving with the fluid is

DM

Dt
=
∂M

∂t
+ (U · ∇)M. (2.10)

Considering the fluid density ρ(X , t), implying a momentum density M = ρU , it follows

U
∂ρ

∂t
+ ρ

∂U

∂t
+ (U · ∇)(ρU) = f, (2.11)

where f is the force density. Considering the equation of the mass conservation

∂ρ

∂t
+∇ · (ρU) = 0, (2.12)

and restricting the derivation to incompressible fluid, for which the density ρ is constant,

we obtain a divergence-free velocity field

∇ ·U = 0. (2.13)

For a Newtonian fluid, the force density f derives from the Cauchy-stress tensor and is

given by

f = −∇P + µ∇2U , (2.14)

where P : Θ × R+ → R is the pressure scalar field. Simplifying with the divergence-

free condition 2.13 and inserting the forcing f from 2.14 into 2.11, leads to the final

expression of the rate of change in momentum

ρ
∂U

∂t
= −ρ (U · ∇)U −∇P + µ∇2U . (2.15)

The NSE combined both rate of change in momentum and continuity equations. For

incompressible Newtonian fluids, the NSE non-dimensionalised for a channel of half-

height h and maximum laminar velocity Uw are expressed as

Momentum :
∂U

∂t︸︷︷︸
Variation

= − U · ∇U︸ ︷︷ ︸
Convection

− 1

ρ
∇P︸ ︷︷ ︸

Pressure

+
1

Re
∇2U︸ ︷︷ ︸

Diffusion

+ f︸︷︷︸
Forcing

, (2.16a)

Continuity : ∇ ·U = 0, (2.16b)

where f : Θ×R+ → R3 is a vector of body forces (gravity, inertial acceleration, electro-

magnetic forces).

The NSE are classified as convection-diffusion equations, i.e. is included the influence of

both fluid motion via convective-advective terms and viscous stresses via diffusive terms

(Brownian motion, particles collision...). Enforcing adiabatic and inviscid conditions,

the NSE for incompressible and Newtonian flows simplify to the conservative (absence
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of diffusive term) Euler equations

Momentum : ρ
∂U

∂t︸ ︷︷ ︸
Variation

= − ∇P︸︷︷︸
Pressure

− ρ(U · ∇)U︸ ︷︷ ︸
Convection

+ f︸︷︷︸
Forcing

, (2.17a)

Continuity : ∇ ·U = 0. (2.17b)

Finally, neglecting the convection term leads to vector diffusion equation, namely the

Stokes equations, for incompressible Newtonian flows:

Momentum : ρ
∂U

∂t︸ ︷︷ ︸
Variation

= µ∇2U︸ ︷︷ ︸
Diffusion

− ∇P︸︷︷︸
Pressure

+ f︸︷︷︸
Forcing

, (2.18a)

Continuity : ∇ ·U = 0. (2.18b)

2.4 Dynamical Representation of turbulence as determin-

istic chaos

2.4.1 Discovery of coherent motions/coherent structures

Broadly speaking, numerical simulations in Computational Fluid Dynamics are catego-

rized according to their level of accuracy and speed in the computation of turbulence.

The simplest and least accurate are simulations based on the Reynolds Averaged Navier-

Stokes equations (RANS), as they capture the mean flow via a large number of the same

experiment without any consideration for smaller scales. Then come the Large-Eddy

Simulations (LES), which model the smaller scale by using a turbulence model and

hence improve the modeling of turbulence. Finally, direct numerical simulations (DNS)

directly solve the Navier-Stokes equations, even on the smaller scales, without resorting

to turbulence models. The whole range of spatial and temporal scales of the turbulence

are resolved, which is particularly costly, but also leads to more detailed flows results.

With the huge improvement in computational power during the 2000s, DNS are now af-

fordable for small domains. However, the non-linear and high-dimensional interactions

within the NSE still evade our reach today and can not yet be fully explained. For that

reason, observations from fluids dynamicists of large coherent motions in turbulence (e.g.

in figure 2.2), through experimental (Liu, 1988; Liepmann, 1952; Lighthill, 1956; Kline

et al., 1967; Reguera et al., 2000) and numerical studies (Kim et al., 1987; Gibson et al.,

2008; Hamilton et al., 1995), are of particular interest.

Coherent motions have been described in the annual review of Robinson (1991), among

other definitions, as a “three-dimensional region of the flow over which at least one

fundamental flow variable (velocity component, density, temperature, etc.) exhibits

significant correlation with itself or another variable over a range of space and/or time
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‘

Figure 2.2: [Figure from Green et al. (2007)] Two-dimensional plots of structures
identified using a method called Direct Lyapunov Exponent in a turbulent channel
flow. Structures are three-dimensional and outlined in black. They are more dominant

near the walls, as expected. (top - top view, bottom - side view)

that is significantly larger than the smallest local scales of the flow”. Robinson (1991) and

Smits and Delo (2001) reviewed the historical evolution of finding coherent structures

and presented many of the conceptual models intended to explain these motions.

2.4.2 Chaotic State

Dynamical system theory aims to describe the characteristics of a system, like velocity

profiles, pressure, etc., over time. If the dynamics of a given system are known, it may

be possible to predict its evolution in time from initial conditions.

This section derives from the worthwhile book of Cvitanović et al. (2013), to which the

reader is referred to deeply understand the notion of “chaos”. A system is said to be

deterministic when, given its evolution equations, its evolution is uniquely determined

by its initial conditions and known exogenous inputs. In such condition, many trials of

the same system within the same conditions will lead to the same results. Likewise, its

evolution can be predicted forward or backward in time. On the contrary, stochastic

systems evolve randomly and predicting their evolution is complex. The initial con-

ditions determine their futures only partially. Many systems can be represented by a

determined mathematical law and be qualified as deterministic. However, deterministic

systems appear as stochastic if their dynamics are too complex. “Chaos” characterizes

systems following deterministic laws of evolution, but their evolution is highly sensitive
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to small changes in initial conditions. A chaotic system possesses hence two properties:

high sensitivity to small uncertainties in initial conditions and dynamical laws confined in

a finite dimensional state space, which makes the different trajectories mixing together.

Dynamical equations in fluid dynamics are well known, but also highly non-linear and

complex. Small uncertainties in the state characteristics (approximation of the NSE,

boundary conditions, initial conditions, calculation precision...) will result in different

numerical or empirical evolutions. For that reason, turbulence is considered as a chaotic

state. A dynamical representation based on the coherent structures can support a de-

scription of this chaos.

2.4.3 Dynamical representation of turbulence

Hopf (1948) was the first to introduce the idea of turbulence as a finite dimensional dy-

namical system (for a nice introduction to dynamical system, see Arrowsmith and Place

(1992) and Strogatz (2018)). Hopf considered the velocity fields satisfying the NSE

and associated boundary conditions as a phase or state included in a phase space Ω of

“infinitely many dimensions”. Each solution of the problem is associated with a point

motion in Ω, and its phase motion can be followed in this space. Hopf wondered what

would happen to the phase flow after an infinite time, and how the viscosity influences

its behaviour. The steady laminar solution is embodied as a single point in Ω, an equi-

librium, and after infinite time, every phase motion tends to this point for a sufficiently

high viscosity. On the contrary, for low enough viscosity, the laminar solution is never

reached and the flow is turbulent, forming chaotic trajectories in Ω. Hopf observed that

the dimension of the manifold of solutions contracts with increasing viscosity, which let

him conclude that after infinite time, the manifold of solutions has a finite dimension

and is included within the infinite-dimensional space Ω. Nowadays, Ω is referenced as

the “inertial manifold”. Successfully describing this finite-dimensional manifold can help

us understand the non-linear and high-dimensional structure of turbulence.

This new vision was investigated within a simple Plane Couette Flow configuration.

Stability analysis of the PCF configuration demonstrated its stability to any infinitesimal

perturbation for all finite Reynolds number (Romanov, 1973; Drazin and Reid, 2004;

Nagata, 1990). The transition from a laminar flow with a linear velocity profile to a

steady finite-amplitude solution is sudden and hard to track. For that reason, Nagata

(1990) used a homotopy method applied on a Taylor Vortex Flow between two co-

rotating cylinders, and found the first 3D steady solutions for a plane Couette flow.

The same solutions were found by Busse and Clever (1992), who also used a homotopy

method from a Rayleigh-Bénard flow, and by Waleffe (1998, 2003). Nagata (1997)

discovered other solutions, in the form of travelling waves, and notably the upper branch

of the Nagata (1990) solution.
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These solutions look very similar to the coherent structures discovered in numerical and

experimental turbulent flows of paragraph 2.4.1. Nonetheless, they exist without any of

the complex spatio-temporal intermittency characteristic of coherent structures observed

in turbulent flows, hence they can be considered as “pure” or “exact” coherent structures

(Waleffe, 2001). In the literature, they are addressed as “exact coherent structures”,

“exact coherent states” or “invariant solutions” (Waleffe, 2003). In this thesis, we will

employ the terminology “invariant solution” for solutions in continuous-time systems

and “laminar-state” for the Couette and Poiseuille laminar profiles.

The significant progress in finding invariant solutions changed the way turbulence is

considered. A promising idea emerging from dynamical theory and based on the vision

of Hopf (1948) is to use these unstable invariant solutions to describe temporally and

spatially complicated flows (Cvitanović, 1988; Artuso et al., 1990a,b). The newly found

invariant solutions can serve as the basis of a new description in order to describe this

chaotic evolution (Kerswell, 2005) and their connections and bifurcations could explain

complex spatio-temporal intermittent process. In this perspective, the transition to tur-

bulence could be explained as the succession of bifurcations from one solution to an other.

The previously discovered coherent structures of §2.4.1 correspond to the least unstable

invariant solutions; the dynamics of turbulence can be represented as a walk looping

around these solutions (see figure 2.3); and the low-dimensionality explained by Hopf

(1948) results from the low number of unstable modes for each state at a given Reynolds

number, which attracts the turbulent state into a given direction. These solutions do

not allow an effective prediction of turbulence, particularly at higher Reynolds number,

but significant flow characteristics and theoretical understandings can be extracted from

them (e.g. in section 2.4.5).

However, two points are important to note. Firstly, invariant solutions are full-scale un-

stable attractors of the turbulent phase, and do not constitute a modal decomposition

of turbulence. It is not possible to employ the perspective used for spectral decompo-

sition (see section 4.2), wherein the smallest length scale could be neglected to create

a low order model. Secondly, invariant solutions and coherent structures are two dis-

tinct phenomena. To the best of the author’s knowledge, no invariant solution has be

found to correspond exactly to a coherent structure. Coherent structures are intermit-

tent phenomena, while invariant solution are invariant/periodic under time evolution.

Nonetheless, coherent structures may correspond to connections or bifurcations between

different invariant solutions, or approach closely one or many periodic orbits.

2.4.4 Progress on finding Invariant Solutions

Invariant solutions emerge in different forms. Considering as Gibson et al. (2009) the

velocity field U(X , t), a representation FNS(U) of the Navier-Stoke equations for a given
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Figure 2.3: Dynamical evolution of a turbulent state: An initial condition (black
square) decays rapidly to the inertial manifold (gray parallelogram) where the dynamics
is governed by the invariant solutions (red crosses) or periodic orbits (red loop), acting
as attractor of the dynamics. As the invariant solutions are unstable, the turbulent
state is constantly repelled from the solution, never settles down and evolves in a
chaotic manner (blue dotted-dashed line). Highly unstable invariant solution are rarely

visited by the turbulent trajectory.

problem (§2.3), and its time-forward map f tNS , we can write

∂U

∂t
= FNS(U), f tNS(U) = U +

∫ t

0
FNS(U(X , τ))dτ. (2.19)

For any period T , solutions are usually found in the form of:

� Equilibrium, U(X , t) = U(X ), satisfying fTNS(U) = U .

� Travelling wave, U(X , t) = U(X − ct), satisfying fTNS(U) = T U with T =

T (cxT, czT ), where cx and cz are wave velocities in streamwise and spanwise di-

rection respectively and T is the time-period.

� Periodic orbit, U(X , t) = U(X , t + T ), satisfying fTNS(U) = U with T the time-

period.

� Relative periodic orbit, U(X , t) = U(X − ct, t+ T ), satisfying fTNS(U) = T U .

Jiménez et al. (2005) compared equilibria and periodic solutions found previously and

distinguished them with respect to their streamwise and wall-normal maximal veloci-

ties. They established two families of solutions: the “vortex dominated” solutions and

the “streak dominated” ones. The vortex-dominated group gathers solutions similar

to near-wall turbulence, with strong wall-normal velocities and slow streamwise com-

ponent. It corresponds to the upper-branch solution of Nagata (1997), characterized

by complex vortical structures. On the other side, streak-dominated solutions corre-

spond to the lower branch of Nagata (1990) with weak vortical structures but strong
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streamwise streaks. Fully developed turbulent simulations have closer statistics to the

vortex-dominated group. Jiménez et al. (2005) saw these solutions as the main actor

of the self-regeneration cycle of turbulence in viscous and buffer layers. Lower branch

solutions and laminar ones only occasionally attract the state, even more rarely for

perturbed flows, e.g. at higher Reynolds numbers or with a larger domain.

Gibson et al. (2008) produced a new method of visualization of the solutions of PCF,

which projects the high dimensional state-space to one of much smaller dimension (e.g.

3D). This visualization is helpful to understand the dynamic of turbulent state and the

attraction of unstable invariant solutions, and was notably used by Ahmed (2018) in his

thesis. Gibson et al. (2009) continued this project by adding ten new equilibria and two

travelling-wave solutions, finding again the one of the previous works of Nagata (1990,

1997). Details on the search process and geometries of PCF state space are presented

in the thesis of Halcrow (2008), where the computation of equilibria, relative equilibria

and heteroclinic connections is to link with the Ph.D. thesis of Schmiegel (1999), which

was completed at a lower resolution. In his thesis, Halcrow (2008) speculates that the

state space of a PCF configuration is composed of a multitude of invariant solutions,

intertwined via different heteroclinic connections. These latter track the dynamical state

of the flow between these solutions.

Itano and Generalis (2009) and Generalis and Itano (2010) found what they claim to

be a new “hairpin” vortex solution in PCF, useful to describe the near-wall region of

turbulent flows. They used the homotopy method, finding branches and bifurcations

for a Lateral Heating Flow and then transforming them back to a PCF configuration.

Their equilibria were also retrieved by Gibson et al. (2009).

The annual review of Kawahara et al. (2012) gathered many recently found solutions

for different geometries and described how these invariant solutions embody statistical

properties of turbulence. Velocity fields are qualitatively similar between solutions of

different geometries (PCF, Poiseuille, Hagen-Poiseuille in circular pipe) as they often

reproduce the same phenomena, for example the near-wall regeneration cycle of fully

developed turbulent flows.

Many kinds of invariant solutions have been discovered in other configurations and

improve our knowledge about coherent structures and turbulence intermittency (Jiménez

and Kawahara, 2013). For example, in pipes flow, travelling waves have been discovered

by Faisst and Eckhardt (2003); Wedin and Kerswell (2004); Pringle and Kerswell (2007),

and relative periodic orbits by Duguet et al. (2008). In 2D Kolmogorov flows, invariant

solutions were discovered by Chandler and Kerswell (2013) and, recently, Farazmand

(2016) discovered 24 new steady states and periodic solutions using a method combining

adjoint equations of Navier-Stokes equations and Newton-GMRES-hook-step iterations,

which reproduced turbulence intermittency (see figure 2.4). In Plane Poiseuille Flow,
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Figure 2.4: [Figure and label from Farazmand (2016), studying the generic turbulent
trajectory in a Kolmogorov flow and representing the turbulent intermittency as well
the importance of invariant solutions during high-energy phases.] (Colour outline)
Results for Re = 40. Grey curve: turbulent trajectory spanning 103 time units. Red
circles: equilibria. Blue squares: travelling waves. The green square marks the region
where I/Ilam < 0.12 and D/Dlam < 0.12. The turbulent trajectory spends 86.62 %
of the total 103 time units inside this region. The diagonal I = D is marked by the
dashed black line. Equilibria and travelling waves with I/Ilam = D/Dlam > 0.32 are

not shown.

equilibria were found by Waleffe (2001) and travelling waves by Itano and Toh (2001) and

Waleffe (2003) (also in PCF, both flows with free-slip and no-slip boundary conditions).

2.4.5 Examples of application of this new theory

Mean statistic

Mean statistic of a chaotic system can be retrieved from a limited number of unstable

invariant solutions. For example, within a simple chaotic dynamical system with a

large number of degrees of freedom, Kawasaki and Sasa (2005) managed to calculate

the expected value of some macroscopic quantities as the energy dissipation rate from
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a single periodic orbit. To do so, they used spatial averaging which possesses different

properties than time averaging. It is therefore expected that statistical properties of

turbulence can be obtained from a limited number of invariant solutions (Saiki and

Yamada, 2008).

Self-sustaining cycle

A remarkable feature of near-wall structures observed in turbulent shear flow is that

these structures are self-regenerative. The turbulence is sustained via the successive de-

struction and generation of coherent structures, which can be though as a “self-sustaining

cycle”. Hamilton et al. (1995) decomposed the regeneration process of a fully-developed

turbulent flow into three phases: the formation of streaks by streamwise vortices, the

breakdown of these streaks, and the generation of the streamwise vortices. Each phase

is both the consequence and the cause of the other stages. On one hand, the streaks, de-

fined as “elongated region of spanwise alternating low- and high-speed fluid”, originates

from the breakdown of the streamwise vortices, as they can transfer high-speed fluid

from the mean flow closer to the wall and low-speed fluid from the near-wall region into

the centerline. On the other hand, the vortices are generated via a non-linear interaction

(Hall and Smith, 1991; Waleffe, 1995) after the rupture of the unstable streaks. This

regeneration cycle was also described in Waleffe (1995, 1997). Nonetheless, the complete

theoretical understanding and description of the self-sustaining cycle in a fully turbulent

flow has not been exposed yet.

Invariant solutions offer the theoretical foundation to describe this phenomenon. Kawa-

hara and Kida (2001) indeed reproduced the regeneration cycle within a PCF configu-

ration. They found two time-periodic solutions connected with each other by a periodic

orbit. These solutions are two unstable attractors, attracting the turbulent state occa-

sionally before repelling it. The periodic orbit connecting these solutions approximates

very well the turbulence self-sustaining cycle described by Hamilton et al. (1995); Wal-

effe (1995, 1997), and includes an energy burst similar to the rupture of the streaks.

Viswanath (2007) also described the bursting phenomenon in a PCF after discovering

five new solutions via a Newton-Krylov iteration and a locally constrained optimal hook

step. Each of these five solutions demonstrates the breakup and re-formation of near-wall

coherent structures.

Kawahara et al. (2012) reviewed the recent progresses in the discovery of invariant

solutions and the advances in understanding the self-regeneration cycle of turbulence

in low Reynolds number turbulent flows. They also noticed the similarity between the

statistic of these solutions and different turbulent laws. The range of new non-linear

solutions composes the simplest way to describe the coherent structures discovered in

§2.4.1 and the near-wall self-sustaining cycle. Kerswell (2005) constitutes a useful review

to understand these phenomena in pipe flow configuration.
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Origin of self-organized oblique turbulent-laminar stripes observed in tran-

sitional flows

Invariant solutions can provide an explanation for the spatial structure of oblique stripe

patterns observed in the laminar-turbulent transition to turbulence. This section relies

on the recent publication in Nature Communication of Reetz et al. (2019), who discov-

ered an invariant solution of the fully nonlinear NSE in PCF that captures the details

of these structures. Within a PCF configuration, the laminar-turbulent transition ap-

pears as the breaking of the translational symmetries in both the streamwise and the

spanwise directions. It causes regions of turbulent and laminar flow to coexist in space

and even a regular pattern of alternating turbulent and laminar stripes to emerge. The

wavelength of these stripes is much larger than the gap of the PCF configuration and

they are obliquely oriented relatively to the streamwise direction. Both the large-scale

wavelength and the oblique orientation of turbulent-laminar stripes must directly follow

from the flow dynamics captured by the governing Navier-Stokes equations. However,

even if experiments and numerical flow simulations reliably generate stripe patterns,

a theory explaining the origin of the pattern characteristics is still missing. Experi-

mental and numerical observations of self-organized oblique turbulent-laminar stripes

in wall-bounded extended shear flows suggest the existence of exact invariant solutions

underlying these patterns. Reetz et al. (2019) presented the first invariant solution that

captures the detailed spatial structure of oblique stripe patterns, and provides a route

towards explaining why turbulent-laminar stripes are oblique.

2.5 This research

The objective of this research is to evaluate the feasibility of the stabilization of the

simplest form of invariant solution, an equilibrium, within an actuated PCF configu-

ration those forcing is restricted to the wall of the domain. It requires to investigate

the mechanism by which the turbulent dynamical state is leaving an invariant solution.

The discoveries of coherent structures and invariant solutions set indeed a new light on

turbulence structure, and strengthened Hopf’s (1948) concept of turbulence as a finite

dimensional dynamical system. Nonetheless, the mechanism by which the turbulent

dynamical state remains and leaves the neighborhood of an invariant solution is still un-

known. By definition, the turbulent state cannot leave the neighbourhood of an invariant

solution via its nonlinear unstable manifold. In the context of dynamical representation,

it is supposed that the turbulent state is attracted along the locally stable-attractive

manifold of an invariant solution and then escapes the neighborhood of the solution

along its locally unstable-repulsive manifold (Gibson et al., 2008), as sketched in figure

2.5a. In the light of this, we will interfere via state-space control with the mechanism

by which the turbulent dynamical state is leaving an invariant solution, in the hope
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a) Dynamical state escaping an unstable in-
variant solution along its unstable linear man-

ifold

b) Dynamical state maintained in the neigh-
borhood of an invariant solution, now stable

thanks to a stabilizing forcing.

Figure 2.5: Hypotheses on the mechanism by which the turbulent dynamical state is
escaping the neighborbood of an invariant solution.

to either explicate the process or stabilize the unstable solution. Particularly, we will

design an optimal control law in order to stabilize the locally unstable manifold of the

Nagata (1990) lower-branch solution and consequently, maintain the dynamical state

in the neighborhood of this solution. To make things clear, we do not plan to attract

an arbitrary turbulent dynamical state towards Nagata (1990) solution and maintain it

there as such an approach may not work given the lack of global stability guarantees.

Rather, the idea is to locally stabilize EQ1 (introduce a radius of stability) and prevent

the state to escape from the equilibrium (figure 2.5b).

This control law was capable of locally stabilizing linear simulations initiated at the

Nagata (1990) solution, but our attempts with non-linear simulations were unsuccessful.

This may arise due to the non-normality (see app. H.3.1) of the stable manifold of the

Navier-Stokes equations linearized around an invariant solution. Some studies recently

suggested indeed that non-normality may help the turbulent trajectory to leave along

locally stable directions (Farano et al., 2019). This non-normality is associated with the

curvature of the nonlinear unstable manifold and is responsible for a transient energy

growth, characterized by a short time-scale and which may lead to non-linear instabil-

ities. In opposition, the leading unstable eigen-directions are characterized by a long

time-scale, expressing a long-term exponential growth. Therefore, the simple stabiliza-

tion of the unstable manifold may not be sufficient to non-linearly stabilize the Nagata

(1990) lower-branch solution.
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Chapter summary

� The governing equations of fluid motion for a Plane Couette Flow configuration

are the Navier-Stokes equations (NSE) 2.16. Despite being known for almost two

centuries, they contain some of the most important problems in mathematics due

to their non-linear and chaotic evolution.

� Turbulence is a multi-scale, three-dimensional, highly disordered, non-linear and

chaotic phenomenon. Nonetheless, some patterns appear intermittently in the flow

and are called “coherent motions”. They can serve as fondation in the description

of turbulence.

� “Exact” invariant solutions of the NSE were discovered numerically. They strength-

ened the dynamical representation of turbulence as deterministic chaos introduced

by Hopf (1948). The dynamics of turbulence can be represented as a walk looping

around these solutions within a high-dimensional state-space populated by many

invariant solutions.

� There has been major progresses in the finding of invariant solutions. Collections

of solutions under various form (equilibria, periodics orbits, torus, etc.) are now

available for canonical flows like Plane Couette Flow, Plane Poiseuille Flow, Pipe

Flows, etc.
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Feedback Control

Flow control designs a controller in order to alter a fluid flow into a desired outcome.

This chapter introduces advances in flow control (§3.1, 3.2 & 3.3), before focusing on

feedback control. Feedback control models a real system into a dynamical equivalent.

Based on this model as well as the state of the system at a given time, it then derives a

real-time control law. Particularly, we will employ a Linear Quadratic Gaussian feedback

control, which is the reason why its mathematical foundations are presented in section

3.4. This chapter concludes on the robustness limitation of optimal control, and gives

alternatives as robust control (§3.5) or passivity-based control (§3.6).

3.1 Introduction

Flow control refers to the research in fluid dynamics that aims at manipulating the

dynamical state of fluid flows towards a desired result. Flow control is employed among

other in order to reduce skin friction drag (Gatti and Quadrio, 2016), delay turbulence

transition (Liepmann and Nosenchuck, 1982; Nouar et al., 2007), alter fluid mixing or

combustion (Schuster et al., 2008; Luo and Schuster, 2009), reduce noise (Szoke and

Azarpeyvand, 2017), prevent separation of the boundary layer to reduces structural

loads (Gautier et al., 2015). In applications, it is applied to increase operability (lift

increase), safety (stall prevention) and performance (fuel consumption, noise emission)

in the aeronautical area, and similarly in the aerospace, naval and automotive sector, as

well as in the chemical industry to mix agents or in agriculture to spread aerosols.

Feedback control is an engineering area investigated for many years already. We par-

ticularly recommend the books and reviews of Gad-el Hak (2000), Gunzburger (2002),

Collis et al. (2004), Joslin and Miller (2009), Ogata (2009) and Wang and Feng (2018)

for an overview of the theory, performances, limitations and promising possibilities of

modern flow control. In brief, flow control can divided into different categories. The

25
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first one is “passive” versus “active” control. Passive control is self-sufficient in energy

and influence the flow by exploiting or altering properties of the boundary conditions,

as for instances riblets (Bannier et al., 2016), Gourney flap (Wang and Feng, 2018,

chapter 2), roughness (Wang and Feng, 2018, chapter 4), etc. On the other side, active

control requires an external source of energy in order to actuate via wall-transpiration

—blowing/suction at the wall— (Heins, 2015), wall oscillation (Jung et al., 1992), syn-

thetic jets (Amitay and Glezer, 2006), etc. The second one is “open” versus “closed”

loop systems. Open-loop systems do not consider the current state of the system to

operate, and as a consequence, do not track any fluid characteristic. Parameters are set

originally or independently of the current characteristics of the flow. Doing so reduces

computational cost but also infringes performances as the “blind” controller will pursue

the actuation even at inappropriate times. Closed-loop systems follow the state of the

system in real-time via sensing devices (wall pressure, wall temperature, wall velocity,

wall shear stress) and operate in response to a condition on the sensing quantities.

Early investigations of flow control were simple: The approach focused on the control of

a specific phenomenon in order to prevent the appearance or enhancement of structures

associated with turbulence. Nonetheless, no proper modeling of the flow was performed

and the control design was based on intuition. Consequently, unexpected secondary

events may emerge and lead to instabilities if the actuation ignites non-linear effects.

An example of intuitive control is “opposition control”, for which the interested reader

can find references in Heins (2015) thesis.

In the 1990s, a new approach of flow control emerged, entitled model-based control.

Based on this technique, described next section, we will build an active closed-loop

control from a dynamical model of the flow, actuating via wall transpiration and supplied

with entire knowledge of the velocity and pressure field, referred as “full-information”.

3.2 Model based control

Model based control aims to model the dynamic of the fluid flow in order to alter precisely

the state of the system. The desired outcome is translated into a mathematical cost

function to minimize. This function targets characteristic of the flow as kinetic energy,

wall-shear stress, temperature, etc., depending on the physical problem.

To our knowledge, the first attempt to control a laminar plane Poiseuille flow by combin-

ing both sensing and actuation was performed by Joshi et al. (1997) in a 2D configuration

using a “classical” control design (proportional-integral control). Their objective was to

stabilize the flow against the perturbations at the origin of the transition to turbulence.

Unlike previous researches focusing solely on the actuation, their closed-loop system

integrated sensing and estimation process. The locations of sensors and actuators dra-

matically changed the result of the control. Once the optimal locations were found, a



Chapter 3 Feedback Control 27

simple proportional integral controller stabilized the laminar Poiseuille system, and even

remained robust at different Reynolds number.

A key publication of model based control and influential to this project is the paper of

Bewley and Liu (1998). It introduces a new approach, often referred as “modern” control

due to the application of optimal or robust control design. They created an active close-

loop flow control of a linear system by breaking the system down into three “boxes”:

a “plant”, an “estimator” and a “controller”. The estimator estimates the state of the

plant from limited measurement, while the controller determines the appropriate control

signal according to the estimated state. They used the Orr-Sommerfeld-Squire equation

to apply two different control methods: optimal H2 and robust H∞ control. They

aimed to stabilize the unstable eigenvalues of the model by minimizing the energy of the

flow perturbations. This energy was estimated via streamwise and spanwise skin friction

measurement and targeted with actuation by wall-transpiration. State disturbances and

measurement disturbances were taken into account respectively in the “plant” and “es-

timator” and represented as uncorrelated white Gaussian noise for optimal H2 control,

or worst-case disturbances for robust H∞ control. A complete analysis of the controlled

system was produced, including observability and controllability measure, eigenmodes

decomposition, transfer function norms, and was compared with previous results from

different type of control. For these reasons, Bewley and Liu (1998) stands as a bench-

mark in the realm of flow control. Bewley (2001) pushed further by reviewing the H∞
control in plane Couette flow and giving insights for future promising research direction.

Kim and Bewley (2007) reviewed the recent advances in flow control. They divided the

theory of model-based control design into two different approaches, differing in the pro-

cedure to derive the optimal control low. Firstly, the iterative Adjoint-based approach,

applicable to nonlinear models or non-quadratic cost functions, consists, once the linear

model associated with the system and the desired cost function defined, in extracting

and solving the adjoint model. The optimal control and estimation laws then derives

from the adjoint solutions and the cost function. Secondly, the direct-solution of the

Riccati solution requires to derive a Two-Point Boundary Value Problem (TPBVP) from

the Euler-Lagrange decomposition of the direct and adjoint system. Assuming a relation

between direct and adjoint states, a differential or algebraic Riccati equation is formed,

from which the optimal control and estimation law directly follows. Further details are

given in chapter 6.

Many advances were made in the domain of model based control applied to fluid flow.

Starting by Cortelezzi and Speyer (1998), a framework to derive optimal and robust

reduced-order controllers of transitional boundary layers using Linear Quadratic Gaus-

sian (LQG) design was presented and applied to 2D Poiseuille flow. Lee et al. (2001)

followed with the design of a reduced-order LQG feedback control and its application

to turbulent channel flow for drag reduction. Their system derived from the 2D Navier-

Stokes equations and produced a wall-transpiration actuation from the measurement
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of the turbulent streamwise wall-shear stress. Kim and Lim (2000) investigated the

coupling between linear and non-linear processes in turbulent wall-bounded flows, and

demonstrated that interior body forcing —forcing applied on the entire domain— was

capable to relaminarize the turbulent flow. Hogberg et al. (2003) estimated the effec-

tiveness of feedback control to significantly expand the basin of attraction of the laminar

state in a subcritical nonlinear channel flow system, while Högberg et al. (2003) suc-

cessfully applied linear full-state feedback optimal control to consistently relaminarize

turbulent channel flow with particular mean-flow profiles, at <τ = 100, with full-state

information and gain scheduling.

3.3 Linear Model

Linear models are employed to represent the dynamic of a system before designing an

associated control. In the case of fluid dynamics, it is based on the linearised equations

governing fluid motion for small perturbations, as for example the linearised Navier-

Stokes equations presented in chapter 4. A linear model for flow control is represented

in its state-space form as

Eẋ(t) = Ax(t) +Bq(t),

y(t) = Cx(t) +Dq(t),
(3.1)

where x ∈ Rn is a state vector, q ∈ Rm is a control input vector, y ∈ Rq is a measurement

output vector, and matrices are all time-invariant matrices such as A ∈ Rl×l, B ∈ Rl×m,

C ∈ Rn×l, D ∈ Rn×m and E ∈ Rl×l.

Linearised models do not depict the non-linear interactions of fluid dynamics and fail to

reproduce the energy transfer between large scale motions and small near-wall structures,

responsible for the multi-scale property and the self-regeneration cycle of turbulence.

Transition to turbulence driven by non-linearity is not be represented with such model

Bewley and Liu (1998).

Nonetheless, linear models do not intend to represent precisely the dynamical evolution

(bifurcations, equilibria, edge of chaos) or the statistic of the fluid system studied. A

linear model only needs to approximate well enough a real fluid system in order to design

a decent flow control. For that reason, the main characteristic required for this models

is to faithfully embody the correlation between actuation inputs and physical outputs,

and to include their influences on the energy cost function.

Special attention is required when dealing with matrix E, as its (nearly)-singularity

may produce spurious modes. These latter are poorly resolved eigen-modes, present in

the eigen-decomposition of the system but physically meaningless. For fluid dynamic
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problem, projecting the state equations 2.16a on a divergence-free basis, where the con-

tinuity equation 2.16b is implicitly enforced, solves this limitation. This transformation

is detailed in chapter 4 to derive the Orr-Sommerfeld Squire model and its equivalent

model extended for an invariant solution.

3.4 Optimal Linear Quadratic Gaussian Control

Linear Quadratic Gaussian (LQG) control designs an optimal measurement-feedback

control for linear systems where state and measurement disturbances are considered as

uncorrelated zero-mean Gaussian white noise with known statistical properties. LQG

control is actually composed of two separated entities: a Linear Quadratic Regulation

(LQR) control, i.e. a full-information state-feedback control; and a Kalman filter, i.e.

an optimal state estimation problem. Both are optimization problems in which an

objective cost function subject to an equality constraint needs to be minimized. Hence,

the process to form a LQG control consists in solving independently two optimization

problems. The existence and uniqueness of an optimal solution to both problems has

been demonstrated (Green and Limebeer, 1995). Moreover, the optimal solution is

independent of the disturbances fed into the system. LQG control can be considered

as a H2 control system. Details about each control design and this relations is given in

Grimble and Kucera (1996).

Basic mathematical prerequisites are here introduced. They are established from the

book of Green and Limebeer (1995), where the interested reader can find detailed demon-

strations of the theorems presented below and lessons on robust control.

3.4.1 Robustness

Eigenvalues of the closed-loop model can be use to assert the stability of the model,

or its observability and/or controllability (Green and Limebeer, 1995, Nyquist stability

criterion, p.27). Despite this, these measures do not give any information about the

robust stability or performance of the closed-loop. LQG does not automatically ensure

good robustness properties (Green and Limebeer, 1995, p.27). Doyle (1978) indeed

demonstrated that LQG optimal control have no guaranteed margins:

“LQG solution provides no global system-independent guaranteed robustness

properties.”

As a consequence, optimal control is hardly applicable to real system, when minor mod-

eling error can infringe the performance of the entire design. The robust stability of a

LQG optimal closed loop must be checked a posteriori via the calculation of the sensi-

tivities to different model error: additive (Green and Limebeer, 1995, theorem 2.4.3),



30 Chapter 3 Feedback Control

multiplicative (Green and Limebeer, 1995, theorem 2.4.4), inverse multiplicative (Green

and Limebeer, 1995, theorem 2.4.5), etc. Yet, these error models do not constitute an

exhaustive set of possible error. This fundamental drawback initiated the research into

robust control, introduced in section 3.5.

3.4.2 Mathematical prerequisites

Size of signals

A signal f is considered as a measurable function

f : R→ Rn; t 7→ f(t). (3.2)

The size of a signal f is measured in the finite-horizon case thanks to its Lebesgue

2-norm ‖·‖2,[0,T ], defined by

‖f‖2,[0,T ] =

{∫ T

0
‖f‖2dt

} 1
2

. (3.3)

Complementary, the finite-horizon Lebesgue 2-space L2[0, T ] is defined as the set of

signals of finite 2-norm,

L2[0, T ] =
{
f : R→ Rn

∣∣ ∀t < 0, f(t) = 0 and ‖f‖2,[0,T ] <∞
}
. (3.4)

Similarly for the infinite-horizon case, the Lebesgue 2-norm ‖·‖2 is defined as

‖f‖2 =

{∫ ∞
−∞
‖f‖2dt

} 1
2

, (3.5)

and the infinite-horizon Lebesgue 2-space L2(−∞,∞) follows as

L2(−∞,∞) =
{
f : R 7→ Rn

∣∣ ‖f‖2 <∞}. (3.6)

Size of systems

A system G is a mapping from one signal space, the input space Sin, to another signal

space, the output space Sout,
G : Sin → Sout. (3.7)

The L∞ space is defined as the set of systems mapping L2(−∞,∞) → L2(−∞,∞), or

in others words, the set fo system G such that,

G : L2(−∞,∞)→ L2(−∞,∞); w 7→ z = Gw, (3.8)
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which corresponds to the condition

L∞ =
{
G : ‖G‖∞ <∞

}
, (3.9)

where the L∞-norm is defined as

‖G‖∞ = sup
w
σ̄(G), (3.10)

with σ̄ is the maximal singular value of G.

The size of a system G : Sin → Sout with Sin, Sout two normed spaces is measured with

the induced norm ‖·‖ defined as

‖G‖ = sup
w−w̃ 6=0

‖Gw −Gw̃‖Sout
‖w − w̃‖Sin

. (3.11)

The norm of a system G induced by the finite 2-norm L2[0, T ] is denoted as ‖G‖[0,T ].

The 2-norm of a system G : w 7→ z can also be used in case the input is a unit variance

white noise process, defined in the finite-horizon case by

‖G‖2,[0,T ] = EX

{
1

T

∫ T

0
z∗(t)z(t) dt

} 1
2

, (3.12)

wher EX is the expectation and in the infinite-horizon case by

‖G‖2 = lim
T→∞

(
EX

{
1

T

∫ T

0
z∗(t)z(t) dt

} 1
2
)

=

∫ ∞
−∞

trace(G(t)G∗(t))dt.

(3.13)

3.4.3 LQG problem - System and introductory statements

We introduce a general time-varying plant-system to present different notions of control

theory,

ẋ(t) = A(t)x(t) +B1(t)w(t) +B2(t) q(t), x(0) = 0, (3.14a)

z(t) = C1(t)x(t) +D12(t) q(t), (3.14b)

y(t) = C2(t)x(t) +D21(t)w(t), (3.14c)

in which q is am-vector control inputs (actuation), w is a l-vector of external disturbance

inputs (state and measurement), z is a p-vector of objectives, y is a q-vector of controller
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inputs (measurements) and x is a n-dimensional state-vector. It is assumed that

p ≥ m,

l ≥ q.
(3.15)

We also considered the loop-shifting D11 = D22 = 0 and a scalings D∗12D12 = Im,

D21D
∗
21 = Iq in our controller synthesis problem. These transformations are developed

in Green and Limebeer (1995) [§4.6] using linear fractional transformations. They do

not lead to any loss of generality but decrease the complexity of the following notions.

Finite horizon

The purpose of LQG is to seek a causal, linear controller q = Ky such that the finite-

horizon 2-norm of the closed-loop systemRw 7→z mapping the external disturbance inputs

w to the objective z is minimized, given

‖Rw 7→z‖2,[0,T ] = EX

{
1

T

∫ T

0
z∗z dt

} 1
2

. (3.16)

Infinite horizon

The infinite horizon case, T →∞, is equivalent to consider considering the model 3.14 as

time-invariant. In this scenario, the purpose of LQG is to seek a causal, linear controller

q = Ky such that the infinite-horizon 2-norm of the closed-loop system Rw 7→z mapping

w to z is minimized, given

‖Rw 7→z‖2 = lim
T→∞

(
EX

{
1

T

∫ T

0
z∗z dt

} 1
2
)
. (3.17)

For the infinite horizon case, some “standard assumptions” are required, whose useful-

ness becomes apparent in sections 3.4.4 and 3.4.5:

Standard assumptions:

1. (A,B2) is stabilizable.

2. rank

[
A− ιwI B2

C1 D12

]
= n+m for all real w.

3. (A,C2) is detectable.

4. rank

[
A− ιwI B1

C2 D21

]
= n+ q for all real w.
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3.4.4 Full information controller - Linear Quadratic Regulator (LQR)

A Linear Quadratic Regulation (LQR) follows from the time-varying plant-system 3.14,

with no consideration for the measurement y,

ẋ(t) = A(t)x(t) +B1(t)w(t) +B2(t) q(t), x(0) = 0, (3.18a)

z(t) = C1(t)x(t) +D12(t) q(t). (3.18b)

Crossed-terms removal

A change of variable is operated to remove the crossed-terms in the expression the 2-

norms ‖Rw 7→z‖2,[0,T ] and ‖Rw 7→z‖2, arising from the product z∗z. In system 3.18, the

variable q is replaced by q̃ = q+D∗12C1x. It leads to a new state and objective functions

substituted of system 3.18,

ẋ(t) = Ã(t)x(t) +B1(t)w(t) +B2(t) q̃(t), x(0) = 0, (3.19a)

z̃(t) =

[
C̃x(t)

q̃(t)

]
, (3.19b)

where

Ã = A−B2D
∗
12C1, (3.20a)

C̃∗C̃ = C ′1(I −D12D
∗
12)C1. (3.20b)

System 3.19 simplifies future derivation and theorems without any loss of generality, as

z̃∗z̃ = z∗z and ‖Rw 7→z̃‖2 = ‖Rw 7→z‖2 hold. The transformation is fully detailed in

Green and Limebeer (1995) [§5.2.3] and final results with the original expression 3.14

are given at the end of the section.

The purpose of LQR is to seek a causal, linear, full-information controller of the form

q̃ =
[
K1 K2

] [x
w

]
. (3.21)

Finite-horizon case

The 2-norm objective function ‖Rw 7→z‖2,[0,T ] of the closed-loop system,

‖Rw 7→z‖2,[0,T ] = ‖Rw 7→z̃‖2,[0,T ] = EX

{
1

T

∫ T

0
z̃∗z̃dt

} 1
2

,

= EX

{
1

T

∫ T

0
x∗C̃∗C̃x+ q̃∗q̃dt

} 1
2

,

(3.22)
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is minimized by the state-feedback optimal control law

q̃opt = −B∗2Px, (3.23)

in which P is the solution of the differential Riccati equation

− Ṗ = PÃ+ Ã∗P − PB2B
∗
2P + C̃∗C̃, P (T ) = 0. (3.24)

An unique non-negative solution of the differential Riccati equation 3.24 always exists.

The optimal cost ‖Rw 7→z‖opt2,[0,T ] derives from the state-feedback control law 3.23 (Green

and Limebeer, 1995, theorem 3.3.1, p.94), as

‖Rw 7→z‖opt2,[0,T ] = min‖Rw 7→z‖2,[0,T ] =

{
1

T

∫ T

0
tr(B∗1PB1) dt

} 1
2

. (3.25)

It is possible to generate all controllers satisfying ‖Rw 7→z‖2,[0,T ] ≤ γ using a set composed

of two mapping systems, as long as γ ≥ ‖Rw 7→z‖opt2,[0,T ] (Green and Limebeer, 1995,

§5.2.1).

Infinite-horizon case

In the infinite-horizon case, the system is assumed time-invariant. In this scenario,

in order for a stabilizing controller to exist, it is necessary that the pair (Ã, B2) is

stabilizable, which is true if the pair (A,B2) is also stabilizable —Standard Assumption

1, (Green and Limebeer, 1995, App. A). Moreover, the existence of a solution to the

algebraic Riccati equation 3.28 presented below will requires that the pair (Ã, C̃) has no

unobserbable mode on the imaginary axis, i.e. the closed-loop dynamic of the controller

be asymptotically stable —Standard Assumption 2, (Green and Limebeer, 1995, §5.2.2,

p.189).

The 2-norm objective function ‖Rw 7→z‖2 of the closed-loop system,

‖Rw 7→z‖2 = ‖Rw 7→z̃‖2 = lim
T→∞

(
EX

{
1

T

∫ T

0
z̃∗z̃ dt

} 1
2
)
,

= lim
T→∞

(
EX

{
1

T

∫ T

0
x∗C̃∗C̃x+ q̃∗q̃dt

} 1
2
)
,

(3.26)

is minimized over the class of controllers that are internally stable —respect the standard

assumptions— by the state-feedback optimal control law

q̃opt = −B∗2Px, (3.27)
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in which P is the solution of the algebraic Riccati equation

PÃ+ Ã∗P − PB2B
∗
2P + C̃∗C̃ = 0. (3.28)

A unique non-negative stabilizing solution of the algebraic Riccati equation 3.28 always

exists as long as the standard assumptions are satisfied. The optimal cost ‖Rw 7→z‖opt2

derives from the state-feedback control law 3.27 (Green and Limebeer, 1995, theorem

3.3.1, p.94), as

‖Rw 7→z‖opt2 = min‖Rw 7→z‖2 =
{
tr(B∗1PB1)

} 1
2
. (3.29)

It is possible to generate all controllers satisfying ‖Rw 7→z‖2 ≤ γ using a set composed of

two mapping systems, as long as γ ≥ ‖Rw 7→z‖opt2 (Green and Limebeer, 1995, §5.2.2).

Inclusion of crossed-terms

The full-information optimal control associated with the system 3.14 —including crossed-

terms— is thus given by

qopt = q̃ −D∗12C1x,

= −(B2P +D∗12C1)x,

= −F x,

(3.30)

where P is the solution to the differential Riccati equation 3.24 in the finite-horizon case,

or algebraic Riccati equation 3.28 in the infinite-horizon case.

3.4.5 Kalman Filter - optimal Linear Quadratic Estimation

Previous section focused on full-information control, hence complete knowledge of the

state x and of the disturbance input w are assumed. However, the system 3.14c gathers

information solely about the measurement y. How shall we estimate the state and

the input disturbance from this measurement? The Kalman filter, or Linear Quadratic

Estimation (LQE), is the optimal solution to this problem. In other words, the Kalman

filter seeks the optimal solution xoptest to estimate the state x and the Gaussian disturbance

w from the measurement y.

We consider the following general system

ẋ(t) = A(t)x(t) +B1(t)w(t) +B2(t) q(t), x(0) = 0, (3.31a)

y(t) = C2(t)x(t) +D21(t)w(t), (3.31b)

with the scaling D21D
′
21 = I.
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The purpose of LQE is to seek a causal, linear filter F such that zoptest = Fy is an

optimal estimate of z = Lx with L a continuous matrix. We try to minimize the 2-

norm ‖Rw 7→zoptest−z
‖2,[0,T ] or ‖Rw 7→zoptest−z

‖2 where Rw 7→zoptest−z
is the system mapping the

external disturbance input w to the difference zoptest − z between optimal estimated and

actual objective.

The filtering problem, without the interaction of the control q, is represented as the

linear fractional transformation ẋ(t)

(zoptest − z)(t)

y(t)

 =

 A B1 0

−L 0 I

C2 D21 0


 x(t)

w(t)

zoptest(t)

 , x(0) = 0, (3.32a)

zoptest(t) = Fy(t). (3.32b)

Minimizing the 2-norm objective ‖Rw 7→zoptest−z
‖2,[0,T ] or ‖Rw 7→zoptest−z

‖2 of the direct prob-

lem 3.32 is equivalent to minimize the 2-norm objective ‖R̄w 7→zoptest−z
‖2,[0,T ] or ‖R̄w 7→zoptest−z

‖2
of the adjoint associated problem, ṗ(τ)

z̄(τ)

w̄(τ)

 =

A
∗ −L∗ C∗2

B∗1 0 D∗21

0 I 0


p(τ)

w̄(τ)

q(τ)

 , p(τ = 0) = 0, (3.33a)

q(τ) = F ∗w̄(τ), (3.33b)

where p is the adjoint state of x, τ = T − t is the time-to-go variable of the adjoint

system and ·̄ stands for adjoint. Consequently, we try to minimize the 2-norm of the

adjoint system ‖R̄w 7→zoptest−z
‖2,[0,T ] or ‖R̄w 7→zoptest−z

‖2.

It is noteworthy here to notice that the adjoint system 3.33 is a full-information control

problem, in which the control signal q is function of the disturbance w̄ only, and inde-

pendent of the adjoint-state p̄. However, for a full-information controller, knowledge of

w̄ only is equivalent to knowledge of w̄ and p̄ (Green and Limebeer, 1995, §5.3.1, p.198).

The optimal solution of the Kalman filter therefore proceeds from the full-information

optimal control problem.

Crossed-terms removal

A change of variable is operated to remove the crossed-terms in expression the 2-norms

‖R̄w 7→zoptest−z
‖2,[0,T ] or ‖R̄w 7→zoptest−z

‖2, arising from the product z̄∗z̄. In system 3.33, the

variable q is replaced by q̄ = q+D21B
∗
1p. It leads to a new state and objective functions
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ṗ(τ) = Ā∗ p(τ)− L∗ w̄(τ) + C∗2 q̄(τ), p(0) = 0, (3.34a)

z̄(τ) =

[
B̄∗p(τ)

D∗21q̄(τ)

]
, (3.34b)

where

Ā = A−B1D
∗
21C2, (3.35a)

B̄B̄∗ = B1(I −D∗21D21)B∗1 . (3.35b)

The optimal solution of the full-information control adjoint-problem 3.34 follows from

section 3.4.4, and will be transposed in the finite-horizon and infinite-horizon case for

the original problem 3.31.

Finite-horizon case

In the finite-horizon case, the 2-norm objective

‖R̄w 7→zoptest−z
‖2,[0,T ] = EX

{
1

T

∫ T

0
(zoptest − z)∗(zoptest − z)dt

} 1
2

,

= EX

{
1

T

∫ T

0
(zoptest − Lx)∗(zoptest − Lx)dt

} 1
2

.

(3.36)

is minimized by the optimal filter

ẋoptest(t) = (Ā−QC∗2C2)(t)xoptest(t) +Q(t)C∗2 (t)y(t) +B2(t) q(t), xoptest(0) = 0, (3.37a)

= Ā(t)xoptest(t) +Q(t)C∗2 (t) (y(t)− C2(t)xoptest(t)) +B2(t) q(t), (3.37b)

zoptest(t) = L(t)xoptest(t), (3.37c)

in which xoptest is the optimal estimate of x and Q(t) is the solution of the differential

Riccati equation

Q̇ = QĀ∗ + ĀQ−QC∗2C2Q+ B̄B̄∗, Q(0) = 0. (3.38)

This optimal estimation solution of 3.32 derives from the optimal state-feedback control

law of the associated adjoint problem 3.34,

q̄∗(τ) = −C2(τ)Q(τ) p̂(τ), (3.39)
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leading to the expression of the optimal adjoint state

˙̂p(τ) = Ā∗(τ) p̂(τ)− L∗(τ)w̄(τ)− C∗2C2(τ)Q(τ)p̂(τ), p̂(τ = 0) = 0, (3.40a)

= (Ā∗ − C∗2C2Q)(τ) p̂(τ)− L∗(τ)w̄(t). (3.40b)

The optimal estimate of z = Lx is zoptest = Fy = Lxoptest . The matrix QC∗2 is called the

Kalman filter gain and the term (y−C2(t)xoptest) is the innovations process. Finally, the

optimal cost is

‖R̄w 7→zoptest−z
‖opt2,[0,T ] = min‖R̄w 7→zoptest−z

‖2,[0,T ] = EX

{
1

T

∫ T

0
trace(LQL∗)dt

} 1
2

. (3.41)

Infinite-horizon case

In the infinite-horizon case, the system 3.31 is assumed time-invariant. We want to

minimize the cost ‖R̄w 7→zoptest−z
‖2 given as

‖R̄w 7→zoptest−z
‖2 = lim

T→∞

(
EX

{
1

T

∫ T

0
(zoptest − z)∗(zoptest − z)dt

} 1
2
)
. (3.42)

The optimal filter follows as

ẋoptest(t) = Āxoptest(t) +QC∗2 (y(t)− C2 x
opt
est(t)) +B2(t) q(t), xoptest(0) = 0, (3.43a)

zoptest(t) = Lxoptest(t), (3.43b)

in which Q is the solution of the algebraic Riccati equation

QĀ∗ + ĀQ−QC∗2C2Q+ B̄B̄∗ = 0. (3.44)

The solution Q exists if and only if the pair (Ā, C2) is detectable, which is true is the

pair (A,C2) is also detectable —Standard Assumption 3— and the pair (Ā, B̄) has no

unobservable mode on the imaginary axis — Standard Assumption 4.

Finally, the optimal cost is

‖R̄w 7→zoptest−z
‖opt2 = min‖R̄w 7→zoptest−z

‖2 =
{
trace(LQL∗)

} 1
2
. (3.45)

3.4.6 Measurement Feedback - Linear Quadratic Gaussian control

Measurement feedback control, or Linear Quadratic Gaussian (LQG) control, combines

both LQR control and Kalman filter estimation. This sections assembles the results

of previous sections 3.4.4 and 3.4.5. Firstly, the Kalman filter estimation allows for
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the optimal estimation of the state xoptest from the measurement y. Secondly, the LQR

determines the optimal control law qopt in order to stabilize the system. The separation

principle guarantees that the solution of each problem can be designed independently.

Finite-horizon case

Considering the time-varying system 3.14, the purpose of LQG is to seek a causal, linear

controller q = Ky such that the finite-horizon 2-norm ‖Rw 7→z‖2,[0,T ] in eq. 3.16 of the

closed-loop system Rw 7→z mapping the external disturbance inputs w to the objective

z is minimized.

The solution comes from the fact that any measurement feedback controller is also a

full-information controller, since

q(t) = K(t)y(t), (3.46a)

= K(t)C2(t)x(t) +K(t)D21(t)w(t), (3.46b)

= K(t)
[
C2(t) D21(t)

] [x(t)

w(t)

]
. (3.46c)

The cost of any measurement feedback controller (Green and Limebeer, 1995, Remark

5.2.2, p.187) is

‖Rw 7→z‖22,[0,T ] =

(
‖Rw 7→z‖opt2,[0,T ]

)2

+ ‖Uw 7→q−qopt‖22,[0,T ], (3.47a)

=
1

T

∫ T

0
trace(B∗1PB1) dt+ ‖Uw 7→q−qopt‖22,[0,T ]. (3.47b)

where Uw 7→q−qopt is the system mapping the input disturbance w into the difference

between the control signal q = K y and the optimal control signal qopt = −F x (eq.

3.30). This signifies that the minimum cost of a measurement feedback control is the

addition of the optimal cost of a full-information control giving qopt, given in eq. 3.25,

and of the op;timal cost to estimate the state x from the measurement (y).

Therefore, the measurement feedback controller that minimizes ‖Rw 7→z‖2,[0,T ] is the

optimal estimator given the measurement y (eq. 3.37, §3.4.5) of the optimal control law

qopt(t) = −F (t)x(t) (eq. 3.23 & 3.30, §3.4.4).

Now combining these two optimal solutions, the optimal state-feedback system is

ẋopt(t) = Axopt(t) +H (y(t)− C2 x
opt(t) ) +B2q(t), xopt(0) = 0, (3.48a)

q(t) = −F xopt(t), (3.48b)
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in which F (t) = D∗12C1 +B∗2P and H(t) = B1D
∗
21 +QC∗2 . The matrices P (t) and Q(t)

are solutions of the differential Riccati equations

−Ṗ = PÃ+ Ã∗P − PB2B
∗
2P + C̃∗C̃, P (T ) = 0, (3.49a)

Q̇ = QĀ∗ + ĀQ−QC∗2C2Q+ B̄B̄∗, Q(0) = 0, (3.49b)

in which

Ã = A−B2D
∗
12C1, C̃∗C̃ = C∗1 (I −D12D

∗
12)C1, (3.50a)

Ā = A−B1D
∗
21C2, B̄B̄∗ = B1(I −D∗21D21)B∗1 . (3.50b)

Finally, the optimal cost is

‖Rw 7→z‖opt2,[0,T ] = min‖Rw 7→z‖2,[0,T ] =

{
1

T

∫ T

0
trace(B∗1PB1) + trace(FQF ∗)dt

} 1
2

,

(3.51)

which is the square root of the sum of the square of the optimal, full-information cost (eq.

3.25) and the square of the cost of optimally estimating the optimal, full-information

controller Fx (eq. 3.41).

Infinite-horizon case

We now consider the system 3.14 as time-invariant. The Standard Assumptions 1, 2,

3 and 4 are required to solve the following algebraic Riccati equations and allow the

existence of a stabilizing controller. In the infinite-horizon case, the purpose of LQG

is to seek a controller q = Ky that minimizes ‖Rw 7→z‖2. Following from the previous

results,

The measurement feedback controller that minimizes ‖Rw 7→z‖2 is the optimal estimator

given the measurement y (eq. 3.43, §3.4.5) of the optimal control law qopt(t) = −F x(t)

(eq. 3.27 & 3.30, §3.4.4).

Now combining these two optimal solutions, the optimal state-feedback system is

ẋopt(t) = Axopt(t) +H (y(t)− C2 x
opt(t) ) +B2q(t), xopt(0) = 0, (3.52a)

q(t) = −F xopt(t), (3.52b)

in which F = D∗12C1 +B∗2P and H = B1D
∗
21 +QC∗2 . The matrices P and Q are solutions

to the algebraic Riccati equations

PÃ+ Ã∗P − PB2B
∗
2P + C̃∗C̃ = 0, (3.53a)

QĀ∗ + ĀQ−QC∗2C2Q+ B̄B̄∗ = 0, (3.53b)
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in which

Ã = A−B2D
∗
12C1, C̃∗C̃ = C∗1 (I −D12D

∗
12)C1, (3.54a)

Ā = A−B1D
∗
21C2, B̄B̄∗ = B1(I −D∗21D21)B∗1 . (3.54b)

Finally, the optimal cost is

‖Rw 7→z‖opt2 = min‖Rw 7→z‖2 =

{
trace(B∗1PB1) + trace(FQF ∗)

} 1
2

, (3.55)

which is the square root of the sum of the square of the optimal, full-information cost (eq.

3.29) and the square of the cost of optimally estimating the optimal, full-information

controller Fx (eq. 3.45).

3.5 H∞ Robust Control

H∞ robust control designs a controller with guaranteed performance against pertur-

bations of given maximal amplitude. The final closed-loop system is stable up to a

finite-amplitude disturbance, the worst bearable perturbation. The H∞ generalized reg-

ulator problem consists in solving a H∞ filter which estimates the H∞ full-information

control law. A cost functions is associated with each of these problems, which leads

to two Riccati equations. The regulator expression follows from their solutions. Unlike

LQG, state and measurement disturbances are unknown deterministic disturbances of

finite energy gain relatively to the state; the manner these disturbances feed the system

influences the expression of the full-information control; and the optimal state estimate

of the H∞ filter depends on the matrix F (see eq. 3.48a). The performances are guar-

anteed for a given model and a given cost function. H∞ robust control requires the

model to well-represent the real system, and computational power to solve the Riccati

equations, which restrict its application in real cases. The following section is based on

the book Green and Limebeer (1995) and focus solely on the full-information controller

synthesis, as the estimation problem is not employed in this thesis.

Full-information H∞ controller synthesis

We consider the same system 3.19, where loop-shifting, scaling and change of variable

were applied,

ẋ(t) = Ã(t)x(t) +B1(t)w(t) +B2(t) q̃(t), x(0) = 0, (3.56a)

z̃(t) =

[
C̃(t)x(t)

q̃(t)

]
. (3.56b)
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Finite horizon

The purpose of robust control is to seek a causal, linear, full-information controller

associated with the time-varying system 3.56 such that the closed-loop system Rzw :

z 7→ w satisfies ∫ T

0

(
z∗z − γ2w∗w

)
dt+ x∗(T )∆x(T ) ≤ −ε‖w‖22,[0,T ] (3.57)

for all w ∈ L2[0, T ], some ε > 0, and a nonnegative matrix ∆. It ensures that the

L2[0, T ] induced norm of Rzw satisfies

‖Rzw‖[0,T ] < γ. (3.58)

There is full-information controller satisfying the objective 3.57 if and only if the Riccati

differential equation

− Ṗ = Ã∗P + PÃ− P
(
B2B

∗
2 − γ−2B1B

∗
1

)
P + C̃∗C̃, P (T ) = ∆, (3.59)

has a solution P (t) for all t ∈ [0, T ]. The controller that achieves the objective is the

linear, memoryless, state-feedback control signal uopt = −B∗2Px. The worst exogenous

input is wworst = γ−2B∗1Px. The solution P is non-negative-definite definite for all

times t ≤ T and exists if the parameter γ is big enough. In the case γ → ∞, the

disturbance is not regarded and the Riccati differential equation 3.59 reduces into its

optimal counterpart 3.24.

Infinite horizon

The system 3.56 is now considered as time-invariant. The purpose of robust control is to

seek a causal, linear and stabilizing controller such that the L∞-norm of the closed-loop

system Rzw : z 7→ w satisfies

‖Rzw‖∞ < γ, (3.60)

or equivalently written

‖z‖22 − γ2‖w‖22 ≤ −ε‖w‖22, (3.61)

for all w ∈ L2[0, T ] and some ε > 0. As for optimal control, in order for a stabilizing

controller to exist, it is also necessary that the pair (Ã, B2) is stabilizable —Standard

Assumption 1— and that the closed-loop dynamic of the controller is asymptotically

stable —Standard Assumption 2.

There exists a full-information control law such that Rzw is internally stable and satisfies

the objective 3.60 if and only if the algebraic Riccati equation

PÃ+ Ã∗P − P
(
B2B

∗
2 − γ−2B1B

∗
1

)
P + C̃∗C̃ = 0, (3.62)
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has a stabilizing non-negative-definite solution P , i.e P ≥ 0 and the closed-loop system

Ã−(B2B
∗
2−γ−2B1B

∗
1)P is asymptotically stable. The stabilizing controller that achieves

the objective is the linear, memoryless, state-feedback control signal uopt = −B∗2Px.

The worst exogenous input is wworst = γ−2B∗1Px. In the case γ →∞, the disturbance is

not regarded and the algebraic Riccati equation 3.62 reduces into its optimal counterpart

3.28.

3.6 Nonlinearity and Passivity

Flow control synthesis is affected by two major drawbacks: the limitation of the dimen-

sion of the controlled system and the non-linearity of the Navier-Stokes equations. The

former problem is addressed in section 6.2, when dealing with procedures to solve the

Riccati equation. We are here devoted to the latter problem.

The NSE non-linearity is indeed neither stochastic nor bounded, as some transient ex-

ternal disturbances or model errors may generate large disorders in the dynamical state.

This implies that H2 controllers are inappropriate, as they model disturbances as Gaus-

sian, and neither are H∞ controllers, as they are limited to bounded worst-case pertur-

bations. Nonetheless, the non-linearity of the NSE in a closed or periodic domain is a

conservative quantity in respect to the perturbation energy. This property is exploited

to undertake a particular variety of control, known as “passivity-based control”. An

element is labeled as “passive” if only a finite amount of energy can be extracted out of

it. A passive system only stores or dissipates energy and is unable to generate energy

by itself.

Sharma et al. (2011) separated the passive non-linear terms from the linear terms of the

NSE. As the feedback connection of two passive elements remains passive, they intended

to enforce passivity of the linear part such that the whole system becomes passive. Their

controller was thus dedicated to the stabilization of the linear terms and to the destruc-

tion of its non-normality, source of transient energy growth. They managed to stabilize

a channel flow at friction Reynolds number Reτ = 100 with full-domain information and

volume actuation on the wall-normal velocity component. The objective cost-function

to minimize embodied the supply of turbulent energy of any perturbation arising from

the interaction of the wall-normal velocities and the shear flow. The control law was

calculated once off-line for each wave-number, which is computationally advantageous

in comparison to adjoint-based methods described in Bewley (2001) (details in section

6.2).

Nevertheless, Martinelli et al. (2011) demonstrated (in an ideal case without any dis-

turbance) that a linear state-feedback controller for Plane Poiseuille flow with actuation

restricted to a part of the domain and full-information sensing can not be strictly dissipa-

tive. In order to obtain a strictly dissipative feedback loop, either the open-loop system
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should already be monotonically stable, or the number of actuators should be equal to

the dimension of the dynamical state. Either situation is unlikely to be fulfilled in shear

flows with wall-transpiration actuation. This observation directly narrows the domain

of application of passivity-based control. Martinelli et al. (2011) suggested instead to

apply non-linear control or adjoint-based methods.

Despite this result, Heins et al. (2014, 2016) employed passivity-based control similarly

to Sharma et al. (2011). The actuation was applied via wall-transpiration and the sensing

was limited to the streamwise and spanwise wall shear-flow. They aimed to force the

linear part of the NSE to become as passive as possible. By targeting the main source of

turbulent perturbation energy, found to be the streamwise-constant modes (α = 0, β =

1, 2, 3, ...), they managed to reduce the upper-bound of the turbulent perturbation energy

production and reduce skin-friction drag.

Chapter summary

� Flow control is a mature field of research employed to reduce skin-friction drag,

delay turbulence transition, alter fluid mixing in many sectors as aeronautics,

aerospace, naval, automotive, etc.

� Control can either be passive —not requiring any external power input— (geome-

tries or surface modification) or on the contrary, active.

� Control design either considers the current characteristics of the flow, hence “closed-

loop control”, or evolves independently, “open-loop control”.

� Major advances were achieved with model based control, that defines a dynamical

model, often linear, to describe the evolution of the flow.

� Optimal Linear Quadratic Gaussian (LQG) control designs an optimal measurement-

feedback control for linear systems where state and measurement disturbances are

considered as uncorrelated zero-mean Gaussian white noise with known statistical

properties. The measurement-feedback loop is composed of a Kalman filter for

the estimation associated with a Linear Quadratic Regulation (LQR) for the con-

trol. The optimal estimation and control laws derive from the solution of Riccati

equations and always exist. Nonetheless, no global system-independent robustness

properties are guaranteed.

� Robust control extends from optimal control and designs a controller with guar-

anteed performance against perturbations of given maximal amplitude. On the

other side, solution of the associated Riccati equations are not guaranteed.
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� Non-linear systems can be addressed with passivity-based control. However, for

channel flows, the whole system can not be made fully passive.





Chapter 4

Modeling - The Linear

Orr-Sommerfeld Squire model

extended for a non-laminar

solution

The theory behind turbulence and feedback control was presented in previous chapters

2 and 3. The application of state-space feedback control theory to invariant solutions

requires a linearized state-space model. In this thesis, this model derives from the lin-

earization (§4.1) and discretization with spectral method (§4.2) of the Navier-Stokes

equations 2.16. For a PCF baseflow in a channel geometry (§4.4), the derivation is

straightforward and leads to the Orr-Sommerfeld Squire model (4.5). However, the lin-

earization around an invariant solution is very high-dimensional and the model no longer

diagonalises with Fourier wave-numbers due to the breaking of translational symmetry of

the baseflow. Therefore, we develop a new divergence-free full-matrix state-space model,

called the Orr-Sommerfeld Squire model Extended for a non-laminar solution (OSSE)

(§4.6). To reduce state dimension and memory requirement, we establish a purely-real

equivalent, the Real Orr-Sommerfeld Squire model Extended for a non-laminar solution

(ROSSE) (§4.7). Thanks to the validation in section 4.8, we demonstrate that the OSSE

and ROSSE models depict faithfully the dynamical evolution of the flow in the neigh-

bourhood of an ECS for small perturbations and enable access to linear control theory.

The plant of future control system will be modeled with the ROSSE model.

4.1 Governing equations

Controller synthesis of Linear time-invariant (LTI) systems first and foremost requires

the definition of a spatially discretised LTI system of the form presented in equations 3.1.

47
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However, the non-dimensionalized NSE for a channel presented in equations 2.16 are con-

tinuous non-linear infinite-dimensional Partial-differential algebraic equations (PDAE).

Hence, the Navier-Stokes equations are not a Linear time-invariant system. In order to

be of practical use for the numerical methods, we intend to employ some transformations

on of the NSE 2.16:

1. linearisation around a time-invariant parallel baseflow, §4.1.1.

2. transformation into a non-singular system, §4.5.1.

3. discretisation of the new system and simplication in §4.5 after presenting spectral

methods in §4.2 and geometries in §4.4.

All calculations established in this section and section 4.5 will be given for a Plane

Couette Flow (PCF) laminar baseflow, corresponding to a solution of the form Ū =

(Ulam(y), 0, 0). Such a baseflow enables many simplifications in the expression of the

final OSS system 4.52.

However, from section 4.6 onwards, the baseflow will be considered as a steady non-

laminar solution of the form Ū = (Ū(x, y, z), V̄ (x, y, z), W̄ (x, y, z)). Consequently, the

simplifications possible for the OSS model no longer apply as this solution is three-

dimensional and dependent on x, y and z.

4.1.1 Linearised Navier-Stokes equations

The velocity field U of the Navier-Stokes equations 2.16 can be decomposed into a

time-invariant base flow Ū(x, y, z) and a time-dependent disturbance u(x, y, z, t) as

U(x, y, z, t) = Ū(x, y, z) + u(x, y, z, t), (4.1)

with

u� Ū , v � V̄ , w � W̄ , (4.2)

where Ū = [Ū , V̄ , W̄ ] and u = [u, v, w] denote streamwise, wall-normal and spanwise

components in Cartesian coordinates. Similarly, we introduce P̄ (x, y, z) and p(x, y, z, t)

as

P (x, y, z, t) = P̄ (x, y, z) + p(x, y, z, t) with p� P̄ . (4.3)

The disturbance u from the laminar base flow physically represents the initial stage in

transition to turbulence, as non-linear interaction will enhance or lessen its amplitude

and impact the stability of the fluid. We hereby consider the unidirectional laminar

baseflow of the form Ū = (Ulam(y), 0, 0), As the base flow obeys the Navier-Stokes

equations, substituting equations 4.1 and 4.3 in 2.16 and subtracting the base flow
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equation give for an unidirectional mean flow as

∂u

∂t
=

1

Re
∇2u− Ulam

∂u

∂x
− v∂Ulam

∂y
− %x −

∂p

∂x
+ fx, (4.4a)

∂v

∂t
=

1

Re
∇2v − Ulam

∂v

∂x
− %y −

∂p

∂y
+ fy, (4.4b)

∂w

∂t
=

1

Re
∇2w − Ulam

∂w

∂x
− %z −

∂p

∂z
+ fz, (4.4c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (4.4d)

where (fx, fy, fz) = f and (%x, %y, %z) = % denote respectively streamwise, wall-normal

and spanwise components of the vectors of body forces and of the non-linear term. The

non-linear term % is defined as

% = u · ∇u

= (u, v, w) · ∇(u, v, w)

= (u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z︸ ︷︷ ︸
%x

, u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z︸ ︷︷ ︸
%y

, u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z︸ ︷︷ ︸
%z

) .
(4.5)

By neglecting the non-linear terms % and body forces f in equations 4.4, we obtain the

non-dimensional linearised Navier-Stokes equations for a channel:

∂u

∂t
=

1

Re
∇2u− Ulam

∂u

∂x
− v∂Ulam

∂y
− ∂p

∂x
, (4.6a)

∂v

∂t
=

1

Re
∇2v − Ulam

∂v

∂x
− ∂p

∂y
, (4.6b)

∂w

∂t
=

1

Re
∇2w − Ulam

∂w

∂x
− ∂p

∂z
, (4.6c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (4.6d)

4.1.2 Poisson equation

The Poisson equation is used to retrieve the pressure field once the velocity field has

been computed. By taking the divergence of momentum equations 2.16a and using the

divergence free condition 2.16b, we obtain the Poisson equation

∇2P = −∇ · (U · ∇U). (4.7)
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In Cartesian coordinates and using assumption 4.1-4.3, equation 4.7 reduces to the

linearised Poisson equation:

∇2p =
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂y2
= −2

∂Ū

∂x

∂u

∂x
− 2

∂V̄

∂x

∂u

∂y
− 2

∂W̄

∂x

∂u

∂z

− 2
∂Ū

∂y

∂v

∂x
− 2

∂V̄

∂y

∂v

∂y
− 2

∂W̄

∂y

∂v

∂z

− 2
∂Ū

∂z

∂w

∂x
− 2

∂V̄

∂z

∂w

∂y
− 2

∂W̄

∂z

∂w

∂z
.

(4.8)

Considering a unidirectional PCF laminar baseflow Ū = (Ulam(y), 0, 0), the Poisson

equation 4.8 simplifies to

∇2p =
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂y2
= −2

∂Ulam
∂y

∂v

∂x
. (4.9)

4.2 Spatial discretisation - Spectral Methods

Spatial discretisation is a necessary step to implement the mathematical system as a

numerical model. The process transforms a continuous function or signal (velocity,

pressure, vorticity, etc.) into its discrete counterpart. Different discretisation methods

have been developed in applied mathematics and then applied to fluids mechanics. The

predominant ones are spectral, finite-volume, finite-element or finite-difference methods.

Due to the simplicity and periodicity of the spatial domain studied here (detailed in sec-

tion 4.4), spectral methods are the prime choice. These methods are commonly used to

solve Ordinary-differential equations (ODE), partial-differential equations or eigenvalue

problems involving differential equations. Spectral methods take a “global approach”,

in the sense that the basis function of the discretization spans the entire domain. On

the contrary, the basis functions of finite element methods are valid only on small and

limited subdomains. Many bases needs to be interconnected to each-other in order to

span the entire domain. This global approach enables spectral methods to converge

at an exponential rate for smooth functions, which is called “spectral or infinite accu-

racy”. Spectral methods decompose continuous signals into their associated spectral

coefficients within a dedicated basis. Commonly used as basis functions are Fourier,

Chebyshev or Legendre series, which became especially practical with the development

of the Fast Fourier Transform (FFT) algorithm (Cooley and Tukey, 1965; Press et al.,

2007). Nonetheless, spectral methods are limited to handle complex geometries, dis-

continuous or non-smooth phenomena, which can cause oscillations on the boundaries

spreading to the entire domain. However, for simple smooth periodic domains, they are

precise and computationally inexpensive.

Among the books devoted to spectral methods, we focused our attention on Peyret

(2002). Interested readers may find useful the pioneering book of Gottlieb and Orszag
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(1977), the comprehensive work including important theoretical results of Canuto et al.

(1988) or Canuto et al. (2006) and the numerical recipes of Press et al. (2007).

4.2.1 Mathematical introduction

Peyret (2002) gathers the fundamental theory of Fourier and Chebyshev methods for the

computation of incompressible flows, which is the basis of this section. To approximate

functions via Fourier or Chebyshev series, the scalar product

〈u, v〉w =

∫ b

a
u vw dx, (4.10)

is required, where u(x) and v(x) are two functions defined on [a, b] and w(x) is a weight

function.

The truncated series of a function f(x) will be defined as

fN (x) =
N∑
k=0

f̂kϕk(x), x ∈ [a, b], (4.11)

where ϕk(x) are given orthogonal “trial” functions depending on the employed spectral

method (exponential, Chebyshev polynomials,...), such that (ϕk, ϕl)w = ckδk,l whih ck

a constant and δ the Kronecker function.

The residual RN is defined, if the function f is given, as

RN = f− fN . (4.12)

In the case where fN approximates the solution of a differential equation of the form

Lf− l = 0, the residual is defined as

RN = LfN − l. (4.13)

Spectral methods aim to make the residual RN nought by enforcing the following equal-

ity,

(RN , ψi)w? =

∫ b

a
RN ψiw?dx = 0, (4.14)

where ψi are test functions and w? are weight functions.

The two most-common spectral methods are the Galerkin and the Collocation methods:

� Galerkin method uses the trial functions ϕi as test functions ψi, and the weight

function w as weight w? as

ψi = ϕi, w? = w. (4.15)
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� Collocation method uses different functions

ψi = δ0(x− xi), w? = 1, (4.16)

with δ0 the Dirac delta-function. The set {xi} is a set of collocation points and

implies that the residual RN is zero only on these points. This method is simple to

implement as linear operation can be performed directly on the collocations points.

Nonetheless, an insufficient number of collocation points can lead to inaccurate

result.

In this thesis, we are using the collocation method (section 4.5.2).

4.2.2 Fourier Method

The Fourier method is the most familiar spectral method. In this approach, the basis

of trial functions is composed of trigonometric functions, such as sinusoids. The main

benefits of Fourier series are their fast rate of convergence and the existence of the Fast

Fourier Transform (FFT), an efficient algorithms to compute their discrete transforma-

tion (Cooley and Tukey, 1965; Press et al., 2007). Fourier series fit particularly well

2π-periodic smooth functions. Periodic and smooth functions will indeed result in an

uniform set of Fourier coefficients and allow for “spectral or infinite accuracy”, i.e. the

convergence is exponential and the approximation error is smaller than 1
K , where K is

the number of coefficients (Peyret, 2002; Canuto et al., 2006). Periodicity and smooth-

ness are important, otherwise the convergence of the associated Fourier series will not

be uniform at the boundaries and lead to oscillations in the whole domain, called the

“Gibbs phenomenon”.

Truncated Fourier series

The assumed 2π-periodic function f can be approximated by a truncated series expansion

with trial functions {eιkx} (noting that coefficients corresponding to indices k and −k
are complex conjugates if f is real) as

fK(x) =
K∑

k=−K
f̂k eιkx. (4.17)

By calculating the residual RK = f − fK and setting it to zero in the mean, we obtain

the expression of the Galerkin Fourier coefficients as

f̂k =
1

2π

∫ 2π

0
f eιkxdx. (4.18)
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Discrete Fourier series

The discrete Fourier coefficients are determined on a set of N + 1 collocation points

{xi = 2πi/N} with i = 0, ..., N , where x0 = 0, xN = 2π and f(x0) = f(xN ). The value

of N is imposed to 2K + 1 as the residual RK is set to zero at each xi.

∀i ∈ [0, N ], RK(xi) = f(xi)− fK(xi) = 0. (4.19)

We can then determine the expression of each discrete Fourier coefficients of the collo-

cation method as

f̂k =
1

N

N∑
i=1

f(xi)e
ιkxi , k = −K, ...,K. (4.20)

p-th differentiation in x is obtained directly, with IK = −K, ...,K for odd collocation

and IK = −K + 1, ...,K for even collocation, as

f
(p)
K (x) =

∑
k∈IK

(ιk)p f̂k︸ ︷︷ ︸
f̂
(p)
k

eιkx. (4.21)

4.2.3 Chebyshev Method

The Fourier method is well adapted to periodic domain, but less so to non-periodic

domains due to the Gibbs phenomenon at the boundaries —large oscillations or over-

shoots of the Fourier series at simple discontinuities. Orthogonal polynomials, like the

Chebyshev method, are a good alternative to Fourier series. Chebyshev series can be

seen as cosine Fourier series. Therefore, they share the benefits of the Fourier series of

a fast exponential rate of convergence and of the existence of the FFT, yet they do not

suffer from the Gibbs phenomenon at the boundaries. Legendre polynomials stands also

as a valuable alternative to Fourier series. However, no fast transformation algorithms

akin to the FFT exists for this method.

Chebyshev Polynomials of the first kind

Chebyshev polynomials of the first kind are defined as

Tk(x) = cos(k cos−1(x)), ∀k > 0, (4.22)

or with x = cos(z),

Tk(z) = cos(kz), ∀k > 0, (4.23)
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which gives

T0 = 1,

T1 = cos(z) = x,

T2 = cos(2z) = 2x2 − 1.

(4.24)

Truncated Chebyshev series

The function f(x) is approximated for x ∈ [−1, 1] with a Chebyshev series as

fN (x) =
N∑
k=0

f̃k Tk(x). (4.25)

Similarly as for the Fourier coefficients, we use a Galerkin method to find the Chebyshev

coefficients

f̃k =
2

π

∫ 1

−1
fTkwdx, for 1 ≤ k ≤ N − 1,

f̃k =
1

π

∫ 1

−1
fTkwdx, for k = 0 or N.

(4.26)

Discrete Chebyshev series

As for the discrete Fourier series, the discrete Chebyshev coefficients are determined on

a set of N + 1 collocation points {xi}, which are for best results the Gauss-Chebyshev-

Lobatto collocation points

xi = cos(
πi

N
) with i = 0, ..., N. (4.27)

The expression of the Chebyshev coefficients on this set is as follow

f̃k =
1

N

(
f0Tk(x0) + 2

N−1∑
i=1

fiTk(xi) + fNTk(xN )

)
, for 1 ≤ k ≤ N − 1,

f̃k =
1

2N

(
f0Tk(x0) + 2

N−1∑
i=1

fiTk(xi) + fNTk(xN )

)
, for k = 0 or N.

(4.28)

Matrix differentiation

Differentiation of Chebyshev polynomials is more intricate than the one of Fourier se-

ries. Chebyshev differentiation involves all the polynomials of opposite parity and lower
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degree. The differentiation can be state into a matrix form as

F̂(1) =

f̂
(1)
0

..

f̂
(1)
N

 = D̂

 f̂0..
f̂N

 = D̂ F̂, (4.29)

where F̂(i) denotes the i-th differentiation of F̂, and for higher order:

F̂(p) = D̂p F̂. (4.30)

Matrix D̂ coefficients are formed by recurrence. Many packages exist to build efficiently

the differentiation matrices [D̂, D̂1, ..., D̂p]. This thesis employs the computation code of

the package of Weideman and Reddy (2000), incorporating clamped boundary conditions

(F(±1) = F(1)(±1) = 0) and translated into Python by Arslan Muhammad Ahmed in

his thesis (Ahmed, 2018). This differentiation method is working properly only if the

extrema at the wall are zero (McKernan, 2006). In the case of non-zero values at the

wall, inaccurate derivatives will occur through the entire domain.

Note on the implementation of boundary condition within the Cheby-

shev differentiation matrices

Dirichlet and/or Neumann boundary conditions are implemented though the set of dif-

ferentiation matrix {Dd}. The set of matrices {Dd} is formed from interpolation poly-

nomials satisfying a given boundary condition. Different types of boundary condition

imply a different polynomials and different sets {Dd}. Computationally, it is necessary

to impose different boundary conditions on D, D2, D3 than the ones on D4. A 4th order

partial-differential equation can indeed be formulated under the following form

∂4v̇

∂y4
(y, t) =

∂2v

∂y2
(y, t), (4.31)

which leads to the following expressions with a Chebyshev discretisation in y, imposing

differents boundary conditions on the RHS and LHS,

D4
a

˙̃v(t) = D2
b ṽ(t). (4.32)

If D4
a is non-singular, the time-evolution of ṽ(t) can be expressed as

˙̃v(t) = (D4
a)
−1D2

b ṽ(t). (4.33)

If both RHS and LHS were imposed the same boundary condition, Da = Db, the ex-

pression of ṽ(t) would simplify into ˙̃v(t) = (D2)−1ṽ(t). The issue is that the matrix

D2 is nearly singular, and therefore produces spurious modes in the eigen-problem 4.33.

Using two different boundary conditions prevents the matrix (D4
a)
−1D2

b in eq. 4.33 to be
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nearly singular and makes it definite, a necessary yet not sufficient condition to eliminate

spurious modes (Huang and Sloan, 1994; Weideman and Reddy, 2000). Taking the OSS

model as an example, it is either possible to define D4
a with clamped boundary conditions

and D2
b with Dirichlet ones, or D4

a with Dirichlet and D2
b clamped. However, if the same

boundary conditions were applied to both matrices, the solution of this eigen-problem

would contain spurious modes.

In this study, D, D2, D3 are imposed with Dirichlet conditions and D4 with clamped

conditions.

4.3 Time discretisation

Time discretisation will not be developed in this thesis, as it is not the main subject of the

research. However, the interested reader may find useful section 4.2 of the thesis Halcrow

(2008). Therein is described the algorithm for the time-integration in Channelflow, as

well as the search for symmetries and equilibria for PCF.

4.4 Geometries

This numerical investigation is based on the implementation of a “FlowField” class-

object, representing a fluid flow incorporating a set of fields (velocity, pressure, etc.) and

properties (Reynolds number, dimensions, etc.). This “FlowField” is the core element of

the implementation and allows for easy loading and storage of datasets (in HDF5 format,

www.hdfgroup.org), or transformation back and forth between physical and spectral

form. Each FlowField is included within a given domain, e.g. box, channel, pipe, bound-

ary layer, etc. The most generic domain is a 3D-box, namely a three-dimensional par-

allelepipoid domain with periodic boundary conditions enabling a Fourier×Fourier×
Fourier discretisation. Channel geometries derives from the 3D-box, but breaking the

symmetry by imposing a wall at the boundary on the domain in the vertical direc-

tion, and consequently discretized as Fourier×Chebyshev × Fourier. Boundary layer

and pipe geometries involve specific discretisation (e.g. solenoidal Fourier-Chebyshev

spectral method for pipe (Meseguer and Mellibovsky, 2007), boundary layer theory

(Schlichting and Gersten, 1979)), which are not developed here. This thesis is focusing

of Plane Couette Flow, hence on Channel geometries only.

4.4.1 3D-box

A 3D-box is a domain of dimension [Lx × Ly × Lz], periodic in the streamwise, wall-

normal and spanwise direction. Therefore, any dataset D(x, y, z, t) of the flowfield F in
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that 3D-box will respect

D(x, y, z, t) = D(x+ Lx, y, z, t),

D(x, y, z, t) = D(x, y + Ly, z, t),

D(x, y, z, t) = D(x, y, z + Lz, t).

(4.34)

The prime choice of discretisation is Fourier×Fourier×Fourier, allowing the decom-

positon into a spectral form of the dataset D(x, y, z, t) of F as

D(x, y, z, t) =

Nx/2∑
kx=−Nx

2
+1

Ny/2∑
ky=−Ny

2
+1

Nz/2∑
kz=−Nz

2
+1

D̂kx,ky ,kz(t)e
2πι( kxx

Lx
+
kyy

Ly
+ kzz
Lz

)
, (4.35)

where (Nx, Ny, Nz) are the number of equispaced discretisation points in streamwise,

wall-normal and spanwise direction respectively, (kx, ky, kz) are the streamwise, wall-

normal and spanwise wavenumber indices. The streamwise and spanwise wavenumber

are respectively defined as

α :=
2πkx
Lx

and β :=
2πkz
Lz

. (4.36)

4.4.2 Channel

A Channel object extends from a 3D-box. Nonetheless, the wall-normal domain is not

periodic, but limited by two walls at abscissa y = ±1. Chebyshev discretisation for the

wall-normal direction is well-fitted. Chebyshev polynomials are indeed defined on the

same interval and offer flexibility to impose complex boundary condition. The choice of

spectral discretisation is thus Fourier × Chebyshev × Fourier. In this configuraiton,

any dataset D(x, y, z, t) of the flowfield F included in the channel C takes the spectral

form

D(x, y, z, t) =

Nx/2∑
kx=−Nx

2
+1

Ny∑
ny=0

Nz/2∑
kz=−Nz

2
+1

˜̂
Dkx,ny ,kz(t) γ(y)Tny(y)e2πι( kxx

Lx
+ kzz
Lz

), (4.37)

where T (y) are Chebyshev polynomials of the first kind and γ(y) a weighting factor to fit

the boundary conditions. This discretisation increases intervals between nodes around

the channel centerline and reduces intervals between nodes close to the wall. This shift

will improve accuracy of simulation close to the wall, which is particularly useful when

actuation by wall-transpiration occurs.
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Boundary conditions at the walls

Dirichlet and Neumann boundary conditions are applied on the velocity and vorticity

fields at the walls (y = ±1),

v̂(y = ±1, t) = 0, (4.38a)

∂v̂

∂y
(y = ±1, t) = 0, (4.38b)

η̂(y = ±1, t) = 0. (4.38c)

The velocity component v is imposed a Dirichlet boundary condition 4.38a to consider

the wall impermeability and a Neumann condition 4.38b in result of the divergence free

condition 4.4d. The association of both Dirichlet and Neumann conditions is called a

“clamped” boundary condition. The wall-normal vorticity η is imposed by a Dirichlet

boundary condition 4.38c in order to take into account the no-slip condition on the wall.

These boundary conditions are applied during the mathematical derivation of the re-

spective models (§4.5 & 4.6). For the case of the OSS and later models, they are implicit

and included within the expression of the Laplacian operator. One way to implement

these conditions is to build a new basis of weighted Chebyshev polynomials incorporat-

ing the appropriate boundary condition, and then determine the Chebyshev coefficients

for the wall-normal velocity and wall-normal vorticity. A more straightforward way is

to use a package of spectral differentiation matrices incorporating the specific boundary

condition. This thesis will make use of the Weideman and Reddy (2000) package, that

uses the collocation method and translated into Python by Arslan Muhammad Ahmed

in his thesis (Ahmed, 2018).

Domain size

The domain used here is the “W03 cell” on channelflow.org (Gibson et al., 2008;

Gibson, 2014; Gibson et al., 2019) and first studied by Waleffe (2003), at Re = 400. It

corresponds to a channel of dimension given by α = 1.14 and β = 2.5, where

Lx =
2π

α
≈ 5.511,

Lz =
2π

β
≈ 2.513.

(4.39)

4.5 Orr-Sommerfeld Squire model

The procedure below describes the projection of the state vector x of the NSE 4.6a-4.6d

on a divergence-free fasis, in which the continuity equation is implicitly satisfied. This
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allows for the formation of a new LTI model of lower dimension than the NSE, yet with

the same physical properties. This model is called the Orr-Sommerfeld Squire model

(OSS) after its main contributors, William McFadden Orr (Orr, 1907a,b) and Arnold

Sommerfeld (Sommerfeld, 1908). The OSS model is an eigenvalue problem helpful to

establish the hydrodynamic stability of the NSE.

4.5.1 Derivation of the Orr-Sommerfeld Squire model

The linearised Navier-Stokes equations 4.6a-4.6d around the PCF laminar solution can

be described as a LTI system (see 3.1) of the form

EOSS
dx(t)

dt
= AOSS x(t), (4.40)

where

x =


u

v

w

p

 , EOSS =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 0

 , (4.41a)

AOSS =



(
1
Re∇

2 − Ulam ∂
∂x

)
−∂Ulam

∂y 0 − ∂
∂x

0
(

1
Re∇

2 − Ulam ∂
∂x

)
0 − ∂

∂y

0 0
(

1
Re∇

2 − Ulam ∂
∂x

)
− ∂
∂z

∂
∂x

∂
∂y

∂
∂z 0

 .
(4.41b)

Unfortunately, the matrix EOSS in eq. 4.41a is non-invertible. The system 4.40 is thus

singular and does not represent a standard state-space system. For this reason, the

state-vector x is projected on a divergence-free fasis, where the continuity equation is

implicitly satisfied. The Laplacian of equation 4.6b is firstly calculated as

∂

∂t
∇2v =

1

Re
∇2(∇2v) +

∂2Ulam
∂y2

∂v

∂x
− Ulam

∂

∂x
∇2v. (4.42)

The pressure has been eliminated from this equation with the relation 4.9. To describe

the complete 3D problem, a second equation is needed. For that purpose, the wall-

normal vorticity ηy is defined as

ηy :=
∂u

∂z
− ∂w

∂x
. (4.43)
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Subtracting the streamwise-derivative of equation 4.6c to the spanwise-derivative of 4.6a

leads to

∂ηy
∂t

=
∂

∂z

∂u

∂t
− ∂

∂x

∂w

∂t
,

=
1

Re
∇2ηy − Ulam

∂ηy
∂x
− ∂Ulam

∂y

∂v

∂z
.

(4.44)

Equations 4.42 and 4.44 are named the velocity-vorticity formulation, and can be rep-

resented under matrix form as

EOSS
dx(t)

dt
= AOSS x(t), (4.45a)

x =

[
v

ηy

]
, (4.45b)

EOSS =

[
∇2 0

0 I

]
, (4.45c)

AOSS =

( 1
Re∇

4 + ∂2Ulam
∂y2

∂
∂x − Ulam

∂
∂x∇

2
)

0

−∂Ulam
∂y

∂
∂z

(
1
Re∇

2 − Ulam ∂
∂x

) . (4.45d)

The former singularity of EOSS has been replaced by an implicit boundary condition

expressed in the Laplacian operator. Once the right boundary conditions are imposed,

the matrix EOSS is invertible, and the system can be solved. However, despite the fact

EOSS is non-singular, it can still be ill-conditioned if the wrong boundary conditions are

applied. The Orr-Sommerfeld Squire model is finally

∂x(t)

∂t
= LOSS x(t) =

[
LOS 0

LC LSq

][
v

ηy

]
, (4.46)

where LOS = (∇2)−1
(

1
Re∇

4 + ∂2Ulam
∂y2

∂
∂x −Ulam

∂
∂x∇

2
)

is the Orr-Sommerfeld Operator,

LC = −∂Ulam
∂y

∂
∂z is the Coupling operator and LSq =

(
1
Re∇

2 − Ulam ∂
∂x

)
is the Squire

operator.

4.5.2 Discretisation of the Orr-Sommerfeld Squire model

In this section, the OSS system 4.46 will be discretized for the PCF configuration pre-

sented in §2.2. PCF corresponds to a Channel geometry (see §4.4.2) and will thus be

discretized in the form Fourier × Chebyshev × Fourier as equation 4.37.

Streamwise and Spanwise Discretisation

Discretisation in streamwise and spanwise direction with Fourier modes splits the entire

OSS system into many sets of pairs modes (α, β). Wall-normal velocity and vorticity
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are approximated with a Fourier decomposition as in equation 4.17,

v(x, y, z, t) ≈
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

v̂α,β(y, t) eι(αx+βz), (4.47a)

ηy(x, y, z, t) ≈
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

η̂α,β(y, t) eι(αx+βz), (4.47b)

where v̂α,β and η̂α,β are the Fourier coefficients of v and ηy for a pair (α, β).

For each wavenumber pair (α, β), the system 4.46 can be discretised as

EOSSẋ = AOSSx, (4.48a)

x =

[
v̂α,β(y, t)

η̂α,β(y, t)

]
, (4.48b)

EOSS =

[
∇̂2 0

0 I

]
, (4.48c)

AOSS =

[
A11 0

A21 A22

]
, (4.48d)

where

A11 =
1

Re
∇̂4 + ια

∂2Ulam
∂y2

− ιαUlam∇̂2, (4.49a)

A21 = −ιβ ∂Ulam
∂y

, (4.49b)

A22 =
1

Re
∇̂2 − ιαUlam, (4.49c)

and

∇̂2 =
∂2

∂y2
− k2I, (4.50a)

∇̂4 =
∂4

∂y4
− 2k2 ∂

2

∂y2
+ k4I, (4.50b)

k2 = α2 + β2. (4.50c)

Wall-normal Discretisation

As presented in section 4.4.2, clamped boundary conditions are imposed on the upper

and lower walls of the channel geometry, beaking the periodicity in the wall-normal di-

rection. Therefore, Chebyshev method is adopted for the discretisation in this direction.

Nevertheless, once the Dirichlet condition is imposed by setting to zero the first and last

columns rows of the Laplacian operator, the matrix EOSS becomes rank-deficient and
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singular. To remedy this problem, only the internal block matrix of the Laplacian is

considered, i.e. the block-matrix of size (Ny − 2)× (Ny − 2) excluding the column and

rows of zero. The whole system will thus be reduced the same way.

The Fourier coefficients v̂α,β and η̂α,β in equation 4.47 can be approximated for each

wavenumber pair (α, β) as

v̂α,β(y, t) ≈
Ny∑
ny=0

ṽα,β(t)Tny(y), (4.51a)

η̂α,β(y, t) ≈
Ny∑
ny=0

η̃α,β(t)Tny(y), (4.51b)

where ṽα,β and η̃α,β are the associated Chebyshev coefficients.

Coefficients ṽα,β and η̃α,β will be determined with a collocation method on a set of

Gauss-Chebyshev-Lobatto points {yi} (see §4.2.3). The following system, reduced to

size (Ny − 2)× (Ny − 2), derives from 4.48,

EOSSẋ = AOSSx, (4.52a)

x =

[
ṽα,β(t)

η̃α,β(t)

]
, (4.52b)

EOSS =

[
∇̃2 0

0 I

]
, (4.52c)

AOSS =

[
Ã11 0

Ã21 Ã22

]
, (4.52d)

where

Ã11 =
1

Re
∇̃4 + ιαD2

0UlamI − ιαUlam∇̃2, (4.53a)

Ã21 = −ιβD0UlamI, (4.53b)

Ã22 =
1

Re
∇̃2 − ιαUlamI, (4.53c)

and

∇̃2 = D2 − k2I, (4.54a)

∇̃4 = D4 − 2k2D2 + k4I. (4.54b)
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4.6 Orr-Sommerfeld Squire Model extended for a steady

non-laminar solution as base-flow (OSSE)

The application of LTI state-space control theory to an Invariant Solution (IS) requires

a state-space model linearised around a three-dimensional base-flow. From this perspec-

tive, the OSS derived in §4.5 is not useful as it consists of a linearisation around the

PCF laminar-state. For this reason, an alternative model is created by inserting a three-

dimensional steady state as base-flow of the NSE instead of the Couette laminar-state

and undertaking the derivation on the same fashion as the OSS model. However, due to

the breaking of translational symmetry of the non-laminar baseflow, the derivation no

longer diagonalises with Fourier wave-numbers. Henceforth, it requires taking account

of crossed interactions between modes, which results in a new divergence-free model,

called in this thesis as the Orr-Sommerfeld Squire model Extended for a non-laminar

solution (OSSE). The derivation of the OSSE model is given below, while a detailed

derivation is available in Appendix F. The derivation was not performed via automatic

differentiation tools as symbolic Python, but manually. It requires indeed at many oc-

casions to combine terms in order to simplify the mathematical expressions, notably

with the continuity equation. This operation was not feasible automatically when the

formulation is slightly different (e.g. order of the partial differentiation or dot products)

and the automatically-derived equations lacked structure to interfere manually.

This section establishes a full-matrix state-space model that enables access to linear

algebra and linear control theory for any non-laminar solution — not only invariant

solutions, but any three-dimensional steady state — while reducing the dimension of

the dynamical state by half. This latter point is particularly important for the later

chapter 6 on the determination of the optimal control law. This law indeed derives

from the solution of high-dimensional quadratic equation, called the “Riccati equation”,

which requires a large amount of memory and computational time when targeting an

Invariant Solution (IS). The reduction in dimension is a game-changer to access this

solution and determine the optimal control law.

4.6.1 Derivation of the OSSE model

A steady non-laminar state of the form

Ū = (Ū(x, y, z), V̄ (x, y, z), W̄ (x, y, z)). (4.55)



64
Chapter 4 Modeling - The Linear Orr-Sommerfeld Squire model extended for a

non-laminar solution

is inserted into the NSE 4.4. The linearisation around this steady non-laminar state,

after neglecting body forces and non-linear terms, follows as

∂u

∂t
=

1

Re
∇2u − ∂p

∂x
− u

∂Ū

∂x
− Ū

∂u

∂x
− v

∂Ū

∂y
− V̄

∂u

∂y
− w∂Ū

∂z
− W̄

∂u

∂z
, (4.56a)

∂v

∂t
=

1

Re
∇2v − ∂p

∂y
− u

∂V̄

∂x
− Ū

∂v

∂x
− v

∂V̄

∂y
− V̄

∂v

∂y
− w∂V̄

∂z
− W̄

∂v

∂z
, (4.56b)

∂w

∂t
=

1

Re
∇2w − ∂p

∂z
− u

∂W̄

∂x
− Ū

∂w

∂x
− v

∂W̄

∂y
− V̄

∂w

∂y
− w∂W̄

∂z
− W̄ ∂w

∂z
, (4.56c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (4.56d)

Equations 4.56 are then transformed in the same manner as the derivation of the OSS

model presented in section 4.5.

Time-variation of the wall-normal velocity v

Firstly, the Laplacian of equation 4.56b is taken and the pressure scalar-field p is elim-

inated via the Poisson equation 4.8. Rearranging the terms, the time-variation of the

velocity v can be expressed in function of the velocities u, v and w as

∂

∂t
∇2v =

[
+ 2

∂2Ū

∂xy

∂

∂x
+ 2

∂Ū

∂x

∂2

∂xy
+ 2

∂V̄

∂x

∂2

∂y2
+ 2

∂2W̄

∂xy

∂

∂z
+ 2

∂W̄

∂x

∂2

∂yz

− ∂V̄

∂x
∇2 − 2

∂2V̄

∂x2

∂

∂x
− 2

∂2V̄

∂xz

∂

∂z
− ∂∇2V̄

∂x

]
u

+

[
1

Re
∇4 + 2

∂2Ū

∂y2

∂

∂x
+ 2

∂2V̄

∂y2

∂

∂y
+ 2

∂2W̄

∂y2

∂

∂z

− ∇2Ū
∂

∂x
− 2

∂Ū

∂x

∂2

∂x2
− 2

∂Ū

∂z

∂2

∂xz
− Ū

∂∇2

∂x

− ∂V̄

∂y
∇2 − 2

∂2V̄

∂xy

∂

∂x
− 2

∂2V̄

∂y2

∂

∂y
− 2

∂2V̄

∂yz

∂

∂z
− ∂∇2V̄

∂y

− ∇2V̄
∂

∂y
− 2

∂V̄

∂x

∂2

∂xy
− 2

∂V̄

∂z

∂2v

∂yz
− V̄

∂∇2

∂y

− ∇2W̄
∂

∂z
− 2

∂W̄

∂x

∂2

∂xz
− 2

∂W̄

∂z

∂2

∂z2
− W̄

∂∇2

∂z

]
v

+

[
2
∂2Ū

∂yz

∂

∂x
+ 2

∂Ū

∂z

∂2

∂xy
+ 2

∂V̄

∂z

∂2

∂y2
+ 2

∂2W̄

∂yz

∂

∂z
+ 2

∂W̄

∂z

∂2

∂yz

− ∂V̄

∂z
∇2 − 2

∂2V̄

∂xz

∂

∂x
− 2

∂2V̄

∂z2

∂

∂z
− ∂∇2V̄

∂z

]
w.

(4.57)
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Time-variation of the wall-normal vorticity ηy

To describe the complete 3D problem, the wall-normal vorticity η(y) 4.43 is introduced

and differentiated in time,
∂ηy
∂t

=
∂

∂z

∂u

∂t
− ∂

∂x

∂w

∂t
. (4.58)

The time-differentiation of stream-wise u and span-wise w components are eliminated

with expressions 4.56a and 4.56c. After some rearranging, the time-evolution of wall-

normal vorticity ηy follows as

∂ηy
∂t

=

[
1

Re
∇2 − Ū ∂

∂x
− V̄ ∂

∂y
− W̄ ∂

∂z
− ∂Ū

∂x
− ∂W̄

∂z

]
ηy

+

[
− ∂2Ū

∂xz
− ∂Ū

∂z

∂

∂x
− ∂V̄

∂z

∂

∂y
+
∂W̄

∂x

∂

∂x
+
∂2W̄

∂x2

]
u

+

[
− ∂Ū

∂y

∂

∂z
− ∂2Ū

∂yz
+
∂W̄

∂y

∂

∂x
+
∂2W̄

∂xy

]
v

+

[
− ∂Ū

∂z

∂

∂z
− ∂2Ū

∂z2
+
∂V̄

∂x

∂

∂y
+
∂W̄

∂x

∂

∂z
+
∂2W̄

∂xz

]
w.

(4.59)

Equations 4.57 and 4.59 form the velocity-vorticity formulation for the OSSE.

4.6.2 Streamwise and spanwise discretisation of the OSSE model

Fourier series

The system formed by equations 4.57 and 4.59 is discretised with Fourier methods

in the steam-wise and span-wise direction, as it corresponds to a Channel geometry

(see §4.4.2). For this reason, Fourier discretisation of each variable in the stream- and
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spanwise directions are introduced as

u(x, y, z, t) ≈
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

ûα,β(y, t) eι(αx+βz), (4.60a)

v(x, y, z, t) ≈
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

v̂α,β(y, t) eι(αx+βz), (4.60b)

w(x, y, z, t) ≈
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

ŵα,β(y, t) eι(αx+βz), (4.60c)

ηy(x, y, z, t) ≈
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

η̂α,β(y, t) eι(αx+βz), (4.60d)

Ū(x, y, z) ≈
N ′x/2∑

k′x=−N
′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Ûα′,β′(y) eι(α
′x+β′z), (4.60e)

V̄ (x, y, z) ≈
N ′x/2∑

k′x=−N
′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

V̂α′,β′(y) eι(α
′x+β′z), (4.60f)

W̄ (x, y, z) ≈
N ′x/2∑

k′x=−N
′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Ŵα′,β′(y) eι(α
′x+β′z). (4.60g)

Correlation property of Fourier series

The correlation property of Fourier series is necessary for the following steps,∑
k′

c′k′e
ιk′t
∑
k

cke
ιkt =

∑
k

(∑
k′

c′k′ck−k′
)
eιkt, (4.61)

which applies in this case as

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Âα′,β′(y)eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

B̂α,β(y, t)eι(αx+βz) =

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

( N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Âα′,β′(y)B̂α−α′,β−β′(y, t)
)
eι(αx+βz).

(4.62)
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Note on correlation of Fourier series and Real Fast Fourier Transform

The Fourier discretisation in the stream- and span-wise directions of a function u(x, y, z, t),

u(x, y, z, t) =

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

ûkx,kz(y, t)e
ι(kxx+kzz), (4.63)

is in practice operated by two successive Fast Fourier Transforms. The first FFT per-

forms the span-wise discretisation: the real-type dataset of physical variables is trans-

formed into a complex-type dataset of Fourier coefficients in the span-wise direction, but

still physical in the stream-wise direction. The second FFT performs the stream-wise

discretisation: the latter dataset is transformed into a complex-type dataset of Fourier

coefficients for both stream- and span-wise directions. The final spectral dataset is of

dimension Nx ×Nz.

x
Physical×

z
Physical

Real, Nx ×Nz
=⇒
FFT

x
Physical×

z
Fourier

Complex, Nx ×Nz
=⇒
FFT

x
Fourier×

z
Fourier

Complex, Nx ×Nz

In the case of a purely real dataset, the positive and negative Fourier coefficients are

complex conjugate,

ûkz(x, y, t) = û−kz(x, y, t)
∗. (4.64)

Therefore, calculating only the positive Fourier coefficients lead to the same accuracy,

for a final spectrum of dimension Nx×
(
Nz
2 +1

)
. This method is called Real Fast Fourier

Transform (RFFT), and can be applied instead of the first FFT —before the coefficients

become complex.

x
Physical×

z
Physical

Real, Nx ×Nz
=⇒

RFFT

x
Physical×

z
Fourier

Complex, Nx ×
(Nz

2
+ 1

) =⇒
FFT

x
Fourier×

z
Fourier

Complex, Nx ×
(Nz

2
+ 1

)
Channelflow takes advantage of this property. Nonetheless, the implementation of the

RFFT into the OSSE model is not straightforward, even if the method numpy.fft.rfft

is available in Python. The convolution of Fourier series wraps indeed “around the

edges” of the domain, thus requiring both positive and negative Fourier modes. Fur-

thermore, the complex-conjugation operation is not a linear process, and thereby can

not be translated into a linear algebraic operation. For these reasons, the RFFT can

not be employed directly within the OSSE model, and the entire Fourier spectrum is

stored.

Even so, a modification in the structure of the system can avoid this limitation. It

consists in separating the real and imaginary part of the state-vector x and reshaping

the entire model. This is actually the purpose of the Real Orr-Sommerfeld Squire model

Extended for a non-laminar solution (ROSSE) detailed in section 4.7.
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Stream-wise and span-wise discretisation of the wall-normal vorticity ηy

Correlation of Fourier series applied to 4.59 leads to the expression of the wall-normal

vorticity time-variation as a function of the different modes of ηy, u, v and w as

∂ηy
∂t

=

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

1

Re
∇2η̂α,β(y, t) eι(αx+βz)

+

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

eι(αx+βz)

[
−
(
ι(α− α′)Ûα′,β′(y, t) + V̂α′,β′(y, t)

∂

∂y
+ ι(β − β′)Ŵα′,β′(y, t)

+ ια′Ûα′,β′(y, t) + ιβ′Ŵα′,β′(y, t)

)
η̂α−α′,β−β′(y, t)

+

(
α′β′Ûα′,β′(y, t) + β′(α− α′)Ûα′,β′(y, t)− ιβ′V̂α′,β′(y, t)

∂

∂y

− α′(α− α′)Ŵα′,β′(y, t)− α′2Ŵα′,β′(y, t)

)
ûα−α′,β−β′(y, t)

+

(
− ι(β − β′)

∂Ûα′,β′(y, t)

∂y
− ιβ′

∂Ûα′,β′(y, t)

∂y

+ ι(α− α′)
∂Ŵα′,β′(y, t)

∂y
+ ια′

∂Ŵα′,β′(y, t)

∂y

)
v̂α−α′,β−β′(y, t)

+

(
β′(β − β′)Ûα′,β′(y, t) + β′2Ûα′,β′(y, t) + ια′V̂α′,β′(y, t)

∂

∂y

− α′(β − β′)Ŵα′,β′(y, t)− α′β′Ŵα′,β′(y, t)

)
ŵα−α′,β−β′(y, t)

]
.

(4.65)

The Fourier bases {eιαx} and {eιβz} are orthogonal. Consequently, each Fourier coef-

ficient η̂α,β of the LHS of eq. 4.65 can be expressed individually. Nonetheless, and in

contrast to the OSS derivation, due to the correlation of Fourier series on the RHS of

eq. 4.65, the coefficient η̂αi,βj is function of the entire set of coefficients ûαk 6=αi,βl 6=βj ,

v̂αk 6=αi,βl 6=βj , ŵαk 6=αi,βl 6=βj and η̂αk 6=αi,βl 6=βj . In other words, the derivation no longer

diagonalizes with Fourier wavenumber.

For each wavenumber pair (α, β), the Fourier coefficients {ûα,β} and {ŵα,β} of the steam-

and span-wise velocity components are replaced by their respective expressions given in

C.5 and C.4. The wavenumber pair (α = 0, β = 0) is a particular case, as η̂0,0 is not

defined. Therefore, the Fourier coefficients {û0,0} and {ŵ0,0} can not be retrieved with

expressions C.5 and C.4. For this reason, the state will be composed of all the modes of

the wall-normal velocity {v̂α,β}, all the modes excepted the pair (0, 0) of the wall-normal

vorticity {η̂α,β}, and the Fourier coefficients û0,0 and ŵ0,0.
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By applying these remarks to eq. 4.65 and rearranging, the Fourier coefficients η̂α,β can

be expressed as

∂η̂α,β
∂t

=

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Fα,β,
α′,β′

v̂α−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Gα,β,
α′,β′

v̂α−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
Hα,β,
α′,β′

+ Jα,β,
α′,β′

]
η̂α−α′,β−β′(y, t)

+
1

Re
∇2η̂α,β(y, t) +Kα,β,

0,0
û0,0(y, t) + Lα,β,

0,0
ŵ0,0(y, t),

(4.66)

where the coefficients F,G,H, JK,L are given in the appendix D.1.

Streamwise and spanwise discretisation of the wall-normal velocity v

Equation 4.57 receives the same treatment in order to obtain an expression for all the

Fourier coefficients v̂α,β as a function of all the modes of the wall-normal velocity {v̂α,β},
all the modes excepted the pair (0, 0) of the wall-normal vorticity {η̂α,β}, and the Fourier

coefficients û0,0 and ŵ0,0. After rearranging, it leads to the expression

∂

∂t
∇̂2v̂α,β(y, t) =

1

Re
∇̂4
α,β v̂α,β(y, t) +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Aα,β,
α′,β′

v̂α−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

Bα,β,
α′,β′

v̂α−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

Cα,β,
α′,β′

η̂α−α′,β−β′(y, t)

+Dα,β,
0,0

û0,0(y, t) + Eα,β,
0,0

ŵ0,0(y, t),

(4.67)

where the coefficients A,B,C,D,E are given in the appendix D.1.
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Streamwise and spanwise discretisation of the streamwise velocity to deter-

mine û0,0(y, t)

The OSSE still requires the expression of û0,0(y, t), which is obtained from equation

4.56a, considering only the pair (α = 0, β = 0)

∂ûα=0,β=0

∂t
=

1

Re
∇̂2

0,0û0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

[
− ια′Ûα′,β′ ûα−α′,β−β′ − ι(α− α′)Ûα′,β′ ûα−α′,β−β′

−
∂Ûα′,β′

∂y
v̂α−α′,β−β′ − V̂α′,β′

∂ûα−α′,β−β′

∂y

− ιβ′Ûα′,β′ŵα−α′,β−β′ − ι(β − β′)Ŵα′,β′ ûα−α′,β−β′

]
,

=
1

Re
∇̂2

0,0û0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

[
−
∂Ûα′,β′

∂y
v̂−α′,−β′ − V̂α′,β′

∂û−α′,−β′

∂y

− ιβ′Ûα′,β′ŵ−α′,−β′ + ιβ′Ŵα′,β′ û−α′,−β′

]
.

(4.68)

Replacing ûα,β and ŵα,β by their expressions C.5 and C.4 leads to the final expression

∂û0,0

∂t
=

[
1

Re
∇̂2

0,0 − V̂0,0
∂

∂y

]
û0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Mα′,β′ v̂−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Nα′,β′ v̂−α′,−β′ +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

Oα′,β′ η̂−α′,−β′ ,

(4.69)

where the coefficients M,N,O are given in the appendix D.1.
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Streamwise and spanwise discretisation of the spanwise velocity to determine

ŵ0,0(y, t)

Finally, the expression of ŵ0,0(y, t) is obtained from equation 4.56c, considering only the

pair (α = 0, β = 0) and rearranging,

∂ŵ0,0

∂t
=

[
1

Re
∇̂2

0,0 − V̂0,0
∂

∂y

]
ŵ0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Pα′,β′ v̂−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

Qα′,β′ v̂−α′,−β′ +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Rα′,β′ η̂−α′,−β′ ,

(4.70)

where the coefficients P,Q,R are given in the appendix D.1.

4.6.3 Wall-normal discretisation of the Orr-Sommerfeld Squire Model

extended for a non-laminar solution

Chebyshev series

For a channel geometry (§4.4.2), clamped boudary conditions are imposed at the upper

and lower borders of the domain, breaking the wall-normal periodicity. Chebyshev

method is adopted for the discretisation in this direction. We remind the reader that

due to the Dirichlet boundary condition, only the internal block matrices are considered,

i.e. the block-matrix of size (Ny − 2)× (Ny − 2) excluding the column and rows of zero.

Just as the derivation of the OSS model (§4.5.2), the Fourier coefficients for each
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wavenumber pair (α, β) introduced in equations 4.60 can be approximated in the wall-

normal direction with their associated Chebyshev series as

ûα,β(y, t) ≈
Ny∑
ny=0

ũα,β(t)Tny(y), (4.71a)

v̂α,β(y, t) ≈
Ny∑
ny=0

ṽα,β(t)Tny(y), (4.71b)

ŵα,β(y, t) ≈
Ny∑
ny=0

w̃α,β(t)Tny(y), (4.71c)

η̂α,β(y, t) ≈
Ny∑
ny=0

η̃α,β(t)Tny(y), (4.71d)

Ûα′,β′(y) ≈
Ny∑
ny=0

Ũα′,β′ Tny(y), (4.71e)

V̂α′,β′(y) ≈
Ny∑
ny=0

Ṽα′,β′ Tny(y), (4.71f)

Ŵα′,β′(y) ≈
Ny∑
ny=0

W̃α′,β′ Tny(y). (4.71g)

Remark on notations: In the following development, we distinguish the differentiation

operators dedicated to the baseflow Ū from the ones dedicated to the perturbation u.

The differentiation matrices of the baseflow are noted with with ·0, e.g. D0 and∇2
0. They

are never imposed with any boundary condition. On the contrary, the differentiation

matrices of the perturbations are not marked with any notation, e.g. D, ∇2 and ∇4.

They can be imposed with Dirichlet or Neumann boundary condition if necessary.

As a reminder, the expressions of ∇̃2, ∇̃4 and ∇̃2
0 are

∇̃2
0 = D2

0 − k2I, (4.72a)

∇̃2 = D2 − k2I, (4.72b)

∇̃4 = D4 − 2k2D2 + k4I. (4.72c)
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Wall-normal discretisation of the wall-normal velocity v

Applying the Chebyshev method to equation 4.67 leads to

∂

∂t
∇̃2ṽα,β(y, t) =

1

Re
∇̃4
α,β ṽα,β(y, t) +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Ãα,β,
α′,β′

ṽα−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

B̃α,β,
α′,β′

ṽα−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

C̃α,β,
α′,β′

η̃α−α′,β−β′(y, t)

+ D̃α,β,
0,0

ũ0,0(y, t) + Ẽα,β,
0,0

w̃0,0(y, t),

(4.73)

where the coefficients Ã, B̃, C̃, D̃, Ẽ are given in the appendix D.2.

Wall-normal discretisation of the wall-normal vorticity ηy

Applying the Chebyshev method to equation 4.66 leads to

∂η̃α,β
∂t

=

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

F̃α,β,
α′,β′

ṽα−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

G̃α,β,
α′,β′

ṽα−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
H̃α,β,
α′,β′

+ J̃α,β,
α′,β′

]
η̃α−α′,β−β′(y, t)

+
1

Re
∇̃2η̃α,β(y, t) + K̃α,β,

0,0
ũ0,0(y, t) + L̃α,β,

0,0
w̃0,0(y, t),

(4.74)

where the coefficients F̃ , G̃, H̃, J̃ , K̃, L̃ are given in the appendix D.2.
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Wall-normal discretisation of the streamwise velocity to determine ũ0,0(y, t)

Applying the Chebyshev method to equation 4.69 leads to

∂ũ0,0

∂t
=

[
1

Re
∇̃2

0,0 − Ṽ0,0
∂

∂y

]
ũ0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

M̃α′,β′ ṽ−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Ñα′,β′ ṽ−α′,−β′ +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

Õα′,β′ η̃−α′,−β′ ,

(4.75)

where the coefficients M̃, Ñ , Õ are given in the appendix D.2.

Wall-normal discretisation of the spanwise velocity to determine w̃0,0(y, t)

Applying the Chebyshev method to equation 4.70 leads to

∂w̃0,0

∂t
=

[
1

Re
∇̃2

0,0 − Ṽ0,0
∂

∂y

]
w̃0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

P̃α′,β′ ṽ−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Q̃α′,β′ ṽ−α′,−β′ +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

R̃α′,β′ η̃−α′,−β′ ,

(4.76)

where the coefficients P̃ , Q̃, R̃ are given in the appendix D.2.

4.6.4 On the need for odd resolution for streamwise, wall-normal and

spanwise directions

Stream- and spanwise direction

The correlation of Fourier coefficients necessitates an odd number N of Fourier coeffi-

cients in the stream- and spanwise directions: one fundamental mode, N−1
2 coefficients

for the positive modes, and N−1
2 for the negative ones, where positive and negative modes

are complex conjugate. Otherwise, the complex conjugation property of the model is

broken, leading to non-physical results. A treatment of the even case could be imple-

mented by adding a row of zero, but it would increase the dimension on the system

without any benefit for the calculation.
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The correlation of Fourier coefficients indeed wraps around the edges of the domain.

For an even number of Fourier coefficients, the Fourier mode v -N
2

will not be associated

with its missing complex-conjugate counterpart v +N
2

. This mode is here referred to as

“solitary”. Within the correlation process, the Fourier coefficients {vα} of the state-

vector are correlated with the solitary mode v -N
2

at the edge of the domain (the red

boxes in fig. 4.1(a)), but not with its missing complex-conjugate counterpart. As a

result, the imaginary parts of an integrated state-vector or the eigen-decomposition of

the model is not distributed evenly, leading to flowfields with an non-physical imaginary

part once transformed into their physical state. This demonstration is supported by

fig. 4.1(a), where the coefficients of the correlated operator Aα,α′ are made explicit for

the stream-wise direction, and by fig.4.1(b) for an odd number of coefficients, where the

correlation operates properly.

Note: the Fourier modes with indices outside the spectrum are not defined, and therefore

replaced by zeros (the black crosses in fig. 4.1(a) and 4.1(b)).

Wall-normal direction

To the author’s knowledge, the requirement for an odd resolution in the Chebyshev

discretisation of the wall-normal direction has not been fully explained in the litera-

ture. Most studies (Gibson et al., 2008, 2009, 2019; Ahmed, 2018) actually use an odd

resolution, but do not give details or argument. The conclusion of discussions with

Florian Reetz (Gibson et al., 2019) was that the odd-resolution is necessary to enforce

complex-conjugation of the spectrum. Chebyshev series can indeed be considered as co-

sine Fourier series, and an even number of Fourier modes breaks the complex-conjugation

if the input data is not purely real and RFFT used.

4.6.5 Block expression of the Orr-Sommerfeld Squire Model extended

for a non-laminar solution

The expressions of the wall-normal velocity modes 4.73, wall-normal vorticity modes

4.74, streamwise velocity fundamental mode 4.75 and spanwise velocity fundamental
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a) Even number of Fourier coefficients.
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b) Odd number of Fourier coefficients.

Figure 4.1: Correlation for an even or odd number of Fourier coefficients. The
complex-conjugate pairs are indicated by the identical dash-style and colour. The fun-
damental mode (0, 0) is always purely real. The modes outside of the Fourier spectrum
are eliminated and replaced with zeros, as not defined (black crosses). For even num-
bers, due to the presence of the state-vector coefficient v−3,the solitary coefficients (red
boxes) does not possess their complex-conjugate counterpart. For odd number, each
mode can be associated with its complex-conjugate counterpart and the correlation is

evenly distributed and the correlated model is perfectly defined.
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mode 4.76 can be assembled into a unique matrix as

∂x̃(t)

∂t
= L x̃(t)

= Υ


1
Re∇̃

4 + Ã+ B̃ C̃ D̃ Ẽ

F̃ + G̃ 1
Re∇̃

2 + H̃ + J̃ K̃ L̃

M̃ + Ñ Õ 1
Re∇̃

2
0,0 − Ṽ0,0

∂
∂y 0

P̃ + Q̃ R̃ 0 1
Re∇̃

2
0,0 − Ṽ0,0

∂
∂y





ṽ0≤i<Nα,
0≤j<Nβ

η̃0≤i<Nα,
0≤j<Nβ
(i,j)6=(0,0)

ũ0,0

w̃0,0


,

(4.77)

where

Υ =


∇̃−2 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

 . (4.78)

We remind the reader, that unlike the OSS model derived in section 4.5, all wavenumbers

pairs (α, β) of the wall-normal velocity v and wall-normal vorticity ηy (except the pair

(0, 0)) are considered. Moreover, due to the wall-normal discretisation and the imposi-

tion of the Dirichlet boundary conditions, each block is of dimension (Ny−2)×(Ny−2).

Therefore, the total dimension of the model is

dim(L) =
[
Nα ×Nβ + (Nα ×Nβ − 1) + 2

]2 × (Ny − 2)2 (4.79)

instead of
[
4×Nα ×Nβ

]2 × (Ny − 2)2 for the original linearized NSE (§4.1.1).

4.7 Real Orr-Sommerfeld Squire Model extended for a

non-laminar solution as base-flow (ROSSE), using com-

plex conjugation property

The state-vector of the OSSE model possess a complex-conjugation symmetry: the wave-

number pair (α, β) is the complex conjugate of the pair (−α,−β). This implies that

only half of the Fourier coefficients could be required to determine the entire spectrum.

The OSSE model does not benefit from this property, as the correlation of Fourier series

wraps around the edges of the domain and the complex-conjugation is not a linear

operation (see §4.6). It is impossible to directly profit from this symmetry when the

state-vector of the model is a vector of complex Fourier coefficients.

Nonetheless, apprehending the issue in a different manner can solve it. A new definition

of the state-vector and data management is indeed advantageous: a real-valued state-

vector can be formed by separating and stacking the real and imaginary part of the
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former complex-valued state-vector. This results in an equivalent purey-real model, the

Real Orr-Sommerfeld Squire model Extended for a non-laminar solution (ROSSE), in

which the complex-conjugation symmetry can be exploited.

4.7.1 Textbook case

Let’s consider a simple linear system

∂x

∂t
= Ax, (4.80)

where the Fourier spectrum of x is composed of three coefficients, such that x =

[x−1, x0, x+1]T . The complex-conjugation symmetry translates as

ẋ+1 = ẋ∗−1 and x+1 = x∗−1. (4.81)

In matrix form, considering only the evolution of x+1 for this demonstration, this simple

linear system can be expressed as

∂

∂t

x+1

x0

x−1

 =

A+1 A0 A−1

· · ·
· · ·


x+1

x0

x−1

 =

A−1 A0 A+1

· · ·
· · ·


x
∗
−1

x0

x∗+1

 . (4.82)

The Fourier coefficient ẋ+1 can be expressed as a function of x0 and x+1 without any

complex-conjugation operation, with < and = standing for real and imaginary part
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respectively,

∂x+1

∂t
= A+1x+1 +A0x0 +A−1x−1

=
(
<(A+1) + ι=(A+1)

) (
<(x+1) + ι=(x+1)

)
+
(
<(A0) + ι=(A0)

) (
<(x0) + ι=(x0)

)
+
(
<(A−1) + ι=(A−1)

) (
<(x−1) + ι=(x−1)

)
=
(
<(A+1) + ι=(A+1)

) (
<(x+1) + ι=(x+1)

)
+
(
<(A0) + ι=(A0)

) (
<(x0) + ι=(x0)

)
+
(
<(A−1) + ι=(A−1)

) (
<(x+1) − ι=(x+1)

)
= +<(A+1) <(x+1)−=(A+1) =(x+1)

+ <(A0) <(x0)−=(A0) =(x0)

+ <(A−1) <(x+1) + =(A−1) =(x+1)

+ ι
(

+ =(A) <(x+1) + <(A) =(x+1)

+ =(A0) <(x0) + <(A0) =(x0)

+ =(A−1) <(x+1)−<(A−1) =(x+1)
)

= +<(A0) <(x0)−=(A0) =(x0)

+
(

+ <(A+1) + <(A−1)
)
<(x+1) +

(
−=(A+1) + =(A−1)

)
=(x+1)

+ ι
(

+ =(A0) <(x0) + <(B) =(x0)

+
(

+ =(A+1) + =(A−1)
)
<(x+1) +

(
+ <(A+1)−<(A−1)

)
=(x+1)

)
= <(

∂x

∂t
) + ι=(

∂x

∂t
).

(4.83)

By separating and stacking the real and imaginary part of the former complex-valued

state-vector, it is possible to define a new purely-real state-vector,

xOSSE =

x+1

x0

x∗+1

 =⇒ xROSSE =


<(x+1)

<(x0)

=(x+1)

=(x0)

 , (4.84)

and exploit the result of eq.4.83 in matrix form,

∂x+1

∂t
=

[
<(∂x∂t )

=(∂x∂t )

]

=

[
+<(A+1) + <(A−1) +<(A0) −=(A+1) + =(A−1) −=(A0)

+=(A+1) + =(A−1) +=(A0) +<(A+1)−<(A−1) +<(A0)

]
<(x+1)

<(x0)

=(x+1)

=(x0)

 .
(4.85)
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The coefficient v−1 was eliminated without any loss of accuracy. The matrix A−1 is

required, but immediately summed to their associated complex-conjugate counterpart,

therefore not requiring any extra memory.

4.7.2 Block expression of the Real Orr-Sommerfeld Squire Model ex-

tended for a non-laminar solution

The substitution into a purely-real state-vector is applied to the final expression 4.77 of

the OSSE model by separating the positive span-wise modes (β ≥ 0) from the strictly

negative span-wise modes (β < 0). It leads to the final block expression of the Real

Orr-Sommerfeld Squire model Extended for a non-laminar solution (ROSSE),

∂x̃(t)

∂t
= LROSSE x̃(t)

=

[
+<(LOSSE,β≥0) + <(LOSSE,β<0) −=(LOSSE,β≥0) + =(LOSSE,β<0)

+=(LOSSE,β≥0) + =(LOSSE,β<0) +<(LOSSE,β≥0)−<(LOSSE,β<0)

]
x̃(t),

(4.86)

where the state-vector x is expressed as

x(t) =

[
<(xOSSE,β≥0)

=(xOSSE,β≥0)

]
=


<


ṽβ≥0

η̃β≥0

ũ0,0

w̃0,0


=
[
...
]


. (4.87)

4.8 Validation of OSSE and ROSSE models against Chan-

nelflow

The OSSE and ROSSE models are validated by comparing the leading eigenvalues of

different equilibria against the ones obtained with Channelflow (Gibson et al., 2008;

Gibson, 2014; Gibson et al., 2019). Exactly, table 4.1 gathers the largest real-part

eigenvalues of matrices L in eq.4.77 for the OSSE model and eq.4.86 for the ROSSE

model. The chosen equilibria are EQ1 (Nagata, 1990; Waleffe, 2003), EQ2 (Nagata,

1997), EQ5, EQ9, EQ11 (Gibson et al., 2009; Halcrow, 2008) and EQ19, EQ24 (Ahmed

and Sharma, 2017). They are available in the database on channelflow.org and in the

files uploaded alongside this thesis (app. A).

The original resolution of these equilibria is 32 × 35 × 32 and is used to calculate the

eigenmodes with Channelflow. To build the OSSE and ROSSE matrix operators within

memory limitation, this resolution is reduced to 21×35×21 with the method changegrid

of Channelflow. A Newton-Krylov-hookstep search is necessary as the reduction —

a truncation of high order Fourier modes— only results in an approximated solution,
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which may not be an actual Invariant Solution at this resolution. The low-dimensional

equilibria are thus obtained by calling the following methods from channelflow:

changegrid --Nx 32 --Nz 32 eqX_32x35x32.h5 eqX_21x35x21.h5

findsoln -eqb -R 400 eqX_21x35x21.h5

For Channelflow, the leading eigenvalues are calculated via the arnoldi command

with default parameters. This method uses an Arnoldi iteration, which estimates the

eigenvalues of a matrix A by iteratively constructing a QR decomposition of a matrix

whose columns are [Ab,A2b, ...] where b is an arbitrary starting vector (Viswanath, 2007;

Bau and Trefethen, 1997).

For the OSSE and ROSSE linear models, calculations are operated with the method

eigs of the Python scientific package scipy.sparse.linalg. This method is a wrap-

per to ARPACK functions using the Implicitly Restarted Arnoldi Method to find the

eigenvalues and eigenvectors (scipy documentation). eigs is called in osse_eigen.py

and rosse_eigen.py in the OSSE package (app. A) with parameters:

k = 20

sigma = 0.2

which = ‘SR’

tolerance = 0

This method is the most straightforward within Python to compute a limited number

k of eigenvalues, as alternatives like numpy.linalg.eig or scipy.linalg.eig target

the entire eigen-decomposition, which is out-of-reach in this case. For a resolution of

21×35×21, the calculations takes a couple minute on High Performance Cluster (HPC)

Iridis5 and requires around 73Gb of memory for the OSSE model and 53Gb for the

ROSSE model.

Eigenvalues are gathered in table 4.1. They are considered valid when matching at the

3rd rounded decimal. The OSSE and ROSSE models are validated for solutions EQ1,

EQ2, EQ9 and EQ19. All the leading eigenvalues of EQ1 and EQ19 are found, up to

the 15th for EQ1 —which may actually be hidden by the spurious modes— and up

to the 10th for EQ19. Two eigenvalues are missing for EQ2 (incl. one positive), and

three for EQ9, within the ten leading values. Nonetheless, the algorithm likely misses

them as they are adjacent to others values. The assessment is more problematic for

EQ5, EQ11 and EQ24. Within the ten leading eigenvalues, four are missing for EQ5

(incl. two positive) and five for EQ11 (incl. 4 positive). Out of the ten leading positive

eigenvalues of EQ24, only the four with biggest real-part are found. The model can not

be considered as validated for EQ5, EQ11 and EQ24.

Two spurious eigenmodes −0.02467401 and −0.05047682 are always present in the eigen-

decomposition. These modes are not related to any physical properties of the solution,

but to the linear models themselves. They are indeed likely due to the rows/columns



82
Chapter 4 Modeling - The Linear Orr-Sommerfeld Squire model extended for a

non-laminar solution

associated with the imaginary part of the fundamental mode v00. These rows/columns

do not interfere in the time-integration of the model, as the imaginary part of v00 is

always null, but brings non-physical eigenmodes. Others spurious modes were actually

appearing for the ROSSE model, and the removal of the rows/columns associated with

the imaginary parts of u00 and w00, which are always null as both modes are fundamental

and therefore purely real, solved the problem. The same operation can be done here for

the OSSE model, but the issue appeared too late in the development.

The discrepancies between Channelflow and the linear models can be caused by different

factors:

� Eigenvalues with higher positive real-part are usually the easiest ones to find nu-

merically. Therefore, we expect the find these with greater accuracy than eigen-

values with smaller absolute real-part (slow dynamical evolution) or with a high

negative real-part (highly stable, impact on longer time span).

� The reduction into a resolution 21× 35× 21 seems sufficient for stable and highly

symmetric solutions (EQ1, EQ2, EQ9), but may be problematic for more unstable

ones (EQ5, EQ11, EQ24). First, the truncation of higher Fourier modes operated

by changegrid is straightforward, but the truncated modes may be necessary to

represent the dynamics of the solutions. Others model-reduction methods might

improve these results (see §6.2.3). Second, the new resolution may be too low.

Higher resolutions will presumably increase precision, at the cost of memory re-

quirement. However, it appeared through trials that a resolution of 13 × 35 × 13

already delivers good approximations of the 5 leading eigenmodes. Further re-

search are needed on the grid sensitivity of the eigenvalues calculated for both

Channelflow and linear models. A first comparison can be made with the eigen-

values of EQ1 calculated at resolution 17×27×17 in table 6.1. They did not show

any major discrepancy.

� The eigen-decomposition in Channelflow and scipy are implemented with different

algorithms, which may result in different performance and precision even if the

models are equivalent. Particularly, scipy method seems to struggle to separate

different yet very close eigenvalues. For instance, the spurious modes −0.02467401

of EQ2 seems to conceal four different eigenvalues, and for EQ5, only +0.00979860

was found against +0.00993106, +0.00965382 and +0.00960047 in Channelflow.

Besides that, Channelflow is matrix-free while OSSE is matrix-based.

� The method scipy.sparse.linalg.eigs is designed for sparse matrices. Yet, the

sparsity of matrices L in eq.4.77 and eq.4.86 is decreasing with more sophisticated

equilibrium. Therefore, the sparse package may not be appropriate for some

solutions. Nonetheless, this point should rather affect performance than accuracy.
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Figure 4.2: Nagata (1990) and Waleffe (2003) equilibrium EQ1: Surfaces of constant
streamwise velocity u at ±0.2. The vertical plane in the background is coloured with

the streamwise vorticity ηx. (EQ1, 21× 35× 21, Re = 400)

� The missing eigen-modes in the OSSE and ROSSE models may be found by chang-

ing the parameters, notably sigma, and targeting specifically their neighborhood.

� As a side note, the dissipation rate is not a decisive parameter in the accuracy of

the problem, as EQ2 is among the most dissipative solutions and EQ9 among the

least dissipative ones (Halcrow (2008)[App.2], Ahmed (2018)).

In conclusion, the OSSE and ROSSE reproduces faithfully the eigen-decomposition and

can be used as a linearised approximation of the full NSE around a given Invariant Solu-

tion, for weakly unstable (EQ1, EQ2, EQ9) and/or highly symmetric (EQ19) solutions.

For more unstable solutions (EQ5, EQ11, EQ24), the linear models does not perform

as well and the author does not expect them to describe faithfully the dynamical state-

space around these solutions. Improvements (e.g. increase in resolution) are required

before further application.

The lower-branch Nagata (1990) and Waleffe (2003) equilibrium EQ1, shown in figure

4.2, is the least unstable known Invariant Solution of the NSE. This characteristic is

retrieved in table 4.1, where EQ1 possesses a signle real-part eigenvalue alongside a

pair of eigenvalues on the imaginary axis. Therefore, there exists only a single unstable

direction repelling the turbulent dynamical state. Furthermore, the OSSE and ROSSE

demonstrated their ability to reproduce its dynamical evolution. For these reasons, EQ1

is expected to be the most accessible IS to stabilize and will be used as target solution
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for the following chapters. Another accessible target could be the upper-branch Nagata

(1997) solution EQ2, as within the S-invariant subspace, it only possess one complex

unstable eigenvalue pair (Halcrow, 2008; Gibson et al., 2008).

Table 4.1: Eigenvalues ranked in order of decreasing real-part and computed with the
OSSE model, the ROSSE model and Channelflow for 7 different invariant solutions,
Re = 400. When values rounded at 3 decimals matched, they are marked with X and
spurious modes with ‘SP’. Symbols � and � means that these values are masked in the

linear model by the one below/above.

EQ1 - Nagata (1990) Lower branch

OSSE 21× 35× 21 ROSSE 21× 35× 21 Channelflow 32× 35× 32

X +0.05012054 +0.05012054 +0.05012078

X +0.00000138 +0.00000138 10−7 ±10−7ι

X +0.00000001 +0.00000001 10−7 ±10−7ι

X −0.00200534 −0.00200534 −0.00200445

X −0.00659910 −0.00659910 −0.00659911

X −0.00692664 −0.00692664 −0.00692292

X −0.00972618 −0.00972618 −0.00972762

X −0.01359296 −0.01359296 −0.01359316

X −0.02393202 −0.02393202 −0.02393151

SP −0.02467401 −0.02467401

X −0.03346018 −0.03346018 −0.03346004

X −0.03702671 −0.03702671 −0.03702731

X −0.04260477 −0.04260477 −0.04260414

X −0.04535169 ±0.01888110ι −0.04535169 ±0.01888110ι −0.04535161 ±0.01888120ι

−0.04846660 ±0.10251464ι

SP −0.05047682 −0.05047682

X −0.05181904 ±0.02604207ι −0.05181904 ±0.02604207ι −0.05181919 ±0.02604184ι

X −0.06239186 ±0.03118407ι −0.06239186 ±0.03118407ι −0.06239202 ±0.03118377ι

EQ2 - Nagata (1990) Upper branch

OSSE 21× 35× 21 ROSSE 21× 35× 21 Channelflow 32× 35× 32

X +0.05555202 +0.05555202 +0.05558373

X +0.03255877 ±0.10711583ι +0.03255877 ±0.10711583ι +0.03252937 ±0.10704298ι

X +0.01601887 ±0.03913811ι +0.01601887 ±0.03913811ι +0.01605911 ±0.03923833ι

+0.01529245 ±0.02998246ι

X +0.01103831 +0.01103831 +0.01060373

X +0.00000713 +0.00000713 +0.00000132

X −0.00065954 −0.00065954 −0.00000014

X −0.01409445 ±0.05780379ι −0.01409445 ±0.05780379ι −0.01412155 ±0.05774740ι

X −0.01811532 −0.01811532 −0.01818263

−0.02285790 −0.02091925 ±0.14056723ι



Chapter 4 Modeling - The Linear Orr-Sommerfeld Squire model extended for a
non-laminar solution 85

� −0.02429576 ±0.14794725ι

SP −0.02467401 −0.02467401

� −0.02646828 ±0.00196768ι

� −0.02741358 ±0.14714704ι

−0.02936282 ±0.13875483ι

X −0.03013278 −0.03013278 −0.03030128 ±0.06246476ι

EQ5

OSSE 21× 35× 21 ROSSE 21× 35× 21 Channelflow 32× 35× 32

X +0.07210159 ±0.04064693ι +0.07210159 ±0.04064693ι +0.07212103 ±0.04075036ι

X +0.06259841 +0.06259841 +0.06209489

X +0.06168816 +0.06168816 +0.06162058

X +0.02061638 ±0.07305312ι +0.02061638 ±0.07305312ι +0.02073339 ±0.07355100ι

� +0.00993106

X +0.00979860 ±0.04548006ι +0.00979860 ±0.04548006ι +0.00965382 ±0.04551335ι

� +0.00960047 ±0.08394279ι

+0.00574598 ±0.00800997ι +0.00574598 ±0.00800997ι

−0.00000267

−0.00000696

−0.00132926 −0.00132926 −0.00013456 ±0.08303027ι

−0.00406003 −0.00406003

−0.00617177

−0.00778639 ±0.13720939ι

−0.01064599

X −0.01285079 −0.01285079 −0.01220323 ±0.03672581ι

−0.01539742 ±0.03662021ι

SP −0.02467401 −0.02467401

−0.03451090 ±0.08674001ι

� −0.03719165 ±0.09884040ι

X −0.03756857 −0.03756857 −0.03748275

X −0.04008928 −0.04008928 −0.04016649

EQ9

OSSE 21× 35× 21 ROSSE 21× 35× 21 Channelflow 32× 35× 32

X +0.02629998 ±0.04209693ι +0.02629998 ±0.04209693ι +0.02629552 ±0.04209125ι

X +0.02530910 +0.02530910 +0.02529671

X +0.01933696 +0.01933696 +0.01933566

X +0.01028392 +0.01028392 +0.01031501

X +0.00001539 ±0.00003944ι +0.00001539 ±0.00003944ι −0.00000036

� −0.00000162

X −0.00501738 ±0.00059604ι −0.00501738 ±0.00059604ι −0.00501190 ±0.00062749ι
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X −0.02346857 ±0.00530498ι −0.02346857 ±0.00530498ι −0.02346866 ±0.00530618ι

SP −0.02467401 −0.02467401

� −0.02501237 ±0.05424261ι

−0.02873648 ±0.02233396ι

X −0.03718196 −0.03718196 −0.03719305

X −0.04516535 ±0.03238501ι −0.04516535 ±0.03238501ι −0.04516177 ±0.03240437ι

� −0.04538517 ±0.14231959ι

� −0.05011678 ±0.08033021ι

SP −0.05047682 −0.05047682

−0.05615180 ±0.07082476ι

X −0.06120994 −0.06120994 −0.06120824

−0.07014509 ±0.13116546ι

X −0.07044091 ±0.06334584ι −0.07044091 ±0.06334584ι −0.07044820 ±0.06335238ι

EQ11

OSSE 21× 35× 21 ROSSE 21× 35× 21 Channelflow 32× 35× 32

X +0.14091050 ±0.10532217ι +0.14091050 ±0.10532217ι +0.14083617 ±0.10427852ι

X +0.13495067 ±0.09708295ι +0.13495067 ±0.09708295ι +0.13443208 ±0.09650974ι

X +0.09700629 ±0.12295428ι +0.09663490 ±0.12338217ι

+0.03449817 ±0.03905176ι

+0.02621630 +0.02621630 +0.02401259

X +0.01757360 ±0.07280808ι +0.01757360 ±0.07280808ι +0.01714800 ±0.07257894ι

+0.01690493 ±0.06862555ι

X +0.00025081 +0.00025081 +0.00006550 ±0.14479453ι

� +0.00000151 ±0.00003784ι

−0.00297442 ±0.00230137ι −0.00297442 ±0.00230137ι

−0.00743487

−0.00880385 ±0.13129410ι

−0.01034586 ±0.13129410ι

� −0.01368603 ±0.05015424ι

X −0.01438079 ±0.04215840ι −0.01438079 ±0.04215840ι −0.01438754 ±0.04224533ι

X −0.01574640 ±0.04820812ι −0.01574640 ±0.04820812ι −0.01588289 ±0.13817927ι

−0.01808066 ±0.01780519ι

−0.01828959 ±0.04545832ι

−0.01962418 ±0.13656874ι

SP −0.02467401 −0.02467401

−0.02617119

−0.02635417

X −0.03513514 −0.03513514 −0.03465455 ±0.04689063ι

� −0.03475625

−0.04193686 ±0.08342170ι
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−0.04589086 −0.04589086 −0.04699639

−0.04791049 ±0.14621116ι

SP −0.05047682 −0.05047682

EQ19 - Projection of EQ8

OSSE 21× 35× 21 ROSSE 21× 35× 21 Channelflow 32× 35× 32

X +0.02537583 ±0.00857920ι +0.02537583 ±0.00857920ι +0.02537546 ±0.00858003ι

X +0.00847810 +0.00847810 +0.00847590

X −0.00000080 ±0.00000081ι −0.00000080 ±0.00000081ι −0.00000061

X −0.00757815 −0.00757815 −0.00757575

X −0.00847916 −0.00847916 −0.00848010

X −0.01040149 −0.01040149 −0.01040251

X −0.02444955 −0.02444955 −0.02445030

SP −0.02467401 −0.02467401

X −0.03027252 −0.03027252 −0.03027183

X −0.03292603 −0.03292603 −0.03292489

−0.03442651 ±0.11920975ι

X −0.04673041 ±0.05437204ι −0.04673041 ±0.05437204ι −0.04673127 ±0.05437211ι

SP −0.05047682 −0.05047682

X −0.05163835 −0.05163835 −0.05163896

X −0.05394340 ±0.03713194ι −0.05394340 ±0.03713194ι −0.05394367 ±0.03713251ι

X −0.06013870 ±0.02903442ι −0.06013870 ±0.02903442ι −0.06013751 ±0.02903358ι

EQ24

OSSE 21× 35× 21 ROSSE 21× 35× 21 Channelflow 32× 35× 32

X +0.14806833 +0.14806833 +0.14776917

X +0.09447673 ±0.03522622ι +0.09447673 ±0.03522622ι +0.09541285 ±0.03438392ι

X +0.09288452 ±0.08991673ι +0.09288452 ±0.08991673ι +0.09265970 ±0.09009525ι

X +0.02779187 ±0.06697849ι +0.02779187 ±0.06697849ι +0.02799530 ±0.06710772ι

+0.00227874 +0.00227874 +0.02165429 ±0.02519515ι

+0.01747257 ±0.03941158ι

+0.00406371 ±0.14025831ι

+0.00356350 ±0.13727776ι

+0.00000843

+0.00000045

−0.00006982 −0.00158435 ±0.03374232ι

−0.00929059 −0.00929059 −0.00762270

X −0.01117349 ±0.04562195ι −0.01117349 ±0.04562195ι −0.01112176 ±0.04553695ι

−0.01188410 ±0.02284327ι

−0.01287108

−0.01352032 ±0.15338662ι
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−0.01455833 −0.01455833 −0.01580320 ±0.15437111ι

−0.02311609 −0.02169399 ±0.04627077ι

−0.02444743 ±0.13057070ι

SP −0.02467401 −0.02467401

−0.02649698 −0.02763111 ±0.07822968ι

−0.02842553 ±0.06602866ι −0.02842553 ±0.06602866ι −0.02937453 ±0.06513648ι

−0.03600361 ±0.11609411ι

−0.03732098 ±0.08548847ι

−0.04568060 ±0.12317903ι

−0.04574999 ±0.06801671ι

SP −0.05047682 −0.05047682

Chapter summary

� Controller synthesis of Linear time-invariant (LTI) systems first and foremost re-

quires the definition of a spatially discretised LTI system.

� For flow control, the governing equations are the non-linear Navier-Stokes equa-

tions (NSE). To be of practical use for the numerical methods and LTI, they are

linearized around a time-invariant baseflow, then transformed into a non-singular

system and finally discretised with spectral methods.

� In the case of the laminar Plane Couette Flow (PCF) profile, the final transformed

system is the Orr-Sommerfeld Squire model.

� To employ an Invariant Solution (IS) as baseflow, a new model is derived: the

Orr-Sommerfeld Squire model Extended for a non-laminar solution (OSSE). Odd

resolution is required for the streamwise, wall-normal and spanwise directions.

� By separating real and imaginary parts, the Real Orr-Sommerfeld Squire model

Extended for a non-laminar solution (ROSSE) reduces the memory requirement

of the OSSE model for the same performance.

� The OSSE and ROSSE reproduces faithfully the eigen-decomposition and can be

used as a linearised approximation of the full NSE around a given Invariant Solu-

tion, for weakly unstable and/or highly symmetric solutions. For more unstable

solutions, the linear models do not perform as well and the author does not ex-

pect them to describe faithfully the dynamical state-space around these solutions.

Improvements (e.g. increase in resolution) are required before further application.
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� The Nagata (1990) lower branch is the least unstable IS known for the PCF con-

figuration. It is expected to be the most accessible IS to stabilize and will be used

as target solution for the following chapters.





Chapter 5

Controller Design

This chapter focuses on the implementation and design of the control based on the linear

OSSE and ROSSE models derived in the previous chapter. The numerical implemen-

tation is described in section 5.1, where the software, packages and libraries employed

in this thesis are detailed. Section 5.2 and 5.3 describes the control design respectively

for the OSSE and ROSSE models, i.e. the mathematical derivation of the matrices

defining the controller and the implementation of wall-transpiration actuation. Follow-

ing this definition, linear analyses are conducted in section 5.4 in order to evaluate the

controllability and modal controllability of the system. Finally, the implementation

of the wall-transpiration actuation is validated in section 5.5, firstly with the Couette

laminar-state as baseflow and then with a invariant solution.

5.1 Simulation

The configuration of the simulation, including the state-feedback control, is represented

in figure 5.1. The simulation of turbulent flows within a channel will be realized with

the spectral CFD software Channelflow. This software has been written in C++ for nu-

merical analysis of the incompressible Navier-Stokes equations. Channelflow supplies

different algorithms to compute invariant solutions in channel, and is highly accessible

and flexible. This software is particularly appropriate in this case as it offers all the

tools to simulate PCF with a spectral discretisation Fourier × Chebyshev × Fourier.
Channelflow-1.5 is developped by John F. Gibson at the University of New Hampshire

and is available on channelflow.org (Gibson et al., 2008, 2009). A parallelized ver-

sion, Channelflow-2.0, is developed by the research group on “Emergent Complexity in

Physical Systems Laboratory” (ECPS) at the Swiss Federal Institute of Technology Lau-

sanne (EPFL), and is available on channelflow.ch (Gibson et al., 2019). The release

of Channelflow-2.0 happened too late in the development for the project to benefit from

it. Therefore, all methods introduced here concern Channelflow-1.5.1 - revision 451.
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CHANNELFLOW SIMULATION
Spectral CFD algorithm for integrating the
incompressible Navier-Stokes equations in

channel geometries, Gibson (2012).

FULL-INFORMATION SENSING

LINEAR REGULATOR
with the CFBC Package of Heins (2015).

WALL-NORMAL VELOCITY ACTUATION
with CFBC Package of Heins (2015).

OPTIMAL CONTROL GAIN
→ calculated once offline.
→ quadratic cost function.
→ linear model using EQ1 as baseflow (OSSE).

Figure 5.1: Configuration of the simulation operated with Channelflow, CFBC and a
Python program to determine the optimal control gain.

Wall actuation is implemented in Channelflow with the ChannelFlow Boundary Con-

dition package (CFBC) v1.0 of Peter Heins. This package was originally developed for

Channelflow-1.4.2, and has been updated by the author for Channelflow-1.5.1. The

package is not included within the official Channelflow release, but is available on online

repositories (see A). This extension allows the user to implement inhomogeneous wall

boundary conditions into a PCF simulation of ChannelFlow. The package also includes

a controller class to create LTI feedback controllers applied to turbulent flows. Peter

Heins validated and used the package to publish research papers as Jones et al. (2015);

Heins et al. (2016) and his Ph.D. thesis Heins (2015).

The CFBC needs to be fed with sensor and actuation matrices. A few approaches were

attempted. The first used a matrix-free program written in Python, implementing differ-

ent differentiation methods. The program aimed to use LinearOperator objects, instead

of directly operating the spectral differentiation matrices. By doing so, the user needed

only to define a function associated with the LinearOperator, not necessarily depend-

ing on high-dimensional matrices. This would allow for flexibility and memory saving.

However, the implementation of LinearOperator objects was tedious and impractical,

and as a consequence, this method was pursued.

The different models representing the system (LNSE, OSS, OSSE, ROSSE), the con-

troller wall-actuation, the objective function and the Riccati solutions of the optimal

control problem are all implemented in Python, using extensively scientific library Numpy

and Sympy. The post-processing is also using Python, as well as the Paraview software

(Henderson, 2004).
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This configuration as well as the implementation of wall-actuation and control can serve

as a general benchmark to be applied for the development of other numerical software.

5.2 Full-Information LQR control design based on the OSSE

model

This section introduces the essential matrices to build an infinite-horizon full-information

feedback control controller, or LQR control, actuated by wall-transpiration from the

OSSE model §4.6. Actuation by wall-transpiration is described in §5.2.1, precisely the

lifting procedure and the evolution for each actuated component. The objective function

is derived from the kinetic energy density in §5.2.2.2.

An infinite-horizon full-information LQR controller actuated by wall-transpiration as

the model 3.19, without perturbation w, is considered,

[
ẋ

z

]
=

 A B2[
C1

0

] [
0

D12

] [x
q

]
, x(0) = 0. (5.1)

The objective is to stabilize an Invariant Solution of PCF while spending the least-

possible energy in the control process. Therefore, an objective cost-function is defined

to minimize both the kinetic energy of the state-vector x, representing the distance u

between the target base-flow solution Ū and the current flow-field U (eq.4.1), and the

energy spent in the control process, function of the control signal q,

||z||22 = z∗z = x∗C∗1C1x+ κ2 q∗D∗12D12q. (5.2)

This minimization problem is a convex optimization problem as the model is linear, the

cost function function is quadratic and both matrices C∗1C1 and D∗12D12 are semi-positive-

definite (and strictly convex if the matrices are strictly positive). As a consequence, this

problem possess a unique optimal solution.

Matrices A and B2 are derived in §5.2.1, and matrices C1 and D12 in §5.2.2.2 and 5.2.2.3.

The parameter κ ≥ 0 is adjusted empirically and fix the importance of each norm in the

cost function. Increasing κ gives more priority on minimizing the controller effort, and

decreasing κ to the minimization of the state perturbations. In the limit κ→ 0, the cost

of the control is no more considered and its amplitude is unbounded.

Note: in the case where the perturbations w is preserved in eq. 5.1, its associated

matrix B1 (eq. 3.19) is required to be energy-weighted appropriately, for example with

B1 = C−1
1 (Heins, 2015).
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Figure 5.2: Diagram of wall-transpiration actuation in a Plane Couette Flow config-
uration, i.e. imposing the wall-normal velocity at the upper and lower walls at given

discrete physical position (xi, zj).

5.2.1 OSSE model actuated by wall-transpiration

Actuation is here enforced by wall-transpiration, i.e. applying at the wall a forcing on

the wall-normal component v(t) of the velocity field u(u, v, w, t) (fig. 5.2). The main

drawback of actuation and/or sensing on the wall consists in the near un-controllability

and/or un-observability of “center-modes”. The predominant oscillations of such modes

reside far away from the wall, and therefore sensing or actuating them is nearly impossi-

ble. Nonetheless, controllability and stabilizility analysis in section 5.4 will demonstrate

that wall-transpiration is in theory sufficient for our objective.

It is not possible to implement directly this type of actuation on the OSSE model 4.77,

due to the requirement for homogeneous boundary conditions. The OSSE model 4.77 is

indeed an homogeneous PDAE, meaning it can be expressed as F(x) = 0, imposed by

a set of inhomogeneous boundary conditions when wall-transpiration is applied. This

inhomogeneity would make the matrix ∇2 contained in Υ (eq. 4.77) singular, and

prevent access to solutions of the model. To bypass this limitation, McKernan et al.

(2006) and Heins (2015) used a “lifting-procedure”. It transforms the homogeneous

PDAE 4.77 imposed with inhomogeneous boundary conditions into a inhomogeneous

PDAE imposed with homogeneous boundary conditions. Herein below are given the

milestones of the derivation of the OSSE model, while a detailed derivation is available

in appendix G.

Lifting procedure theory

Let’s consider the homogeneous PDAE,

Eẋ = Lx, (5.3)
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imposed by homogeneous Dirichlet boundary conditions at the walls, x(+1) = x(−1) =

0, and where E contains the Laplacian operator ∇2. Actuation by wall-transpiration of

the wall-normal velocity component v± at the upper- and lower-wall is applied with the

forcing q± via a low-pass filter of actuation-time τ ,

ẋ+(t) = −1

τ
x+(t) +

1

τ
q+, (5.4a)

ẋ−(t) = −1

τ
x−(t) +

1

τ
q−. (5.4b)

The system is now a set of homogeneous PDAE 5.3 imposed by inhomogeneous boundary

conditions 5.4, and the matrix E becomes singular or nearly singular. To solve this issue,

the system is transformed into a set of inhomogeneous PDAE imposed by homogeneous

boundary conditions.

To do so, the state-vector x is separated between the homogeneous inner-field x0, re-

specting the homogeneous Dirichlet boundary condition, and the value x± at the upper-

and lower-wall, imposed with inhomogeneous boundary condition q±, by introducing a

continuous “lifting function” f± such that

x(t) = x0(y, t) + f+(y)x+(t) + f−(y)x−(t), (5.5a)

x0(+1, t) = 0, x0(−1, t) = 0, (5.5b)

f+(+1) = 1, f+(−1) = 0, (5.5c)

f−(+1) = 0, f−(−1) = 1, (5.5d)

or considering a wall-normal discretisation with Ny coefficient,

x(t) =


0

x0
1(t)

x0
2(t)

· · ·
0

+


1

f+
1

f+
2

· · ·
0

x
+(t) +


0

f−1
f−2
· · ·
1

x
−(t), (5.6a)

x0
0(t) = 0, x0

Ny(t) = 0, (5.6b)

f+
0 = 1, f+

Ny
= 0 (5.6c)

f−0 = 0, f−Ny = 1. (5.6d)

Introduced this formulation into the model 5.3, it leads to

Eẋ0(y, t)+Ef+(y)ẋ+(t)+Ef−(y)ẋ−(t) = Lx0(y, t)+Lf+(y)x+(t)+Lf−(y)x−(t). (5.7)

Since the homogeneous state-vector x0 always respects the Dirichlet boundary condition,

the following equality holds,

E̊x0 = Ex0, L̊x0 = Lx0, (5.8)
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where ·̊ corresponds to the matrix imposed with homogeneous boundary conditions, i.e.

the first/last row/column are replaced with zeros for the Dirichlet boundary condition.

As a consequence, the evaluation of the homogeneous state-vector x0 is limited on the

inner-field —excluding the value at the upper-wall. Once the first/last row/column of

zeros removed, the matrix E̊ is invertible, unlike E. As a consequence, the inner-field

x0 can be expressed as

E̊ẋ0(y, t)+Ef+(y)ẋ+(t)+Ef−(y)ẋ−(t) = L̊x0(y, t)+Lf+(y)x+(t)+Lf−(y)x−(t), (5.9)

and inverting E̊,

ẋ0(y, t) =− E̊−1Ef+(y)ẋ+(t)− E̊−1Ef−(y)ẋ−(t)

+ E̊−1L̊x0(y, t) + E̊−1Lf+(y)x+(t) + E̊−1Lf−(y)x−(t).
(5.10)

Introducing the expression of ẋ±(t) from eq. 5.4, it leads to the final expression

ẋ0(y, t) = E̊−1L̊x0(y, t) +
[
E̊−1Lf+(y) +

1

τ
E̊−1Ef+(y)

]
x+(t)− 1

τ
E̊−1Ef+(y)q+

+
[
E̊−1Lf−(y) +

1

τ
E̊−1Ef−(y)

]
x−(t)− 1

τ
E̊−1Ef−(y)q−

(5.11)

which can be described in matrix form as

∂

∂t

x
+

x0

x−

 =

1 0 0

0 E̊−1 0

0 0 1




− 1
τ 0 0[

Lf+(y) + 1
τEf

+(y)
]

L̊
[
Lf−(y) + 1

τEf
−(y)

]
0 0 − 1

τ


x

+

x0

x−



+

1 0 0

0 E̊−1 0

0 0 1




1
τ 0

− 1
τEf

+(y) − 1
τEf

−(y)

0 1
τ

[q+

q−

]
,

= E̊−1Lx+ E̊−1Bq.

(5.12)

Lifting procedure applied to the OSSE model

The lifting procedure is applied the variable expressions for all modes of v, all modes of

η excluded the pair (0, 0), u0,0 and w0,0,

v̂α,β(y, t) = v̂0
α,β(y, t) + f+(y) v+

α,β(t) + f−(y) v−α,β(t), (5.13a)

η̂α,β(y, t) = η̂0
α,β(y, t) + g+(y) η+

α,β(t) + g−(y) η−α,β(t), (5.13b)

û0,0(y, t) = û0
0,0(y, t) + f+(y) u+

0,0(t) + f−(y) u−0,0(t), (5.13c)

ŵ0,0(y, t) = ŵ0
0,0(y, t) + f+(y) w+

0,0(t) + f−(y) w−0,0(t), (5.13d)
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where ·0 denotes the coefficients imposed with homogeneous boundary condition, clamped

for u, v, w and Dirichlet for η, and leads for each mode to

v̂0
α,β(y = ±1, t) =

∂v̂0
α,β

∂y
(y = ±1, t) = 0, (5.14a)

η̂0
α,β(y = ±1, t) = 0, (5.14b)

û0
0,0(y = ±1, t) =

∂û0
0,0

∂y
(y = ±1, t) = 0, (5.14c)

ŵ0
0,0(y = ±1, t) =

∂ŵ0
0,0

∂y
(y = ±1, t) = 0. (5.14d)

The notations ·+ and ·− correspond to the inhomogeneous values imposed on the upper

and lower wall respectively, notated as

v̂α,β(y = ±1, t) = v̂±α,β(t), (5.15a)

η̂α,β(y = ±1, t) = η̂±α,β(t), (5.15b)

û0,0(y = ±1, t) = û±0,0(t), (5.15c)

ŵ0,0(y = ±1, t) = ŵ±0,0(t). (5.15d)

Functions f+ and f− are the lifting functions associated with u, v, w, for the upper and

lower walls respectively, and similarly g+ and g− to η. These functions are used to

ensure that the set of equations 5.13 respects the conditions 5.15. Thereby, f± and g±

need to comply with the conditions

f+(y = +1) = g+(y = +1) = 1, (5.16a)

f+(y = −1) = g+(y = −1) = 0, (5.16b)

f−(y = +1) = g−(y = +1) = 0, (5.16c)

f−(y = −1) = g−(y = −1) = 1, (5.16d)

∂f+(y = ±1)

∂y
=
∂f−(y = ±1)

∂y
= 0. (5.16e)

Fitting functions are given by Heins (2015) (McKernan et al. (2006)[p.198] used different

expressions) as

f+(y) =
1

4
(2y4 − y3 − 4y2 + 3y + 4), (5.17a)

f−(y) =
1

4
(2y4 + y3 − 4y2 − 3y + 4), (5.17b)

g+(y) =
1

2
(x+ 1), (5.17c)

g−(y) =
1

2
(−x+ 1). (5.17d)
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The introduction of the lifting equations 5.13 into the Fourier discretisation 4.60 leads

to the expression of each Fourier coefficient as

v̂α,β(y, t) ≈
Ny−1∑
ny=1

ṽ0
α,β(t)Tny(y) + f+(y) v+

α,β(t) + f−(y) v−α,β(t), (5.18a)

η̂α,β(y, t) ≈
Ny−1∑
ny=1

η̃0
α,β(t)Tny(y) + g+(y) η+

α,β(t) + g−(y) η−α,β(t), (5.18b)

û0,0(y, t) ≈
Ny−1∑
ny=1

ũ0
0,0(t)Tny(y) + f+(y) u+

0,0(t) + f−(y) u−0,0(t), (5.18c)

ŵ0,0(y, t) ≈
Ny−1∑
ny=1

w̃0
0,0(t)Tny(y) + f+(y) w+

0,0(t) + f−(y) w−0,0(t). (5.18d)

The actuation vector q is composed of the actuation components as

q(t) =



[
q+
vα,β

(t)

q−vα,β (t)

]
0≤α<Nα,
0≤β<Nβ[

q+
ηα,β

(t)

q−ηα,β (t)

]
0≤α<Nα,
0≤β<Nβ
(α,β)6=(0,0)

q+
u0,0(t)

q−u0,0(t)

q+
w0,0

(t)

q−w0,0
(t)



, (5.19)

where q±Xα,β is the actuation imposed at the upper (+)/lower(−) wall in order to set the

variable X± for the wave-number pair (α, β). These terms feed the model using a low-

pass filter to simulate the time-dynamic of the actuator, leading to following expressions
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˙̂v+
α,β(t) = − 1

τvα,β
v̂+
α,β(t) +

1

τvα,β
q+
vα,β

(t), (5.20a)

˙̂v−α,β(t) = − 1

τvα,β
v̂−α,β(t) +

1

τvα,β
q−vα,β (t), (5.20b)

˙̂η+
α,β(t) = − 1

τηα,β
η̂+
α,β(t) +

1

τηα,β
q+
ηα,β

(t), (5.20c)

˙̂η−α,β(t) = − 1

τηα,β
η̂−α,β(t) +

1

τηα,β
q−ηα,β (t), (5.20d)

˙̂u+
0,0(t) = − 1

τu0,0
û+

0,0(t) +
1

τu0,0
q+
u0,0(t), (5.20e)

˙̂u−0,0(t) = − 1

τu0,0
û−0,0(t) +

1

τu0,0
q−u0,0(t), (5.20f)

˙̂w+
0,0(t) = − 1

τw0,0

ŵ+
0,0(t) +

1

τw0,0

q+
w0,0

(t), (5.20g)

˙̂w−0,0(t) = − 1

τw0,0

ŵ−0,0(t) +
1

τw0,0

q−w0,0
(t), (5.20h)

where τXα,β represents the actuation-time for component X at mode (α, β). The low-

pass filter requires an initial condition, fixed as

v±α,β(t = 0) = η±α,β(t = 0) = u±0,0(t = 0) = w±0,0(t = 0) = 0. (5.21)

Therefore, the introduction of wall-transpiration transforms the OSSE model into an

inhomogeneous system of the form F(x0,x+,x−) = −F(q+, q−), with homogeneous

boundary conditions 5.14.

Remark on notations: In the following development, matrices imposed with homoge-

neous boundary conditions are always noted with the symbol ·̊. For example, wall-normal

differentiation matrix D̊, Laplacian operator ∇̊2 and square Laplacian ∇̊4 are all imposed

with homogeneous boundary conditions (Dirichlet and Neumann), while D, ∇2 and ∇4

are not. In this way, the matrix Υ in equation 4.77 will contain the operator ∇̊2 and

be invertible. As a reminder, matrices noted with ·0, like D0 or ∇2
0, are differentiation

operators dedicated to the base-flow U0 only, without any boundary condition applied.
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Actuated wall-normal velocity evolution vα,β

The lifted coefficients 5.18 are introduced into the OSSE system 4.73,

∂

∂t
˚̂∇2
(
v̂0
α,β(y, t) + f+(y)v+

α,β(t) + f−(y)v−α,β(t)
)

=

1

Re
˚̂∇4
α,β

(
v̂0
α,β(y, t) + f+(y)v+

α,β(t) + f−(y)v−α,β(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Aα,β,
α−α′,β−β′

(
v̂0
α−α′
β−β′

(y, t) + f+(y) v+
α−α′
β−β′

(t) + f−(y) v−
α−α′
β−β′

(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Bα,β,
α−α′,β−β′

(
v̂0
α−α′
β−β′

(y, t) + f+(y) v+
α−α′
β−β′

(t) + f−(y) v−
α−α′
β−β′

(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Cα,β,
α−α′,β−β′

(
η̂0
α−α′
β−β′

(y, t) + g+(y) η+
α−α′
β−β′

(t) + g−(y) η−
α−α′
β−β′

(t)
)

+Dα,β,
0,0

(
û0

0,0(y, t) + f+(y) u+
0,0(t) + f−(y) u−0,0(t)

)
+ Eα,β,

0,0

(
ŵ0

0,0(y, t) + f+(y) w+
0,0(t) + f−(y) w−0,0(t)

)
.

(5.22)

The fully-discretized system for all coefficients of the wall-normal velocity can be ex-

pressed after a) replacing the time-differentiation of v±α,β with equations 5.20; b) con-

sidering the equality 5.8 applied ∇̊ and c) using Chebyshev series and differentiation

matrices, as

∂

∂t

1 0 0

0 ˚̃∇2 0

0 0 1


 v+

α,β(t)

ṽ0
α,β(y, t)

v−α,β(t)

 = E1

 v+
α,β(t)

ṽ0
α,β(y, t)

v−α,β(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

A

 v+
α−α′,β−β′(t)

ṽ0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

B

 v+
α−α′,β−β′(t)

ṽ0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

C

 η+
α−α′,β−β′(t)

η̃0
α−α′,β−β′(y, t)

η−α−α′,β−β′(t)



+ D

 u+
0,0(t)

ũ0
0,0(y, t)

u−0,0(t)

+ E

 w+
0,0(t)

w̃0
0,0(y, t)

w−0,0(t)

+ B1

[
q+
vα,β

(t)

q−vα,β (t)

]
,

(5.23)

where matrices E1,A,B,C,D,E,B1 are given in the appendix E.
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Actuated wall-normal vorticity evolution ηα,β

The lifted coefficients 5.18 are introduced into the OSSE system 4.74,

∂

∂t

(
η0
α,β(y, t) + g+(y) η+

α,β(t) + g−(y) η−α,β(t)
)

=

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Fα,β,
α−α′,β−β′

(
v0
α,β(y, t) + f+(y) v+

α,β(t) + f−(y) v−α,β(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Gα,β,
α−α′,β−β′

(
v0
α,β(y, t) + f+(y) v+

α,β(t) + f−(y) v−α,β(t)
)

+
1

Re
∇2
(
η0
α,β(y, t) + g+(y) η+

α,β(t) + g−(y) η−α,β(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
Hα,β,
α−α′,β−β′

+ Jα,β,
α−α′,β−β′

](
η0
α,β(y, t) + g+(y) η+

α,β(t) + g−(y) η−α,β(t)
)

+Kα,β,
0,0

(
û0

0,0(y, t) + f+(y) u+
0,0(t) + f−(y) u−0,0(t)

)
+ Lα,β,

0,0

(
ŵ0

0,0(y, t) + f+(y) w+
0,0(t) + f−(y) w−0,0(t)

)
(5.24)

and similarly to the wall-normal velocity v, the fully-discretized system for all coefficients

of the wall-normal vorticity can be expressed after

∂

∂t

 η+
α,β(t)

η̃0
α,β(y, t)

η−α,β(t)

 = E2

 η+
α,β(t)

η̃0
α,β(y, t)

η−α,β(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

F

 v+
α−α′,β−β′(t)

ṽ0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

G

 v+
α−α′,β−β′(t)

ṽ0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
H + J

] η+
α−α′,β−β′(t)

η̃0
α−α′,β−β′(y, t)

η−α−α′,β−β′(t)



+ K

 u+
0,0(t)

ũ0
0,0(y, t)

u−0,0(t)

+ L

 w+
0,0(t)

w̃0
0,0(y, t)

w−0,0(t)

+ B2

[
q+
ηα,β

(t)

q−ηα,β (t)

]
,

(5.25)

where the coefficients E2,F,G,H, J,K,L,B2 are given in the appendix E.
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Actuated stream-wise velocity evolution u0,0

The lifted coefficients 5.18 are introduced into the OSSE system 4.75

∂

∂t
û0

0,0(y, t) =

[
1

Re
∇̊2

0,0 − V̄0,0
∂̊

∂y

]
û0

0,0(y, t)

+

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
f+(y) u+

0,0(t) +
1

τu0,0
f+(y) u+

0,0(t)

+

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
f−(y) u−0,0(t)) +

1

τu0,0
f−(y) u−0,0(t)

− 1

τu0,0
f+(y) q+

u0,0(t)− 1

τu0,0
f−(y) q−u0,0(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Mα′,β′

(
v0
−α′,−β′(y, t) + f+(y) v+

−α′,−β′(t) + f−(y) v−−α′,−β′(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Nα′,β′

(
v0
−α′,−β′(y, t) + f+(y) v+

−α′,−β′(t) + f−(y) v−−α′,−β′(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Oα′,β′
(
η0
−α′,−β′(y, t) + g+(y) η+

−α′,−β′(t) + g−(y) η−−α′,−β′(t)
)

(5.26)

and similarly to the wall-normal velocity v, the fully-discretized system for the funda-

mental mode of the stream-wise velocity can be expressed as

∂

∂t

 u+
0,0(t)

ũ0
0,0(y, t)

u−0,0(t)

 = E3

 u+
0,0(t)

ũ0
0,0(y, t)

u−0,0(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

M

 v+
−α′,−β′(t)

ṽ0
−α′,−β′(y, t)

v−−α′,−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

N

 v+
−α′,−β′(t)

ṽ0
−α′,−β′(y, t)

v−−α′,−β′(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

O

 η+
−α′,−β′(t)

η̃0
−α′,−β′(y, t)

η−−α′,−β′(t)



+ B3

[
q+
u0,0(t)

q−u0,0(t)

]
,

(5.27)

where the coefficients E3,M,N,O,B3 are given in the appendix E.
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Actuated spanwise velocity evolution w0,0

The lifted coefficients 5.18 are introduced into the OSSE system 4.76

∂

∂t
ŵ0

0,0(y, t) =

[
1

Re
∇̊2

0,0 − V̄0,0
∂̊

∂y

]
ŵ0

0,0(y, t)

+

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
f+(y) w+

0,0(t) +
1

τw0,0

f+(y) w+
0,0(t)

+

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
f−(y) w−0,0(t)) +

1

τw0,0

f−(y) w−0,0(t)

− 1

τw0,0

f+(y) q+
w0,0

(t)− 1

τw0,0

f−(y) q−w0,0
(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Pα′,β′
(
v0
−α′,−β′(y, t) + f+(y) v+

−α′,−β′(t) + f−(y) v−−α′,−β′(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Qα′,β′
(
v0
−α′,−β′(y, t) + f+(y) v+

−α′,−β′(t) + f−(y) v−−α′,−β′(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Rα′,β′
(
η0
−α′,−β′(y, t) + g+(y) η+

−α′,−β′(t) + g−(y) η−−α′,−β′(t)
)

(5.28)

and similarly to the wall-normal velocity v, the fully-discretized system for the funda-

mental mode of the span-wise velocity can be expressed as

∂

∂t

 w+
0,0(t)

w̃0
0,0(y, t)

w−0,0(t)

 = E4

 w+
0,0(t)

w̃0
0,0(y, t)

w−0,0(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

P

 v+
−α′,−β′(t)

ṽ0
−α′,−β′(y, t)

v−−α′,−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Q

 v+
−α′,−β′(t)

ṽ0
−α′,−β′(y, t)

v−−α′,−β′(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

R

 η+
−α′,−β′(t)

η̃0
−α′,−β′(y, t)

η−−α′,−β′(t)



+ B4

[
q+
w0,0

(t)

q−w0,0
(t)

]
,

(5.29)

where the coefficients E4,P,Q,R,B4are given in the appendix E.
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Actuated final system

Finally, gathering equations 5.23 , 5.25 , 5.27 and 5.29 build the entire actuated plant

system and define the matrices A and B2 as

∂x(t)

∂t
= Ax(t) + B2 q(t)

=


∇̊−2 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I



E1 + A + B C D E

F + G E2 + H + J K L
M + N O E3 0

P + Q R 0 E4





 v+
α,β(t)

v0
α,β(y, t)

v−α,β(t)


0≤α<Nα,
0≤β<Nβ η+

α,β(t)

η0
α,β(y, t)

η−α,β(t)


0≤α<Nα,
0≤β<Nβ
(α,β)6=(0,0) u+

0,0(t)

û0
0,0(y, t)

u−0,0(t)


 w+

0,0(t)

ŵ0
0,0(y, t)

w−0,0(t)





+


∇̊−2 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I



B1 0 0 0

0 B2 0 0

0 0 B3 0

0 0 0 B4





[
q+
vα,β

(t)

q−vα,β (t)

]
0≤α<Nα,
0≤β<Nβ[

q+
ηα,β

(t)

q−ηα,β (t)

]
0≤α<Nα,
0≤β<Nβ
(α,β)6=(0,0)[

q+
u0,0(t)

q−u0,0(t)

]
[
q+
w0,0

(t)

q−w0,0
(t)

]



.

(5.30)

The matrices A and B2 of the final actuated OSSE system preserves the complex-

conjugation symmetry of the original OSSE model, at the condition that the actuation q

respects the complex-conjugation as well. Nonetheless, this requirement is not an issue.

The optimal actuation qopt derives indeed from the actuated OSSE model (later section

6.1), thereby passing the complex-conjugation of the model onto the forcing signal.
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5.2.2 Cost function

5.2.2.1 Introduction - What to target?

The determination of a cost function to minimize is decisive in the control design process.

An adequate cost function entails both a straightforward physical interpretation as well

as an accessible and universal definition, the ultimate goal being to compare different

configurations.

Drag-reduction and turbulence dissipation usually adopt a statistical perspective: for

a given configuration, the cost function evaluates a reduction of the turbulent energy

against the energy spent in the control process. There are commonly two different types

of forcing in this case, equivalent in laminar regimes: the constant pressure gradient

(CPG, defined by constant friction-based Reynolds number Reτ ) or constant flow rate

(CFR, defined by a constant bulk-velocity Reynolds number Reb). These two cate-

gories are not equivalent, and results can not be compared together. Ricco et al. (2012)

introduced a more universal approach, the constant power input concept (CPI), associ-

ated with a constant-power Reynolds number Reπ (Hasegawa et al., 2014; Gatti et al.,

2018). Nonetheless, even if these advances improved the ability to compare numerous

wall-actuation configurations, they are dedicated to drag-reduction.

Within a dynamical space representation, defining the cost function as the distance

to the targeted state is in fact the most obvious choice. It corresponds to the norm

of the state-vector x in eq.5.30. But which norm? Including weights specific to each

discretisation is tedious and not practical. For that reason, the chosen norm needs to

be grid-independent. Bewley and Liu (1998), McKernan (2006), Martinelli et al. (2011)

and Gomes et al. (2015) used the kinetic energy density ET to determine the expression

of C1 —without actually giving a fundamental reason for this choice. It embodies the

evolution of the perturbation for each velocity component, with an inherent physical

meaning for the reader. Kinetic energy density is a “natural” choice, in the sense that

the non-linearity does not change this quantity instantaneously. During this research,

no alternative was found in the literature and in order to facilitate cross-comparison,

the kinetic energy density is used as a norm in the following. As an extra bonus, the

kinetic energy density is also at the basis of passivity-based control —otherwise leading

to problems with non-linearity— which may be employed in the future to treat this

problem.

However, other norms could be defined with a particular consideration of leading quan-

tities, like the wall-normal velocity perturbation, and result in better performances for

a specific control problem. Particularly, the present author became aware of the paper

of Bewley et al. (2001) during his final PhD viva. Bewley et al. (2001) gives an an

in-depth review of different forms of cost functional and compare their performance for

the control problem. It included the minimization of drag, the terminal control of the
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turbulent kinetic energy, the regulation of the turbulent kinetic energy, of the enstrophy

or of large-scale and intermediate-scale structures. They also discussed the impact on

performance of including a gradient-based sensitivity to small modifications within the

cost function. The formulation of the cost function via the terminal control of the kinetic

energy density appeared to be superior. We recommend the interested reader to take

advantage of this paper in his or her research.

5.2.2.2 OSSE Energy matrix - Expression of C∗1C1

The derivation of the energy matrix C∗1C1 below targets homogeneous velocity-fields,

respecting the Dirichlet boundary conditions at the walls, and is not directly applicable

to inhomogeneous velocity fields. The expression of this matrix is indeed obtained from

the Chebyshev differentiation package of Weideman and Reddy (2000), designed for ho-

mogeneous velocity fields and producing spurious oscillations —Gibbs phenomenon—

when the velocity values at the wall are non-zero (McKernan, 2006, p.11,p.28). This

same energy matrix would not converge with increasing resolution if applied to an inho-

mogeneous velocity field (Hogberg et al., 2003). Therefore, once the energy matrix C∗1C1

is fully-defined for the homogeneous fields, a transformation for the inhomogeneous case

is introduced (§5.2.2.4).

The matrix C1 of the cost function 5.2 for a homogeneous velocitiy-field derives from the

kinetic energy density ET ,

ET = x∗C∗1C1x. (5.31)

The Hermitian positive-definite matrix C∗1C1 is referred as the “energy matrix”. Bewley

and Liu (1998); McKernan (2006) defined the kinetic energy density for a flow perturba-

tion of the LNSE model 4.6, at a given volume V = 2LxLz and with state components

(u, v, w, p), as

ET =
1

V

∫ 1

−1

∫ Lx

0

∫ Lz

0

u2(x, y, z, t) + v2(x, y, z, t) + w2(x, y, z, t)

2
dzdxdy. (5.32)

The application of stream- and span-wise Fourier discretisation (dx = Lxdix
Nx

and dz =
Lzdiz
Nz

) follows as

ET =
1

2NxNz

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

∫ 1

−1

û2
α,β(y, t) + v̂2

α,β(y, t) + ŵ2
α,β(y, t)

2
dy,

=
1

2NxNz

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

∫ 1

−1

û∗α,βûα,β + v̂∗α,β v̂α,β + ŵ∗α,βŵα,β

2
dy.

(5.33)

Considering the expression C.5 and C.4 of components u and w in sole function of v and

η, the products u∗u and w∗w are replaced for the all wave-number pairs (α, β) 6= (0, 0)
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with the expression

û∗α,βûα,β + ŵ∗α,βŵα,β =
1

k2

(
∂v̂α,β
∂y

∗∂v̂α,β
∂y

+ η̂∗α,β η̂α,β

)
. (5.34)

As a consequence, the kinetic energy density ET discretised in stream- and span-wise

directions follows as

ET =
1

4NxNz

[∫ 1

−1
û∗0,0û0,0 + v̂∗0,0v̂0,0 + ŵ∗0,0ŵ0,0 dy

+

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

(kx,kz)6=(0,0)

∫ 1

−1
v̂∗α,β v̂α,β +

1

k2

(
∂v̂α,β
∂y

∗∂v̂α,β
∂y

+ η̂∗α,β η̂α,β

)
dy

]
.

(5.35)

Finally considering the Chebyshev discretisation in the wall-normal direction, the ex-

pression of the kinetic energy density is

ET =
1

4NxNz

[
ũ∗0,0Wũ0,0 + ṽ∗0,0Wṽ0,0 + w̃∗0,0Ww̃0,0

+

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

(kx,kz)6=(0,0)

ṽ∗α,βWṽα,β +
1

k2

(
ṽ∗α,βD̊∗W D̊ṽα,β + η̃∗α,βWη̃α,β

)]
,

(5.36)

from which the energy matrix C∗1C1 can be expressed under matrix form as defined in

eq. 5.31 and required in the cost function 5.2,

C∗1C1 =
1

4NxNz



Φ1 0 · · · 0 0 · · · 0 0 0

0 Φ1 + 1
k2

Φ2 · · · 0 0 · · · 0 0 0
...

...
. . .

...
...

. . .
... 0 0

0 0 · · · Φ1 + 1
k2

Φ2 0 · · · 0 0 0

0 0 · · · 0 1
k2

Φ1 · · · 0 0 0
...

...
. . .

...
...

. . .
... 0 0

0 0 · · · 0 0 · · · 1
k2

Φ1 0 0

0 0 · · · 0 0 · · · 0 Φ1 0

0 0 · · · 0 0 · · · 0 0 Φ1



,

(5.37)

where Φ1 = W , Φ2 = D̊∗W D̊ and the state x defined as in 5.30.

The expression of the matrix C1 can not be deduced directly with a Cholesky decompo-

sition as operated in Heins (2015). From the LQR problem definition eq.5.1, the matrix

C1 is of shape p × n, and consequently C∗1C1 a rank-deficient matrix of shape n × n.

A full-rank energy-matrix would require the condition p ≥ n, which is not applicable

in our case-study. The same problem arises later with the definition of D12, of shape
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p × m, from D∗12D12, requiring that p ≥ m for a fully-resolved problem. Nonetheless,

the expression of C1 and D12 on their own is not habitually needed. Otherwise, these

matrices could be expressed from a pseudo-Cholesky factorization (§H.3) or singular

value decompositon (§H.2).

5.2.2.3 OSSE Expression of D12

The loop-shifting and scaling operated on the system 3.14 to define the LQG controller

implies that the matrix D12 of the cost function 5.2 is defined such that D′12D12 = I.

5.2.2.4 Targeting the actuated velocity-field

The energy matrix defined in §5.2.2.2 is targeting a homogeneous velocity-field with ho-

mogeneous boundary conditions at the walls of the form [0, v0, 0]. Yet, the OSSE model

considers a discontinuous velocity-field composed of a homogeneous inner-field with in-

homogeneous boundary condition of the form [v+, v̂0, v−]. The first/last rows/columns

of the energy matrix C∗1C1 5.37 are replaced with zeros to exclude the inhomogeneous

value v+ and v− at the walls.

Channelflow considers a continuous velocity-field with an inhomogeneous inner-field and

boundary conditions of the form [v+, v̂, v−]. For this reason, a change of basis is operated

with the transformation matrix Tα,β for each Fourier wave-number pair, such thatv
+
α,β

v̂α,β

v−α,β

 =

 1 0 0

f+ I f−

0 0 1


v

+
α,β

v̂0
α,β

v−α,β

 = Tα,β

v
+
α,β

v̂0
α,β

v−α,β

 (5.38)

Moreover, the state-vector of Channelflow considers the stream-wise, wall-normal and

span-wise velocity components [û, v̂, ŵ] while the OSSE considers the wall-normal ve-

locity and vorticity components. Therefore, the transformation matrix Tα,β needs to be

extended to its equivalent T for all Fourier modes and combined with the change-of-basis

matrix C of §C.3, as

xCHFL =


û

v+

v̂

v−

ŵ

 = C



v+

v̂

v−

η̂

û00

ŵ00


= CT



v+

v̂0

v−

η̂

û00

ŵ00


= CT xOSSE (5.39)

It is also possible to define analytically matrices CT and T −1C−1, see §C.4.
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5.2.3 Choice of actuation-time constant τ

In the literature, it is recognized that high gains accrue the benefits of feedback control,

but also exacerbates the risk of loop instability, actuator saturation and/or sensor noise

amplification (Green and Limebeer, 1995, p.52):

A feedback system designer will try to shape the loop gain as a function

of frequency so that the low-frequency, high gain requirements (benefits) are

met without infringing on the high-frequency, low-gain limits (disadvantages)

imposed by plant model, sensor errors and actuator limits.

For this reason, a low-pass filter eq.5.4 is introduced in the implementation of the wall-

transpiration actuation: the disturbances, characterized by a high frequencies, are elim-

inated while the modes of the system and of the actuation, characterized by lower

frequencies, are preserved. The proper setting of the frequency cut-off of this low-pass

filter is decisive and is performed via the choice of the actuation-time constant τ (or

equivalently in terms of frequencies). On one hand, a small actuation-time means a fast

but expensive controller. On the other hand, a big actuation-time implies that some of

important modes of the system and some of the response modes of the controller are

filtered out and not transferred into the actuated field.

The estimation of the actuation-time τ is performed via its associated actuation-frequency

fτ = 1/τ . To determine its optimal value, we estimate the timescale (or frequencies) of

the leading unstable —or least stable— modes of EQ1 by calculating the biggest singular

value of the actuated system. The actuation time-constant is firstly set to an unrealisti-

cally small value of τ = 10−6, or fτ = 10+6. Such a value implies that the low-pass filter

does not filter any of the useful response modes of the system and preserve its timescale.

The 20 biggest singular value (SVD, §H.2) of the actuated OSSE model based on EQ1

at resolution 17× 27× 17 are plotted in figure 5.3 for a range of a hundred frequencies

from 10−2 to 10+6.

In fig. 5.3, the response modes are removed above the cutting frequency fc = 1/τc = 10+6

due to the current setting. For frequencies above 10+2, all singular values posses the same

gain. Previous studies (Heins, 2015) used an actuation-time τ = 0.005, i.e. fτ = 2×10+2.

In order to remove high-frequencies without damaging the controller response mode and

maintain some analogy with the literature, the low-pass filter actuation-frequency is fixed

at 2 × 10+2, As a remark, this estimation was performed and is valid for the invariant

solution EQ1, but may require updates for other solutions.
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Figure 5.3: Singular values for EQ1, 17 × 27 × 17, Re = 400, τ = 1E − 6 for 100
frequencies from 1E − 2 to 1E + 6. The cut-off at f = 10+6 is due to the actuation
time-constant τ being fixed at an unrealistically small value of 10−6 for now. The

cut-off at f = 10+2 correspond to the system timescale.

5.3 Full-Information LQR control design based on the ROSSE

model

5.3.1 ROSSE model actuated by wall-transpiration

The ROSSE model actuated by wall-transpiration derives from the actuated OSSE sys-

tem 5.30 in the exact same manner employed in §4.7 to derive the ROSSE system 4.86

from the OSSE system 4.77. It follows directly

∂x(t)

∂t
= Ax(t) + B2 q(t)

=

[
+<(AOSSE,β≥0) + <(AOSSE,β<0) −=(AOSSE,β≥0) + =(AOSSE,β<0)

+=(AOSSE,β≥0) + =(AOSSE,β<0) +<(AOSSE,β≥0)−<(AOSSE,β<0)

]
x

+

[
+<(B2,OSSE,β≥0) + <(B2,OSSE,β<0) −=(B2,OSSE,β≥0) + =(B2,OSSE,β<0)

+=(B2,OSSE,β≥0) + =(B2,OSSE,β<0) +<(B2,OSSE,β≥0)−<(B2,OSSE,β<0)

]
q,

(5.40)
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where the ROSSE state-vector x and the ROSSE control signal q corresponds to their

OSSE counterparts with real and imaginary parts separated, as

x =

[
<(xOSSE,β≥0)

=(xOSSE,β≥0)

]
=



<



 v+
α,β(t)

v0
α,β(y, t)

v−α,β(t)


0≤α<Nα,
β≥0 η+

α,β(t)

η0
α,β(y, t)

η−α,β(t)


0≤α<Nα,
β≥0
(α,β)6=(0,0) u+

0,0(t)

û0
0,0(y, t)

u−0,0(t)


 w+

0,0(t)

ŵ0
0,0(y, t)

w−0,0(t)




=[xOSSE,β≥0]



, (5.41a)

q =

[
<(qOSSE,β≥0)

=(qOSSE,β≥0)

]
=



<



[
q+
vα,β

(t)

q−vα,β (t)

]
0≤α<Nα,
β≥0[

q+
ηα,β

(t)

q−ηα,β (t)

]
0≤α<Nα,
β≥0
(α,β)6=(0,0)[

q+
u0,0(t)

q−u0,0(t)

]
[
q+
w0,0

(t)

q−w0,0
(t)

]


=[qOSSE,β≥0]



. (5.41b)

The actuation on the wall-normal vorticity ηy and fundamental mode of stream- and

span-wise velocities u00 and w00 are removed from the control signal q, as these actuation

would not correspond to a realistic forcing and only qv is decisive in the control. It leads

to the smaller dimension forcing

q(t) =

[
<(qOSSE,β≥0,red)

=(qOSSE,β≥0,red)

]
=


<

[q+
vα,β

(t)

q−vα,β (t)

]
0≤α<Nα,
β≥0


=

[q+
vα,β

(t)

q−vα,β (t)

]
0≤α<Nα,
β≥0



 . (5.42)
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5.3.2 ROSSE Energy matrix - Expression of C∗1C1

The energy matrix C∗1C1 for the ROSSE model derives as well from its OSSE counterpart

eq.5.37. In order for the energy matrix of both models to be equivalent to the same

amount of energy, the positive modes of the ROSSE model are doubled, such that

C∗1C1 =

1

4NxNz



Φ1 0 · · · 0 0 · · · 0 0 0 0

0 2
(
Φ1 + 1

k2
Φ2

)
· · · 0 0 · · · 0 0 0 0

...
...

. . .
...

...
. . .

... 0 0 0

0 0 · · · 2
(
Φ1 + 1

k2
Φ2

)
0 · · · 0 0 0 0

0 0 · · · 0 2
(

1
k2

Φ1

)
· · · 0 0 0 0

...
...

. . .
...

...
. . .

... 0 0 0

0 0 · · · 0 0 · · · 2
(

1
k2

Φ1

)
0 0 0

0 0 · · · 0 0 · · · 0 Φ1 0 0

0 0 · · · 0 0 · · · 0 0 Φ1 0

0 0 · · · 0 0 · · · 0 0 0 id.



,

(5.43)

5.3.3 ROSSE Expression of D12

Similarly for matrix D12 with the reduced control signal q eq.5.42,

D′12D12 =


I 0 0 0

0 2I 0 0

0 0 I 0

0 0 0 2I

, (5.44)

where the first row/column of each block correspond to the mode qv0,0 .

5.4 Controllability & Stabilizibility

A system is stated as controllable if it is feasible to find a finite-energy controller se-

quence such that any final state can be reached from any initial state in finite time.

Typically, accurate discretisation of partial-differential equations systems are uncontrol-

lable as some highly damped modes (which, in the closed-loop system, ultimately have

very little effect) nearly always have negligible support at the actuators (Kim and Be-

wley, 2007). As a consequence, controllability is not of practical interest. Stabilizibility

is a weaker but more practical notion than controllability. A system is stated as stabi-

lizable when all uncontrollable state variables can be made to have stable dynamics, i.e.
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if all unstable eigenmodes can be made stable by control feedback. Thus, even though

some of the state variables cannot be controlled, they will all remain bounded during

the system’s behavior. When linear stabilizibility is lost, for example with increasing

Reynolds number, stabilization of the system is impossible. The objective of a control-

lability & stabilizibility evaluation is to determine if the unstable modes of a system are

all controllable, and as consequence if the entire system is stabilizable, as well as which

actuation-mode is preponderant for the control.

5.4.1 Full system Controllability - Controllability Gramian

For the following development, we will consider the general control system 3.14 with n

states, m inputs and q outputs as[
ẋ

y

]
=

[
A B2

C2 0

][
x

q

]
, x(0) = x0. (5.45)

Bewley and Liu (1998) presented a standard practice to determine the controllability

of the system 5.45. It consists in the calculation of the controllability Gramian zc

associated with the pair (A,B2), and solution of the Lyapunov equation

Azc + zcA∗ + B2B∗2 = 0. (5.46)

The controllability of the system stems from the rank of the zc. A (nearly) singular

solution means that at least one eigenvalue is (nearly) unaffected by the control signal x.

This method suffers from four drawbacks. Firstly, the Lyapunov equation is a very high

dimensional problem of similar complexity to the Riccati solution (later section §6.1).

Secondly, assuming a solution is found, the answer will assess the controllability of the

entire problem —even if only a few eigen-modes are here useful— and will be binary

—‘yes’ or ‘no’. Thirdly, there is also the problem of approximate controllability – where

any discretisation is controllable but the condition number of the Gramian gets worse as

the order of the discretisation is increased. Finally, some of the stable eigen-modes may

be uncontrollable, hence a singular Gramian masking the controllability of the unstable

modes of concern. For these reasons, alternatives methods will be used to determine the

controllability of the system 5.45.

5.4.2 Unstable eigenmodes modal Controllability

This section determines a scalar measure of the controllability of the system based on an

normalized eigen-values decomposition (app. H.1). The ith eigen-mode of the system

5.45 is said controllable with the actuation embodied via the matrix B2 if and only if

the scalar B∗2wi is non-zero, with wi the ith left-eigenvectors of A (Bewley and Liu,
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1998; McKernan, 2006). The entire system is controllable if and only if this proposition

holds for all i. In addition, a scalar measure of the controllability of the ith eigen-

mode, without normalization, is defined from McKernan (2006)[p.60] and Bewley and

Liu (1998) as

Controllability(λi) =
√
w∗iB2B∗2wi. (5.47)

The table 5.1 gathers the controllability measures with actuation by wall-transpiration

for the most unstable eigenvalues of EQ1 listed previously in table 4.1. For the lower

dimension 17 × 27 × 17 (used in later chapters), values are given in table 5.2. As a

side remark, eigenvalues 1 and 2 are two distinct yet very close modes (see tables 4.1

for comparison against published literature). Moreover, it is not clear to the author

why the OSSE and ROSSE models possess different controllability measures. Tables 5.1

and 5.2 are close enough to demonstrate that the controllability measure is converging.

Further discretisation would be necessary to evaluate precisely the convergence rate of

this measure. Nonetheless, it is to be noted here that only an order of magnitude in

the controllability measure is required. Therefore, table 5.2 is sufficient for this study

and the lower dimension 17× 27× 17 approximates well enough the measures found at

21× 35× 21.

Table 5.1 shows that the unstable eigenmodes of EQ1 are all controllable, and in partic-

ular the most unstable: eigenmode 0. Actuation by wall-transpiration as implemented

with the lifting-procedure in §5.2.1 is now proven to be an adequate actuation type for

this project. All the unstable modes of EQ1 are controllable, and as a consequence, the

Nagata (1990) lower branch EQ1 is stabilizable with an actuation by wall-transpiration.

The dynamical state is indeed supposed to escape the neighborhood of EQ1 within the

space defined by these three unstable directions. A controller effectively preventing any

perturbation growth within this sub-space would stabilize the equilibrium.

The different eigenmodes of 5.4 lead to some observations. Firstly, each eigenmode re-

spects the symmetries of a PCF, as equilibrium EQ1, namely a reflection in the spanwise

direction, rotation by π about the spanwise direction, and a streamwise and/or span-

wise periodic translation. From these symmetries, Halcrow (2008) defined a group of

symmetric operations composed by a ‘shift-reflect’ and a ‘shift-rotate’ symmetries, also

referred as the ‘Nagata-Busse-Clever-symmetry’ in the literature. The eigenmodes are

all invariant under these operations. Secondly, all streamwise velocity components of

the controllable modes are bidirectional. Each mode possess at a similar intensity, both

a streamwise-positive and streamwise-negative flows. This property is to be expected.

The controller actuates indeed only the wall-normal velocity, for each streamwise and

spanwise Fourier modes. It implies that a controller mode, different from the fundamen-

tal mode, will necessarily possess a positive and negative actuation on the streamwise

velocity. Thirdly, the most controllable modes appear to be the ones occurring near the

walls. It is also to be expected considering the actuation operates on the upper and

lower wall of the channel.
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Table 5.1: Controllability measures of the leading eigenvalues of EQ1, at resolution
21× 35× 21, Re = 400, τ = 0.005.

OSSE ROSSE
Index Eigenvalues Controllability measure Controllability measure

0 +0.05012053 0.01655933 0.02032953
1 +0.00000137 0.03732345 0.03964573
2 +0.00000001 0.01349217 0.01734703
3 −0.00200533 0.01640100 0.02013419
4 −0.00659909 0.03144298 0.02026799
5 −0.00692663 0.02832299 0.03269400
6 −0.00972617 0.01758872 0.02259494
7 −0.01359296 0.01809390 0.01985532
8 −0.02393202 0.01875427 0.02088320
9 −0.03346017 0.03336322 0.03580877
10 −0.03702671 0.03007846 0.02929896
11 −0.04260476 0.02868559 0.02693365

Furthermore, the streamwise vortices apparent for each eigenmodes are a major factor

of mixing and a source of turbulence. These vortices are indeed streamwise-oriented, it

implies that they transfer high-fluid fluid from the center of the channel to the wall, and

conversely, low-speed fluid from the near-wall area directly into the center of the channel.

This observation is particularly true for eigenmode 0. It can be a reason why eigenmode

0 is the main direction to destabilize the equilibria, as its geometries is well-suited to

increase the vortices at different scales in the channel and lead to further turbulence.

Table 5.2: Controllability measures of the leading eigenvalues of EQ1, at resolution
17× 27× 17, Re = 400, τ = 0.005.

OSSE ROSSE
Index Eigenvalues Controllability measure Controllability measure

0 +0.05012082 0.01547851 0.01875050
1 +0.00002215 0.01323467 0.01685453
2 −0.00001902 0.03562319 0.03787299
3 −0.00203379 0.01609176 0.01951696
4 −0.00659876 0.03032545 0.01934189
5 −0.00688399 0.02722562 0.03148305
6 −0.00974591 0.01669840 0.02152723
7 −0.01359193 0.01761533 0.01907834
8 −0.02392832 0.01691946 0.01889844
9 −0.03347443 0.03128420 0.03387720
10 −0.03704233 0.02908588 0.02811455
11 −0.04260227 0.02699718 0.02511516

5.4.3 Modal controllability and observability

A high-number of sensing probes or actuators modes, as in the case of a full-information

control via wall-transpiration, can often be reduced to its most influential subset without
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a) Eigenmode 0, contour u at ±0.05. b) Eigenmode 1, contour u at ±0.05.

c) Eigenmode 2, contour u at ±0.03.

Figure 5.4: Most unstable eigenmodes of EQ1. Surfaces of constant streamwise
velocity u for different amplitudes, with vector arrows representing the wall-normal and
span-wise velocities, v and w, in direction and relative amplitude. The vertical plane
in the background is coloured with the stream-wise vorticity ηx. (EQ1, 21 × 35 × 21,

Re = 400, τ = 0.005)

infringing the observability/controllability of the system. Some of these modes do not

indeed play any significant role while still requiring their associated optimal law being

solved. In this thesis, only controllability measure is of interest. As a consequence,

this section improves the controllability measure of table 5.1 by exploring its “modal”

controllability, i.e. ranking the individual contribution of each actuation mode.

A measure a the modal observability and controllability of the system 5.45 derives from

the expression of the output signal y (Chan, 1984)

y(t) =
n∑
i=1

(
C2vi

[
wTi x0 + wTi B2

∫ t

0
e−λiτq(τ)

]
eλtt
)
, (5.48)
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where it appears that the impact of the input q on the output y is determined by

the matrix wTi B2, and the preponderance of each actuated mode in the output y is

determined by C2vi. The modal observability and modal controllability matrices are

constructed from the observations.

Modal observability

Considering the rows cTi of matrix C2 of dimension q × n,

C2 = row
[
cT1 . . . cTp

]
, (5.49)

the modal observability matrix is defined as

C2V =


cT1 v1 · · · cT1 vn

...
. . .

...

cTq v1 · · · cTq vn

 . (5.50)

The coefficient cTi vj measures the observability of the j-th mode of the state x in the

i-th output of y.

Modal controllability

Considering the columns bi of matrix B2 of dimension n×m,

B2 =
[
b1 . . . bm

]
, (5.51)

the modal controllability matrix is defined as

WB2 =


wT1 b1 · · · wT1 bm

...
. . .

...

wTn b1 · · · wTn bm

 . (5.52)

The coefficient wTi bj measures the excitation of the j-th input modes of q on the i-th

mode of the state-vector x.

Modal controllability of the actuated system

The absolute value of each coefficient of the modal controllability matrix WB2 is cal-

culated for the final OSSE model actuated via wall-transpiration eq.5.30. They are

gathered in figures 5.5, 5.6 and 5.7, corresponding respectively to the three leading

eigen-modes of the PCF Nagata (1990) lower-branch solution EQ1, at Reynolds 400,

resolution 17× 27× 17 and actuation-time τ = 0.005.
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The most predominant actuation-modes to stabilize eigen-mode 0 of EQ1 are the 6

upper- and lower-wall actuation modes v±(±2,0) and v±(±1,±1). v±(0,0) is excluded as it

corresponds to a vertical translation of the wall. Eigen-modes 1 and 2 are highly affected

by the upper- and lower-wall actuation at the 2 modes v±(±1,0), and almost insensitive to

any other mode.

Figures 5.8 and 5.9 outline the respective effects of a wall-actuation qv on the wall-

normal velocity and qη on the wall-normal vorticity, transposed into a (u, v, w) basis

(app.C) for three of the most influential actuation-modes. It appears that the actuation

qv impacts all three velocity components, on the contrary to qη only affecting the stream-

and span-wise components. This phenomenon is due to the divergence free-condition

eq.4.6d, and therefore to the change of basis matrix C (app.C), and not to the actuation

matrix B2 nor to the time-integration. Moreover, the actuation qv is more potent in

the mid-field and observes an anti-symmetric property in the wall-normal direction, and

is consequently characterized by a strong stream-wise vorticity ηx. On the other side,

qη only stimulates the area near the actuated wall, without any streamwise vorticity

component. The justification why the actuation qv is more adequate than qη to stabilize

the eigenmode 0 (see fig.5.4) is not straightforward. However, the fact that this eigen-

mode is entirely contained within the mid-field of the channel, and null at the wall may

be a source of explanation.

5.5 Validation of implemented actuation

The implementation of the inhomogeneous wall-normal velocity boundary conditions

in the OSSE model and the upgrade of the package for Channelflow v442 (post 1.5.1)

are validated by the present author in two stages in the same fashion as originally

operated by Heins (2015): a linear stage and a nonlinear stage. Moreover, only wall-

normal velocity actuation is validated, as the actuation is limited to this component only.

The actuation of the other velocity components (equivalent to the wall-normal vorticity

for the OSSE and ROSSE models) were indeed implemented by Heins (2015) but not

validated. The present author integrated the actuation on these components but did not

validated them neither. In the linear stage, simulations are run with a Couette baseflow

and actuated with an identical boundary condition for the two already validated systems

(OSS model and Channelflow 1.4.2) as well as for the two new systems (OSSE model

and Channelflow v452). The actuated Fourier modes are then compared qualitatively

and quantitatively.

In the nonlinear case, OSSE linear simulations are compared against non-linear Chan-

nelflow simulations implementing the skew symmetric formulation of the non-linear term.

They both use Nagata (1990) lower-branch EQ1 as baseflow and are actuated with iden-

tical wall-actuation forcing: either converging-to-constant or sinusoidal.
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Figure 5.5: Absolute value of the first row the modal controllability matrix WB2
of the OSSE model, corresponding to the impact (black - strong, white - weak) on
the 0st leading eigen-mode of EQ1, +0.05012082, of the wall-transpiration actuation
by the different modes (α, β) of the wall-normal velocity, wall-normal vorticity, and
fundamental of stream- and span-wise velocities, at the upper (right-side) and lower

(left-side) walls.
(EQ1, 17× 27× 17, Re = 400, τ = 0.005)
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Figure 5.6: Absolute value of the second row the modal controllability matrix WB2
of the OSSE model, corresponding to the impact (black - strong, white - weak) on
the 1st leading eigen-mode of EQ1, +0.00000137, of the wall-transpiration actuation
by the different modes (α, β) of the wall-normal velocity, wall-normal vorticity, and
fundamental of stream- and span-wise velocities, at the upper (right-side) and lower

(left-side) walls.
(EQ1, 17× 27× 17, Re = 400, τ = 0.005)
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Figure 5.7: Absolute value of the third row the modal controllability matrix WB2
of the OSSE model, corresponding to the impact (black - strong, white - weak) on
the 2nd leading eigen-mode of EQ1, −0.00001902, of the wall-transpiration actuation
by the different modes (α, β) of the wall-normal velocity, wall-normal vorticity, and
fundamental of stream- and span-wise velocities, at the upper (right-side) and lower

(left-side) walls.
(EQ1, 17× 27× 17, Re = 400, τ = 0.005)
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a) u(q−v ) for mode (2, 0). b) v(q−v ) for mode (2, 0). c) w(q−v ) for mode (2, 0).

d) u(q−v ) for mode (1, 1). e) v(q−v ) for mode (1, 1). f) w(q−v ) for mode (1, 1).

g) u(q−v ) for mode (0, 1). h) v(q−v ) for mode (0, 1). i) w(q−v ) for mode (0, 1).

Figure 5.8: Actuation q−v , i.e. actuation on the lower-wall wall-normal velocity v,
for modes (2, 0), (1, 1) and (0, 1). The actuation is transformed into its equivalent
(u, v, w) field components (see app. C). The surfaces are contours of constant velocity
component at amplitude ±1. The vertical plane in the background are coloured with

the streamwise vorticity ηx. (17× 27× 17, τ = 0.005)

Validation data are stored online, see appendix A.

5.5.1 Validation with the laminar Couette baseflow

The implementation of the wall-normal velocity component actuation is already vali-

dated for the OSS model and Channelflow 1.4.2 (Heins, 2015). For this reason, the

new actuated simulations, run with the OSSE model and Channelflow v452, are com-

pared against the OSS model and Channelflow 1.4.2, in the same way that Heins (2015)

validated the previous version.
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a) u(q−η ) for mode (2, 0). b) v(q−η ) for mode (2, 0). c) w(q−η ) for mode (2, 0).

d) u(q−η ) for mode (1, 1). e) v(q−η ) for mode (1, 1). f) w(q−η ) for mode (1, 1).

g) u(q−η ) for mode (0, 2). h) v(q−η ) for mode (0, 2). i) w(q−η ) for mode (0, 2).

Figure 5.9: Actuation q−η , i.e. actuation on the lower-wall wall-normal vorticity η,
for modes (2, 0), (1, 1) and (0, 2). The actuation is transformed into its equivalent
(u, v, w) field components (see app. C). The surfaces are contours of constant velocity
component at amplitude ±1. The vertical plane in the background are coloured with

the streamwise vorticity ηx. (17× 27× 17, τ = 0.005)

All simulations used a dynamical model linearised around the Couette laminar solution.

Particularly, both Channelflow simulations are run with the nonlinear term computed

in the linearised form (Gibson, 2014),

N(v) = Ū
∂v

∂x
+
∂Ū

∂y
~x. (5.53)

The following inhomogeneous boundary conditions are imposed for each simulation at

the upper and lower walls,

q+
vα,β

= q−vα,β = cos(0.05t+
π

2
) (0.05− 0.01j), (5.54)
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with zero initial condition. Three different actuation modes are chosen for the linear

validation:

� kx = 0, kz = 1,

� kx = 1, kz = 0,

� kx = 1, kz = 1.

These are chosen as they correspond to stream-wise constant, span-wise constant and

oblique modes. Simulations are run at Reynolds number of 104, with dimension Lx =

2π/1.14 and Lz = f2π/2.5, spatial resolution 11 × 65 × 11, for 100 time-units and

with an actuator time-constant τ = 0.05. Both Channelflow 1.4.2 and v452 use the

SBDF4 time-stepping algorithm and CNRK2 initial-stepping, with a variable time-step

bounded within [10−2, 10−5]. The OSS and OSSE models are integrated in time via the

BDF algorithm of the method scipy.integrate.solve_ivp, with absolute and relative

tolerances of 10−8.

Qualitatively, figures 5.10, 5.11, 5.12 show profiles of the three velocity components for

each simulation at time t = 0, 50, 100, for the three actuation modes. Only the actuated

mode is displayed. The other un-actuated modes are all zero, as expected in a linearised

simulation without crossed interaction between modes and zero initial condition. These

figures demonstrate that the profiles from the actuated OSS model, the actuated OSSE

model, Channelflow 1.4.2 and Channelflow v452 match well qualitatively for all velocity

components and modes at these given time.

A quantitative comparison of each velocity component was also performed via calcu-

lations of the “point-by-point” error-norms (Heins, 2015) and of the Lebesgue 2-error-

norms, introduced in section 3.4.2. The “point-by-point” error-norms for each velocity

component are defined as

‖δ(u)model / OSS‖1,[0,Nt] =
1

Nt

Nt∑
nt=0

(
1

Ny
‖umodel − uOSS‖

)
, (5.55)

‖δ(v)model / OSS‖1,[0,Nt] =
1

Nt

Nt∑
nt=0

(
1

Ny
‖vmodel − vOSS‖

)
, (5.56)

‖δ(w)model / OSS‖1,[0,Nt] =
1

Nt

Nt∑
nt=0

(
1

Ny
‖wmodel − wOSS‖

)
, (5.57)

where the subscript model stands either for OSSE or Channelflow, and ‖ · ‖ refers to

the “point-by-point” Euclidean norm. The discrete-time Lebesgue 2-error-norms are
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a) t = 0

b) t = 50

c) t = 100

Figure 5.10: Linear validation: Velocity components profiles (thick line - real part,
dotted-line - imaginary part) of Fourier mode (0, 1) actuated under the boundary con-
straints 5.54, for different simulations: OSS model (black �), OSSE model (green �),
Channelflow v452 (red �) and Channelflow 1.4.2 (blue �) (times t = 0, 50, 100, Couette

baseflow, resolution 11× 65× 11, Re = 104, τ = 0.05).
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a) t = 0

b) t = 50

c) t = 100

Figure 5.11: Linear validation: Velocity components profiles (thick line - real part,
dotted-line - imaginary part) of Fourier mode (1, 0) actuated under the boundary con-
straints 5.54, for different simulations: OSS model (black �), OSSE model (green �),
Channelflow v452 (red �) and Channelflow 1.4.2 (blue �) (times t = 0, 50, 100, Couette

baseflow, resolution 11× 65× 11, Re = 104, τ = 0.05).
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a) t = 0

b) t = 50

c) t = 100

Figure 5.12: Linear validation: Velocity components profiles (thick line - real part,
dotted-line - imaginary part) of Fourier mode (1, 1) actuated under the boundary con-
straints 5.54, for different simulations: OSS model (black �), OSSE model (green �),
Channelflow v452 (red �) and Channelflow 1.4.2 (blue �) (times t = 0, 50, 100, Couette

baseflow, resolution 11× 65× 11, Re = 104, τ = 0.05).
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expressed for one Fourier mode and a Chebyshev wall-normal discretisation as,

‖δ(u)model / OSS‖2,[0,Nt] =

{
1

Nt

Nt∑
nt=0

‖umodel − uOSS‖2
} 1

2

=

{
1

Nt

Nt∑
nt=0

(umodel − uOSS)∗W ∗W (umodel − uOSS)

} 1
2

(5.58)

‖δ(v)model / OSS‖2,[0,Nt] =

{
1

Nt

Nt∑
nt=0

‖vmodel − vOSS‖2
} 1

2

=

{
1

Nt

Nt∑
nt=0

(vmodel − vOSS)∗W ∗W (vmodel − vOSS)

} 1
2

(5.59)

‖δ(w)model / OSS‖2,[0,Nt] =

{
1

Nt

Nt∑
nt=0

‖wmodel − wOSS‖2
} 1

2

=

{
1

Nt

Nt∑
nt=0

(wmodel − wOSS)∗W ∗W (wmodel − wOSS)

} 1
2

(5.60)

Table 5.3 presents the error-norms between the different simulations for each actuation

configuration over a period Nt = 100, and leads to the conclusion that all the error-

norms are shown to be satisfactory small. This validation analysis demonstrated, both

qualitatively and quantitatively, that the inhomogeneous boundary condition is success-

fully implemented, in the OSSE model as well as in Channelflow v452, for the linear

case.

5.5.2 Validation with the non-laminar Nagata (1990) lower-branch as

baseflow

The linearization of Channelflow is only available around an unidirectional laminar base-

flow, namely Poiseuille or Couette laminar solution. The linearization around a three

dimensional non-laminar equilibrium is not implemented: it is impossible to perform a

linear Channelflow simulation with a non-laminar baseflow. For this reason, in the case

of a non-laminar baseflow, the OSSE model is validated against Channelflow simulations

implementing the skew symmetric formulation of the nonlinear term.

Channelflow and OSSE results are obtained with different resolutions. A wall-normal

resolution of Ny = 65 is required for Channelflow to converge with the CFBC package.

However, for the OSSE model, a wall-normal resolution of Ny = 35 is sufficient to obtain

similar results within computational power and memory limitations. For streamwise

and spanwise direction, a dimension of 21 × 21 is used in order to obtain the same

leading eigenvalues of EQ1. For this reason, the resolution chosen for the OSSE model
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Table 5.3: Linear validation: Table of error-norms ‖δ‖ for the three velocity com-
ponents of the three simulation cases (OSSE model, Channelfow 1.4.2 and v452) in
reference to the OSS model. Each actuation mode is regarded separately. Re = 10000

and resolution 11× 65× 11.

OSSE

Modes (0, 1) (1, 0) (1, 1)

‖δ(u)OSSE / OSS‖1,[0,Nt] 3.013× 10−5 2.751× 10−6 3.220× 10−5

‖δ(v)OSSE / OSS‖1,[0,Nt] 1.317× 10−7 5.083× 10−7 1.550× 10−7

‖δ(w)OSSE / OSS‖1,[0,Nt] 3.723× 10−7 0 1.478× 10−5

‖δ(u)OSSE / OSS‖2,[0,Nt] 6.953× 10−5 3.543× 10−6 4.662× 10−5

‖δ(v)OSSE / OSS‖2,[0,Nt] 2.701× 10−7 1.329× 10−6 3.623× 10−7

‖δ(w)OSSE / OSS‖2,[0,Nt] 5.591× 10−7 0 2.147× 10−5

Channelflow v452

Modes (0, 1) (1, 0) (1, 1)

‖δ(u)cf v452 / OSS‖1,[0,Nt] 3.012× 10−5 5.907× 10−6 3.234× 10−5

‖δ(v)cf v452 / OSS‖1,[0,Nt] 5.896× 10−6 7.594× 10−6 5.743× 10−6

‖δ(w)CF v452 / OSS‖1,[0,Nt] 5.365× 10−6 0 1.613× 10−5

‖δ(u)CF v452 / OSS‖2,[0,Nt] 6.967× 10−5 9.436× 10−6 4.664× 10−5

‖δ(v)CF v452 / OSS‖2,[0,Nt] 9.045× 10−6 1.659× 10−5 8.463× 10−6

‖δ(w)CF v452 / OSS‖2,[0,Nt] 8.343× 10−6 0 2.259× 10−5

Channelflow 1.4.2

Modes (0, 1) (1, 0) (1, 1)

‖δ(u)CF 1.4.2 / OSS‖1,[0,Nt] 2.896× 10−5 5.905× 10−6 3.247× 10−5

‖δ(v)CF 1.4.2 / OSS‖1,[0,Nt] 5.896× 10−6 7.594× 10−6 5.743× 10−6

‖δ(w)CF 1.4.2 / OSS‖1,[0,Nt] 5.366× 10−6 0 1.614× 10−5

‖δ(u)CF 1.4.2 / OSS‖2,[0,Nt] 6.790× 10−5 9.428× 10−6 4.674× 10−5

‖δ(v)CF 1.4.2 / OSS‖2,[0,Nt] 9.045× 10−6 1.659× 10−5 8.465× 10−6

‖δ(w)CF 1.4.2 / OSS‖2,[0,Nt] 8.343× 10−6 0 2.259× 10−5

is 21× 35× 21, and for Channelflow 21× 65× 21. This difference impacts certainly the

comparison process, but as it will appear later, in a limited fashion.

All simulations are performed with the Nagata (1990) lower-branch solution, EQ1, as

baseflow. Channelflow simulations compute the nonlinear term in the skew-symmetric

form (Gibson (2014)),

N(v) =
1

2
U · ∇U +

1

2
∇ · (UU). (5.61)

The following inhomogeneous boundary conditions, referred in the following as “converging-

to-constant”, are imposed for each simulation at the upper and lower walls,

q+
vα,β

= q−vα,β = 0.0005 (1− exp(−t/10)), (5.62)

and the initial velocity components are all set to zero. The same actuation modes

as the linear validation §5.5.1 are selected (i.e. (kx, kz) = (0, 1), (1, 0) and (1, 1)).

The channel flow is configured with a Reynolds number of 400, dimensions Lx =
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2π/1.14, [a, b] = [−1,+1], and Lz = 2π/2.5, running over a period T = 150 and

with an actuator time-constant τ = 0.05. The time-stepping algorithm used in Chan-

nelflow is SBDF4, initialized with CNRK2, with a variable time-step bounded within

[10−2, 10−5]. The OSSE model is integrated in time via the BDF algorithm of the

method scipy.integrate.solve_ivp, with absolute and relative tolerances of 10−8.

Figures 5.13, 5.14 and 5.15 show the norm over time for Channelflow and OSSE simula-

tions for the three actuation cases and the converging-to-constant forcing. Each figure

shows the norm of the respective actuated mode with a diamond-marked dot-lined, as

well as the norm of the two other non-actuated harmonics with a simple dot-lined, such

that the modes (0, 1), (1, 0) and (1, 1) are always displayed.

Despite the same initial conditions, Channelflow and OSSE simulations observe a slight

difference in their initial behaviour (for t ≤ 10), similar to a time delay. Is this initial

difference detrimental to the validation process ?

As the OSSE model is linear, a different initial perturbation or actuation will linearly

affect the long-term behaviour of the simulation. The relatively small amplitude of

the perturbation implies a limited effect and no major modification of the long term

behaviour of the simulation.

To estimate the impact of the initial condition on the long-term behavior of Channelflow,

a second simulation is started from the already-initialized state of the OSSE simulation

at time t = 10 for each actuation case. They are represented in red in figures 5.13,

5.14 and 5.15. Due to the interpolation from a grid resolution Ny = 35 to Ny = 65,

the initial states of these new simulations actually differ from the state at time t = 10

of the corresponding OSSE simulations. Moreover, anomalies in the initial behavior

(t = [10, 15]) are observed. This is within expectation as a different time-stepping is

used for the initialization, and the interpolated initial state is an approximation from a

lower resolution. However, despite these differences, the second Channelflow simulations

observe the same long-term time-evolution as the original ones, with only a time-shift

depending on the actuation case. To quantify the differences between the two sets of

Channelflow simulations, the same error-norms as in §5.5.1 are calculated and gathered

in the table 5.4 for each actuation case and velocity component (the time-domain were

reduced and synchronized beforehand in order to remove the initial anomalies). The

error-norms are all of small order of magnitude. Only the error norm of the streamwise

velocity component for the actuation mode (0, 1) arises slightly, which is mainly the con-

sequence of the time-domain being too narrow to allow proper synchronization. The two

sets of Channelflow simulations observe the same long-term time-evolution for close but

different starting points, respectively to the actuation case. Therefore, the Channelflow

simulations are not sensitive to the initial perturbation within this range of actuation

amplitude (see eq. 5.62), time-scale and precision. The divergence between Channelflow

and OSSE simulations is not due to a discrepancy in their starting points and/or ini-

tial behaviors. The causative factor for their distinctive behaviors is the introduction
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Table 5.4: Non-linear validation: Table of error-norms ‖δ‖ for the three velocity
components and three different actuations, between two simulations of Channelflow
(CF: zero initial condition - CF2: initial condition being the already-initialized state of
the OSSE simulation at time t = 10), for Re = 400 and resolution 21 × 65 × 21. The
comparisons for each actuation case (respectively (0, 1), (1, 0) and (1, 1)) are performed
on the time intervals [35, 150], [40, 150] and [30, 150] after time-shifting CF2 by −30, −9
and −6 units ‘so that the initial anomalies are removed (non-integer time-shift would

require an interpolation method).

Modes (0, 1) (1, 0) (1, 1)

‖δ(u)CF2 / CF‖1,[0,Nt] 2.048× 10−4 2.085× 10−7 4.393× 10−5

‖δ(v)CF2 / CF‖1,[0,Nt] 5.749× 10−6 6.008× 10−8 1.586× 10−7

‖δ(w)CF2 / CF‖1,[0,Nt] 7.323× 10−6 4.230× 10−8 2.827× 10−5

‖δ(u)CF2 / CF‖2,[0,Nt] 1.778× 10−2 1.454× 10−5 5.576× 10−3

‖δ(v)CF2 / CF‖2,[0,Nt] 5.311× 10−4 4.156× 10−6 2.000× 10−3

‖δ(w)CF2 / CF‖2,[0,Nt] 6.509× 10−4 4.223× 10−6 3.565× 10−3

of a nonlinear term. Moreover, as Channelflow simulations experience the same time-

evolution for cases with different time-dependent disturbances u but the same invariant

non-laminar baseflow Ū (here EQ1, cf. equation 4.1), we conjecture that for this range

of amplitude, time-scale and precision, the nonlinear effects are mainly the result of the

interaction between velocity components of the baseflow, and not of the disturbances.

Therefore, the initial variance is here not detrimental to the validation process.



Figure 5.13: Non-linear validation: Time-evolution of the norm of the three velocity components of the Fourier mode (1, 0) actuated under the
converging-to-constant boundary constraints 5.62 (diamond-thick line) and of the other non-actuated modes (0, 1) and (1, 1) (dotted lines) for three
different simulations: OSSE model (green), Channelflow (blue) and Channelflow started from the state of the OSSE simulation at t = 10 (red).

(times t = [0, 150], EQ1 baseflow, resolution 21× 65× 21 for Channelflow and 21× 35× 21 for the OSSE model, Re = 400, τ = 0.05).



Figure 5.14: Non-linear validation: Time-evolution of the norm of the three velocity components of the Fourier mode (0, 1) actuated under the
converging-to-constant boundary constraints 5.62 (diamond-thick line) and of the other non-actuated modes (1, 0) and (1, 1) (dotted lines) for three
different simulations: OSSE model (green), Channelflow (blue) and Channelflow started from the state of the OSSE simulation at t = 10 (red).

(times t = [0, 150], EQ1 baseflow, resolution 21× 65× 21 for Channelflow and 21× 35× 21 for the OSSE model, Re = 400, τ = 0.05).



Figure 5.15: Non-linear validation: Time-evolution of the norm of the three velocity components of the Fourier mode (1, 1) actuated under the
converging-to-constant boundary constraints 5.62 (diamond-thick line) and of the other non-actuated modes (0, 1) and (1, 0) (dotted lines) for three
different simulations: OSSE model (green), Channelflow (blue) and Channelflow started from the state of the OSSE simulation at t = 10 (red).

(times t = [0, 150], EQ1 baseflow, resolution 21× 65× 21 for Channelflow and 21× 35× 21 for the OSSE model, Re = 400, τ = 0.05).
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Ignoring the initial variance, we can now focus on the main question of this section:

is the linearised OSSE model sufficient to apply a feedback controller on a non-linear

turbulent Channelflow simulation ?

For this purpose, the previous results for the converging-to-constant forcing 5.62 (figures

5.13, 5.14 and 5.15) will be exploited, as well as new simulations presented in figures I.1,

I.2 and I.3, corresponding to the sinusoidal forcing

q+
vα,β

= q−vα,β = 0.0005 sin(
2πt

10
). (5.63)

From these figures, the evolution of the actuated flow can be separated into three phases,

depicting periods when either wall-actuation, unstable eigenmodes, or non-linearity pre-

vails. The appearance and/or timing of each phase vary with the setup of the simulation.

1. an actuation-dominated phase, where the state dynamics is governed by the wall-

actuation. This phase is recognizable by a strictly periodic evolution of the norm

for the sinusoidal forcing cases (e.g. v(t) for t = [0, 80] in figure I.3), and a constant

norm for the converging-to-constant forcing (e.g. v(t) for t = [0, 60] in figure

5.15). The actuation of the wall-normal velocity at a given wave-number affects

the other velocity components at the same wave-number mode in accordance to the

continuity equation 2.16b. For some cases, and to a lesser extent, the actuation is

influencing the non-actuated modes as well. This modal interaction is active both

in the linear (OSSE) and non-linear (Channelflow) models. However, non-linear

interaction is already at play for some non-actuated modes, explaining the slight

variance between the two models. Despite this fact, the velocity profiles observed

for both linear and non-linear simulations are matching in shape and amplitude

concomitantly (cf. figure I.4 at time t = 40).

2. an eigenmodes-dominated phase, where the unstable eigenmodes of the baseflow

become dominant in the evolution of the actuated modes. This phase is identifiable

in the sinusoidal forcing by the periodic oscillations slowly being surpassed (e.g.

v(t) for t = [80, 150] in figure I.3) and in the converging-to-constant forcing by

an increasing norm (e.g. v(t) for t = [60, 120] in figure 5.15). The growth-rate

of the norm of the linear simulations converges towards the unstable eigenvalues

of the baseflow, thus approaching a linear behaviour. Nevertheless, non-linear

simulations are not only affected by linear growth, but as well by non-linearity,

leading to a faster non-linear growing rate. Velocity profiles of the linear and non-

linear simulations still maintain analogous shapes, though at different amplitudes

(cf. figure I.4 at time t = 100).

3. a turbulent phase (only for non-linear simulations), where non-linearity overcomes

actuation and unstable eigenmodes altogether. This phase is not apparent for the
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sinusoidal forcing case over this time-frame, but remarkable for the converging-to-

constant case, when the flow dynamics becomes unstable and unsettles the other

non-actuated modes (e.g. v(t) for t = [120, 150] in figure 5.15). Non-linearity

induces an unstable interplay between modes, leading to a chaotic behavior char-

acteristic of turbulence. Henceforth, velocity profiles of the non-linear simulations

pursued their own evolution, differing in shape and amplitude from the linear ones

(cf. figure I.4 at time = 150).

This analysis evaluated qualitatively the introduction of inhomogeneous boundary con-

ditions, either constant or varying in time, in the OSSE model against equally con-

strained Channelflow simulations. The OSSE simulations agree with the Channelflow

results, provided the non-linearity does not prevail. Precisely, OSSE and Channelflow

dynamics coincide during the actuation-dominated phase, which is linearly-driven, and

observe analogous shapes but distinctive amplitudes during the eigenmode-dominated

phase. Consequently this analysis demonstrates that the non-laminar baseflow EQ1 and

inhomogeneous boundary conditions are well-implemented mathematically in the OSSE

model and numerically in its source-code. Furthermore, the OSSE model depicts the

behavior of a Channelflow simulation sufficiently well to be used as control model, surely

during the actuation-dominated phase and conceivably during the eigenmode-dominated

one.

Chapter summary

� Direct numerical simulation of a controlled PCF are operated with the CFD soft-

ware Channelflow, actuated by wall-transpiration via an update of the Chan-

nelFlow Boundary Condition package. The optimal control laws are calculated

beforehand with the linear OSSE and ROSSE models, which are implemented

separately in Python and actuated by wall-transpiration via a lifting procedure.

� The full-information LQR control is designed based on the actuated OSSE and

ROSSE models. It targets the kinetic density energy of a perturbation away from

the targeted state.

� A controllability analysis demonstrated that all the unstable eigenmodes of EQ1

are controllable with an actuation via wall-transpiration. As a consequence, the

Nagata (1990) lower-branch solution is stabilizable with this type of actuation.

Moreover, a modal controllability analysis determined that the most predominant

actuation-modes to stabilize eigenmode 0 of EQ1 are the 6 upper- and lower-wall

actuation modes v±(±2,0) and v±(±1,±1).
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� The actuated OSSE and ROSSE models are validated in two stages (linear and non-

linear) by comparing their time-integration with simulations run in Channelflow.

It demonstrated that the non-laminar baseflow EQ1 and inhomogeneous boundary

conditions are well-implemented mathematically in the OSSE model and numeri-

cally in its source-code. The OSSE and ROSSE models depict the behavior of a

Channelflow simulation sufficiently well to be used as control model, surely during

the actuation-dominated phase and conceivably during the eigenmode-dominated

one.





Chapter 6

Optimal Control Law and Riccati

Solution

This chapter describes the procedure to determine the Riccati solution associated with

an optimal control problem. This solution is required in the control design to define

the optimal control gain Kopt (see chapter 3). The detailed derivations of the Riccati

equations and the optimal control law for each model are given in section 6.1. Solving

the Riccati equation is the main obstacle of this thesis due to its computational cost

for high and meaningful dimensions. Therefore, we perform a literature review of the

different method to obtain its solution in section 6.2. The practical procedure employed

in this thesis is given in section 6.3. The implementation of the optimal control law

within the OSSE and ROSSE linear models and within the Channelflow software are

validated in section 6.4.

6.1 Derivation of the Riccati solution and optimal control

law

6.1.1 Mathematical Derivation

Lets consider the linear time-invariant LQR system 3.18

ẋ(t) = Ax(t) +B1w(t) +B2 q(t), x(0) = 0, (6.1a)

z(t) = C1 x(t) + κD12 q(t). (6.1b)

The parameter κ denotes the predominance of the state against the actuation signal

in the cost function. A small value of κ implies a smaller cost of the actuation, and

therefore a stronger and “cheaper” control. The range of κ is limited empirically as a

too intense actuation will actually create a discontinuity at the wall between the field

139



140 Chapter 6 Optimal Control Law and Riccati Solution

and the actuator. Even with finer grid resolution or small integration time-step, the

numerical simulation will eventually crash. The objective is to minimize the 2-norm of

the transfer function Rw 7→z (§3.4.3), defined in the infinite horizon case as

‖Rw 7→z‖2 = lim
T→∞

(
EX

{
1

T

∫ T

0
z∗z dt

} 1
2
)
, (6.2)

or equivalently, to minimize the cost-function J ,

J =

∫ T

0
z∗z dt. (6.3)

A possible derivation of the Riccati equation is described by Green et al. (2007). It

requires to remove/add beforehand/afterwards the cross-terms of the objective function

6.2, and derive the Riccati equation separately. This method was already employed in

section 3.4.4, and is relatively convoluted due to the change of variables. Instead, a

more straightforward procedure consists in imposing the orthogonality of matrices C1

and D12 by padding them with zeros, such that C∗1D12 = 0, and

z(t) =
1√
2

[
C1

0

]
x(t) +

1√
2
κ

[
0

D12

]
q(t). (6.4)

The cost function J follows directly as

J =

∫ T

0
z∗z dt =

1

2

∫ T

0
x∗C∗1C1x+ κ2q∗D∗21D12q dt,

=
1

2

∫ T

0
x∗Qxx+ q∗Qqq dt,

(6.5)

where Qx = C∗1C1 and Qq = κ2D∗21D12.

Following Pralits and Luchini (2010), the cost function is augmented with the adjoint-

state p,

J̃ =
1

2

∫ T

0
x∗Qxx+ q∗Qqq dt+

∫ T

0
p∗(Ax+B2q −

∂x

∂t
) dt. (6.6)

The calculus of the variation is given from the Euler-Lagrange equations for J̃ ,

∂J̃

∂x
− ∂

∂t

(∂J̃
∂ẋ

)
= 0, (6.7a)

∂J̃

∂p
− ∂

∂t

(∂J̃
∂ṗ

)
= 0, (6.7b)

∂J̃

∂q
− ∂

∂t

(∂J̃
∂q̇

)
= 0, (6.7c)



Chapter 6 Optimal Control Law and Riccati Solution 141

which leads, once integrated by part, to the direct-adjoint system

−∂p
∂t

= A∗p+ x∗Qx, (6.8a)

∂x

∂t
= Ax+B2q, (6.8b)

q = −Q−1
q B∗2p, (6.8c)

and consequently,
∂x

∂t
= Ax−B2Q

−1
q B∗2p. (6.9)

The direct-ajoint problem forms the Hamiltonian Z (Luchini and Bottaro (2014) and

Bewley et al. (2016) used opposite sign for p) as

Z =

[
A −B2Q

−1
q B∗2

−Qx −A∗

]
. (6.10)

There exists a matrix P such that p = Px (Green et al., 2007). Inserting P into the

previous system leads to the algebraic Riccati equation

0 = PA+A∗P − PB2Q
−1
q B∗2P +Qx, (6.11)

and the optimal control law

qopt = −Q−1
q B∗2Px = − 1

κ2
B∗2Px, (6.12)

and consequently Kopt = −Q−1
q B∗2P . Application to the optimal estimation problem

follows the same procedure. Final results were given in the Kalman filter section 3.4.5 of

the feedback control chapter, and are outlined in Semeraro et al. (2013)(§3.2). Thanks

to the separation principle, the calculation of the estimation and control problems can

be made separately (§3.4.6).

6.1.2 OSSE optimal control implementation within Channelflow

The definition of the matrices A, B2, C1, D12 of the system 6.1 are defined for the OSSE

model actuated by wall-transpiration in sections 5.2.1 and 5.2.2. The optimal control

gain Kopt
OSSE can be inserted as such into linear simulation of the OSSE model. On

the other hand, a transformation into the (u, v, w) basis is necessary when using this

gain for non-linear simulations in Channelflow. As a consequence, the control gain for
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Channelflow is defined as KCHFL = KOSSET −1C−1 (app.C.4), such that

q = K



v+

v0

v−

η

u00

w00


= KT −1



v+

v

v−

η

u00

w00


= KT −1C−1



u+

u

u−

v+

v

v−

w+

w

w−


. (6.13)

6.1.3 ROSSE optimal control implementation within Channelflow

As for the OSSE model, the definition of the matrices A, B2, C1, D12 of the system

6.1 are defined for the ROSSE model actuated by wall-transpiration in sections 5.3.1,

5.3.2 and 5.3.3. The optimal control gain Kopt
ROSSE can be inserted as such into linear

simulation of the ROSSE model. On the other hand, a transformation into the (u, v, w)

basis is necessary when using the ROSSE gain for non-linear simulations in Channelflow,

as well as a separation of the real and imaginary parts. Depending when this separation

happens, two different methods were implemented.

First method - via OSSE formulation

The transformation of the ROSSE optimal control gain KROSSE via the OSSE model

into its Channelflow equivalent KCHFL
ROSSE via OSSE

requires to

1. Transform the continuous Channelflow state-vector [u, v, w]T into its equivalent

discontinuous OSSE formulation [v+, v0, v−, η]T using matrices T −1C−1 (app.C.4).

2. Separate the state-vector [v+, v0, v−, η]T into real and imaginary parts via a non-

linear separation function Fsep.
3. Multiply the state by the gain KROSSE and reconstruct qCHFL from its separated

real and imaginary parts.
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qCHFL
ROSSE via OSSE

=
[
<(qCHFL) + ι=(qCHFL)

]
=
[
I ιI

] [<(qCHFL)

=(qCHFL)

]
,

=
[
I ιI

]
qROSSE ,

=
[
I ιI

]
KROSSE xROSSE ,

=
[
I ιI

]
KROSSE

[
<(xOSSE)

=(xOSSE)

]
,

=
[
I ιI

]
KROSSE Fsep xOSSE ,

=
[
I ιI

]
KROSSE Fsep T −1 C−1



u+

u

u−

v+

v

v−

w+

w

w−


,

= KCHFL
ROSSE via OSSE

xCHFL,

with

KCHFL
ROSSE via OSSE

=
[
I ιI

]
KROSSE Fsep T −1 C−1 . (6.14)

As the separation function Fsep is a non-linear operation, the linear process in Chan-

nelflow needs to be broken into two stages, each requiring a high-dimensional matrix

multiplication. For this reason, a more efficient and direct method was implemented.

Second method - direct

This method requires the definition of the ROSSE transformation matrices T −1
ROSSE and

C−1
ROSSE , which follow easily from their OSSE equivalent. They enable the derivation of

KCHFL
ROSSE direct

without employing any OSSE formulation and requiring high-dimensional
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matrix multiplication only once,

qCHFL
ROSSE direct

=
[
<(qCHFL) + ι=(qCHFL)

]
,

=
[
I ιI

] [<(qCHFL)

=(qCHFL)

]
,

=
[
I ιI

]
qROSSE ,

=
[
I ιI

]
KROSSE xROSSE ,

=
[
I ιI

]
KROSSE T −1

ROSSE C
−1
ROSSE Fsep xCHFL,

= KCHFL
ROSSE direct

xCHFL,

(6.15)

with

KCHFL
ROSSE direct

=
[
I ιI

]
KROSSE T −1

ROSSE C
−1
ROSSE Fsep. (6.16)

We remind the reader that this calculation is computed at each time-step of the Chan-

nelflow simulation, and therefore needs to be as straightforward as possible.

6.2 Literature review: Solving the Riccati equation

Solving the high-dimensional Riccati equation is the main obstacle of this thesis and

constitutes the focus of many researchers since the early 1970’s. The scientific literature

offers different methods that can be classified into three types: direct methods, solving

directly the Riccati equation via gradient-based descents; Riccati-less methods, avoid-

ing the Riccati equation via mathematical tricks; and model reduction, producing an

equivalent system of lower-dimension to allow a direct solution.

6.2.1 Direct Solution of the Riccati equation

Gradient-descent

The Riccati problem is an optimization problem, and therefore can be solved with the

numerous gradient-based iteration algorithm dedicated to that purpose. In other words,

for n given initial conditions {xi0}i=1..n, it is possible to find the n optimal input {qi}i=1..n

and the optimal control gain K, such that

[q1 q2 ... qn] = K [x1
0 x2

0 ... xn0 ], (6.17)

by solving the direct and the adjoint equations in the system 6.8 in an iterative manner

with a gradient descent, such that the cost function J in 6.3 is minimized (Kim and

Bewley, 2007, §3.1 & §4.1).
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For this purpose, efficient gradient-based classical methods exist: steepest-descent &

conjugate-gradient descent (see Shewchuk (1994) for a painless introduction), Broyden-

Fletcher-Goldfarb-Shanno algorithm (BFGS), Nelder-Mead method, Newton search, etc.

Good references for further research are the numerical implementation of these method

in (Press et al., 2007, Chapter 10), and the application of gradient methods for large and

distributed linear quadratic control in the Ph.D. thesis of Mårtensson (2012). Nonethe-

less, the computation cost of these methods is prohibitive when n is large.

Chandrasekhar Method

The Chandrasekhar method (Kailath, 1973) is an effective method to find the solution

of a high-dimensional differential Riccati equation (eq.3.24). It was exploited for time-

varying models by Lainiotis (1976) and optimal control of delay-differential systems

by Powers (1983). In the case of high-dimensional system, it was tested numerically

by Kenney and Leipnik (1985) against two Bernoulli substitution methods, the direct

integration of the Riccati equation and the Davison-Make method for large sets of data,

and demonstrated high-efficiency when the dimension of the actuation and/or estimation

are relatively small compared to the one of the state. This method was applied for

the continuous control design of a heat equation system (Borggaard and Burns, 2002),

the feedback control of a two-dimensional Burgers’ equation system (Camphouse and

Myatt, 2004), or to estimate the Navier-Stokes equations in a wall-bounded flow system

(Hoepffner et al., 2005). Nonetheless, this method still requires the solution of the high-

dimensional differential Riccati equation at time t = 0, before accessing low-dimensional

solutions at other times (Bewley et al., 2016).

6.2.2 Bypassing the Riccati equation

A first remedy to the intractable solution of the Riccati equation for large system is to

bypass the Riccati equation and determine the optimal control law by alternative ways.

With this aim in mind, Bewley et al. (2016) enumerates three different methods from the

literature: the Minimum Control Energy Stabilization (MCE), the Oppositely-shifted

Subspace Iteration (OSSI) (the main new result of their paper) and the Adjoint of the

Direct-Adjoint (ADA).

Minimum Control Energy Stabilization (MCE)

The Minimum Control Energy Stabilization is a mathematically rigorous procedure to

determine the optimal control law by pole-assignment. First introduced by Lauga and

Bewley (2003), it was then exploited in the process to characterize the gradual decay
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of stabilizability when increasing the Reynolds number in a linear complex Ginzburg-

Landau model of spatially developing flow systems (Bewley et al., 2016). This procedure

was also employed to study the wake behind a steady cylinder (Pralits et al., 2008,

conference). However, the MCE technique requires the assumption κ→∞ (Qx = 0) —

the solution of the optimization problem is only minimizing the cost of the control signal

without any consideration for the state— hence the denomination “minimal control”.

This limits the application of MCE to theoretical investigations.

Oppositely-shifted Subspace Iteration (OSSI)

The Oppositely-shifted Subspace Iteration is a prototype method published in Bewley

et al. (2016). It brings a small modification to the algorithms of subspace iteration,

which is a mature topic of algorithmic (references given in Bewley et al. (2016)). Sub-

space iteration refers to a group of iterative eigenvalue solvers, which efficiently converge

towards the m leading eigenvalues and eigenvectors of a high-dimensional n×n matrix,

when m� n. This method is commonly employed on sparse matrices of dimensions up

to order 106 and offers different algorithms to accelerate the convergence of the solvers.

Bewley et al. (2016) “oppositely shifted” the time-forward march in the iteration pro-

cess, or “propagation formula”. It allows the algorithm to converge towards the central

eigenvalues, located around the imaginary axis, instead of the usual extreme ones. These

central eigenvalues can lead to the relation between the state and its adjoint, therefore

determine the solution P of the Riccati equation 6.11 and the optimal control gain Kopt.

The OSSI method is a promising technique as it enables access to a wide variety of

efficient algorithms. However, due to its limited application to very small dimension

(n = 10), it remains for the time-being a prototype. The implementation of other

algorithms is required to access high-dimensional system and fast computation.

Worth noting, as the OSSI method is not matrix-based, i.e. does not require the ma-

trices A (eq.5.30)or its inverse, future implementation with matrix-free Python object

LinearOperator may be of interest.

Adjoint of the Direct-Adjoint (ADA)

No mathematically rigorous method exists to determine the optimal control gain K for

large and complex systems, except for the case κ→∞ (Qx → 0) where some solutions

as the MCE stabilization exist. In addition, the classical gradient-based iteration algo-

rithms are not efficient solutions. They rely on the heavy computation at each iteration

of a large input system, in order to output an improvement measure of much lower

dimension. For this type of application, a clever and elegant alternative exists, as it is

indeed the raison d’être of adjoint methods (Luchini and Bottaro, 2014).
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The Adjoint of the Direct-Adjoint (ADA) method was firstly introduced in Pralits et al.

(2008) and Pralits and Luchini (2010). The authors considered the direct-adjoint prob-

lem 6.8 as an input-output system. In this high-dimensional system, the optimization

problem outputs the optimal control signal q corresponding to an initial state input x0.

In most problems, the dimension of the output control signal q is much smaller than

the dimension of the state x. Therefore, Pralits et al. (2008) decided to take a reverse

approach by investigating the adjoint of the direct-adjoint system. Instead of evaluating

the behavior of an improvement measure (sensitivity or cost function) upon modifica-

tion of the flow parameters or geometries, they focused on why and how this measure

varies via the adjoint problem. By taking as input an adjoint-initial condition of small

dimension, q+
0 and as output the high-dimensional adjoint-state, they established the

optimal the optimal control gain Kopt of bluff-body wakes (Pralits and Luchini, 2010)

and managed to suppress the von Kármán vortex shedding past a circular cylinder at

Re = 55 (Pralits et al., 2008).

The Adjoint of the Direct-Adjoint (ADA) was used extensively and promisingly. Luchini

and Bottaro (2014) reviewed the use of adjoints in the domain of hydrodynamic stability

theory, and gave two application examples (the noise-amplifying instability of a flat-plate

boundary layer and the global mode occurring in the wake of a cylinder) as well as a

very informative supplement (Luchini and Bottaro, 2014). Semeraro et al. (2013) applied

the same method to the estimation problem, entitled the Adjoint of the Adjoint-Direct

method (AAD), for a single-input-single-output system. They stabilized a full-dimension

linear quadratic Gaussian controller on a Tollmien-Schlichting wave developing in a two-

dimensional boundary layer flow. Semeraro and Pralits (2017) extended that progress on

the multiple-input-multiple-output case and to robust H∞ control. Their decentralized

(i.e. restricting the interaction between pairs of sensor and actuator at the same stream-

wise location) controller computed with ADA and AAD was applied on a modified

version of two-dimensional Kuramoto-Sivashinsky equation to mimic a 3D configuration.

The ADA method outperforms analogous techniques in terms of convergence perfor-

mances for many configurations. In the infinite-horizon case, the control gain K be-

comes constant and equal to K(t = 0), which recovers the original infinite-horizon LQR

design (§3.4.4) (Semeraro et al., 2013). The ADA algorithm is also useful as its solu-

tion is independent of the initial condition fed to the system, and thus on the external

disturbances (Semeraro and Pralits, 2017, §6).

The downside of the ADA method is its requirement for a cycle of forward integration of

the direct-adjoint, together with a backward integration of adjoint-of-the-direct-adjoint

systems, both over a period T . In the infinite-horizon case, the period T needs to tend

to the infinity to obtain the optimal gain. Finding the adequate initial condition and

integration parameters for unstable and high-dimensional systems to allow an iterative

increase of T is feasible, but not always evident.
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6.2.3 Model reduction

A second possibility to avoid the intractable solution of the original high-dimensional

optimal control problem is to produce its equivalent low-dimension counterpart, for

which the Riccati solution is accessible.

Low order models

Low order models, or reduced models, aim to reproduce the same characteristic of a

given system yet at lower dimension. Reduced models require less storage and compu-

tational time. Hence they can replace the original system for real time simulation or be

aggregated with other models at lower cost. Low order models are helpful in the mod-

eling of invariant solutions and were studied by many researchers for this purpose. In

this context, the OSSE system is characterized by a high dimension and a size reduction

could be an advantage.

The first idea of a truncated system comes from Moore (1981), who applied the minimal

realization theory to reduce a linear system. Firstly transforming the full system into

a balanced one, he then truncated it to build an internal dominant subsystem, which

contributes mainly to the full-model impulse response matrix. Balanced truncation has

an advantageous error bound, close to the lowest error possible from any reduced-order

model, and was also extended to non-linear systems (details in Rowley, 2005). Still,

it can only fit states of low dimension (less than 10 000). Starting with the definition

of the controllability and observability Gramians, the balanced truncation method then

“balances” these two matrices. A system is said to be “balanced” if its associated

Gramians are equal and diagonal, i.e. each of its modes is equally observable and

controllable. Truncating the least observable and controllable modes produces a lower

order model. The method of balanced truncation is also detailed in the book of Green

and Limebeer(1995, chapter 9) and has been used for boundary-layer control (details in

Kim and Bewley, 2007).

Proper Orthogonal Decomposition (POD), also called Karhunen-Loève expansion, is a

model reduction technique often used in fluid dynamics. It projects the data of dimen-

sion n into a subspace of smaller dimension r. To define the projection basis, a matrix

associated with the state of the system, of size n×n, is formed, and its eigenvectors are

computed. These eigenvectors are called the “POD modes” of the optimal projection.

A Galerkin projection is then used to reduce the size of the subspace formed by the

POD modes. Different methods exist to define the optimal projection span of reduced

size, like the snapshots method (Rowley, 2005). The drawback is that POD is sensi-

tive to empirical data from which the projection basis is formed and that it can ignore

low-energy modes which nonetheless influence greatly the flow dynamics (e.g. acoustic
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waves). Berkooz et al. (1993) wrote an annual review about this decomposition, explain-

ing the fundamental mathematical development, as well as experimental and numerical

results strengthening the concept. The same group published a book (Holmes et al.,

2012), wherein theoretical and practical aspects of coherent structures, POD, dynamical

systems and low dimensional models with some applications are gathered. The second

edition (Rowley, 2005) added the work of Rowley on balanced POD and compared POD,

balanced truncation and balanced POD with a linearised flow in a plane channel.

Balanced POD makes the balanced truncation method feasible for large systems, by

applying beforehand a balanced transformation on the controllability and observabil-

ity Gramians. Firstly, a balancing transformation as in a balanced truncation is com-

puted from snapshots of empirical Gramians, hence skipping the calculation of two high-

dimensional Gramians. Secondly, an output projection similar to the POD is applied

to reduce the size of the system. Rowley (2005) exploited this method on large systems

by computing the balancing transformation via an orthogonal projection, avoiding the

Gramians.

We refer the interested reader to the many other methods available to reduce both lin-

ear and nonlinear systems, based either on the SVD or on moment matching (Antoulas,

2006), or forming analytic basis functions explicitly designed to represent physical phe-

nomena observed in turbulent flows (details given in (Gibson et al., 2008)). Nonetheless,

model reduction dedicated to the purpose of control design (Semeraro et al., 2013; Be-

wley et al., 2016) are more appropriate for this thesis and are reviewed in the following

paragraphs.

Reduce-then-Design vs. Design-then-Reduce

When considering model-reduction methods for the purpose of control design, two differ-

ent approaches are conceivable. The first “reduce-then-design” possibility consists in ap-

proximating the system with a low-order model, and only then designing the controller.

The second “design-then-reduce” one performs a full-dimensional controller design first,

and then reduces the controller to a lower dimension as a high-dimensional control is

not of practical interest for engineering applications. These strategies are not equivalent

and their usage depends on the user’s objectives and on the problem (Semeraro et al.,

2013). The focus of this project is obviously on the reduce-then-design strategies, as

solving the high-dimensional Riccati equation is impossible for high-dimensions.

Both approaches suffer from known drawbacks, sometimes severe (Bewley et al., 2016).

Firstly, the model-reductions techniques as presented above are open-loop truncations.

Only the controllability and observability of the system are taken into account through

matrices B2 and C1. No consideration for the control objective is embodied in these

matrices, and therefore in the reduction protocol. Some important components of the
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cost function may not be included in the reduced model. Secondly, if the eigenmodes

of the reduced matrix are non-orthogonal or not acknowledged in the approximation, a

substantial transient energy growth may arise initially and ignite non-linear mechanisms.

The delay for their destructive interference to disappear is indeed not synchronized

as distinct modes decay at distinct paces. A simple study of the eigenmodes of the

system is not sufficient to describe this phenomenon. Model reduction based on retaining

solely the major eigenmodes won’t reproduce the turbulent evolution faithfully. Thirdly,

performing a model-reduction requires the solution of a problem of complexity similar

to an eigenvalue problem, which is computationally inefficient.

Reduce-while-solve strategy: Extended and Rational Krylov subspaces

A different strategy to determine the solution of the high-dimensional Riccati equation

consists in determining the reduction base while solving the reduced Riccati equation via

a traditional method. The reduction base is generated iteratively via an Arnoldi process

of Galerkin type, while the reduced Riccati equation is solved at each iteration. The

quality of the approximate solution is evaluated via the residual of the reduced Riccati

equation. Further increase in the dimension of the reduction base minimizes the residual

and extracts an approximation of the stabilizing solution of the high-dimensional Riccati

equation.

One of the first idea to use projection of lower-dimensional orthogonal subspaces ap-

peared in Saad (1990), where Krylov projection process of Galerkin type are presented

among other methods to solve high-dimensional Lyapunov equations for single-input sys-

tem (i.e. matrix B2 has one column). Jaimoukha and Kasenally (1994, 1995) extended

the previous work of Saad (1990) to problems where B2 has more than one column by

using a block Krylov schemes. The standard Krylov subspace of reduced dimension m

for the couple (A,B2) is defined as

Km(A,B2) = span
{
B2,AB2,A2B2, ...,Am−1B2

}
. (6.18)

They also derived an expression of the residual error and considered the low rank solu-

tions of discrete-time Lyapunov equations and continuous time algebraic Riccati equa-

tions. Krylov subspaces were getting attention at this time for large eigenvalues problems

but also applications in control theory, computational chemistry and physics (Jaimoukha

and Kasenally, 1994). Further mathematical and algorithmic improvement of the Krylov

projection methods followed shortly. Jbilou (2003) introduced a deflation technique to

delete the linearly and almost-linearly dependent vectors in the block Krylov subspaces

sequences and Jbilou (2006) brought further theoretical results as well as large-scale nu-

merical experiments. An “extended” block Krylov method was proposed by Simoncini

(2007) to solve large-scale Lyapunov equations, and later applied to large-scale Riccati

equation by Heyouni and Jbilou (2008). This “extended” method combined two block
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Krylov subspaces associated with matrices A and A−1. It is referred as “Extended

block Arnoldi algorithm” and defined for an extended block Krylov subspace of reduced

dimension m as

Km(A,B2) = span
{
B2,A−1B2,AB2,A−2B2,A2B2, ...,A−(m−1)B2,Am−1B2

}
. (6.19)

This method is more efficient than the later block Arnoldi Process, but requires at each

iteration the construction of a Krylov subspaces based on the inverse matrix A−1. For

high-dimensional system, the direct computation of the inverse is tricky, and the use of

iterative solver and preconditonner is recommanded instead.

An other variant of the Krylov subspaces is the “Rational Krylov method”, originally

proposed to approximate large eigenvalues problems (Ruhe, 1984). This method intro-

duces a series of shifts s = [s1, s1, ..., sm]T in the standard Krylov subspaces to improve

their convergence rate. The rational Krylov subspace of reduced dimension m is defined

as

Km(A,B, s) = span

{
(A− s1I)−1B, ...,

m∏
j=1

(A− sjI)−1B
}
. (6.20)

However, the choice of shift s was limited to either trial & error or costly methods in

terms computational time and memory. An adaptive computation of the shifts was

proposed by Druskin and Simoncini (2011). This method, referred as Adaptive Ratio-

nal Krylov, is almost parameter-free and time-efficient. Druskin and Simoncini (2011)

applied this method to large Lyapunov problems, while Simoncini (2016) provided new

theoretical ground and applied it to algebraic Riccati equations. Simoncini et al. (2014)

compared this approach against iterative inexact Newton-Kleinman method for high-

dimensional algebraic Riccati equations. The Galerkin Adaptive Rational Krylov seemed

to be superior for realistic problems and the best solution to approximate large scale Ric-

cati solutions. More recently, Alla and Simoncini (2017) introduced the Petrov-Galerkin

Adaptive Rational Krylov with promising results.

Despite these promising mathematical and algorithmic advances, the Krylov subspaces

method are until now limited to cases where the rank of the matrix C1 is very low. The

dimension of the reduction base is indeed linked with the rank of C1, and the dimension

of the reduced Riccati equation which needs to be solved at each iteration is equal to

the rank of C1. In this thesis, C1 derives from the definition of Qx = C∗1C1, a matrix

of dimension n× n and almost full-rank. C1 is here a rank-deficient rectangular matrix

of dimension p × n (§5.2.2.2). Yet, p is of the same order as n. After discussions with

Valeria Simoncini (personal communication via email, March 2019), it was confirmed

that Krylov subspaces can not fit to our need, unless an other expression of C1 where

p� n is found.

In parallel to Krylov based methods, other promising methods emerged and notably

the Alternating Direction Implicit (ADI) iteration (Benner et al., 2008). Benner and
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Saak (2013) summarized both Krylov and ADI methods applied to continuous time

problems, as well as sketching their respective advantages and drawbacks. However,

Valeria Simoncini advised us that ADI would not bring any major advantages for our

problem.

Quasi-separability

An alternative method was proposed by Valeria Simoncini (Dipartimento di Matemat-

ica, Università di Bologna, Simoncini (2007); Druskin and Simoncini (2011); Simoncini

et al. (2014); Simoncini (2016); Alla and Simoncini (2017)) after some online exchanges.

Her collaborator Davide Palitta indeed studied an innovative method based on hierar-

chical matrices (i.e. a sparse approximation of a non-sparse matrices), that intends to

circumvent the limitation of the Krylov-subspaces iteration to low-rank matrices C1 by

taking advantage of its particular structure (e.g. band or block matrices).

The discrete operator coming from partial-differential equations can be well approxi-

mated by a quasi-separable matrix (Massei et al., 2019). Informally, a matrix is said to

be quasi-separable if its off-diagonal blocks are low-rank matrices (Massei et al., 2018).

This approximation helps to design solvers for problems where the spatial domain can

be reformulated as matrix equations (Massei et al., 2019, on 2D cases). It was employed

to solve Sylvester and Lyapunov equations as the quasi-separable structure is guaran-

teed to be numerically present in the solution (Massei et al., 2018). Their experiments

showed that the approach based on the use of rank-structured arithmetic is particularly

effective and outperforms current state of the art techniques. Massei et al. (2018) and

Massei et al. (2019) developed a MATLAB toolbox that allows easy replication of their

experiments and a ready-to-use interface for the solvers. This toolbox can directly be

applied to the OSSE and ROSSE Riccati equaiton to determine an optimal solution.

However, the methods based on quasi-separability requires the computation of a stabi-

lizing initial guess. Palitta (2019) combined the very appealing computational features

of projection methods with the convergence properties of the inexact Newton-Kleinman

procedure equipped with a line search in order to find the solution of the algebraic Ric-

cati equation. The initial guess was computed with the method described in Bänsch

et al. (2015).

Due to the time-limitation of this project, this method was unfortunately not exploited.

Nonetheless, the author highly recommends research on similar problems to examine

the work of Valeria Simoncini and Davide Palitta for the solution of high-dimensional

Lyapunov and Riccati solutions.
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6.2.4 Final choice

Despite the considerable literature available to determine the solution of a high-dimensional

Riccati equation, many of these approach are impractical: gradient-based descents are

ineffective; the MCE is limited to Qx = 0; the OSSI is still a prototype and the Krylov-

subspace requires a low-rank objective. Only the ADA and quasi-separability methods

seem to hold a real potential. Solving the Riccati equation is the bottleneck of this

endeavor, and developing a robust and efficient Riccati solver is key for future research.

For this purpose, the authors highly recommend dedicated mathematicians as Valeria

Simoncini, Davide Palitta, Peter Benner or Daniel Kressner.

As a consequence, a reduce-then-design approach is here employed. The full-dimension

problem is reduced by spectral truncation, i.e. only the leading Fourier and Chebyshev

modes are conserved, which may not reproduce the transition to turbulence faithfully.

The control design is then performed with the Python method

scipy.linalg.solve_continuous_are

based on a Schur algorithm using a QZ decomposition. The dimension of the reduced

model is chosen such that the memory requirement of the Scipy method is conformed to

the maximum memory available. This procedure is far from optimal: as not dedicated to

such high-dimensional problem, the Schur algorithm is slow and the QZ decomposition

requires an excessive amount of memory. It can be regarded as brute force, but in simple

words, it works well enough.

6.3 Brute force direct solution of the Riccati equation

The computation of the optimal control law is operated via a reduce-then-design ap-

proach. The direct solution of the Riccati equation via the Schur method can not be

performed at the original dimension of 32 × 35 × 32 used in Channelflow to compute

the Nagata (1990) lower-branch EQ1. As a consequence, the high-order modes of this

equilibrium are truncated and a Newton-Krylov-hookstep search is operated to find the

corresponding equilibrium at this lower resolution, as in section 4.8:

changegrid --Nx 26 --Ny 27 --Nz 26 eqX_32x35x32.h5 eqX_17x27x17.h5

findsoln -eqb -R 400 eqX_17x27x17.h5

As the Scipy implementation of the Schur method is serial, the memory can not be

shared on the HPC Iridis5 between computational nodes. Therefore, the physical amount

of memory available on one computational node is the limiting factor. Each node of

Iridis5 gathers Intel(R) Xeon(R) Gold 6138 CPUs at 2.00GHz and posses 192Gb of

RAM, of which approximately 170Gb is available. All calculations are here serial. We

remind the reader that an odd resolution is necessary for the stream-wise, wall-normal
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and span-wise directions (see section 4.6.4). Moreover, due to the actuation via wall-

normal transpiration, prevalence is given to the wall-normal direction.

Within these specifications, the maximal resolution reachable with the OSSE model is

17×21×17, for which the direct solution of the Riccati equation approximately requires

169.8 MB and 28.3 hours. Nonetheless, such a low resolution does not allow Channelflow

to converge into an equilibrium. At that resolution, it is unclear for the authors if either

Channelflow is unable to achieve a decent precision or the Nagata (1990) lower-branch

does not exist. A hint can be found in the work of Keefe et al. (1992) and Kawahara

et al. (2012), where turbulence was sustained at Reτ = 80 and resolution 16× 33× 16.

Regardless, the OSSE model is here inoperative due to its memory demand.

The ROSSE is conceived to minimize the memory limitation. For comparison, the

direct solution of the Riccati equation at resolution 17× 21× 17 with the ROSSE model

approximately requires 94.9 MB and 47.1 hours at this resolution. The memory saving of

the ROSSE model suffices to reach the maximal resolution of 17×27×17. Unfortunately,

the computational time required to solve the Riccati equation at that resolution lays

beyond 60-hours wall-time of Iridis5. Thanks to the support of the ECPS group of Tobias

Schneider at the École Polytechnique Fédérale de Lausanne (EPFL, Switzerland), we

are able to compute the Riccati solution on their server. We decided to keep a resolution

of 17× 27× 17, which seems to be the lowest one for which Channelflow can find EQ1,

as it already requires 300 hours (12.4 days) of computational time on their ECPS-C01

server.

Table 6.1 gathers the eigenvalues of EQ1 at resolution 17× 27× 17 for the OSSE model

—even if the Riccati solution is inaccessible, eigen-decomposition is feasible—, ROSSE

model, as well as Channelflow. These values are close, but different, from the ones

presented at resolution 21 × 35 × 21 (OSSE, ROSSE) and 32 × 35 × 32 (Channelflow)

in section 4.8 (table 4.1, eigenvalues of EQ1). It indicates that the EQ1 is different

between resolution 17 × 27 × 17 and resolution 32 × 35 × 32. In other words, EQ1 at

resolution 17×27×17 is not equivalent to EQ1 at resolution 32×35×32. These are two

distinctive states. In practice, it implies that stabilizing EQ1 at resolution 32× 35× 32

with a controller designed to target EQ1 at resolution 17 × 27 × 17 is impossible: the

control forcing would guide the dynamical state away from EQ1 at 32 × 35 × 32 and

towards the position of EQ1 at 17 × 27 × 17, which is meaningless in this case. As a

consequence, in order to target the relevant state, Channelflow is required to adopt the

same resolution as the controller designed with the ROSSE model, hence 17× 27× 17.

This observation is problematic, as the wall-actuation is validated for Channelflow with

a wall-normal resolution Ny = 65. It is obscure if the implementation of the wall-

transpiration is effective at lower resolution, particularly for the control of unstable
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invariant solutions. Increasing the controller resolution appears as a key factor to im-

prove in this project. Nonetheless, the Scipy Schur method (§6.2.4) stands as the only

solution employable within our time constraint.

Table 6.1: Eigenvalues ranked in order of decreasing real-part and computed with
the OSSE model, the ROSSE model and Channelflow for EQ1, Re = 400. When values
rounded at 3 decimals matched, they are marked with X and spurious modes with ‘SP’.

Same protocol as §4.8 and table 4.1.

EQ1 - Low-Dimension - Nagata (1990) Lower branch

OSSE 17× 27× 17 ROSSE 17× 27× 17 Channelflow 17× 27× 17

X +0.05012082 +0.05012082 +0.05012170

X +0.00002215 +0.00002215 +0.00000025

X −0.00001902 −0.00001902 −0.00000133

X −0.00203379 −0.00203379 −0.00200393

X −0.00659876 −0.00659876 −0.00660315

X −0.00688399 −0.00688399 −0.00692660

X −0.00974591 −0.00974591 −0.00972886

X −0.01359193 −0.01359193 −0.01359344

X −0.02392832 −0.02392832 −0.02393420

SP −0.02467401 −0.02467401

X −0.03347443 −0.03347443 −0.033485138

X −0.03704233 −0.03704233 −0.037024950

X −0.04260227 −0.04260227 −0.042615339

X −0.04535135 ±0.01888320ι −0.04535135 ±0.01888320ι −0.045351524 ±0.01887272ι

−0.048491699 ±0.10250483ι

SP −0.05047682 −0.05047682

X −0.05181479 ±0.02605732ι −0.05181479 ±0.02605732ι −0.051820653 ±0.02604382ι

X −0.06237648 ±0.03117230ι −0.06237648 ±0.03117230ι −0.062366408 ±0.03115481ι

6.4 Validation of optimal control implementation: control

of Couette laminar baseflow

The procedure to determine the optimal control law and its implementation in Chan-

nelflow is validated with a laminar Plane Couette Flow (PCF) profile, at a Reynolds

number of 400. We will perform a linear analysis (§6.4.1) and simulations of the closed-

loop system, either with the linear OSSE model (§6.4.2) or the Channelflow software

(linear simulations are not feasible, see §6.4.3, but non-linear ones are in §6.4.4). The

laminar Plane Couette Flow profile is already a stable solution. As a consequence, the

validation does not intend to stabilize the solution, but to increase its degree of stability.
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We expect the controller to improve the rate of convergence towards the laminar profile

when the state is perturbed and pushed away from the solution.

Due to memory limitations and to evaluate the behavior of the method for low resolu-

tions, the Riccati solution is calculated at resolution 11 × 21 × 11, which is sufficient

for the convergence of the eigenvalues of the PCF profile but may not be adequate for

wall-transpiration actuation. Details on the influence of the wall-normal resolution are

given in section 6.4.5. Moreover, the actuation is limited solely to the wall-normal ve-

locity at the wall, as the Channelflow Boundary Condition Package of Heins (2015) is

only validated for this component u00 and w00. It implies that the matrix B2 is reduced

to remove the modes of the wall-normal vorticity ηy, as well as fundamental modes of

the stream- and spanwise velocity components. This reduction leads to a small saving

in memory and time requirement of approximately 2%. Finally, for every simulation,

the actuation-time constant is set at τ = 0.005.

The Riccati solutions are calculated along the procedure given in section 6.2.4 for dif-

ferent values of κ,

κ = [1.0, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01]. (6.21)

In each case, the calculation approximately requires 2 hours and 30Gb of RAM memory

on the HPC Iridis5, with a slight increase in time requirement (∼ 10 min) with decreasing

value of κ.

6.4.1 Linear analysis

Data location osse/database/THESIS/06_couette_controlled_OSSE

Script for Riccati... python3 osse/osse_riccati_couette.py

solutions and analysis 11 21 11 $1000kappa

Eigen-decomposition

The eigenvalues of the open- and closed-loop systems are calculated as in §4.8 with

Python packages. The leading values are gathered in table 6.1 for each value of κ and

compared against the open-loop system.

A first observation from table 6.1 is the presence of modes unaffected by the feedback

control. Some of them are uncontrollable spurious modes of the OSSE model, here

coloured in gray and found previously in table 4.1, while the others, for example the

first and seventh leading eigenvalues of the PCF profile, are likely uncontrollable via

actuation by wall-transpiration. We dismiss these modes as they are unaffected by the

control law.
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For decreasing values of κ —higher control “strength”—, the real part of each eigenvalue

is moved further onto the left hand side (their negative real part decreases). For instance,

all the eigenvalues for κ = 0.01 are shifted to the left in comparison to the open-

loop system. As a consequence, the linear stability of the PCF profile improves with

decreasing value of κ. In brief, a stronger control improves the linear stability of the

OSSE model.

Normality

When the eigenmodes of linear system are non-normal or non-orthogonal under the en-

ergy norm, a transient energy growth can occur in the initial phase of a simulation. This

transient growth can trigger non-linear effects and ignite the transition to turbulence,

despite the presence of an optimal control. Therefore, an attentive evaluation of the nor-

mality of the system is necessary. Further explanations, references and mathematical

details on normality are given in appendix section H.3.1. Normality is here evaluated

to estimate the impact of the feedback control on potential transient energy growth.

Measures of the normality are gathered in table 6.2 for the open- and closed-loop OSSE

systems.

It appears that weak controller —large values of κ = {1.0, 0.75}, marginally affect the

normality of the OSSE model. However, for smaller values of κ, the normality mea-

sure drastically escalates: the system becomes non-normal. For instance, the leading

eigenvalue for κ = 0.01 is twenty-five times higher than the one for κ = 1.0. As a con-

sequence, we expect the optimal control to disrupt the initial phase of the simulations

by prompting an energy burst. This energy growth is benign for linear simulations: as

the OSSE model is linearly stable, this perturbation will remain transient for the linear

case. Nonetheless, its repercussions on the non-linear simulations are less predictable. A

slight perturbation can indeed initiate the transition turbulence. Therefore, we expect

powerful optimal control law (small values of κ) to disturb the initial phase of non-linear

simulations and likely push the state away from the laminar profile, hence breaking the

hypothesis of small-perturbation fundamental to the linearization procedure of §4.1.1.

Conclusion

To conclude, an increase in optimal control strength (lower values of κ) improves the

linear stability of the OSSE model but enhances the risk of transient energy growth as

the normality of the system deteriorates. For very powerful control (κ = {0.05, 0.01}),
it might even push the state away from the neighborhood of the laminar solution and

render the linearization around this solution invalid.



Figure 6.1: Measure of the stability of the linear OSSE model for different κ: leading eigenvalues of A (open-loop) and A + B2K (closed-loop).
Couette, Re = 400, resolution 11× 21× 11, τ = 0.005. Rows in gray colour are spurious modes of the OSSE model.
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Figure 6.2: Measure of the normality of the linear OSSE model for different κ: leading eigenvalues of the A∗Qx + QxA (open-loop) and (A +
B2K)∗Qx +Qx(A+B2K) (closed-loop). Couette, Re = 400, resolution 11× 21× 11, τ = 0.005.

Open-loop Closed-loop

N/A κ = 1 κ = 0.75 κ = 0.5 κ = 0.25 κ = 0.1 κ = 0.05 κ = 0.01

0.25534294 0.25391966 0.26309881 0.33314871 0.49245581 0.84054753 1.41054276 6.41837695
0.14686111 0.22453096 0.25282097 0.24972123 0.23393151 0.35979122 0.64371785 3.00203619
0.14177512 0.14630307 0.14587161 0.14465117 0.18889113 0.18367987 0.29417572 1.42196373
0.13760128 0.13791829 0.13817513 0.14351150 0.14392400 0.15556558 0.17892250 1.42196373
0.13111264 0.13079359 0.13342113 0.13895328 0.13835903 0.13885029 0.17084295 0.66537071
0.13085706 0.13038674 0.13054775 0.12985629 0.12638381 0.12744047 0.14780200 0.61372269
0.12685361 0.12972318 0.13002310 0.12899437 0.12502270 0.12505027 0.12765787 0.61372269
0.12628036 0.12644331 0.12612623 0.12578499 0.12432311 0.12017012 0.12317206 0.53363341
0.12586618 0.12615614 0.12605970 0.12522994 0.12377386 0.12016776 0.12017012 0.43876991
0.12483006 0.12541831 0.12507203 0.12432174 0.12368848 0.11505044 0.09841040 0.35722550
0.12458061 0.12451184 0.12446026 0.12409254 0.12062424 0.11051349 0.09303791 0.35722550
0.12445257 0.12402479 0.12369411 0.12282067 0.12017012 0.10480284 0.09258779 0.34690518
0.12396531 0.12364502 0.12339785 0.12275894 0.12016776 0.10476387 0.08977320 0.34690518
0.12367954 0.12323974 0.12289973 0.12275894 0.11915927 0.10180798 0.08126615 0.26678608
0.12323760 0.12285122 0.12255267 0.12270088 0.11904247 0.09987475 0.07638985 0.26678608
0.12306410 0.12263242 0.12240266 0.12193803 0.11824711 0.09651028 0.07623769 0.26570409
0.12257114 0.12225552 0.12229871 0.12170898 0.11794278 0.09587545 0.07420585 0.26570409
0.12206567 0.12215985 0.12184196 0.12135494 0.11737859 0.09527823 0.07104638 0.25747665
0.12202530 0.12176474 0.12157067 0.12102358 0.11698163 0.09516528 0.06506599 0.25747665
0.12201625 0.12160327 0.12127703 0.12094318 0.11657746 0.09483797 0.06349623 0.23895700
0.12188033 0.12152375 0.12124828 0.12047003 0.11649323 0.09253048 0.06154045 0.13769140
0.12168771 0.12129438 0.12099041 0.12035455 0.11648125 0.09235355 0.06086662 0.13591696
0.12147086 0.12106031 0.12074299 0.12017012 0.11631933 0.09219725 0.06050795 0.13369529
0.12125431 0.12083457 0.12055055 0.12016776 0.11571568 0.09203659 0.05949183 0.12544405
0.12108039 0.12078139 0.12051013 0.12013120 0.11570614 0.09189381 0.05686314 0.12452551
0.12106359 0.12070993 0.12043670 0.11989915 0.11560567 0.09189381 0.05583428 0.12163784
0.12101544 0.12062676 0.12032639 0.11984582 0.11523055 0.09149016 0.05572832 0.12017012
0.12094183 0.12053580 0.12022198 0.11966472 0.11511439 0.09084023 0.05554087 0.11555748
0.12085040 0.12043456 0.12017012 0.11959276 0.11487156 0.09077736 0.05520952 0.10071506
0.12074863 0.12032677 0.12011315 0.11947734 0.11477191 0.09068315 0.05417818 0.08657887
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6.4.2 OSSE Linear Simulations

Data location osse/database/THESIS/06_couette_controlled_OSSE

Script for simulations python3 osse/osse_riccati_couette.py

11 21 11 $1000kappa

Script for comparison python3 osse/run_comparison_couette_thesis_642.py

11 21 11 1

Script for cost python3 osse/osse_cost.py 11 21 11

The OSSE model is simulated starting from the laminar PCF profile perturbed with a

real unitary state-vector multiplied by a factor of 0.05 (the amplitude of the perturbation

is not meaningful as the model is linear), and the optimal control law is enforced from

time t = 5. The OSSE model is integrated in time via the BDF algorithm of the

method scipy.integrate.solve_ivp, with absolute and relative tolerances of 10−8

over a period T = 500. The energy time-evolution for the open-loop and closed-loop

systems for different values of κ are presented in figure 6.4.

When introducing the optimal forcing at t = 5, the energy of the system rises and

becomes almost discontinuous. As expected, this rise is proportional to the intensity of

the controller and likely due to the BDF algorithm requiring some time to adapt to the

forcing, which can be considered as an external perturbation. After a couple of steps,

this “discontinuity” disappears.

Following the perturbation, the un-actuated simulation faces an energy growth, peaking

at t = 40. The optimal control diminishes the amplitude of this surge for each value

of κ. The intensity of the energy growth decreases with higher controller strength and

even disappears for κ ≤ 0.25. The most powerful controllers (small κ) are even able

maintain the energy norm at a lower level. Overall, after 150 time-units, all simulations

are converging along the same stable eigenmode towards the laminar PCF profile. Even

if the most powerful optimal control managed to avoid the energy growth following the

initial perturbations, they do not lead to any long term benefit.

This can be interpreted thanks to the linear analysis: the leading eigenvalue −0.00616850

of the PCF profile in table 6.1 remains unaffected by the optimal control, whichever value

of κ, while the other eigenvalues of smaller real-part magnitude are all shifted further

in the left hand side by the optimal control law. The leading eigenmode −0.00616850

is predominant on the long term evolution of the system, hence leading to the same

behavior beyond t = 150 for each simulation. The other eigenvalues are responsible

for the rapid energy growth after the perturbation. As their amplitude is diminished

with the optimal forcing, they are not influential in controlled simulations and the energy

growth is weakened or does not develop. Beyond t = 150, all the other eigenmodes faded

and the state is literally parallel to the stable eigenmode −0.00616850, with decreasing

amplitude.
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The costs associated with the state and optimal forcing are gathered in table 6.2 and

in figure 6.3. They give insight on the predominance of the state versus the control in

the optimization process, as their sum corresponds to the cost function to minimize in

the Riccati problem (see section 5.2.2). The cost of the state actually corresponds to

the kinetic energy density. As a consequence, the previous observations made on figure

6.4 are also valid here. The cost associated with the state follows the same evolution

for each value of κ, except during the transient energy growth. The cost associated

with the control also observes the same behavior for each kappa, at different order of

magnitude. The parameter κ is directly responsible for the different order of magnitude

as it is included in the matrix Qq. It is interesting to note here that while the cost of

the state decreases by up to 3 orders of magnitude over the period T = 500, the cost of

the forcing is reduced by 13 orders of magnitude for κ = 1.0 and even 22 for κ = 0.01.

This implies that at this stage of the simulation, the forcing is minimal and the state is

almost at its optimal position.
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Table 6.2: OSSE linear simulations: cost associated with the state and to the control
forcing for different values of κ at different time steps corresponding to the simulations
presented in fig. 6.4, as well as the time required on one core of Iridis5 to compute the

time-integration.

κ Time-step cost(x) = xQxx cost(q) = qQqq Calculation time

1.0

1 1.77× 10−3 1.09× 10−3 0
25 2.71× 10−3 9.00× 10−4 6
100 7.19× 10−4 3.70× 10−5 9
500 5.01× 10−6 9.80× 10−16 29

0.75

1 3.54× 10−3 2.66× 10−3 0
25 4.82× 10−3 1.96× 10−3 5
100 1.20× 10−3 4.38× 10−5 9
500 1.00× 10−5 3.89× 10−17 29

0.5

1 1.77× 10−3 1.49× 10−3 0
25 2.00× 10−3 8.63× 10−4 5
100 5.21× 10−4 6.21× 10−6 9
500 1.01× 10−6 2.00× 10−18 29

0.25

1 3.55× 10−3 2.68× 10−3 0
25 3.05× 10−3 7.50× 10−4 6
100 9.85× 10−4 9.21× 10−47 9
500 1.00× 10−5 8.19× 10−22 28

0.1

1 1.77× 10−3 1.01× 10−3 1
25 1.28× 10−3 6.01× 10−5 6
100 4.89× 10−4 4.74× 10−8 10
500 1.15× 10−6 5.34× 10−24 29

0.05

1 1.77× 10−3 9.33× 10−4 1
25 1.22× 10−3 1.41× 10−5 8
100 4.89× 10−4 1.14× 10−8 11
500 5.01× 10−6 6.86× 10−25 31

0.01

1 1.77× 10−3 9.64× 10−4 7
25 1.19× 10−3 5.53× 10−7 35
100 4.89× 10−5 4.50× 10−10 38
500 5.01× 10−6 2.02× 10−26 58
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a) Time-evolution over t = [0 : 500]

b) Time-evolution over t = [0 : 60]

Figure 6.3: OSSE linear simulations: Time-evolution of the cost associated with the
state and to the control forcing for different values of κ corresponding to the simulations

presented in fig. 6.4.



Figure 6.4: OSSE linear simulations: Time-evolution of the energy norm of the state-vector (i.e. distance to the laminar PCF profile) controlled
by an optimal forcing for different value of κ. The continuous black line represents the un-actuated system. The system is initially perturbed with
a real unitary vector multiplied by a factor 0.05. The control starts at t = 5. (time horizon [0, 500] and zoom over [0, 60], resolution 11 × 21 × 11,

Re = 400, τ = 0.005).
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6.4.3 Linearized Channelflow simulations

Data location osse/database/THESIS/

06_couette_controlled_channelflow/

controller_K_OSSE/couette/Re=400/LinearAboutProfile

Channelflow Simulation channelflow/trunk/PHD/controller_k_couette.cpp

Script for comparison python3 osse/run_comparison_couette_thesis_643.py

11 21 11 1

As explained in section 5.5, the linearization of the Navier-Stokes equations is only avail-

able around a laminar profile in Channelflow. As a consequence, the results previously

obtained with the linear OSSE model shall be recovered within Channelflow. Param-

eters and DNS flags for the linearized Channelflow simulations are given in table 6.3.

The non-linear terms are expressed in their linearized form given in eq. 5.53.

Linearized Channelflow simulations with optimal control are presented in figure 6.5.

They are initialized with a impulse perturbation of magnitude 10−8 at time t = 10

and the control is prompted at t = 5. Unfortunately, the actuation is unsettling the

simulations and leads to an excessive CFL number (> 1), therefore interrupting the

simulation early. With higher perturbation amplitude and/or more powerful control,

this phenomenon arises sooner. For value of κ below 0.25, the actuation is so disruptive

that the simulations immediately interrupt.

Unfortunately, the optimal control law enforced via the ChannelFlow Boundary Condi-

tion package (CFBC) of Heins (2015) is failing when used within linearized Channelflow

simulations. The implementation of the actuation via the CFBC was validated for a

linearized Channelflow simulation and a laminar PCF profile for different wave-number

pairs in section 5.5.1. However, this validation and the one presented in the Ph.D the-

sis of Heins (2015) were restricted to a limited collection of wave-number pairs. This

complication may be related to the actuation of higher-order modes, or to the control

itself. We believe that this problem is due to the association of the linearized Chan-

nelflow model, the optimal control and the ChannelFlow Boundary Condition package

package. Despite this issue, simulations performed with a non-linear Channelflow in the

next section are actually satisfying (except for very powerful controller).
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Figure 6.5: Channelflow simulations with non-linear terms under a linearized form
(eq. 5.53): Time-evolution of the energy norm of the state-vector (i.e. distance to the
laminar PCF profile) controlled by an optimal forcing for different value of κ. The
continuous black line represents the un-actuated system. The system is perturbed at
t = 10 with a Dirac of magnitude 1E − 8 The control is applied at t = 5 for different
value of κ. The time-horizon is limited to t = 28 when the actuation perturbs the
simulation up to an excessive CFL number (> 1). (time horizon [0, 500] and zoom over

[0, 60], resolution 11× 21× 11, Re = 400, τ = 0.005).

6.4.4 Non-linear Channelflow simulations

Data location osse/database/THESIS/

06_couette_controlled_channelflow/

controller_K_OSSE/couette/Re=400/skewsymmetric

Channelflow Simulation channelflow/trunk/PHD/controller_k_couette.cpp

Script for comparison python3 osse/run_comparison_couette_thesis_644.py

11 21 11 1

Non-linear Channelflow simulations with optimal control are presented in figure 6.7.

They are computed with the non-linear terms under the skew-symmetric form (eq. 5.61).

They are initialized with a Dirac perturbation of magnitude 10−8 at time t = 10 and

the control is prompted at t = 5. Due to the low amplitude of the perturbations,

the non-linearity is marginal. The simulations are behaving as in the linear OSSE

simulations, except for κ = 0.25. After a slight energy growth following the perturbation,

all simulations (except κ = 0.25) are converging along the same stable eigenmode towards

the laminar PCF profile. The most powerful optimal controls (except κ = 0.25) avoid

the energy growth following the initial perturbations, but do not lead to any benefit on

the long term, as in the linear OSSE simulations.

Nonetheless, the simulation for κ = 0.25 is different. Immediately after the energy burst

due to the perturbation, the simulation is linearly diverging away from the PCF profile

for this κ. This evolution does not correspond to any eigen-mode found during the linear

analysis, as it would correspond to a positive real-part eigenvalue. It appears from figure

6.6 that the case κ = 0.25 is dominated by the actuation at the wall, and not by the

eigen-spectrum, on the contrary to higher values of κ (e.g. κ = 0.5 in fig.6.6) where

the actuation is not predominant against the perturbation around the baseflow. The
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Table 6.3: Parameters and DNS flags for Channelflow simulations presented in sec-
tions 6.4.3, 6.4.4 and 6.4.5.

PARAMETER VALUE

baseflow Couette
Nx, Ny, Nz §6.4.3 and 6.4.4: 11× 21× 11

§6.4.5: 11× {21, 27, 35, 65} × 11
Reynolds 400.0

nu 1 / Re

Lx eq1.Lx() = 2*pi/1.14

a eq1.a() = -1.0

b eq1.b() = +1.0

Lz eq1.Lz() = 2*pi/2.5

Baseflow LinearBase

Nonlinearity §6.4.3: LinearAboutProfile
§6.4.4 and 6.4.5: SkewSymmetric

Initstepping CNRK2

Timestepping SBDF4

Dealiasing DealiasXZ

taucorrection true

constraint PressureGradient

dPdx 0.0

uupperwall +1.0

ulowerwall -1.0

CFLmin 0.10

CFLmax 0.80

dtmax 0.005 (= tau)

dtmin 0.0000001

dt0 dtmax

variable dt true

T0 0.0

T1 1000.0

dt 1

controller starts at 5

perturbation initiated at 10

perturbation magnitude 1E-8

perturbation method addPerturbations(3,3,1E-8,0.5)

fields at t = 200 for κ = 0.25 is indeed very similar to the actuation field presented in

figures 5.8. Exactly, it is dominated by the actuation qv on the wall-normal velocity for

the particular Fourier mode (0, 1). Interestingly, this mode was found to be the most

effective actuation mode to target the 1st and 2nd eigenmodes of EQ1 during the modal

controllability analysis operated in section 5.4.3.

The possibility that the optimal solution is not valid for κ = 0.25 is unlikely, as linear

analysis and linear OSSE simulations demonstrated the relaminarization of the PCF

profile for values of κ down to 0.01. A deficiency in the implementation of the control

law in Channelflow is unlikely as well, as it would have affected the simulations for other
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a) κ = 0.25, contour u at ±2×10−7 and ±3×
10−7.

b) κ = 0.5, contour u at 1× 10−9, ±3× 10−9

and 6× 10−9.

Figure 6.6: Velocity field at t = 200 for simulations at κ = 0.25 and κ = 0.5 of
section 6.4.4 and associated with fig.6.7. Surfaces of constant streamwise velocity u for

different amplitudes. (Couette, 11× 21× 11, Re = 400, τ = 0.005)

values of κ. Yet, the actuation at κ = 0.25 may be so intense that it requires particu-

lar numerical requirements, i.e. better precision, smaller actuation-time or integration

time, higher resolution. Nonetheless, despite changes within these parameters, we did

not manage to improve this result. The origin of the problem may lie deeper within

the implementation of the CFBC package and is not clear to the author. Linearized

simulations of Channelflow with the CFBC package would likely elucidate this problem

but are impossible at the moment (§6.4.3).



Figure 6.7: Channelflow simulations with non-linear terms under a skew-symmetric form (eq. 5.61): Time-evolution of the energy norm of the
state-vector (i.e. distance to the laminar PCF profile) controlled by an optimal forcing for different value of κ. The continuous black line represents
the un-actuated system. The system is perturbed at t = 10 with a Dirac of magnitude 1E − 8. The control is applied at t = 5 for different value of

κ. (time horizon [0, 500] and zoom over [0, 60], resolution 11× 21× 11, Re = 400, τ = 0.005).
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6.4.5 Impact of the wall-normal resolution

Script for... python3 osse/osse_riccati_couette.py 11 $Ny 11 250

Riccati solutions python3 osse/rosse_riccati_couette.py 11 $Ny 11 250

python3 osse/osse_riccati_block_get_K.py 11 $Ny 11 250

Location of the... osse/database/THESIS/

Riccati solutions 06_couette_CFBC_kappa=0.25_resolution/

OSSE

OSSE_block

ROSSE

Channelflow simulations channelflow/trunk/PHD/controller_k_couette.cpp

channelflow/trunk/PHD/controller_k_couette_rosse.cpp

Data location osse/database/THESIS/

06_couette_CFBC_kappa=0.25_resolution/

channelflow_simulations

Script for comparison python3 osse/run_comparison_couette_thesis_645.py

We investigate here the impact of the wall-normal resolution on Channelflow simulations

controlled at κ = 0.25 with a PCF laminar baseflow. Non-linear Channelflow simulations

with optimal control at κ = 0.25 are presented for different resolutions in figure 6.8.

Stream- and spanwise resolutions are still here 11× 11. Simulations are computed with

the non-linear terms under the skew-symmetric form (eq. 5.61). They are initialized with

a Dirac perturbation of magnitude 10−8 at time t = 10 and the control is prompted at

t = 5. The optimal control laws are calculated for the OSSE and ROSSE model at wall-

normal resolution Ny = {21, 27, 35}. Moreover, the optimal control law for Ny = 65 is

calculated by “block” for each wave-number pair separately with the OSS model, i.e. the

same approach followed by Heins (2015) or Bamieh et al. (2002), as this resolution is not

accessible with the OSSE or ROSSE model within current time and memory limitations.

First of all, it is important to note here that the optimal control law calculated with

the OSSE and ROSSE model are strictly identical. Equivalent simulations are exactly

overlapping each-other in figure 6.8. Therefore, the Riccati solution and the Channelflow

implementation is equivalent for both cases.

It then appears the wall-normal resolution does not influence the results of the simu-

lation, even for resolution up to Ny = 65. In each case, the simulations at κ = 0.25

diverges linearly away from the linear PCF profile along the same unstable eigenmode.

This hypothesis can consequently be excluded.



Figure 6.8: Channelflow simulations with non-linear terms under a skew-symmetric form (eq. 5.61) for different wall-normal resolutions: Time-
evolution of the energy norm of the state-vector (i.e. distance to the laminar PCF profile) controlled by an optimal forcing at the same value of
κ = 0.25. The continuous black line represents the un-actuated system. The wall-normal resolution corresponds to the one used to calculate the
optimal control law with the OSSE model (Ny = 21, 27, 35), OSSE model by blocks (Ny = 65) and ROSSE model (Ny = 21, 27, 35). The system is
perturbed at t = 10 with a Dirac of magnitude 1E − 8 The control is applied at t = 5 for different value of κ. (time horizon [0, 500] and zoom over

[0, 60], resolution 11×Ny × 11, κ = 0.25, Re = 400, τ = 0.005).
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6.4.6 Conclusion

The optimal control law improves the linear stability of the laminar Plane Couette

Flow profile and reduces the energy growth following a perturbation. As the controller

intensifies, the linear stability is enhanced but on the other hand, the normality of

the closed-loop system deteriorates. OSSE linear simulations are all converging ap-

propriately along the leading stable eigenmode. Unfortunately, this result can not be

reproduced with a linear Channelflow simulation as it would require an update of the

CFBC package of Heins (2015) for Channeflow 2.0. The optimal control law and their

Channelflow implementation is strictly equivalent with the OSSE and ROSSE model.

The implementation of the optimal control law in non-linear Channelflow simulations

is valid but limited to values of κ above a certain threshold. For the Plane Couette

Flow profile, this critical value is situated between κ = 0.25 and κ = 0.5. The source

of this problem remains unclear, but is not related to the wall-normal resolution. We

presume that Channelflow and the CFBC package of Heins (2015) can not handle intense

forcing at the walls. The wall-actuation likely unsettle the integration algorithm and

lead to nonphysical results. The critical value κc is hardly predictable: it might indeed

be case-dependent and affect other system and/or set of parameters in different manner.

Chapter summary

� The derivation of the optimal control gain via the Riccati equation is demonstrated

and developed with the OSSE and ROSSE models.

� Different methods exist to determine the optimal control gain, either by solving

directly the Riccati equation or bypassing it. Model reduction can be applied

beforehand to ease the computation, or during the process while solving the Riccati

equation.

� It was not possible to derive or implement a specific procedure in this thesis, and

we will use as a consequence the method implemented in Python based on the

Schur algorithm using a QZ decomposition.

� The calculation of the optimal control law and its implementation via the OSSE

or ROSSE models are strictly equivalent.

� The optimal control law and its implementation in Channelflow are validated with

a laminar Plane Couette Flow profile. It is shown via a linear analysis that the

optimal control law improves the stability but deteriorates the normality of the

closed-loop system.
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� The implementation of the optimal control law in non-linear Channelflow simula-

tions is valid but limited to values of κ above a certain threshold. For the Plane

Couette Flow profile, this critical value is situated between κ = 0.25 and κ = 0.5.

We presume that Channelflow and the CFBC package of Heins (2015) can not

handle intense forcing at the walls.





Chapter 7

Stabilization of the Nagata

Lower-Branch solution

This chapter is dedicated to the stabilization via LQR optimal regulation of the Nagata

(1990) lower-branch solution, or EQ1, at a Reynolds number of 400. This application

necessitates both the controller design targeting an invariant solution in chapter 5 and

the procedure to determine the optimal control law in chapter 6 to be functional and

validated. It is now possible to reach the final stage of this thesis and apply the proce-

dure developed in these chapters to the Nagata (1990) lower-branch solution. Precisely,

we intend to initiate controlled simulations of the linear ROSSE model and non-linear

Channelflow software with the Nagata (1990) lower-branch solution. We expect the

optimal control law, designed specifically to stabilize EQ1 along the same procedure as

for the laminar PCF in section 6.4, to maintain the dynamical state of the closed-loop

system at this particular position. To make things clear, we do not plan to attract

an arbitrary turbulent dynamical state towards EQ1 and stabilize it there. Such an

approach may not work given the current lack of global stability guarantees, and may

constitute a future direction of research. Rather, the idea is to locally stabilize EQ1 by

introducing a radius of stability via the optimal control and prevent the state to escape

the equilibrium.

7.1 Optimal control gain

Data location osse/database/THESIS/07_eq1_controlled_ROSSE

Script for Riccati... python3 osse/rosse_riccati.py

solutions and analysis 1 17 27 17 $1000kappa

175
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As advocated in section 6.3, the resolution for the Nagata (1990) lower-branch is 17 ×
27 × 17. The actuation-time constant is set at τ = 0.005. The optimal control gain

is performed along the same procedure as for the laminar PCF profile in section 6.4.

In particular, the actuation is limited solely to the wall-normal velocity at the wall,

implying a reduction of the dimensions of matrix B2.

All calculations are here performed with the ROSSE model: the OSSE model can not

reach the sufficient resolution of 17 × 27 × 17 in order for EQ1 to converge with the

method findsoln. The ROSSE model indeed reduces the dimension of the state by

approximately two, and in practice only requires approximately two thirds of the memory

taken by the equivalent OSSE model to solve the Riccati equation. The Riccati solutions

are calculated with the Python method given in section 6.2.4 for different values of κ,

κ =
[
8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2

]
, (7.1)

on the ECPSC01 server of the ECPS group of Tobias Schneider at the École Polytech-

nique Fédérale de Lausanne (Switzerland). This server was exploited rather than the

HPC Iridis5 as the calculation is single-thread and requires computational time well

beyond the wall-time of Iridis5. On this clusters, each Riccati solution necessitates a

calculation time of 10 to 12 days, as well as RAM memory requirement up to 140Gb.

Unfortunately, the Python method did not converge for the values κ = {1.0, 2.0}. The

reason for this interruption is not clear and relates to the internal issue. It may be noted

however that for κ = {1.0, 2.0}, the terms in the cost function associated with the state

and with the forcing possess the order of magnitude. On the contrary, for lower or higher

value of κ, one of these terms dominates the other. We presume that this configuration

complicates the optimization problem, leading to either the system not fulfilling the

mathematical prerequisite of the method, or the convergence rate deteriorating.

7.2 Linear Analysis

Eigenvalues

The eigenvalues of the open- and closed-loop systems are calculated as in §4.8 with

Python packages. The leading values are gathered in table 7.1 and 7.2 for each value of

κ and compared against the open-loop system. The spurious modes of the OSSE model

are here coloured in gray and were found previously in table 4.1.

As a reminder, we here study the leading eigenvalues, i.e. with the highest real part, as

a dynamical system is stable if all its eigenvalues are strictly negative. The imaginary

part is not a major importance, as only associated to an oscillation frequency in the

signal but not with stability. Therefore, we compare the original unstable open-loop
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system (without any control applied) against the new closed-loop systems, enforced at

the wall by an optimal forcing.

The closed-loop systems do not posses any positive real-part eigenvalue: the opti-

mal control law manages to stabilize the linear ROSSE system and makes the Nagata

(1990) lower-branch solution linearly stable. For decreasing values of κ —higher control

“strength”—, the real part of each eigenvalue is moved further onto the left hand side

(their negative real part decreases). For instance, all the eigenvalues for κ = 0.2 are

shifted to the left in comparison to κ = 0.3. As a consequence, the linear stability of the

closed-loop system improves with decreasing value of κ. In brief, the optimal control

makes the Nagata (1990) lower-branch solution linearly stable and a stronger control

improves its linear stability.

Normality

Explanations, references and mathematical details on normality are given in appendix

section H.3.1. Normality is here evaluated to estimate the impact of the feedback control

on potential transient energy growth. This risk aggravates with lower normality degree.

Measures of the normality, i.e. leading eigenvalues of the “normality” operator A∗Qx +

QxA or (A+B2K)∗Qx +Qx(A+B2K), are gathered in table 7.3 and 7.4 for the open-

and closed-loop ROSSE linear systems.

Any control strength is deeply affecting the normality of the ROSSE system. Par-

ticularly, as soon as an optimal control forcing is applied, the normality measure is

multiplied by four. With increasing controller strength —decreasing κ—, this value

slightly increases. It appears that the other eigenvalues of this normality operator are

not drastically affected by the optimal control law, as long as κ is above or equal to 3.0.

For values of κ below 0.9, new leading eigenvalues of the normality measure emerges and

deteriorates the normality of the linear closed-loop system.

The non-normality of the linear ROSSE model and the risk of transient energy growth

escalate with increasing controller strength. As a consequence, we expect the optimal

control to disrupt the initial phase of the simulations by prompting an energy burst.

This energy growth is benign for linear simulations: as the ROSSE model is now lin-

early stable, this perturbation will remain transient for the linear case. Nonetheless, its

repercussions on the non-linear simulations are less predictable. A slight perturbation

can indeed initiate the transition to turbulence. Therefore, we expect powerful optimal

control law (small values of κ) to disturb the initial phase of non-linear simulations and

likely push the state away from EQ1. This may bring the state outside the basin of at-

traction of the optimal control law or break the hypothesis of small-perturbation, which

is fundamental in the linearization procedure of §4.1.1 and for the entire control design.
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Conclusion

To conclude, the optimal control law makes the Nagata (1990) lower-branch solution

linearly stable. An increase in the optimal control strength (lower values of κ) improves

the linear stability of the OSSE model. Nonetheless, the optimal control enhances

the risk of transient energy growth as the normality of the system deteriorates with

increasing controller strength. For very powerful control, e.g. κ = {0.3, 0.2}, it might

even push the state away from the neighborhood of the laminar solution, either outside

the basin of attraction of the controller or beyond the area of validity of the linearization

procedure.



Figure 7.1: Measure of the stability of the linear OSSE model for different κ: leading eigenvalues of A (open-loop) and A + B2K (closed-loop).
EQ1, Re = 400, resolution 17× 27× 17, τ = 0.005. Rows in gray colour are spurious modes of the OSSE model.
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Figure 7.2: Measure of the stability of the linear OSSE model for different κ: leading eigenvalues of A (open-loop) and A + B2K (closed-loop).
EQ1, Re = 400, resolution 17× 27× 17, τ = 0.005. Rows in gray colour are spurious modes of the OSSE model.
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Figure 7.3: Measure of the normality of the linear OSSE model for different κ: leading eigenvalues of the A∗Qx + QxA (open-loop) and (A +
B2K)∗Qx +Qx(A+B2K) (closed-loop). EQ1, Re = 400, resolution 11× 27× 11, τ = 0.005.

Open-loop Closed-loop

N/A κ = 8.0 κ = 7.0 κ = 6.0 κ = 5.0 κ = 4.0 κ = 3.0

0.14304340 0.46982739 0.46987469 0.46994778 0.47006785 0.47028702 0.47075125
0.14304243 0.14304340 0.14304340 0.1430434 0.1430434 0.14304340 0.14773148
0.14299452 0.14304250 0.14304252 0.14304256 0.14304266 0.14304309 0.14304340
0.14299347 0.14299451 0.14299451 0.14299452 0.14299453 0.14299455 0.14304131
0.10412175 0.14298605 0.14298605 0.14298605 0.14298605 0.14298605 0.14299459
0.10412093 0.12213648 0.12436501 0.12731746 0.13142797 0.13756304 0.14298605
0.10105418 0.10106321 0.10110140 0.10119349 0.10149527 0.10250391 0.10464972
0.10105412 0.10105667 0.10105745 0.10105865 0.10106066 0.10106436 0.10107246
0.10105378 0.10061144 0.10059626 0.1005863 0.10058910 0.10062358 0.10074693
0.10105360 0.10035548 0.10035831 0.10036271 0.10037017 0.10058080 0.10073359
0.09629103 0.09820267 0.09875121 0.09941593 0.10013235 0.10038439 0.10041749
0.09629103 0.09639554 0.09639881 0.09640395 0.09641276 0.09642999 0.09647210
0.09628996 0.09633465 0.09633326 0.09633141 0.09632904 0.09632623 0.09632376
0.09628996 0.09629081 0.09629075 0.09629065 0.09629049 0.09629020 0.09628961
0.09379298 0.09625812 0.09626140 0.09626368 0.09626515 0.09626579 0.09626517
0.09379293 0.09385152 0.09386281 0.09388036 0.09390989 0.09396551 0.09409061
0.09379181 0.09378303 0.09378972 0.09380648 0.09383290 0.09387758 0.09396206
0.09379171 0.09377858 0.09378036 0.09377628 0.09376955 0.09375734 0.09373176
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Figure 7.4: Measure of the normality of the linear OSSE model for different κ: leading eigenvalues of the A∗Qx + QxA (open-loop) and (A +
B2K)∗Qx +Qx(A+B2K) (closed-loop). EQ1, Re = 400, resolution 11× 27× 11, τ = 0.005.
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0.14304340 0.14304340 0.14304341 0.14304342 0.14457748 0.15594654 0.17426993 0.20798098
0.14304233 0.14304240 0.14304251 0.14304273 0.14304345 0.14304508 0.15327213 0.19180328
0.14299641 0.14299737 0.14299949 0.14300705 0.14304321 0.14304352 0.15048624 0.18406224
0.14298612 0.14298614 0.14298618 0.14298625 0.14298640 0.14298710 0.14304376 0.14304495
0.12364566 0.12693676 0.13115198 0.13673796 0.14292573 0.14298217 0.14303472 0.14304179
0.10528597 0.10681536 0.10962826 0.11485771 0.12271551 0.13464936 0.14298644 0.14298786
0.10392986 0.10616463 0.10912567 0.11278846 0.11892507 0.12984231 0.14298517 0.14298626
0.10128831 0.10136088 0.10147418 0.10166703 0.10206502 0.10452063 0.11093064 0.12469639
0.10102411 0.10110289 0.10122670 0.10144089 0.10187502 0.10308760 0.10801163 0.12308935
0.09899487 0.09929496 0.09951960 0.09970877 0.10069807 0.10256883 0.10443747 0.11089051
0.09641874 0.09646515 0.09704896 0.09851250 0.09992209 0.10028556 0.10196803 0.10674597
0.09629989 0.09635665 0.09654639 0.09670382 0.09704557 0.09904897 0.10120823 0.10666683
0.09624322 0.09624532 0.09626148 0.09634298 0.09688266 0.09786199 0.09999852 0.10457905
0.09557104 0.09585630 0.09621232 0.09624226 0.09625603 0.09630203 0.09663317 0.09936146
0.09515103 0.09560417 0.09560822 0.09557610 0.09550289 0.09560877 0.09558570 0.09539432
0.09489949 0.09503712 0.09518968 0.09535131 0.09549083 0.09560172 0.09547976 0.09518819
0.09335632 0.09349907 0.09379773 0.09441423 0.09529871 0.09531277 0.09494176 0.09508283
0.09326785 0.09322232 0.09319955 0.09324102 0.09341987 0.09385809 0.09467748 0.09407538
0.09301800 0.09297838 0.09292088 0.09283296 0.09268859 0.09242615 0.09211620 0.09386484
0.09301489 0.09297568 0.09291857 0.09283071 0.09268533 0.09241913 0.09187613 0.09371162
0.09217702 0.09216767 0.09213667 0.09210072 0.09222268 0.09223098 0.09185967 0.09181042
0.09156781 0.09169284 0.09189450 0.09207057 0.09194502 0.09171607 0.09185114 0.09087990
0.09147402 0.09145786 0.09142784 0.09136970 0.09134930 0.09139142 0.09154720 0.09036726
0.09134711 0.09134657 0.09134559 0.09134483 0.09125356 0.09104647 0.09121626 0.09028357
0.09133624 0.09126099 0.09125918 0.09122908 0.09115953 0.09102155 0.09089504 0.09015995
0.09126419 0.09124467 0.09115106 0.09106156 0.09091367 0.09067578 0.09072211 0.08988929
0.09124912 0.09120912 0.09114632 0.09105378 0.09090008 0.09064573 0.09046189 0.08955684



Chapter 7 Stabilization of the Nagata Lower-Branch solution 183

7.3 Initial starting conditions

Data location osse/database/THESIS/controller_K_ROSSE_eigenmode1/

eq1_findsoln/Re=400/rotational/controller=17x27x17/

dealiasXZ/COMPARISON_amplitude_perturbation

Script for simulations channelflow/trunk/PHD/

controller_k_eq1_rosse_eigenmode.cpp

Script for comparison python3 osse/run_comparison_eq1_thesis_73.py

17 27 17 1

The initial condition of the simulations is the Nagata (1990) lower-branch solution. This

state is calculated via the method findsoln of Channelflow at resolution 17 × 27 × 17

and Re = 400, as detailed in section 6.3. The minimal residual for the calculation is of

order R = 10−14 for a period T = 20 in Channelflow, which corresponds to a precision

of R ∗ T = 2 × 10−13. As a consequence, the minimal distance to EQ1 reachable in

Channelflow is of order 10−13. Yet, at time t = 0 of Channelflow simulations, the

distance will obviously be exactly zero, or −∞ on a log-scale. LQG optimal control

provides no global system-independent guaranteed robustness properties (see §3.4.1). In

other words, we do not possess any estimation on the distance beyond which the optimal

control law is overrun. Nonetheless, we expect the margin of our optimal control to reside

above this threshold. It is valuable to note here that the Riccati solutions are calculated

at the Python float type precision, i.e. 2.2× 10−16.

The initial time-steps are particularly important for the controlled Channelflow simula-

tions. The margins of our optimal controllers may indeed reside in the close neighbor-

hood of the initial condition. A transient energy growth or a numerical instability in

these first iterations could immediately repel the dynamical state outside these bound-

aries. To avoid such situation, we will perturb —to a very small extent— the initial

state in the direction of the leading unstable eigenmode of EQ1. The benefit of such

an approach is twofold. Firstly, the non-normality of the initial state-vector, namely

some noise of order 10−13, diminishes. Secondly, the initial condition is now not only

characterized by its state-space position, but also by its developing direction, hence in-

creasing the repeatability of the simulations. A perturbation in the leading unstable

eigenmode direction is less detrimental for the controller than one along the non-normal

stable eigen-space (see later chapter 8), as the optimal control law is tailored to this

particular direction.

The question now rising is how to define “to a very small extent” quantitatively? A large

range of magnitude of the leading eigenmode of the Nagata (1990) lower-branch solution

are evaluated, from order 10−10 down to order 10−15. Below 2×10−12, the perturbations

are so weak that they do not impact the dynamical evolution. Above 8 × 10−12, no

further reduction of the transient energy growth are observed, while the distance to



184 Chapter 7 Stabilization of the Nagata Lower-Branch solution

EQ1 simply increases. Figure 7.5 gathers the Channelflow simulations initiated with a

range of magnitude within [2×10−12, 8×10−12]. We consider the magnitude 6×10−12 as

the optimal combination of least increase in energy norm and minimal transient energy

growth. As a consequence, the following Channelflow and ROSSE simulations will be

initiated with the Nagata (1990) lower-branch solution combined with a perturbation in

its leading unstable eigenmode of magnitude factored by 6× 10−12.



Figure 7.5: Channelflow simulations starting from EQ1 at resolution 17×27×17 with an initial perturbation along the leading unstable eigenmode
of EQ1 for different magnitudes. The continuous correspond to the un-perturbed system. (time horizon [0, 100], resolution 17× 27× 17, Re = 400).
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7.4 Controlled Linear ROSSE simulations of the Nagata

(1990) lower-branch solution

Data location osse/database/THESIS/07_eq1_controlled_ROSSE

Script for simulations python3 osse/rosse_riccati.py

1 17 27 17 $1000kappa

Script for comparison python3 osse/run_comparison_thesis_74.py

17 27 17 1

The ROSSE linear model is simulated starting from the Nagata (1990) lower-branch

solution with a perturbation in its leading eigenmode direction of magnitude 6× 10−12

(§7.3). The ROSSE model is integrated in time via the BDF algorithm of the method

scipy.integrate.solve_ivp, with absolute and relative tolerances of 10−16 over a

period T = 500. The optimal control law is enforced from time t = 0. The energy

time-evolution for the open-loop and closed-loop systems for the different values of κ

are presented in figure 7.6 and 7.7. First and foremost, it is important to note that

the tolerance for the linear integration is of order 10−16, which is higher than the order

10−13 used for the Channelflow findsoln method. This is the reason why the initial

distance to EQ1 is of order 10−13, while the final converged state is of order 10−16.

From figure 7.6, it appears that the open-loop system (continuous line) is following as

expected a linear evolution along the unstable eigenmode of EQ1, +0.05012030. From

figure 7.7, we observe that the energy of any closed-loop system is higher than the one of

the open-loop system at the initial time-step and for all κ. This difference is likely due

to the BDF integration algorithm having to handle the wall-actuation. However, thanks

to the stabilizing control, this situations changes within a couple iterations. From time

t w 3 and for the rest of the integrated period, the energy level of each closed-loop

system is lower than the one of the open-loop.

Nonetheless, after this transitional period, the closed-loop systems are all facing an

energy growth peaking around t = 40. The predominance of this surge decreases with

more powerful control, and actually, for κ = 0.2, this growth does not arise. We do

not expect this energy growth to be related to the non-normality of the system, as the

closed-loop system at κ = 0.2 is characterized by the lowest degree of normality.

Following this energy bump, every closed-loop system is linearly converging to the Na-

gata (1990) lower-branch solution. Their rate of convergence respectively corresponds to

the maximal eigenvalues of each κ in tables 7.3 and 7.4. These values are very close, yet

distinct. We retrieved in figure 7.7 the fact that the most powerful controllers possess

more negative leading eigenvalues, as they are converging at higher rate. The undulation

observable on the period t < 100 for values of κ ≤ 0.5 may be related to the non-zero

imaginary part of some of their leading eigenvalues.
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Overall, and as predicted by the linear analysis, the Nagata (1990) lower-branch solution

is now linearly stable. Our optimal control law for values of κ ranging from 8.0 down to

0.2 is positively fulfilling its objective. The chapter 5 on controller design and the chapter

6 on the Riccati solution therefore describe an effective linear procedure to determine a

stabilizing optimal control law.



Figure 7.6: OSSE linear simulations: Time-evolution of the energy norm of the state-vector (i.e. distance to the Nagata (1990) lower-branch
solution) controlled by an optimal forcing for different value of κ. The continuous black line represents the un-actuated system. The control starts

at t = 0. (time horizon [0, 500], resolution 17× 27× 17, Re = 400, τ = 0.005).



Figure 7.7: OSSE linear simulations: Time-evolution of the energy norm of the state-vector (i.e. distance to the Nagata (1990) lower-branch
solution) controlled by an optimal forcing for different value of κ. The continuous black line represents the un-actuated system. The control starts

at t = 0. (time horizon [0, 500], resolution 17× 27× 17, Re = 400, τ = 0.005).
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7.5 Controlled Non-linear Channelflow simulations of the

Nagata (1990) lower-branch solution

Data location osse/database/THESIS/

controller_K_ROSSE_eigenmode1

Channelflow Simulation channelflow/trunk/PHD/controller_k_eq1_rosse_eigenmode.cpp

Script for comparison python3 run_comparison_eq1_thesis_75.py

17 27 17 1

Non-linear Channelflow simulations with optimal control are run at resolution of 17×27×
17 and for a period T = 1000. As Channelflow and the Channelflow Boundary Condition

package of Heins (2015) can not be employed with the non-linear terms linearized around

an invariant solution, simulations are computed directly with the non-linear terms under

the rotational form,

N(v) = (∇×U)×U +
1

2
∇(U ·U). (7.2)

Simulations were also run with the non-linear terms under the skew-symmetric form (eq.

5.61) and lead to equivalent results. In the hypothesis of small amplitude perturbations,

we expect the non-linearity to play a marginal role. We chose the rotational form of the

nonlinear terms here. It allows for a fast computation in comparison to a Skewsymmetric

form but it introduces errors in the high spatial frequencies unless dealiased transforms

are used (Gibson, 2014). We favour this form as this is the default one, and therefore

the one we expect to be the most robust against glitches or numerical anomalies as it

has been widely used and tested. The simulations are initialized with the Nagata (1990)

lower-branch solution and a perturbation in its leading eigenmode direction of magnitude

6 × 10−12 (§7.3). The optimal control law is enforced from time t = 0. The detailed

list of the settings for the simulations are given in table 7.1. The energy time-evolution

for the open-loop and closed-loop systems for the different values of κ are presented in

figures 7.8 and 7.9.

In figure 7.8, the continuous black line represents the open-loop simulation. This time-

evolution corresponds to the hetero-clinic connection from the Nagata (1990) lower-

branch back to the laminar PCF profile. Following the perturbation in the leading

eigenmode direction of EQ1, the open-loop system pursues a linear growth along this

same direction. Around t = 500, the system experiences a transitional turbulence phase

for approximately 200 times units. This phase disintegrates the energy of the system,

which finally settles down on the stable laminar PCF profile.

For the closed-loop systems, it appears directly in figures 7.8 and 7.9 that none of the

optimal control law manages to stabilize the Nagata (1990) lower-branch solution. The

transition to turbulence is delayed by the optimal control law by up to 200 time units,

but the distance to EQ1 is not bounded by the optimal control law. Despite many
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different setup (time-steps, non-linear forms, initial conditions) and discussion with the

EPFL group of Tobias Schneider (personnal communication, April to Jul 2019), no

improvement were achieved: when the distance from EQ1 becomes too substantial, the

actuation unsettles the Channelflow simulation and break the time-forward march. This

is the reason, why none of the controlled simulations persists for distances to EQ1 greater

than 10−3.

Despite the perturbation in the leading eigenmode direction to avoid transient energy

growth, each closed-loop system observes a transitory phase from the initial starting

time and up to t = 50, visible in figure 7.9. This period is marked by oscillations of

order 10−12. The amplitude of these oscillations is larger for weaker controllers. They

do not actualy arise for powerful controllers, e.g. κ = 0.2.

Nevertheless, beyond the time t = 50, the state of each simulation escapes the neighbor-

hood of EQ1 definitively. Similarly to the validation case for the laminar PCF profile

at κ = 0.25 (§6.4.4), each simulation is diverging linearly away from the Nagata (1990)

lower-branch solution. This direction does not correspond to any eigenmode found dur-

ing the linear analysis, as it would correspond to a positive real-part eigenvalue. For

κ ≤ 0.9, the divergence rate varies depending on the strength of the controller: for small

κ, i.e. powerful control, the divergence rate is higher. For the most powerful controllers

κ < 0.5, this divergence rate is actually higher than the open-loop system. We presume

that beyond their basin of attraction, the optimal control law does not contribute to the

stabilization of the dynamical state, but rather acts as a constant source of perturba-

tion. Here, the most powerful controllers have the maximal disruption potential. For

κ ≥ 3.0, we do no notice any difference between the different forcings. For these values,

the Channelflow simulations do not actually crash when the distance to EQ1 reaches

order 10−3, but experiences a succession of discontinuities/catch-ups. We do not expect

this phase to be physically meaningful.

The causes behind the failure of the optimal control laws are not clear to the author.

The same hypothesis as for the failure of the relaminarization of a laminar PCF profile

with κ = 0.25 (§6.4.4) can be suggested:

� The ROSSE model may not describe the non-linear Channelflow model properly.

However, we demonstrated in section 5.5 that the ROSSE model and Channelflow,

both actuated, are equivalent during the phases dominated by the actuation and

the linear eigenmodes.

� The possibility that the optimal solution is not valid is unlikely, as linear analysis

and linear ROSSE simulations demonstrated the linear stability of the Nagata

(1990) lower-branch solution when optimal control is enforced.

� A deficiency in the implementation of the control law in Channelflow is possible but

unlikely, as the control procedure was validated in section 6.4. The stabilization
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of EQ1 may require better precision, smaller actuation-time, integration time, etc.

Yet, varying these parameters did not improve our results.

� An inadequate resolution can be problematic. Nonetheless, within the current

limitations, this point can not be improved. It was also shown in section 6.4.5 that

the wall-normal resolution did not impact drastically the results of the controlled

simulations, at least when targeting the laminar PCF profile.

� The optimal forcing is too intense and might either ignite un-expected non-linear

effects or break the Channelflow simulation. Yet, the energy norm is following a

linear evolution away from EQ1, which would denote a linear unstable eigenmode

rather than a non-linear phenomenon.

Linearized simulations of Channelflow with the CFBC package would likely elucidate

this problem but are impossible at the moment (see §6.4.3). This failure may also be

the consequence of deeper theoretical limitations. For now, a definitive conclusion can

not be drawn. Details about these theoretical interpretations as well as directions for

improvements and futures researches are discussed in chapter 8.
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Table 7.1: Parameters and DNS flags for Channelflow simulations presented in sec-
tions 7.5.

PARAMETER VALUE

baseflow EQ1
Nx, Ny, Nz 17× 27× 17
Reynolds 400.0

nu 1 / Re

Lx eq1.Lx() = 2*pi/1.14

a eq1.a() = -1.0

b eq1.b() = +1.0

Lz eq1.Lz() = 2*pi/2.5

Baseflow LinearBase

Nonlinearity Rotational

Initstepping SMRK2

Timestepping SBDF3

Dealiasing DealiasXZ

taucorrection true

constraint PressureGradient

dPdx 0.0

uupperwall +1.0

ulowerwall -1.0

CFLmin 0.10

CFLmax 0.30

dtmax 0.005 (= tau)

dtmin 0.0000001

dt0 dtmax

variable dt true

T0 0.0

T1 1000.0

dt 1

controller starts at 0

perturbation initiated at 0

perturbation magnitude EQ1 leading eigenmode factor 0.6E-12



Figure 7.8: Channelflow simulations with non-linear terms under a rotational form (eq. 7.2): Time-evolution of the energy norm of the state-vector
(i.e. distance to the Nagata (1990) lower-branch solution) controlled by an optimal forcing for different value of κ. The continuous black line
represents the un-actuated system. The control is applied at t = 0 for different value of κ. (time horizon [0, 1000], resolution 17× 27× 17, Re = 400,

τ = 0.005).



Figure 7.9: Channelflow simulations with non-linear terms under a rotational form (eq. 7.2): Time-evolution of the energy norm of the state-vector
(i.e. distance to the Nagata (1990) lower-branch solution) controlled by an optimal forcing for different value of κ. The continuous black line
represents the un-actuated system. The control is applied at t = 0 for different value of κ. (zoom over the time horizon [0, 90], resolution 17×27×17,

Re = 400, τ = 0.005).
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Chapter summary

� The optimal control law to stabilize the Nagata (1990) lower-branch solution are

calculated with the ROSSE model for different controller strengths, ranging from

κ = 8.0 to κ = 0.2. However, for κ = {1.0, 2.0}, the solution did not converge.

� A linear analysis demonstrated that the Nagata (1990) lower-branch solution is

linearly stable with the optimal control law enforced. Increasing the controller

strength improves the linear stability of the system, but also deteriorates its nor-

mality.

� Simulations are initiated with the Nagata (1990) lower-branch solution. To im-

prove repeatability and normality of the initial condition, simulations are initially

perturbed in the direction of the leading eigenmode of EQ1 at a very small mag-

nitude.

� Time-integration of the linear ROSSE closed-loop system demonstrated that the

optimal control law for each value of κ is stabilizing EQ1. The most powerful

controller leads to the fastest convergence rate.

� In the non-linear cases run in Channelflow, the Nagata (1990) lower-branch solu-

tion is not stabilized. In the best cases, the transition to turbulence is delayed,

but not avoided, and the most powerful controllers are associated with higher di-

vergence rates. The cause behind this failure are not clear to the author, but

suggestions and interpretations are given next chapter 8.



Chapter 8

Discussion, Summary, Conclusion

and Future Work

8.1 Discussion

Throughout this thesis, we achieved many of our objectives. We successfully established

in chapter 4 a new divergence-free linear model to depict the dynamical evolution of the

flow in the neighborhood of weakly unstable invariant solutions, the Orr-Sommerfeld

Squire model Extended for a non-laminar solution (OSSE) . It establishes a full-matrix

state-space representation that enables access to linear algebra and linear control theory

for any non-laminar solution — not only invariant solutions, but any three-dimensional

steady state — while reducing the dimension of the dynamical state by half. A purely-

real and equivalent version, entitled Real Orr-Sommerfeld Squire model Extended for a

non-laminar solution (ROSSE), was derived as well to save even more memory.

Based on the previous research of Heins (2015) and thanks to the new OSSE model, we

developed and validated a procedure to target and linearly stabilize an invariant solution

of the PCF configuration (chapter 5). Each stage of the development performed well

and was validated, notably the actuation by wall-transpiration of the OSSE model and

the analyses of the stability and controllability of EQ1. We demonstrated that all

the unstable eigenmodes of EQ1 are controllable with this type of actuation, and as a

consequence, that the Nagata (1990) lower-branch solution is linearly stabilizable.

The procedure to determine the optimal control presented in chapter 6 performed ade-

quately as well. We managed to obtain the solution of the associated high-dimensional

Riccati equation thanks to the reduction of state dimension enable by the ROSSE model.

The resulting control law was validated by improving the stability of the PCF laminar

state.

197
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Finally, we enforced the linear stability via LQR optimal regulation of the Nagata (1990)

lower-branch solution (EQ1) at Reynolds number 400 in chapter 7. This accomplishment

was demonstrated via linear analysis and linear time-integration. The Nagata (1990)

lower-branch solution is linearly stable for a wide set of optimal control “strength”.

We showed that increasing the controller strength improved the linear stability of the

system, but also deteriorated its normality.

Nonetheless, the stability of EQ1 is not achieved within a non-linear context, as revealed

in the Channelflow simulations of section 7.4. Instead, the state of the closed-loop sys-

tems linearly diverges from the targeted invariant solution along unexpected directions.

Similar issues raised when targeting a laminar Plane Couette Flow profile with a pow-

erful controller (κ = 0.25), which limited the validation of the optimal actuation in

Channelflow (§6.4.4).

The origin, likely related, of these failures is not known. Yet, we estimate that they

can potentially stem from three different —and maybe combined— sources: either the

procedure to determine the Riccati solution, or the implementation of the actuation and

control within the Channelflow software, or a limitation of the underlying theoretical hy-

potheses. Isolating these elements to determine their respective influence would require

further effort.

8.1.1 Limitations associated with the Optimal Control Law and Riccati

solution

Finer range of controller strength κ

The optimal control law for the Nagata (1990) lower-branch solution are calculated in

chapter 7 for the range of controller strength κ,

κ =
[
8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2

]
. (8.1)

In the controlled non-linear Channelflow simulations initiated with the Nagata (1990)

lower-branch solution (§7.5), it appeared that for increasing values of κ above 3.0 and

up to 8.0, no improvement was taking place and each simulation followed the same

dynamical evolution. On the other hand, for decreasing value of κ below 0.9 and down

to 0.2, no further delay in the transition to turbulence was achieved. On the contrary,

the most powerful controllers actually unsettle the simulations and trigger the transition

to turbulence within a shorter period of time. As a consequence, we do not expect any

amelioration when increasing the range of κ below 0.2 (actually, Chanellflow simulations

will likely crash immediately) or above 8.0.

Nonetheless, the Riccati solutions for κ = {1.0, 2.0} did not converge. We can not

conjecture on the behavior of the closed-loop Channelflow system for κ in the range
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[0.9, 3.0]. Either the dynamical evolution of the closed-loop simulations would fit in

figure 7.8 in between the ones of κ = 0.9 and κ = 3.0 with the befitting divergence

rate, or this range would include an ideal “sweet-spot” value of κ that enhanced the

performance of the controller. This ideal value of κ would require a more sophisticated

algorithm to determine the optimal control law, superior choice of parameters (initial

condition) or less restrictive constraints (wall-time, memory, convergence rate), which

would explain why the solutions did not converge within this range.

Controller and Channelflow Resolution

The validation of the implementation of the Channelflow Boundary Condition Package

of Heins (2015) updated for Channelflow version 1.5.1 (revision 452) was performed in

section 5.5.2. For this purpose, a 21 × 65 × 21 resolution, respectively in stream-wise,

wall-normal and span-wise direction, was adopted in Channelflow simulations when the

invariant solution EQ1 was set as initial condition. A smaller 21 × 35 × 21 resolution

in the linear ROSSE model was then sufficient to replicate the behavior of non-linear

Channelflow simulations during the actuation- and eigenmode-dominated phases.

Nonetheless, the validation and applications of the Channelflow Boundary Condition

Package were performed at much higher resolutions in the thesis of Heins (2015). The

validation was operated at resolution 110×65×110, which is in part due to a the higher

Reynolds number Re = 103, but also to the wall-actuation itself (Heins, 2015, p.55).

Depending on the method used for the design, the controllers were built at a wall-normal

resolution Ny = 168 or Ny = 250 (the control was designed for a single wavenumber

pair, hence not requiring stream- and spanwise resolutions) and Channelflow used a

182×151×158 resolution, also due to the larger domain 4π×2×2π (Heins, 2015, p.96).

These resolution are all well above the 17 × 27 × 17 which we are using for the control

design and Channelflow simulations. This resolution is not only small for the Chan-

nelflow Boundary Condition package, but also for Channelflow itself, even at Re = 400.

A wall-normal resolution Ny = 27 seemed sufficient in section 6.4.5 when targeting a

laminar PCF profile, as no improvement was detected at higher resolution Ny = 35 or

Ny = 65. Nonetheless, this conclusion may not extend to the stabilization of an unstable

invariant solution embedded in transitioning turbulence.

The control design here constitutes the limiting factor. 17 × 27 × 17 is the maximal

resolution reachable within this configuration. The issue is that the Nagata (1990)

lower-branch solution did not fully converge at 17 × 27 × 17: its eigen-decomposition

is different at higher resolutions (see tables 4.1 or 5.1 and 5.2). This implies that EQ1

at resolution 17 × 27 × 17 does not correspond to the same state-space position than

EQ1 at higher resolution. This solution is not pertinent for higher resolution. In other

words, increasing the resolution in Channelflow is surely straightforward within the



200 Chapter 8 Discussion, Summary, Conclusion and Future Work

current computational power, but would render the control law useless as the targeted

equilibrium is not a meaningful state at this resolution. This point was actually retrieved

when we tried to use the optimal control law at resolution 17× 27× 17 for Channelflow

simulations up to 33× 65× 33.

As a consequence, we would recommend to calculate the optimal control law at a res-

olution for which the Nagata (1990) lower-branch solution actually fully converged, at

least 33 × 35 × 33, or even more in the wall-normal direction where the actuation is

applied (reminder of §4.6.4: odd-resolution required). It would then allow to target the

Nagata (1990) lower-branch solution within non-linear Channelflow simulations at even

higher resolutions, e.g. 182× 151× 158 as (Heins, 2015, p.96), consequently enhancing

the precision of the time-integration while targeting the same state-space position.

Model reduction and Riccati solution method

To overcome the two preceding limitations, a different approach to determine the solution

of the high-dimensional quadratic Riccati equation is required, precisely a different model

reduction method and an advanced Riccati solver. For the time being, the system is

reduced via the truncation of the highest-order Fourier modes (section 6.3), even if some

of these high-order modes have an impact on the dynamics of the system. Regarding

the Riccati solver, the currently-employed Python method is not optimized for high-

dimensional problem (section 6.2.4) and is single-thread. These techniques were pushed

to their limits by using the maximal computational resources available.

A key element for future research is to concentrate on the development of an effective

model reduction and a fast, reliable, parallel Riccati solver. For this purpose, the litera-

ture review presented in section 6.2 can serve as a good starting point. Particularly, the

methods using the Adjoint of the Direct-Adjoint (ADA) (Semeraro et al., 2013; Semeraro

and Pralits, 2017), the quasi-separability (Simoncini, 2007; Palitta, 2019) or reinforced

learning tools (Bucci et al., 2019) were the most promising.

8.1.2 Limitations associated with Channelflow and the Channelflow

Boundary condition package

Non-linear terms linearized around an invariant solution in Channelflow

The validation of the linear OSSE model (§4.8) consisted in the comparison of the eigen-

mode decomposition of the linear OSSE and non-linear Channelflow, both configured

with the Nagata (1990) lower-branch solution as baseflow. The OSSE does not take

the non-linear terms of the NSE into account, and therefore this procedure is only valid

during the initial state of the simulations when the non-linear effects remain marginal.
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An ideal validation procedure would be to compare the linear OSSE model against

a linearized Channelflow simulation. It would allow a comparison for the entire time-

horizon and without any interference from the non-linear terms. This policy was actually

adopted to validate the actuation by wall-transpiration of a laminar PCF profile (§5.5.1).

The non-linearity flag was then set as “linearAboutProfile” in Channelflow.

Unfortunately, the non-linear terms can not be linearized around an non-laminar base-

flow profile in Channelflow, but only around the laminar Plan Couette or Plane Poiseuille

flows. An update in the implementation of Channelflow would be required to improve

our validation procedure. Actually, this effort was already made by Mirko Farano dur-

ing his time wihtin the ECPS group of Tobias Schneider at the École Polytechnique

Fédérale de Lausanne, Switzerland. Sadly, this code was not released yet and will only

be available for the Channelflow version 2.0 and above.

Non-linear terms linearized around a laminar profile in Channelflow, Chan-

nelflow Boundary Condition package and Optimal control law

The implementation within Channelflow of the optimal control law was validated in

section 6.4 by using the laminar PCF profile. After verifying that the optimal control

laws are stabilizing solutions through a linear analysis (§6.4.1) and linear simulations

(§6.4.2), we operated different Channelflow simulations. All the simulations performed

with the non-linear terms linearized around the laminar profile failed (§6.4.3), while the

simulations employing the non-linear terms under the SkewSymmetric form did well,

except for extreme control strength (§6.4.4).

The causes of this failure are not clear. The implementation of the actuation via the

CFBC was validated for a linearized Channelflow simulation and a laminar PCF profile

for different wave-number pairs (§5.5.1). However, this validation and the one presented

in the Ph.D thesis of Heins (2015) were restricted to a limited collection of wave-number

pairs: a streamwise, a spanwise and a diagonal modes. This complication may be related

to the actuation of higher-order modes, or to implementation of the control itself.

The optimal control law enforced via the CFBC package is not performing as expected.

An update and correction of the package to manage this situation would likely im-

prove the validation process and perhaps clarify the failures observed when controlling

a laminar flow with extreme control strenght (κ = 0.25 in §6.4.4) or when targeting an

invariant solution (§7.4).
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Non-linear terms linearized around an invariant solution in Channelflow,

Channelflow Boundary Condition package and Optimal control law

The chapter 7 was dedicated to the stabilization of an invariant solution, namely the

Nagata (1990) lower-branch solution. The optimal control laws for the different con-

troller strengths (§7.1) were proven to be stabilizing solutions through a linear analysis

(§7.2) and linear ROSSE time-integrations (§7.4). Nevertheless, this chapter raised two

issues. Firstly, it was impossible to compare head-to-head simulations of an invariant

solution made with the linear ROSSE model and the linearized Channelflow (see first

point of this section). Secondly, all the non-linear simulations operated in Channelflow

failed to stabilize EQ1, and in the best case, only managed to delay the transition to

turbulence (§7.5).

The origins of this failure are not clear. Fixing the two preceding issues would likely

clarify this present problem. In order to pursue this research, the interaction between

the Channelflow algorithm, the CFBC package and the optimal control law needs to be

carefully reviewed as well as completely validated, including the comparison of linearized

Channelflow and linear ROSSE simulations of invariant solution enforced via the CFBC

package. Only after this stage will the result for the non-linearity under a Rotational

or Skew-symmetric form be significant. These tasks were unfortunately not achievable

within this project.

Summary

In order to pursue the stabilization of the Nagata (1990) lower-branch solution within

Channelflow, the following steps are necessary in order to produce conclusive results:

1. Upgrade the ChannelFlow Boundary Condition package package for Channelflow

versions 2.0 and above in oder to take full benefits of the parallel computation

implemented in these versions.

2. As stated in the first point, upgrade Channelflow such that the non-linear terms

can be linearized around an invariant solution.

3. As stated in the second point, update and correct the ChannelFlow Boundary

Condition package package and the implementation of the optimal control law in

order to perform controlled Channelflow simulations linearized around a laminar

profile and compare them head-to-head against the linear ROSSE model.

4. As stated in the third point, evaluate the interaction between the Channelflow

algorithm, the CFBC package and the optimal control law. Only then, attempt the

stabilization of an invariant solution within a non-linear Channelflow configuration.
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8.1.3 Theoretical Limitation

No global system-independent guaranteed robustness properties for optimal

control

As pointed out in section 3.4.1, LQG optimal control does not automatically ensure

good robustness properties (Green and Limebeer, 1995, p.27). Actually, LQG solution

provides no global system-independent guaranteed robustness properties (Doyle, 1978).

This implies that the margins of the different optimal control laws may be very narrow. A

poor precision, a numerical instability, a non-linear effect, etc., may push the state of the

closed-system away from the basin of attraction of the controller a priori. It is sometimes

possible to get robustness estimates a posteriori via the calculation of the sensitivity to

different type of errors, but it does not constitute an exhaustive examination (Green

and Limebeer, 1995).

A promising alternative to this limitation is H∞ robust control (§3.5). Robust control

designs a controller with guaranteed margins against perturbations of given maximal

amplitude. Robustness from H∞ robust control is under the assumption that the non-

linear term is bounded in gain. Yet, in the NSE, the nonlinear term is not bounded since

it involves a quadratic and a spatial derivative (Sharma et al., 2011). As such the H∞
control would not result in absolute stability guarantees to a given size of perturbation.

We attempted to design a robust controller by extending the cost function of the optimal

control design with a weight to account for an external perturbation. We used the same

method to determine the associated Riccati solution as for the optimal control problem

(§6.2.4). However, the existence of the Riccati solution associated with the robust prob-

lem is not guaranteed. In fact, either the Riccati solution failed to converge (or when it

did, it was for extremely low magnitude of perturbation), or the system did not comply

any longer with its mathematical prerequisite.

As a consequence, we do not expect the current Riccati solution method (§6.2.4) to

determine any practical robust control law. Yet, guaranteed margins are a major asset

and we can only recommend future researchers to investigate on robust control or other

methods that ensure robustness.

Leaving along the stable non-linear manifold

The idea of turbulence as a deterministic chaos evolving within a dynamical state-space

is at the beginning of this research (chapter 2). In this context, it is supposed that the

turbulent dynamical state escapes the neighborhood of an invariant solution along its un-

stable manifold (Gibson et al., 2008), as sketched in figure 8.1a. That is why we intended

to design an optimal control law capable of locally stabilizing the unstable manifold of

the Nagata (1990) lower-branch solution and consequently, maintaining the dynamical
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state in the neighborhood of this solution (figure 8.1b). Nevertheless, the mechanism

by which the turbulent dynamical state remains and leaves the neighbourdhood of an

invariant solution is still unknown, and may not comply with this hypothesis.

Recent works suggest indeed that the non-normality of the stable eigenspace of the

Navier-Stokes equations linearized around an invariant solution may help the turbulent

trajectory to leave along stable directions. Notably, Farano et al. (2019) computed the

optimal trajectory for the dynamical turbulent state to leave the neighborhood of an

invariant solution and in this case, create hairpin vortices. The optimal perturbation

is not an unstable eigenmode of the NSE linearized around an invariant solution, but

a linear combination of stable eigenmodes that due to their non-normality generate a

strong energetic growth over a finite time. As demonstrated in the publications reviewed

in appendix H.3.1, a linear combination of non-normal stable directions can lead to a

substantial energy growth over a finite amount of time and ignite the transition to

turbulence.

This transient energy growth is not negligible in the description of the mechanism by

which the state is escaping an invariant solution. As sketched in figure 8.1c, the state

may in fact wander along the stable non-linear manifold and then escape along the

unstable manifold of EQ1 once outside the controller stability margins. Actually, stable

linear and non-linear manifolds may not be matched away from the exact solution and

the controller may not be effective for these directions.

Nonetheless, to draw a conclusion on the state escaping along the stable non-normal

manifold would firstly require to exclude the other potential limitations listed above. To

do so, a volume forcing may turn out to be useful.

8.2 Summary and Conclusion

In the opening chapter 1, we firstly introduced the domain of research addressed in this

thesis: fluid mechanics through the theoretical study of the laminar-turbulent transition

and state-space control as we employed flow control. We also exposed where this re-

search situates itself within the literature and its expected benefits. We hoped to better

understand and control the non-linear and chaotic mechanisms involved within turbu-

lent flows. Finally, we defined in details our objectives and the procedure to achieve

them.

In chapter 2, we reviewed the literature on turbulence and the laminar-turbulent tran-

sition. Following a broad definition of turbulence, we defined the configuration here

studied, a Plane Couette Flow, and derived the fundamental equations used to model

fluid motion, i.e. the Navier-Stokes equations. The second part of the chapter is ded-

icated to the dynamical representation of turbulence. The recent finding of invariant
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a) (Uncontrolled - Linearly Unstable) Dynam-
ical state escaping an unstable invariant solu-
tion along its unstable linear manifold (Gibson

et al., 2008).

b) (Controlled - Linearly Stable) Dynamical
state maintained in the neighborhood of an in-
variant solution, now linearly stable thanks to

a controlled stability basin (§7.4).

c) (Controlled - Linearly stable - Non-linear Unstable) Dynamical state lin-
early stable thanks to the controlled stability basin, but non-linearly unstable
as escaping the invariant solution along the stable non-linear manifold due
to a transient energy growth and then repelled along the unstable non-linear
manifold once outside the controller stability margins (Farano et al., 2019).

Figure 8.1: Hypotheses on the mechanism by which the turbulent dynamical state is
escaping the neighborhood of an invariant solution. The controller turns situation 8.1a

into 8.1b, but may fail in the manner of 8.1c.

solutions of the Navier-Stokes equations, similar to the coherent structures found in

some turbulent flows, reshaped the way turbulence is contemplated. These newly found

invariant solutions can serve as the basis of a new description in order to describe

its chaotic evolution, and their connections and bifurcations could explain its complex

spatio-temporal intermittent process. The dynamics of turbulence can be represented as

a walk within a finite-dimensional dynamical state-space, where these invariant solutions

acts as unstable attractors of the turbulent state. Moreover, the previously discovered

coherent structures correspond to the least unstable invariant solutions. Finally, we
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developed the theoretical foundation of this research: the mechanism by which the tur-

bulent dynamical state remains and leaves the neighborhood of an invariant solution is

still unknown. By definition, the turbulent state cannot leave the neighbourhood of an

invariant solution via its nonlinear unstable manifold. It is supposed that the turbulent

state is attracted along the locally stable-attractive manifold of an invariant solution and

then escapes its neighborhood along its locally unstable-repulsive manifold. We aimed

to understand this phenomenon by attempting the stabilization via state-space control

of the locally unstable eigenspace of the Plane Couette Flow Nagata (1990) lower-branch

solution (referred to as EQ1). This solution is known as the least unstable solution of

the Plane Couette Flow configuration. To do so, direct numerical simulations (DNS) of

a PCF channel flow initiated at EQ1 and regulated via optimal control were carried.

Chapter 3 summarizes the theory related to optimal feedback control, the tool used in

this thesis to operate flow control. An optimal feedback control is divided between a

Kalman filter (optimal estimation) and an Linear Quadratic Regulation (optimal regula-

tion). The estimation process assess the state of the system while the optimal regulator

calculates the fitting control signal. This thesis considered a full-information controller,

i.e. the entire velocity and pressure fields are known and only the regulator is designed.

The actuation is enforced by blowing and suction at the upper and lower walls, also

called “wall-transpiration”. However, the optimal solution does not provide any global

system-independent guaranteed robustness properties. Moreover, the non-linearity of

the Navier-Stokes equations limits the application of linear control law. For this reason,

robust control and passivity-based, the respective remedy to these issues, were presented

briefly at the end of the chapter.

The application of state-space control theory to invariant solutions requires a linearised

state-space model, which is the focus of chapter 4. The governing NSE were linearized

and spatially discretized with spectral methods. The appropriate boundary conditions

associated with a PCF configuration were applied. When linearized around a laminar

baseflow profile, the NSE reduce into the simple Orr-Sommerfeld Squire model (OSS).

However, when a non-laminar solution is inserted as baseflow of the NSE instead of the

laminar-state, the derivation no longer diagonalises with Fourier wave-numbers due to

the breaking of translational symmetry of the non-laminar baseflow. Henceforth, we

derived a new model on the same fashion as the OSS model but taking into account the

crossed interactions between modes. It resulted in a new divergence-free model, refer-

enced in this thesis as the Orr-Sommerfeld Squire model Extended for a non-laminar

solution (OSSE). The complex-conjugation symmetry of the OSSE state-vector can be

exploited in order to derive an equivalent purely-real version of the OSSE model, the

Real Orr-Sommerfeld Squire model Extended for a non-laminar solution (ROSSE). Both

models were validated by calculating the eigen-spectrum of different equilibria and com-

paring them to the literature. They both depict faithfully the dynamical evolution of the

flow in the neighborhood of a weakly unstable and/or highly periodic invariant solution
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for small perturbations. Moreover, they establish a full-matrix state-space representa-

tion that enables access to linear algebra and linear control theory for any non-laminar

solution — not only invariant solutions, but any three-dimensional steady state — while

reducing the dimension of the dynamical state by half.

Chapter 5 describes the controller synthesis. It starts with the numerical configuration

of the simulations: direct numerical simulations of turbulence were operated within the

Channelflow software, actuated by wall-transpiration via the ChannelFlow Boundary

Condition package. The LQR optimal control law was calculated with the OSSE or

ROSSE model beforehand. This calculation first necessitated to actuate these mod-

els by wall-transpiration via a lifting-procedure, and then to define a meaningful and

appropriate cost function. We chose here to target the kinetic energy density of the

OSSE/ROSSE state-vector, i.e. the distance to a targeted solution. In this chapter,

different linear analyses were conducted to evaluate the leading unstable eigenmodes of

EQ1, their controllability and their most effective actuation modes. They demonstrated

that all the unstable eigenmodes of EQ1 were controllable with this type of actua-

tion, and as a consequence, the Nagata (1990) lower-branch solution became linearly

stabilizable. It also showed that the Nagata (1990) lower-branch is indeed the easiest

non-laminar solution to stabilize. Moreover, a modal controllability analysis determined

that the most predominant actuation-modes to stabilize the leading eigenmode of EQ1

are the 6 upper- and lower-wall actuation modes v±(±2,0) and v±(±1,±1). Finally, the im-

plementation of the wall-transpiration in the OSSE and ROSSE models was validated.

It demonstrated that the non-laminar baseflow EQ1 and inhomogeneous boundary con-

ditions were well-implemented mathematically in the OSSE and ROSSE models, and

numerically in their source-code. Furthermore, these models depict the behavior of an

actuated Channelflow simulation sufficiently well to be used as control model.

The procedure to determine the optimal control law of the previously designed controller

is described in chapter 6. This law governs the control signal in order to stabilize the

Nagata (1990) lower-branch solution and stems from the solution of a high-dimensional

algebraic Riccati equation, whose mathematical derivation is given in details at the

beginning of the chapter. The Riccati solution is a full-order matrix characterized by

the same high dimension of the state. Its finding implies substantial computational

costs and storage requirements, and consequently, a direct method is computationally

intractable for high-dimensional systems. For this reason, we performed a literature

review of alternative methods to solve or bypass the Riccati solution. Unfortunately, we

were not able to implement any of these in this project due to time-limitation. We used

instead the method already available in Python based on the Schur algorithm and QZ

decomposition. This method is not conceived for such high-dimensional systems, but

the reduction of state dimension in the ROSSE models enabled the direct solution of

the Riccati equation for small yet meaningful dimensions. The implementation of the

optimal control law within the linear OSSE and ROSSE models as well as Channelflow
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were validated with the laminar PCF profile. This solution is already stable, but the

controller actually improved its stability. On the other side, it deteriorated the normality

of the system, which increases the likelihood of transient energy growth. Finally, we

noted that the implementation within a non-linear Channelflow configuration is valid

but an overly intense forcing will break the simulation due to discontinuities at the walls.

Chapter 7 is dedicated to the stabilization via LQR optimal regulation of the Nagata

(1990) lower-branch solution (EQ1) at Reynolds number 400. Different optimal control

gains for controller strengths ranging from κ = 8.0 to κ = 0.2 were firstly calculated

along the same procedure given in chapter 6. However, for κ = 1.0 and κ = 2.0,

the solutions did not converge. Linear analyses of the closed-loop systems were then

performed. They demonstrated that the Nagata (1990) lower-branch solution is linearly

stable for each optimal control laws. Increasing the controller strength improved the

linear stability of the system, but also deteriorated its normality. Thence, we initiated

controlled simulations of the Nagata (1990) lower-branch solution, firstly with the linear

ROSSE model and then with the non-linear Channelflow software. To make things

clear, we did not plan to attract an arbitrary turbulent dynamical state towards EQ1

and stabilize it there, but instead we aimed to start from EQ1 itself and prevent the

state to escape the equilibrium. To improve repeatability and the normality of the initial

condition, simulations were initially perturbed in the direction of the leading eigenmode

of EQ1 at a very small magnitude. Time-integration of the linear ROSSE closed-loop

system demonstrated that the optimal control law for each value of κ is stabilizing

EQ1. The most powerful controller led to the fastest convergence rate. Nonetheless, the

stabilization of EQ1 with a non-linear algorithm of the Channelflow software was not

successful. In the best cases, the transition to turbulence was delayed, but not avoided,

and the most powerful controller were associated with higher divergence rates.

The origin of this failure were not clear to the author, but suggestions and interpretations

were given at the beginning of this chapter 8. For now, it is not possible to conclude

on the effect of the non-normality and/or non-linearity on the mechanism by which the

turbulent state is escaping the close neighborhood of an invariant solution in the non-

linear case. Potential numerical inaccuracies in our simulations were indeed hindering

any theoretical discussion and need to be dismissed before concluding. However, their

resolution is not straightforward due to theoretical and practical limitations, but the

requisite tasks are listed carefully for future research in the following section. Once

these limitations lifted, we hope to get a direct insight on the mechanism by which the

turbulent state is leaving EQ1.

8.3 Novel contribution

The novel contributions contained within this thesis are as follows:
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1. Update of the ChannelFlow Boundary Condition package of Heins (2015) and im-

plementation of optimal control forcing within Channelflow version 1.5.1 (revison

452).

2. Derivation of the linear Orr-Sommerfeld Squire model Extended for a non-laminar

solution (OSSE), and its real equivalent ROSSE model. Validation of these models

against Channelflow by calculating the eigen-decomposition of different equilibria.

3. Full-information Linear Quadratic Regulation control design based on the OSSE

and ROSSE models actuated via wall-transpiration. Validation against the actu-

ation Channelflow for different actuation modes, for the laminar Plane Couette

Flow profile and Nagata (1990) lower-branch solution.

4. Controllability and stabilizibility analysis of the Nagata (1990) lower-branch solu-

tion actuated by wall-transpiration: EQ1 is stabilizable via this type of actuation.

5. Procedure to determine to optimal control law based on the OSSE and ROSSE

models. Validation on a laminar PCF profile with linear OSSE time-integrations

and non-linear Channelflow simulations.

6. Linear stability achieved for the Nagata (1990) lower-branch solution actuated by

wall-transpiration.

7. Attempt to stabilize the Nagata (1990) within a non-linear Channelflow config-

uration. Though this point failed, information was ascertained that will benefit

future attempts.

8.4 Future Work

Remaining tasks in order to achieve the stabilization of an invariant solution and pursue

this research are identified and listed below.

Choice of the control and its design

1. Conceive a volume forcing actuation to stabilize the unstable direction of an invari-

ant solution. It would help to evaluate the behavior of the dynamical state in the

neighborhood of an invariant solution or other physical phenomena without the

uncertainties due to an actuation restricted to the wall. For instance, it is difficult

for the moment to conclude if the failure of the stabilization of EQ1 within non-

linear Channelflow (§7.5) is due to a control failure, the nature of turbulence, or

any disregarded physical phenomenon. Moreover, volume forcing is a more robust

actuation than wall-transpiration and is very likely to stabilize the Nagata (1990)

lower-branch solution. It will then give insights on the physical mechanisms by



210 Chapter 8 Discussion, Summary, Conclusion and Future Work

which the dynamical state is leaving an invariant solution, and hopefully give some

guidance for a successful stabilization via wall-transpiration.

2. Design an H∞ robust control law to guarantee robust margins (§3.5).

3. Investigate other cost functional formulations (see Bewley et al. (2001) and §5.2.2).

4. Investigate other control choice: passivity-based control, non-linear control, rein-

forced learning, non-linear control via machine learning, etc.

Resolution and range of Riccati solution and the optimal control law

4. Employ advanced model reduction methods to the linear OSSE and ROSSE models

in order to capture the entire dynamics within the least amount of spatial modes.

For the moment, only truncation of the high-order mode was applied (§6.3).

5. Investigate new methods to solve the Riccati equation and determine the optimal

control law, notably the Adjoint of the Direct-Adjoint method or approaches based

on matrix structures like the quasi-separability (§6.2.3).

Implementation of the actuation and control within the Channelflow software

6. Impose symmetries in the Channelflow simulations in order to reduce their degree

of freedom and ease the stabilization of an invariant solutions.

7. Update of the CFBC package of Heins (2015) for parallel Channelflow (versions

2.0 or above, www.channelflow.ch), developed by the ECPS group of Tobias

Schneider at the École Polytechnique Fédérale de Lausanne, Switzerland.

8. Linearize in Channelflow the non-linear terms around an invariant solution and

not only around laminar profiles.

9. Review, validate and, if necessary, correct the implementation of the CFBC pack-

age and optimal control methods for Channelflow configurations linearized around

a laminar profile.

10. Review, validate and, if necessary, correct the implementation of the CFBC pack-

age and optimal control methods for Channelflow configurations linearized around

an invariant solution.

11. Only then, attempt the stabilization of an invariant solution within a non-linear

Channelflow simulation.
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Theoretical understanding of turbulence

12. Apply volume forcing (see above) to isolate the escape from an invariant solution

and restrict the potential sources of discrepancies and perturbations.

13. Estimate the impact of non-normality by tracking the dynamical evolution of the

state when leaving an invariant solution, and project the state onto the stable

and unstable manifolds. Volume forcing can also be helpful here if targeting a

particular direction.

8.5 Opening possibilities

The OSSE and ROSSE models generate a linearized operator from the Navier-Stokes

equations for any time-invariant state-space position. This translates into a new high-

dimensional matrix defined for a specific state. The fact that this operator constitutes an

actual matrix opens many possibilities, as different mathematical tools and libraries from

linear algebra are now directly applicable. For instance, linear analysis like eigenvalues-

decomposition or singular-values decomposition ensues straight from numerical Python

libraries executed on the matrix. Similarly, resolvent mode decomposition (McKeon

and Sharma, 2010; Ahmed, 2018, p.39 & appendix A) can now be calculated easily for

an invariant solution, instead of a laminar profile or mean flow, and compared against

dynamical mode decomposition or Koopman mode decomposition (Rowley et al., 2009;

Schmid, 2010; Tu et al., 2014; Sharma et al., 2016).

If achieved, the stabilization of the Nagata (1990) lower-branch can pave the way to

new discoveries. Firstly, by targeting particular directions or dynamical states, it can

help understand the chaotic nature of turbulence by restricting its degree of freedom.

Secondly, the stabilization of other equilibria can then be achieved and the basin of

attraction and robustness of different type of control for different equilibria can be

evaluated. Other types of invariant solution may also be targeted. For example, unstable

periodic orbits may be stabilized by discretizing the orbit into a succsion of invariant

solution and exercising a specific control gain to each of them. Finally, we can imagine

that the ability to direct the dynamical state in a particular direction can support the

search for new invariant solution.
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Online repositories

Validation data are stored online within

https://doi.org/10.5258/SOTON/D1508

For the thesis, Channelflow 1.5.1 was employed (Gibson, 2014), available on

http://channelflow.org/

The latest (but not compatible with the CFBC package) version 2.0 of Channelflow

(Gibson et al., 2019) is now available on

https://www.channelflow.ch/

The ChannelFlow Boundary Condition package (CFBC) v1.0 of Peter Heins is available

for Channelflow-1.4.2 on

https://github.com/P-Heins/CFBC

It update for Channelflow-1.5.1, as well as the implementation of optimal control forcing

by the present author, are available on

https://bitbucket.org/claisse/channelflow_controlled/

The OSSE and ROSSE models implemented in Python by the present author are avail-

able on

https://bitbucket.org/claisse/osse/
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Appendix C

Retrieving velocity components

and expression of C

This appendix details the necessary steps and matrix in order to retrieve the expression

of stream- and span-wise velocity components from the expression of the wall-normal

vorticity ηy

ηy :=
∂u

∂z
− ∂w

∂x
. (C.1)

REMARK: The discretisation into Fourier series of ηy is only defined for wave-numbers

pairs (α, β) 6= (0, 0), i.e. η0,0 is not defined.

C.1 Retrieving velocity components from the wall-normal

vorticity

For a given wave-number pair (α, β) 6= (0, 0), the differentiation in x-direction of ηy is

∂ηy
∂x

=
∂

∂z

∂u

∂x
− ∂2w

∂x2

=
∂

∂z
(−∂v
∂y
− ∂w

∂z
)− ∂2w

∂x2

= −∂
2v

∂yz
− ∂2w

∂2z
− ∂2w

∂x2
.

(C.2)

which gives with a discretisation for the wavenumber pair (α, β),

iα η̂y + iβ
∂v̂

∂y
= (α2 + β2)ŵ, (C.3)
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where k2 = α2 + β2. The expression of the span-wise velocity component ŵ, for a given

wave-number pair (α, β) 6= (0, 0), follows directly as

ŵ =
1

k2
(iβ

∂v̂

∂y
+ iα η̂y). (C.4)

Similarly, the expression of the steam-wise velocity component û, for a given wave-

number pair (α, β) 6= (0, 0), follows from the differentiation in the z-direction of ηy,

û =
1

k2
(iα

∂v̂

∂y
− iβ η̂y). (C.5)

C.2 Expression of C for the OSS model

For a given wave-number pair (α, β) 6= (0, 0), the matrix C depicts the change from the

OSS basis {v̂, η̂y} into the NSE basis {û, v̂, ŵ}. It derives directly from equations C.5

and C.4 as ûv̂
ŵ

 = C

[
v̂

η̂y

]
,

=
1

k2

iα∂y −iβk2 0

iβ∂y iα

[ v̂
η̂y

]
.

(C.6)

C.3 Expression of C for the OSSE model

The change-of-base matrix C for the OSSE model follows as well from the expressions

of û and ŵ in equations C.5 and C.4. However, the OSSE model takes the entire span

of stream- and span-wise wavenumbers pair,

û0,0

û0≤i<Nα,
0≤j<Nβ
(i,j)6=(0,0)

v̂0≤i<Nα,
0≤j<Nβ
ŵ0,0

ŵ0≤i<Nα,
0≤j<Nβ
(i,j)6=(0,0)


= C



v̂0≤i<Nα,
0≤j<Nβ

η̂0≤i<Nα,
0≤j<Nβ
(i,j)6=(0,0)

û0,0

ŵ0,0


. (C.7)
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Therefore, as the Fourier coefficients û0,0 and ŵ0,0 can not be derived from η̂, they are

kept as such in the OSSE state-vector. The expression of C follows as

û0,0

û1,1

...

ûNα,Nβ

v̂0,0

v̂1,1

...

v̂Nα,Nβ

ŵ0,0

ŵ1,1

...

ŵNα,Nβ



= C



v̂0,0

v̂1,1

...

v̂Nα,Nβ

η̂1,1

...

η̂Nα,Nβ

û0,0

ŵ0,0



,

=



0 0 · · · 0 0 · · · 0 I 0

0 1
k2
iα∂y · · · 0 − 1

k2
iβ · · · 0 0 0

...
...

. . .
...

...
. . .

... 0 0

0 0 · · · 1
k2
iα∂y 0 · · · − 1

k2
iβ 0 0

I 0 · · · 0 0 · · · 0 0 0

0 I · · · 0 0 · · · 0 0 0
...

...
. . .

...
...

. . .
... 0 0

0 0 · · · I 0 · · · 0 0 0

0 0 · · · 0 0 · · · 0 0 I

0 1
k2
iβ∂y · · · 0 1

k2
iα · · · 0 0 0

...
...

. . .
...

...
. . .

... 0 0

0 0 · · · 1
k2
iβ∂y 0 · · · 1

k2
iα 0 0





v̂0,0

v̂1,1

...

v̂Nα,Nβ

η̂1,1

...

η̂Nα,Nβ

û0,0

ŵ0,0



(C.8)
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The inverse transformation corresponds to the matrix C−1 as



v̂0,0

v̂1,1

...

v̂Nα,Nβ

η̂1,1

...

η̂Nα,Nβ

û0,0

ŵ0,0



= C−1



û0,0

û1,1

...

ûNα,Nβ

v̂0,0

v̂1,1

...

v̂Nα,Nβ

ŵ0,0

ŵ1,1

...

ŵNα,Nβ



,

=



0 0 · · · 0 I 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 I · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

... 0 0 · · · 0

0 0 · · · 0 0 0 · · · I 0 0 · · · 0

0 iβ · · · 0 0 0 · · · 0 0 −iα · · · 0
...

...
. . .

...
...

...
. . .

... 0 0 · · · 0

0 0 · · · iβ 0 0 · · · 0 0 0 · · · −iα
I 0 · · · 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 I 0 · · · 0





û0,0

û1,1

...

ûNα,Nβ

v̂0,0

v̂1,1

...

v̂Nα,Nβ

ŵ0,0

ŵ1,1

...

ŵNα,Nβ


(C.9)

C.4 Expression of C for the OSSE model with actuation

not applied to the inner field

The introduction of wall-transpiration in the OSSE is presented in §5.2.1. It transforms

the homogeneous PDAE 4.77 imposed with inhomogeneous boundary conditions into

a inhomogeneous PDAE imposed with homogeneous boundary conditions, by changing

the variable expressions for all modes of v̂, all modes of η̂ excluded the pair (0, 0), û0,0

and ŵ0,0 as presented in equations 5.13. As a remainder,

v̂α,β(y, t) = v̂0
α,β(y, t) + f+(y) v+

α,β(t) + f−(y) v−α,β(t), (C.10)
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where v̂ is the inhomogeneous velocity field where v̂(±1) = v̂± and v̂0 is the homogeneous

velocity field v̂(±1) = 0.

Two different perspectives can be taken to develop the linear model: either the state-

vector is continuous in the wall-normal direction and defined with the inhomogeneous ve-

locity field v̂ as x = [v+, v̂, v−, η̂, û00, ŵ00]; or the state-vector is discontinuous in the wall-

normal direction and defined with the homogeneous velocity v̂0 as x = [v+, v̂0, v−, η̂, û00, ŵ00].

The OSSE model actuated by wall-transpiration is formulated with the homogeneous

velocity field v0 and the discontinuous state-vector x = [v+, v̂0, v−, η̂, û00, ŵ00] (eq.??).

In order to retrieve a velocity field of the form [û, v̂, ŵ] used in Channelflow, two trans-

formations are applied to the OSSE state-vector ??:

xOSSE

[v+, v̂0, v−, η̂, û00, ŵ00] =⇒
T

[v+, v̂, v−, η̂, û00, ŵ00] =⇒
C

xCHFL
[û, v̂, ŵ]

1. The operator T (§5.2.2.4) transforms the discontinuous and homogeneous state-

vector [v+, v̂0, v−, η̂, û00, ŵ00] into the continuous and inhomogeneous state-vector

[v+, v̂, v−, η̂, û00, ŵ00].

2. The operator C (§C.3) transforms the state-vector [v+, v̂, v−, η̂, û00, ŵ00] into a field

[û, v̂, ŵ].

xCHFL =


û

v+

v̂

v−

ŵ

 = C



v+

v̂

v−

η̂

û00

ŵ00


= CT



v+

v̂0

v−

η̂

û00

ŵ00


= CT xOSSE , (C.11)

where T is composed of the block-matrices Tα,β for each Fourier wave-number pair, such

that v
+
α,β

v̂α,β

v−α,β

 =

 1 0 0

f+ I f−

0 0 1


v

+
α,β

v̂0
α,β

v−α,β

 = Tα,β

v
+
α,β

v̂0
α,β

v−α,β

 . (C.12)

In the numerical implementation, the matrices T −1C−1 or CT are calculated once and

stored in order to obtain a single matrix transformation.

Howbeit, an equivalent possibility is to bypass the operator T analytically by defining

a transformation from the state-vector [v+, v̂0, v−, η̂, û00, ŵ00] directly into [û, v̂, ŵ] as
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follow

û =
1

k2
(iα

∂v̂

∂y
− iβ η̂y)

=
1

k2
(iα

∂(v̂0 + f+v+ + f−v−)

∂y
− iβ η̂y)

=
1

k2
(iα

∂v̂0

∂y
− iβ η̂y + iα

∂f+

∂y
v+ + iα

∂f−

∂y
v−).

(C.13)

This imply to modify the matrix C by inserting the actuation as follows (and similarly

for ŵ)

ûα,β =
1

k2


... 0

...

ια∂f
+

∂y ια∂y ια∂f
−

∂y −ιβI
... 0

...



v+

v̂0

v−

η̂

. (C.14)
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OSSE: blocks matrices

D.1 Matrices of the streamwise and spanwise discretisa-

tion for the OSSE

Aα,β,
α′,β′

= +ι(α− α′)
[

+ 2
∂2Ûα′,β′(y, t)

∂y2
− ∇̂2

α′,β′Ûα′,β′(y, t)− Ûα′,β′(y, t) ∇̂2
α−α′,β−β′

+ 2
(
α′(α− α′) + β′(β − β′)

)
Ûα′,β′(y, t)

]
−
∂V̂α′,β′(y, t)

∂y
∇̂2
α−α′,β−β′ − V̂α′,β′(y, t) ∇̂2

α−α′,β−β′
∂

∂y

+ 2
(
α′(α− α′) + β′(β − β′)

)[∂V̂α′,β′(y, t)
∂y

+ V̂α′,β′(y, t)
∂

∂y

]
− ∇̂2

α′,β′
∂V̂α′,β′(y, t)

∂y
− ∇̂2

α′,β′ V̂α′,β′(y, t)
∂

∂y

+ ι(β − β′)
[

+ 2
∂2Ŵα′,β′(y, t)

∂y2
− ∇̂2

α′,β′Ŵα′,β′(y, t)− Ŵα′,β′(y, t) ∇̂2
α−α′,β−β′

+ 2
(
α′(α− α′) + β′(β − β′)

)
Ŵα′,β′(y, t)

]
, (D.1a)

Bα,β,
α′,β′

=
α′(α− α′) + β′(β − β′)
(α− α′)2 + (β − β′)2

[
− 2ι(α− α′)

[
∂Ûα′,β′(y, t)

∂y
+ Ûα′,β′(y, t)

∂

∂y

]

− 2ι(β − β′)
[
∂Ŵα′,β′(y, t)

∂y
+ Ŵα′,β′(y, t)

∂

∂y

]
+ V̂α′,β′(y, t) ∇̂2

α−α′,β−β′ + ∇̂2
α′,β′ V̂α′,β′(y, t)

− 2
(
α′(α− α′) + β′(β − β′)

)
V̂α′,β′(y, t)

− 2V̂α′,β′(y, t)
∂2

∂y2

]
∂

∂y
, (D.1b)
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Cα,β,
α′,β′

=
α′β − β′α

(α− α′)2 + (β − β′)2

[
+ 2ι(α− α′)

[
∂Ûα′,β′(y, t)

∂y
+ Ûα′,β′(y, t)

∂

∂y

]

+ 2ι(β − β′)
[
∂Ŵα′,β′(y, t)

∂y
+ Ŵα′,β′(y, t)

∂

∂y

]
− V̂α′,β′(y, t) ∇̂2

α−α′,β−β′ − ∇̂2
α′,β′ V̂α′,β′(y, t)

+ 2
(
α′(α− α′) + β′(β − β′)

)
V̂α′,β′(y, t)

+ 2V̂α′,β′(y, t)
∂2

∂y2

]
, (D.1c)

Dα,β,
0,0

= ιαV̂α,β
∂2

∂y2
− ια∇̂2

α,βV̂α,β, (D.1d)

Eα,β,
0,0

= ιβV̂α,β
∂2

∂y2
− ιβ∇̂2

α,βV̂α,β, (D.1e)

Fα,β,
α′,β′

= −ιβ
∂Ûα′,β′(y, t)

∂y
+ ια

∂Ŵα′,β′(y, t)

∂y
, (D.1f)

Gα,β,
α′,β′

=
1

(α− α′)2 + (β − β′)2

[
−
(
α′β − β′α

)
V̂α′,β′(y, t)

∂

∂y
(D.1g)

+ ι
(
α(α− α′) + β(β − β′)

)(
β′Ûα′,β′(y, t)− α′Ŵα′,β′(y, t)

)] ∂
∂y
, (D.1h)

Hα,β,
α′,β′

= −ιαÛα′,β′(y, t)− V̂α′,β′(y, t)
∂

∂y
− ιβŴα′,β′(y, t), (D.1i)

Jα,β,
α′,β′

=
1

(α− α′)2 + (β − β′)2

[
−
(
α′(α− α′) + β′(β − β′)

)
V̂α′,β′(y, t)

∂

∂y
(D.1j)

− ι
(
α′β − β′α

)(
β′Ûα′,β′(y, t)− α′Ŵα′,β′(y, t)

)]
, (D.1k)

Kα,β,
0,0

= αβÛα,β − ιβV̂α,β
∂

∂y
− α2Ŵα,β, (D.1l)

Lα,β,
0,0

= β2Ûα,β + ιαV̂α,β
∂

∂y
− αβŴα,β, (D.1m)

Mα′,β′ = −
∂Ûα′,β′

∂y
, (D.1n)

Nα′,β′ =
1

α′2 + β′2

[
+ ια′V̂α′,β′

∂2

∂y2
− β′2Ûα′,β′

∂

∂y
+ α′β′Ŵα′,β′

∂

∂y

]
, (D.1o)

Oα′,β′ =
1

α′2 + β′2

[
− ιβ′V̂α′,β′

∂

∂y
− α′β′Ûα′,β′ − β′2Ŵα′,β′

]
, (D.1p)

Pα′,β′ = −
∂Ŵα′,β′

∂y
, (D.1q)

Qα′,β′ =
1

α′2 + β′2

[
− α′2Ŵα′,β′

∂

∂y
+ α′β′Ûα′,β′

∂

∂y
+ ιβ′V̂α′,β′

∂2

∂y2

]
, (D.1r)

Rα′,β′ =
1

α′2 + β′2

[
+ α′β′Ŵα′,β′ + α′2Ûα′,β′ + ια′V̂α′,β′

∂

∂y

]
. (D.1s)
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D.2 Matrices of the wall-normal discretisation for the OSSE

Ãα,β,
α′,β′

= +ι(α− α′)
[

+ 2D2
0Ũα′,β′(y, t)− ∇̃2

0 α′,β′Ũα′,β′(y, t)− Ũα′,β′(y, t) ∇̃2
α−α′,β−β′

+ 2
(
α′(α− α′) + β′(β − β′)

)
Ũα′,β′(y, t)

]
−D0Ṽα′,β′(y, t) ∇̃2

α−α′,β−β′ − Ṽα′,β′(y, t) ∇̃2
α−α′,β−β′D

+ 2
(
α′(α− α′) + β′(β − β′)

)[
D0Ṽα′,β′(y, t) + Ṽα′,β′(y, t)D

]
− ∇̃2

0 α′,β′D0Ṽα′,β′(y, t)− ∇̃2
0 α′,β′ Ṽα′,β′(y, t)D

+ ι(β − β′)
[

+ 2D2
0W̃α′,β′(y, t)− ∇̃2

0 α′,β′W̃α′,β′(y, t)− W̃α′,β′(y, t) ∇̃2
α−α′,β−β′

+ 2
(
α′(α− α′) + β′(β − β′)

)
W̃α′,β′(y, t)

]
, (D.2a)

B̃α,β,
α′,β′

=
α′(α− α′) + β′(β − β′)
(α− α′)2 + (β − β′)2

[
− 2ι(α− α′)

[
D0Ũα′,β′(y, t) + Ũα′,β′(y, t)D

]
− 2ι(β − β′)

[
D0W̃α′,β′(y, t) + W̃α′,β′(y, t)D

]
+ Ṽα′,β′(y, t) ∇̃2

α−α′,β−β′ + ∇̃2
0 α′,β′ Ṽα′,β′(y, t)

− 2
(
α′(α− α′) + β′(β − β′)

)
Ṽα′,β′(y, t)

− 2Ṽα′,β′(y, t) D2

]
D, (D.2b)

C̃α,β,
α′,β′

=
α′β − β′α

(α− α′)2 + (β − β′)2

[
+ 2ι(α− α′)

[
D0Ũα′,β′(y, t) + Ũα′,β′(y, t) D

]
+ 2ι(β − β′)

[
D0W̃α′,β′(y, t) + W̃α′,β′(y, t) D

]
− Ṽα′,β′(y, t) ∇̃2

α−α′,β−β′ − ∇̃2
0 α′,β′ Ṽα′,β′(y, t)

+ 2
(
α′(α− α′) + β′(β − β′)

)
Ṽα′,β′(y, t)

+ 2Ṽα′,β′(y, t) D2

]
, (D.2c)

D̃α,β,
0,0

= ιαṼα,βD2 − ια∇̃2
0 α,βV̂α,β, (D.2d)

Ẽα,β,
0,0

= ιβṼα,βD2 − ιβ∇̃2
0 α,βV̂α,β, (D.2e)

F̃α,β,
α′,β′

= −ιβD0Ũα′,β′(y, t) + ιαD0W̃α′,β′(y, t), (D.2f)

G̃α,β,
α′,β′

=
1

(α− α′)2 + (β − β′)2

[
−
(
α′β − β′α

)
Ṽα′,β′(y, t)D (D.2g)

+ ι
(
α(α− α′) + β(β − β′)

)(
β′Ũα′,β′(y, t)− α′W̃α′,β′(y, t)

)]
D, (D.2h)
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H̃α,β,
α′,β′

= −ιαŨα′,β′(y, t)− Ṽα′,β′(y, t) D − ιβW̃α′,β′(y, t), (D.2i)

J̃α,β,
α′,β′

=
1

(α− α′)2 + (β − β′)2

[
−
(
α′(α− α′) + β′(β − β′)

)
Ṽα′,β′(y, t)D (D.2j)

− ι
(
α′β − β′α

)(
β′Ũα′,β′(y, t)− α′W̃α′,β′(y, t)

)]
, (D.2k)

K̃α,β,
0,0

= αβŨα,β − ιβṼα,βD − α2W̃α,β, (D.2l)

L̃α,β,
0,0

= β2Ũα,β + ιαṼα,βD − αβW̃α,β, (D.2m)

M̃α′,β′ = −D0Ũα′,β′ , (D.2n)

Ñα′,β′ =
1

α′2 + β′2

[
+ ια′Ṽα′,β′D2 − β′2Ũα′,β′D + α′β′W̃α′,β′D

]
, (D.2o)

Õα′,β′ =
1

α′2 + β′2

[
− ιβ′Ṽα′,β′D − α′β′Ũα′,β′ − β′2W̃α′,β′

]
, (D.2p)

P̃α′,β′ = −D0W̃α′,β′ , (D.2q)

Q̃α′,β′ =
1

α′2 + β′2

[
− α′2W̃α′,β′D + α′β′Ũα′,β′D + ιβ′Ṽα′,β′D2

]
, (D.2r)

R̃α′,β′ =
1

α′2 + β′2

[
+ α′β′W̃α′,β′ + α′2Ũα′,β′ + ια′Ṽα′,β′D

]
. (D.2s)
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OSSE actuated by

wall-transpiration: blocks

matrices

E1 =



− 1
τvα,β

0 0[
1

τvα,β
∇̃2f+(y) + 1

Re∇̃
4
α,βf

+(y)
]

1
Re

˚̃∇4
α,β

[
1

τvα,β
∇̃2f−(y) + 1

Re∇̃
4
α,βf

−(y)
]

0 0 − 1
τvα,β


,

(E.1a)

E2 =



− 1
τηα,β

0 0[
1
Re∇̃

2
α,β g

+(y) + 1
τηα,β

g+(y)
]

1
Re

˚̃∇2
α,β

[
1
Re∇̃

2
α,β g

−(y) + 1
τηα,β

g−(y)
]

0 0 − 1
τηα,β


,

(E.1b)

E3 =


− 1
τu0,0

0 0

Mf+(y) + 1
τu0,0

f+(y) M̊ Mf−(y) + 1
τu0,0

f−(y)

0 0 − 1
τu0,0

 , (E.1c)

E4 =


− 1
τw0,0

0 0

Mf+(y) + 1
τw0,0

f+(y) M̊ Mf−(y) + 1
τw0,0

f−(y)

0 0 − 1
τw0,0

 , (E.1d)
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A = Ãα,β,
α−α′,β−β′

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1e)

B = B̃α,β,
α−α′,β−β′

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1f)

C = C̃α,β,
α−α′,β−β′

 0 0 0

g+(y) I g−(y)

0 0 0

 , (E.1g)

D = D̃α,β,
0,0

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1h)

E = Ẽα,β,
0,0

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1i)

F = F̃α,β,
α−α′,β−β′

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1j)

G = G̃α,β,
α−α′,β−β′

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1k)

H = H̃α,β,
α−α′,β−β′

 0 0 0

g+(y) I g−(y)

0 0 0

 , (E.1l)

J = J̃α,β,
α−α′,β−β′

 0 0 0

g+(y) I g−(y)

0 0 0

 , (E.1m)

K = K̃α,β,
0,0

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1n)

L = L̃α,β,
0,0

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1o)

M = M̃α′,β′

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1p)

N = Ñα′,β′

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1q)
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O = Õα′,β′

 0 0 0

g+(y) I g−(y)

0 0 0

 , (E.1r)

P = P̃α′,β′

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1s)

Q = Q̃α′,β′

 0 0 0

f+(y) I f−(y)

0 0 0

 , (E.1t)

R = R̃α′,β′

 0 0 0

g+(y) I g−(y)

0 0 0

 , (E.1u)

B1 =


1

τvα,β
0

− 1
τvα,β
∇̃2f+(y) − 1

τvα,β
∇̃2f−(y)

0 1
τvα,β

 , (E.1v)

B2 =


1

τηα,β
0

− 1
τηα,β

g+(y) − 1
τηα,β

g−(y)

0 1
τηα,β

 , (E.1w)

B3 =


1

τu0,0
0

− 1
τu0,0

f+(y) − 1
τu0,0

f−(y)

0 1
τu0,0

 , (E.1x)

B4 =


1

τw0,0
0

− 1
τw0,0

f+(y) − 1
τw0,0

f−(y)

0 1
τw0,0

 , (E.1y)

with M =

[
1
Re∇̃

2
0,0 − V̄0,0D

]
and M̊ =

[
1
Re

˚̃∇2
0,0 − V̄0,0D̊

]
.





Appendix F

OSSE: Detailed derivation of the

model

F.1 Derivation of the OSSE model

A steady non-laminar state of the form

Ū = (Ū(x, y, z), V̄ (x, y, z), W̄ (x, y, z)). (F.1)

is inserted into the NSE 4.4. The linearisation around this steady non-laminar state

follows as

∂u

∂t
=

1

Re
∇2u − ∂p

∂x
− u

∂Ū

∂x
− Ū

∂u

∂x
− u
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(F.2a)

∂v
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1

Re
∇2v − ∂p

∂y
− u

∂V̄
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− Ū
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− u
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− v
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− w

∂v
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(F.2b)

∂w

∂t
=

1

Re
∇2w − ∂p

∂z
− u

∂W̄
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∂w

∂x
− u
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(F.2c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (F.2d)
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REMARK: Special care when dealing with the Laplacian:

∆(ab) =∇2(ab) = (∇ · ∇)(ab)

=
∂2a

∂x2
b+ 2

∂a

∂x
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(F.3)

Neglecting the body forces and non-linear terms, it follows [eq. 4.56]
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=

1

Re
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∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (F.4d)

Time-variation of the wall-normal velocity v

Firstly, the Laplacian of equation 4.56b is taken and the pressure scalar-field p is elimi-

nated via the Poisson equation 4.8.
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Then rearranging and making explicit the simplicition,
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(F.6)

it leads to the expression of the time-variation of the velocity v in function of the

velocities u, v and w as [eq. 4.57]
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∂

∂x
− 2

∂Ū
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Time-variation of the wall-normal vorticity ηy

To describe the complete 3D problem, the wall-normal vorticity η(y) 4.43 is introduced

and differentiated in time,
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. (F.8)

The time-differentiation of stream-wise u and span-wise w components are eliminated

with expressions 4.56a/F.4a and 4.56c/F.4c. Hereinafter are explicited the simplifica-

tions,
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(F.9)

which gives without the non-linear terms in cyan and simplifying the blue terms
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2Ū

∂yz
− ∂V̄

∂z

∂u

∂y
− ∂w

∂z

∂Ū
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2Ū

∂z2
−∂W̄
∂z

∂u

∂z

+
∂u

∂x

∂W̄

∂x
+ u

∂2W̄

∂x2
+
∂Ū
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to finally the time-evolution of wall-normal vorticity ηy follows as [eq. 4.59]
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(F.11)

Equations F.7 and F.11 form the velocity-vorticity formulation for the OSSE.
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F.2 Streamwise and spanwise discretisation of the OSSE

model

Streamwise and spanwise discretisation of the wall-normal vorticity ηy

Correlation of Fourier series applied to 4.59 leads to the expression of the wall-normal

vorticity time-variation as a function of the different modes of ηy, u, v and w as
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iβ′Ûα′,β′(y, t) eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

iαûα,β(y, t) eι(αx+βz)

−
N ′x/2∑

k′x=−N
′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

iβ′V̂α′,β′(y, t) eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

∂ûα,β(y, t)

∂y
eι(αx+βz)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

iα′Ŵα′,β′(y, t) eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

iαûα,β(y, t) eι(αx+βz)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(−1)α′2Ŵα′,β′(y, t) eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

ûα,β(y, t) eι(αx+βz)

]
(F.12)
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+

[
−

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

∂Ûα′,β′(y, t)

∂y
eι(α

′x+β′z)
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

iβv̂α,β(y, t) eι(αx+βz)

−
N ′x/2∑

k′x=−N
′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

iβ′
∂Ûα′,β′(y, t)

∂y
eι(α

′x+β′z)
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

v̂α,β(y, t) eι(αx+βz)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

∂Ŵα′,β′(y, t)

∂y
eι(α

′x+β′z)
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

iαv̂α,β(y, t) eι(αx+βz)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

iα′
∂Ŵα′,β′(y, t)

∂y
eι(α

′x+β′z)
Nx/2∑

kx=−Nx
2

+1

Nz/2∑
kz=−Nz

2
+1

v̂α,β(y, t) eι(αx+βz)

]

+

[
−

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

iβ′Ûα′,β′(y, t) eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

iβŵα,β(y, t) eι(αx+βz)

−
N ′x/2∑

k′x=−N
′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(−1)β′2Ûα′,β′(y, t) eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

ŵα,β(y, t) eι(αx+βz)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

iα′V̂α′,β′(y, t) eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

∂ŵα,β(y, t)

∂y
eι(αx+βz)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

iα′Ŵα′,β′(y, t) eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

iβŵα,β(y, t) eι(αx+βz)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(−1)α′β′Ŵα′,β′(y, t) eι(α
′x+β′z)

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

ŵα,β(y, t) eι(αx+βz)

]
,

(F.13)
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and after some rearranging [eq. 4.65]

∂ηy
∂t

=

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

1

Re
∇2η̂α,β(y, t) eι(αx+βz)

+

Nx/2∑
kx=−Nx

2
+1

Nz/2∑
kz=−Nz

2
+1

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

eι(αx+βz)

[
−
(
ι(α− α′)Ûα′,β′(y, t) + V̂α′,β′(y, t)

∂

∂y
+ ι(β − β′)Ŵα′,β′(y, t)

+ ια′Ûα′,β′(y, t) + ιβ′Ŵα′,β′(y, t)

)
η̂α−α′,β−β′(y, t)

+

(
α′β′Ûα′,β′(y, t) + β′(α− α′)Ûα′,β′(y, t)− ιβ′V̂α′,β′(y, t)

∂

∂y

− α′(α− α′)Ŵα′,β′(y, t)− α′2Ŵα′,β′(y, t)

)
ûα−α′,β−β′(y, t)

+

(
− ι(β − β′)

∂Ûα′,β′(y, t)

∂y
− ιβ′

∂Ûα′,β′(y, t)

∂y

+ ι(α− α′)
∂Ŵα′,β′(y, t)

∂y
+ ια′

∂Ŵα′,β′(y, t)

∂y

)
v̂α−α′,β−β′(y, t)

+

(
β′(β − β′)Ûα′,β′(y, t) + β′2Ûα′,β′(y, t) + ια′V̂α′,β′(y, t)

∂

∂y

− α′(β − β′)Ŵα′,β′(y, t)− α′β′Ŵα′,β′(y, t)

)
ŵα−α′,β−β′(y, t)

]
.

(F.14)

The Fourier basis {eιαx} and {eιβz} are orthogonal. Consequently, each Fourier coeffi-

cient η̂α,β of the LHS of eq.4.65/F.14 can be expressed individually. Nonetheless, and

on the contrary to the OSS derivation, due to the correlation of Fourier series on the

RHS of eq.4.65/F.14, the coefficient η̂αi,βj is function of the entire set of coefficients

ûαk 6=αi,βl 6=βj , v̂αk 6=αi,βl 6=βj , ŵαk 6=αi,βl 6=βj and η̂αk 6=αi,βl 6=βj . In other words, the derivation

no longer diagonalizes with Fourier wavenumber.

For each wavenumber pair (α, β), the Fourier coefficients {ûα,β} and {ŵα,β} of the steam-

and span-wise velocity components are replaced by their respective expressions given in

C.5 and C.4. The wavenumber pair (α = 0, β = 0) is a particular case, as η̂0,0 is not

defined. Therefore, the Fourier coefficients {û0,0} and {ŵ0,0} can not be retrieved with

expressions C.5 and C.4. For this reason, the state will be composed of all the modes of

the wall-normal velocity {v̂α,β}, all the modes excepted the pair (0, 0) of the wall-normal

vorticity {η̂α,β}, and the Fourier coefficients û0,0 and ŵ0,0.
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By applying these remarks to eq. 4.65/F.14 and rearranging, the Fourier coefficients

η̂α,β can be expressed as

∂η̂α,β
∂t

=
1

Re
∇2η̂α,β(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
− Ûα′,β′(y, t) i(α− α′)− V̂α′,β′(y, t)

∂

∂y

− Ŵα′,β′(y, t) i(β − β′)− iα′Ûα′,β′(y, t) − iβ′Ŵα′,β′(y, t)

+
1

(α− α′)2 + (β − β′)2

[
+ iβ′Ûα′,β′(y, t) (α− α′)(β − β′) + β′2Ûα′,β′(y, t) i(α− α′)

− α′V̂α′,β′(y, t) (α− α′) ∂
∂y
− iα′Ŵα′,β′(y, t) (α− α′)(β − β′)

− α′β′Ŵα′,β′(y, t) i(α− α′)− α′β′Ûα′,β′(y, t) i(β − β′)

− iβ′Ûα′,β′(y, t) (α− α′)(β − β′)− β′V̂α′,β′(y, t) (β − β′) ∂
∂y

+ iα′Ŵα′,β′(y, t) (α− α′)(β − β′) + α′2Ŵα′,β′(y, t) i(β − β′)
]]
ηα−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

[
−
∂Ûα′,β′(y, t)

∂y
i(β − β′)− iβ′

∂Ûα′,β′(y, t)

∂y

+
∂Ŵα′,β′(y, t)

∂y
i(α− α′) + iα′

∂Ŵα′,β′(y, t)

∂y

]
vα−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

1

(α− α′)2 + (β − β′)2

[

+ iβ′Ûα′,β′(y, t) (β − β′)2 ∂

∂y
+ β′2Ûα′,β′(y, t) i(β − β′)

∂

∂y

− α′V̂α′,β′(y, t) (β − β′) ∂
2

∂y2
− iα′Ŵα′,β′(y, t) (β − β′)2 ∂

∂y

− α′β′Ŵα′,β′(y, t) i(β − β′)
∂

∂y
+ α′β′Ûα′,β′(y, t) i(α− α′)

∂

∂y

+ iβ′Ûα′,β′(y, t) (α− α′)2 ∂

∂y
+ β′V̂α′,β′(y, t) (α− α′) ∂

2

∂y2

− iα′Ŵα′,β′(y, t) (α− α′)2 ∂

∂y
− α′2Ŵα′,β′(y, t) i(α− α′)

∂

∂y

]
vα−α′,β−β′(y, t)

+

[
αβŪα,β − iβV̄α,β

∂

∂y
− α2W̄α,β

]
u0,0(y, t)

+

[
β2Ūα,β + iαV̄α,β

∂

∂y
− αβW̄α,β

]
w0,0(y, t),

(F.15)
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which simplifies into

∂η̂α,β
∂t

=
1

Re
∇2η̂α,β(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
− iαÛα′,β′(y, t)− V̂α′,β′(y, t)

∂

∂y
− iβŴα′,β′(y, t)

+
1

(α− α′)2 + (β − β′)2

[
−
(
α′(α− α′) + β′(β − β′)

)
V̂α′,β′(y, t)

∂

∂y

− i
(
α′β − β′α

)(
β′Ûα′,β′(y, t)− α′Ŵα′,β′(y, t)

)]]
ηα−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

[
− iβ

∂Ûα′,β′(y, t)

∂y
+ iα

∂Ŵα′,β′(y, t)

∂y

]
vα−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

1

(α− α′)2 + (β − β′)2

[
−
(
α′β − β′α

)
V̂α′,β′(y, t)

∂

∂y

+ i
(
α(α− α′) + β(β − β′)

)(
β′Ûα′,β′(y, t)− α′Ŵα′,β′(y, t)

)] ∂
∂y
vα−α′,β−β′(y, t)

+

[
αβŪα,β − iβV̄α,β

∂

∂y
− α2W̄α,β

]
u0,0(y, t)

+

[
β2Ūα,β + iαV̄α,β

∂

∂y
− αβW̄α,β

]
w0,0(y, t),

(F.16)

and leads to the final expression of the Fourier coefficients η̂α,β [eq. 4.66]

∂η̂α,β
∂t

=

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Fα,β,
α−α′,β−β′

v̂α−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Gα,β,
α−α′,β−β′

(α− α′)2 + (β − β′)2
v̂α−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
Hα,β,
α−α′,β−β′

+

Jα,β,
α−α′,β−β′

(α− α′)2 + (β − β′)2

]
η̂α−α′,β−β′(y, t)

+
1

Re
∇2η̂α,β(y, t) +Kα,β,

0,0
û0,0(y, t) + Lα,β,

0,0
ŵ0,0(y, t),

(F.17)

where the coefficients F,G,H, JK,L are given in the appendix D.1.
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Streamwise and spanwise discretisation of the wall-normal velocity v

Equation 4.57/F.7 receives the same treatment in order to obtain an expression for all

the Fourier coefficients v̂α,β as a function of all the modes of the wall-normal velocity

{v̂α,β}, all the modes excepted the pair (0, 0) of the wall-normal vorticity {η̂α,β}, and

the Fourier coefficients û0,0 and ŵ0,0. For each wave-number pair, simplifications here

coloured in cyan can be operated on equation 4.57/F.7,

∂

∂t
∇2v =

[
+ 2

∂2Ū

∂xy

∂

∂x
+ 2

∂Ū

∂x

∂2

∂xy

+2
∂V̄

∂x

∂2

∂y2
+ 2

∂2W̄

∂xy

∂

∂z
+ 2

∂W̄

∂x

∂2

∂yz

−∂V̄
∂x
∇2 − 2

∂2V̄

∂x2

∂

∂x
− 2

∂2V̄

∂xz

∂

∂z
− ∂∇2V̄

∂x

]
u

+

[
1

Re
∇4

+2
∂2Ū

∂y2

∂

∂x
+2

∂2V̄

∂y2

∂

∂y
+2

∂2W̄

∂y2

∂

∂z

− ∇2Ū
∂

∂x
− 2

∂Ū

∂x

∂2

∂x2
− 2

∂Ū

∂z

∂2

∂xz
− Ū

∂∇2

∂x

− ∂V̄

∂y
∇2 − 2

∂2V̄

∂xy

∂

∂x
− 2

∂2V̄

∂y2

∂

∂y
− 2

∂2V̄

∂yz

∂

∂z
− ∂∇2V̄

∂y

− ∇2V̄
∂

∂y
− 2

∂V̄

∂x

∂2

∂xy
− 2

∂V̄

∂z

∂2v

∂yz
− V̄

∂∇2

∂y

−∇2W̄
∂

∂z
− 2

∂W̄

∂x

∂2

∂xz
− 2

∂W̄

∂z

∂2

∂z2
− W̄

∂∇2

∂z

]
v

+

[
2
∂2Ū

∂yz

∂

∂x
+ 2

∂Ū

∂z

∂2

∂xy

+2
∂V̄

∂z

∂2

∂y2
+ 2

∂2W̄

∂yz

∂

∂z
+ 2

∂W̄

∂z

∂2

∂yz

−∂V̄
∂z
∇2 − 2

∂2V̄

∂xz

∂

∂x
− 2

∂2V̄

∂z2

∂

∂z
− ∂∇2V̄

∂z

]
w

−
[
∇2

(
u
∂v

∂x

)
+∇2

(
v
∂v

∂y

)
+∇2

(
w
∂v

∂z

)]
.

(F.18)

For each wavenumber pair (α, β), the Fourier coefficients {ûα,β} and {ŵα,β} of the steam-

and span-wise velocity components are replaced by their respective expressions given in
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C.5 and C.4. Neglecting the non-linear terms and replacing the terms, it leads to

∂

∂t
∇2v = +

1

Re
∇4
α,β v̂α,β(y, t)

+

[
iαV̄α,β

∂2

∂y2
− iα∇2

α,βV̄α,β

]
u0,0(y, t)

+

[
iβV̄α,β

∂2

∂y2
− iβ∇2

α,βV̄α,β

]
w0,0(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

[
+ 2i

∂2Ûα′,β′(y, t)

∂y2
(α− α′)− i∇2

α′,β′Ûα′,β′(y, t) (α− α′)

+ 2iα′Ûα′,β′(y, t) (α− α′)2

+ 2iβ′Ûα′,β′(y, t) (α− α′)(β − β′)

− iÛα′,β′(y, t) (α− α′)∇2
α−α′,β−β′

+ 2
∂2V̂α′,β′(y, t)

∂y2

∂

∂y

−
∂V̂α′,β′(y, t)

∂y
∇2
α−α′,β−β′

+ 2α′
∂V̂α′,β′(y, t)

∂y
(α− α′)

− 2
∂2V̂α′,β′(y, t)

∂y2

∂

∂y

+ 2β′
∂V̂α′,β′(y, t)

∂y
(β − β′)

−∇2
α′,β′

∂V̂α′,β′(y, t)

∂y

−∇2
α′,β′ V̂α′,β′(y, t)

∂

∂y

+ 2α′V̂α′,β′(y, t) (α− α′) ∂
∂y

+ 2β′V̂α′,β′(y, t) (β − β′) ∂
∂y

− V̂α′,β′(y, t) ∇2
α−α′,β−β′

∂

∂y

+ 2i
∂2Ŵα′,β′(y, t)

∂y2
(β − β′)

− i∇2
α′,β′Ŵα′,β′(y, t) (β − β′)

+ 2iα′Ŵα′,β′(y, t) (α− α′)(β − β′)

+ 2iβ′Ŵα′,β′(y, t) (β − β′)2

− iŴα′,β′(y, t) (β − β′)∇2
α−α′,β−β′]

v̂α−α′,β−β′(y, t)
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+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

1

(α− α′)2 + (β − β′)2

[
− 2iα′

∂Ûα′,β′(y, t)

∂y
(α− α′)2 ∂

∂y

− 2iα′Ûα′,β′(y, t) (α− α′)2 ∂
2

∂y2

− 2iβ′
∂Ûα′,β′(y, t)

∂y
(α− α′)(β − β′) ∂

∂y

− 2iβ′Ûα′,β′(y, t) (α− α′)(β − β′) ∂
2

∂y2

− 2α′V̂α′,β′(y, t) (α− α′) ∂
3

∂y3

+ α′V̂α′,β′(y, t) (α− α′)∇2
α−α′,β−β′

∂

∂y

− 2α′2V̂α′,β′(y, t) (α− α′)2 ∂

∂y

− 2α′β′V̂α′,β′(y, t) (α− α′)(β − β′) ∂
∂y

+ α′∇2
α′,β′ V̂α′,β′(y, t) (α− α′) ∂

∂y

+ β′V̂α′,β′(y, t)∇2
α−α′,β−β′ (β − β′) ∂

∂y

− 2α′β′V̂α′,β′(y, t) (α− α′)(β − β′) ∂
∂y

− 2β′2V̂α′,β′(y, t) (β − β′)2 ∂

∂y

+ β′∇2
α′,β′ V̂α′,β′(y, t) (β − β′) ∂

∂y

− 2β′V̂α′,β′(y, t) (β − β′) ∂
3

∂y3

− 2iα′
∂Ŵα′,β′(y, t)

∂y
(α− α′)(β − β′) ∂

∂y

− 2iα′Ŵα′,β′(y, t) (α− α′)(β − β′) ∂
2

∂y2

− 2iβ′
∂Ŵα′,β′(y, t)

∂y
(β − β′)2 ∂

∂y

− 2iβ′Ŵα′,β′(y, t) (β − β′)2 ∂
2

∂y2

]
v̂α−α′,β−β′(y, t)
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+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

1

(α− α′)2 + (β − β′)2

[
− 2iβ′

∂Ûα′,β′(y, t)

∂y
(α− α′)2

− 2iβ′Ûα′,β′(y, t) (α− α′)2 ∂

∂y

+ 2iα′
∂Ûα′,β′(y, t)

∂y
(α− α′)(β − β′)

+ 2iα′Ûα′,β′(y, t) (α− α′)(β − β′) ∂
∂y

− 2β′V̂α′,β′(y, t) (α− α′) ∂
2

∂y2

+ β′V̂α′,β′(y, t) (α− α′)∇2
α−α′,β−β′

− 2α′β′V̂α′,β′(y, t) (α− α′)2

− 2β′2V̂α′,β′(y, t) (α− α′)(β − β′)

+ β′∇2
α′,β′ V̂α′,β′(y, t) (α− α′)

+ 2α′V̂α′,β′(y, t) (β − β′) ∂
2

∂y2

− α′V̂α′,β′(y, t) (β − β′)∇2
α−α′,β−β′

+ 2α′2V̂α′,β′(y, t) (α− α′)(β − β′)

+ 2α′β′V̂α′,β′(y, t) (β − β′)2

− α′∇2
α′,β′ V̂α′,β′(y, t) (β − β′)

− 2iβ′
∂Ŵα′,β′(y, t)

∂y
(α− α′)(β − β′)

− 2iβ′Ŵα′,β′(y, t) (α− α′)(β − β′) ∂
∂y

+ 2iα′
∂Ŵα′,β′(y, t)

∂y
(β − β′)2

+ 2iα′Ŵα′,β′(y, t) (β − β′)2 ∂

∂y]
η̂α−α′,β−β′(y, t)
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After rearranging, it leads to the expression [eq. 4.67]

∂

∂t
∇̂2v̂α,β(y, t) =

1

Re
∇̂4
α,β v̂α,β(y, t) +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Aα,β,
α−α′,β−β′

v̂α−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Bα,β,
α−α′,β−β′

(α− α′)2 + (β − β′)2
v̂α−α′,β−β′(y, t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Cα,β,
α−α′,β−β′

(α− α′)2 + (β − β′)2
η̂α−α′,β−β′(y, t)

+Dα,β,
0,0

û0,0(y, t) + Eα,β,
0,0

ŵ0,0(y, t),

(F.20)

where the coefficients A,B,C,D,E are given in the appendix D.1.

Streamwise and spanwise discretisation of the streamwise velocity to

determine û0,0(y, t)

The OSSE still requires the expression of û0,0(y, t), which is obtained from equation

4.56a, considering only the pair (α = 0, β = 0)

∂ûα=0,β=0

∂t
=

1

Re
∇̂2

0,0û0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

[
− ια′Ûα′,β′ ûα−α′,β−β′ − ι(α− α′)Ûα′,β′ ûα−α′,β−β′

−
∂Ûα′,β′

∂y
v̂α−α′,β−β′ − V̂α′,β′

∂ûα−α′,β−β′

∂y

− ιβ′Ûα′,β′ŵα−α′,β−β′ − ι(β − β′)Ŵα′,β′ ûα−α′,β−β′

]
,

=
1

Re
∇̂2

0,0û0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

[
−
∂Ûα′,β′

∂y
v̂−α′,−β′ − V̂α′,β′

∂û−α′,−β′

∂y

− ιβ′Ûα′,β′ŵ−α′,−β′ + ιβ′Ŵα′,β′ û−α′,−β′

]
.

(F.21)
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Replacing ûα,β and ŵα,β by their expressions C.5 and C.4 leads to

∂û0,0

∂t
=

[
1

Re
∇2

0,0 − V̂0,0
∂

∂y

]
u0,0

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

−
∂Ûα′,β′

∂y
v−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

1

α′2 + β′2

[
+ iα′V̂α′,β′

∂2

∂y2
− β′2Ûα′,β′

∂

∂y
+ α′β′Ŵα′,β′

∂

∂y

]
v−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

1

α′2 + β′2

[
− iβ′V̂α′,β′

∂

∂y
− α′β′Ûα′,β′ − β′2Ŵα′,β′

]
η−α′,−β′

(F.22)

and finally the expression [eq. 4.69]

∂û0,0

∂t
=

[
1

Re
∇̂2

0,0 − V̂0,0
∂

∂y

]
û0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Mα′,β′ v̂−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Nα′,β′

α′2 + β′2
v̂−α′,−β′ +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

Oα′,β′

α′2 + β′2
η̂−α′,−β′ ,

(F.23)

where the coefficients M,N,O are given in the appendix D.1.
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Streamwise and spanwise discretisation of the spanwise velocity to de-

termine ŵ0,0(y, t)

Finally, the expression of ŵ0,0(y, t) is obtained from equation 4.56c, considering only the

pair (α = 0, β = 0)

∂w0,0

∂t
=

[
1

Re
∇̂2

0,0 − V̂0,0
∂

∂y

]
w0,0

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

−
∂Ŵα′,β′

∂y
v−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

1

α′2 + β′2

[
− α′2Ŵα′,β′

∂

∂y
+ α′β′Ûα′,β′

∂

∂y
+ iβ′V̂α′,β′

∂2

∂y2

]
v−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

1

α′2 + β′2

[
+ α′β′Ŵα′,β′ + α′2Ûα′,β′ + iα′V̂α′,β′

∂

∂y

]
η−α′,−β′

(F.24)

and rearranging it leads to [eq. 4.70]

∂ŵ0,0

∂t
=

[
1

Re
∇̂2

0,0 − V̂0,0
∂

∂y

]
ŵ0,0 +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Pα′,β′ v̂−α′,−β′

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Qα′,β′

α′2 + β′2
v̂−α′,−β′ +

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Rα′,β′

α′2 + β′2
η̂−α′,−β′ ,

(F.25)

where the coefficients P,Q,R are given in the appendix D.1.



Appendix G

OSSE actuated by

wall-transpiration: Detailed

derivation of the model

Actuated wall-normal velocity evolution vα,β

The lifted coefficients 5.18 are introduced into the OSSE system 4.73 and give [eq. 5.22]

∂

∂t
˚̂∇2
(
v̂0
α,β(y, t) + f+(y)v+

α,β(t) + f−(y)v−α,β(t)
)

=

1

Re
˚̂∇4
α,β

(
v̂0
α,β(y, t) + f+(y)v+

α,β(t) + f−(y)v−α,β(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Aα,β,
α−α′,β−β′

(
v̂0
α−α′
β−β′

(y, t) + f+(y) v+
α−α′
β−β′

(t) + f−(y) v−
α−α′
β−β′

(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Bα,β,
α−α′,β−β′

(
v̂0
α−α′
β−β′

(y, t) + f+(y) v+
α−α′
β−β′

(t) + f−(y) v−
α−α′
β−β′

(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Cα,β,
α−α′,β−β′

(
η̂0
α−α′
β−β′

(y, t) + g+(y) η+
α−α′
β−β′

(t) + g−(y) η−
α−α′
β−β′

(t)
)

+Dα,β,
0,0

(
û0

0,0(y, t) + f+(y) u+
0,0(t) + f−(y) u−0,0(t)

)
+ Eα,β,

0,0

(
ŵ0

0,0(y, t) + f+(y) w+
0,0(t) + f−(y) w−0,0(t)

)
.

(G.1)
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Replacing the time-differentiation of v±α,β with equations 5.20, it follows

∂

∂t
∇̊2 v̂0

α,β(y, t) =
1

Re
∇̊4
α,β v̂

0
α,β(y, t)

+
[ 1

τvα,β
∇2f+(y) +

1

Re
∇4
α,βf

+(y)
]
v+
α,β(t) +

[ 1

τvα,β
∇2f−(y) +

1

Re
∇4
α,βf

−(y)
]
v−α,β(t)

− 1

τvα,β
∇2f+(y)q+

vα,β
(t)− 1

τvα,β
∇2f−(y)q−vα,β (t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Aα,β,
α−α′,
β−β′

(
v0
α−α′,
β−β′

(y, t) + f+(y) v+
α−α′,
β−β′

(t) + f−(y) v−
α−α′,
β−β′

(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Bα,β,
α−α′,
β−β′

(
v0
α−α′,
β−β′

(y, t) + f+(y) v+
α−α′,
β−β′

(t) + f−(y) v−
α−α′,
β−β′

(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Cα,β,
α−α′,
β−β′

(
η0
α−α′,
β−β′

(y, t) + g+(y) η+
α−α′,
β−β′

(t) + g−(y) η−
α−α′,
β−β′

(t)
)

+Dα,β,
0,0

(
û0

0,0(y, t) + f+(y) u+
0,0(t) + f−(y) u−0,0(t)

)
+ Eα,β,

0,0

(
ŵ0

0,0(y, t) + f+(y) w+
0,0(t) + f−(y) w−0,0(t)

)
.

(G.2)

The only place where clamped boundary conditions are applied is ∇4. Moreover, the

operator ∇̊2 is simply ∇2 without its first/last columns/rows. The fully-discretized

system for all coefficients of the wall-normal velocity can be expressed, after considering

the equality 5.8 applied on ∇̊ and using Chebyshev series and differentiation matrices,
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as

∂

∂t

1 0 0

0 ∇̊2 0

0 0 1


 v+

α,β(t)

v̂0
α,β(y, t)

v−α,β(t)

 =


− 1
τvα,β

0 0[
1

τvα,β
∇2f+(y) + 1

Re∇
4
α,βf

+(y)
]

1
Re∇̊

4
α,β

[
1

τvα,β
∇2f−(y) + 1

Re∇
4
α,βf

−(y)
]

0 0 − 1
τvα,β


 v+

α,β(t)

v̂0
α,β(y, t)

v−α,β(t)



+


1

τvα,β
0

− 1
τvα,β
∇2f+(y) − 1

τvα,β
∇2f−(y)

0 1
τvα,β


[
q+
vα,β

(t)

q−vα,β (t)

]

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Aα,β,
α−α′,β−β′

 0 0 0

f+(y) I f−(y)

0 0 0


 v+

α−α′,β−β′(t)

v̂0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Bα,β,
α−α′,β−β′

 0 0 0

f+(y) I f−(y)

0 0 0


 v+

α−α′,β−β′(t)

v̂0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Cα,β,
α−α′,β−β′

 0 0 0

g+(y) I g−(y)

0 0 0


 η+

α−α′,β−β′(t)

η̂0
α−α′,β−β′(y, t)

η−α−α′,β−β′(t)



+Dα,β,
0,0

 0 0 0

f+(y) I f−(y)

0 0 0


 u+

0,0(t)

û0
0,0(y, t)

u−0,0(t)

+ Eα,β,
0,0

 0 0 0

f+(y) I f−(y)

0 0 0


 w+

0,0(t)

ŵ0
0,0(y, t)

w−0,0(t)


(G.3)

which results with the matrices E1,A,B,C,D,E,B1 given in the appendix E to [eq. 5.23]

∂

∂t

1 0 0

0 ˚̃∇2 0

0 0 1


 v+

α,β(t)

ṽ0
α,β(y, t)

v−α,β(t)

 = E1

 v+
α,β(t)

ṽ0
α,β(y, t)

v−α,β(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

A

 v+
α−α′,β−β′(t)

ṽ0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

B

 v+
α−α′,β−β′(t)

ṽ0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

C

 η+
α−α′,β−β′(t)

η̃0
α−α′,β−β′(y, t)

η−α−α′,β−β′(t)



+ D

 u+
0,0(t)

ũ0
0,0(y, t)

u−0,0(t)

+ E

 w+
0,0(t)

w̃0
0,0(y, t)

w−0,0(t)

+ B1

[
q+
vα,β

(t)

q−vα,β (t)

]
.

(G.4)
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Actuated wall-normal vorticity evolution ηα,β

The lifted coefficients 5.18 are introduced into the OSSE system 4.74 [eq. 5.24]

∂

∂t

(
η0
α,β(y, t) + g+(y) η+

α,β(t) + g−(y) η−α,β(t)
)

=

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Fα,β,
α−α′,β−β′

(
v0
α−α′,
β−β′

(y, t) + f+(y) v+
α−α′,
β−β′

(t) + f−(y) v−
α−α′,
β−β′

(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+‘1

(kx−k′x,kz−k′z)6=(0,0)

Gα,β,
α−α′,β−β′

(
v0
α−α′,
β−β′

(y, t) + f+(y) v+
α−α′,
β−β′

(t) + f−(y) v−
α−α′,
β−β′

(t)
)

+
1

Re
∇2
(
η0
α,β(y, t) + g+(y) η+

α,β(t) + g−(y) η−α,β(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
Hα,β,
α−α′,β−β′

+ Jα,β,
α−α′,β−β′

](
η0
α,β(y, t) + g+(y) η+

α,β(t) + g−(y) η−α,β(t)
)

+Kα,β,
0,0

(
û0

0,0(y, t) + f+(y) u+
0,0(t) + f−(y) u−0,0(t)

)
+ Lα,β,

0,0

(
ŵ0

0,0(y, t) + f+(y) w+
0,0(t) + f−(y) w−0,0(t)

)
(G.5)

Replacing the time-differentiation of η±α,β with equations 5.20, it follows

∂

∂t
η0
α,β(y, t) =

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Fα,β,
α−α′,
β−β′

(
v0
α−α′,
β−β′

(y, t) + f+(y) v+
α−α′,
β−β′

(t) + f−(y) v−
α−α′,
β−β′

(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Gα,β,
α−α′,
β−β′

(
v0
α−α′,
β−β′

(y, t) + f+(y) v+
α−α′,
β−β′

(t) + f−(y) v−
α−α′,
β−β′

(t)
)

+
1

Re
∇̊2η0

α,β(y, t) +
( 1

Re
∇2g+(y) +

1

τηα,β
g+(y)

)
η+
α,β(t) +

( 1

Re
∇2g−(y) +

1

τηα,β
g−(y)

)
η−α,β(t)

− 1

τηα,β
g+(y)q+

ηα,β
(t)− 1

τηα,β
g−(y)q−ηα,β (t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
Hα,β,
α−α′,
β−β′

+ Jα,β,
α−α′,
β−β′

](
η0
α−α′,
β−β′

(y, t) + g+(y) η+
α−α′,
β−β′

(t) + g−(y) η−
α−α′,
β−β′

(t)
)

+Kα,β,
0,0

(
û0

0,0(y, t) + f+(y) u+
0,0(t) + f−(y) u−0,0(t)

)
+ Lα,β,

0,0

(
ŵ0

0,0(y, t) + f+(y) w+
0,0(t) + f−(y) w−0,0(t)

)
(G.6)
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Similarly to the wall-normal velocity v, the fully-discretized system for all coefficients of

the wall-normal velocity can be expressed, after considering the equality 5.8 applied on

∇̊ and using Chebyshev series and differentiation matrices, as

∂

∂t

 η+
α,β(t)

η̂0
α,β(y, t)

η−α,β(t)

 =


1

τηα,β
0

− 1
τηα,β

g+(y) − 1
τηα,β

g−(y)

0 1
τηα,β


[
q+
ηα,β

(t)

q−ηα,β (t)

]

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Fα,β,
α−α′,β−β′

 0 0 0

f+(y) I f−(y)

0 0 0


 v+

α−α′,β−β′(t)

v̂0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Gα,β,
α−α′,β−β′

 0 0 0

f+(y) I f−(y)

0 0 0


 v+

α−α′,β−β′(t)

v̂0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)



+


− 1
τηα,β

0 0[
1
Re∇

2g+(y) + 1
τηα,β

g+(y)
]

1
Re∇̊

2
[

1
Re∇

2g−(y) + 1
τηα,β

g−(y)
]

0 0 − 1
τηα,β


 η+

α,β(t)

η̂0
α,β(y, t)

η−α,β(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

[
Hα,β,
α−α′,β−β′

+ Jα,β,
α−α′,β−β′

] 0 0 0

g+(y) I g−(y)

0 0 0


 η+

α−α′,β−β′(t)

η̂0
α−α′,β−β′(y, t)

η−α−α′,β−β′(t)



+Kα,β,
0,0

 0 0 0

f+(y) I f−(y)

0 0 0


 u+

0,0(t)

û0
0,0(y, t)

u−0,0(t)

+ Lα,β,
0,0

 0 0 0

f+(y) I f−(y)

0 0 0


 w+

0,0(t)

ŵ0
0,0(y, t)

w−0,0(t)

 ,
(G.7)

which results with matrices E2,F,G,H, J,K,L,B2 given in the appendix E to [eq. 5.25]

∂

∂t

 η+
α,β(t)

η̃0
α,β(y, t)

η−α,β(t)

 = E2

 η+
α,β(t)

η̃0
α,β(y, t)

η−α,β(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

F

 v+
α−α′,β−β′(t)

ṽ0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

G

 v+
α−α′,β−β′(t)

ṽ0
α−α′,β−β′(y, t)

v−α−α′,β−β′(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

[
H + J

]

η+
α−α′,
β−β′

(t)

η̃0
α−α′,
β−β′

(y, t)

η−
α−α′,
β−β′

(t)


+ K

 u+
0,0(t)

ũ0
0,0(y, t)

u−0,0(t)

+ L

 w+
0,0(t)

w̃0
0,0(y, t)

w−0,0(t)

+ B2

[
q+
ηα,β

(t)

q−ηα,β (t)

]
.

(G.8)
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Actuated stream-wise velocity evolution u0,0

The lifted coefficients 5.18 are introduced into the OSSE system 4.75 [eq. 5.26]

∂

∂t
û0

0,0(y, t) =

[
1

Re
∇̊2

0,0 − V̄0,0
∂̊

∂y

]
û0

0,0(y, t)

+

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
f+(y) u+

0,0(t) +
1

τu0,0
f+(y) u+

0,0(t)

+

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
f−(y) u−0,0(t)) +

1

τu0,0
f−(y) u−0,0(t)

− 1

τu0,0
f+(y) q+

u0,0(t)− 1

τu0,0
f−(y) q−u0,0(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Mα′,β′

(
v0
−α′,−β′(y, t) + f+(y) v+

−α′,−β′(t) + f−(y) v−−α′,−β′(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Nα′,β′

(
v0
−α′,−β′(y, t) + f+(y) v+

−α′,−β′(t) + f−(y) v−−α′,−β′(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Oα′,β′
(
η0
−α′,−β′(y, t) + g+(y) η+

−α′,−β′(t) + g−(y) η−−α′,−β′(t)
)

(G.9)

Similarly to the wall-normal velocity v, after considering the equality 5.8 applied on ∇̊,

using Chebyshev series and differentiation matrices, and defining

M̊ =

[
1

Re
∇̊2

0,0 − V̄0,0
∂̊

∂y

]
, (G.10a)

M =

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
, (G.10b)
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the fully-discretized system for the fundamental mode of the stream-wise velocity can

be expressed as

∂

∂t

 u+
0,0(t)

û0
0,0(y, t)

u−0,0(t)

 =


− 1
τu0,0

0 0

Mf+(y) + 1
τu0,0

f+(y) M̊ Mf−(y) + 1
τu0,0

f−(y)

0 0 − 1
τu0,0


 u+

0,0(t)

û0
0,0(y, t)

u−0,0(t)



+


1

τu0,0
0

− 1
τu0,0

f+(y) − 1
τu0,0

f−(y)

0 1
τu0,0


[
q+
u0,0(t)

q−u0,0(t)

]

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

 0 0 0

Mα′,β′f
+(y) Mα′,β′ Mα′,β′f

−(y)

0 0 0


 v+

−α′,−β′(t)

v0
−α′,−β′(y, t)

v−−α′,−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

 0 0 0

Nα′,β′f
+(y) Nα′,β′ Nα′,β′f

−(y)

0 0 0


 v+

−α′,−β′(t)

v0
−α′,−β′(y, t)

v−−α′,−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

 0 0 0

Oα′,β′g
+(y) Oα′,β′ Oα′,β′g

−(y)

0 0 0


 η+

−α′,−β′(t)

η0
−α′,−β′(y, t)

η−−α′,−β′(t)


(G.11)

which results with the matrices E3,M,N,O,B3 given in the appendix E to [eq. 5.27]

∂

∂t

 u+
0,0(t)

ũ0
0,0(y, t)

u−0,0(t)

 = E3

 u+
0,0(t)

ũ0
0,0(y, t)

u−0,0(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

M

 v+
−α′,−β′(t)

ṽ0
−α′,−β′(y, t)

v−−α′,−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

N

 v+
−α′,−β′(t)

ṽ0
−α′,−β′(y, t)

v−−α′,−β′(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

O

 η+
−α′,−β′(t)

η̃0
−α′,−β′(y, t)

η−−α′,−β′(t)



+ B3

[
q+
u0,0(t)

q−u0,0(t)

]
,

(G.12)
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Actuated spanwise velocity evolution w0,0

The lifted coefficients 5.18 are introduced into the OSSE system 4.76 [eq. 5.28]

∂

∂t
ŵ0

0,0(y, t) =

[
1

Re
∇̊2

0,0 − V̄0,0
∂̊

∂y

]
ŵ0

0,0(y, t)

+

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
f+(y) w+

0,0(t) +
1

τw0,0

f+(y) w+
0,0(t)

+

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
f−(y) w−0,0(t)) +

1

τw0,0

f−(y) w−0,0(t)

− 1

τw0,0

f+(y) q+
w0,0

(t)− 1

τw0,0

f−(y) q−w0,0
(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

Pα′,β′
(
v0
−α′,−β′(y, t) + f+(y) v+

−α′,−β′(t) + f−(y) v−−α′,−β′(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Qα′,β′
(
v0
−α′,−β′(y, t) + f+(y) v+

−α′,−β′(t) + f−(y) v−−α′,−β′(t)
)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Rα′,β′
(
η0
−α′,−β′(y, t) + g+(y) η+

−α′,−β′(t) + g−(y) η−−α′,−β′(t)
)

(G.13)

Similarly to the wall-normal velocity v, after considering the equality 5.8 applied on ∇̊,

using Chebyshev series and differentiation matrices, and defining

M̊ =

[
1

Re
∇̊2

0,0 − V̄0,0
∂̊

∂y

]
, (G.14a)

M =

[
1

Re
∇2

0,0 − V̄0,0
∂

∂y

]
, (G.14b)
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the fully-discretized system for the fundamental mode of the stream-wise velocity can

be expressed as

∂

∂t

 w+
0,0(t)

ŵ0
0,0(y, t)

w−0,0(t)

 =


− 1
τw0,0

0 0

Mf+(y) + 1
τw0,0

f+(y) M̊ Mf−(y) + 1
τw0,0

f−(y)

0 0 − 1
τw0,0


 w+

0,0(t)

ŵ0
0,0(y, t)

w−0,0(t)



+


1

τw0,0
0

− 1
τw0,0

f+(y) − 1
τw0,0

f−(y)

0 1
τw0,0


[
q+
w0,0

(t)

q−w0,0
(t)

]

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

 0 0 0

Pα′,β′f
+(y) Pα′,β′ Pα′,β′f

−(y)

0 0 0


 v+

−α′,−β′(t)

v0
−α′,−β′(y, t)

v−−α′,−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

 0 0 0

Qα′,β′f
+(y) Qα′,β′ Qα′,β′f

−(y)

0 0 0


 v+

−α′,−β′(t)

v0
−α′,−β′(y, t)

v−−α′,−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

 0 0 0

Rα′,β′g
+(y) Rα′,β′ Rα′,β′g

−(y)

0 0 0


 η+

−α′,−β′(t)

η0
−α′,−β′(y, t)

η−−α′,−β′(t)


(G.15)

which results with the matrices E4,P,Q,R,B4 given in the appendix E to [eq. 5.29]

∂

∂t

 w+
0,0(t)

w̃0
0,0(y, t)

w−0,0(t)

 = E4

 w+
0,0(t)

w̃0
0,0(y, t)

w−0,0(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

P

 v+
−α′,−β′(t)

ṽ0
−α′,−β′(y, t)

v−−α′,−β′(t)



+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z)6=(0,0)

Q

 v+
−α′,−β′(t)

ṽ0
−α′,−β′(y, t)

v−−α′,−β′(t)

+

N ′x/2∑
k′x=−N

′
x
2

+1

N ′z/2∑
k′z=−N

′
z
2

+1

(kx−k′x,kz−k′z) 6=(0,0)

R

 η+
−α′,−β′(t)

η̃0
−α′,−β′(y, t)

η−−α′,−β′(t)



+ B4

[
q+
w0,0

(t)

q−w0,0
(t)

]
,

(G.16)





Appendix H

Linear Algebra

Let’s consider the linear model

∂x

∂t
= Ax, x(0) = x0, (H.1)

whose solution is of the form

x(t) = exp(At)x0. (H.2)

The exponential of At is given by the power series

exp(At) =

∞∑
k=0

(At)k

k!
= I +At+

(At)2

2!
+

(At)3

3!
+ ... (H.3)

H.1 Eigenvalues decomposition of A

H.1.1 References

X scipy.sparse.linalg.eigs

X MATLAB (2013)

X Schmid and Henningson (2001, p139, ”Estimates of growth”)

H.1.2 Definition

First and foremost, the i-th eigenvalue of the matrixA is noted λi and associated with the

i-th right-eigenvector vi and the i-th left-eigenvector wi. The right and left eigenvectors

are already normalized by the scipy.sparse.linalg.eigs method, and do not require

further transformation.

The ith eigenvalues and its associated right and left eigenvectors of a square matrix A

of dimension n are the ith biggest scalar λi and the nonzero vectors vi and wi such that

257



258 Appendix H Linear Algebra

Avi = λivi, (H.4a)

wTi A = λiw
T
i , (H.4b)

The eigenvalues of a square matrix respects the proposition

∀i, (A− λiI)vi = 0, vi 6= 0, (H.5)

which implies that A− λiI is singular,

∀i, det(A− λiI) = 0. (H.6)

This determinant is called the “characteristic equation” or “characteristic polynomial”

of A. Let’s denote V =
[
v1 . . . vn

]
and W =

[
w1 . . . wn

]T
the matrices of eigen-

vectors of A and Λ = diag(λi) the associated diagonal matrix of eigenvalues, such that

AV = V Λ, (H.7a)

WA = ΛW. (H.7b)

Assuming that the eigenvectors are linearly independent (non-singularity of V and W ),

the “eigenvalue decomposition” of A can be written as

A = V ΛV −1, (H.8a)

A = W−1ΛW. (H.8b)

Thanks to this eigen-decomposition, the solution H.2 of the model H.1 simplifies into

exp(At) = exp(V ΛV −1t), (H.9)

= V V −1 + V ΛV −1t+
V Λ2V −1t2

2!
+
V Λ3V −1t3

3!
+ ..., (H.10)

= V
[
I + Λt+

Λ2t2

2!
+

Λ3t3

3!
+ ...

]
V −1, (H.11)

= V exp(Λt)V −1, (H.12)

or by switching to the eigenvectors basis z = V −1x,

z(t) = exp(Λt)z0, z(0) = z0 = V −1x0. (H.13)
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H.1.3 Eigenvalues sensitivity and accuracy

The sensitivity of the eigenvalues is estimated by the condition number of the matrix

of eigenvectors (MATLAB, 2013, p.9). The condition number of the eigenvector matrix

is an upper bound for the individual eigenvalue condition numbers (MATLAB, 2013,

p.14). The MATLAB eig function or equivalent Python methhods are doing as well as can

be expected on this problem with machine-precision. The inaccuracy of the computed

eigenvalues is caused by their sensitivity.

H.1.4 Interpretation

Eigenvalues decomposition for small perturbations gives insights on the long-term time-

evolution of the model and its stability, as the eigenvalue decomposition is related to

matrix power Ak or exponential exp(At) (Bau and Trefethen, 1997).

H.2 Singular values decomposition

H.2.1 References

X MATLAB (2013)

X Trefethen et al. (1993, lecture 4, lecture 5)

X Schmid and Henningson (2001, p112, p119)

X Green and Limebeer (1995, p28-33)

H.2.2 Definition

A singular value and pair of singular vectors of a square or rectangular matrix A are a

non-negative scale σ and two nonzero u and v (MATLAB, 2013)

Av = σu, (H.14)

A∗u = σv. (H.15)

The term “singular value” relates to the distance between a matrix and the set of singular

matrices. Written in matrix form, the defining equations for singular values and singular

vectors are

AV = UΣ, (H.16)

A∗U = V Σ∗, (H.17)
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where Σ is a diagonal matrix of singular values σi with σ1 ≥ σ2 ≥ ... ≥ σn. Singular

vectors can always be chosen to be perpendicular to each other, such that matrices U and

V , whose columns are the normalized singular vectors, satisfy U∗U = I and V ∗V = I.

In other words, U and V are orthogonal if they are real, and unitary if they are complex.

Consequently, the singular value decompositon (SVD) of the matrix A can be written

as

A = UΣV ∗, (H.18)

with diagonal Σ and orthogonal or unitary U and V .

From Trefethen et al. (1993, lecture 4), the SVD is motivated by the following:

The image of the unit sphere under any m× n matrix is a hyper-ellipse (an

m-dimensional generalization of an ellipse) (Trefethen et al., 1993, p 29). It

is clear that the image of the unit sphere in Rn under a map A = UΣV ∗

must be a hyper-ellipse in Rm. The unitary map V ∗ preserves the sphere, the

diagonal matrix Σ stretches the sphere into a hyper-ellipse aligned with the

canonical basis, and the final unitary map U rotates or reflects the hyper-

ellipse without changing its shape. Thus, if we can prove that every matrix

has an SVD, we shall have proved that the image of the unit sphere under

any linear map is a hyper-ellipse, as claimed at the outset of this lecture.

H.2.3 Singular values sensitivity and accuracy

Since U and V are orthogonal or unitary, they preserve norms. Consequently, perturba-

tions of any size in any matrix cause perturbations of roughly the same size in its singular

values. There is no need to define condition numbers for singular values because they

would always be equal to one. Perturbations and accuracy are measured relative to the

norm of the matrix or, equivalently, the largest singular value. The accuracy of the

smallest singular values is measured relative to the largest one. If, as often the case, the

singular values vary over several orders of magnitude, the smallest ones might not have

full accuracy relative to the biggest ones. In particular, if the matrix is (nearly-)singular,

then some of the σi must be (nearly-)zero. The computed values of these σi will usually

be on the order of ε‖A‖2, where ε is the floating-point accuracy parameter (MATLAB,

2013, p.15).

H.2.4 Low rank approximation

From Bau and Trefethen (1997, p 35):
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Theorem 5.7: A is the sum of r rank-one matrices,

A =
r∑
j=1

σjujv
∗
j . (H.19)

The formula H.19 represents a low-rank decomposition into rank-one matri-

ces with a deeper property: the partial sum captures as much of the energy

of A as possible for a given rank r. This statement hold with “energy” de-

fined by either the 2-norm or the Frobenius norm. We can make it precise

by formulating a problem of best approximation of a matrix A by matrices

of lower rank r.

The geometric interpretation of the low-rank decomposition H.19 refers to the best

approximation of a hyper-ellipsoid (the image-space of A of rank n) by lower-rank hyper-

ellipsoid (the image-space of Ar of rank r < n) (Trefethen et al., 1993, p.36). For rank

one, it is just the longest axis of the hyper-ellipsoid. For rank two, the second longest

axis is added. Up to rank n where the entire hyper-ellipsoid, Ar ≈ A, is captured.

H.2.5 Differences between Eigenvalues and Singular values

From MATLAB (2013):

Eigenvalues plays an important role in situations where the matrix is a trans-

formation from one vector space onto itself. Singular values play an impor-

tant role where the matrix is a transformation from one vector space to a

different vector space, possibly with a different dimension.

(MATLAB, 2013, p.3) In abstract linear algebra terms, eigenvalues are rel-

evant if a square, n-by-n matrix A is thought of as mapping n-dimensional

space onto itself. We try to find a basis for the space so that the matrix be-

comes diagonal. This basis might be complex even if A is real. In fact, if the

eigenvectors are not linearly independent, such a basis does not even exist.

The SVD is relevant if a possibly rectangular m-by-n matrix A is thought of

as a mapping n-space onto m-space. We try to find one change of basis in

the domain and a usually different change of basis in the range so that the

matrix becomes diagonal. Such bases always exist and are always real if A

is real. In fact, the transforming matrices are orthogonal or unitary, so they

preserve lengths and angles and do not magnify errors.

(MATLAB, 2013, p.16) There are two difficulties with the eigenvalue decom-

position. A theoretical difficulty is that the decomposition does not always

exist. A numerical difficulty is that, even if the decomposition exists, it might

not provide a basis for robust computation.
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From Bau and Trefethen (1997, p.33):

There are fundamental differences between the singular value decompositon

and the eigenvalue decomposition.

� One is that the SVD uses two different bases (the sets of left and right

singular vectors), whereas the eigenvalue decomposition uses just one

(the set of eigenvectors).

� Another is that the SVD uses orthonormal bases, whereas the eigenvalue

decomposition uses a basis that generally is not orthogonal.

� A third is that not all matrices (even square ones) have an eigenvalue

decomposition, but all matrices (even rectangular ones) have a singular

value decomposition.

In applications, eigenvalues tend to be relevant to problems involving the

behavior of iterated forms of A, such as matrices powers Ak or exponential

etA (i.e. the time evolution of the solution of the linear model associated

with A), whereas singular vectors tend to be relevant to problems involving

the behavior of A itself, or its inverse.

H.2.6 Relation between Eigenvalues and Singular values

From Bau and Trefethen (1997, p 34):

Theorem 5.4: The nonzero singular values of A are the square roots of the

nonzero eigenvalues of A∗A or AA∗. (These matrices have the same nonzero

eigenvalues.)

H.3 Cholesky decomposition

Hermitian positive-definite matrices can be decomposed into triangular factors twice as

quickly as general matrices. The standard algorithm for this, the Cholesky factorization,

is a variant of Gaussian elimination that operates on both the left and the right of the

matrix at once, preserving and exploiting symmetry (Bau and Trefethen, 1997, lecture

23). The Cholesky factorization has the form,

A = R∗R, rjj > 0, (H.20)

where R is upper-triangular. Every hermitian positive-definite matrix A ∈ Cm×m has a

unique Cholesky factorization (Bau and Trefethen, 1997, p.174).
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H.3.1 Normality and transient energy growth

Literature review

From Reddy and Henningson (1993):

In recent work it has been shown that there can be substantial transient

growth in the energy of small perturbations to plane Poiseuille and Couette

flows if the Reynolds number is below the critical value predicted by linear

stability analysis. This growth, which may be as large as O(1000), occurs in

the absence of nonlinear effects and can be explained by the non-normality

of the governing linear operator —that is, the non-orthogonality of the asso-

ciated eigenfunctions. [...] These results emphasize the fact that subcritical

transition can occur for Poiseuille and Couette flows because the governing

linear operator is non-normal.

From Waleffe (1995):

A critique is presented of recent works promoting the concept of non-normal

operators and transient growth as the key to understanding transition to tur-

bulence in shear flows. The focus is in particular on a simple model [Baggett

et al., Phys. Fluids 7 (1995)] illustrating that view. It is argued that the

question of transition is really a question of existence and basin of attraction

of nonlinear self-sustaining solutions that have little contact with the non-

normal linear problem. An alternative nonlinear point of view [Hamilton et

al., J. Fluid Mech. 287 (1995)] that seeks to isolate a self-sustaining non-

linear process, and the critical Reynolds number below which it ceases to

exist, is discussed and illustrated by a simple model. Connections with the

Navier-Stokes equations and observations are highlighted throughout.

From Kerswell (2005):

Mathematically, this “transient growth” is caused by the apparently generic

non-normality of the linear operator governing the temporal evolution of in-

finitesimal disturbances in shear flows. This non-normality means that the

eigenfunctions of the linear operator are not orthogonal (under the energy

norm) with the consequence that certain initial flow conditions are poorly

spanned. This ill-conditioning means that the eigenfunction expansion for

some certain initial conditions requires unusually large coefficients due to a

subset of eigenfunctions significantly cancelling. When each eigenfunction

decays exponentially over time (otherwise the flowwould be linearly unsta-

ble) they do so with different rates so that the initial cancellation melts
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away. This uncovers the large coefficients in the expansion which has the

effect of producing a period of algebraic growth. A simple example from the

appendix of Schmid and Henningson (1994) illustrates the point nicely (see

also Eckhardt and Pandit (2003)).

From Kim and Bewley (2007):

A flow perturbation initialized as, for example, the second eigenmode mi-

nus the third eigenmode in Figure 2a is characterized by a very low initial

energy due to destructive interference; however, as one eigenmode decays

more quickly in time than the other, this destructive interference is reduced

with time, and thus the overall energy of the perturbation actually increases

quite substantially before it eventually decreases due to the stability of both

modes (Butler & Farrell 1993, Reddy and Henningson (1993)). This effect is

referred to as transient energy growth in the fluids literature and peaking in

the controls literature. Transient energy growth is a direct result of eigen-

vector non-orthogonality/non-normality, and is accompanied by very large

input/output transfer function norms in such systems when the system is

considered from the input/output perspective (see Bewley (2001) and Lim

& Kim 2004).

From Kim and Bewley (2007), relative to normality and results presented in section 5.4:

A system is stabilizable if all unstable eigenmodes of the system maybe made

stable by control feedback; that is if all unstable eigenmodes of the system

are controllable. In practice, stabilizability is all one really needs. Typi-

cally, accurate discretizations of PDE systems are uncontrollable (i.e., not

all of the eigenmodes of the system are controllable), as some of the highly

damped modes (which, in the closed-loop system, ultimately have very little

effect) nearly always have negligible support at the actuators. Lack of con-

trollability in itself is thus not a matter of much practical concern. However,

typical fluids systems usually exhibit a gradual loss of linear stabilizability

as the Reynolds number is increased, as discussed in detail for the complex

Ginzburg Landau model of spatially developing flows in Lauga and Bewley

(2003) This gradual loss of stabilizability is related to an increase in non-

normality of the eigenvectors of the closed-loop system (and the associated

increased transfer function norms) as the Reynolds number is increased, and

may be quantified by a metric based on adjoint eigenvector analysis, which

extends readily to three-dimensional computational fluid dynamics codes via

the implicitly restarted Arnoldi method (Sorenson 1992). When linear sta-

bilizability is lost, stabilization of the system is virtually impossible by any
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means. Thus, the quantification of the stabilizability of a given system of

interest is a matter of significant practical relevance. Similar arguments can

be made about detectability vs observability in the estimation problem.

Mathematical measure

We estimate the maximal energy growth ĖT for a linear system of the form H.1, through

the calculation of the leading eigenvalues of the operator A + A∗, and for the closed

loop system (A + B2K) + (A + B2K)∗. This measure derives from the decomposition

from Jorge Vidal-Ribas master-thesis (p.28), starting from the expressoin of the kinetic

energy density eq.5.31,

ĖT =
1

2

∂

∂t
ET

=
1

2

∂

∂t
x∗Qxx

=
1

2
(ẋ∗Qxx+ x∗Qxẋ)

=
1

2
(x∗A∗Qxx+ x∗QxAx)

=
1

2
x∗(A∗Qx +QxA)x,

(H.21)

where Qx = C∗1C1 from 5.37, and similarly,

ĖT =
1

2
x∗((A+B2K)∗Qx +Qx(A+B2K))x, (H.22)

for the closed-loop system considering ẋ = (A+B2K)x.

The direction of maximal growth is the solution of

max
‖x‖=1

ĖT =
1

2
x∗(A∗Qx +QxA)x (H.23)

which can be solved by applying the Lagrangian multipliers method for the cost function

J =
1

2
x∗(A∗Qx +QxA)x− λ(x∗x− 1) (H.24)

The extrema of the cost J appears when x is the normalized leading eigenvector of

A∗+A and λ its leading eigenvalue. Therefore, the calculation of the leading eigenvalues

of 1
2(A∗Qx + QxA) gives an indication of the possible transient energy growth of the

system. We can thus determine if there is a initial drop or increase in the energy, source

of a transient growth, which might break our linear controller.





Appendix I

Supplement on the validation of

the OSSE model

This appendix gathers figures of the simulations run for the validation process of the

OSSE model described in section 5.5.2, with the non-laminar Nagata (1990) lower-branch

as baseflow and a sinusoidal forcing

q+
vα,β

= q−vα,β = 0.0005 sin(
2πt

10
). (I.1)
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a) t = 40

b) t = 100

c) t = 150

Figure I.4: Non-linear validation: Velocity components profiles (absolute value) of
Fourier mode (1, 1) actuated under the boundary constraints 5.54, for two different sim-
ulations: OSSE model (green �) and Channelflow 1.4.2 (blue �) (times t = 40, 100, 150,
EQ1 baseflow, resolution 21× 65× 21 for Channelflow and 21× 35× 21 for the OSSE

model, Re = 400, τ = 0.05).





Glossary

Adiabatic Process An adiabatic process occurs without transfer of heat or mass of

substances between a thermodynamic system and its surroundings. In an adiabatic

process, energy is transferred to the surroundings only as work. The adiabatic

process provides a rigorous conceptual basis for the theory used to expound the

first law of thermodynamics, and as such it is a key concept in thermodynamics.

(Bailyn, 1994, p.21) 13

Bounded A mathematical object (such as a set or function) is said to bounded if it

possesses a bound, i.e., a value which all members of the set, functions, etc., are

less than. (Weisstein, Eric W., 1999) 43

Causal In control theory, a causal system (also known as a physical or nonanticipative

system) is a system where the output depends on past and current inputs but not

future inputs. (Wikipedia contributors, 2011c) 32, 39, 42

Control, Closed-loop Feedback control systems are often referred to as closed-loop

control systems. In practice, the terms feedback control and closed-loop control are

used interchangeably. In a closed-loop control system the actuating error signal,

which is the difference between the input signal and the feedback signal (which

may be the output signal itself or a function of the output signal and its derivatives

and/or integrals), is fed to the controller so as to reduce the error and bring the

output of the system to a desired value. The term closed-loop control always

implies the use of feedback control action in order to reduce system error (Ogata,

2009). 3, 44

Control, Feedback A system that maintains a prescribed relationship between the

output and the reference input by comparing them and using the difference as a

means of control is called a feedback control system (Ogata, 2009). 3, 27, 29, 42,

43, 89

Description, Eularian For continuum deformation, the Eulerian specification of the

flow field is a way of looking at fluid motion that focuses on specific locations in

the space through which the fluid flows as time passes. (calltech.edu, 2000) 12

273



274 Glossary

Description, Lagrangian For continuum deformation, the Lagrangian specification

of the field is a way of looking at fluid motion where the observer follows an

individual fluid parcel as it moves through space and time. Derivatives are noted

as D
Dt . (calltech.edu, 2000) 13

Deterministic Contrary of stochastic. 15

Equation, Algebraic In mathematics, an equation or polynomial equation of the form

P = 0 where P is a polynomial with coefficients in some field, often the field of

the rational numbers. (Wikipedia contributors, 2011a) 6, 34, 35, 40, 272

Equation, Differential In mathematics, an equation that relates some function with

its derivatives. (Wikipedia contributors, 2011e) 3, 34, 35, 37, 40, 48, 272

Equation, Ordinary Differential (ODE) In mathematics, an Ordinary-differential

equation (ODE) is a differential equation containing one or more functions of one

independent variable and the derivatives of those functions. The term ordinary

is used in contrast with the term partial differential equation which may be with

respect to more than one independent variable. (Zill, 2017) xxiv, 48, 272

Equation, Partial Differential (PDE) In mathematics, a differential equation that

contains unknown multivariable functions and their partial derivatives. (Wikipedia

contributors, 2011e) 48, 53, 108, 148, 272

Equation, Partial Differential Algebraic (PDAE) In mathematics, an incomplete

system of partial-differential equations that is closed with a set of algebraic equa-

tion. (Wikipedia contributors, 2011k) xxiv, 12, 46

Expectation, Expected value In probability theory, the expected value of a random

variable, intuitively, is the long-run average value of repetitions of the experiment

it represents. For example, the expected value in rolling a six-sided die is 3.5,

because the average of all the numbers that come up in an extremely large number

of rolls is close to 3.5. Less roughly, the law of large numbers states that the

arithmetic mean of the values almost surely converges to the expected value as

the number of repetitions approaches infinity. The expected value is also known

as the expectation, mathematical expectation, EV, average, mean value, mean, or

first moment. (Wikipedia contributors, 2011f) xxviii, 31

Fluid, Incompressible Theoretical fluid where the density of the fluid is everywhere

equal and constant, thus does not change with pressure. 10, 13, 14

Fluid, Inviscid Fluid with viscosity equal to zero. The Reynolds number of inviscid

flow approaches infinity as the viscosity approaches zero. When viscous forces are

neglected, such as the case of inviscid flow, the Navier-Stokes equation can be

simplified to a form known as the Euler equation. (Bird et al., 2007) 13
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Fluid, Newtonian In continuum mechanics, a Newtonian fluid is a fluid in which the

viscous stresses arising from its flow, at every point, are linearly proportional to

the local strain rate — the rate of change of its deformation over time. That is

equivalent to saying those forces are proportional to the rates of change of the

fluid’s velocity vector as one moves away from the point in question in various

directions. (Wikipedia contributors, 2011j) 13, 14

Function, Gaussian In mathematics, a Gaussian function, often simply referred to as

a Gaussian, is a function of the form:

f : x 7→ f(x) = a exp−
(x−b)2

2c2 (I.2)

for arbitrary real constants a, b and non zero c. It is named after the mathematician

Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric “bell

curve” shape. The parameter a is the height of the curve’s peak, b is the position

of the center of the peak and c (the standard deviation, sometimes called the

Gaussian RMS width) controls the width of the “bell”. (Wikipedia contributors,

2011g) 29, 44

Function, Homogeneous In mathematics, a homogeneous function is one with multi-

plicative scaling behaviour: if all its arguments are multiplied by a factor, then its

value is multiplied by some power of this factor. (Wikipedia contributors, 2011h)

90

Funtion, Smoothness In mathematical analysis, the smoothness of a function is a

property measured by the number of derivatives it has that are continuous. A

smooth function is a function that has derivatives of all orders everywhere in its

domain. (Bailyn, 1994, p.21) 12

Matrix, Hermitian For a complex matrix A ∈ Rm×m, the analogous property to

symmetric real matrices is that A is hermitian. A hermitian matrix has entries

below the diagonal that are complex conjugates of those above the diagonal: aij =

a∗ji, hence A = A∗. Note that this means that the diagonal entries of a hermitian

matrix must be real. A hermitian matrix A satisfies x∗Ay = y∗Ax for all x, y in

Rm. (Bau and Trefethen, 1997, p.172). 260, 261, 273

Matrix, Negative Definite Negative definite and negative semi-definite matrices are

the analog of positive-definite matrices. 42, 43

Matrix, Positive Definite In linear algebra, a symmetric real matrix M ∈ Rn×n is

said to be positive definite if the scalar zTMz is strictly positive for every non-zero

column vector z ∈ Rn. M is positive definite if and only if all of its eigenvalues

are positive. A complex hermitian matrix M ∈ Rn×n is said to be positive definite

if the scalar zMz is strictly positive for every non-zero column vector z ∈ Cn.
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The matrix is Positive semi-definite when zTMz or zMz is positive or zero. M is

positive semi-definite if and only if all of its eigenvalues are non-negative. Negative

definite and negative semi-definite matrices are defined analogously. A matrix that

is not positive semi-definite and not negative semi-definite is called indefinite. M

is indefinite if and only if it has both positive and negative eigenvalues. 89, 260,

261, 273

Matrix, Symmetric A real matrix A ∈ Rm×m is symmetric if it has the same entries

below the diagonal as above: aij = aji for all i, j, hence A = AT . Such a matrix

satisfies xTAy = yTAx for all vectors x and y in Rm (Bau and Trefethen, 1997,

p.172). 273

Memorylessness In probability and statistics, memorylessness is a property of certain

probability distributions. It usually refers to the cases when the distribution of

a ”waiting time” until a certain event, does not depend on how much time has

elapsed already. (Wikipedia contributors, 2011i) 42, 43

Noise, Uncorrelated Uncorrelated white noise means that no two points in the noise’s

time domain are associated with each other. It is impossible to predict any noise

value at any other time t 6= t1 from the noise level at given time t1. The correlation

coefficient is 0. 29, 44

Noise, White In signal processing, white noise is a random signal having equal inten-

sity at different frequencies, giving it a constant power spectral density. (Carter

and Mancini, 2017) 29, 31, 44

Normality see appendix section H.3.1. 43

Singular Value see appendix H.2. xxiv, 31, 103, 258, 260

Stochastic Stochastic is synonymous with “random”. The word is of Greek origin

and means “pertaining to chance” (Parzen, E. Stochastic Processes. Oakland

CA: Holden Day, p. 7, 1962). It is used to indicate that a particular subject

is seen from point of view of randomness. Stochastic is often used as counter-

part of the word “deterministic”, which means that random phenomena are not

involved. Therefore, stochastic models are based on random trials, while deter-

ministic models always produce the same output for a given starting condition.

(Origlio, Vincenzo, 1999) 15, 43, 272

System, Controllability A system is stated as “controllable” if it is feasible to find

a finite-energy controller sequence such that any final state can be reached from

any initial state in finite time. 108

System, Stabilizibility A system is stated as “stabilizable” when all uncontrollable

state variables can be made to have stable dynamics. Stabilizibility is a weaker
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notion than controllability. Thus, even though some of the state variables cannot

be controlled, all the state variables will still remain bounded during the system’s

behavior. 34, 108

Viscosity Material property which relates the viscous stresses in a material to the rate

of change of a deformation. Viscosity can be seen as measure of the resistance of

a material to deformation at a given rate. xxvi, 11
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