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Characterization of microglial heterogeneity in the CNS by single-
cell RNA sequencing 

by 

Tim Arno Othni Muntslag 

Microglia are parenchymal macrophages that find their origin in the early embryonic yolk sac. These 

myeloid cells migrate to and take residency in the central nervous system (CNS), in which they are 

transcriptionally heterogenous in a context-dependent manner. Many microglial states and 

subtypes have been described by single-cell RNA sequencing (scRNA-seq), vastly accelerating 

knowledge of microglial biology; yet it is currently unknown how adult microglial heterogeneity 

emerges, or what regulons drive differentiation. 

Here, an atlas of transcriptional heterogeneity across the murine lifespan was developed, 

identifying 7 major myeloid subtypes in the CNS, one of which features an equivalent in human 

gestation. The occurrence of ex vivo-activated microglia (exAM) was also confirmed, a microglial 

state affected by cell isolation. In the present study it has been observed that standard scRNA-seq 

procedures introduce these effects, and that transcriptional inhibition is an effective means to their 

mitigation. This adaptation was implemented in a novel scRNA-seq protocol, generating a dataset 

in sexually immature microglia (SIM), a key developmental age for the acquisition of a mature 

microglial identity.  

Age was the main driver of microglial heterogeneity, albeit some evidence of sex-specific effects 

was also noted. Consequentially, male and female microglia display differential population 

dynamics, whereby age-associated subtypes emerge earlier in female mice. Furthermore, subtype-

specific regulons in the female cortex were identified, offering novels ways to target and modify 

age-associated disease. To my knowledge, this study is the first that details microglial heterogeneity 

in health in a large-scale atlas, and the population dynamics that give rise to age-associated 

microglial heterogeneity.  
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Chapter 1 Introduction 

The homeostatic, central nervous system (CNS) immune environment is composed of a diverse 

array of cells, among which CNS-associated macrophages (CAM) (10%), and microglia (~75%) 

(Mrdjen et al., 2018). As the largest immune population, microglia are integral to CNS development, 

homeostasis, and disease, due to  their roles in neurogenesis, synaptic pruning and immune 

surveillance, (Wolf et al., 2017). 

Interestingly, microglia are a heterogeneous population in which select microglial subtypes respond 

to various cues in different manners (Gertig and Hanisch, 2014). Since their first characterization in 

1919 by Pio del Rio-Hortega, ‘the father of microglia’, single-cell technologies are rapidly detailing 

this diversity and are revolutionizing the understanding and interpretation of microglial identity.  

In this chapter I aim to introduce core concepts in microglial biology, from the yolk sac (YS) 

progenitors and developmental ontogeny of microglia; to context-dependent heterogeneity; 

single-cell technologies; and the hypothesis and aims, in which adult microglial diversity derives 

from the maturation of and selection against early developmental subtypes. 

1.1 Yolk sac-derived myeloid progenitors and in vivo lineage tracing  

Between embryonic day (E)7.0 and E9.0, early haematopoiesis is localised to the extra-embryonic 

YS (Ginhoux et al., 2010; Hoeffel et al., 2015). By E10.5, hematopoietic progenitors start to migrate 

to the fetal liver, which will become the main hematopoietic organ after E11.5, before adult 

haematopoiesis is localized to the spleen and bone marrow (BM) (Lichanska and Hume, 2000; Orkin 

and Zon, 2008; Ginhoux et al., 2010; Hoeffel et al., 2015). The microglial population was thought to 

derive from embryonic and postnatal hematopoietic cells. However, the blood-brain barrier closes 

in early development and circulating monocytes do not make a lasting contribution to the 

population (Ginhoux et al., 2010; Hashimoto et al., 2013; Bruttger et al., 2015; Askew et al., 2017; 

Huang et al., 2018; Goldmann et al., 2016). In fact, microglial progenitors arise from primitive 

myeloid progenitors in the YS, a cell type known as erythromyeloid progenitors (EMP) (Ginhoux et 

al., 2010).  

EMP generate all myeloid cells, with macrophages and microglia sharing developmental origins. In 

vivo lineage tracing (i.e. fate-mapping studies) specified the origin of myeloid cells during early 

haematopoiesis (E6.5 - E8), in which differentiation is typified by the expression of runt-related 

transcription factor 1 (Runx1) (Ginhoux et al., 2010). Several key studies have since made use of the 

Cre-lox system. The Cre-lox system relies on the introduction of Cre recombinase and loxP 

sequences, to modify gene expression in a site-specific manner. In this way, the system has allowed 

researchers to delineate the myeloid lineage, each localising progenitors to the YS (Ginhoux et al., 
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2010; Kierdorf et al., 2013; Hoeffel et al., 2015; Buttgereit et al., 2016; Sheng et al., 2015; Mass et 

al., 2016). However, the developmental pathways causal to myeloid lineage differentiation have 

been a source of debate. 

1.2 Developmental differentiation of myeloid cells 

Macrophages and microglia share an early developmental lineage and, consequentially, a core 

macrophage transcriptional profile (Goldmann et al., 2016; Mass et al., 2016). Detailed profiling 

marks a gradual transition from EMP to macrophages, with a profile that includes Csf1r, Cx3cr1 and 

Iba1 (Mass et al., 2016).  

Csf1r, or colony stimulating factor 1 receptor, mediates self-renewal and survival of macrophages 

and microglia (Elmore et al., 2014; Hoeffel et al., 2015; Obst et al., 2017) - Csf1r is encoded by the 

c-fms proto-oncogene and is a widely accepted myeloid marker (Sasmono and Williams, 2012; 

Elmore et al., 2014; Hoeffel et al., 2015). Cx3cr1, or C-X3-C Motif Chemokine Receptor 1, is a protein 

that is widely expressed in immune and non-immune cells, which mediates chemotaxis towards its 

ligand fractalkine (i.e. C-X3-C motif ligand 1) (Cx3cl1) in a concentration gradient-dependent 

manner (M. Lee et al., 2018). In turn, ionized calcium-binding adaptor molecule 1 (Iba1) is encoded 

by Allograft inflammatory factor 1 (Aif1) and is a microglial and macrophage protein that interacts 

with the actin cytoskeleton and mediates phagocytosis (Lituma et al., 2021; Schwabenland et al., 

2021) .  

Two main myeloid developmental models have been put forth that address the origin of the 

microglial population and their diversification from macrophages in mice. Hoeffel et al. (2015) made 

a case for two parallel pathways of divergence for microglia and macrophages. In their model, 

microglia derive from C-Kit+ EMP at E7 and (peripheral) macrophages from C-Myb+ EMP at E8.5 

(Hoeffel et al., 2015). In contrast, Mass et al. (2016) argue that microglia and macrophages leave 

the YS in a single developmental pathway (Mass et al., 2016). Here, at E8.5, YS EMP characterized 

by Kit+ Gata1/2+ Cd45low differentiate into macrophage precursors (pMac) (Kit- Cd45+ Cx3cr1+) (Mass 

et al., 2016). pMac first appear in the YS at E9.5, in which expression of Cx3cr1 mediates subsequent 

tissue colonization throughout the embryo. Once in the parenchyma, pMac mature into (early) 

macrophages from E10.25 onwards, giving rise to tissue-specific macrophages (TSM), including 

CAM and microglia.  

Of note, tissue-specific signatures were detected as early as E12.5, a developmental time-window 

with widespread macrophage tissue colonisation (Mass et al., 2016). This has led Mass et al. (2016) 

to propose that myeloid maturation parallels organogenesis, and concurrent with the expression 

of tissue-dependent lineage-determining transcription factors (TF). Indeed, the TF Sall1 is specific 

to parenchymal microglia, whereas Pparg and Id3 are critical for the differentiation of alveolar and 
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Kupffer cells, respectively (Mass et al., 2016a). Sall1, or Spalt-like transcription factor 1, regulates 

microglial identity and physiological functions (Buttgereit et al., 2016). Given their transcriptional 

commonalities, the distinct identity of each cell type is proposed to be the culmination of 

environmentally and developmentally programmed TF; extrinsic and intrinsic factors, respectively 

(Gosselin et al., 2017). That is, the core transcriptional gene profile is subject to environmental 

factors that drive epigenetic modification and differentiation.  

 Hoxb8 and non-Hoxb8 lineage microglia 

The group of Mario R. Capecchi recently brought forth a third theory that proposes a hybrid of both 

myeloid developmental models. In their model of microglial ontogeny, two distinct lineages leave 

the YS and give rise to murine brain microglia in a Hoxb8-dependent and -independent manner (De 

et al., 2018). Hoxb8-expressing microglia share a developmental origin with non-Hoxb8 microglia in 

the YS, but the former undergo a migratory path through the fetal liver prior to CNS localization 

from E12.5 onwards, in parallel with widespread organogenesis (De et al., 2018).  

Hoxb8, or Homeobox B8, is a TF with a role in the regulation of behaviour. Genetic disruption of 

Hoxb8 causes defects in nociception and excessive grooming in mice models, the latter of which is 

interpreted as a symptom of trichotillomania , an obsessive-compulsive disorder (OCD) (Chen et al., 

2010). Mice with mutations to Hoxb8 display corticostrial circuit defects, a neural circuit that has 

previously been associated with OCD pathogenesis (Ahmari et al., 2013; Shepherd, 2013). 

Interestingly, coat loss in Hoxb8-KO was aggravated by female sex hormones; coat loss starts at 3 

weeks of age (at the start of sexual maturation), with a larger loss coinciding with sexual maturity 

(at 6-8 weeks old) (Tränkner et al., 2019).  

In vivo lineage tracing played a central role in identifying Hoxb8+ cells as microglia. However, Hoxb8 

expression is restricted to primitive haematopoiesis in the embryonic YS (without expression 

beyond E12); therefore, lineage tracing of Hoxb8+ cells is technically challenging. To circumvent this 

limitation, De et al. (2018) developed a novel two-colour model of Cx3cr1GFP/+ Hoxb8IRES-Cre/+ 

Rosa26CAG-LSL-tdTomato/+ mice that constitutively express the tdTomato-reporter in myeloid cells. 

Colocalization of tdTomato+ cells with Tmem119 confirmed that these early hematopoietic cells are 

in fact microglial progenitors; Tmem119, or Transmembrane protein 119, is a microglial cell-surface 

protein of unknown function (Bennett et al., 2016). 

Furthermore, Hoxb8+ and Hoxb8- microglial subtypes display a differential non-overlapping 

function, density, and distribution. Indeed, both subtypes display similar levels of synaptic pruning 

capacity, even though Hoxb8+ microglia were more readily able to proliferate in response to 

neuronal injury (De et al., 2018). A greater ability to respond to injury is expected to be associated 

with lineage specific differentially expressed genes (DEG). Moreover, conceptually, the co-
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occurrence of two routes of migration into the CNS and the subsequent diversification of microglia 

illustrate how cellular biology is informed by the environment. 

The work by De et al. (2018) corroborates earlier findings by Swinnen et al. (2013), which showed 

an increase of microglial density beyond what can be achieved by proliferation alone, arguing for a 

second set of microglial progenitors infiltrating the CNS parenchyma in development (Swinnen et 

al., 2013). In addition, the existence of two developmental microglial lineages suggests that 

microglial progenitor sub-populations could drive adult heterogeneity. In this way, the adult 

microglial population is hypothesized to derive from YS EMP that follow distinct developmental 

pathways (Figure 1). 

 
Figure 1: Developmental colonization of the CNS by microglia. Erythromyeloid progenitors (EMP) in the embryonic yolk 
sac (YS) start to emerge at embryonic day (E) 8.5. By E9.5, EMP have acquired a core macrophage profile that includes 
Cx3cr1, thereby mediating tissue infiltration in the central nervous system (CNS) and liver. Macrophage precursors (pMac) 
differentiate into early microglia (MΦ), prior to differentiation into tissue-specific macrophages (TSM) (i.e. microglia). Two 
developmental pathways have been proposed to drive CNS colonization: Hoxb8-independent (1) and –dependent (2). The 
Hoxb8-dependent pathway is featured by a staged migration through the embryonic liver to the developing brain from 
E12.5 onwards. 

By extension, lineage tracing in zebrafish similarly identified distinct developmental pathways of 

myeloid cells. Two distinct waves of progenitors are thought to play a role, with links back to 

primitive and definitive haematopoiesis (Ferrero et al., 2018). However, unlike in mice, early 

microglia in zebrafish are not believed to derive from EMP (Ferrero et al., 2018; Xu et al., 2015). In 
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fact, it was argued that EMP have been misclassified as a homogenous population in mice, where 

these are in fact distinct from other potential progenitor sources(Ferrero et al., 2018). Hoxb8+ 

progenitors and their developmental pathway are examples of such a possibility in mice and other 

species(Chen et al., 2010; Ferrero et al., 2018). Future studies will need to address and refine the 

developmental ontogeny in humans, as it has become clear that modelling of such biological 

processes might be specific to the species of interest. 

 Transplantation studies and lineage commitment 

Transplantation of donor cells to a host complements insights of lineage tracing, as constructs of 

(trans)genes can be traced in a host, and allow for the differentiation between intrinsic and extrinsic 

features of a lineage (Kretzschmar and Watt, 2012) .  

Transplantation of YS macrophages, and fetal liver and adult monocytes can regenerate alveolar 

macrophages, to establish a tissue-specific signature and self-renew (van de Laar et al., 2016). 

However, fetal monocytes were most efficient at repopulating the lung, suggestive of nuances in 

macrophage colonization potential, as was evidenced by their greater expression of granulocyte 

macrophage-colony stimulating factor (GM-CSF) and proliferation capacity. In contrast, adult tissue 

macrophages from the liver, peritoneum and colon failed to differentiate into self-renewing 

alveolar macrophages (van de Laar et al., 2016). This highlights a loss of differentiation plasticity, 

and is reminiscent of Waddington’s landscape, a model that conceptualizes a progressive 

differentiation towards developmental and cellular end-states (Waddington and Kacser, 1957).  

Intracerebral transplantation of cultured and primary microglia into the postnatal, murine, Csf1r-/- 

brain parenchyma – a model that lacks microglia in the CNS – proliferate and establish a microglial 

population that express typical markers such as Tmem119, Sall1, Gpr56 (Bennett et al., 2018). 

Gpr56, also known as Adgrg1, is an adhesion G protein-coupled receptor that is enriched in 

microglia relative to other (choroid plexus) macrophages, where it functions to regulate immune 

responses and inflammation (Van der Poel et al. 2019, Lin et al. 2017).  

Similarly, transplantion of C-Kithigh, Hoxb8+ hematopoietic progenitors from the fetal liver (E12.5) 

into the CNS proliferate and differentiate in Cx3cr1+ Tmem119+ microglia (De et al., 2018). However, 

even though transplantation of fetal haematopoietic cells or BM-derived cells allows for 

parenchymal engraftment in the CNS; the transcriptional, epigenetic, and response to inflammatory 

challenge of these cells differs (De et al., 2018; Shemer et al., 2018). Only YS progenitors fully 

recapitulate adult microglial signatures (Bennett et al., 2018), supporting microglial ontogeny in 

early development. 

Taken together, myeloid differentiation and lineage commitment differ by subtype, displaying 

variations in survival, transcriptional plasticity, and repopulating potential by maturation state.  
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 Microglial specification and transforming growth factor-β 

Microglial progenitors in the brain mature according to a two-step model of phenotypical 

differentiation; early microglia (<E14) develop into pre-microglia (E14 – postnatal day (P)9) prior to 

becoming adult microglia (>P9) (Matcovitch-Natan et al., 2016) (Figure 2).  

In support of the rapid developmental expansion of the microglial population, early microglia are 

enriched by cell cycle and differentiation genes (e.g. Mcm5, Dab2) (Alliot et al., 1999; Matcovitch-

Natan et al., 2016). In turn, pre-microglia express genes linked to migration, neurogenesis and 

cytokine secretion at a time when they are actively involved with neural maturation and 

synaptogenesis, whereas homeostatic functions in adult microglia are accompanied by the 

expression of Cd14, Csf1r and Pmepa1  (Sierra et al., 2010; Paolicelli et al., 2011; Matcovitch-Natan 

et al., 2016). Microgliogenesis and differentiation is dependent on the TF Pu.1 (Spi1) and Irf8, 

respectively. Irf8 acts downstream of Pu.1 mediating differentiation to pMac, whereas Pu.1 is a 

target for Runx1 – Runx1, Pu.1 and Irf8 function to drive a lineage commitment cascade (Huang et 

al., 2008; Kierdorf et al., 2013a). Interestingly, stage-specific enhancers of transcription have been 

identified in YS macrophages, and early and adult microglia (Lara-Astiaso et al., 2014; Matcovitch-

Natan et al., 2016). However, no equivalent TF has been identified in pre-microglia (Matcovitch-

Natan et al., 2016). In the absence of intrinsic transcriptional regulators at this developmental time, 

extrinsic factors might mediate continued specification.  
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Figure 2: Microglial specification in the developing CNS. Microglial specification as a stepwise process, in which early 
microglia (<E14), mature into pre-microglia (E14 – P9), prior to taking on an adult microglial signature (>P9). Key genes 
and their expression patterns in development are depicted. Adapted from (Matcovitch-Natan et al., 2016) 

Transforming growth factor (Tgf)-β functions as such an environmental factor and drives myeloid 

lineage differentiation and specification (Butovsky et al., 2014; Utz et al., 2020). Tgf-β has been 

found to regulate the expression of several microglial TF, including Sall1 and MafB (Gosselin et al., 

2017). Transcription Factor B (MafB) functions to maintain steady-state microglia and limits 

interferon and inflammation pathway activation (Buttgereit et al., 2016; Kierdorf et al., 2013; 

Matcovitch-Natan et al., 2016). Interestingly, the absence of Tgf-β affects microglial development 

only after E14.5, reducing microglial density, and features a loss of microglial identity and a more 

amoeboid morphology (Butovsky et al., 2014; Matcovitch-Natan et al., 2016). The temporal 

relevance of this molecule suggests a role in the developmental transition from early to pre-

microglia (E14 – P9); this is further typified by the expression of Sall1 in pre-microglia onwards. 

Therefore, Tgf-β provides a critical environmental cue that drives microglial identity and 

immunophenotype early in development. In this manner, the spatial and temporal dynamics of 

extrinsic and intrinsic TF are critical for microglial phenotypic differentiation and CNS function 

(Figure 3). It is currently unknown if and to which extend the two-step specification affects Hoxb+ 

and Hoxb- microglia differentially. Given that microglial identity derives from developmentally- 
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and environmentally regulated TF, and these subtypes are linked to distinct functional responses, 

it is highly likely that differences will soon be identified.  

 
Figure 3: Core macrophage profile and transforming growth factor-β -induced gene expression. The core macrophage 
profile includes several transcription factors (TF) that are modulated by environmental factors like transforming growth 
factor (Tgf)-β (gold); solely influenced by developmentally regulated T (grey); or modulated by both developmental and 
environmental factors. In fact, expression of genes like Sall1 that are solely induced by Tgf-β are indicative of progressive, 
environmentally dependent differentiation from a core macrophage profile 

1.3 Microglial heterogeneity: context-dependent regulation 

The microglial population expands rapidly from a very limited number of progenitor cells at E8.5 to 

an estimated 3 million in adulthood (Lawson et al., 1990; Alliot et al., 1999; Haimon et al., 2018). As 

discussed, this population progresses from a core macrophage signature to a specialized microglial 

subtype, believed to originate from 2 distinct microglial lineages and their interaction with 

environmentally regulated TF (Figure 1).  

Adult microglial heterogeneity has long been considered bimodal, where the classical paradigm of 

functional polarisation categorises cells as either active or resting; M1 or M2, respectively. 

However, in recent years researchers have redefined microglial activity, arguing that microglia 

occupy a spectrum of heterogeneity (Ransohoff, 2016). Indeed, with technological innovation and 

accumulating biological understanding, diverse and dynamic microglial subtypes and states are 

recognized in a context-dependent manner (Grabert et al., 2016; Hammond et al., 2019; Martinez 

and Gordon, 2014; Safaiyan et al., 2021; Sala Frigerio et al., 2019). In this section I will address 

known effectors of cellular heterogeneity in detail, elucidating how cell cycle, age, region, and sex 

each contribute to form the identity of the microglial population. 
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 Cycling and proliferating microglia 

Cell cycle is generally described by mitosis and interphase, which can be further subdivided into G0-

, G1-, S- and G2-phase; cells in G0 are non-cycling, quiescent/resting cells. Cellular quiescence 

corresponds to changes in the ratio of G1- to S-phase, where inhibition of cyclin-dependent kinase 

activity increased G1-phase length and loss of pluripotency (Soufi and Dalton, 2016). G1-phase is a 

‘commitment window’ where differentiation signals (e.g. Tgf-β) induce cell fate decisions through 

factors like cyclin D and SMADs (Soufi and Dalton, 2016). DNA is synthesized in the S-phase, prior 

to cell growth in G2-phase, and the generation of two daughter cells during mitosis. By extension, 

cell cycle status in hematopoietic stem cells (HSC) is linked to transcriptional activity (Lauridsen et 

al., 2018); quiescent and proliferating HSC are characterized by low and high transcriptional activity, 

respectively. In this way, cell cycle phase influences sensitivity to developmental cues and 

subsequent cellular heterogeneity.  

Microglial proliferation is most pronounced during development and plateaus in adulthood (Alliot 

et al., 1999; Askew et al., 2017; Nikodemova et al., 2015). Of note, Askew et al. have determined 

that microglial density in steady-state is maintained through coupling of apoptosis to local 

proliferation; 1.4% of adult microglia are thought to be proliferating at any given time (Askew et al., 

2017). At this rate, the complete microglial population in mice renews every ~100 days. It is 

currently unknown to which extend microglial population dynamics are shared between mice and 

humans, albeit several studies support that microglia are long-lived cells in both species (Askew et 

al., 2017; Füger et al., 2017; Réu et al., 2017).  

Cycling and proliferating microglia, also known as CPM, are actively cycling microglia (Li et al., 2019). 

CPM express canonical cell cycle-associated markers (Supplementary Table 5). However, recent 

work has shown that CPM also have a module of cell cycle-associated genes unique to microglia, 

distinct from canonical cell cycle genes shared with other cells (Li et al., 2019). Considering that 

microglia are heterogeneous and display an array of phenotypes throughout life, it is important to 

delineate cell cycle effects from subtype-specific microglial transcriptional signatures.  

 Microglial sensome and age-specific heterogeneity 

The CNS is subject to extensive microglia-mediated modifications in development and age-

associated degeneration, including neuronal maturation, synaptic pruning and immunomodulatory 

and phenotypical differentiation (Matcovitch-Natan et al., 2016). In correspondence, microglial 

heterogeneity peaks in development, and with age and injury (Hammond et al. 2019, Li et al. 2019). 

The microglial sensome, defined by Hickman et al. (2013), features a prominent role in the age-

specific transcriptional heterogeneity. The microglial sensome is a distinct cluster of protein coding 

transcripts for sensing endogenous ligands, microbe recognition and host defence, excluding 
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secreted proteins and organelle-specific proteins – the sensome tethers microglial subtype to its 

local environment (Hickman et al., 2013). The sensome contains several key microglial genes, 

including Hexb, P2ry12, Tmem119, Trem2 and Cx3cr1 (Hickman et al., 2013; Butovsky et al., 2014; 

Grabert et al., 2016). As stated, Cx3cr1 encodes a chemokine receptor that mediates pMac 

migration; Cx3cr1+ progenitors migrate towards neuronal fractalkine (Cx3cl1) (Mass et al., 2016; 

Mecca et al., 2018). Expression of Cx3cl1 is upregulated during the developmental expansion of 

microglia, after which its expression is reduced and stabilised during homeostasis; coupling neural 

and microglial maturation in development (Nikodemova et al., 2015). With age, although Cx3cr1 

expression remains relatively stable in health, Cx3cl1 is reduced further and coincides with 

increased neuro-inflammatory markers, chronic elevations of Il-1β , and dystrophic microglia in the 

hippocampus (HIP) (Streit et al., 2004; Hickman et al., 2013; Mecca et al., 2018).  

In total, 31% of the sensome genes are downregulated with age, 80% of which encode for 

endogenous ligand-associated genes (Hickman et al., 2013). Trem2, P2ry12, Dap12 and Tmem119 

are but a few of the genes affected. Of note, 44 out of 100 genes are directly or indirectly interacting 

with Dap12 (i.e. Tyrobp) (Hickman et al., 2013; Mecca et al., 2018). In fact, Trem2 is known to Dap12 

forms a signalling cascade with Trem2, which is known to stimulate Dap12-signaling and ERK-

mediated actin polymerization and cytoskeletal reorganization for chemokine-dependent 

chemotaxis and phagocytosis; associated with elevated levels of Apoe; and a loss of Tgf-β signalling 

(Mecca et al., 2018). Indeed, age correlates negatively with Tgf-β signalling and corresponds to a 

loss of microglial identity (Hickman et al., 2013; Butovsky et al., 2014; Grabert et al., 2016; Galatro 

et al., 2017; Olah et al., 2018). In essence, age and the microglial sensome underlie microglial 

phenotypical differentiation and changes to microglial identity, converging on the Trem2-Dap12 

and Cx3cl1-Cx3cr1 axes (Figure 4). 
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Figure 4: Age-dependent molecular mechanisms of microglia. Schematic of Trem2-Dap12and Cx3cl1-Cx3cr1 signalling. 
Both membrane bound and soluble Trem2 and Cx3cl1 can bind their respective receptor. Adapted from (Mecca et al., 
2018). 
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1.3.2.1 Disease-associated microglia: Trem2-Apoe signalling and phenotypical 

differentiation 

First described by Keren-Shaul et al. (2017), disease-associated microglia (DAM) are a microglial 

subtype that emerges with age and age-associated disease. The transition from homeostatic to 

DAM is a mechanistically coupled two-step event through Trem2-independent and –dependent 

pathways (Keren-Shaul et al., 2017). During activation, microglia lose canonical marker gene 

expression (e.g. P2ry12, Cx3cr1, Tmem119) and show stage-specific identities; stage 1 DAM are 

featured by the expression of Tyrobp, Apoe and Lyz2, whereas stage 2 DAM are coupled to Trem2, 

Cd11c (i.e. Itgax), Csf1, Lpl and Cst7. Strikingly, Trem2 mutations are a known risk factor for 

Alzheimer’s disease (AD), suggesting that the appearance of this microglial subtype is 

neuroprotective, and corresponds to the proposed function of Cd11c+ plaque-associated microglia; 

Itgax is believed to increase amyloid clearance and inflammatory response limitation (Kamphuis et 

al., 2016). In turn, Trem2 functions to maintain the metabolic fitness of microglia through regulation 

of autophagy (Krasemann et al., 2017). Similarly, facial nerve axotomy induces acute 

neurodegeneration and is coupled to the emerge of this phenotype (Tay et al., 2018a).  

DAM bear resemblance to other phenotypes, known as neurodegeneration disease-associated 

microglia (MGnD) and activated response microglia (ARM) (Keren-Shaul et al., 2017; Krasemann et 

al., 2017; Sala Frigerio et al., 2019). These subtypes are present in health and numbers increase 

with disease, illustrating a role for these microglial cells in healthy aging (Sala Frigerio et al., 2019). 

For each of these studies, Apoe is central to subtype emergence; Apoe interacts with Trem2 and 

drives the generation of this subtype by inhibiting the function of Tgf-β (Krasemann et al., 2017). In 

effect, age- and age-associated disease impairs microglia to sense their environment, while 

concurrently undergoing a functional adaptation to combat pathology. 

 Region-dependent heterogeneity and maturation 

Studies have shown that the adult brain varies in microglial morphology, density and function in a 

region-dependent manner (Lawson et al., 1990; Yang et al., 2013; Grabert et al., 2016; De Biase et 

al., 2017). Tissue colonisation of microglial progenitors in the brain parenchyma enables the 

population to expand rapidly (Lawson et al., 1990; Alliot et al., 1999; Haimon et al., 2018). The 

population continues to proliferate until it stabilises in adulthood after a selection phase removes 

roughly 50% of the population between postnatal week 3 and 6 (Lawson et al., 1990; Nikodemova 

et al., 2015; Askew et al., 2017; Haimon et al., 2018). Interestingly, it is currently unknown why 

this overshoot of the population occurs. Furthermore, the selection of microglia is region-specific, 

with the cerebellum (CB) and hippocampal formation (HPF) undergoing selection at an early time-

point relative to the cortex (CTX) (Askew et al., 2017).  
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As stated, microglial density in steady-state is maintained through coupling of apoptosis to local 

proliferation (Askew et al., 2017). Notably, region-dependent differences are pronounced. e.g., 

The dentate gyrus is featured by a particular high rate of proliferation that slows with age, unlike 

other regions that display a more stable rate throughout life (Askew et al., 2017). By extension, 

microglial density varies in a region-dependent manner, as density in murine grey matter-

enriched regions is greater than in white matter-enriched areas (Lawson et al., 1990; Askew et al., 

2017).  

Metabolic and immune-associated clusters of genes are particularly important for regional 

microglial heterogeneity. Indeed, distinct microglial immunophenotypes were discovered in the 

CB, CTX, HIP and striatum (STR) (Grabert et al., 2016). Region-dependent enrichment of metabolic 

processes and immune response in the CB and HIP discriminate them from their striatal and 

cortical counterparts, with transcriptional regulators of cellular metabolism like peroxisome 

proliferator-activated receptor gamma (Pparg), and immune and defence responses coupled to 

interferon pathway activation (Grabert et al., 2016a). Of note, Pparg has been described earlier as 

a key TF for the development of alveolar macrophages. The relative enrichment of Pparg in 

macrophage subtypes, and other genes like it, marks the serpentine nature of cellular identity and 

lineage differentiation. 

Differences in myeloid metabolism are coupled to immunophenotype, where the CB and HIP 

microglia are more inflammatory than their cortical and striatal counterparts (Jin et al., 2014; 

Orihuela et al., 2016). With age, both metabolism and immune-associated gene clusters had an 

overall reduction, with the majority of metabolic genes age-stable (±75%) and most immune-

related genes age-altered (>80%) (Grabert et al., 2016). e.g. Expression of Tmem119, P2ry12, Fcrls 

and Hexb is reduced in the aging CB, as are several genes involved with Tgfβ-signalling (e.g. 

Tgfbr1) (Grabert et al., 2016). Each of these genes are key canonical markers for microglial 

identity and are intertwined with the effects of aging (Butovsky et al., 2014; Hickman et al., 2013; 

Mecca et al., 2018). Recent work shows that these canonical markers convey immune checkpoints 

that modulate microglial phenotype and its subsequent response (Deczkowska et al., 2018). 

Inherent region-dependent variations in microglial sensome genes might therefore underlie age-

specific phenotypical divergence. e.g., Trem2, Csf1r and Cx3cr1 are all expressed at lower levels in 

the HIP and CB than the CTX and STR (Grabert et al., 2016).  

Importantly, a landmark study by Li et al. (2019) offered a different perspective than Grabert et al. 

(2016) (Li et al., 2019). Li et al. (2019) used scRNA-seq. Microglia of distinct CNS regions were 

isolated and sequenced, and corroborated with RNA-seq. In this study, no regional heterogeneity 

in gene expression was detected (Li et al., 2019).This discrepancy remains an unresolved paradox 

and requires further investigation. However, scRNA-seq studies have reliably found distinct 

signatures between white and grey matter microglia.  
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1.3.3.1 Functional emergence of white matter microglia 

Myelination of the murine CNS starts at birth and is mostly complete by P60 (Snaidero and Simons, 

2014). White matter, postnatal microglia regulate the number and maturation of oligodendrocyte 

progenitor cells (OPC)in myelinated regions, and are supportive of the proposed role of microglia 

in normal myelinogenesis (Hagemeyer et al., 2017; Wlodarczyk et al., 2017). Three studies have 

recently characterised white matter microglia in the corpus callosum, optic tract, medial lemniscus 

and/or CB in the murine CNS, this subtype is defined as proliferative region-associated microglia 

(PAM) or axon tract-associated microglia (ATM) in early development, or white matter-associated 

microglia (WAM) with ageing (Hammond et al., 2019; Li et al., 2019; Safaiyan et al., 2021). The 

transcriptional profile of these microglia is characterised by Lpl, Spp1, Apoe and Itgax (Cd11c), genes 

commonly linked to amyloid plaque-associated microglia, and suggestive of a transcriptional 

overlap. Remarkably, how microglial subtype heterogeneity arises is currently unknown; however, 

given that microglial specification is subject to intrinsic and extrinsic factors, changing conditions 

are expected to create an opportunity for the emergence of such heterogeneity.  

1.3.3.2 Interferon-response microglia 

Interferon response microglia (IRM), also referred to as injury-responsive microglia, have been 

reported in health and disease and upregulate interferon (IFN) signalling pathway genes (Hammond 

et al., 2019; Sala Frigerio et al., 2019). IRM typically express genes like IFN-induced transmembrane 

protein 3 (Ifitm3), ubiquitin-specific protease 18 (Usp18), and 2ʹ-5ʹ oligoadenylate synthetase-like 

2 (Oasl2). 

Type I IFN (IFN-I) are the main CNS effectors (in response to viral and bacterial infection), acting as 

immunomodulators for inflammasome activation (González-Navajas et al., 2012). Interestingly, 

IFN-I gene IFN-ß plays a beneficial role in developmental synaptic pruning and myelin debris 

removal with multiple sclerosis (MS) (Goldmann et al., 2016; Kocur et al., 2015). Conversely, IFN-ß 

aggravates neuroinflammation and synapse loss in AD (Roy et al., 2020).  

Dysregulation of IFN-I in the CNS, also known as interferonopathy, is associated with white matter 

diseases like Aicardi-Goutières syndrome and Cree encephalitis (Crow and Stetson, 2021). e.g. Loss 

of Usp18 in white matter microglia, a negative regulator of IFN, leads to microgliosis, constitutive 

expression of IFN-pathway genes, and white matter structural deficits (Goldmann et al., 2016, 2015; 

Schwabenland et al., 2019).  

Of note, an artificial trajectory of differentiation (i.e. pseudotime analysis) of murine microglia 

found that IRM and DAM-like cells attain a ‘mutually exclusive response state’; cells either 

differentiate into IRM or DAM cells (Sala Frigerio et al., 2019). Indeed, IRM are postulated to have 

a distinct functional role from DAM, with AD genes showing a particular enrichment in DAM-like 
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cells without an equivalent in IRM (Sala Frigerio et al., 2019). Such transcriptional heterogeneity in 

disease illustrates a role for environmentally regulated factors in the divergence of microglia. It is 

currently unknown what TF drive microglial subtype emergence and specification. 

 Sex-specific microglial heterogeneity and disease susceptibility 

The CNS displays sexual dimorphism during development (Lenz et al., 2013; Thion et al., 2018). 

Studies have shown that the male and female brains display differential neuronal morphology and 

astrocyte complexity, mediated by gonadal steroids and culminating in behavioural differentiation 

(Lenz et al., 2013; Schwarz and McCarthy, 2008). Interestingly, recent work has started to show that 

microglia have a sex-specific profile in maturation that is associated with distinct phenotypes 

(Guneykaya et al., 2018; Hanamsagar et al., 2017; Thion et al., 2018; Villa et al., 2018). Microglia, as 

mediators in neuropathology, are therefore critical for brain homeostasis, and may do so in a sex-

specific manner. 

Inflammatory insults can induce long-term effects in microglial function in postnatal development, 

effects which are absent if occurring in adolescence (Bilbo et al., 2006, 2005). However, it are 

perturbations of male microglia that are coupled to schizophrenia- and autism-like symptoms (Estes 

and McAllister, 2016; Haida et al., 2019). The vulnerability of microglia to inflammatory insults 

suggests the existence of ‘sensitivity windows’, critical developmental time-points where microglial 

phenotypic plasticity is high, concurrent with ample lineage-specifying cues and an responsiveness 

to these cues (Fawcett and Frankenhuis, 2015). Therefore, male and female microglia appear to 

mature differently. Indeed, Hanamsagar et al. (2017) have shown that microglia follow a distinct 

maturation pathway in a sex-specific manner. More specifically, the authors describe a microglial 

developmental index (MDI), a measure of developmental maturity and immune reactive state, with 

adult male microglia (P60) scoring lower on the MDI. However, immune activation increases MDI 

in males to levels similar to females (Hanamsagar et al., 2017). Similarly, amyloidosis accelerates 

the emergence of DAM-like states in female microglia (Sala Frigerio et al., 2019), suggestive of age- 

and sex-dependent microglial maturation and heterogeneity.  

Cellular heterogeneity is dependent on sex, with differential microglial densities and function. At 

13 weeks (P91), male microglial densities are greater across a range of regions, including the CTX, 

HIP and amygdala (Guneykaya et al., 2018). Although in the HIP these differences are already 

present at 3 weeks (P21), the amygdala has an inverse relation, with a smaller density in males than 

females. These spatial differences are accompanied by differences in membrane properties, 

signalling pathways, microglial identity and immunophenotype. Indeed, Villa et al. (2018) 

transplanted 12 week old (P84), female murine microglia into the male CNS, after which males were 

more resilient to ischemic stroke, indicating that female microglia have a neuroprotective 

phenotype (Villa et al., 2018a). This study suggests that a higher MDI is neuroprotective, and by 
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extension, accelerated MDI with AD might therefore ameliorate disease, corresponding to the 

suggested protective role of DAM. Sex-, region- and age-related effects are therefore intimately 

connected.  

1.4 Single-cell technologies 

Many new microglial subtypes and phenotypes have been described with single-cell technologies, 

a new branch of research techniques that allow characterization of a single-cell genome, 

epigenome, transcriptome, proteome, metabolome and receptor repertoire, or combinations 

thereof (Gohil et al., 2021; Lee et al., 2020; Lent et al., 2021; Sankowski et al., 2021; Seydel, 2021; 

Shapiro et al., 2013) (Table 1).  

Of these technologies, 10X is a commercially, industry leading, platform that has become the 

standard for scRNA-seq. It outperforms most alternatives on performance in accuracy and 

sensitivity (Svensson et al., 2017; Ziegenhain et al., 2017). Despite these benefits, instrument and 

assay costs are high and beyond the scope of this project. 

Table 1: Single-cell categories and technologies. 

Category Technologies 
Genome SCI-seq1, DLP+2, 10X3 

Epigenome scATAC-seq4, snmC-seq5, 10X6 
Transcriptome MARS-seq27, SMART-seq28, CEL-seq29, Drop-seq10, 10X11 

Proteome MELC12, CyTOF13 
Metabolome SpaceM14, MALDI MS15, SLMS16, GCIB-SIMS17 

Receptor repertoire TetTCR-seq18 
Multi G&T-seq19, scMT-seq20, CITE-seq21, scTrio-seq22, 10X23 

Note: Recent single-cell technologies across the modalities. The table provides a brief overview of some of the methods 
currently available; however, this is not meant to be inclusive of all variants. 1, (Vitak et al., 2017); 2, (Laks et al., 2019); 3, 
(“Single Cell CNV,” n.d.); 4, (Buenrostro et al., 2015); 5, (Luo et al., 2017); 6, (“Single Cell ATAC,” n.d.); 7, (Keren-Shaul et al., 
2019, p. 2); 8, (Picelli et al., 2013); 9, (Hashimshony et al., 2016, p. 2); 10, (Macosko et al., 2015); 11, (“Single Cell Gene 
Expression,” n.d.); 12, (Schubert et al., 2006); 13, (“| Fluidigm,” n.d.); 14, (Rappez et al., 2021); 15, (Li et al., 2000); 16, (Zhu et 
al., 2021); 17, (Pareek et al., 2020); 18, (Zhang et al., 2018); 19, (Macaulay et al., 2015); 20, (Hu et al., 2016); 21, (Stoeckius et 
al., 2017); 22, (Hou et al., 2016); 23, (“Single Cell Multiome ATAC + Gene Expression,” n.d.) 

 Single-cell (and single-nuclei) RNA-sequencing 

Of the technologies, single-cell RNA-sequencing, or scRNA-seq, has found the most widespread use 

and number of applications. scRNA-seq is the conceptual progression of bulk RNA-sequencing. Both 

are part of the umbrella of next-generation sequencing (NGS), a staple in cellular biology and 

medicine (Sandberg, 2014). The approaches have been widely adopted and have gained preference 

over microarray, as it is featured by a greater accuracy over a wider dynamic range, enabling the 

detection of more differentially expressed genes (DEG) and over a larger range of expressions 

(Pandey and Williams, 2014). However, despite RNA-seq being the most accurate approach to date, 

RNA-Seq can be inefficient in its ability to detect rare transcripts, as it reports on an average 
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transcriptome of all samples and cells in its analysis, thereby limiting the identification of cellular 

heterogeneity (Chen et al., 2019; Shapiro et al., 2013; Svensson et al., 2017; Tan et al., 2016). In 

contrast, scRNA-seq platforms have been reported to be sensitive up to single mRNA molecules and 

can partition individual cell transcriptomes, thereby accelerating the discovery of novel single-cell 

subtypes and phenotypes; single- cell atlases and states, respectively (Janes, 2016).  

Cell phenotypes describe an expression profile that informs on the microenvironment and the 

effects of time, including circadian rhythms and transcriptional bursts. In contrast, subtype 

characterization assigns cells to a lineage (e.g. neuronal, oligodendrocyte, myeloid) (Janes, 2016). 

Both are valuable in the exploration of microglial heterogeneity, although they differ in the quantity 

of cells tested, and their respective number of reads per cell (i.e. read depth). In short, identifying 

single-cell subtype classes requires a lower average read depth of more cells and informs on lineage 

heterogeneity, whereas a greater read depth of fewer cells informs on cell state. However, 

distinctions between cell atlases and cell states are not binary, especially if nomenclature and 

semantics are not agreed upon or consistently reported in literature (Janes, 2016). 

scRNA-seq has two main variants, that is, single-cell and single-nuclei sequencing (snRNA-seq). 

scRNA-seq outperforms snRNA-seq on cellular viability and RNA yield; yet there are considerable 

weaknesses in relation to frozen or hard-to-dissociate tissue, as well as the preservation of in vivo 

transcriptional signatures and occurrence of ex vivo-activated microglia (exAM) with scRNA-seq 

(Machado et al., 2021; Slyper et al., 2020); an effect that will be addressed in Chapter 5, where I 

will address technical artefacts in scRNA-seq. In addition, distinct isolation protocols have been 

shown to result in distinct capture efficiencies (Slyper et al., 2020). e.g., snRNA-seq has aided the 

characterization of multi-nucleated skeletal myofibers (Dos Santos et al., 2020; Kim et al., 2020; 

Petrany et al., 2020); whereas microglial activation genes are not detected with snRNA-seq (Thrupp 

et al., 2020). The availability of tissue, the target cell and desired output all restrict experimental 

design freedoms and require specific adaptations in experimental procedures. Furthermore, since 

its invention, researchers in the field of scRNA-seq (and snRNA-seq) have quickly engineered a wide 

range of approaches (Figure 5). 

Taken together, scRNA-seq is particularly well-suited for the detailed characterization of the 

myeloid lineage with its states and subtypes. Indeed, there are over 250 examples utilizing this 

technology for microglia since its inception in 2015 (Hammond et al., 2019; Keren-Shaul et al., 2017; 

Li et al., 2019; Van Hove et al., 2019). 
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Figure 5 Timeline of novel single-cell technologies. Single-cell, single-nuclei, and spatial transcriptomics approaches were included, with at least two reports of its use in literature. Timeline is 
from left to right, and from bottom to top. Created from (Svensson et al., 2020). 
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1.5 Hypothesis and aims 

In this chapter, microglial ontogeny, heterogeneity, and scRNA-seq were discussed. Microglia find 

their origin in the embryonic YS and migrate and colonize the CNS early in development. Intrinsic 

and extrinsic factors act synergistically to establish the adult population, which is a rich population 

that varies by age, region, and sex. Much work has gone into the description of early and late life 

microglial subtypes like PAM, ATM, DAM and IRM. However, it is currently unknown how 

microglial heterogeneity gives rise to adult heterogeneity, as is it unknown how age-associated 

subtypes emerge from adult homeostatic microglia. It was hypothesized that distinct microglial 

subtypes drive adult heterogeneity, in which male and female microglia display differential 

trajectories of maturation and population dynamics. Moreover, age-associated microglial 

subtypes are expected to be driven by distinct gene regulatory networks. 

Aim 1: Generation of a microglial single-cell atlas in murine development 

• Objective 1: To establish a framework of current knowledge 

• Objective 2: To explore context-dependent microglial heterogeneity 

• Objective 3: To translate murine early developmental effects to human gestation 

• Objective 4: To perform a trajectory analysis of microglial differentiation 

Aim 2. Drop-seq platform performance and pilot of cortical microglia 

• Objective 5: To measure Drop-seq platform performance 

• Objective 6: To develop an in-house scRNA-seq dataset of cortical microglia 

• Objective 7: To explore data quality and transcriptional heterogeneity in cortical microglia. 

Aim 3: Establish a microglial scRNA-seq protocol. 

• Objective 8: To test the utility of chemical fixation with MetOH and DSP. 

• Objective 9: To explore the characteristics of FACS and MACS for scRNA-seq. 

• Objective 10: To assess cellular activation and yield in purification methods. 

• Objective 11: To determine the effect of dissociation condition on ex vivo signatures.  

• Objective 12: To implement a novel microglial isolation protocol for Drop-seq. 

Aim 4: Study of female gene regulatory networks in health and disease  

• Objective 13: To establish a female-specific atlas in the murine cortex. 

• Objective 14: To explore the transition to an adult microglial phenotype. 

• Objective 15: To determine the effects of amyloidosis on transcriptional heterogeneity and 

population dynamics. 

• Objective 16: To identify transcription factors central to age-associated microglial subtypes. 
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Chapter 2 General methodologies 

2.1 Animals 

C57BL/6- and Macgreen-mice were used in this study. Macgreen mice have an intracellular reporter 

of c-fms (Csf1r) gene expression by an enhanced green fluorescent protein construct (EGFP) (Csf1r-

EGFP) (Sasmono and Williams, 2012). Both models were bred and maintained in the animal facilities 

of the University of Southampton (UK), according to local standards. These include standard chow 

(RM-1) (SDS, 801010) and water ad libitum, temperatures between 21 to 24°C, and a 12:12 light-

dark cycle; light period from 07:00 to 19:00. All experimental procedures were conducted under 

ethical approval and according to personal and project licenses under the UK Animals (Scientific 

Procedures) Act (1986). 

2.2 Anaesthesia and perfusion 

Animals were subjected to a lethal intraperitoneal dose of sodium pentobarbitone (Pentoject, 

Animalcare, VM10347/4014) (200 mg/mL) between 08:00 and 11: 00AM.Mice were injected with 

150 μL of Pentoject. The animal’s toe-pinch- and corneal reflex were tested prior to proceeding 

with transcardial perfusion. After anaesthetic depth was confirmed (i.e. the absence of reflex), each 

animal was perfused with 20 millilitre (mL) phosphate-buffered saline (PBS) (1X) (Thermo Fisher, 

70011044) (pH 7.2 ± 0.1), supplemented with heparin sodium (5 I.U. / mL) (Figure 6). Cessation of 

circulation and/or heartbeat were used as secondary measures to confirm death. 

 
Figure 6: Transcardial perfusion. First, a lateral incision of the integument and abdominal wall exposed the diaphragm. 
The ribcage was then cut bilaterally, opening the pleural cavity for access to the heart. With the sternum overhead, any 
excess fat was carefully removed from the pericardium, after which a butterfly-winged needle was inserted into the left 
ventricle and clamped into place. Finally, an incision to the right atrium created an outlet and the animal was perfused. 
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2.3 Tissue harvesting and dissection 

Tissue harvesting started with the removal of the head of a perfused animal (Figure 7). The skin was 

removed from the skull and any remaining neck muscles were trimmed down with surgical scissors 

(ToughCut) (F.S.T., 14054-13) to free the skull. A fine scissors (Martensitic Stainless Steel) (F.S.T., 

14094-11) was then inserted into the foramen magnum and a sagittal cut from the base of the skull 

to the nose bones was made. With a rongeurs (F.S.T., 16021-14), the frontal bones and meninges 

were removed to free the brain from the skull.  

 
Figure 7: Tissue harvesting and dissection. The head is removed after perfusion, after which the skin and remaining neck 
muscles are removed to clear the skull (a, b). Entering through the foramen magnum, a scissors split the skull bones 
across the sagittal suture up-to-and-including the nasal bone (c, d). Rongeurs were used to remove the skull bilaterally 
from the brain. With the brain exposed, a rounded spatula was inserted posterior from the olfactory bulbs and aided the 
removal of the brain from the skull (e). 

Once the brain was free from the skull, the CB and cerebrum (CH) were separated from each other 

in an ice-cooled 10-cm petri-dish with PBS (1X), without (w/o) calcium (Ca), magnesium (Mg) and 

phenol); the brainstem (BS) was cut coronally through the midbrain. When dissecting for the CTX, 

the cerebral hemispheres were separated along the longitudinal fissure and the HPF dissected from 

the inside of the CTX. Independent of the tissue-of-interest, and as soon as the tissue was dissected 

out, the tissue was stored in 2 mL PBS (1X) (w/o Ca, Mg, phenol) or in 2 mL ‘Enzyme mix 1’ (EM1) 

(Miltenyi, 130-092-628, 130-107-677) on ice, until all tissue was collected.  

2.4 Microglial isolation 

Microglia can be isolated in a plethora of ways and protocols need to be adjusted to the desired 

outcome measure. In short, tissue was dissociated, myelin was removed, and microglia enriched 

for, so these steps are described in detail in the following sections.  

 Tissue dissociation 

Dissociation of brain tissue was performed in three distinct manners: Dounce homogenizer-

mediated mechanical dissociation; actinomycin D (ActD)-supplemented (papain-mediated) 

enzymatic dissociation; or enzymatic dissociation alone.  
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The approaches vary in dissociation temperature; ice-cold (4°C), room temperature (RT; 21-23°C), 

or heated (37°C), respectively. RT conditions were simulated with a water bath (set to 22°C), 

whereas standard dissociation was performed in a heated oven. The approaches were distilled into 

3 protocol variations that span the broad range of experimental procedures currently available in 

literature (Figure 72). 

After collection, 30 μL ‘Enzyme Mix 2’ (EM2) (Miltenyi, 130-092-628, 130-107-677) was added to 

EM1, according to the guidelines of the producer. Prior to dissociation, independent of approach, 

the collected tissue was cut into small pieces using fine scissors (Martensitic Stainless Steel) (F.S.T., 

14094-11). Mechanical dissociation was performed with a loose pestle of a 7 mL Dounce 

homogenizer (D9063, Sigma), followed by dissociation with a tight pestle, to liberate cells from 

tissue with 15 strokes each (adapted from (Hammond et al., 2019). Both ActD and standard 

dissociation approaches made use of pre-cut pipette tips, where tissue was progressively 

dissociated from large-, through medium-, to small-clearance pipette, a trituration series (Figure 8). 

 
Figure 8: Trituration series for tissue dissociation. Dounce homogenization utilized a 7 mL container, a small pestle (with 
large clearance) (A), and a large pestle (B). Each sample (and for each pestle size) was dissociated with 15 strokes. 
Pipette-mediated homogenization was done in progressively smaller apertures from large (L), to medium (M) to uncut 
(U) 1 mL pipets. Each step, and for each sample, was done for 1 minute at R.T. to mediate dissociation. Regardless of 
homogenization method, prior to dissociation, each sample was cut into small pieces with a fine scissors (Martensitic 
Stainless Steel) (F.S.T., 14094-11).  

For ActD dissociation, ActD (Sigma, A1410) was added to the collection solution (i.e. EM1) for 

working concentration of 30 μM. ActD is a light-sensitive, hygroscopic substance and was diluted 

(in DMSO) to stock concentration (8 mM) and stored at -20°C for up to a month. To ensure ActD 

was protected from light, stock solutions were stored in black Eppendorfs. Similarly, 

(micro-)dissected tissue samples were collected in bijous with EM1 covered with aluminium foil to 

minimize light exposure. To further minimize batch-specific effects, experimental series using ActD 

were performed using the same stock preparations, and no aliquots were reused after thawing. 



45 

 Purification of single-cell suspensions: removal of myelin and cell debris 

CNS-derived single cells were subjected to a round of purification, to remove any myelin and/or cell 

debris. Three distinct approaches were utilized, which fall in two broad categories: gradient 

centrifugation, and bead-dependent purification. 

Gradient centrifugation was done with Percoll PLUS (Fischer Scientific, 10166144) or Debris 

Removal Solution (Miltenyi, 130-109-398). Bead-dependent removal was performed with Myelin 

Removal Beads II (Miltenyi, 130-096-733). 

2.4.2.1 Percoll-mediated gradient centrifugation 

Percoll-mediated gradient centrifugation effectively removes myelin from the cell suspension and 

captures/enriches myeloid cells in the pellet. Normally, gradient centrifugation is performed with 

multiple density layers (Lee and Tansey, 2013). However, a single Percoll layer (~37%) effectively 

captures microglia in the lower pellet, improving on the handling speed (Grabert et al., 2016; 

Grabert and McColl, 2018).  

For each sample, 5 mL of stock of isotonic Percoll (SIP) was prepared; 9 parts Percoll, 1 part PBS 

(10X) (w/o Ca, Mg, phenol). SIP was added to a 7 mL cell suspension in FACS-buffer for a 37% Percoll 

layer. Suspension was mixed and centrifuged at 500 x g for 30 minutes at 4°C without break 

(Eppendorf, 5810 R). Recommended centrifugal temperature is 18°C, yet in communication with 

the manufacturer and in observation this has not led to differences in purification efficiency (data 

not shown). 

2.4.2.2 Debris Removal solution 

Cell pellets were supplemented with 3100 μL of ice-cold HBSS-buffer, to a total volume of 

approximately 3.5 mL, and added with 1050 μL of Debris Removal Solution (DRS) (Miltenyi, 130-

109-398). 4 mL of HBSS-buffer was overlayed gently (i.e. dropwise) with a P1000 pipette (Gilson, 

F167370). The preparation was centrifuged at 1000 x g for 30 minutes at 4°C. Three phases formed 

and the top two were aspirated, supplemented to 14 mL with HBSS-buffer, and invert mixed. Then, 

cells were centrifuged again at 1000 x g for 10 minutes at 4°C. 

The recommended protocol was deviated from recommended protocol on three aspects (Miltenyi, 

130-109-398). First, resuspended cell pellets approximate 3500 μL, reflective of the relatively large 

size of cortical tissue. Consequentially, the volume of DRS from 900 to 1050 μL, to maintain the 

proportion of DRS to cells. Second, centrifugal forces were reduced from 3000 to 1000 x g (and 

increased centrifugal time) to accommodate speed limitations of the centrifuge (Eppendorf, 5810 

R). Third, PBS was exchanged with HBSS-buffer. Both buffers include calcium and magnesium (and 
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exclude phenol); HBSS-buffer was selected for experimental simplicity in combination with other 

steps. 

2.4.2.3 Myelin Removal Beads 

Myelin Removal Beads II (MRBII) (Miltenyi, 130-096-733) are a bead-dependent alternative to 

gradient centrifugation purification. MRBII purification is achieved by magnetic-activated cell 

sorting (MACS), a proprietary design of Miltenyi Biotec. Magnetic microparticles are bound to a 

myelin targeted antibody for the (negative) selection and removal of myelin debris from cell 

suspensions. I have used MRBII in combination with large selection (LS) (Miltenyi, 130-042-401) or 

large depletion (LD) columns (Miltenyi, 130-042-901). These columns vary in capacity and 

throughput for myelin depletion.  

Cells were resuspended in 600 μL of HBE-buffer (for a total volume of ~ 900 μL) and supplemented 

with 100 μL of MRBII. Cells were incubated on ice for 15 minutes at 4°C, after which incubation was 

stopped by diluting the reaction mixture with HBE-buffer (to a total volume of 15 mL). Columns 

were prepared and myelin debris removed as recommended, collected in 3 mL of HBE-buffer. 

 Characterisation and enrichment of microglia: magnetic- and fluorescence-activated 

cell sorting 

Both magnetic- (MACS) and fluorescence-activated cell sorting (FACS) were used for the 

characterization and enrichment of microglia (Figure 9).  

 
Figure 9: Schematic of fluorescence and magnetic-activated cell sorting workflow. Cells were labelled with antibodies 
conjugated with fluorescent reporters or magnetic nanoparticles (1). Once in contact with their respective effector, light, 
and magnetism, respectively, cells bound by the antibodies separate from the mixed cell suspension (2). Positive selection 
enables the subsequent elution and enrichment of cells identified by those antibodies (3). 
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2.4.3.1 Magnetic-activated cell sorting and the isolation of Cd11b+ cells 

MACS enables the enrichment of microglia through magnetic microbeads conjugated to 

monoclonal rat anti-mouse/human Cd11b (Mac-1a) antibodies (M1/70.15.11.5, IgG2b) (Miltenyi 

Biotec, 130-049-601). Single cell suspensions were resuspended in 90 – 270 μL of HBE-buffer; and 

supplemented with 10 – 30 μL of microbeads. Cells were incubated with the microbeads for 15 

minutes on (wet-)ice. 

Positive selection with LS columns (130-042-401), coupled to a QuadroMACS (Miltenyi Biotec, 130-

090-976) separator, effectively isolates CNS-derived monocytes/macrophages, and to some extend 

granulocytes, NK cells, CD5+ B1-cells and dendritic cells (Miltenyi Biotec). In my experience, I found 

that the use of varying microbeads (in large cell pellets) did not lead to unspecific binding, yet it 

simplified resuspension and preserved a 1:10-ratio of HBE-buffer to microbeads (data not shown). 

2.4.3.2 RNA extraction and gene expression analysis by polymerase chain reaction 

RNA of microglial cell pellets was extracted with the RNeasy Plus micro kit (74036, Qiagen), 

according to the manufacturer’s guidelines. Cells were lysed in RLT lysis buffer with 143 mM β-

mercaptoethanol, genomic DNA removed with gDNA Eliminator columns, and RNA bound onto a 

RNeasy MinElute spin column. RNA was washed and eluted; elution of RNA in 12 – 14 uL of 

nuclease-free water (129114, Qiagen). For a positive control, whole brain RNA was isolated from 

adult mice using the Trizol method (15596018, Thermo Fisher). 500 ng RNA was converted to 

cDNA with the iScript cDNA Synthesis Kit (1708891, BioRad), once more, following manufacturer’s 

instructions. 

I designed a panel of custom primers (Sigma Aldrich) for polymerase chain reaction (PCR): Csf1r, 

Cx3cr1, Egr1, Fos, Gapdh, Hexb, Ier2, Jun, P2ry12, Tmem119. Primer qualities were assessed with 

electrophoresis in a 1.6% agarose gel. Primer sequences are supplied in the Appendix 

(Supplementary Table 20). Data were analyses with the 2-∆∆Ct method with Primer Opticon 3 

software, using Gapdh and/or Hexb as housekeeping genes; Gapdh was used as a loading control 

of RNA, whereas Hexb was a control for microglial load, thereby accounting for potential 

impurities in the isolated cell pellets. 

2.4.3.3 Flow cytometry and fluorescence-activated cell sorting (FACS) of microglia 

Fluorescence-activated cell sorting (FACS) (i.e. flow cytometry) was utilized to characterize and/or 

enrich for microglial cells. Microglia express several markers that, when combined with 

fluorescence reporter-conjugated antibodies will function to identify microglia in mixed cell 

suspension (Askew et al., 2017). A table of all used antibodies, reagents and materials is supplied in 

the Appendix (Supplementary Table 19).  
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Identification of microglia has been achieved by the following gating schematic (Figure 10). In short, 

the expected population was selected for its size features across the forward (FSC) and side-scatter 

(SSC), size and complexity respectively, after which I selected for single- and viable cells (Viability-

eFluor450-, Viability-eFluor780-, or Viability-7AAD-), prior to microglial identification (i.e. Cd11b-

BV421+ Cd45-APC+, Csf1r-EGFP+, P2ry12-PE+). To prevent clumping of cells, the suspension buffer 

(i.e. PBE-buffer) was devoid of Mg and Ca, and the addition of EDTA chelated any remaining ions.  

 
Figure 10: Gating scheme for the identification of microglia. a) Cells of the appropriate size were selected in a plot of 
forward-scatter (FSC) and side-scatter (SSC). Next, single-cells (FSC-A and FSC-H) (b) and live cells (eFluor450-) (c) were 
selected, prior to identifying microglia by their expression of Cd11b and Cd45 (Cd11b+ Cd45low). 

Single-cell gating can be achieved in a range of manners, I choose to trial two, one with a single plot 

for FSC-A and FSC-H, and another for FSC-A and FSC-H followed by SSC-A and SSC-W. No obvert 

differences were detected and I diverted to singlet selection by plotting FSC-A and FSC-W (Figure 

11).  

 

Figure 11: Direct comparison of single-cell gating approaches. Gating for single-cells can be achieved by an FSC-A and FSC-
H plot (a), or a serial gating for FSC-A and FSC-H to SSC-A and SSC-W (b). No obvious differences were detected between 
approaches. Oval markers indicate the relative localization of doublets. 

To further the identification of microglia and simplify gating, Csf1r and P2ry12 were used. P2ry12 

reliably detected Cd11b+ Cd45+ microglia. However, only a proportion of those cells display cellular 

activity of EGFP (Figure 12). 
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Figure 12: Flow cytometric identification of microglia with canonical markers. The expected population is gated for with 
forward- (FSC-A) and side-scatter area (SSC-A) (a), after which singlets (b) and viable (c) cells are selected. eFluor780 was 
used for viability. Microglia were gated as Cd11b+ Cd45+. All (99%) identified microglia express P2ry12, albeit only ~43% 
of those cells are EGFP+. Macgreen mice were used with a reporter construct of Csf1r-EGFP. 

To detail this discrepancy, EGFP+ cells were backgated for Cd11b and Cd45 (Figure 13). Of note, of 

those cells identified as microglia, not all were EGFP+. Cd11b+ Cd45+ cells display a heterogeneity in 

size, where only the largest reliably express EGFP.  

 

Figure 13: Back gating of EGFP-positive cells highlights limitations to Macgreen mice. Fluorescent expression of Csf1r-
EGFP does not identify all microglia (Cd11b+ Cd45+) (b). Larger cells reliably express EGFP, smaller cells do not.  

2.5 Drop-seq – Experimental pipeline 

Microfluidic devices were generated and provided by the group of Jonathan J. West. The 

experimental pipeline of Drop-seq consist of 11 steps, including the reverse transcription of single-

cell transcriptome attached to microparticles (STAMP), tagmentation, polymerase chain (PCR) 

reactions, and purification and quality control (QC) steps (Macosko et al., 2015). 
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The experimental protocol for Drop-seq is readily available and detailed online (Macosko and 

Goldman, 2018). However, I will detail some of the characteristics of the Drop-seq runs here (Figure 

14). 

 
Figure 14: Drop-seq experimental pipeline. The experimental process can be grossly divided in 11 steps, flowing from the 
pre-run setup, through several rounds of polymerase chain reaction (PCR), purification and quality control (QC), and 
completed with sequencing of the samples. 

Isolated single cells were suspended in PBS-BSA (0.01%) (100 cells/µl) and barcoded beads 

(Chemgenes, ‘Barcoded Bead SeqB’) in lysis buffer (120 beads/µl), each loaded into syringes and 

onto the microfluidic device. A magnetic stirrer (VP Scientific, 710D2) combined with a mixing disc 

were (VP Scientific, 772DP-N42-5-2) used to keep the microparticles in suspension, not exceeding 

30 rounds-per-minute.  

Droplets were generated in the system with standard flow rates; oil (BioRad, 370533) at 15,000 

µl/hour, cells and beads at 4,000 µl/hour. Droplets co-encapsulated cells with barcoded beads and 

lysis buffer at final concentration of 50 cells and 60 beads/µl (in ~1 nl droplets with ~124 µm 

diameter). After completion of the run, droplets were broken with perfluoro-octanol (Sigma, 

370533), oil removed, and beads resuspended in 6X SSC-buffer.  

STAMP were reverse transcribed and excess bead primers of stored beads were removed by an 

exonuclease I treatment, after which beads were washed, and then resuspend in H2O for 

quantification. Depending on the bead recovery, multiples of 100 cells (i.e. 2,000 beads) of each 

sample were allocated to microcentrifuge tubes. Beads were subjected to 16 cycles of polymerase 

chain reaction (PCR); the number of cycles is microglia specific, other cells might require more of 

less amplification (Macosko and Goldman, 2018). PCR products were purified with AMPure XP 

beads (Beckman Coulter Life Sciences, A63880) according to the recommend instructions, eluted in 

10 μL of H2O, and PCR product pools were made for each sample. cDNA yield and quality were 

determined with the Bioanalyzer High-Sensitivity DNA kit (Agilent, 5067-4626). PCR products had 

an average size of 1734 ± 28 base pairs (bp) and a yield of 173 ± 90 pg/μL. Normal concentrations 

from 50 cells/µl vary between 400 – 1000 pg/μl; however, variations in concentration are expected 

due to variations in cell concentration and the number of beads, as well as PCR inefficiencies or 

RNA degradation (Macosko et al., 2015).  

400 or 500 pg of purified cDNA was prepared for tagmentation. The mixture was incubated in a 

thermocycler at 55 °C for 5 minutes, neutralized and incubated for 5’ at R.T. Each cDNA sample 
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was supplemented with a tagmentation PCR mix, including a N701 or N702 index for multiplexing. 

For the pilot, I used N701 and N702 for male and female cells, respectively. For the female-

specific age-dependent libraries, I used N701 and N702 for P21 and P60, respectively. After which 

another PCR program was run (12 cycles), followed by AMPure XP-bead purification and analysis 

with the Bioanalyzer High-Sensitivity DNA kit (Agilent, 5067-4626). Tagmented libraries had an 

average size of 503 ±2 bp, a yield of 5.1 ± 0.3 nM, and over 95% purity. 

An equimolar library pool (3 nM) was used as input for denaturation with 0.2 M NaOH. The 

denatured libraries were diluted to 30 pM and diluted once more to a loading concentration of 1.3 

pM in hybridization-buffer (HT1, Illumina, 15009740). A 0.3 μM custom primer was prepared. 

Microglial libraries were sequenced (paired end) on a NextSeq 500 platform, utilizing NextSeq 

500/550 Mid Output Kits (TG-160-2001, 150 cycles, V2; 20024904, V2.5), each with a maximum of 

130,000,000 reads per cell. Sequencing runs parameters were as follows: read 1 (20 bp), read 1 

index (8 bp), read 2 (50 bp), Custom Read 1 primer.  

2.6 High-performance computing 

I would like to acknowledge the use of the IRIDIS HPC Facility and associated support services in the 

completion of this work. The high-performance computing (HPC) was used for computationally 

demanding analyses. This includes the Drop-seq computational pipeline (2.7), as well as the 

integration of the large-scale atlas and their respective analyses (Chapter 3). Sequencing 

specifications were as follows: read 1 (20 base pair (bp)), read 2 (50 bp) and Read 1 Index (8 bp), to 

accommodate multiplexing. Drop-seq - Computational Pipeline 

Raw (FastQ) sequencing reads were converted to a sorted, unmapped Binary Alignment Map (BAM) 

(FastqToSam, Picard bundled in Dropseq-tools v1.0) and filtered to remove all read-pairs with a 

barcode base quality of <10 (Figure 15). The second read was trimmed at the 5’ end to remove any 

TSO-adapter sequence and at the 3’ end to remove polyA tails. Reads were aligned against mouse 

reference genome (mm10) using STAR aligner (v2.5.0a), then sorted/converted/merged to a BAM 

with a tag “GE” onto reads for data extraction. The DigitalExpression program (Dropseq-tools v1.0) 

extracted digital gene expression (DGE) information of the mRNA transcripts (i.e. unique molecular 

identifiers (UMI)) and created a DGE matrix where rows contain genes and cell (barcodes) in 

columns. 
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Figure 15: Drop-seq computational pipeline. Raw sequencing reads were converted into Binary Alignment Map (BAM)-
files, tagged, and trimmed. Reads that passed quality control (QC) were aligned to the mouse genome with STAR aligner, 
transcripts counted and converted into a digital gene expression (DGE) matrix.  

The Drop-seq computational pipeline (from FastQ to DGE-matrix) requires considerable 

computational power, which were found at the IRIDIS High Performance Computing Facility of the 

University of Southampton.  

2.7 R and RStudio 

DGE matrices were loaded and processed in R and RStudio. RStudio is an Integrated Development 

Environment (IDE) for R, itself a programming language suitable for statistical computing and 

graphics. For the analyses, R version 4.0.3 was combined with RStudio 1.3.1093. To utilize R and 

RStudio for scRNA-seq, Seurat was selected, a stand-alone bioinformatic tools for bespoke analyses.  

 Seurat 

With the advent of scRNA-seq, many bioinformatic tools for clustering have been developed 

including RaceID, scran, SC3 and Seurat. Seurat is a tool that effectively encapsulates each analysis 

step, from quality control (QC), data normalisation and scaling, to dimensionality reduction, 

clustering and DGE analysis (Butler et al., 2018; Hao et al., 2021; Satija et al., 2015; Stuart et al., 

2019). 

Seurat was consistently found to outperform other scRNA-seq tools on matters of accuracy, 

robustness and running time, making it a good candidate for the exploration of microglial 

heterogeneity (Duò et al., 2018; Freytag et al., 2018). Seurat is an R toolkit for single cell genomics. 

Moreover, Seurat is user-friendly and benefits from a large user base, designed for droplet-based 

data, scalable to hundreds of thousands of transcriptomes across conditions, and performs 

unsupervised analysis by utilizing a machine-learning driven-approach to identify cell types (Butler 

et al., 2018). For these reasons, Seurat has become a popular tool in recent years, with numerous 

examples that utilized Seurat across single-cell platforms and fields of study that include 

haematology, neuroscience, and pharmacology (Avey et al., 2018; Chen et al., 2017; Gierahn et al., 

2017; Villani et al., 2017) 

The first inception of Seurat was in 2015, since then, the tool has recently taken on its 4th version 

(Butler et al., 2018; Hao et al., 2021; Satija et al., 2015; Stuart et al., 2019). Seurat V2, V3 and V4 

were used in the analyses. Seurat follows a typical bioinformatic pipeline that allow for consistency 
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while offering a plethora of variations to specify the analysis (Figure 16). Generally, a count matrix 

and metadata are joined into a Seurat object for quality control (QC), normalization, scaling, and 

variable feature detection. Linear dimensionality reduction resolves statistically significant gene 

sets for cluster identification and non-linear dimensional reduction. Non-linear reduction projects 

the effects of these gene sets onto a 2-dimensional plane. Differential gene expression analysis of 

the identified clusters allows for subsequent cluster annotation. 

 
Figure 16: Standard Seurat pipeline for scRNA-seq analysis. Count and metadata are joined into a Seurat object, 
annotated, and subjected to a quality control (QC). The object undergoes normalization, scaling, and variable feature 
detection. Linear dimensionality reduction of the variable features, cluster identification and non-linear dimensionality 
reduction precede subsequent differential gene expression (DGE) analysis, and cluster annotation. 

2.7.1.1 Object creation and annotation 

DGE matrices (and metadata) were loaded into Seurat for object creation. Object creation was 

restricted to cells expression a minimum of 200 genes, of which genes are shared with at least 3 

cells. In the object, a pattern search for mitochondrial (and ribosomal) genes was performed, and 

their relative contribution to transcriptome stored in the metadata with the “AddModuleScore”-

function. “AddModuleSCore” was also utilized to annotate among others the signatures of core 

microglial genes (Galatro et al., 2017). If needed, annotations functioned to aid QC with the 

“subset”-function, ensuring only cells of interest were kept for analysis. In such cases, all cells with 

a positive score were considered (> 0). 

2.7.1.2 Quality control and Median Absolute Deviation 

QC is a critical step in scRNA-seq analysis and aims to remove outlier cells across a range of factors. 

Most commonly, Seurat utilizes parameters encompassing library size, library complexity, and 

mitochondrial and ribosomal content by setting subjective limits to these variables (Chapter 1 

Quality Control | Basics of Single-Cell Analysis with Bioconductor, n.d.; “Quality Control,” n.d.). Here, 

I will provide an argument for the use of the Median Absolute Deviation (MAD) as an alternative 

QC metric. 

The number of detected transcripts in single-cells (i.e. library size), and the number of unique genes 

in the library (i.e. library complexity), are the earliest markers of quality in single-cell and single-

nucleus RNA-sequencing (sxRNA-seq). Users commonly implement cut-off values; however, these 

requires expertise and fine-tuning, as these often vary greatly between sample conditions, cell 

types, single-cell platforms and read depth.  
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Similarly, mitochondrial and ribosomal transcript content in sxRNA-seq are proxies of cell quality. 

Cell membrane rupture and damage is associated with a loss of cytoplasmic transcripts, whereas 

transcripts associated with intracellular complexes like ribosomes and mitochondria are largely 

unaffected by these effects, effectively enriching for these transcripts with cell damage. Generally, 

transcript capture and amplification in droplet-based systems are limited by the finite resources 

provided for it. That is, capture of higher ribosomal and mitochondrial transcripts will deplete 

resources for other transcripts, in which even small changes in mapping to these genes will reduce 

overall library complexity (Osorio and Cai, 2020). Unfortunately, like library size and complexity, 

mitochondrial and ribosomal content also vary with context, obfuscating standardization. 

For example, cell types vary in their cellular metabolism and relative gene expression, with 

cardiomyocytes known to be highly metabolically active with large numbers of mitochondria, and 

variations in library complexity  between tissues (Almanzar et al., 2020; Osorio and Cai, 2020). 

Moreover, species-specific cut-off values might be needed; high-quality mouse cells have  less than 

5% mitochondrial transcripts, whereas human cells would be better served with a threshold for 

10% (Osorio and Cai, 2020). This is complicated further, as human (monocyte-derived) 

macrophages and other cell types have been reported to have an interquartile range above 10%, 

making the threshold highly variable depending on the context.  

This variability (across parameters and biological diversity) has led recent studies to adopt a 3 × 

MAD range for outlier cut-off (Daniszewski et al., 2018; Kracht et al., 2020; Tung et al., 2017; Waise 

et al., 2019). MAD is a measure of statistical dispersion and a ‘consistent estimator of the population 

standard deviation’. One might consider the use of the standard deviation (SD) itself for QC, 

however, SD is rooted in the square of data and outliers have a large effect on the SD. MAD does 

not require data to be squared and MAD is therefore more robust to outliers, providing a better 

estimation of the quality parameters of sxRNA-seq data and aid QC. By using MAD, outlier removal 

can be standardized in sxRNA-seq QC, independent of context-dependent variables like cell type. 

Moreover, I belief that this standardization is particularly salient for integrated objects, as it is aids 

large-scale data integration across a wide range of conditions as is common to a single-cell atlas. 

Notably, setting thresholds remains the preferred way of performing QC; in fact, setting thresholds 

for a single data source is faster and generally performs well.  

Traditionally, QC is done with user-defined upper thresholds. These thresholds work well for single 

source data; however, to reduce bias and accommodate variability in experimental procedure, the 

Mean Absolute Deviation (MAD) was used to filter out low quality cells for integrated objects. MAD 

allowed for the selective removal of outliers across several QC parameters (e.g. nCount_RNA; 

nFeature_RNA; percent.rb; percent.mt). To identify outliers in library size and library complexity, 

both metrics were represented on a log-scale, to accurately identify outliers before normalization 
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was performed. Any cells outside of the lower and upper threshold were removed (3X MAD) (Figure 

17).  

 
Figure 17: Representative application of MAD across QC parameters. Displayed are lower and upper thresholds of library 
size (nCount_RNA), library complexity (nFeature_RNA), ribosomal content (percent.rb), and mitochondrial content 
(percent.mt) of Sala Frigerio et al. 2019. Outliers below or above determined thresholds (red) were removed. Note the 
absence of a lower limit with mitochondrial content. 

2.7.1.3 Normalization, scaling and variable feature selection  

“SCTransform” and “NormalizeData” was utilized for the log-normalisation of data. “SCTransform” 

naturally holds arguments for scaling and regression, whereas “NormalizeData” was used in 

combination with “ScaleData”. Library size and complexity, and mitochondrial and ribosomal 

content were readily regressed for; however, other variables like cell cycle scoring were considered. 

“CellCycleScoring”, a function with similarities to “AddModuleScore”, scored cells on their 

expression of cell cycle phase-specific genes, assigning these to G1-, G2/M- or S-phase. Lists of cell 

cycle genes are included in Supplementary Table 5. The most variable 3000 genes were selected for 

feature selection with “FindVariableFeatures”.  
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2.7.1.4 Linear dimensionality reduction  

Principal component analysis (PCA) was performed with the “RunPCA” function; RunPCA generates 

sets of genes that are correlated statistically. Of those 3000 variable features that were selected, 

the 50 strongest predictors of that variability (i.e. principal components, PC) were calculated. 

“ElbowPlot”, “JackStraw” and “ScoreJackStraw” informed on the statistical significance of those PC, 

selecting only those factors with a P < 0.05. 

2.7.1.5 Clustering  

Seurat utilizes the K-Nearest Neighbours (KNN) algorithm for non-linear dimensionality reduction. 

The KNN is a non-parametric, learning algorithm, that is, KNN is a fast algorithm, capable of testing 

feature similarities. KNN was initiated with “FindNeighbours”, after the clustering resolution of cells 

was varied with “FindClusters”, a Louvain-based function, in a range of 0.1 – 2.0. 

Clustering is subjective measure in scRNA-seq data analysis. To aid the selection of the appropriate 

clustering resolution, a clustering hierarchy was build with “clustree” from the Clustree package 

(0.4.3). For a first-pass analysis, the resolution that failed to increase the number of clusters from 

its lower tiered predecessor was selected, a commonly used heuristic prior to a review of the 

biological significance of the identified clusters. 

2.7.1.6 Non-linear dimensionality reduction  

To project the clusters (and their corresponding transcriptome) onto a graph, non-linear 

dimensionality reduction (NLDR) was perfo. There many different methods to reduce 

dimensionality, t-distributed stochastic neighbour embedding (t-SNE) and uniform manifold 

approximation and projection (UMAP) amongst them (Xiang et al., 2021).  

t-SNE was found to be the best accurate and with good computational speed, whereas UMAP better 

preserves the global structure of the underlying cluster relations better and has a larger stability. t-

SNE- and UMAP-plots were constructed with the “RunTSNE” and “RunUMAP” functions, and graphs 

requiring a reduction parameter (like “DimPlot”) with the reduction parameter set to “tsne” or 

“umap”, respectively.  

2.7.1.7 Differential gene expression analysis and statistical analyses 

Differential gene expression of single cells was done with “FindAllMarkers”. Statistical significance 

was achieved with a P-value < 0.05, based on Bonferroni correction using all dataset genes. A 

minimum of 25% of all cells in a cluster needed to express the gene for it to be considered; 

“min.pct” set at 0.25. Cluster markers were visualized with “DoHeatmap”, “VlnPlot”, and 

“FeaturePlot”. To support my analyses, I confirmed cluster results with Metascape, an annotation 
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tool that integrates 40 independent knowledge databases, including DAVID (Zhou et al., 2019). 

Unless stated otherwise, p values are represented as follows, *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001). 

 Data and code accessibility 

All data and scripts can be made available upon request. Please contact the corresponding author: 

Diego Gomez-Nicola at D.Gomez-Nicola@soton.ac.uk. 
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Chapter 3 Single-cell atlas of microglial heterogeneity 

in the healthy CNS 

3.1 Introduction 

Single-cell technologies have redefined microglial biology, adding to an ever-growing repertoire of 

microglial subtypes and phenotypes (Hammond et al. 2019; Keren-Shaul et al. 2017; Krasemann et 

al. 2017; Li et al. 2019; Marsh et al. 2021; Matcovitch-Natan et al. 2016; Safaiyan et al. 2021). To 

understand the respective relationship of individual studies to one another, a single-cell atlas aims 

to provide a curated compendium of available knowledge in various contexts. In effect, a single-cell 

atlas illustrates subtypes that are reliably reported between sources (Chen et al. 2021; Geirsdottir 

et al. 2017; Lavin et al. 2014). 

Several atlases have been developed since the adoption of single-cell technologies and ‘Big Data’ 

biology. This includes examples like the ‘Mouse Cell Atlas’, ‘Human Cell Atlas’, ‘Single Cell 

Expression Atlas’, and ‘Single-Cell Portal’, as well as efforts like The Tabula Muris Consortium 

(Almanzar et al., 2020; Han et al., 2018; Schaum et al., 2018; Svensson et al., 2020). Each of these 

resources covers a broad range of organs, cell types and contexts. However, to my knowledge, no 

such atlas has been specifically developed for microglia. Consequentially, single-cell studies report 

on a range of microglial subtypes, each with a distinct nomenclature, obfuscating underlying 

transcriptional similarities and conceptual understanding.  

Hammond et al. (2019) is currently the largest dataset on microglial biology, a seminal piece of work 

that includes approximately 76,000 cells across the murine lifespan (Hammond et al., 2019). This 

work was used and expanded upon to provide in-depth knowledge of microglial transcriptional 

heterogeneity across data sources. In this chapter, I detail the generation and analysis of a 

microglial single-cell atlas of 113,689 cells; to study context-dependent microglial heterogeneity; 

translate murine early developmental findings into human gestation; identify their pseudotemporal 

order and population dynamics.  

 Microglial heterogeneity – representation across the lifespan 

Established microglial subtypes were discussed in section 1.3. Here, I will briefly review these 

subtypes before delving into the single-cell atlas, by summarizing their transcriptional signature and 

age of occurrence. 

scRNA-seq studies have identified distinct developmental, adult, and age- or disease-associated 

microglial subtypes, as well as CAM, CPM and exAM (Table 2) (Hammond et al. 2019; Keren-Shaul 
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et al. 2017; Krasemann et al. 2017; Li et al. 2019; Marsh et al. 2021; Matcovitch-Natan et al. 2016; 

Safaiyan et al. 2021). Notably, transcriptional similarities and distinctions exist between subtypes 

and states, supportive of their shared ontogeny and the subsequent divergence in a context-

dependent manner.  

Table 2: Transcriptional signatures of known microglial subtypes. 

Age Subtype/state Source Transcriptional signature 

Development 
ATM Hammond et al. 2019 Spp1, Gpnmb, Igf1, Lgals3, Fabp5, 

Cd9, Lpl, Ctsl, Lgals1, Apoe 

PAM Li et al. 2019 Spp1, Gpnmb, Lpl, Pld3, Ctsl, Csf1, 
Igf1, Ctsb, Slc23a2, Gpx3 

Adult HOM Matcovitch-Natan et al. 2016 Cts3, Ctsd, Laptm5, Csf1r, C1qa, 
Selplg, C1qc, Tmem119, Sparc, Serinc3 

Age/disease 

ARM Sala Frigerio et al. 2019 Cst7, Clec7a, Itgax, Cd74, H2-Ab1, 
H2Aa, Ctsb, Ctsd, Spp1, Gpnmb 

DAM Keren-Shaul et al. 2017 
Itgax, Mamdc3, Cst7, Fam20c, Ccl4, 
Lmbrd2, Egr2, Csf1, 5430435G22Rik, 

Ccl3 

IRM Hammond et al. 2019 Ifitm3. Ifi27l2a, Ccl12, Lgals3bp, Ifit3, 
Rtp4, H2-K1, Isg15, Cst7, Bst2 

MGnd Krasemann et al. 2017 Cxxc5, Tgfbr2, Golm1, Sall1, Slco2b1, 
Cst3, P2ry12, P2ry12, St3gal6, Pde3b 

WAM Safaiyan et al. 2019 Apoe, C1qb, Fth1, Lyz2, H2-D1, Ctsb, 
Ctss, Ctsz, H2-K1, Ftl1, B2m 

General 

CAM Hammond et al. 2019 Pf4, F13a1, Ifitm2, Dab2, Fcna, Lyz2, 
Ms4a7, Lgals1, Ifitm3, Ms4a6c 

CPM Li et al. 2019 
Nuf2, Pscrc1, Ncapd2, Ccnb2, 
Smc4, Mcm4, Exo1, Slbp, Gmnn, 

Cdc45 

exAM Marsh et al. 2022 
Hist1h1c, Hist1h2bc, Ubc, Jund, Rgs1, 

Hspa1a, Hsp90aa1, Ccl4, Dusp1, 
Hspa1b 

Note: Top 10 differentially expressed genes of known microglial subtypes. The age and source in which these subtypes 
were identified are detailed. G2M-phase genes in CPM are highlighted in bold, whereas S-phase genes are in Italic. ATM, 
axon tract-associated microglia; ARM, activated response microglia; CAM, CNS-associated macrophage; CPM, cycling and 
proliferating microglia; DAM disease-associated microglia; exAM, ex vivo-activated microglia; HOM, homeostatic 
microglia; IRM, interferon response microglia; MGnd, neurodegeneration-associated microglia; PAM, proliferative region-
associated microglia; WAM, white matter-associated microglia. 

 Trajectory inference and pseudotiming  

Cell and lineage divergence is a highly complex and temporally ordered process. Several 

bioinformatic tools have been developed to reconstruct differentiation trajectories in scRNA-seq 

data. Broadly speaking, these include methods based on transcriptional entropy, RNA velocity and 

trajectory inference (i.e. pseudotemporal ordering) (Grün et al., 2016; Guo et al., 2017; Manno et 

al., 2017; Teschendorff and Enver, 2017; Trapnell et al., 2014).  

Transcriptional entropy, or signalling promiscuity, approximates cellular potency and 

differentiation potential of a cell – cells lower on the Waddington landscape have reduced entropy. 

That is, transcriptional profiles associated with more diverse biological processes are indicative of 

an immature phenotype, whereas less processes are associated with a differentiated cell (Grün et 
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al., 2016; Guo et al., 2017). Similarly, RNA velocity uses the relative prevalence of un-spliced and 

spliced mRNA, or nascent and mature mRNA, respectively, to inform on the transcriptional kinetics 

at any given developmental stage (Manno et al., 2017). With RNA velocity, more un-spliced 

transcripts equal an immature phenotype and function to predict differentiation dynamics. In turn, 

trajectory inference projects transcriptionally similar cells onto a lower dimensional space and 

identifies branch and converging points between them, to construct a lineage structure (Cao et al., 

2019). Each method allows for an unbiased and transcriptome-based method to order cells along 

an artificial (differentiation) trajectory. However, of the three, trajectory inference has rapidly 

become the preferred method, with over 70 distinct tools developed to date (Saelens et al., 2019). 

Trajectory inference allows for an unsupervised identification of cellular subtypes, delineation of a 

differentiation tree, and inference of regulatory interactions. Furthermore, most of the tools are 

developed in R programming language, facilitating integration with Seurat, the analysis tool of 

choice. Trajectory inference methods can be subdivided in cyclic-, linear-, bi- and multifurcation-, 

tree-, and graph-based methods; descriptive of their unique ability to detect underlying trajectory 

structures (Figure 18).  

 
Figure 18: Trajectory inference types. Trajectory inference methods are categorized in 7 archetypes, ranging from low 
complexity cycle and linear, to high complexity connected and disconnected graph-based methods. Monocle3 utilizes a 
Tree-based structure, allowing users to define a moderately complex differentiation trajectory. Adapted from Saelens et 
a. (2019). 

However, the tools vary considerably in their performance to the point that there is no ‘one-size-

fits-all’. To that end, a decision diagram developed by Saelens et al. (2019) was used to aid the 

selection of the tool for trajectory inference (Saelens et al., 2019). No a priori assumptions of the 

underlying topology were made of the microglial lineage. Following the decision diagram for tool 

selection, the tree-based approach was favoured (Saelens et al., 2019). Of the four tree-based 

approaches considered (i.e. Slingshot, PAGA, Monocle, and MST), only Monocle has publicly 

available vignettes for use in combination with Seurat, driving my choice for it.  

Monocle 3, the latest version of the package, has shown good overall performance, scoring well on 

accuracy, stability, and usability (Saelens, Cao 2019). Unfortunately, Monocle 3 performance 

declines over 100,000 cells; methods like PAGA and Slingshot outperformed Monocle on this. 
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However, PAGA is a Python-based tool, Slingshot lacks Seurat integration, and the atlas does not 

greatly exceed beyond 100,000 cells.  

Unlike its predecessors, Monocle 3 has built-in functions to construct a framework of cellular 

coordinates that can be used for trajectory inference (Cao et al., 2019). However, the framework 

can be completed in Seurat, using the cellular coordinates from that tool to inform on the lineage 

structure, offering a means to improve integration and interpretation of the two bioinformatic 

tools.  

3.2 Aims and objectives 

In this chapter, I set out to detail a microglial single-cell atlas across the murine lifespan. This is to 

establish a framework of current microglial transcriptomic heterogeneity, as well as to explore 

context-dependent microglial diversity. Furthermore, I wish to illustrate how murine 

developmental insights of cellular processes can be meaningful for human gestation. Similarly, I aim 

to determine the pseudotemporal order of microglia, to identify the differentiation trajectories that 

give rise to adult and late life heterogeneity.  

Aim 1: Generation of a microglial single-cell atlas in murine development. 

• Objective 1: To establish a framework of current knowledge 

• Objective 2: To explore context-dependent microglial heterogeneity 

• Objective 3: To translate murine early developmental effects to human gestation 

• Objective 4: To perform a trajectory analysis of microglial differentiation 

3.3 Materials and methods 

12 representative scRNA-seq datasets were selected - see section 1.3.1 - of current biological and 

technical trends in the microglial field. To standardize data pre-processing and downstream 

integration, I developed a bioinformatic pipeline capable of being utilized sequentially (Figure 19). 

In short, count matrices were collected and Seurat objects were generated that underwent QC; 

were normalized and scaled; and regressed for ‘nFeature_RNA’, ‘percent.rb’, ‘G2M.Score’, and 

‘S.Score’ (Step1). 3000 integration features were selected with “SelectIntegrationFeatures” and 

anchors identified with “FindIntegrationAnchors” (Step2). Linear and non-linear dimensionality 

reduction, PCA and UMAP, respectively (Step3), were followed by DGE- and gene ontology (GO)-

analyses, and trajectory inference (Step4). 
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Figure 19: Overview of bioinformatic pipeline for analysis of microglial scRNA-seq datasets. Selected datasets are acquired 
from open-access databases and pre-processed using QC metrics. Seurat anchor-based integration is carried out, resulting 
in a combined dataset encompassing a vast scope of biological variables. Data analysis methods involve dimensional 
reduction techniques and graphical clustering of cells. Finally, biological interpretation of clusters is achieved by 
differential gene expression, gene enrichment, and trajectory analyses. 

 Dataset Acquisition  

Count matrices and metadata were obtained from open access depositories of genomic data: Gene 

Expression Omnibus (GEO), BioProject (BP) and ArrayExpress (AE) (Table 3, Table 4). To supplement 

the publicly available data where needed, additional data was provided by the original authors. 

Both murine and human datasets were collected. 
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For the mouse lifespan, 12 datasets were combined for 113,689 (wild-type) microglia spanning 

between embryonic day 6.5 (E6.5) to 29-months old (29M) (i.e. ~880 postnatal days, or P880); each 

varying in their distribution of age- region- and sex-derived single-cells. 

Table 3: Features of scRNA-seq datasets in the murine single-cell atlas. 

Source Year Accession # Cell # Age Region Sex 

Dulken et al. 2019 BP: 
PRJNA450425 2732 P90, 28M, 

29M SVZ M 

Sala Frigerio et 
al. 2019 GEO: 

GSE127893 5124 P90, 6M, 
12M, 21M CTX, HIP F, M 

Hammond et 
al. 2019 GEO: 

GSE121654 68660 
E14.5, P4, 
P5, P30, 
3.5M, 18M 

WB F, M 

Keren-Shaul et 
al. 2017 GEO: 

GSE98969 7602 
P49, P80, 
P90, 4.5M, 
6M, 20M 

WB, SC, CB, 
CTX N.A. 

Li et al. 2019 GEO: 
GSE123025 1649 E14.5, P7, 

P60 
WB, CB, CP, 
CTX, HP, 
OLF, STR 

M 

Masuda et al. 2019 GEO: 
GSE120745 1814 E16.5, P21, 

3.5M 
CB, CC, 
CTX, FB, 
MB, HIP, SC 

F, 
N.A. 

Matcovich-
Natan et al. 2016 GEO: 

GSE79819 3038 E12.5, 
E18.5, P56 WB, YS N.A. 

Mathys et al. 2017 GEO: 
GSE103334 984 P90, P97, 

3.5M, 4.5M HIP N.A. 

Pijuan-Sala et 
al. 2019 AE: E-MTAB-

6967 200 E6.5, 
E6.75, E7.5 WB N.A. 

Safaiyan et al. 2021 GEO: 
GSE166548 9777 P14, 18M, 

19M, 24M CTX, WM F, M 

The Tabula 
Muris 
Consortium 

2020 GEO: 
GSE109774 12002 P90, 18M, 

24M 
CB, CTX, 
HIP F, M 

Utz et al. 2020 GEO: 
GSE146926 108 E16.5 WB N.A. 

Note: Details of the respective source data is tabled, including cell and data accession numbers, age, CNS region, and sex. 
All data are post quality control. AE, AssayExpress; BP, BioProject; CB, cerebellum; CC, corpus callosum; CP, choroid plexus; 
CTX, cortex; E, embryonic day; F, female; GEO, Gene Expression Omnibus; HIP, hippocampus; M, month, male; N.A., not 
available; ND, neurodegeneration; P, postnatal day; SC, spinal cord; SVZ, subventricular zone; YS, yolk sac; WB, whole 
brain; WM, white matter; WT, wild type. 

For the human single-cell atlas, 4 datasets were integrated for a total size of 22,138 single-cell and 
single-nuclei (Table 4). Like the mouse atlas, I combined cells and nuclei from a variety of gestational 
ages, CNS regions and sexes. 

Table 4: Features of scRNA-seq datasets in the human single-cell atlas. 

Source Year Accession # Cell/nuclei # Age (PCW) Region Sex 

Cao et al. 2020 GSE156793 6072 13, 16 – 18 CRB, CB F, M 

Kracht et al. 2020 GSE141862 14573 7 -11, 13 – 
16 WB F, M 

Fan et al. 2020 GSE120046 1358 
5 – 12, 14 - 
15, 18 - 20, 
22, 24 

PONS N.A. 

Bian et al. 2020 GSE133345 135 3 – 6, 8 WB N.A. 
Note: Details of the respective source data is tabled, including cell, nuclei and data accession numbers, age, CNS region, 
and sex. All data are post quality control. AE, AssayExpress; BP, BioProject; CB, cerebellum; CRB, cerebrum; F, female; GEO, 
Gene Expression Omnibus; M, male; N.A., not available; PCW, post conceptual week; WB, whole brain; WM. 
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 Trajectory analysis  

Monocle 3 was utilized from the group of Cole Trapnell (Cao et al., 2019). To integrate Monocle 3 

with Seurat, the object was converted the atlas to a ‘CellDataSet’ object with the “SeuratWrappers” 

packing function ‘as.cell_data_set’. The UMAP locations, as defined by Seurat, were used and 

projected onto a UMAP space with the ‘cluster_cells’ function, after which ‘learn_graph’ to identify 

branch points and convergences. A supervised analysis was performed with E6.5 as the root for the 

graph, with the ‘order_cells’ function. 

3.4 Results 

 Murine single-cell atlas quality and cluster stability 

The murine cell atlas is composed of 12 distinct data sources that contribute differentially: varying 

in cell number, age, region, and sex (Table 3). As a result, some differences were expected between 

clusters. However, overt source-specific clustering and enrichment is indicative of low-quality data 

integration that could necessitate subsequent batch corrections, beyond that which is achieved by 

Canonical Correlation Analysis (CCA). I found that CCA performed well, with overall features of a 

high-quality integration (Figure 20, Supplementary Figure 1). That is, each identified cluster is 

composed of several sources and no overt variability was detected in QC parameters (i.e. 

nCount_RNA, nFeature_RNA, percent.rb, percent.mt) (Figure 20). 
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Figure 20: QC of integration single-cell atlas. a) Large-scale transcriptional similarities are found within the source data. 
b) Each of 16 clusters is driven by cells from distinct data sources. c/d) Quality Control (QC) metrics in cluster identities. c) 
Number of transcripts (i.e. library size) (nCount_RNA) and the number of genes (i.e. library complexity) (nFeature_RNA). 
d) Percentage of ribosomal (percent.rb) and mitochondrial transcripts (percent.mt) are displayed. 

Clustering of cells with a UMAP-plot, and most other forms of (non-)linear dimensionality reduction, 

are subjective measures. The algorithm requires input from the user, who decides what the number 

of dimensions and resolution is that will be used for the projection. In that, it is important to strike 

a balance between statistical and biological significance, and in my view, lower (and more 

conservative) dimensions and resolution are often preferred, as it will provide a more robust 

biological result.  

To determine dimensionality, as stated previously (in section 2.8.1.4), the heuristic of ‘ElbowPlot’ 

was combined with statistical testing by “JackStraw” and ‘JackStrawPlot’ (Figure 21). Each principal 

component (PC) in the integrated dataset is scored and ranked on its variability (as measured by 

the SD). The ‘elbow’ of dimensionality defines a subjective threshold of variability, in which the 

variability drops considerably (i.e. PC10) (Figure 21). In contrast, statistical inference of each PC with 

JackStraw found that most of the first 50 PC are statistically significant. Therefore, I chose to review 

the top 20 dimensions for this dataset, excluding PC that offer little to the transcriptional 

heterogeneity in the dataset. 
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Figure 21: Determination of dimensionality. a) An ElbowPlot is commonly used to determine the ‘elbow’ of a dataset, 
ranking the dimensions of a dataset that describe the underlying variability (i.e. transcriptional heterogeneity). The 
standard deviation of the top 50 principal components (PC) are displayed. b) A JackStraw analysis infers statistical 
significance of the PC, results which are displayed by a JackStrawPlot.  

Principal component analysis (PCA) identified the gene sets that drive each PC (Figure 22, 

Supplementary Figure 2, Supplementary Figure 3,Supplementary Figure 4). Genes in PC1 and PC2 

include canonical microglial genes like Cx3cr1, Hexb and Tmem119, as well as cell cycle-associated 

genes like Mki67 and Top2a (Hammond et al., 2019; Li et al., 2019) (Figure 22). In turn, PC8 is 

featured by interferon-linked genes, which imply the presence of IRM (Hammond et al., 2019; Sala 

Frigerio et al., 2019) (Supplementary Figure 2). Lastly, genes in PC20 contained genes that are 

biologically relevant in early development- and age-associated lysosomal pathway and anti-

oxidative genes (e.g. Prdx1, Tmsb4x, Ctsb) (Supplementary Figure 4) (Cermak et al., 2016; Jeong et 

al., 2018; Masuda et al., 2019). Taken together, these show that statistically correlated gene sets 

(i.e. PC) are biologically relevant for clustering.  

 
Figure 22: Principal component analysis. Principal component (PC) 1 and 2 are visualized, illustrating their respective gene 
sets. 
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Unlike dimensionality, the resolution parameter is not typically tested statistically. Here, the 
resolution where the number of clusters level off is typically used for a preliminary analysis. 
‘Clustree’ identified the number of clusters with varying resolutions. In the analysis, all resolutions 
between 0.1 and 2.0 were tested (Figure 23). 

 

Figure 23: Determination of cluster resolution. Clustree visualises the number identified clusters with resolutions between 
0.1 and 2. Higher resolutions splits larger groups of cells into an ever more expanding repertoire of clusters.  

In the dataset, clusters first stabilize at resolution 0.7. However, I set resolution to 0.5, a more 
conservative option that manages to preserve the major clusters, without over clustering (Figure 
24). To that end, 20 dimensions and a resolution of 0.5 were selected. 



68 

 
Figure 24: Linear dimensionality and cluster identification parameters. Cluster identification (with 20 dimensions) was 
tested on a range of resolutions; 0.3 to 0.8 were considered for the integrated object, and 0.5 selected. 

 Transcriptomic heterogeneity of microglia in the murine lifespan 

Broadly, 15 clusters of cells with distinct transcriptional profiles were identified (Figure 25). In this 

section, I will detail the annotation of well-known myeloid profiles such as CAM, exAM, CPM, HOM, 

and several others across a variety of biological factors (e.g. age, region, sex).
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Figure 25: General microglial heterogeneity during the murine lifespan. A total of 113,689 cells in the integrated were assigned to15 transcriptionally distinct clusters. A Uniform Manifold Approximation and 
Projection (UMAP)-plot is displayed, as well as the cluster-specific heatmap of the top 10 genes in each. Clusters are colour coded and shared between the UMAP-plot and heatmap. Gene expression levels in 
the heatmap range from low (purple) to high (gold). UMAP-plot of PC1-20 and resolution 0.5. FindAllMarkers with ‘only.pos = TRUE’, ‘min.pct = 0.25’,’ logfc.threshold = 0.25’, ‘test.use = "wilcox"’ 
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3.4.2.1 Non-microglial cells, the minimum fraction, and technical artefacts 

3 non-microglial clusters were identified in the single-cell atlas, which include neutrophils, 

monocytes, CNS-associated macrophages (CAM; also known as border-associated macrophages, 

BAM) (Li et al., 2019; Mrdjen et al., 2018). In addition, ex vivo-activated microglia (exAM) were 

resolved, a microglial state that features a dissociation-induced, artefactual gene signature (Marsh 

et al., 2022). These 4 populations function to informed on the quality of the scRNA-seq data, and 

on the minimum fraction of the dataset. 

3.4.2.1.1 Neutrophils 

Cluster 14 is the smallest cluster (i.e. 385 cells or ~0.3%) and the rarest cell type in the atlas (i.e. 

minimum fraction). Several established microglial gene lists were tested with ‘AddModuleScore’, 

however, no correspondence with known microglial subtypes was detected (data not shown; see 

Supplementary Table 3 for a table of established microglial markers). To explore the identity of 

cluster 14 further, differential gene expression (DGE) analysis identified 37 genes (with an 

avg_log2FC over 1.5), which were subsequently tested with Metascape (Figure 26) (Zhou et al., 

2019).  

 
Figure 26: Neutrophil marker expression in the atlas. Cluster 14 express genes commonly associated with neutrophil 
degranulation, cell migration and the type I interferon signalling pathway. 

10 of 37 genes were involved with neutrophil degranulation and include Cxcr2, Mmp9, S100a11. 

Although this suggests these cells are neutrophils, this by itself does not confirm an origin; genes 

can have multiple associations beyond what is currently annotated by GO. To this end, I used a 

neutrophil gene list, as described by Xie et al. (2020) (Supplementary Table 4) (Xie et al., 2020). The 

module score (i.e. gene list enrichment score) of the genes effectively localized to cluster 14 (Figure 

27). 
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Figure 27: Neutrophil gene markers are enriched in cluster 14. b) VlnPlot of selected neutrophil markers (i.e. Hdc, Mmp9).  

Remarkably, most cells in cluster 14 derive from Keren-Shaul et al. (2017) (Figure 20). This study 

used a Cd45+ enrichment strategy and reported isolation of other immune cells like neutrophils, NK 

cells, etc (Keren-Shaul et al., 2017). It is possible that the annotation and enrichment of core 

microglial genes did not effectively minimize the retention of these cells, impacting downstream 

data quality negatively. Furthermore, in my exploration of cluster markers, it was noted that 

neutrophils share several genes with dendritic cells (DC) (e.g. Hdc, S100a11), suggesting that further 

sub clustering of cluster 14 might delineate these two cell subtypes. 

3.4.2.1.2 Monocytes 

Unlike cluster 14, cluster 12 does not show a large transcriptional distinction from other clusters 

and is only featured by the expression of Lgal3, Cnn2, Cd74 and Lsp1 (over an avg_log2FC of 1.5) 

(Figure 28, Supplementary Table 4). None of these genes are unique to the cluster and can also be 

found in clusters 2, 5, 11, and 14. Cluster 12 might in fact derive from several immune cells, e.g. 

Ly6Clow or Ly6Chi monocytes, monocyte-derived cells (MdC). Each of these are featured by the 

expression of Csf1r and Cx3cr1 (Mrdjen et al., 2018; Percin et al., 2018), and supports the absence 

of cluster-specific markers. As for the neutrophil cluster, further sub clustering is expected to 

address this. 
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Figure 28: Monocyte-like signatures are non-selective. a) A relative enrichment of monocyte-associated genes are enriched 
in cluster 12, albeit non-selectively with widespread expression of genes in cluster 8, 12 and 14. b) VlnPlot of selected 
monocyte genes (i.e. Crip1, Napsa). 

3.4.2.1.3 CNS-associated macrophages 

CAM are the second largest immune cell population in the CNS (Mrdjen et al., 2018). Enrichment 

method selection and the shared developmental ontogeny of CAM and microglia often see both 

subtypes retained by dimensionality reduction and analysis of transcriptional (Jordão et al., 2019; 

Li et al., 2019; Van Hove et al., 2019). Indeed, CAM are often deliberately kept as an internal 

reference in scRNA-seq microglial studies (Hammond et al., 2019).  

To identify CAM in the dataset, I used ‘AddModuleScore’ in combination with 10 canonical markers 

of CAM: Clec12a, Mrc1, Ms4a8, Ms4a4a, Pf4, F13a1, Dab2, Lyve1, Stab1, Siglec1 (Kierdorf et al., 

2019; Van Hove et al., 2019). Cluster 11 was identified as CAM (Figure 29).  
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Figure 29:CNS-associated macrophages are present in the single-cell atlas. a) CNS-associated macrophages (CAM) are 
identified in cluster 11 by canonical markers of such cells. b) VlnPlot of Mrc1, Pf4 and Ms4a7 are displayed. 

3.4.2.1.4 Technical artefacts and ex vivo activated microglia 

scRNA-seq data (in particular when derived from microglia) is known to be susceptible to technical 

artefacts (Adam et al., 2017; Marsh et al., 2022; Wu et al., 2017). Microglia that have acquired an 

artefactual signature are commonly known as exAM (Marsh et al., 2022). I utilized 3 gene list that 

are enriched in exAM, to aid the identification of such microglia in the single-cell atlas. Each gene 

list could identify those cells most affected by technical artefacts, yet distinct differences in their 

accuracy to do so were noted (Supplementary Figure 5). A gene list first described by Marsh et al. 

(2022) best captured the ex vivo signature (Figure 30). The list derives from standard-dissociated 
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microglia relative to those isolated in the presence of transcriptional and translational inhibitors 

and clearly defines dissociation-induced technical artefacts (Supplementary Table 5).  

  
Figure 30: Identification of exAM. a) A gene list from Marsh et al. (2022) was used in combination with ‘AddModuleScore’. 
b) VlnPlot ex vivo-activated microglia (exAM) genes. c) Functional gene annotation (with Metascape) identified a.o. an 
association with response to stress and TGF-beta signalling pathway. 

In correspondence to the gene lists and other sources on technical artefacts in scRNA-seq, cluster 

7 markers include genes like Fos, Jun, Egr1, Ier2 and Zfp36 (Adam et al., 2017; Brink et al., 2017; Li 

et al., 2019; Marsh et al., 2022; Van Hove et al., 2019; Wu et al., 2017) (Figure 30). Broadly, genes 

in cluster 7 were associated with the regulation of hemopoiesis (GO:1903706), regulation of 

transcription from RNA polymerase II promoter in response to stress (GO:0043618) and TGF-ß 

signalling pathway (WP113), as determined with Metascape (Zhou et al., 2019) (Figure 30). The 

associated with the TGF-ß signalling pathway hint towards the interconnected nature of ex vivo 

signatures with microglial identity and might need mitigation to improve microglial scRNA-seq data 

quality. Given that 4023 of 113690 cells (~3.5%) in the atlas are localized to this cluster, the question 

remains to which extend this holds true. 

3.4.2.2 Age functions as the main driver of microglial heterogeneity in health 

Ageing alters the epigenetic marks of DNA and drives differentiation, a process commonly known 

as the epigenetic clock theory of aging (Horvath and Raj, 2018; Reik, 2007). DNA methylation-base 

age typically increases as pluripotent cells differentiate, leading to a loss of stem and progenitor 

cells and an increase of senescent cells (Horvath and Raj, 2018). Therefore, it is anticipated that 

aging affects microglial heterogeneity. Microglial heterogeneity is typically highly transcriptionally 

diverse in early development, reduced in adulthood, and increased once more with aging (Masuda 
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et al., 2020). Given that the microglial population in health is locally maintained (without 

contributions of circulating monocytes) (Askew et al., 2017), all cells in the CNS are part of the same 

differentiation trajectory and allows for the temporal organization of such phenotypes. 

To test the temporal order of microglial subtypes, a trajectory inference was performed on the 

single-cell atlas gene profiles with Monocle 3. Embryonic day 6.5 (E6.5) was set as the root of the 

analysis, and cells were projected onto the associated UMAP co-ordinates (Figure 31). Several 

branch points and convergences were identified (Figure 31). Broadly, early developmental microglia 

are featured by a low pseudotime score that is mostly stable until postnatal day 7 (P7) (Figure 31). 

From P7 onwards, the score rapidly increases and reaches adult levels by P21. Adult levels remain 

relatively stable until continued aging progressively reverts microglial scores to developmental 

levels.  

 
Figure 31: Age as a driver of microglial heterogeneity. a) Illustration of age groupings in the single-cell atlas, ranging from 
E6.5 to 29M old cells. Root cells are marked by (1) b) Trajectory inference of the atlas on the UMAP co-ordinates, with low 
pseudotiming values in blue, and high values in yellow. c) Boxplots of pseudotime values (and their median) in the age 
groupings. E, embryonic day; P, postnatal day; M, month.  
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To delve into the age-dependent transcriptional dynamics, microglia were grouped in seven 

maturation stages: early microglia (E10.5 – E14.5), pre-microglia (E14.5 – P9), sexually immature 

microglia (SIM) (P9-P28), adolescent microglia (P28 – P60), adult microglia (P60 – 6M), middle age 

microglia (6M- 18M), and old age microglia (>18M). In correspondence with Matcovitch-Natan et 

al. (2016), early development displays a distinct transcriptional signature in line with disease- 

(DAM) and proliferative region-associated microglia (PAM), and axon tract microglia (ATM) (e.g. 

Spp1, Apoe, Igf1) (Figure 32) (Hammond et al., 2019; Keren-Shaul et al., 2017; Li et al., 2019; 

Matcovitch-Natan et al., 2016). Similarly, expression of Hmgb2, Mki67 and Mcm5 is featured and 

typically associated with cellular proliferation. However, once adolescence is reached (between P28 

and P60), a more typical microglial signature is acquired that includes the expression of Tmem119 

and Selplg (Figure 32). Of note, the transition to a mature microglial signature in SIM (P9-P28) is 

shrouded due to the lack of studies that have investigated this stage of maturation (Figure 32).  

 
Figure 32: Transcriptional distinction between early developmental microglia and postnatal mature microglia. Age group-
dependent transcriptional signatures transition between pre-microglia (E14.5 – P9) and sexually immature microglia (SIM) 
(P9-P28). The top 10 genes (ordered by ‘avg_log2FC’) of each age group are displayed. FindAllMarkers with ‘only.pos = 
TRUE’, ‘min.pct = 0.25’,’ logfc.threshold = 0.25’, ‘test.use = "wilcox"’. 
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3.4.2.3 Early developmental microglia 

The results show that early and pre-microglia have a distinct gene signature, which transitions into 

an adult homeostatic signature from SIM onwards (Figure 32). In fact, cluster 5, 6 and 8 (in early 

development) share a core signature with cluster 2 that includes the expression of Apoe, Cd63, Ctsb, 

Gpx3, Ftl1, Npl, Serpine2, Ctsl and Gas6 (Figure 33). The predominant occurrence in early life has 

led me to term cluster 2, as ‘early developmental microglia’ (EDM).  

 
Figure 33: Cluster-specific gene expression and age group distribution in the single-cell atlas. a) DimPlot of Seurat clsuters. 
b) A heatmap of the top 10 genes (ordered by ‘avg_log2FC’) of each cluster are displayed. FindAllMarkers with ‘only.pos 
= TRUE’, ‘min.pct = 0.25’,’ logfc.threshold = 0.25’, ‘test.use = "wilcox"’. c) DimPlot of age group annotations. 

Apoe plays a role in lipid and cholesterol maintenance. Interestingly, Cd63 has recently been 

identified as a marker in lipid-associated macrophages (LAM). Roles of Apoe, Ctsb, Cd63 in lipid 

metabolism and protein degradation, suggest that these are typical features of myeloid cells shared 

across the lifespan. 

3.4.2.4 Lysosome pathway-associated microglia and the convergence of phenotypes 

Disease-associated microglia (DAM), as well as MGnd and ARM, are best known for their occurrence 

in (models of) age-associated disease (e.g. AD, MS, ALS) (Keren-Shaul et al., 2017; Krasemann et al., 

2017; Sala Frigerio et al., 2019). Of note, there have been reports about the transcriptional 

similarities of DAM with PAM and ATM (Hammond et al., 2019; Keren-Shaul et al., 2017; Li et al., 

2019). Module score annotations with the top 50 genes of these subtypes support such similarities 
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(Figure 34). Indeed, 6 out of the top 50 DAM, PAM and ATM signature genes are shared between 

them (i.e. Csf1, Lpl, Spp1, Igf1, Gpnmb, Apoe). All 6 were enriched in cluster 8, albeit Apoe is a 

remarkable exception to that, which broadly extends into early developmental clusters and CAM. 

Clusters 2, 5-6, 8 and 12 each express Apoe highly, suggestive of a broad role of Apoe in CNS myeloid 

cells (Figure 34). 

 
Figure 34: Transcriptional overlap between disease-, proliferative region- and axon tract-associated microglia. a) Gene list 
annotations of disease- (DAM), proliferative region- (PAM) and axon tract-associated microglia (PAM) b) The top 50 genes 
ofeach were compared, in order to discriminate between early developmental and age-associated microglial subtypes. c) 
6 genes (i.e. Csf1, Lpl, Spp1, Igf1, Gpnmb, Apoe) were shared amongst all 3 subtypes. 

PAM and ATM selectively share 15 genes of their top 50 signature genes, 14 of which were 

significantly expressed in cluster 8, thereby discriminating them from DAM (Figure 35). 

Interestingly, I noticed the expression of Itgax and Ank in cluster 8, two genes commonly associated 
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with DAM (Kamphuis et al., 2016; Keren-Shaul et al., 2017). Of those two genes, only Ank was a 

(statistically significant) cluster marker. Immunohistochemistry has previously identified Cd11c+ 

microglia in the white matter during myelinogenesis, as well as with aging and disease (Benmamar-

Badel et al., 2020), further highlighting the similarities between PAM, ATM and DAM phenotypes. 

 
Figure 35: Phagocytic microglia display a mixed transcriptional signature and are evident throughout life. a) VlnPlot of 
genes typically associated with axon tract- and proliferative region-associated microglia (Pld3, Syngr1), as well as disease-
associated microglia genes like Ank and Itgax. b) Barplot of age group and cluster identity illustrates that pre-microglia 
are the largest contributors to cluster 8, although middle age and old age microglia are also evident. 

In concurrence, looking into their relative distribution across the lifespan, cluster 8 cells are 

predominantly pre-microglia, albeit a significant number of cells were also evident with age (Figure 

35). In fact, I cannot exclude that some age-associated DAM are present, as a subgroup of middle 

and old age microglia are localized to cluster 8. Of note, other clusters feature old age microglia too 

and allocation to old age alone does not imply a DAM-like state. Subsequentially, the phenotypical 

convergence of ATM, PAM and DAM have led me to describe cluster 8 as lysosomal pathway-

associated macrophage (LPM), corresponding to and reflective of their phagocytic function 

independent of age. Moreover, LPM show an enrichment for AD-associated risk factors (e.g. Apoe, 

Ctsb, Pld3) and warrant further study in early developmental heterogeneity as a therapeutic target 

(Figure 36). 
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Figure 36: Enrichment of AD risk factors in early development. a) Dimplot of identified clusters in the murine cell atlas. b) 
Cluster 8 (i.e. LPM) are enriched for late onset Alzheimer’s disease (AD) risk factors, as reported by Sala Frigerio et al. 
(2019). c/d) 3 examples are shown (i.e. Apoe, Ctsb, Pld3) in a cluster- and age group-specific manner. 

3.4.2.5 Microglial proliferation follows a wave-like pattern throughout life 

Microglial proliferation is a critical cellular process that underlies population dynamics. As 

discussed, CPM are most typically associated with early development and the expansion of the 

microglial population (Alliot et al., 1999; Askew et al., 2017; Nikodemova et al., 2015). The 

developmental expansion is concurrent with Sall1- and Tgfb1- activated gene cascades to adult 

microglial identity (Butovsky et al., 2014; Buttgereit et al., 2016). CPM prevalence occurs in 3 waves 

during the murine lifespan, the most predominant one of which between E7.5 and P21 (Figure 37). 

However, middle age and old age increases of microglial proliferation are biologically interesting. It 
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showcases ongoing population dynamics in old age that correspond to microglial dynamics in age-

associated disease, while simultaneously highlighting middle age as a potential target for 

modulation of the microglial population (Krasemann et al. 2017; Nikodemova et al. 2016). 

 
Figure 37: Microglial proliferation in the murine lifespan. a) Annotation of cell phase resolves distinct clusters of cells in 
G2M- and S-phase. b) Actively cycling and proliferating microglia (CPM) are most evident in early development, 
independent of phase. 

3.4.2.5.1 Wave-like patterns of human gestational, microglial proliferation 

With such widespread processes in murine early development, it is scientifically and biologically 

relevant to study if such processes are present in human gestation. To that end, I gathered count 

matrices and metadata of 4 human single-cell and single-nuclei studies in gestation including 

embryonic, early fetal, and mid-late fetal age (Bian et al., 2020; Cao et al., 2019; Fan et al., 2020; 

Kracht et al., 2020); together these span a broad range from post conceptual week (PCW) 7 to 24 

(Table 4). 
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Indeed, a similar wave-like pattern of microglial proliferation in gestation became evident, the 

largest of which in early gestation (Figure 38) (Menassa et al., 2022).  

 
Figure 38: Cycling and proliferating myeloid cells in human gestation. a) Actively cycling and proliferating microglia (CPM) 
in the scRNAseq dataset were identified across gestational age. b) Barplot of CPM across human gestation; only ages with 
a minimum of 50 cells were selected (7 – 24 PCW). PCW, post conceptual week. 

In the integrated object, 8 clusters were identified that express typical myeloid markers, among 

which CPM (Figure 38, Supplementary Figure 6, ). This proliferation cluster also displayed a wave-

like distribution across gestation, first peaking at 9 PCW and then peaking again at 18 PCW, tracking 

the pattern observed at the histological level (Menassa et al., 2021). 

Like in the large-scale murine atlas, the UMAP-plot was split by data source (i.e. original identity). 

All sources align well spatially suggestive of a high-quality integration (Supplementary Figure 7). To 

ensure these cells are transcriptional similar across assays, a necessary additional precaution was 

taken. I tested the alignment of CPM cells between source data and identified forty conserved 

markers by utilizing the ‘FindConservedMarkers’ function of the Seurat package. Gene ontology and 

protein-protein interaction enrichment analyses of this gene set with Metascape underscored their 

association with cell cycle processes (Figure 39). 

 
Figure 39: Metascape analysis of conserved CPM markers. Gene ontology (GO) and protein-protein interaction (PPI) 
enrichment analysis mark key mitotic cell cycle processes. PPI enrichment analysis identified mitotic spindle checkpoint 
and amplification of signal from the kinetochores (in red), as well as mitotic chromosome condensation and condensing I 
complex (in blue)  

 Unfortunately, human scRNA-seq data remains rare and it makes a similar extension throughout 

life more complex. More research in human microglial heterogeneity is needed to detail this 
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further, as early developmental waves of proliferation and selection give rise to adult homeostatic 

and non-homeostatic phenotypes.  

3.4.2.6 Homeostatic microglia are heterogeneous in the healthy murine CNS 

Homeostatic microglia (HOM) have long been thought to be a single population, however, much 

like other microglial subtypes, HOM are recognized to be a heterogeneous population composed 

of various subgroups (Hammond et al., 2019; Li et al., 2019). A homeostatic gene list first published 

by Matcovitch-Natan et al. (2016) was used to identify the clusters; the list includes microglial 

markers that are expressed from P28 onwards (Matcovitch-Natan et al., 2016) (Supplementary 

Table 3). 5 distinct HOM clusters were identified (i.e. cluster 0,1,3, 4 and 10) with relatively stable 

and selective levels of homeostatic and sensome gene expression (Figure 40) (Supplementary Table 

3).  

 
Figure 40: Homeostatic microglial identity corresponds to the sensome signature. a) DimPlot of identified murine clusters 
across the lifespan. b) FeaturePlot of homeostatic (Matcovitch-Natan et al., 2016) and sensome markers (Hickman et al., 
2013)feature similar annotations. c) VlnPlot of cluster-specific expression levels of both annotations. 

It was argued that such age-specific trajectory inference results would be reflected by changes in 

homeostatic microglial genes. Therefore, the homeostatic gene score expression was tested 

throughout the lifespan. Indeed, homeostatic signatures were stably expressed throughout most 

of adult life, with lower levels in early development and old age, and a high correlation between 

homeostatic and sensome gene signatures (Figure 41).  
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Figure 41: Homeostatic gene expression throughout life. a) Homeostatic gene expression increases in early development 
to attain a stable level throughout adulthood. Old age (>18M) is featured by a loss of said homeostatic genes. b) 
Homeostatic and sensome gene expression correlate highly. 

Next, a panel of microglial genes (Csf1r, Cx3cr1, Hexb, P2ry12, Tgfbr1, Tmem119) were selected and 

displayed individually (Figure 42). 3 key points were noted. First, Hexb was expressed highly and 

stable in all developmental and homeostatic clusters, as well as in several others (e.g. exAM); 

indirect proof of the validity of Hexb to reliably identify microglia (Masuda et al., 2020) (Figure 42). 

Second, in contrast, Csf1r, Cx3cr1, P2ry12, Tgfbr1 and Tmem119 showed considerable variability in 

the clusters, highlighting their transcriptional dynamics throughout life (Figure 42). Notably, P2ry12 

and Tmem119 levels were both lowered in cluster 8, that is, LPM (Figure 42). 

 
Figure 42: Homeostatic gene expression in the single-cell atlas. VlnPlot of 6 homeostatic genes in a cluster-specific manner.  

Regarding Tgfbr1 and Tmem119, expression of these genes was overtly lower in early development, 

in line with their developmentally regulated expression; Tmem119, and Tgfbr1 expression increases 
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with age, reaching stable adult levels from P14 onwards (Figure 43) (Bennett et al., 2016; Butovsky 

et al., 2014). 

 
Figure 43: Microglial maturation and canonical marker expression. VlnPlot of Tgfbr1 and Tmem119 expression levels by 
age group.   

3.4.2.7 Interferon response microglia – a distinct age-associated microglial subtype 

Interferon response microglia (IRM) are enriched for genes in the interferon (IFN) response 

pathway. The canonical type I IFN signalling pathway is featured by mediators of antiviral and 

inflammatory responses, as well as repressors of inflammatory pathways (Ivashkiv and Donlin, 

2014). Although some IFN genes have also been reported in other age-associated cell types like 

DAM or white matter-associated microglia (WAM), IRM cells are believed to be mutually exclusive 

(Sala Frigerio et al., 2019). Sala Frigerio et al. (2019) performed a trajectory inference and found 

that microglia with age differentiate into either IRM or ARM (i.e. DAM) (Sala Frigerio et al., 2019).  

Although some IRM cells can be seen throughout the single-cell atlas, most are localized to cluster 

10 and are transcriptionally distinct from LPM (Figure 44). Furthermore, markers of cluster 10 

display minimal overlap with typical markers of age-associated DAM or WAM, and none of which 

are shared between all three (Figure 45). As shown previously, Apoe expression is elevated in early 

development (cluster 2, 5, 6 and 8) and in CAM (Figure 36). In contrast, HOM and IRM expression 

of Apoe is relatively low (Figure 36), supportive of a distinct trajectory. 
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Figure 44: Interferon response microglia in the single-cell atlas. a) FeaturePlot of IRM gene annotation. b) Transcriptional 
overlap between age-associated microglial subtypes is minimal. Disease- (DAM) and white matter-associated microglia 
(WAM) and interferon response microglia (IRM) do not display large transcriptional similarities, with the greatest overlap 
between DAM and WAM signatures. c) Cluster 10 cells express interferon response genes (e.g. Ifit3, Irf7, Oasl2, Usp18) 
and are identified as interferon response microglia (IRM). 

3.4.2.8 Aged Inflammatory Microglia 

Cluster 13 is marked by genes like Cd83, Gpr84, Tlr2, Cxcl16, Id2 and Nfkbia. Cd83 is best described 

for as a mature dendritic cell (DC) marker, as well as an immune checkpoint molecule in B- and T-

cell differentiation (Grosche et al., 2020; Z. Li et al., 2019). Although there have been reports of DC 

populations that express Iba1 and could therefore be confused with myeloid cells (Köhler, 2007); 

cluster 13 reliably expressed typical microglial markers like Tmem119, Hexb, P2ry12 and Tgfbr1, as 

well as Csf1r and Cx3cr1 to comparable levels as seen in CAM (i.e. cluster 11) (Figure 42). In 

microglia, Cd83 has been linked to inflammatory microglia in murine and human tissue that 

increases with age (Jin et al., 2021; Olah et al., 2020; Zheng et al., 2021). Indeed, cluster 13 increases 

with age, an effect that I will address in the next section on microglial population dynamics. The 

inclusion of genes involved with the microglial activation cascade (i.e. Tlr2, Nfkbia) further 

highlighted their inflammatory state. For that reason, this cluster was termed Aged Inflammatory 

Microglia (AIM).  

 Age-specific effects on microglial population dynamics 

Age is the major driver of microglial heterogeneity in health. Early development and age-associated 

clusters identified and explored, including AIM, CAM, CPM, EDM, HOM, IRM and LPM. The data 
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shows that these 7 major subtypes are the drivers of microglial heterogeneity in the murine 

lifespan; 5 distinct HOM-clusters bring the total to eleven. However, the underlying population 

dynamics are so far unexplored. That is, how the emergence and decline of microglial subtypes 

varies in an age-dependent manner. To this end, I illustrated their respective occurrence across the 

age groups; from early microglia up to and including old age microglia (Figure 45). 

 
Figure 45: Age group-dependent cluster distribution and annotation. a) DimPlot of microglial and CAM clusters. 15 cluster 
were identified, 11 of which include microglial clusters and CAM, excluding cluster 7, 12 and 14. b) BarPlot of age group 
specific population dynamics. c) StackedBarPlot of the 11 clusters, to display predominant clusters by developmental age. 
AIM, Aged Inflammatory Microglia, CAM, CNS-associated macrophages; CPM, cycling and proliferating microglia; EDM, 
early developmental microglia; HOM, homeostatic microglia; IRM, interferon response microglia; LPM, lysosome 
pathway-associated microglia. Early microglia (<E14), pre-microglia (E14-P9), SIM, sexually immature microglia (P9-P28), 
adolescent microglia (P28-P60), adult microglia (P60-6M), middle age microglia (6M-18M), old age microglia (>18M). P, 
postnatal day; M, months old. 

Most microglia in early development are CPM and EDM; 80 – 95% of all microglia belong to these 

subtypes. In old age, CPM and EDM occur as a minority population. In turn, CAM do not have an 

overt age-specific prevalence and can stably be identified across the lifespan. 

Unlike CPM and EDM, HOM-clusters gradually increase in early development, followed by an 

exponential growth in SIM (P9-P28) (Figure 45). By adulthood, HOM-clusters reach a maximum, 

after which the populations decrease to approximately 80% of all microglia in old age. Interestingly, 

the HOM-clusters display a differential maturation profile. HOM2 reach their maximum early in 

development, concurrent with the rapid expansion of the homeostatic population. In contrast, 
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HOM3 gradually increases with age, increasing its relative proportion in a declining homeostatic 

population.  

In turn, the loss of HOM-clusters with old age are concurrent with the gains of other phenotypes 

(Figure 45). AIM form a small yet stable microglial population with aging, whereas IRM and LPM 

each increase to ~6% in old age. LPM display a bi-modal pattern of occurrence, in which early 

developmental and late life prevalence suggests biological relevance in each. 

Interestingly, on average, AIM, IRM and LPM have lower pseudotime scores than HOM-clusters 

(Figure 46). Furthermore, HOM3 has the largest variability in pseudotime score, a finding that is 

supported by the relatively large proportion of middle age microglia and old age microglia in this 

subtype. Sala Frigerio et al. (2019) had previously described TRM, also known as ‘transiting 

response microglia’ (Sala Frigerio et al., 2019). It is possible HOM3 describes a similar intermediary 

microglial subtype, central to maturation and age-associated loss of microglial identity. 

 
Figure 46: Homeostatic clusters display a higher pseudotime score. a) Boxplots of the major 11 microglial and CAM clusters 
for their pseudotime scores. Variations in score are evident. b) Barplot of cluster distribution by age group. AIM, Aged 
Inflammatory Microglia, CAM, CNS-associated macrophages; CPM, cycling and proliferating microglia; EDM, early 
developmental microglia; HOM, homeostatic microglia; IRM, interferon response microglia; LPM, lysosome pathway-
associated microglia. Early microglia (<E14), pre-microglia (E14-P9), sexually immature microglia (P9-P28), adolescent 
microglia (P28-P60), adult microglia (P60-6M), middle age microglia (6M-18M), old age microglia (>18M). P, postnatal 
day; M, months old 

Taken together, acquisition of a mature microglial identity finds its origin in early developmental 

clusters like CPM, EDM and LPM (Figure 45). The maturation of microglia is concurrent with an 

increased pseudotime score, which is reduced with the emergence of age-associated subtypes like 

AIM, IRM and LPM (Figure 46). Strikingly, the occurrence of LPM in early development and late life 

implies that this phagocytic microglial subtype is a marker of dysbiosis; in which LPM functions to 

establish homeostasis. Moreover, the transcriptional similarities of PAM, ATM and DAM, elude 

that such microglia are each states within the umbrella of the LPM subtype (Figure 34, Figure 35, 

Figure 36). 
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 No overt region-specific signatures were detected 

Microglial region-specific signatures have been a debated concept in the single-cell literature. Here, 

no region-specific enrichment was evident in the clusters (Figure 47). Most cells derive from whole 

brain (WB) samples, possibly introducing a source data bias against the identification of such 

effects. Moreover, simple differences in population dynamics might explain bulk RNA-seq 

transcriptional heterogeneity, where scRNA-seq might be lacking. In short, the analyses were not 

designed to resolve this debate. Albeit a moderate enrichment of yolk sac (YS)-derived microglia in 

cluster 11 (i.e. CAM) was noted, as well as an enrichment of neutrophils in the spinal cord (Figure 

47, Supplementary Figure 8).  

 
Figure 47: Regional cluster identities. Cluster identities derive from a diverse range of regions and do not illustrate any 
region-specific clusters, albeit a relative enrichment of yolk sac (YS) microglia can be seen in cluster 11. AIM, Aged 
Inflammatory Microglia, CAM, CNS-associated macrophages; CPM, cycling and proliferating microglia; EDM, early 
developmental microglia; HOM, homeostatic microglia; IRM, interferon response microglia; LPM, lysosome pathway-
associated microglia. CBM, cerebellum; CC, corpus callosum; CP, choroid plexus; CTX, cortex; FB, forebrain; GM, grey 
matter; HP, hippocampus; MB, midbrain; OB, olfactory bulb; PFC, prefrontal cortex; SC, spinal cord; STR, striatum; SVZ, 
subventricular zone; WB, whole brain; WM, white matter; YS, yolk sac. 
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CAM, a macrophage population featured by the expression of a.o. Cd74, Pf4, Dab2, Apoe and Mrc1, 

were discussed previously (Figure 29, Supplementary Table 2). In fact, markers (with an avg_log2FC 

over 1.5) in cluster 11 greatly overlapped with YS markers (Supplementary Table 11). Moreover, 

the absence of P2ry12, Tgfbr1 and Tmem119 expression in CAM was noted (Figure 42). Such 

findings further support their shared ontogeny and subsequent divergent differentiation. 

Moreover, it provides an argument against regional specific signatures, where microglial subtypes 

are distributed across the CNS. 

 Microglial maturation and sex-specific heterogeneity 

Several studies have reported sex-specific effects in microglia, including those supporting distinct 

transcriptional signatures, functions and maturation trajectories (Guneykaya et al., 2018; 

Hanamsagar et al., 2017; Villa et al., 2018). However, most studies report on male mice and prevent 

such comparisons, or fail to report on sex all together, a feature that was causal to an unequal 

distribution of sexes in the dataset; a total of 28,740 cells were annotated as female, 66,569 as 

male. This uneven distribution is best visualized in cluster 10 (i.e. HOM5), where most cells derive 

from male cells (Figure 48). Of note, HOM5 (i.e. cluster 10) is disproportionally enriched for male 

3.5M old cells (~95%), more than what the sex distribution at this age would predict (13,680 of 

22,031 cell are male at this age; ~62%) (Figure 48, Supplementary Table 12). Interestingly, most of 

these cells derive from Hammond et al. (2019). Cluster 10 is featured by typical homeostatic 

microglial markers, perhaps to a more defined level, and corresponds to a higher pseudotime score 

(Figure 40, Figure 46). Sample collection, tissue processing, as well as cluster parameters can each 

play a role in the cluster identification. 
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Figure 48: Sex is distributed unevenly across the cluster identities. Female- and male-specific microglia percentages differ 
in the single-cell atlas, with greater numbers of male microglia. Uneven distributions are most pronounced HOM5.  

To move beyond this limitation, a trajectory inference was performed of sex-specific cells in an age-

dependent manner (Figure 49). As it became evident in previous analyses, there is a lack of available 

data in SIM, in the transition of pre-microglia (E14.5 – P9) to adolescent microglia (P28 – P60). 

However, a unique convergent and divergent maturation pattern was found between male and 

female cells across the lifespan (Figure 49). From a shared developmental pseudotime score, female 

microglia mature faster to P90, scores converge at 3.5M, to diverge once more in old age (21M) 

(Figure 49). 
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Figure 49: Microglial maturation varies in a sex-specific manner. Female and male microglia display distinct maturation 
trajectories, where female microglia start to display a greater degree of maturation from P5, to equilibrate around at 
3.5M old.  

To further the understanding of sex-specific maturation, I created a subset of key age groups (excl. 

cluster 7, 11, 12 and 14). E14.5, P4, P90, 3.5M, 6M, 18M and 21M were selected, as these capture 

the convergent and divergent behaviour described previously. These ages naturally have a more 

balanced sex-distribution than in the complete atlas, although more male cells were evident in both 

3.5 and 18M and cluster-specific enrichment is noted. See Supplementary Table 12 for a 3-way 

contingency table of cell number based on age, sex, and cluster.  

DGE-analysis of the age groups in a sex-specific manner identified key genes that varied along the 

lifespan (Figure 50). Interestingly, apart from the expression of Xist –an X-chromosome inactivation 

genes specific to females - no pan-sex differential genes were detected. That is, gene expression 

signatures vary by age group, sex, and cluster (Figure 50).  
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Figure 50: Sex-specific differentially expressed genes in group ages. Heatmap of age group specific genes differentially 
expressed between sexes. Key genes are annotated with a white rectangle, to illustrate the sex, age, and cluster in which 
they are expressed. 

Early on in development, a typical gene signatures was identified that includes the expression of 

Apoe, Spp1 and Cd63, consistent with findings in the large-scale atlas (Figure 33). Interestingly, early 

microglia also express Tmsb4x. This gene has previously been discussed as a lysosomal pathway-

associated gene in the principal component analysis (PC20) (Supplementary Figure 4).Tmsb4x has 

also been described as a typical gene enriched in single-cell relative to single-nuclei RNA-sequencing 

(Gerrits et al., 2020).  

Once mice have reached 3.5M old, both male and female microglia take on a broad gene signature. 

At first glance this includes microglial markers like Tmem119 and Selplg, and a variety of ribosomal 

genes such as Rpl30, Rpl22l1, Rpl39, Rpl36a, Rpl22, Rpl38, Rps24, Rpl26 and Rps15a. Metascape 

analysis shows that these genes encode proteins that enable SRP-dependent co-translational 

protein targeting to the cell membrane (Figure 51).  

 
Figure 51: Protein-protein interaction network and gene enrichment of adult microglia.  

This finding is not directly of importance; however, this same gene signature is upregulated once 

more in middle age, male microglia, without an equivalent in female microglia. Moreover, it is 

specifically enriched in cluster 0 (i.e. HOM1), and extended by the expression of Tmsb4x, hinting at 
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a male-specific transcriptional program. Similarly, cluster 10 (i.e. HOM5) showed an expression of 

Ccnd3, a gene typically associated with cell cycle, but one that has previously been ascribed to sex-

specific microglial maturation and immune function (and the role of microbiota) (Erny et al., 2015; 

Thion et al., 2018). 

What became evident is that differences in male and female maturation corresponds to distinct 

population dynamics throughout life (Figure 52). Indeed, AIM, and IRM in middle age (18M) male 

mice are elevated, as are LPM in old age (21M) females. Furthermore, female HOM-clusters 

gradually reduce in prevalence with age, whereas males remain broadly stable.  

 
Figure 52: Sex-specific population dynamics across the lifespan. Relative proportions of female and male microglial 
subtypes differ, where female have a greater increase of LPM in old age, male display greater proportions of AIM and IRM 
by middle age. AIM, Activated Inflammatory Microglia; CPM, cycling and proliferating microglia; EDM, early 
developmental microglia; HOM, homeostatic microglia; IRM, interferon response microglia; LPM, lysosome pathway-
associated macrophage.  

Furthermore, the prevalence of HOM-clusters varies in a sex-specific manner (Figure 53). Over the 

course of the lifespan, both sexes take on a HOM3 subtype at E14.5 and P4. However, from P90 

onwards the first differences emerge; albeit HOM1 and HOM2 have similar proportions in both 

sexes, approximately 30% of female microglia take on a HOM4 state. In contrast, male microglial 
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development is protracted, acquiring HOM4 (and HOM5) at 3.5M. Similarly, by middle age (18M) 

male microglia have a larger diversity of HOM-clusters than female cells and are featured by a 

relative increase in HOM1. Moreover, HOM3 increases with age in both sexes, although male 

microglial increases are tempered by the concurrent increases of HOM1 and HOM4. Follow up 

research is needed to ascertain if HOM3 is indeed as an intermediary or transitory microglial state, 

and how and if these cells can be targeted for therapeutic intervention. 

 
Figure 53: Population dynamics of HOM-clusters in a sex-specific manner. Female and male homeostatic (HOM)-clusters 
have different proportions across life. Greater diversity is typically seen in male cells, concurrent with a protracted 
development to a high pseudotemporal score (HOM4, HOM5).  

Taken together, the analyses indicate that male and female transition through the different clusters 

using different temporal trajectories, but they do not have unique microglial subtypes. The male 

microglial population displays a protracted development and greater homeostatic heterogeneity. 

This in fact suggests that there is a male-specific cluster in the atlas. Such effects could aid the 

understanding of age-associated disease susceptibility in females; however, it should be noted that 

these effects are small and require reproduction in situ. 

3.5 Discussion 

Here, an atlas of microglial heterogeneity in health was generated that includes cycling and 

proliferating microglia (CPM), early developmental microglia (EDM), interferon response microglia 

(IRM), lysosome pathway-associated macrophage (LPM), age inflammatory microglia (AIM), and ex 

vivo activated microglia (exAM). Moreover, it was found that age is the largest driver of microglial 

heterogeneity in health, without overt transcriptional dynamics driven by CNS region. Age and sex 

intersect to drive sex-specific maturation, microglial heterogeneity, and population dynamics. 

Before addressing the microglial clusters in detail, I will bring to light some of the intrinsic limitations 

and caveats-associated with these analyses. 
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 Technical limitations on biological heterogeneity 

Technical variables can impose limitations in the discrimination of biologically relevant 

transcriptional heterogeneity. In the analyses, several bioinformatic tools were utilized that each 

have features that could restrain discovery. 3 considerations are made, not to diminish the value of 

the results, but to provide a context in which these results were acquired. 

First, Monocle 3 is a tree-based approach; that is, it does well with tree-like lineage structures (Cao 

et al., 2019; Saelens et al., 2019). Monocle 3 lacks the ability to reconstruct more complex graph-

based structures. I do not anticipate this to affect the findings, albeit it is important to recognize 

the potential limitations of such a choice. A trajectory was identified that allowed for the 

identification of an age-dependent microglial maturation profile in old age that features a loss of 

microglial identity, sex-specific divergence of maturation, and cluster-specific pseudotime scores. 

In light of that, a connected graph-based method like PAGA would be the most appropriate method 

for trajectory inference (Saelens et al., 2019). Not having done so could have restricted the ability 

to detect further complex interactions.  

Second, exAM were present in the integrated dataset, the effects of which I choose not to remove 

from the dataset (by regression or gene exclusion), to provide a fair representation of 

transcriptional heterogeneity in scRNA-seq data. Cluster 9 in the data was enriched for ex vivo-

activated gene signatures, corresponding to established gene lists describing such features. The 

association of these signatures with Tgf-ß signalling in exAM, and early developmental Tgf-ß 

signalling for the acquisition of an adult microglial identity, suggests that such effects are intrinsic 

to microglia. In fact, identification of exAM with a gene list provided by Li et al. (2019) underlines 

this, reaching far beyond cluster 9 and into homeostatic clusters. Removal of such effects by 

regression might therefore affect true biological heterogeneity. It would be interesting to explore 

the causal factors behind artefactual gene signatures (if these become a prohibitive factor).  

Third, Svensson et al. (2020) find that the number of identified subtypes in an atlas is proportional 

to the number of cells in it (Svensson et al., 2020). In the dataset, the minimum fraction were 

neutrophils (cluster 14). However, looking at the myeloid clusters alone, the argument can be made 

that the rarest fraction is AIM (cluster 13); 907 AIM cells were identified amongst 113,689 cells in 

the atlas, which equates to <1% of the total. Furthermore, 5 distinct clusters of homeostatic 

microglia were identified. Together, the identification of AIM and the presence of HOM 

heterogeneity provides an argument for the relative stability of the atlas. That is, if such states can 

be reliability detected with known markers, smaller populations that might have been missed are 

not expected to have a large biological role in healthy aging.  

In fairness, selecting a resolution of 0.5 (or 20 dimensions) in an atlas of this size is remarkable. 

Many other studies using less cells have used a higher resolution (Hammond et al., 2019; Kracht et 
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al., 2020). This would extract more information out of the atlas. This would increased the number 

of cluster in the atlas defined here too, yet by not doing that, I was able to define clusters reliably. 

In fact, it strengthens the claim pertaining to the transcriptional similarities of DAM, PAM and ATM.  

 DAM, PAM and ATM are collectively described by a common gene signature  

Cluster 8 is enriched with genes commonly ascribed to DAM, PAM and ATM, including Csf1, Lpl, 

Spp1, Igf1, Gpnmb, and Apoe. This core set of genes is found in all three cell types and are typical 

markers for in situ hybridization of such cells, in parallel to probes for Cd11c (Itgax) and Clec7a 

(Hammond et al., 2019; Keren-Shaul et al., 2017; Li et al., 2019; Safaiyan et al., 2021). This has led 

me (and others before me) to argue for a more integrative nomenclature in the field of scRNA-seq 

(Benmamar-Badel et al., 2020).  

Benmamar-Badel et al. (2020) annotate DAM, PAM ATM collectively as Cd11c+ microglia, effectively 

forming a bridge between their previous work and others (Benmamar-Badel et al., 2020; Kamphuis 

et al., 2016; Keren-Shaul et al., 2017; Wlodarczyk et al., 2017). However, for nomenclature to be 

reflective of function, as well as the multi-dimensional nature of microglial identity, I would like to 

argue that these phagocytic cells are collectively best described as ‘lysosome pathway-associated 

macrophage’ or LPM. 

DAM, PAM and ATM are each ascribed a protective role and occur throughout development, aging 

and disease. In addition, recent work identified white matter-associated microglia (WAM) in the 

aging brain; and lipid-associated macrophages (LAM) in adipose tissue (Jaitin et al., 2019; Safaiyan 

et al., 2016). Each subtype (in the CNS or periphery) is thought to be phagocytic and essential for 

lipid metabolism. Taken together, it is highly likely that LPM describe a family of closely related 

myeloid states, taking on a distinct (nuanced) signature depending on the context (e.g. age, disease, 

sex). Indeed, despite their transcriptional similarities, there have been reports of varying 

dependencies on Trem2 and Apoe, key regulators of age-associated disease as well as early 

development (Butovsky et al., 2014; Jaitin et al., 2019; Keren-Shaul et al., 2017; Safaiyan et al., 

2021).  

e.g., PAM in early development are independent of Trem2 and Apoe, whereas WAM with aging are 

independent of Apoe alone (Li et al., 2019; Safaiyan et al., 2021). In contrast, to acquire an LMP 

signature, microglia and macrophages rely on Trem2 and Apoe depending on which state these cells 

are in (Jaitin et al., 2019; Keren-Shaul et al., 2017). Regardless, the TREM2-APOE signalling pathway 

is central to LMP signature acquisition. 

Interestingly, there have been reports that dysfunction of DAM-like cells was associated with lipid 

droplet accumulations (Baik et al., 2019; Krasemann et al., 2017; Marschallinger et al., 2020; Ulland 

et al., 2017). Furthermore, some (but not all) DAM undergo replicative senescence in AD in humans 
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and mouse models (Hu et al., 2021). Together, these studies outline a context-specific 

diversification of the LPM family not evident in healthy aging. As always, microglia appear to be a 

population of cells with distinct responses and responders (Gertig and Hanisch, 2014).  

 Age-dependent microglial heterogeneity and population dynamics 

Age is the main driver of microglial heterogeneity. Early in CNS development, three typical subtypes 

can be identified: EDM, CPM, LPM. Each of these subtypes have their largest prevalence in early 

development, albeit LPM is an exception to that rule, where age increases their prevalence once 

more. Of note, the increase of LPM, as well as IRM and AIM, is concurrent with a proportional 

decline of homeostatic signatures with age. The loss of HOM clusters might underlie a biologically 

and clinically relevant finding.  

Age brings about neuroinflammation and susceptibility to diseases like AD, Parkinson’s disease (PD) 

and MS (Von Bernhardi et al., 2015). Microglia are central to changes to the CNS immune 

environment and are known mediators in each of these diseases. Changes to the microglial 

population are therefore indirectly linked to healthy aging. A loss of microglial identity towards a 

more inflammatory subtype (e.g. AIM, IRM, LPM) might be functionally necessary; however, as 

discussed, transcriptional diversification, cell lipid stress and replicative senescence could abrogate 

effective cellular responses to tissue damage accrued with disease (Baik et al., 2019; Hu et al., 2021; 

Krasemann et al., 2017; Marschallinger et al., 2020). In fact, LPM might be of particular importance. 

The family of LPM consists of a plethora of distinct microglial and macrophage subtypes, including 

LAM, DAM, WAM, ATM, PAM, MGnd and ARM. As a family, LPM interact broadly (and to different 

degrees) with the TREM2-APOE pathway and are associated with late-onset AD risk factors. In the 

atlas, LPM are enriched for AD-risk factors in early life, as well as in old age. In fact, early 

developmental and old age expression of Apoe appear to have an inverse relationship with 

homeostatic signatures.  

Interestingly, the CNS immune environment in early development is relatively quiescent compared 

to old age (Mogilenko et al., 2022). That is, the environment in which Apoe functions differs 

between age groups, potentially affecting its subsequent transcriptional diversity. Microglia are 

known to be regulated by autocrine and paracrine signalling, among which in communication with 

neurons and astrocytes (Matejuk and Ransohoff, 2020; Szepesi et al., 2018). Furthermore, 

microglial LRRC33 is a TGF-ß1 -associated molecule that establishes a milieu in which microglial 

homeostasis is acquired and maintained only after interactions with integrin aVb8-bearing cells 

(e.g. astrocytes, OPC, oligodendrocytes), for a highly localized and self-propagating cascade of 

microglial identity (Qin et al., 2018). Absence of such interactions increased microglial reactivity 

and myelopathy, clearly outlining the importance of microglia to be in interaction with their 
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environment. By extension, it would be interesting to explore if there are substantial interactions 

between microglia in healthy aging, e.g. between IRM and LPM. scRNA-seq tools like Cell Chat are 

well within this functionality (Jin et al., 2021). Regardless, if cell-cell interactions are critical to 

microglial identity, loss of sensome genes with age would impinge on microglial homeostasis. 

Furthermore, variations in such environment- or region-specific support signals could instil regional 

heterogeneity. 

 No regional heterogeneity was detected in the atlas 

Region-specific microglial heterogeneity has long been an established factor in humans and mice, 

with reports of epigenetic, transcriptional, translational and metabolic diversity throughout the CNS 

(Askew et al., 2017; Ayata et al., 2018; Böttcher et al., 2019; De Biase et al., 2017; Grabert et al., 

2016; Hart et al., 2012; Lawson et al., 1990; Lopes et al., 2022). However, Li et al. (2019) argues 

against the presence of such diversity. Here, the authors failed to detect regional transcriptional 

heterogeneity with scRNA-seq and RNA-seq. At first glance, no regional heterogeneity in healthy 

aging was detected, as there are no clusters specific to the CTX, CB, HIP, or any of the other regions 

included in the dataset. However, given the wide-spread evidence of regional heterogeneity (across 

modalities), it is important to understand why no such effects were identified with scRNA-seq.  

First, inroads have been made to increase the understanding how transcriptional heterogeneity 

gives rise to the microglial population. Of note, distinct population dynamics in male and female 

cells were shown. Considering that, and reflecting on the bulk RNA-seq study by Grabert et al. 

(2016), it is highly likely the reported divergence of regional transcriptional heterogeneity with age 

was driven by distinct microglial populations. This then begs to question, why did Li et al. (2019) 

not find such heterogeneity in their bulk RNA-seq work? To start, the age of the animals used 

differed between the studies; P60 mice for Li et al. (2016), where Grabert et al. (2016) make use of 

animals that are 4, 12 and 22 months old (Grabert et al., 2016; Li et al., 2019). I have shown that 

age is the main driver of heterogeneity, and such experimental differences are expected to play a 

role. To continue, Li et al. (2019) isolate and sequence a relatively small population of cells, which 

effectively informs on microglial states like CPM, but might fall short in identifying large-scale 

population dynamics and microglial subtypes. To truly address transcriptomic, regional 

heterogeneity, it will be important to employ spatial transcriptomics and histology of well-

established microglial markers in a targeted manner. 

Second, some form of regional heterogeneity in the healthy CNS is evident. LPM and IRM cells were 

identified in the atlas, each of which has been reported to be enriched in white matter tissues 

(Hammond et al., 2019; Li et al., 2019; Sala Frigerio et al., 2019). Csf1, Spp1 and Gpnmb are 

commonly used to identify LPM in early development, whereas IRM express Usp18, a gene which 

encodes a protein in white matter microglia (Goldmann et al., 2015; Hammond et al., 2019; Li et 
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al., 2019). Although there have been reports that these cell types could in fact be transcriptionally 

similar, the data reported here suggests that LPM and IRM are transcriptionally distinct populations 

in correspondence with Sala Frigerio et al. (2019) (Hammond et al., 2019; Sala Frigerio et al., 2019). 

Indeed, LPM and IRM feature different levels of Apoe expression; high and low Apoe expression, 

respectively. Currently there is not answer how Apoe in LPM corresponds to an independence of 

Apoe in PAM and WAM.  

Looking at regional heterogeneity beyond the grey- and white- matter, no further tissue-specific 

heterogeneity was identified apart from a minor enrichment of YS-derived cells in CAM (i.e. cluster 

11). As stated, it is likely that this enrichment is due to the transcriptional similarities within the 

myeloid lineage (Mass et al., 2016). The absence of any further findings might originate due to 

bioinformatic limitations. 

In the generation of the single-cell atlas 3000 variables were selected and retained. This is a default 

parameter in the ‘SelectIntegrationFeatures’ function. Furthermore, prior to that, 2000 genes 

variable genes are selected with ‘FindVariableFeatures’ in each individual dataset. Albeit these 

settings reduce computational requirements and increase the identification of major sources 

affecting heterogeneity, it could confound the detection of smaller factors like region and sex.  

In the dataset, a large-scale age-specific effect on microglial heterogeneity was identified. The size 

of this effect might simply mean that there is no ‘resources’ left to identify other context-specific 

effects. That is, if most of the transcriptional signatures are driven by age, a minority effect will be 

less evident. To circumvent such limitations, researchers need to ensure such effects are not 

selected against in their bioinformatic pipeline. Similarly, although a large range of tissues was 

included in the atlas, none have the same prevalence as WB-derived cells. This imbalance is 

expected to introduce biases in the subtype and state identification. 

A point of interest, recent work by Seeker et al. (2022) identified regional glial heterogeneity in the 

normal human white matter of the CNS. Using snRNA-seq, the authors find distinct microglial 

transcriptional signatures in the CTX, CB, and cervical SC (Seeker et al., 2022). Relative to the CB 

and CTX, the cervical SC has an increased expression of HIF1A, and a higher expression of 

histocompatibility-associated genes, reminiscent of the findings by Grabert et al. (2016) (Grabert 

et al., 2016a; Seeker et al., 2022). In fact, it matches to and underscores the potential role of 

population dynamics in the identification of such region-specific signatures. Moreover, 

upregulation of HIF1A in microglia has been shown to increase AD-associated neuropathology, and 

in turn, associates with an origin of such pathology in the white matter (Hahn et al., 2022; March-

Diaz et al., 2021; Safaiyan et al., 2021). 
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 Microglial heterogeneity during sexual maturation is understudied 

Regarding sex-specific heterogeneity, similar arguments apply as those use for region specificity, 

where bioinformatic parameters, methods and cellular distribution are expected to influence the 

outcome. Although literature has started to explore sex-specific heterogeneity, scRNA-seq data 

that includes both male and female remains sparse, often only male tissues are used. In the atlas, 

the sex imbalance is clearly visible and across all annotated subtypes. On average, male and female 

cells are at a ratio of 2:1. Fortunately, the failure to sex-match research is a recognized problem in 

biomedical science and drug development, one which is increasingly addressed (Ravindran et al., 

2020; Zucker and Beery, 2010). However, in contrast to regional effects, the size of the atlas and 

the bimodal nature of sex allowed furher study of the effects of sex on microglial maturation. 

Indeed, preliminary analyses of sex-specific heterogeneity have shown that male and female 

microglia age differentially.  

Distinct pseudotemporal trajectories were identified between male and female microglia, with 

female cells progressing faster to a mature microglial identity; consistent with male and female cells 

having a different microglial developmental index (MDI), terminology first introduced by the group 

of Staci Bilbo, and in correspondence with other studies reporting on sex-specific microglial 

heterogeneity (Guneykaya et al., 2018; Hanamsagar et al., 2017; Thion et al., 2018; Villa et al., 

2018).  

Interestingly, microglial age group-specific differentially expressed genes (DEG) were detected. 

Most strikingly, adult (3.5M) male and female microglia express a gene signature that is enriched 

for typical microglial markers like Tmem119 and Selplg, as well as several ribosomal-associated 

transcripts. GO analysis with Metascape showed that the ribosomal transcripts form a protein-

protein interaction network, a network of transcripts that could stimulate cell membrane protein 

targeting. Of importance, the expression of this signature is concurrent with the sensome signature 

and by extension MDI. Pseudotemporal scores and DEG follow a similar pattern. Remarkably, once 

microglia reach middle age, male microglia retain this signature enriched for ribosomal markers in 

a cluster-specific manner, whereas female cells lose it. Furthermore, the signature in middle age 

microglia is restricted to cluster 0 (i.e. HOM1), outlining the differences in population dynamics 

between the sexes. Moreover, the absence of the ribosomal signature in female cells precedes the 

loss of HOM-clusters and the proportional increase of LMP in old age microglia.  

Taken together, female microglia mature faster towards an adult microglial signature; however, 

female cells also lose this identity at an earlier age and display a greater predisposition to age-

associated disease (Pinares-Garcia et al., 2018). In contrast, males undergo a protracted 

development and are more susceptible to early developmental diseases like autism and 

schizophrenia (Pinares-Garcia et al., 2018). Such findings imply that there is a biological trade-off 
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between fast and slow maturation, where microglial health is a finite resource throughout the 

lifespan (Figure 54). 

 
Figure 54: Hypothetical model of sex-specific early and late life disease susceptibility. Female microglia mature faster than 
male microglia, leaving males prone to early developmental disease, whereas females display a greater propensity to age-
associated disease. In this model, microglial fitness is finite in both sexes. 

 Summary 

In summary, the single-cell atlas was particularly well-suited for the identification of age-specific 

effects on microglial heterogeneity. Age is the largest driver of microglial heterogeneity during the 

lifespan, with smaller sex-specific effects, and without region-specific effects.  

In this compendium, a conservative approach to subtype identification was taken, consequentially, 

key microglial subtypes from literature were reliably identified, as well as provided sorely needed 

simplifications in nomenclature.  

The microglial population consists of several transcriptionally unique microglial subtypes, among 

which AIM, CPM, EDM, HOM, IRM and LPM. Throughout life the prevalence of these six microglial 

subtypes varies, from what appears to be functional adaptations to biological events like 

developmental expansion, myelination, and age-associated neuroinflammation. LPM, as a family of 

microglial subtypes, is postulated to display greater variability with expanding context-dependent 

drivers of heterogeneity; diversification which is absent in healthy aging. 

Lastly, for effects of region and sex on microglial heterogeneity, bioinformatic and experimental 

workflows need to target such effects to allow for their identification from larger age-specific 

effects. A study of sex-specific microglial selection in a region-specific manner would help provide 

a valuable answer currently missing in literature. How does sex-specific disease susceptibility 

emerge and does microglial selection play a role in that?  
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3.6 Supplementary Figures 

 

Supplementary Figure 1: DimPlot of identified clusters and the anchors identified between datasets. 15 distinct clusters 
(of 113,690 cells) were identified in the integrated single-cell atlas, each with corresponding anchors between clusters 
across datasets. Clusters in the integrated object were identified with 20 dimensions and a resolution of 0.5. 
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Supplementary Figure 2: Principal component analysis (2). Principal component (PC) 3 to 8 are visualized, illustrating their 
respective gene sets. 



105 

 

Supplementary Figure 3: Principal component analysis (3). Principal component (PC) 9 to 14 are visualized, illustrating 
their respective gene sets. 
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Supplementary Figure 4: Principal component analysis (4). Principal component (PC) 15 to 20 are visualized, illustrating 
their respective gene sets. 
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Supplementary Table 1: Top 50 cluster markers of the single-cell atlas (1). 

# Seurat cluster (i.e. integrated_snn_res.0.5) 
  0 1 2 3 4 5 6 
1 Selplg Malat1 Apoe 

NONE AVAILABLE  

Bmp2k Ube2c Fabp5 
2 Cst3 Tmem119 Cd63 Bhlhe41 Birc5 Ranbp1 
3 Rpl39 Fscn1 Ctsb Slc39a1 Stmn1 Ldha 
4 Rpl30 Selplg Gpx3 Itpripl1 Hmgb2 Stmn1 
5 Btg2 Slc2a5 Ftl1 Actb H2afx Ptma 
6 Jun Ecscr Npl Notch2 Ccnb1 Nme1 
7 Tmem119 Sparc Serpine2 Lrrc8a Cdk1 Ran 
8 Smad7 Tgfbr1 Ctsl Selplg Pbk Rrm2 
9 Basp1 Basp1 Gas6 Xist Ccnb2 Mcm6 
10 Tgfbr1 Sgk1 Slc25a5 Btg1 Cks1b Tipin 
11 Hk2 Cx3cr1 Cryba4 Tgfbr1 Top2a Ftl1 
12 Rpl36a Pmepa1 Fcgrt Fscn1 Cdca8 Eif5a 
13 Pmp22 Cst3 Apoc1 Hk2 Cdc20 Fen1 
14 Rpl22l1 Ptgs1 Plin2 Tmf1 Nusap1 Tpi1 
15 Rps27 Eng Npc2 Tmem119 Tuba1b Npl 
16 Slc2a5 Ccr5 Ybx1 Adrb2 Cdca3 Npm1 
17 Ecscr Zfhx3 Clta Malat1 Cdkn2c Eef1g 
18 Uqcrb Nrip1 Rac2 Cst3 Ran Mcm3 
19 Rps15a Lair1 Mt1 Cdk6 Spc24 Spp1 
20 Cd14 Slc1a3 Rps19 Dhrs3 Tubb5 Cdk4 
21 Malat1 Lrrc3 Pfn1 Ccr5 Rrm2 Slc25a5 
22 Fam46a Thrsp Gatm Zbtb38 Hmgn2 Gins2 
23 Klk8 Trf Ctsz Cx3cr1 Tuba1c Aldoa 
24 Rps24 Pmp22 Cd68 Tnpo3 Mki67 Mcm5 
25 Zfhx3 Bmp2k Igf1 Zfhx3 Ranbp1 Hspa8 
26 Trf Fgd2 Gnas Dusp6 Spc25 Eif4a1 
27 Sparc Klhdc8b Gltp Atf7ip Aurka Ung 
28 Hexb Plod1 Arpc1b Nrip1 Ptma Mcm2 
29 Slc1a3 Usp2 Arpc5 Mgat4a Tacc3 Tyms 
30 Sox4 Dusp6 Gpx1 Pmepa1 Asf1b Cryba4 
31 Thrsp Hexb Pqlc2 Sox4 Smc2 Gpx3 
32 Rpl22 Sqstm1 Nme1 Slc1a3 Cdkn3 Plin2 
33 Ptgs1 Herpud1 Rpl35 Mbnl2 Cenpf Rfc2 
34 Rpl38 Frmd4b Pld3 Sgk1 Aurkb Mcm7 
35 Xist Mgat4a Capns1 Cysltr1 Tk1 Prdx1 
36 Lair1 Prkab1 Snx2 Pmp22 Ccna2 Tubb5 
37 Cx3cr1 Mfap3 Renbp Lair1 Arl6ip1 Hspd1 
38 Serpinf1 Chsy1 Anxa5 Basp1 Hmgn1 Gmnn 
39 Calhm2 Sesn1 Commd4 Dnmt3a Cenpe Rpa2 
40 Susd3 Tmem86a Igfbp4 Slc40a1 Racgap1 Gapdh 
41 Taz Itpripl1 Myl6 Rps27 Tpx2 Pfn1 
42 Nrip1 Spint1 Ckb Fkbp5 Ldha Rpsa 
43 Tmem86a Slc46a1 Lag3 Rgl2 Prc1 Hmgn1 
44 Srgn Spsb1 Eef1g Cd14 Ddx39 Marcksl1 
45 Rpl23 Nfkbia Eif5a Rpl39 Kif22 Lig1 
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46 Thap3 Hk2 Rps5 Fgd2 Tyms Tuba1b 
47 Ppcdc Adrb2 Gipc1 Frmd4b Nme1 Rfc4 
48 Garnl3 Fcgr3 Hmgn2 Tubgcp5 Eif5a Lgals1 
49 Mgll Mbnl2 Gmpr Sesn1 Bub3 Ybx1 
50 Cd27 Tpst2 Uqcrc1 Trf Gpx1 Ctsb 

Note: Cluster-specific markers were identified with the ‘FindAllMarkers’ function of Seurat. FindAllMarkers with ‘only.pos 
= TRUE’, ‘min.pct = 0.25’,’ logfc.threshold = 0.25’, ‘test.use = "wilcox"’. 

Supplementary Table 2: Top 50 cluster markers of the single-cell atlas (2). 

# Seurat cluster (i.e. integrated_snn_res.0.5) 
  7 8 9 10 11 12 13 14 
1 Fos Spp1 Ifit3 Ccnd3 Cd74 Ifitm3 Cd83 Mmp9 
2 Jun Igf1 Ifitm3 Zfp36 Pf4 Lgals1 Gpr84 Ifitm2 
3 Egr1 Gpnmb Rtp4 Cx3cr1 Dab2 Ifitm2 Tlr2 Anxa2 
4 Hspa1a Lgals3 Isg15 Selplg Apoe Vim Cxcl16 Lgals3 
5 Btg2 Apoe Oasl2 Ccr5 Mrc1 Lgals3 Id2 Hdc 
6 Ccl2 Fabp5 Ifi27l2a Lrrc3 Ifitm3 Cnn2 Nfkbia Hp 
7 Ier2 Cd63 Usp18 Fscn1 Ifitm2 Cd74 Atf3 Pfn1 

8 Dusp1 Ftl1 Cxcl10 Tmem11
9 Lgals1 Lsp1 Tnf Tspo 

9 Zfp36 Cd9 Irf7 Sgk1 Ifi27l2a Tspo Slc15a3 Rac2 
10 Klf2 Ctsb Slfn2 Tgfbr1 Fcgrt Napsa Cd52 Adpgk 

11 Adamts
1 Ctsl Stat1 Pmp22 Folr2 Anxa2 Cxcl10 S100a11 

12 Btg1 Anxa5 Bst2 Frmd4b Snx2 Emb Lgals3 Cnn2 

13 Ppp1r15
a Plin2 Lgals3b

p Gpr165 Mgl2 Calm1 Herpud1 Glipr2 

14 Klf6 Gpx3 Xaf1 Nrip1 Blvrb Arhgdib Marcksl
1 Mxd1 

15 Socs3 Csf1 Ifit2 Mgat4a Cfp Rps19 C3ar1 Adam8 
16 Dusp6 Lgals1 Parp14 Plxnb2 Igfbp4 Arpc5 Cd14 Arpc5 
17 Sgk1 Cstb Ly6e Iffo1 Bst2 Rac2 Arl5c Syne1 
18 Bhlhe41 Pld3 Tor3a Arl10 Ctsc Cd52 Cd74 Pygl 

19 Tnpo3 Plaur Stat2 Adrb2 Tmem106
a Pfn1 Ier3 Padi4 

20 Id2 Syngr1 Rsad2 Calhm2 Anxa5 Crip1 Cd9 Ifitm3 
21 Malat1 Ldha Oas1a Slc1a3 Marcksl1 Fxyd5 Ccl2 Cd24a 

22 Nfkbia Hmox1 Herc6 Lair1 Tmem176
a Rpl14 Ccrl2 Lsp1 

23 Otud1 Tpi1 Zbp1 Fgd2 Fxyd5 Tmsb10 Capg Capg 
24 Cited2 Aldoa Slfn5 Tns3 Klf2 Rpsa Cdkn1a Txn1 
25 Smad7 Anxa2 Irgm1 Atf7ip Slfn2 Ptma Sdc4 Ifitm1 
26 Gem Npl Ccl2 Cst3 Rtp4 Anxa5 Cstb Aldh2 

27 Adrb2 Ctsz Samhd1 Cdk6 Tgfbi Gpx1 Adamts
1 Gpi1 

28 Slc15a3 Ybx1 Irf9 Jun Ednrb Itgal Pdgfa Rtp4 
29 Bmp2k Nme1 Cd52 Cd34 Dok2 Rps5 Relb Cd52 
30 Trib1 Clta Fgl2 Msn Hgsnat Tpm4 Srgn Pilra 
31 Fosb Gng12 Epsti1 Hexb Irf7 Sh3bgrl Cd72 Arhgdib 
32 Ier3 S100a1 Irf1 Abca1 Pltp Rps18 Rab20 Slfn2 

33 Hsp90a
a1 Psmb6 Isg20 Zfhx3 Crip1 Arpc1b Pmp22 Cxcr2 
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34 Dnajb1 Npc2 Gbp2 Slc2a5 Ftl1 Myl6 Plaur Tmem15
4 

35 Gadd45
g Apoc1 Fam46a Sparc Serpinb6a Capg Vcam1 Thbs1 

36 Tmem1
19 Folr2 Ddx58 Tubgcp5 Emp3 Ftl1 Tnfaip2 Rnf144a 

37 Ccr5 Vat1 Sdc3 Ptgs1 Fth1 Serp1 Cd63 Myl6 
38 Tnf Aplp2 Ifih1 Ecscr Cd36 Iqgap1 Rhoc Myh9 
39 Plk3 Gatm Parp12 Btg2 Hmox1 Rpl32 Gem Rab3d 
40 Dhrs3 Lag3 Parp9 Usp2 Tspo Ifi27l2a Sgk1 Gpx1 

41 Selplg Gpr137
b Znfx1 Mat2a Aldh2 Emp3 Ifrd1 Pstpip1 

42 Hist1h1
c Hpse Rnf114 Itpripl1 Pla2g7 Plin2 Crlf2 Plp2 

43 Hk2 Uap1l1 Fcgr4 Sqstm1 Isg15 S100a1
0 Tgif1 Calm1 

44 Nfkbid Bnip3 Hk2 Klhdc8b Rps5 Rpl4 Ier2 Fth1 
45 Tmx4 Mt1 Lgals9 Taf10 Gas6 Slfn2 Glipr1 G6pdx 
46 Itpripl1 Pgk1 Apobec3 Stard5 Plin2 Hspa8 Plek Serp1 

47 Lair1 Emp3 Cxcl16 Rgl2 Tmem176
b Fcgr4 Mat2a Rasgrp4 

48 Cd14 Gapdh Ddx60 Plek Oasl2 Cfp Slc3a2 Glipr1 
49 Slc2a5 Slc25a5 Gpr84 Npc1 Calm1 Ccnd3 Zfp36 Emb 
50 Kdm6b Cd83 Tspo Atp8a2 Mpp1 Gsn Tubb6 Iqgap1 

Note: Cluster-specific markers were identified with the ‘FindAllMarkers’ function of Seurat. FindAllMarkers with ‘only.pos 
= TRUE’, ‘min.pct = 0.25’,’ logfc.threshold = 0.25’, ‘test.use = "wilcox"’. 

Supplementary Table 3: Microglial gene lists. 

# Hammond et al. 
2019 

Hickma
n et al. 
2013 

Keren-Shaul 
et al. 2017 

Li et al. 
2019 

Matcovitch-
Natan et al. 
2016  

Safaiya
n et al. 
2021 

  ATM IRM Sensome DAM PAM Adult microglia WAM 
1 Spp1 Ifitm3 P2ry12 Itgax Spp1 Cst3 Apoe 

2 Gpnmb Ifi27l2a Tmem11
9 Mamdc2 Gpnmb Ctsd C1qb 

3 Igf1 Ccl12 Gpr34 Cst7 Lpl Laptm5 Fth1 
4 Lgals3 Lgals3bp Csf1r Fam20c Pld3 Csf1r Lyz2 
5 Fabp5 Ifit3 Cd53 Ccl4 Ctsl C1qa H2-D1 
6 Cd9 Rtp4 Siglech Lmbrd2 Csf1 Selplg Ctsb 
7 Lpl H2-K1 Cx3cr1 Egr2 Igf1 C1qc Ctss 
8 Ctsl Isg15 Selplg Csf1 Ctsb Tmem119 Ctsz 

9 Lgals1 Cst7 Ly86 5430435G22Ri
k Slc23a2 Sparc H2-K1 

10 Apoe Bst2 Fcgr3 Ccl3 Gpx3 Serinc3 Ftl1 
11 Anxa5 Ifi204 Fcer1g Clec7a Sgpl1 Ctss B2m 

12 Gm1011
6 Oasl2 Dap12 Baiap2l2 Sepp1 Olfml3 Cd63 

13 Syngr1 Cd52 Slco2b1 Tmem154 Cd9 Cx3cr1 Capg 
14 Gpx3 Irf7 Itgam Lpl Abca1 Jun Cd52 
15 Cd63 H2-D1 Tgfbr1 Ank Plin2 Ly6e Spp1 

16 Pld3 Rpl39 Slc2a5 Zfp692 Syngr1 4632428N05Ri
k Anxa5 

17 Gm1673 Cxcl10 P2ry13 Siglec1 Cd63 Junb Cd74 
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18 Ctsb B2m Ifngr1 Itga5 Hpse Trem2 Lgals3 
19 Ftl1 Ccl5 Itgr1 Tcf19 Plek Hexb Tspo 
20 Plin2 Stat1 Itgb5 Cox6a2 Lag3 P2ry12 Cst7 
21 Lyz2 Slfn2 Ccr5 Spp1 Slc37a2 Ly86 Atp6v0c 
22 Ccl9 Trim30a Cd74 Axl Hif1a Cd81 Fam20c 
23 Anxa2 Ly6e Emr1 Igf1 Fam20c Mafb Vim 
24 Lilrb4a Usp18 Cmtm6 Gpnmb Serpine2 Rhob Cybb 
25 Csf1 Rpl27a Cd68 Ildr2 Ctsd Siglech Ifitm3 
26 Pkm Rps21 Trem2 Fxyd6 Apoe Rnase4 Clec7a 
27 Ccl6 Phf11b Fcgr2b Psat1 Ctsz Bin1 Crip1 
28 Mif Gm9843 Cd52 Il1b Ctsa Pld4 Anxa2 
29 S100a1 Rps29 Itgb2 St14 Tpp1 Abhd12 Lgals1 
30 Ldha Rps12 Gi24 Arhgap26 Lamp1 Fos Cd63-ps 

31 Folr2 Wdr89 Entpd1 4632427E13Ri
k Myo1e Marcks Ftl1-ps1 

32 Cstb Tor3a Cd180 Birc5 Abcd2 Sirpa Mir692-1 
33 Fabp3 Gm4951 Cmtm7 Mettl15 Aplp2 Basp1 Gm7541 
34 Gng12 H2-Q7 Lgals9 Gpr65 Gas6 Slco2b1 Ftl1-ps2 

35 Lag3 Parp14 Tgfbr2 Cdca8 Soat1 Cyth4 Gm1216
4 

36 Sepw1 Ly6a Ecscr H2-Q7 Lipa Itgb5 

  

37 Apoc1 Rpl38 Tmem17
3 Etl4 Grn Tgfbr1 

38 Tpi1 Sp100 Tlr2 Ifit2 Timp2 Zfp36 
39 Plaur Uba52 Lag3 Capg Psat1 Phyhd1 
40 Ifitm2 Gm10076 Ltf Tmem8 Gpr137b Egr1 
41 Ybx1 Zfos1 P2ry6 Lyz2 C3ar1 Ctsz 
42 Npl Ifit1 Il10ra Apoe Pnpla7 Fgd2 
43 Hpse Xaf1 Lair1 Slc1a2 Gusb Adap2 

44 Vat1 Rps20 Gpr183 Pycrl Gpr137b
-ps Unc93b1 

45 Sepp1 Rpl22l1 Tmem37 Ifi27l2a Gba Itm2c 
46 Ctsz Cd72 Cd37 Lgi2 Ttyh2 P2ry13 
47 Aplp2 Ch25h Cd86 Ero1lb Anxa5 Ptgs1 
48 Gatm Gm10073 Slamf9 Nceh1 Cd68 Irf8 
49 Npc2 Rplp2 Tlr7 Ch25h Ccl3 Arrb2 
50 Gpr137b Rps28 Cd14 Zfp189 Hexa Pmepa1 

Note: Microglial gene lists of axon tract-associated microglia (ATM), interferon response microglia (IRM), disease-
associated microglia (DAM, proliferative region-associated microglia (PAM), white matter-associated microglia (WAM), 
adult (homeostatic) microglia, and the sensome. Gene lists find their origins across the microglial field, most notably and 
respectively: Hammond et al. (2019); Keren-Shaul et al. (2017); Li et al (2019); Safaiyan et al. (2021); Matcovitch-Natan 
et al. (2016), and Hickman et al. (2013). 
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Supplementary Table 4: Non-microglial gene lists. 

# Ochacka et al. 2021 Xie et al. (2020) 
 DC NK-cell Monocyte Neutrophil 
1 S100a8 Ttr S100a4 Retnlg 
2 S100a9 Ptgds Ms4a6c S100a8 
3 Il1b Enpp2 Crip1 S100a9 
4 Ngp Clu Ctss Ngp 
5 Retnlg Mt3 Ccl9 Lcn2 
6 Camp Aldoc F13a1 Wfdc21 
7 S100a11 Ptn Plac8 Ltf 
8 Slpi Sparcl1 Fn1 Slpi 
9 G0s2 Chchd10 Ccr2 Il1b 
10 Hp Dbi Psap S100a11 
11 Wfdc21 Cpe Ms4a4c Pglyrp1 
12 Lcn2 Cryab Npc2 Mmp9 
13 Msrb1 Car2 Ifi30 Gm5483 
14 Ifitm2 Tsc22d1 Lyz2 Mmp8 
15 Hdc Bsg Pld4 Cxcr2 
16 Ltf Igfbp7 Lamp1 Msrb1 
17 Pglyrp1 Vtn Ifitm3 Stfa2l1 
18 Anxa1 Mt2 Smpdl3a Hdc 
19 S100a6 1500015O10Rik Ly86 Ccl6 
20 Ifitm1 Mt1 Ctsc Dusp1 
21 Wfdc17 Plpp3 Vim Clec4d 
22 Srgn Gpm6b Lgals1 Ifitm1 
23 Fxyd5 Flt1 Clec4a3 S100a6 
24 Anxa2 Gstm1 S100a10 Lrg1 
25 Lrg1 Prnp Prdx1 Csf3r 
26 Gsr Ndrg2 Anxa5 Anxa1 
27 Ccl6 Crip2 Ctsb Mxd1 
28 Ifitm6 Pltp Dbi Grina 
29 Cd52 S100a1 Napsa C5ar1 
30 Cxcl2 Car4 Apoe Camp 

Note: Non-microglial gene lists of dendritic cells (DC), natural killer (NK)-cells, monocyte and neutrophil markers. Gene 
lists derive from Ochaka et al. (2021) and Xie et al. (2020), each single-cell RNA-sequencing studies. 
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Supplementary Table 5: Supplementary gene lists. 

# Marsh et al. 2022 Regev et al. 2016 Sala Frigerio et 
al. 2019 

 exAM S-phase G2M-
phase AD risk factors 

1 Hist1h1c Mcm4 Nuf2 Apoe 
2 Hist1h2bc Exo1 Psrc1 Trem2 
3 Ubc Slbp Ncapd2 Tyrobp 
4 Jund Gmnn Ccnb2 Cr2 
5 Rgs1 Cdc45 Smc4 Bin1 
6 Hspa1a Msh2 Lbr Cd2ap 
7 Hsp90aa1 Mcm6 Tacc3 Epha1 
8 Ccl4 Rrm2 Cenpa Clu 
9 Dusp1 Pold3 Kif23 Ms4a6d 
10 Hspa1b Blm Cdca2 Picalm 
11 Ccl3 Ubr7 Anp32E Abca7 
12 Rhob Mcm5 G2E3 Cd33 
13 Jun Clspn Cdca3 H2-Eb1 
14 Zfp36 Hells Anln Sorl1 
15 Klf2 Nasp Cenpe Slc24a4 
16 Junb Rpa2 Gas2L3 Dsg2 
17 Fos Rad51Ap1 Tubb4B Inpp5d 
18 Txnip Tyms Cenpf Mef2c 
19 Egr1 Rrm1 Dlgap5 Zcwpw1 
20 Adamts1 Rfc2 Hjurp Fermt2 
21 Btg2 Prim1 Cks1Brt Cass4 
22 Wfdc21 Brip1 Gtse1 Ptk2b 
23 Ier5 Usp1 Bub1 Ctsf 
24 Atf3 Ung Birc5 Ccl11 
25 Hist1h4i Pola1 Ube2C Plcg2 
26 Gem Mcm2 Rangap1 Abi3 
27 Ier2 Fen1 Hmmr Pld3 
28 Ier3 Tipin Ect2 Mme 
29 Hist1h2br Pcna Tpx2 Mmel1 
30 Hist1h1e Cdca7 Ckap5 Ece1 
31 Il1b Uhrf1 Cbx5 Ece2 
32 Serpine1 Casp8Ap2 Nek2 Ace 
33 Nfkbid Cdc6 Ttk Mmp2 
34 Fosb Dscc1 Cdca8 Mmp9 
35 Egr2 Wdr76 Nusap1 Mmp14 
36 Cited2 E2F8 Ctcf Bsg 
37 Klf6 Dtl Cdc20 Ide 
38 Nfkbiz Ccne2 Cks2 Serpinf2 
39 Hist2h2aa1 Atad2 Mki67 Apeh 
40 Hist1h4d Gins2 Tmpo Mobp 
41 Gm26532 Chaf1B Ckap2L Ctsd 
42   

Pcna-Ps2 Aurkb Ctsb 
43   Kif2C Bace1 
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44 Cdk1 Bace2 
45 Kif20B Mapt 
46 Top2A Aplp1 
47 Aurka Aplp2 
48 Ckap2 App 
49 Hmgb2 Psen1 
50 Cdc25C Psen2 
51 Ndc80 Adam10 
52 Kif11 Adamts4 
53 

  
Vkorc1 

54 Tspoap1 
55 Pvr 

Note: Supplementary gene lists of ex vivo activated microglia (exAM), S- and G2M-phase specific genes, and Alzheimer’s 
disease (AD)-associated risk factors, as reported by Marsh et al. (2022), Aviv Regev, and Sala Frigerio et al. (2019), 
respectively. 

 
Supplementary Figure 5: Identification of ex vivo-activated microglia. 

 
Supplementary Figure 6: Human gestational myeloid heterogeneity. a) Dimplot of identified Seurat clusters. b) Each cluster 
features typical myeloid markers. c) Heatmap of cluster-specific genes; top 10 genes (ordered by ‘avg_log2FC’), as 
determined with ‘FindAllMarkers’ with ‘only.pos = TRUE’, ‘min.pct = 0.25’,’ logfc.threshold = 0.25’, ‘test.use = "wilcox"’. 
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Supplementary Table 6: Cluster markers of human gestational myeloid cells. 

0 1 2 3 4 5 6 7 
C1QB FNIP1 PDPN GADD45B TUBA1A DLGAP5 RNASE1 JUNB 
CTSD FCGR1A BMP2K LINC00309 MEG3 CENPF MRC1 FPR1 
CD84 NASP NPC2 EGR1 HMGCS1 NUSAP1 WWP1 KDM6B 

DOCK4 SAMSN1 DAD1 CCL4L2 SOX11 FAM111A BLVRB SRGN 
TPT1 IRF2BPL ENO1 CCL3 STMN2 CKAP2L COLEC12 B2M 
ATRX KCNJ2 WHAMMP3 RIN2 MAP1B MKI67 CD163 SORL1 

APBB1IP SAT1 ITPR2 CCL4 SOX4 KIF23 F13A1 GET4 
SLC1A3 LGMN FTL KLF6 BCL7A TICRR DAB2 TXNIP 
CD63 THAP5 JTB RHOB SLC6A15 C2orf69 LILRB5 S100A9 
JUND HTRA1 CRIM1 SH3BGRL3 CNR1 HMGB2 CD28 TMEM154 
CYBA PLXDC2 HCCS CD36 NRXN1 TK1 TGFBI DUSP1 
SPP1 TREM2 GPNMB CCL2 SLC4A10 CDC20 USP36 IFITM2 

OLFML3 RNF122 LAGE3 CH25H SMAD9 CCNB2 IQGAP2 S100A8 
C6orf62 ARRDC3 FOLR2 CX3CR1 GAP43 CKAP2 TLN1 SP110 
FSCN1 PRKCA SLC25A45 HERPUD1 KIF21A ARL6IP1 DOCK5 NFKBIA 

Note: Cluster marker genes of in the integrated object. The top 15 genes are displayed. “FindAllMarkers” was used with 
default settings, e.g. ‘only.pos = TRUE’, ‘min.pct = 0.25’, ‘logfc.threshold = 0.25’, ‘test.use = "wilcox"’. 

Supplementary Table 7: Conserved CPM markers (1) – Bian et al. 2020. 

Gene Bian_p_val Bian_avg_log2FC Bian_pct.1 Bian_pct.2 Bian_p_val_adj 
CENPF 3.66E-14 Inf 1 0.626 2.29E-09 
GTSE1 5.16E-14 122.2347465 0.955 0.451 3.23E-09 
MKI67 1.69E-13 Inf 1 0.659 1.05E-08 

NUSAP1 3.11E-13 363.1648182 1 0.626 1.95E-08 
ASPM 2.43E-12 451.1595691 0.909 0.462 1.52E-07 
TACC3 3.76E-12 344.4097827 0.932 0.549 2.35E-07 
TPX2 5.66E-12 109.2505152 0.909 0.44 3.54E-07 

TOP2A 1.04E-11 Inf 1 0.824 6.54E-07 
NDC80 2.66E-11 200.1402787 0.705 0.176 1.67E-06 
CENPE 3.83E-11 787.3171603 0.818 0.363 2.40E-06 
SMC4 2.01E-10 319.8839671 1 0.78 1.26E-05 
CDCA8 1.00E-09 15.47531343 0.818 0.385 6.29E-05 
KIF14 3.67E-09 65.96963986 0.75 0.319 0.000229921 
ANLN 3.71E-09 244.8638249 0.818 0.462 0.00023191 

DIAPH3 1.04E-08 3.933753103 0.614 0.165 0.000650144 
CKAP2L 4.41E-11 84.72467539 0.795 0.286 2.76E-06 
PRR11 2.08E-11 246.30652 0.909 0.418 1.30E-06 
NUF2 8.31E-11 109.4336097 0.841 0.341 5.20E-06 
SPC25 1.39E-06 272.2750307 0.636 0.286 0.086833709 
NCAPH 5.65E-09 113.5785762 0.795 0.385 0.00035379 
CKAP2 8.75E-08 606.8428335 0.886 0.571 0.005476731 
NCAPG 2.29E-10 1.044791363 0.773 0.253 1.43E-05 
CDC25C 4.20E-05 73.63338822 0.455 0.165 1 
KIF18A 0.001486961 81.79035097 0.318 0.121 1 
NCAPD2 9.26E-11 188.5987183 0.955 0.505 5.80E-06 
MELK 2.44E-08 366.0502084 0.795 0.341 0.001526293 
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BUB1B 2.68E-06 475.6950315 0.682 0.352 0.167512058 
DLGAP5 3.93E-10 14.03261839 0.818 0.407 2.46E-05 
HELLS 0.001640773 366.0502084 0.705 0.462 1 
BUB1 3.66E-11 81.83928531 0.864 0.418 2.29E-06 
STIL 3.63E-10 181.3852431 0.705 0.209 2.27E-05 

ATAD2 5.48E-05 543.5016984 0.795 0.582 1 
TMPO 1.28E-06 11.14722831 0.909 0.758 0.08039923 
KIF20B 2.66E-08 316.9985765 0.955 0.659 0.001664038 

RAD51AP1 9.17E-07 130.8909167 0.705 0.385 0.05736202 
CENPK 1.95E-05 291.0287513 0.75 0.516 1 

C21orf58 6.26E-06 344.4084678 0.682 0.363 0.391824312 
SCLT1 0.230716092 96.26623572 0.5 0.473 1 

NCAPD3 0.003978318 145.3178671 0.591 0.33 1 
KIF5B 0.040929522 123.4938392 0.955 0.857 1 

Note: Conserved marker genes of cycling and proliferating microglia (CPM) (cluster 5). 40 conserved CPM markers were 
identified, independent of data source. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’, 
‘logfc.threshold = 0.25’.  
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Supplementary Table 8: Conserved CPM markers (2) – Fan et al. 2020. 

Gene Fan_p_val Fan_avg_log2FC Fan_pct.1 Fan_pct.2 Fan_p_val_adj 
CENPF 2.25E-67 Inf 0.848 0.27 1.41E-62 
GTSE1 9.39E-107 279.3610464 0.803 0.102 5.88E-102 
MKI67 2.96E-96 473.5339325 0.826 0.139 1.85E-91 

NUSAP1 1.33E-66 Inf 0.894 0.343 8.31E-62 
ASPM 1.49E-78 565.8664058 0.705 0.109 9.30E-74 
TACC3 5.37E-83 182.1095342 0.78 0.13 3.36E-78 
TPX2 9.62E-71 309.0662083 0.742 0.152 6.02E-66 

TOP2A 6.73E-71 Inf 0.886 0.286 4.21E-66 
NDC80 1.33E-67 153.2294248 0.591 0.083 8.31E-63 
CENPE 2.27E-48 192.2083995 0.629 0.144 1.42E-43 
SMC4 1.18E-57 225.3903855 0.932 0.419 7.37E-53 
CDCA8 8.05E-88 255.6833856 0.659 0.075 5.04E-83 
KIF14 4.89E-39 16.26970239 0.371 0.052 3.06E-34 
ANLN 7.45E-89 132.8746246 0.636 0.065 4.66E-84 

DIAPH3 7.47E-50 45.05352943 0.455 0.063 4.67E-45 
CKAP2L 6.47E-95 349.462159 0.659 0.066 4.05E-90 
PRR11 3.29E-29 180.6667081 0.659 0.272 2.06E-24 
NUF2 1.88E-63 137.3850909 0.667 0.13 1.18E-58 
SPC25 9.53E-24 91.21974664 0.621 0.303 5.97E-19 
NCAPH 7.34E-70 89.77706046 0.583 0.075 4.59E-65 
CKAP2 2.95E-36 444.6800317 0.773 0.332 1.85E-31 
NCAPG 4.22E-106 45.50544641 0.659 0.05 2.64E-101 
CDC25C 6.29E-41 3.020424689 0.341 0.039 3.94E-36 
KIF18A 5.45E-30 85.44439423 0.295 0.042 3.41E-25 
NCAPD2 1.24E-61 23.41259649 0.705 0.144 7.76E-57 
MELK 3.36E-27 29.59594709 0.712 0.35 2.11E-22 
BUB1B 2.33E-53 134.5005979 0.523 0.085 1.46E-48 
DLGAP5 1.05E-47 109.9747828 0.5 0.087 6.56E-43 
HELLS 1.04E-31 34.95464004 0.598 0.197 6.48E-27 
BUB1 3.07E-57 114.2762072 0.561 0.091 1.92E-52 
STIL 3.71E-46 62.36584568 0.424 0.057 2.32E-41 

ATAD2 6.41E-46 32.06924996 0.75 0.247 4.01E-41 
TMPO 1.93E-33 76.60845902 0.864 0.496 1.21E-28 
KIF20B 1.81E-21 39.09777535 0.727 0.361 1.13E-16 

RAD51AP1 2.35E-50 105.6466311 0.568 0.11 1.47E-45 
CENPK 1.49E-42 146.0421581 0.545 0.117 9.30E-38 

C21orf58 2.36E-42 101.3181346 0.614 0.159 1.48E-37 
SCLT1 2.30E-10 30.62655492 0.553 0.322 1.44E-05 

NCAPD3 1.09E-23 20.52411678 0.523 0.181 6.82E-19 
KIF5B 1.89E-11 162.9025576 0.902 0.807 1.19E-06 

Note: Conserved marker genes of cycling and proliferating microglia (CPM) (cluster 5). 40 conserved CPM markers were 
identified, independent of data source. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’, 
‘logfc.threshold = 0.25’.  
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Supplementary Table 9: Conserved CPM markers (3) – Cao et al. 2020. 

Gene Cao_p_val Cao_avg_log2FC Cao_pct.1 Cao_pct.2 Cao_p_val_adj 
CENPF 4.67E-228 2.120825035 0.258 0.009 2.92E-223 
GTSE1 3.86E-195 1.309892423 0.183 0.002 2.42E-190 
MKI67 0 3.222783591 0.355 0.008 0 

NUSAP1 3.58E-276 1.183391101 0.292 0.008 2.24E-271 
ASPM 0 3.394374792 0.333 0.007 0 
TACC3 6.94E-99 0.472884617 0.145 0.01 4.35E-94 
TPX2 5.76E-219 0.83076071 0.22 0.005 3.60E-214 

TOP2A 0 2.400820572 0.349 0.012 0 
NDC80 4.60E-182 0.610878547 0.179 0.003 2.88E-177 
CENPE 5.48E-220 1.670801642 0.242 0.008 3.43E-215 
SMC4 4.20E-196 1.881014153 0.294 0.021 2.63E-191 
CDCA8 2.49E-98 0.284788986 0.1 0.002 1.56E-93 
KIF14 2.55E-166 0.643211995 0.163 0.003 1.60E-161 
ANLN 1.37E-194 0.906103398 0.194 0.004 8.54E-190 

DIAPH3 0 3.116139187 0.456 0.021 0 
CKAP2L 2.73E-148 0.592587058 0.142 0.002 1.71E-143 
PRR11 1.81E-124 0.700269154 0.197 0.015 1.13E-119 
NUF2 7.20E-120 0.467461123 0.144 0.006 4.51E-115 
SPC25 2.14E-154 2.649985953 0.15 0.003 1.34E-149 
NCAPH 1.95E-92 0.343247989 0.107 0.004 1.22E-87 
CKAP2 2.89E-107 0.95945264 0.186 0.017 1.81E-102 
NCAPG 2.54E-133 0.536991746 0.142 0.004 1.59E-128 
CDC25C 4.37E-155 1.002401561 0.157 0.003 2.73E-150 
KIF18A 8.04E-120 0.605974935 0.121 0.003 5.03E-115 
NCAPD2 1.01E-79 0.355504423 0.144 0.014 6.35E-75 
MELK 3.88E-183 0.919373129 0.244 0.013 2.43E-178 
BUB1B 1.57E-184 0.870803034 0.199 0.006 9.80E-180 
DLGAP5 8.86E-102 0.279240482 0.1 0.002 5.55E-97 
HELLS 4.73E-91 0.528479839 0.168 0.017 2.96E-86 
BUB1 3.19E-147 0.725620736 0.157 0.004 2.00E-142 
STIL 3.63E-185 1.060892294 0.236 0.012 2.27E-180 

ATAD2 1.11E-182 2.58699309 0.305 0.027 6.97E-178 
TMPO 3.31E-149 0.999157324 0.247 0.021 2.07E-144 
KIF20B 1.30E-87 0.668993649 0.176 0.02 8.16E-83 

RAD51AP1 1.62E-60 0.287487333 0.11 0.011 1.02E-55 
CENPK 2.26E-138 0.937581184 0.236 0.021 1.42E-133 

C21orf58 9.51E-123 0.37949591 0.129 0.003 5.95E-118 
SCLT1 7.40E-91 8.283047002 0.517 0.193 4.63E-86 

NCAPD3 5.01E-73 0.611291607 0.16 0.02 3.14E-68 
KIF5B 1.45E-21 0.586363209 0.166 0.062 9.06E-17 

Note: Conserved marker genes of cycling and proliferating microglia (CPM) (cluster 5). 40 conserved CPM markers were 
identified, independent of data source. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’, 
‘logfc.threshold = 0.25’.  
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Supplementary Table 10: Conserved CPM markers (4) – Kracht et al. 2020. 

Gene Kracht_
p_val 

Kracht_avg_
log2FC 

Kracht_
pct.1 

Kracht_
pct.2 

Kracht_p_v
al_adj 

max_p
val 

minimump
_p_val 

CENPF 0 293.1976406 0.525 0.047 0 3.66E-
14 0 

GTSE1 0 24.85636421 0.206 0.009 0 5.16E-
14 0 

MKI67 0 108.5326754 0.527 0.032 0 1.69E-
13 0 

NUSAP
1 0 424.4828615 0.506 0.032 0 3.11E-

13 0 

ASPM 0 324.9369315 0.416 0.021 0 2.43E-
12 0 

TACC3 0 32.06983822 0.251 0.02 0 3.76E-
12 0 

TPX2 0 75.42078633 0.237 0.012 0 5.66E-
12 0 

TOP2A 0 36.39792334 0.669 0.06 0 1.04E-
11 0 

NDC80 0 202.1004497 0.238 0.016 0 2.66E-
11 0 

CENPE 0 327.8222963 0.335 0.022 0 3.83E-
11 0 

SMC4 0 7.544013658 0.393 0.054 0 2.01E-
10 0 

CDCA8 0 76.79338448 0.206 0.011 0 1.00E-
09 0 

KIF14 0 258.5632714 0.187 0.009 0 3.67E-
09 0 

ANLN 0 39.2965477 0.204 0.009 0 3.71E-
09 0 

DIAPH
3 5.61E-216 45.05280723 0.133 0.009 3.51E-211 1.04E-

08 0 

CKAP2
L 3.16E-289 138.8287873 0.158 0.008 1.98E-284 4.41E-

11 1.26E-288 

PRR11 7.93E-277 135.9438812 0.302 0.048 4.96E-272 2.08E-
11 3.17E-276 

NUF2 2.86E-276 150.3708316 0.162 0.01 1.79E-271 8.31E-
11 1.14E-275 

SPC25 3.66E-274 160.4696728 0.131 0.004 2.29E-269 1.39E-
06 1.47E-273 

NCAPH 1.17E-265 52.26769743 0.14 0.006 7.33E-261 5.65E-
09 4.69E-265 

CKAP2 2.79E-264 210.937773 0.333 0.064 1.75E-259 8.75E-
08 1.12E-263 

NCAPG 8.77E-249 66.69452056 0.129 0.005 5.49E-244 2.29E-
10 3.51E-248 

CDC25
C 4.02E-232 150.3708557 0.118 0.005 2.52E-227 4.20E-

05 1.61E-231 

KIF18A 3.56E-222 95.59233194 0.131 0.008 2.23E-217 0.00148
6961 1.42E-221 

NCAPD
2 1.08E-215 122.9547424 0.213 0.029 6.73E-211 9.26E-

11 4.30E-215 

MELK 3.49E-204 242.6956981 0.138 0.011 2.18E-199 2.44E-
08 1.40E-203 

BUB1B 6.60E-199 13.4979211 0.125 0.008 4.13E-194 2.68E-
06 2.64E-198 

DLGAP
5 3.76E-193 232.1525054 0.152 0.015 2.35E-188 3.93E-

10 1.50E-192 

HELLS 2.32E-189 16.20019277 0.351 0.094 1.45E-184 0.00164
0773 9.30E-189 

BUB1 2.35E-188 95.54842002 0.184 0.025 1.47E-183 3.66E-
11 9.42E-188 

STIL 9.76E-104 65.32185539 0.112 0.017 6.11E-99 3.63E-
10 1.45E-184 
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ATAD2 3.10E-163 156.1416113 0.202 0.036 1.94E-158 5.48E-
05 4.46E-182 

TMPO 8.46E-174 55.14327066 0.266 0.058 5.29E-169 1.28E-
06 3.38E-173 

KIF20B 2.73E-170 134.5011861 0.315 0.083 1.71E-165 2.66E-
08 1.09E-169 

RAD51
AP1 1.81E-149 148.4761954 0.127 0.014 1.13E-144 9.17E-

07 7.22E-149 

CENPK 2.23E-109 30.62354754 0.138 0.024 1.40E-104 1.95E-
05 9.06E-138 

C21orf
58 3.59E-72 223.7650904 0.151 0.042 2.25E-67 6.26E-

06 3.80E-122 

SCLT1 1.83E-23 108.5326754 0.123 0.056 1.15E-18 0.23071
6092 2.96E-90 

NCAPD
3 6.50E-80 27.67165947 0.113 0.022 4.07E-75 0.00397

8318 2.60E-79 

KIF5B 1.40E-24 26.29905789 0.295 0.19 8.77E-20 0.04092
9522 5.60E-24 

Note: Conserved marker genes of cycling and proliferating microglia (CPM) (cluster 5). 40 conserved CPM markers were 
identified, independent of data source. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’, 
‘logfc.threshold = 0.25’. 

 
Supplementary Figure 7: Spatial distribution of human gestational myeloid cells by original identity. 7 distinct clusters 
were identified, each of which are composed of cells from all 4 data sources (i.e. original identity). 

Supplementary Table 11: Transcriptional similarities of YS and CAM. 

  Region and subtype - YS vs CAM 
gene p_val avg_log2FC pct.1 pct.2 p_val_adj cluster 
Pf4 2.86E-239 3.659262487 0.859 0.35 8.58E-236 YS 

Dab2 1.09E-107 2.616545929 0.778 0.415 3.28E-104 YS 
Lgals1 2.40E-249 2.487708008 0.905 0.416 7.19E-246 YS 
Ifitm2 2.30E-91 2.29505368 0.747 0.391 6.90E-88 YS 
Mrc1 1.50E-129 2.03016306 0.808 0.366 4.51E-126 YS 
Fcgrt 3.39E-141 1.966760491 0.876 0.571 1.02E-137 YS 
Snx2 1.81E-147 1.965805891 0.998 0.583 5.44E-144 YS 
Ifitm3 2.62E-145 1.955917009 0.84 0.339 7.85E-142 YS 
Igfbp4 8.16E-71 1.801216738 0.75 0.41 2.45E-67 YS 
Apoe 1.51E-198 1.790467165 0.997 0.777 4.54E-195 YS 
Blvrb 5.42E-21 1.712248217 0.655 0.464 1.63E-17 YS 
Anxa5 5.22E-31 1.686567876 0.693 0.434 1.57E-27 YS 

Tmem106a 1.09E-42 1.621431035 0.715 0.347 3.27E-39 YS 
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Irf7 0.00199911 1.601016379 0.548 0.29 1 YS 
Isg15 2.15E-06 1.592475842 0.474 0.343 0.006454338 YS 
Rtp4 4.89E-89 1.57226286 0.788 0.358 1.47E-85 YS 
Slfn2 0.000306213 1.472435128 0.582 0.384 0.918639786 YS 
Ftl1 7.21E-213 1.438700491 1 0.994 2.16E-209 YS 

Cnn2 9.04E-05 1.412194131 0.47 0.292 0.271259426 YS 
Tspo 3.34E-47 1.403636539 0.761 0.508 1.00E-43 YS 
Cd74 0 5.311680693 0.82 0.377 0 CAM 
Pf4 0 3.891583663 0.887 0.325 0 CAM 

Dab2 0 2.595638798 0.818 0.399 0 CAM 
Ifitm3 0 2.266263673 0.796 0.318 0 CAM 
Mrc1 0 2.161065975 0.781 0.346 0 CAM 
Ifitm2 0 2.126423728 0.776 0.374 0 CAM 
Apoe 0 2.104944765 0.996 0.786 0 CAM 
Lgals1 0 2.02422236 0.821 0.403 0 CAM 
Ifi27l2a 5.17E-244 1.983734996 0.66 0.358 1.55E-240 CAM 
Folr2 1.24E-155 1.685719824 0.588 0.349 3.72E-152 CAM 
Fcgrt 1.05E-275 1.665749465 0.81 0.562 3.14E-272 CAM 
Snx2 1.62E-231 1.441120987 0.843 0.581 4.87E-228 CAM 
Mgl2 0 1.392708058 0.644 0.223 0 CAM 
Blvrb 1.43E-231 1.365494424 0.732 0.448 4.30E-228 CAM 
Cfp 0 1.362794748 0.623 0.253 0 CAM 

Igfbp4 4.73E-276 1.311542852 0.715 0.394 1.42E-272 CAM 
Bst2 2.23E-260 1.280317123 0.828 0.561 6.70E-257 CAM 
Ctsc 0 1.255242632 0.985 0.841 0 CAM 

Tmem106a 0 1.245944267 0.686 0.329 0 CAM 
Anxa5 3.04E-196 1.222704348 0.715 0.426 9.12E-193 CAM 

Note: Top 20 yolk sac (YS) progenitors and CNS-associated macrophage (CAM) markers support transcriptional similarities 
between both subtypes. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’, ‘logfc.threshold 
= 0.25’. 

 
Supplementary Figure 8: Two-dimensional bar plots on region, original and cluster identity. Cluster 11 and 14 display some 
degree of region-specific enrichment, with enrichments for YS- and SC-isolated cells, respectively. Cluster 11 does not relate 
to a specific source, albeit cluster 14 appears to be mostly driven by cells from Keren-Shaul et al. (2016). Without a 
subsequent similar enrichment of cells by Masuda, cells appear to derive from the former source. 
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Supplementary Table 12: Sex-specific contingency table of cell annotations across the lifespan. 

  
Early 

microglia 
Pre-

microglia 

Adult 
microglia 

(P90) 
Adult microglia 

(3.5M) 
Adult microglia 

(6M) 

Middle age 
microglia 

(18M) 

Old age 
microglia 

(21M)   
Cluster F M F M F M F M F M F M F M # 

AIM 0 0 1 1 9 8 65 96 2 4 24 311 6 3 530 
CPM - 
G2M 2320 2083 1385 1385 4 16 6 3 1 1 2 25 0 0 7231 

CPM - S 2026 1856 1132 1130 15 22 17 20 6 4 10 19 2 3 6262 
EDM 3674 2747 3753 3838 1 12 2 1 1 0 33 67 1 0 14130 

HOM1 0 0 0 0 86 52 3888 6615 1 4 172 3945 2 3 14768 

HOM2 0 0 0 0 1302 1551 1573 1341 264 296 879 865 136 
28
2 8489 

HOM3 17 33 29 24 594 1177 185 44 356 343 817 747 330 
32
1 5017 

HOM4 0 0 0 0 756 29 2226 2804 0 0 12 304 0 1 6132 
HOM5 0 0 0 0 5 2 33 2388 0 0 3 15 1 0 2447 
IRM 6 7 8 21 41 79 339 365 15 8 111 456 25 12 1493 
LPM 90 109 849 955 42 31 17 3 11 12 106 56 47 14 2342 

# 8133 6835 7157 7354 2855 2979 8351 13680 657 672 2169 6810 550 
63
9 68841 

Note: A subset of 7 ages was created: E14.5, P4, P90, 3.5M, 6M, 18M and 21M for a total of 68841 cells. Cell numbers are displayed by age group, sex and subtype (i.e. cluster). AIM, Activated 
Inflammatory Microglia; CPM, cycling and proliferating microglia; EDM, early developmental microglia; HOM, homeostatic microglia; IRM, interferon response microglia; LPM, lysosome 
pathway-associated macrophage. F, female; M, male; M, months old; P, postnatal day. 
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Chapter 4 Drop-seq platform performance and pilot of 

cortical microglia 

In the previous chapter, a compendium was developed of murine microglial heterogeneity across 

the lifespan. Broadly, seven major subtypes were identified that differ in their maturation speed in 

a sex-specific manner, culminating in distinct population dynamic profiles, and the identification of 

exAM. Biological and technical noise are endemic to any experiment, yet these are important to 

identify prior to developing a targeted experimental setup (Wagner et al., 2016). Here, Drop-seq 

was tested and generated a pilot dataset to measure the extend of such noise. 

4.1.1.1 Drop-seq: droplet microfluidics and cellular diversity 

All scRNA-seq platforms have microfluidic systems at its core, that is, systems which 

manipulate micrometre-sized liquids through channels and into chambers (Pan et al., 

2022). In contrast, scRNA-seq platforms vary in costs, method of quantitation and 

performance (Figure 55). CEL-seq2, SMART-seq2, MARS-seq and Drop-seq are all popular 

variants of such scRNA-seq platforms that are well-, chip- or droplet-based, offering 

simplicity, control, and high throughput, respectively.  Of these methods, Drop-seq appears 

to be the preferred platform for several reasons.  

 
Figure 55: scRNA-seq platform comparisons. Direct comparison of well-known and utilized single-cell RNA-sequencing 
(scRNA-seq) platforms on type (i.e. well, chip, droplet), method of quantitation, accuracy, sensitivity and costs. Costs are 
relative costs in United States dollar ($) for sequencing 254 cells to an average read depth of 250,000. Information 
collated from the works of Ziegenhain et al. (2017 and Svensson et al. (2017). MoQ, method of quantitation; #M, 
number of molecules; R=, correlation; UMI, unique molecular identifier. 

Drop-seq has been successfully utilized in a plethora of studies, including work on the 

developmental maturation of retinal progenitors and thymus, cell type-specific responsiveness to 
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energy status, the identification of disease-associated subtypes, and cross-region analysis of the 

mammalian brain (Campbell et al., 2017; Fang et al., 2019; Kernfeld et al., 2018; Yuzwa et al., 2017).  

Drop-seq is the most cost-effective technique and shows excellent accuracy and sensitivity (Figure 

55). Drop-seq was developed in the lab of Steven McCarroll and enables the profiling of thousands 

of single-cells in a high-throughput and cost-effective manner (Macosko et al., 2015).  

As a droplet-based microfluidics approach, Drop-seq captures 3’-end poly-adenylated RNA (e.g. 

mRNA) from individual cells. When controlling for read depth, RNA-based scRNA-seq techniques 

like Drop-seq have a relative increase in sensitivity and accuracy in comparison to whole-transcript 

scRNA-seq (e.g. SMART-seq-2) (Figure 55) (Svensson et al., 2017). Accuracy describes the fidelity in 

which the transcripts can be measured, whereas the sensitivity describes the lower detection limit.  

The detection limit for Drop-seq is ~10 molecules and, importantly, accuracy correlates with bulk 

RNA-Seq measures (R = 0.92) (Figure 55). Of note, read depth per cell is a key factor for sensitivity, 

although accuracy is mostly independent of it. Accuracy is a measure of the technique, marking the 

limitations of the chosen platform and independent of the number of reads per cell, as is the case 

for sensitivity. Indeed, study shows that accuracy saturates around 250,000 sequenced reads per 

cell, whereas sensitivity does so from 1 million reads (Svensson et al., 2017). 

 Characteristics of Drop-seq microfluidics and cellular diversity 

Single-cell transcriptomes in Drop-seq are generated by the co-encapsulation of barcoded beads 

and cells in ~1 nL-sized water-in-oil droplets. In short, single-cells from complex tissue are co-

encapsulated with beads after which 3’-end poly-adenylated RNA is captured by bead primers for 

the generation of single-cell transcriptomes attached to microparticles (STAMP) (Figure 56). 

 
Figure 56: Drop-seq barcoding schematic for single-cell microglial transcriptomes. a) Complex tissue is dissociated to 
isolate individual microglia. b) Co-encapsulation of isolated cells with barcoded beads (circles). c) Once cells and beads 
come in contact, cells lyse, allowing for the capture of cell-specific poly-adenylated RNA and the generation of ‘single-cell 
transcriptomes attached to microparticles’ (STAMP). d) STAMP are utilized for single-cell library preparation and 
sequencing. 

Droplet formation and co-encapsulation of cells and beads is mediated by the co-flow of beads in 

lysis buffer, cells in suspension, and oil; oil functions to join cells and beads in monodisperse 

droplets. The probability of finding both particles in a droplet is approximated by the Poisson 

distribution (Mazutis et al., 2013) (Equation 1). In this manner, with the probability of finding a 
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certain number of particles (x) at a given average number of particles in a droplet (λ), droplet 

occupancy is described in Figure 57. 

 
Figure 57: Poisson distribution and droplet occupancy. Predicting the number of particles (i.e. cells or beads) in droplets 
can be calculated with the Poisson distribution. λ represents the average number of particles in the droplet volume, and x 
the number of particles found in the droplet. In effect, changing the cell and bead concentrations will drive their changes 
of co-encapsulation. e.g., preparing cells and beads to 100 cells and 120 beads/µL, the chances to co-encapsulate 1 cell 
and 1 bead will approximate: 0.091 * 0.106 = 0.01 (1%). By extension, beads that encounter cells at 50 cells/µL is roughly 
5%. 

The barcoded beads are composed of PCR handles, a cell barcode, and unique molecular identifiers 

(UMI) (Figure 58) (Macosko et al., 2015). The PCR handle offers a scaffold for PCR amplification, 

whereas the UMI and cell barcodes aid the identification of specific transcripts or cells, respectively. 

Each primer bead contains over 108 primer beads, each with an identical cell barcode and up to 

~65,000 distinct UMI (to control of amplification biases), enabling the profiling of thousands of cells, 

and the accurate enumeration of transcripts in a single experiment.  

 
Figure 58: Schematic of particle co-encapsulation. a) Co-encapsulation of particles is mediated by the serial co-flow of 
beads (circles), cells (pentagons) and oil; the oil enables droplet formation and captures cells and beads together. The 
Poisson distribution approximates the likelihood of capturing single-cells and primer beads. b) The barcoded primer beads 
are composed of a PCR handle, a cell barcode, a unique molecular identifier (UMI) and a poly-T tail for the capture of cell-
specific polyadenylated RNA. Each bead contains the same cell barcode and up to 48 (~65,000) distinct UMI. 

 Limitations of Drop-seq: technical and biological noise 

Drop-seq has limitations users need to be aware of, as measures of accuracy are intertwined with 

biological and technical noise. Like most scRNA-seq protocols, Drop-seq captures 3’-end poly-

adenylated RNA only, excluding small RNAs (e.g. mature miRNA) and non-coding RNAs without 

poly-A tails. Butovsky et al. (2014) have previously shown that microglial identity is under the 

transcriptional control of miRNAs in a region-dependent manner (Butovsky et al., 2014). This 

inherent feature of Drop-seq provides an a priori limit to the transcriptional read out. 
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4.1.3.1 Technical noise of scRNA-seq 

Typical technical factors known to impair the ability to detect true heterogeneity are batch effects, 

transcriptome library quality, and cell specific capture efficiency and amplification bias (Wagner et 

al., 2016). Batch effects signify variability in data due to a technical factor. Generally, randomization 

of all conditions in experimental design will minimize such effects. However, with large-scale and 

complex designs, these effects could remain and need to be mitigated bioinformatically. 

Fortunately, Harmony, LIGER and Seurat are all effective tools to integrate disparate samples (Tran 

et al., 2020). Seurat utilizes canonical correlation analysis (CCA) to mitigate batch effects (Butler et 

al., 2018; Tran et al., 2020). Furthermore, captured RNA quantity and composition differ and 

experimental protocol (Huarte et al. 2021; Thrupp et al. 2020). Consequentially, library qualities will 

differ between cell types. Moreover, quantification bias signifies an error in which weights are 

unevenly assigned to individual components. In the context of scRNA-seq, such a bias describes 

differences in sequencing read allocation based on cell- or transcript-specific characteristics. 

Fortunately, the use of UMI allow for digital quantification of the transcripts, greatly reducing 

quantitative imprecision, a major source of technical noise with scRNA-seq (Islam et al., 2014). 

4.1.3.2 Biological factors influencing transcriptional heterogeneity in microglia 

Biological noise and cellular identity can be defined by the biological contexts and factors with 

which it interacts (e.g. environmental stimuli, cell development, cell cycle and spatial context) 

(Wagner et al., 2016).  

In the large-scale atlas (Chapter 3), I discussed the importance of cell cycle for transcriptional 

heterogeneity. As show, murine and human microglia display wave-like patterns in early 

development, concurrent with the developmental expansion of these cells (Figure 37, Figure 38) 

(Askew et al., 2017; Menassa et al., 2021). Moreover, cell cycle phase affects sensitivity to 

environmental cues and cellular heterogeneity (Lauridsen et al., 2018). In fact, the environment is 

known to play a large role in the emergence of microglial identity. Environmental cues like those by 

Tgf-ß are examples of such effects. However, as discussed, microglia can also take on an ex vivo-

activated signature (i.e. exAM) during cell isolation, obfuscating their native transcriptional read 

out (Figure 30) (Brink et al., 2017; Marsh et al., 2022; Wu et al., 2017).  
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 Single-cell isolation – a review of methods 

To take inventory of current scRNA-seq procedures, I reviewed many studies for their 

methodological approach (Table 5). This includes and extends beyond the scope of those 

discussed in the atlas. A typical scRNA-seq protocol consist of 6 distinct steps: anaesthesia, 

perfusion and tissue dissection, dissociation, purification, enrichment, and scRNA-seq; 7 when 

including chemical fixation. Of note, most studies utilize enzymatic dissociation, Percoll gradient 

centrifugation and fluorescence-activated cell sorting (FACS) (Figure 58); the standard of scRNA-

seq. 

 
Figure 59: Diagrammatic representation of microglial isolation. (1) Tissue is dissociated to isolate single-cells. 
(2) Percoll-mediated gradient centrifugation removes myelin debris on top of the Stock Isotonic Percoll (SIP)-
solution (37%), purifying myelin debris from the cell suspension. (3) The cell pellet is labelled with identifying 
antibodies for fluorescence-activated cell sorting (FACS) for the enrichment of cells from a heterogeneous cell 
suspension. 
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Table 5: Review of scRNA-seq procedures. 

Note: Publication details and matching experimental procedures were collected.A variety of regions were studied: CB, cerebellum; CC, corpus callosum; CTX, cortex; CP, choroid plexus; D, dura; OT, HIP, 
hippocampus; LG, lateral geniculate; OB, olfactory bulb; OT, optic tract; P, pons; SC, spinal cord; STR, striatum; SVZ, subventricular zone; WM, white matter; YS, yolk sac. Two enrichment methods were common: 
MACS, magnetic-activated cell sorting; FACS, fluorescence-activated cell sorting. Some data points were not ‘available’ (N.A.), whereas others are ‘not applicable’ (N/A). 

Publication Details Experimental Procedure 

First 
Author Last Author Publicati

on Year Journal/Book Anaesth
esia 

Exsangu
ination CNS Region Dissociation  Purification Enrich

ment 

    Enzymatic 
Dissociation Tool Temperat

ure (°C) 
Duration 
(minutes) Inhibitors Purific

ation Method MACS/
FACS 

Zeisel, Amit Linnarsson, Sten 2015 Science ketamine-
xylazine Y N.A. Y Papain-based (Worthington) N.A. N.A. N/A N N/A FACS 

Matcovitch-
Natan, Orit Amit, Ido 2016 Science N.A. Y and N CTX, HIP, SC N Homogenizer (Dispomix) N.A. N.A. N/A Y Gradient centrifugation (Percoll) FACS 

Tasi, 
Bosiljka Zeng, Hongkui 2016 Nature  isoflurane Y CTX Y Pronase-based RT 70 N/A N N/A FACS 

Mathys, 
Hansruedi Tsai, Li-Huei 2017 Cell Reports N.A. Y HIP Y Papain-based (Neural Tissue 

Dissociation Kit (P) (Miltenyi Biotec)) 37 15 N/A N N/A FACS 

Keren-Shaul, 
Hadas Amit, Ido 2017 Cell N.A. Y CB, CTX, SC, 

WB N Homogenizer (Dispomix) N.A. N/A N/A Y Gradient centrifugation (Percoll) FACS 

Sousa, 
Carole 

Micheluci, 
Alessandro 2018 EMBO Reports ketamine-

dorbene Y WB N Homogenizer (Potter) N.A. N/A N/A Y Myelin Removal Kit (Miltenyi Biotec)3 FACS 

Kalish, Brian 
T. 

Greenberg, 
Michael E. 2018 PNAS isoflurane N LG Y Papain-based (papain, pronase and 

proteinase XXIII) 37 60 N/A Y Gradient centrifugation N/A 

Schaum, 
Nicholas 

The Tabula 
Muris 
Consortium 

2018 Nature Avertin Y CTX, CB, HIP, 
STR N Homogenizer (Dounce) N.A. N/A N/A Y Myelin Removal Beads II (Miltenyi Biotec) FACS 

Huang, 
Yubin Peng, Bo  2018 Nature Neuroscience  chloral 

hydrate Y WB Y AccµMax (Sigma) RT 30 N/A Y Gradient centrifugation (Percoll) FACS 

Hrvatin, 
Sinisa 

Michael E. 
Greenberg 2018 Nature Neuroscience isoflurane Y CTX Y Papain-based (Worthington) 37 60 TTX (1 µM), AP-V (100 µM), actinomycin D (5 µg /mL), triptolide 

(10 µM), anisomycin (10 µg) Y Gradient centrifugation N/A 

Tuan Tay Marco Prinz 2018 Acta Neuropathologica 
Communications N.A. Y P N.A. N.A. N.A. N.A. N/A Y Gradient centrifugation (Percoll) FACS 

Blanca 
Pijuan-Sala 

Göttgens, 
Berthold 2019 Nature N.A. N WB Y Trypsin-based 37 7 N/A N N/A N/A 

Dulken, Ben Brunet, Anne 2019 Nature N.A. Y SVZ Y Papain-based4 37 10 N/A Y Gradient centrifugation (Percoll) FACS 

Gunner, 
Georgia 

Schafer, 
Dorothy 2019 Nature Neuroscience CO2 Y CTX Y Papain-based 37 60 tetrodotoxin (1 μM), 2-amino-5-phosphonopentanoic acid 

(100 μM), actinomycin D (5 µg / mL), and triptolide (10 μM) N N/A N/A 

Van Hove, 
Hannah 

Movahedi, 
Kiavash 2019 Nature Neuroscience N.A. Y CP, D Y Collagenase-based (collagenase type 

I and collagenase type IV)  37 20 actinomycin D (30 µM) Y Gradient centrifugation (Percoll) FACS 

Geirsdottir, 
Laufey Marco Prinz 2019 Cell N.A. Y WB N Homogenization N.A. N/A N/A Y Gradient centrifugation (Percoll) FACS 

Sebastian 
Utz Greter, Melanie 2020 Cell CO2 Y WB, YS Y Collagenase-based 37 20 N/A N N/A FACS 

Schaum, 
Nicholas 

The Tabula 
Muris 
Consortium 

2020 Nature Avertin Y CTX, CB, HIP, 
STR N Homogenizer (Dounce) N.A. N/A N/A Y Myelin Removal Beads II (Miltenyi Biotec) FACS 

Sala 
Frigerio, 
Carlo 

De Strooper, 
Bart 2019 Cell Reports CO2 Y CTX, HIP Y Papain-based (Adult Brain 

Dissociation Kit) (Miltenyi Biotec) 4 30 N/A Y Gradient centrifugation (Debris Removal 
Solution, Miltenyi Biotec) FACS 

Li, Qingyun Barres, Ben A. 2019 Neuron CO2 or 
N.A. Y and N CB, CP, CTX, 

HIP, OB, STR N Homogenizer (Dounce) 4 N/A N/A Y (≥ 
P7) Myelin Removal Beads II (Miltenyi Biotec) FACS 

Hammond, 
Timothy Stevens, Beth 2019 Immunity N.A. Y WB N Homogenizer (Dounce) 4 N/A N/A 

Y 
(≥P30

) 
Gradient centrifugation (Percoll) FACS 

Masuda, 
Takahiro Prinz, Marco 2020 Nature Immunology N.A. Y CB, CTX, HIP N Homogenizer (Potter) N/A N/A N/A Y Gradient centrifugation (Percoll) FACS 

Lau, Shun-
Fat Ip, Nancy 2020 Cell Reports isoflurane Y WB Y Papain-based 37 30 N/A Y Gradient centrifugation (Percoll)  FACS 

Mangale, 
Vrushali Lane, Thomas 2020 Glia N.A. Y SC, WB N Homogenization N.A. N/A N/A Y Gradient centrifugation (Percoll)  FACS 

Wang, 
Shoutang Colonna, Marco 2020 Journal of 

Experimental Medicine 
ketamine-
xylazine Y WB Y Trypsin-based (Neural Tissue 

Dissociation (T) (Miltenyi Biotec) 37 30 N/A Y Gradient centrifugation (Percoll)  FACS 

Safaiyan, 
Shima Simons, Mikael 2021 Neuron N.A. Y CC, CTX, OT, 

WM Y Papain-based (Neural Tissue 
Dissociation Kit (P) (Miltenyi Biotec)) 37 15 actinomycin D (45 µM) Y Gradient centrifugation (Debris Removal 

Solution and Myelin Removal Beads) 6 FACS 
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4.2 Aims and objectives 

Drop-seq is a cost-effective tool capable of delivering high-quality scRNA-seq data. Therefore, I have 

chosen to do a Drop-seq experiment with adult male and female microglia in standard experimental 

procedures, which includes enzymatic tissue dissociation, myelin debris removal, and fluorescence-

activated cell sorting (FACS). Unfortunately, Drop-seq has a relatively low co-encapsulation 

efficiency in comparison to other platforms, necessitating many cells as input, and could show signs 

of technical artefacts; all which limitations that need to be explored prior to developing a context-

specific study.  

In this chapter I aim to test Drop-seq platform performance and develop a pilot dataset of cortical 

sex-specific microglia. This dataset is devised to help answer several questions regarding the 

implementation of scRNA-seq, assess data quality and bioinformatic pipelines for a context-

dependent study of microglial transcriptional heterogeneity. 

Aim 2. Drop-seq platform performance and pilot of cortical microglia 

• Objective 5: To measure Drop-seq platform performance 

• Objective 6: To develop an in-house scRNA-seq dataset of cortical microglia 

• Objective 7: To explore data quality and transcriptional heterogeneity in cortical sex-

specific microglia. 

4.3 Methods 

 Animals and single-cell isolation 

Cortical microglia were isolated from female and male MacGreen mice (n=2, each), as described in 

Figure 58; a more detailed description can be found in Chapter 2. In short, tissue dissection was 

followed by the enzymatic and mechanical dissociation of tissue with the Neural Tissue Dissociation 

Kit (P). Myelin was depleted from the cell suspension through Percoll-mediated gradient 

centrifugation, prior to the enrichment of microglia by FACS. 

 Flow cytometry – microglial enrichment 

Single-cells from MacGreen mice were sorted with the Aria II (BD Biosciences, San Jose, USA) fitted 

with the 100 µm nozzle to reduce shear-stress, and a cooled collection chamber (4°C). The Aria II 

was fitted with 3 lasers: violet (407), blue (488) and red (633). MacGreen cells were incubated with 

7AAD (7-Aminoactinomycin D) (Fisher Scientific, 559925) (1/200) to exclude dead cells. Cells were 

excited with the 488-laser to detect viable cells (PerCP-Cy5.5) positive for EGFP (FITC) (Figure 60); 
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activity of Csf1r in MacGreen mice is reported by EGFP. Approximately 150,000 cells for each sex 

were sorted in Yield modus to maximize recovery at the expense of purity.  

 
Figure 60: Spectral view of Macgreen sorting. Viable (7AAD-), Csf1r-positive (EGFP+) microglia were sorted from female 
and male cortices. EGFP and 7AAD were detected with the FITC- and PerCP-Cy5.5 emission filters, respectively. Both 
fluorescent reporters were excited by the Blue (488) laser. 

 Drop-seq – droplet microfluidics and single-cell library generation 

Single-cells (100 cells/µl) and barcoded microparticles (120 beads/µl) were co-encapsulated in 

droplets with cell lysis buffer (~1 nl, ~124 µm; 60 beads/µl, final concentration). The system was 

run with flow rates for oil at 15,000 µl/hour; cells and beads at 4,000 µl/hour.  

The stochastic nature of co-encapsulation stipulates that most droplets do not contain a cell. At the 

120 beads/uL, the theoretical prevalence of a single beads is 5.7%; empirically this was ~6% for both 

samples, with minimal presence of doublets (<0.5%; measures of good run efficiencies. 

Droplets were broken and collected by centrifugation, and captured RNA subjected to cDNA 

synthesis (Maxima-H RTase), generating single-cell transcriptomes attached to microparticles 

(STAMP) (Figure 56). 1100 STAMP from each sample were selected for PCR amplification, library 

preparation and Illumina sequencing. 

 PCR and Library Preparation 

Exonuclease treatment removed bead primers that did not capture an RNA. The library was 

amplified by polymerase chain reaction (PCR) (16 cycles), purified with AMPure XP beads 

(Agencourt, A63880) and assessed with a BioAnalyzer High Sensitivity Chip (Agilent, 5067-4626) 

according to the manufacturer’s instructions. Library sizes were 1,750 – 1,850, with concentrations 

between 240 – 265 pg/μl and a minimal coverage of 93%, signifying an absence of impurities and 

overall good library qualities. Normal concentrations from 50 cells/µl vary between 400 – 1000 
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pg/μl; however, variations in concentration are expected due to variations in cell concentration and 

the number of beads (Macosko et al., 2015). The purified and amplified cDNA was subjected to 

Nextera XT tagmentation, purified once more and prepared for NextSeq 500 sequencing. A 10 μl 

library pool at 3 nM was used as input for denaturation; 100 μL of sample was combined with 1200 

μl of HT1 buffer.  

 Next Generation Sequencing 

Single-cell libraries of sex-specific cortical microglia were sequenced on a NextSeq 500 platform 

(Version 2 chemistry). A Mid Output (TG-160-2001, 150 cycles) flow-cell with a maximum of 

130,000,000 reads per cell was used. This was a shared sequencing run and libraries averaged 

15,637 reads per cell. 

 High-performance computing - IRIDIS and raw data processing 

Raw sequencing reads were converted to a sorted unmapped BAM file (FastqToSam, Picard 

bundled in Dropseq-tools v1.0) and filtered to remove all read-pairs with a barcode base quality of 

<10.  The second read was trimmed at the 5’ end to remove any TSO-adapter sequence and at the 

3’ end to remove polyA tails. Reads were aligned against mouse reference genome (mm10) using 

STAR aligner (v2.5.0a), then sorted/converted/merged to a BAM with a tag “GE” onto reads for data 

extraction. The DigitalExpression program (Dropseq-tools v1.0) extracted digital gene expression 

(DGE) information of the mRNA transcripts (UMI) and created a DGE matrix where rows contain 

genes and cell (barcodes) in columns. 

 Seurat and quality control 

Seurat (2.3.4) (Butler et al., 2018), an R toolkit for single cell genomics was utilized. Creation of the 

Seurat object was restricted to cells with a minimum of 200 genes that are shared among at least 3 

cells. Mitochondrial genes were identified and tagged, prior to further quality control by saturation 

analysis and the visualisation of the number of genes (nFeature_RNA) (i.e. library complexity), 

number of transcripts (nCount_RNA) (i.e. library size) and mitochondrial content (percent.mt). 

Thresholds were set for quality control (QC), to include cells with less than 2500 unique genes and 

a mitochondrial content of 8%. To remove noise from the dataset using a negative binomial 

approach, the object was regressed for library complexity and size, and mitochondrial load. 

4.4 Results 

This chapter functions to detail the performance of Drop-seq and the bioinformatic pipeline 

necessary to generate a pilot dataset. Isolated sex-specific, cortical microglial were captured with 
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the Drop-seq platform and libraries of each sex were prepared. I set out to sequence 1100 STAMP 

of each sex and estimated to detect ~125 CNS-associated macrophages (CAM); CAM were used as 

the minority fraction. Here, I will address Drop-seq platform performance, standard pre-processing, 

principal component analysis and dimensionality reduction, and cluster identification.  

 Mixed species experiments and Drop-seq platform performance  

To ensure the Drop-seq platform performs as expected, that is, cellular distributions can be 

approximately accurately by the Poisson distribution, species mixed experiments are performed. In 

short, a mixed species experiments co-flows human and mouse cells to identify impurities at a given 

bead and cell concentration. Libraries are generated of the captured cells, after which mapping 

identifies mouse- and human-derived transcripts; species specificity illustrates if single cells can be 

effectively identified. This and other species mixing experiment are performed by the group of 

Matthew J. Rose-Zerilli, an example of which confirmed robust single-cell encapsulation and high 

species specificity (95%) (Figure 61). 

 
Figure 61: Typical mixed-species experiment characteristics. Human and mouse single-cells (100 cells/µl) and barcoded 
microparticles (120 beads/µl) were co-encapsulated in droplets with cell lysis buffer. Alignment to the human and mouse 
transcriptome illustrate high species specificity, with 5% of all cells featured by a mixed, non-specific, transcript signature. 

 scRNA-seq and ambient RNA 

Droplets that have not encountered a cell house ambient RNA. Ambient RNA is actively secreted by 

live cells and/or released by cell lysis, resulting in droplets without a cell (Lun et al., 2019). Removal 

of these empty droplets is important for downstream analysis. How much of the detected 
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transcripts are cellular can be approached by the cumulative fraction of mapped reads plot - the 

inflection point in the curve marks the separation between ambient and cellular transcripts (Figure 

62). For both sexes, approximately 750 out of 1100 cells have a cumulative fraction of 

approximately 0.5; that is, 68% of all cells provide meaningful data (Figure 62). Cumulative 

distributions like these are typical for Drop-seq, where the distribution of reads per cell are 

unevenly distribution.  

I aimed to sequence 1100 cells of each sex; however, the cumulative fraction of mapped reads 

suggests that I fell short of this goal, with 1,327 cells (686 female, 641 male) remaining after removal 

of empty droplets (Figure 62). To further increase the ability to distinguish ambient and cellular 

RNA, it will be important to reduce cell stress during isolation.  
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Figure 62: Cumulative fraction of mapped reads a) Female and b) male cumulative fraction plots of mapped reads. Each 
featured an inflection point, as marked by the cross-sections at 750 (x-axis) and 0.52 or 0.51 (y-axis), female and male, 
respectively. 

 Sequencing saturation is not reached 

Sequencing saturation analysis reveals that most cells do not reach saturation (Figure 63). The 

number of transcripts (log10) is starting to plateau, or saturate, around 125,000 reads per cell; 

sequencing more at this point will only result in marginal increases in detected transcripts. In the 

dataset, 1 out of 1,327 identified cells (0.1%) reached 125,000 reads, with an average read depth 

of 15,637 reads per cell (Figure 63). 

 
Figure 63: Sequencing saturation analysis. The plot depicts the number of detected transcripts (log10) over the number of 
mapped reads for all cortical microglia passing primary processing (n= 1,327). Over 99% of cells do not reach saturation, 
set to occur around 125,000 reads per cell. Locally estimated scatterplot smoothing (LOESS) regression was used to 
approximate the trend in the dataset and supplemented with confidence intervals. 

 Cell quality parameters and quality control  

Cell quality in the pilot was assessed with library complexity and size and mitochondrial content 

(Figure 64). Bell-shaped curves for each parameter are indicative of good quality cells and allow for 

lower- and upper-limits to be set where needed. In this dataset, an upper limit of 2500 genes was 

set, and complemented with a lower threshold of 300 for library complexity and size, and an upper 

limit to mitochondrial content of 0.08% (Figure 64) 
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Figure 64: Cell quality metrics of the microglial pilot data. Female and male microglia and their corresponding a) library 
complexity (nFeature_RNA) (i.e. nGene), b) library size (nCount_RNA) (i.e. nUMI), and the c) mitochondrial content 
(percent.mt). Lines are displayed to indicate upper and lower limits; nFeature_RNA .> 300, nCount_RNA > 300 , 
percent.mt < 0.08.   
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The median library complexity and size of the male and female cells approximates 600 and 900, 

respectively (Figure 64). In contrast, previous scRNA-Seq work by Gokce et al. (2016) report that 

striatal microglia reach saturation around 500,000 reads and express roughly 2,000 genes (Gokce 

et al., 2016). Albeit region-dependent heterogeneity could affect library complexity and saturation, 

it suggests that the cortical microglial transcriptome was not fully interrogated at 15,637 reads per 

cell, leaving potential novel transcripts undetected. 

 Linear dimension reduction and principal component determination 

As discussed previously, principal component analysis (PCA) is a central step in scRNA-seq to reduce 

dimensionality – see Section 2.8.1.4. Once more, ElbowPlot and JackStrawPlot were used to explore 

transcriptional heterogeneity before clustering. The ElbowPlot showed that the first 13 principal 

components (PC) describe most of the variability, of which JackStraw and JackStrawPlot analysis 

found that PC 1 through 8 and 12.are statistically significant (Figure 65). 

 
Figure 65: Dimensionality in the pilot data. The standard deviation of the first 80 PC were depicted. The ‘elbow’ was 
found at PC 13. b) JackStrawPlot for cortical microglia. Several PC are statistically significant (P<0.05) (i.e. PC1:8, 12). 
Each of these sets are consistently above threshold (1e-05). The P-value for each PC is based on a proportion test of 200 
genes compared to the proportion of genes expected below the threshold. 

 Cluster identification of myeloid cells: microglia, CNS-associated macrophages and 

exAM 

Most of the cells have transcriptional profiles that correspond to microglia, with wide-spread 

expression of Csf1r, Hexb, Tmem119 and P2ry12 in cluster 0 to 3 (Figure 66). Interestingly, cluster 

4 does not match a microglial signature, with a reduced or absent expression of Hexb, Tmem119 

and P2ry12. In fact, this cluster shows a signature reminiscent of CAM, a population that show 

modest levels of Csf1r but lacks Tmem119 (Satoh et al. 2015). 
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Figure 66: Canonical microglial marker expression in cortical microglia clusters. a) t-SNEplot of cortical microglia. b) 
VlnPlot of Csf1r, Hexb, Tmem119 and P2ry12.The tSNE-plot is generated with a resolution of 0.4 and 9 dimensions (i.e. 
1:8, 12). 

As stated, EGFP+ cells (Macgreen mice, Csf1r-EGFP) were sorted from cortical tissue from male and 

female mice (4.3.2). Although commonly used as a marker for microglia in the CNS, Csf1r is a broadly 

expressed myeloid marker and can also be expressed by other macrophages; Csf1r is a key gene in 

their core profile (Mass et al., 2016). However, as seen previously, several other genes distinguish 

CAM from microglia and are selectively enriched in cluster 4 (Figure 29, Supplementary Table 

2,Figure 67).  

 
Figure 67: CAM in Csf1r-EGFP+ sorted cells. FeaturePlot of CNS-associated microglia (CAM) markers (i.e. Mrc1, Pf4, 
Ms4a7). Gene module expression levels in the plot range from low (gold) to high (black). 

As anticipated, CAM are the minimum fraction in the pilot dataset. In correspondence, no cell 

actively cycling and proliferating microglia (CPM) were identified, a minority cell not exceeding 

1.4% of the adult microglial population and less than the prevalence of CAM (Askew et al., 2017; 

Mrjden et al. 2018). Unfortunately, a large proportion of microglial cells were affected by exAM-

like IEG signatures, most of which in cluster 2 and 3 (Figure 68).  
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Figure 68: Detection of exAM-like signatures with standard experimental procedures. VlnPlot of exAM-like immediate 
early gene (IEG) Egr1, Fos, Junb and Zfp36 in a cluster-specific manner. 

A DGE analysis was performed with “FindAllMarkers”, a Heatmap of these results can be found in 

Supplementary Figure 10. Of note, Van den Brink et al. (2017) identified a gene list associated 

with dissociation of mouse stem cells; Fos- and Jun-expressing subpopulations were also 

identified in mouse acinar cells and zebrafish osteoblasts (Brink et al., 2017). Similarly, cluster 4-

specific genes were enriched by genes from this list, suggesting that this is a conserved cellular 

response to dissociation. The list of genes shared between cell types was named the IEG module 

(Table 6); a complete list of activated muscle stem cells genes can be found in Supplementary 

Table 13.  
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Table 6: Immediate early gene module characterization. 

Gene: Full name: 

Atf3 Activating transcription factor 3 

Btg2 BTG Anti-Proliferation Factor 2 

Dnajb1 DnaJ Heat Shock Protein Family (Hsp40) Member B1 

Dusp1 Dual Specificity Phosphatase 1 

Egr1 Early Growth Response 1 

Fos Fos Proto-Oncogene, AP-1 Transcription Factor Subunit 

Hspa8 Heat Shock Protein Family A (Hsp70) Member 8 

Ier2 Immediate Early Response 2 

Jun Jun Proto-Oncogene, AP-1 Transcription Factor Subunit 

Junb JunB Proto-Oncogene, AP-1 Transcription Factor Subunit 

Jund JunD Proto-Oncogene, AP-1 Transcription Factor Subunit 

Mt1 Metallothionein 1A (MT1A) 

Nfkbia NF-Kappa-B Inhibitor Alpha 

Ppp1r15a Protein Phosphatase 1 Regulatory Subunit 15a 

Socs3 Suppressor of Cytokine Signalling 3 

Ubc Ubiquitin C 

Zfp36 Zfp36 Ring Finger Protein 
Note: Cluster 4-specific genes were compared to an activated cell signature of FACS-sorted, immediate early gene (IEG)-
enriched muscle stem cells, as described by Van den Brink et al. (2017). 17 of 32 were shared between both suggestive of 
a broadly conserved IEG gene module in response to dissociation.  

In fact, using the IEG module in the dataset (corroborating the trend observed for the exAM genes), 

a progressive increase of expression from cluster 0, to 2 to 3 was noted (Figure 69). A trend like this 

hints towards a dynamic and global effect of exAM-like signatures on all microglia in this pilot. 

Moreover, cluster 3 also features the lowest levels of Tmem119 and P2ry12 (Figure 66), suggesting 

that the emergence of such exAM-like signatures is paired with a loss of microglial identity, and 

doubly confounding the transcriptional read-out. These findings correspond to aged and diseased 

conditions (Dubbelaar et al., 2018); homeostatic microglial genes are downregulated in these 

conditions. The loss of P2ry12 by dissociation corresponds to findings by Li et al. (2019), and is 

reminiscent of a loss of immune-checkpoints causal to DAM emergence (Deczkowska et al., 2018; 

Li et al., 2019). Thereby, emergence of such signatures requires mitigation, experimentally and/or 

bioinformatically. 
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Figure 69: Progressive enrichment of the IEG gene module in the pilot data. a) FeaturePlot of the immediate early gene 
(IEG) module expression. b) VlnPlot of the IEG module in a cluster-specific manner. 

 Principal component selection and clustering 

The interdependence of a priori knowledge and novel discovery is most salient with the 

identification of clusters. To maximize the exploration of microglial transcriptional heterogeneity, 

I explored if genes associated CAM or exAM-like signatures could be removed from the data; PC 

selection is the first starting point. Strikingly, of the 9 significant clusters, 3 feature genes 

associated with CAM and exAM (Supplementary Figure 9). PC2 is enriched for CAM genes (e.g. 

Mrc1, Pf4,), whereas PC 7 and 8 are enriched for IEG (e.g. Egr1, Fos) (Figure 70) (Brink et al., 2017; 

Kierdorf et al., 2019; Wu et al., 2017).  

The inclusion of all significant PCs (1:8, 12) results in the most heterogeneous mapping of 

diversity, whereas the exclusion of PC2, or PC7 and PC8 effectively removes cells characterized by 

the expression of IEG and CAM, respectively (Figure 70). Removal of such PC might therefore offer 

a means to the removal of CAM and exAM signatures might therefore be achieved by the 

exclusion of PC affected by these effects. However, as, discussed, exAM genes and microglial 

identity are intertwined. 
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Figure 70: Biological markers and PC-dependent clustering. a) Principal component (PC) heatmap for PC2, 7 and 8. PC2 is 
featured by CAM genes, whereas PC 7 and 8 are associated with IEG, respectively. b-d) The selective removal of either 
set is causal to differential clustering characteristics. b) Clustering with all significant PC (PC1:8, 12) retains CAM and 
IEG, c) whereas the selective removal of PC2, d) or PC7 and PC8exclude CAM and exAM, respectively. CAM, CNS-
associated macrophage; exAM, ex vivo-activated microglia; IEG, immediate early gene. 

e.g. Zfp36 is a marker for both homeostatic (HOM) and aged inflammatory microglia (AIM), whereas 

Ifit3 is enriched in interferon response microglia (IRM) (Supplementary Table 1, Supplementary 

Table 2). Indeed, Zfp36 is a marker and transcription factor for microglial identity (Grabert et al., 

2016; Hanamsagar et al., 2017; Wehrspaun et al., 2015). Here, both Zfp36 and Ifit3 are correlated 

with PC rich with IEG (Figure 70). The interlaced nature of such gene signatures greatly reduces the 

efficiency of PC exclusion, urging for alternative approaches to be considered.  

An alternative might be offered by the regression and/or removal of exAM genes from the variable 

gene list (Van Hove et al., 2019). However, like the removal of PC, this will affect microglial gene 

signatures and is not preferred. Experimental approaches might be need to truly mitigate such 

technical artefacts, of which several implementations have started to emerge (Hammond et al., 

2019; Marsh et al., 2022; Safaiyan et al., 2021; Sala Frigerio et al., 2019; Wu et al., 2017). 

4.5 Discussion 

Here, I set out to assess Drop-seq platform performance and generate an in-house scRNA-seq 

dataset. As a platform, Drop-seq offers a cost-effective means to study microglial heterogeneity, 
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albeit some limitations have been discussed. That is, capture efficiency is low and resource 

allocation is unevenly distributed. These are accepted limitations, understanding that this platform 

has the benefit of using UMI for quantification, and does so with great accuracy and sensitivity (in 

comparison to other platforms). 

With Drop-seq, I was able to generate a pilot dataset of adult cortical microglia of both sexes, which 

was used to explore data quality and transcriptional heterogeneity. Notably, despite the loss of cells 

due to some of the inherent limitations (or a failure to detect cells by a lowered sequencing depth), 

the data was broadly of good quality. e.g. Less than 5% of cells displayed transcripts of mixed 

species, and mitochondrial content of cells was low. CAM were also identified, a priori set to be 

minimum fraction, confirming that the platform behaves predictably. Unfortunately, as previously 

discussed in the atlas, the occurrence of exAM-like signatures in the data suggests that standard 

experimental procedures affect microglia negatively, as has been the case for other cell types (Brink 

et al., 2017). 

The identification of such findings urged me to explore bioinformatic methods to mitigate the 

inclusion of exAM-like signatures. To that end, the focus was on the PC that include IEG (and CAM) 

signatures. Exclusion of such effects is possible through these means; however, as discussed, the 

exAM signatures are intimately tied to native microglial identity and activation, which would 

undermine the ability to identify such processes in scRNA-seq data (Figure 30).  

Regression and/or removal of these genes from the variable gene list would similarly affect this 

capacity. The most viable alternative is to mitigate such effects experimentally. As stated, scRNA-

seq consist of six broad steps, each of which change the environment of microglia. In the next 

chapter, I will detail the experimental procedures that could affect the prevalence of exAM-like 

signatures. 
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 Supplementary figures 

 
Supplementary Figure 9: Significant principal components of the pilot data. Principal component (PC) 1 to 8 and 12 are 
displayed. Markers for canonical microglia, exAM and CAM are present. 
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Supplementary Figure 10: Standard experimental procedures instil exAM-like signatures. Heatmap of cluster-specific 
markers include ex vivo-activated microglia (exAM) signatures like immediate early gene expression. “FindAllMarkers” 
was used ‘only.pos = FALSE’, ‘min.pct = 0.2’,’ logfc.threshold = 0.25’, ‘test.use = "negbinom"’. 

Supplementary Table 13: Activated muscle stem cell module. 

1 Atf3 17 Hspb1 
2 Btg2 18 Hspe1 
3 Cebpb 19 Hsph1 
4 Cebpd 20 Id3 
5 Cxcl1 21 Ier2 
6 Dnaja1 22 Jun 
7 Dnajb1 23 Junb 
8 Dusp1 24 Jund 
9 Egr1 25 Mt1 

10 Fos 26 Mt2 
11 Fosb 27 Nfkbia 
12 Hsp90aa1 28 Nr4a1 
13 Hsp90ab1 29 Pp1r15a 
14 Hspa1a 30 Socs3 
15 Hspa1b 31 Ubc 
16 Hspa8 32 Zfp36 

Note: Complete gene module of activated muscle stem cells. Genes in bold are shared with cluster 4 markers.  
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Chapter 5 Technical artefacts and scRNA-seq: cell 

isolation and ex vivo gene signatures 

5.1 Single cell isolation and single-cell RNA-sequencing 

Single-cell RNA-sequencing (scRNA-seq) has enabled the generation of large-scale, whole-genome 

cell atlases, rapidly increasing cell type marker identification in multicellular tissues (Han et al., 

2018; Regev et al., 2017; Schaum et al., 2020, 2018). However, as seen before, standard 

experimental procedures are linked to the occurrence of exAM (Figure 30,Figure 68). Broadly, ex 

vivo gene signatures are induced when single cells are isolated from their native environment 

(Adam et al., 2017; Brink et al., 2017; Lacar et al., 2016; Machado et al., 2017; van Velthoven et al., 

2017).  

Tissue dissociation and cell isolation is a combination of mechanical disruption and/or enzymatic 

cleavage methods. Commonly used enzymes include papain and collagenase (Marsh et al., 2022; 

Slyper et al., 2020). The selection for each enzyme varies, as it will affect epitope availability on the 

cellular membrane, a key consideration for fluorescence-activated cell sorting (FACS) and 

cytometry by time-of-flight (CyTOF) (Marsh et al., 2022; Mattei et al., 2020). However, both 

enzymes function most efficiently at physiological temperatures and many protocols therefore opt 

to dissociate tissue at 37°C (Dulken et al., 2019; Hrvatin et al., 2018; Lau et al., 2020; Mathys et al., 

2017; Safaiyan et al., 2021; Utz et al., 2020; Van Hove et al., 2019; Wang et al., 2020). Notably, 

transcription and translation are reduced at lower temperatures.  

Here, I review the most relevant current methods to minimize the ex vivo activation in scRNA-seq, 

to preserve in vivo microglial identity.  

 Ex vivo cellular activation and scRNA-seq 

Complex tissues like the central nervous system hosts are wide range of cells, including astrocytes, 

oligodendrocytes, neurons, endothelial and mural cells, and microglia (Wu et al., 2017). Each 

environment, with its relative proportion of grey- and white-matter and cellular heterogeneity, has 

been shown to have distinct mechanical properties (Budday et al., 2015; MacManus et al., 2017). 

In this way, each region will have its own characteristics in relation to single cell isolation.  

One of the first studies that reported on the effects of sample preparation on transcriptomic data 

derives from human peripheral blood mononuclear cells (PBMC). A microarray study demonstrated 

an ex vivo induction of over 2,000 genes by overnight storage (Baechler et al., 2004). Dysregulated 

genes typically belonged to pathways involving stress, such as heat shock proteins (HSP), 
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immediate-early genes (IEG) and early response genes (ERG); typical dissociation-induced artefacts. 

Since then, several other studies in skeletal muscle satellite cells (SC), kidney, and brain cells have 

found similar effects (Adam et al., 2017; Brink et al., 2017; Machado et al., 2017; van Velthoven et 

al., 2017; Wu et al., 2017).  

All cells will eventually display an activated signature given sufficient time, however, there are 

distinct differences in response time (Machado et al., 2021a; Marsh et al., 2022; Wu et al., 2017). 

Microglia, endothelial cells, and mural cells are first-responders and found to be particularly 

sensitive to standard dissociation (Adam et al., 2017; Wu et al., 2017). It is unknown why such cell-

specific sensitivities are found; however, it stands to reason these effects are due to intrinsic 

predispositions to stimuli associated with their biological roles. Cells in a multicellular organism are 

in constant communication to establish homeostasis or return to it, by sending and receiving 

autocrine, paracrine, and endocrine signals, as well as signals through gap junctions and 

mechanosenzing. Microglial signals are mediated by the ‘sensome’, a cluster of protein-encoding 

transcripts for sensing endogenous ligands and microbes (Hickman et al., 2013). The sensome 

facilitates microglia to survey the brain parenchyma in vivo, a central function of the immune cell 

(Nimmerjahn et al., 2005). However, the same sensome (i.e. cellular machinery) actives microglia 

during cell isolation protocols and masks the native transcriptome. Similarly, endothelial and mural 

cells are key effectors in blood-brain barrier homeostasis and immune signalling (Daneman and 

Prat, 2015).  

Ex vivo activation has become a recognized caveat of scRNA-seq, a confounding variable which has 

fostered novel ways of mitigating such disruptions to the native transcriptome. 

 Enzymatic cell isolation and digestion temperature 

Digestion temperature is a key feature of cell isolation. As stated, typical enzymes like papain and 

collagenase are most active at physiological temperatures. However, cold-activated enzymes (CAP) 

like the Himalayan, glacier-born Bacillus Licheniformis protease enable digestion at lower 

temperatures (Adam et al., 2017; Hertzano et al., 2021; O’Flanagan et al., 2019).  

Studies that use CAP for digestion have reported on a lower level of technical artefacts in 

comparison to standard heated digestion, featured by lower gene expression levels of IEG like Fos, 

Egr1, Zfp36, Ier2, Jun and Dusp1  (Adam et al., 2017; Hertzano et al., 2021; O’Flanagan et al., 2019). 

Furthermore, heated dissociation displayed a considerable transcriptional variability depending on 

the digestion time (Adam et al., 2017).  

However, other features of enzymatic digestion are less desirable. Like more commonly used 

enzymes, enzymatic cleavage of epitopes could confound downstream flow cytometric analyses 

and remains a consideration for or against the use of any digestion enzyme (Hertzano et al., 2021). 
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Attempts to adapt these cold-activated proteins to brain tissue are expected to be confounded 

further by DNAse activity. DNAse is an essential component in single cell isolation protocols, to 

degrade cell-free DNA and reduce cell clumping; however, there is currently no cold-active DNase 

(Marsh et al., 2022). Furthermore, cells could undergo a cold-shock response, which is also 

expected to alter the transcriptome (Machado et al., 2021). Lastly, cell recoveries vary depending 

on the digestion temperature (Denisenko et al., 2020). e.g., renal macrophages were found to be 

less abundant with heated digestion (Denisenko et al., 2020).  

Taken together, higher levels of cellular activation during heated digestion favour CAP-mediated 

digestion. Remarkably, despite this effect, CAP have not found more wide-spread use in scRNA-seq 

since their first discovery, even if these appear to offer superior sample quality. I postulate that 

their underrepresentation in the single-cell field is due to cost considerations; cold-activated 

enzymes are generally more expensive than their heat-activated counterparts and could limit large-

scale studies.  

 Mechanical dissociation protocols 

Now, if (heated) enzymatic dissociation introduces technical artefacts, can users select against 

using enzymes? The literature indicates that enzyme-free processing is possible, limiting 

dissociation to the mechanical disruption of tissue. Most commonly, studies report on the use of 

Dounce homogenizers (Almanzar et al., 2020; Hammond et al., 2019a; Q. Li et al., 2019a; Schaum 

et al., 2018) or Potter pestles (Masuda et al., 2020; Sousa, 2018) (Table 5). Mechanical dissociation 

utilizes shearing and/or grinding forces to isolating cells (“Guide to the Disruption of Biological 

Samples - 2012,” n.d.).  

Mechanical dissociation can be performed at lower temperatures and comes at a reduced cost 

relative to enzymatic protocols. However, without the aid of enzymatic cleavage, yield in such 

methods vary across experimental conditions and will therefore not meet all experimental design 

needs (Marsh et al., 2022; Slyper et al., 2020). Droplet-based platforms require more cells than 

plate-based approaches, potentially limiting its adaptation for high-throughput scRNA-seq. 

Furthermore, by recovering less cells from tissue, mechanical dissociation may underestimate true 

cellular heterogeneity, introducing a bias towards more numerous and accessible cells over rare 

subtypes.  

Interestingly, some protocols of mechanical dissociation still make use of DNase in cold conditions, 

even if DNase is not functional at lower temperatures (Almanzar et al., 2020; Li et al., 2019; Marsh 

et al., 2022; Schaum et al., 2018). 

Of note, Marsh et al. (2022) reported on the presence an ex vivo gene signature in studies that 

utilize Dounce homogenization (Marsh et al., 2022). The authors argue that the effect is minimal 
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and Dounce is an effective tool in minimizing artefactual genes, as enzymatic dissociation induces 

a stronger signature. However, the ex vivo signature remained elevated when compared to 

protocols that use transcriptional and translation inhibitors (Marsh et al., 2022). The question then 

arises, what are the characteristics of such inhibition and how could these benefit microglial 

studies? 

5.2 Transcriptional and translation inhibition and scRNA-seq 

Recent scRNA-seq literature illustrates a trend to enzymatic dissociation in the presence of 

inhibitors, that is, transcriptional and translation inhibitors.  

Transcription in eukaryotes is dependent on 3 RNA polymerases, large complexes that bind to and 

initiate DNA transcription (Rosenberg and Rosenberg, 2012). Inhibiting transcription in eukaryotes 

can be achieved by a broad range of products, including amanitin, actinomycin, DRB, flavopiridol, 

and triptolide (Bensaude, 2011). Translational inhibition can be achieved by, among others, 

cycloheximide, emetine and anisomycin (Abbas et al., 2011; Chan et al., 2004).  Each offers a means 

to reduce the cellular response to dissociation, preserving biological microglial signatures and 

improving data quality. 

Three inhibitors are commonly used in scRNA-seq studies: actinomycin (ActD), triptolide (Tripto) 

and anisomycin (Aniso). I will review ActD and its use in isolation, or in combination with Tripto and 

Aniso, for microglial scRNA-seq.  

 Combinatorial inhibition of ex vivo artefacts in the CNS 

A seminal study by Hrvatin et al. (2018) implemented a combination of factors to abrogate technical 

artefacts in neurons. To study cortical, transcriptional responses to light exposure in mice, the 

authors developed a heated, isolation protocol for scRNA-seq that included the use of ActD, Tripto, 

Aniso, TTX and AP-5 (Hrvatin et al., 2018). TTX and AP-5 block voltage-gated sodium and NMDAR-

channels, respectively. Therefore, the combination of inhibitors is expected to effectively block 

transcriptional, translation, and activity-dependent alterations to the in vivo signature. 

The lab of Beth Stevens has since adapted and introduced this protocol for microglial biology (Marsh 

et al., 2022). The protocol inhibits ex vivo gene expression by combining ActD, Tripto and/or Aniso 

during the phases of exsanguination, collection, and digestion, excluding TTX and AP-5. Of note, 

transcriptional inhibition with ActD and Trip are generally well-accepted throughout isolation; 

however, translational inhibition with Aniso has not been used during exsanguination, suggestive 

of contra-indications at this stage (Hrvatin et al., 2018; Marsh et al., 2022).  
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Two studies have utilized the developed protocol (Hasselmann et al., 2019; McQuade et al., 2020). 

The protocol is touted for its flexibility, capable of generating high quality scRNA-seq data across a 

range of CNS cells (Marsh et al., 2022). However, for the isolation and sequencing of microglia, ActD 

alone is a sufficient for the mitigation of ex vivo signatures in scRNA-seq (Marsh et al., 2022; Wu et 

al., 2017).  

 Transcriptional inhibition with actinomycin D 

The longest-standing and most used transcriptional inhibitor in scRNA-seq studies is ActD. ActD is 

an antibiotic and antineoplastic molecule that derives from the Streptomyces genus, and contains 

two cyclic peptides interlinked with a phenoxazine(Lai et al., 2019; Liu et al., 2016) (Figure 71). ActD 

is postulated to bind DNA, which, in turn, inhibits RNA polymerases and transcription (Lai et al., 

2019; Wu et al., 2017).  

 
Figure 71: Molecular structure of Actinomycin D. Actinomycin D (C62H86N12O16) (1255.42 Da) is a polypeptide with 
antibiotic and antineoplastic features. Two cyclic peptides are coupled by a phenoxazine. Sourced image from 
Sigma(“Actinomycin D from Streptomyces sp., ~98% (HPLC) | Sigma-Aldrich,” n.d.). 

scRNA-seq studies of CNS tissue have used ActD across a distinct number of phases during single-

cell isolation (Gunner et al., 2019; Hasselmann et al., 2019; Hrvatin et al., 2018; Marsh et al., 2022; 

McQuade et al., 2020; Pavel et al., 2019; Safaiyan et al., 2021; Van Hove et al., 2019; Wu et al., 

2017) (Table 7). ActD is commonly used during collection and digestion of tissue; additionally, 

several studies extend its use to during exsanguination and downstream cell handling. 

Concentrations generally vary between 4 and 45 µM, although higher concentrations are often 

restricted to ActD used in isolation. In isolation, the concentration varies from 15 to 45 µM, 

depending on the temperature and duration of the digestion. When combined with a second 

transcriptional inhibitor (i.e. triptolide) and a translational inhibitor (i.e. anisomycin), ActD has been 

used at 4 µM. 

At these concentrations, all three classes of eukaryotic RNA polymerases are inhibited by ActD: 

Class 1, 40 nM; Class 2, 400 nM; and Class 3, 4 µM (5 ug/mL), respectively (Bensaude, 2011). 

Moreover, ActD displays low reversibility; albeit transcription displays a modest recovery after 

removal of ActD, more than 24-hours was needed for a return to a priori full-length transcript 
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synthesis (Bensaude, 2011; Hadjiolova et al., 1995; Schluederberg et al., 1971). Furthermore, ActD 

has a relatively large safety window, without genotoxic stress until a concentration of 100 µM 

(Mussil et al., 2019). In short, ActD offers wide-spectrum, long-lasting and well-tolerated 

transcriptional inhibition. 

To minimize ex vivo cellular activation in cell isolation, Wu et al. (2017) were the first to trial 

transcriptional inhibition with ActD in a scRNA-seq study. Without ActD, up to 100% of microglial 

cells displayed an activated profile, whereas ActD limited the induction of an ex vivo profile to less 

than 5% (Wu et al., 2017). Similarly, the use of ActD prevented cellular activation of CNS-associated 

macrophages (Van Hove et al., 2019). Furthermore, reducing temperatures to 22 or 11°C further 

diminished the percentage of activated microglial cells, and aided the removal of dissociation-

induced artefacts in endothelial and mural cells (Wu et al., 2017).  

The most current implementation of ActD is featured by Safaiyan et al. (2021). The authors include 

45 µM of ActD in cell isolation during collection and (heated) digestion, and effectively isolate 

microglia from the CNS without signs of dissociation-induced artefacts, as expression of genes like 

Fos, Egr1, Atf2, and Zfp36 is lacking (Safaiyan et al., 2021a).  

 Weighted benefits: transcriptional inhibition, microglial enrichment, and RNA decay 

Safaiyan et al. (2021) identify astrocytes, ependymal cilia and secretory cells, erythroid-like and 

vascular cells, macrophages, and neuroblasts and NPCs (Safaiyan et al., 2021). However, 

disproportionally, the isolation recovers microglia at the expense of neurons; up to  50% of all cells 

are microglia (Safaiyan et al., 2021). In situ, microglia compose 5 to 12% of all CNS-cells. It will be 

important to define the target population of any scRNA-seq study, as it might not effectively 

capture all cells equally.  

Furthermore, any reagent will have potential limitations in its use. Prior to its adoption in scRNA-

seq, ActD had been used to study mRNA decay rates in cultured cells (Lai et al., 2019). mRNA decay 

is a biological phenomenon that describes the natural decline and breakdown of mature RNA 

transcripts and is significantly heterogeneous; mRNA transcript stabilities vary. Indeed, genes like 

Dusp1, Ier3 and Nfkb1a are particularly sensitive to degradation, whereas others like Gapdh and 

Rpl14 are more stable, albeit also subject to change (Lai et al., 2019). A microarray study of human 

fibroblasts identified that 4,992 (9.1%) of 54,613 probe-set transcripts decayed more than 25% by 

4 hours in the presence ActD (Lai et al., 2019; Qiu et al., 2015). 

Recent work in microglial cells – using ActD in isolation or in combination - have not shown any 

detrimental effects of transcriptional inhibition (Marsh et al., 2022; Safaiyan et al., 2021). However, 

two downstream effects on data quality will need to be taken into consideration. First, prolonged 

incubation with ActD and/or differences in sample processing time can affect library complexity 
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and might introduce technical variations between samples (i.e. baseline drifting); batch correction 

would therefore be critical when using ActD. Second, susceptible (and rare) transcripts are expected 

to be selected against during processing, reducing native library complexity. Droplet-based scRNA-

seq platforms are inherently less suitable for the detection of rare transcripts and an addition of 

ActD is expected to further reduce library complexity. 

5.3 Chemical fixation and single-cell (library) metrics 

Fixation is an established procedure in histology. Aldehydes like paraformaldehyde (PFA) are 

routinely used in situ for the preservation of biological tissues and cells. Although implementations 

of it have been devised for RNA-seq and plate-based scRNA-seq (Machado et al., 2017; Thomsen et 

al., 2016; van Velthoven et al., 2017), PFA fixed cells are not compatible with high-throughput 

platforms like 10X Genomics (Machado et al., 2021). However, methanol (MetOH) or dithio-bis 

(succinimidyl propionate) (DSP) have been tested for droplet-based platforms and are reported to 

retain RNA quality well (Alles et al., 2017; Attar et al., 2018).  

Long-term MetOH fixation effectively retains transcriptional profiles up to several months (Alles et 

al., 2017a). However, after weeks, recovery of murine hindbrain cells was down to 12-19% of total 

cells at the start of the time course (Alles et al., 2017). Since CNS immune cells are naturally 

susceptible to the detrimental effects of fixation (Alles et al., 2017), this could lower microglial 

recovery further. Furthermore, MetOH fixation permeabilizes the cellular membrane, causal to 

~10% loss of cytoplasmic transcripts, potentially increasing ambient RNA. Transcript loss did not 

result in a loss of phenotypical characterization of mouse hindbrain cells or human PBMCs (Alles et 

al., 2017; Chen et al., 2018). However, finer classifications of cells (reliant on rare transcripts) are 

anticipated to be negatively affected. In turn, despite reports of good RNA quality, DSP fixation has 

been shown to gently fragment transcripts, diminishing cDNA yield with prolonged fixation, and 

introducing a 3’-end bias with sequencing (Attar et al., 2018).  

Both chemicals have been shown to aid scRNA-Seq by minimizing technical artefacts and enable 

expansions of experimental design (Alles et al., 2017; Attar et al., 2018). Short-term fixation with 

MetOH or DSP might therefore proof useful for the preservation of microglial in vivo states. 

However, no such studies have been performed currently. If possible, chemical fixation of cells 

offers a means to reduce technical noise and simplify batching, thereby improving library quality 

and cell quantity.  

5.4 Summary 

Taken together, isolation of single cells for scRNA-seq needs an account of tissue and cell-specific 

responses to isolation. Heated and enzymatic dissociation is commonly used; albeit marred by ex 
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vivo gene inductions in microglia. ActD alone is sufficient to block the induction of ex vivo 

signatures, and the use of inhibitors to block ex vivo signatures are central to good quality microglial 

scRNA-seq data. In turn, cell fixation could increase flexibility in experimental design. A multi-modal 

approach to dissociation-induced signature mitigation will eventually yield the best results.  

5.5 Aims and objectives 

In the previous chapters I have detailed a single-cell atlas of microglial heterogeneity in health, and 

I have completed a Drop-seq platform performance review and pilot study of cortical microglia. In 

these chapters ex vivo signatures were identified. In this chapter, I aim to establish a microglial 

scRNA-seq procedure that mitigates such effects.  

Aim 3: Establish a microglial scRNA-seq protocol. 

• Objective 8: To test the utility of chemical fixation with MetOH and DSP. 

• Objective 9: To explore the characteristics of FACS and MACS for scRNA-seq. 

• Objective 10: To assess cellular activation and yield in purification methods. 

• Objective 11: To determine the effect of dissociation condition on ex vivo signatures.  

• Objective 12: To implement a novel microglial isolation protocol for Drop-seq. 



152 

Table 7: scRNA-seq studies utilizing transcriptional inhibition. 

 
Note: inhibitor concentrations are reported as µM for consistency. If reported in µg/mL, the concentrations were calculated with molecular weights of 1255.42, 360.41 and 265.30 g/mol, for 
Actinomycin D (ActD), Triptolide (Tripto) and Anisomycin (Aniso), respectively. Pavel et al. (2019) had erroneously reported their used concentrations (i.e. 25 ug/mL, 2 nM), which has been 
adjusted in the table. 
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5.6 Methods 

Several Drop-seq protocols for primary microglia were tested (Figure 72). The experimental 

comparison included seven distinct steps: anaesthesia, perfusion and tissue dissection, 

dissociation, purification, enrichment, chemical fixation, and scRNA-seq. I choose to vary four key 

steps, targeting chemical fixation, enrichment, purification, and dissociation. Varying these factors, 

a total of 72 unique experimental procedures can be developed. Not all are within the scope of this 

body of work. To that end, I prioritized variations within each step, reasoning that these will best 

detail the effect of each; variations between steps were not accounted for experimentally. 

 
Figure 72: Drop-seq workflow for murine microglia. Graphical summary of protocol variations for single-cell isolation and 
scRNA-seq. 

 Direct comparison of MACS and FACS 

Adult mice were anaesthetized, perfused, and tissue dissected and dissociated (i.e. standard), 

followed by bead-dependent purification (Chapter 2). Cells were stained for Cd11b with a magnetic 
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microparticle- or fluorescent reporter-conjugated antibody. Cd11b+-cells were enriched with MACS 

or FACS, after which cells were subjected to a second round of staining, including a viability dye 

(eFluor520), a canonical microglial marker (P2ry12) and mitochondrial activity dye (Mitotracker 

Deep Red). Single, viable P2ry12+-cells were assessed  

 Culture of a microglial cell line 

Microglial cells (i.e. N13) were seeded into and maintained in a T75 cell culture flask with pre-

warmed culture medium; Dulbecco’s Modified Eagle’s Medium (DMEM) (61965-059, Thermo 

Fisher) with 10% fetal bovine serum (FBS), and 100 U/mL of Penicillin-Streptomycin. Cells were 

incubated at 37°C in 5% CO2, changing the media every 3 days. To passage the cells, cells were spun 

down (at 900x RPM) and resuspend in 5 mL of culture media, after which 500 uL was added to a 

new T75 flask with 14.5 mL of pre-warmed media. 

To collect cells, media was removed, cells washed with distilled water and trypsinized with 5 mL 

trypsinization solution (HBSS (1X) and Trypsin-EDTA (0.5%) (1X). Trypsinization was stopped with 

culture medium, cells spun down and resuspended in culture medium. A C-chip or haemocytometer 

was used to apportion 1,000,000 cells for each test.  

 Chemical fixation 

Chemical fixation was tested with two reagents: DSP and MetOH (Alles et al., 2017a; Attar et al., 

2018a). Cells were fixed for 1 to 3 days. Flow cytometry enabled an assessment of their respective 

cell number and viability. 

Aliquots of 10 µL DSP (Thermo Scientific, 22586) were prepared in anhydrous DMSO, to a stock 

concentration of 50 mg/mL (i.e. 50X) and stored at -80°C until use. 50X DSP was diluted to 1X 

working stock concentration with PBS. Working stock was filtered using a 30 µm filter and stored 

on ice prior to cell fixation. General lab stock of ice-cold methanol was used. DSP and methanol 

were added dropwise under gentle agitation, to ensure minimal precipitation 
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5.7 Results 

 Chemical fixation reduces recovery and alters population characteristics 

Chemical fixation could improve experimental flexibility and library 

quality. As stated, long-term fixation was expected to significantly 

reduce recovery, thereby minimizing the capacity to pool tissue (Alles 

et al., 2017). Indeed, MetOH fixation for up to 2 months resulted in 

significant cellular debris and clumping in the sample and inefficient 

recovery (<5%) for both microglial culture cells and ex vivo isolated 

murine microglia (data not shown). Cellular morphology and recovery 

were compared in MetOH and DSP, to accurately assess their 

respective value for short-term fixation (Figure 73).  

Cellular morphology is differentially affected by DSP and MetOH 

fixation. In situ cellular morphology is an indirect measure of microglial 

function; amoeboid and ramified microglia have distinct features, 

characterized by round and arborized cells (Davis et al., 2017). By 

extension, flow cytometric measures of cellular morphology are descriptive of the cell quality. DSP, 

or Lomant’s reagent, was suggested to preserve normal cellular morphology, whereas MetOH acts 

as a permeabilizing agent that dissolve lipids of the cell membrane and disrupts cellular integrity 

(Alles et al., 2017; Attar et al., 2018; Jamur and Oliver, 2010). Indeed, distinct morphologies for 

fresh and DSP- and MetOH-fixed cells were found, best illustrated by a shift in the size and 

granularity of the population (Figure 74). 

 
Figure 74: Flow cytometry of cultured microglia in fresh and fixed conditions. Fresh, methanol (MetOH) and dithio-bis 
(succinimidyl propionate (DSP)-fixed N13 cells and their respective size (FSC) and granularity (SSC). ‘Expected 
populations’ mark the N13 cells, and the grey (horizontal) lines detail granularity across conditions. 

Cells undergo a morphological change with MetOH-fixation that bears similarities to heat-

treatment. Cells display an increase in granularity with fixation that is suggestive of a loss in cell 

integrity (Figure 75). Maintaining cellular integrity might be of particular importance for 

Figure 73: Chemical fixation 
and scRNA-seq. Fresh, 
methanol (MetOH) and dithio-
bis (succinimidyl propionate) 
(DSP) were compared. 
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subsequent single-cell analysis, as increases in ambient RNA is expected to confound detection 

of true cellular transcripts. favouring DSP over MetOH fixation. 

 
Figure 75: Comparison of morphological features in fresh and fixed microglial cells. Fresh and methanol (MetOH)-fixed 
N13-cells were subjected to heat-induced cell death (90 seconds at 68°C) or control conditions. ‘Expected populations’ 
mark the N13 cells. 

Cell recovery gradually decreases over time for both DSP and MetOH, where DSP consistently 

featured a greater relative recovery than MetOH. For both reagents, recovery drops to 

approximately 60% after 1 day of fixation and continues to get decline to 50 and 45% at 3 days 

for DSP and MetOH, respectively (Figure 76). These numbers suggest a limited utility for cell 

pooling.  

 
Figure 76: Chemical fixation and cell recovery. Short-term fixation of dithio-bis (succinimidyl propionate (DSP) and 
methanol (MetOH) reduces cell recovery with time of fixation for both DSP (n=2, all time-points) and MetOH (n=2, all time-
points). DSP performed better than MetOH on all three durations measured. No statistically significant effects were found 
(2-way ANOVA with Tukey’s multiple comparison). Bars are standard deviations. 
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 MACS-mediated enrichment is fast and mitigates ex vivo signatures 

Enrichment of cells for scRNA-seq is typically done with FACS or 

MACS (Figure 77). Flow cytometry can rapidly sort cells with 

great purity. Flow rates can be varied between 1 and 11 that 

correspond to ~10-80 µL / min; however, it is not 

recommended to exceed flow rates that increase the number 

of detected events per second above 2,000. In this manner, 

sorting of cells from regions that have a lower prevalence like 

the SC and CB will take a longer time, having a direct influence 

on cell viability and protocol feasibility. Indeed, with these 

considerations accounted for, only the CH and ISO readily allow 

enough cells to be sorted cells within an hour (Table 8); 

Macosko et al. (2015) recommend 150,000 for a typical 

experiment. In this manner, the limiting factors for the protocol 

are the relative cell concentrations and prevalence of microglia. 

Table 8: Region-dependent FACS-mediated recovery times. 

 

Note: Estimated recovery time of (~150,000) microglia with FACS varies by region of interest (ROI). Commonly accepted 
sorting times are times less than 30 minutes. Only the cerebrum (CH) and isocortex (ISO) can readily lend itself to these 
limitations. CB, cerebellum; HPF, hippocampal formation; SC, spinal cord. 

Moreover, distinct variations in cellular activation are evident between fluorescence- and 

magnetic-activated cell sorting. Cellular activation and ex vivo signature induction have been shown 

to associate with elevated levels of mitochondrial activity in muscle stem cells (Brink et al., 2017). 

To this end, I tested mitochondrial activity with Mitotracker Deep Red FM (MTDR) in FACS and 

MACS-enriched P2ry12+-cells. P2ry12 has excellent correspondence with Cd11b+Cd45+ cells (99%), 

the standard gating strategy for microglia (Figure 10). MTDR fluorescence varied between 

Figure 77: Enrichment strategy and 
scRNA-seq. Fluorescence- (FACS) and 
magnetic-activated cell sorting (MACS) 
are the most used approaches for single-
cell enrichment. 
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approaches, best illustrated by the relative fluorescence of Pry12+ subtypes, albeit an increase of 

MTDR was noted in FACS- relative to MACS-enriched cells (Figure 78).  

 
Figure 78: MACS-isolated cells display reduced mitochondrial activity. P2ry12+ cells are enriched, and their respective 
MTDR-fluorescence is displayed (n=1). The coloured circles capture three distinct cellular populations shared between 
conditions. The vertical (black) line in each plot functions to illustrate an expression level of 103. FACS, fluorescence-
activated cell sorting; MACS, magnetic-activated cell sorting; FSC, forward scatter; MTDR-APC, Mitotracker Deep Red; 
APC, Allophycocyanin.  

MACS enrichment utilizes selection columns and consists of 3 phases. A typical workflow for the 

positive selection and enrichment of Cd11b+ cells include pre-selection, effluent and post-selection 

suspensions. However, microglial recovery with MACS has inefficiencies during processing, 

reducing the total cell yield in processing. Pre-selection, the cell suspension contains the largest 

quantity of Cd11b+ cells (Pre-), whereas recovery of cells after magnetic separation and positive 

selection is reduced by approximately 35% (Post-) (Figure 78). It is possible that some of the cells 

were retained in the selection column. However, flushing the column out for a second time did not 

result in a recovering a larger number of cells (Post- (2)) (Figure 79). Moreover, no cells were 

detected in the effluent (Effluent) (Figure 79). Some cells might have ruptured in the process of 

isolation, thereby reducing the overall yield.  
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Figure 79: MACS-mediated microglial recovery. Microglial numbers were measured (7AAD- GFP+) across the MACS 
enrichment process, including the pre-enriched population (Pre-), the effluent, post-enriched population (Post-) and a 
second flush (Post- (2)) to ensure the effective depletion of cells from the column. Microglial recovery is diminished 
throughout processing. Statistically significant differences in the steps of isolation were found (Tukey’s multiple 
comparison’s test) (****, P<0.001). Post- (2) was excluded from statistical analysis (n=1). Bars are standard deviations. 

As a point of consideration, the anti-Cd11b microbeads that enable the isolation of Cd11b+ cells are 

M1/70 clones. Unfortunately, most antibodies used for flow cytometric analysis of Cd11b are also 

M1/70 clones and are therefore expected to compete for binding with the microbeads; cells are 

stained and bound with microbeads prior to binding with Cd11b-PE. Indeed, staining cells with 

microbeads at a concentration of 1/100, instead of the conventional 1/10 concentration, results in 

an increase of Cd11b-PE signal, suggestive of competitive binding of the Cd11b protein (Figure 80). 

However, the detection of Cd11b was not obfuscated by the competitive antagonism between the 

microbeads and the Cd11b-PE antibody. Future studies might benefit from utilizing alternatives. 

 

Figure 80: Competitive antagonism of Cd11b microbeads and the flow cytometric detection of Cd11b. a) Cells were 
magnetically labelled with Cd11b microbeads (1/10) and followed by the binding of Cd11b conjugated to PE (BioLegend, 
101207) (1/500) for the identification of Cd11b. Both microbeads and Cd11-PE are M1/70 clones and are in direct 
competition for binding sites. b) Lowering microbead concentration to 1/100 reduces the isolation efficiency, although 
there is an observed shift in PE signal strength. APC, Allophycocyanin; PE, phycoerythrin. 
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Taken together, FACS-mediated enrichment can be utilized for scRNA-seq and might be well-suited 

to plate-based experimental designs. However, MACS is the preferred option for droplet-based 

platforms. Some inefficiencies in enrichment are evident with MACS isolation, yet these are 

outweighed by the high-throughput nature and cellular quiescence of MACS-isolated cells. 

 Lowered microglial recovery with increased purity 

As stated, purification of single cell suspensions occurs in two broad 

categories: gradient centrifugation- and bead-dependent myelin 

and cell debris removal (Figure 81). 

The selection of density gradient centrifugation- and bead-

dependent purification varies with context. Bead-dependent 

purification is effective in juvenile, murine tissue; however, it is 

myelin quantities in the adult murine brain will exceed the capacity 

of the beads and columns (Miltenyi). Some have opted to use 

gradient-centrifugation and bead-dependent purification in 

combination for droplet-based scRNA-seq, finding that each 

method in isolation fails to effectively remove myelin debris 

(Safaiyan et al., 2021). However, when enriching for cells, no such 

additional steps were taken, and gradient centrifugation was found 

to be an effective means of purification (Geirsdottir et al., 2019; 

Hammond et al., 2019; Keren-Shaul et al., 2017; Masuda et al., 

2019; Tay et al., 2018; Van Hove et al., 2019). 

Purity of MACS-enriched P2ry12+-cells is greater with gradient centrifugation, 88% for Percoll and 

75% for bead-dependent purification, respectively (Figure 82). Moreover, I found an incomplete 

depletion of myelin from adult isocortical tissue using beads, with visible contamination remaining 

in the cell suspension (data not shown). The loss of purity when using Myelin Removal Beads II 

(Miltenyi, 130-096-733) could confound subsequent scRNA-seq. This finding supports the 

limitations of bead-dependent isolation. To increase purity, when LS- with were exchanged with 

LD-columns no such myelin debris was observed (data not shown), as has previously been described 

(Zhou and Li, 2019). However, LD-columns offer a slower flowthrough and a significant increase in 

handling time, increasing the risk of ex vivo signatures and introducing additional experimental 

limitations (data not shown). Operation of beads-dependent purification might necessitate cold-

room usage and/or inclusion of inhibitors during processing. 

Figure 81:Purification methods 
of scRNA-seq. Gradient 
centrifugation and myelin 
removal beads-dependent 
purification are the main 
strategies used; the latter of 
which is subdivided in Percoll 
or debris removal solution. 
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Interestingly, no differences were detected in mitochondrial activity between bead-dependent and 

gradient centrifugation, as measured with Mitotracker Deep Red (Figure 82). This suggests that the 

purification method is not a key driver for the induction of ex vivo signatures in microglia.  

 
Figure 82: Purification method-dependent microglial population characteristics. a-b) Percoll-gradient centrifugation 
displays a higher purity of MACS-enriched (P2ry12+-) microglia (88%) than the beads equivalent (75%). c-d) No differences 
in mitochondrial activity are remarked. APC, Allophycocyanin; FSC-A, forward scatter, area; MTDR, Mitotracker Deep Red; 
PE, phycoerythrin. 

Cellular viability and yield are interconnected. Larger centrifugal forces would increase recovery at 

the cost of a reduced viability and vice versa. Bead-dependent purification greatly outperforms 

Percoll purification, recovering up to 2-fold larger number of microglia (Error! Reference source 

not found.). However, I did not find large differences in cell viability between both approaches (data 

not shown), suggesting that other factors might influence recovery.  
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Figure 83: Beads-dependent purification doubles microglial recovery. Bead-dependent purification maximizes recovery of 
P2ry12+ microglia. Stringency of Percoll (and other gradient centrifugation methods) restrict recovery. Each dot represents 
a sample. Tick lines at 100 and 200%. Scatterplot with bar, mean with standard deviation (n=2). 

Taken together, there is a distinct trade-off between purity and microglial yield in MACS isolated 

cells. I chose to opt for greater purity, to ensure high quality scRNA-seq libraries. However, yield 

and viability will need to be assessed across dissociation methods.  

 Microglial recovery is largest in standard dissociation conditions 

Microglial recovery is expected to vary between cell isolation 

methods, and I set out to do a direct comparison on cell yield 

and viability (Figure 84). ActD and standard dissociation 

protocols generally vary in digestion method (i.e. mechanical 

or automatic), digestion temperature, and varying on the 

presence or absence of ActD (Table 5). Similarly, mechanical 

dissociation protocols can vary substantially (Hammond et al., 

2019; Li et al., 2019; Schaum et al., 2020, 2018).  

A Dounce homogenization protocol was implemented, as was 

established by Hammond et al. (2019). Whole brain 

dissociation was achieved by using the loose (A) and tight (B) 

pestles sequentially, each 15 times in EM1 while rotating the 

pestle.  

Although papain is not (fully) active at 4°C 

at which mechanical dissociation was 

tested, the (proprietary) formulation might 

contain other factors supportive of cell 

viability and effectively enables comparison with the other dissociation protocols. Other in-house 
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Figure 84: Dissociation strategies in scRNA-seq. Dissociation 
methods vary on its use of mechanical and/or enzymatic 
digestion, and dissociation temperature. ‘Dounce’ features a 
cold, mechanical dissociation, whereas ‘Standard’ features a 
heated (37°C) enzymatic digestion. ‘ActD’ is a modified protocol 
in which digestion (at room temperature) occurs in the presence 
of actinomycin D, a transcriptional inhibitor. 
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formulations (incl. DNAse I) were tested but these were not deemed be a satisfactory comparison 

without details regarding the formulation. 

Single cell suspensions were generated with the 3 dissociation protocols; that is, standard, ActD, 

and Dounce. Cell suspensions were purified with Debris Removal Solution, a density-gradient 

approach. This condition ensured that I retained microglia with high purity, even if this comes at a 

cost of recovery. The number of viable cells that were recovered from each were quantified. As 

expected, dissociation in the presence of ActD at room temperature (21-23 °C) decreased microglial 

recovery relative to standard dissociation (38%), an effect that was more pronounced at 4°C with 

Dounce homogenization (26%) (Figure 85). Of note, viability did not display large variability, with 

all procedures routinely recovering ≥95% live cells (Figure 86).  

 
Figure 85:  Standard dissociation recovers microglia most effectively. Relative recovery of P2ry12+ microglia from 
isocortical tissue in Dounce- and ActD- to standard-isolation protocols. Standard dissociation at 37°C is most effective in 
recovery of microglia, whereas both ActD- and Dounce-isolation reduce recovery to 26 and 38%, respectively. Each dot 
represents a sample. Tick lines at 25, 50 and 100%. Scatterplot with bar, mean with standard deviation (n=2). 

 
Figure 86: Viability of cells in distinct cell isolation protocols. Representative plots of viability (eFluor520) in standard-, 
ActD-, and Dounce-isolated cells. FSC-A, forward scatter, area; ActD, actinomycin D. 

  

0 50 100 150

Standard

ActD

Dounce

Relative recovery (%)

Ce
ll 

iso
la

tio
n 

m
et

ho
d



164 

 Mechanical dissociation and transcriptional inhibition reduce ex vivo signatures 

Ex vivo signatures do not vary with purification method, yet mitochondrial activity was lower in 

MACS when compared to FACS. However, the effect of the different dissociation methods on the 

microglial gene expression was still to be determined.  

To that end, microglia were isolated from the adult cortex and profile gene expression with qPCR. 

Cells were purified with gradient centrifugation (i.e. ‘debris removal solution’), enriched microglia 

with MACS, and compared Dounce-, ActD-, standard-isolated microglia. I developed a panel of 

genes that includes canonical microglial markers (Csf1r, Cx3cr1, Hexb, P2ry12, Tmem119) and 

artefact-associated markers (Egr1, Fos, Ier2, Jun). All designed primers displayed good parameters, 

with excellent melting curves and size. However, Csf1r, Ier2 and Tmem119 did not pass quality 

control, as PCR products of Csf1r, Ier2 and Tmem119 were either lacking or multiple 

(Supplementary Figure 11). Gapdh was used as an internal loading control, and Hexb as a secondary 

microglial load control. Hexb is a stable, canonical marker of microglia in health and disease 

(Masuda et al., 2020). Of note, cells display considerable variability by dissociation protocol, and 

some by collection method (Figure 87); in the series, cells were collected and stored as a pellet, or 

cells were collected and stored in lysis buffer.  

Jun (and Fos to a lesser degree) are expressed significantly less in Dounce- and ActD-isolated cells 

(Figure 87). The lower expression associates with a lower dissociation temperature; lower levels 

are detected for mechanically dissociated tissue. Jun and Fos are genes involved in the cell stress 

response, and critical genes in the formation of activation protein-1 (AP-1), a protein complex 

associated with multifaceted roles that include cell growth and apoptosis (Leppä and Bohmann, 

1999). However, as such, a reduction of both genes with Dounce- and ActD-isolated cells supports 

the effectiveness of these protocols in preventing the induction of ex vivo dissociation-induced 

signatures. Similarly, Egr1 is reduced in ActD-isolated cells, however, unlike Fos and Jun, it does so 

more than Dounce-isolated cells, suggestive of a superior effect of ActD (Figure 87).  

Looking at the canonical marker panel, Cx3cr1 is significantly downregulated in Dounce-isolated 

cells, whereas no statistically significant difference in P2ry12 expression was noted (Figure 87). 

P2ry12 expression does show a downward and upward trend for Dounce- and ActD-isolated cells, 

respectively. Combined with a statistically significant reduction of Egr1 and Jun, these results 

suggest that ActD-isolated cells best preserves in vivo microglial identity. Using Gapdh with a 

combination of Cx3cr1, Hexb and P2ry12 as internal controls gave similar findings (Supplementary 

Figure 12). 
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Figure 87: Early-response genes and dissociation method. Expression of early-response genes and canonical microglial 
markers in cell isolation protocols vary. Gene expression levels are relative to standard dissociation. Sequentially, gene 
levels were corrected for Gapdh and Hexb. Box-and-whisker plot with standard deviation. Each dot represents a sample 
composed of 2 isocortices from male or female tissue (n=4). Cells collected in a pellet (○) and in lysis buffer (●) Two-way 
ANOVA (Dunnett’s) was used for the statistical analysis of genes and cell isolation protocol (**, P<0.01; ***, P<0.001; 
****, P<0.0001). 

5.8 Removal of exAM with ActD in scRNA-seq 

To finally test the efficacy of my protocol, a scRNA-seq dataset was generated it: dissociation with 

ActD at RT, purification with debris removal solution, and enrichment with Cd11b+ magnetic 

microbeads. Cells from female mice aged P21 and P60 were used, complementing male and female 

P90 cells from the pilot in an integrated Seurat object. As described previously, I made use of the 

MAD for QC prior to standard integration (Section 2.8.1.2, Figure 17).  

 Cell quality is lower in exAM-treated cells 

Cell quality is affected by the experimental procedures. Albeit evidence of exAM was evident in the 

pilot dataset, the overall quality of the cell suspension in the study was good (Figure 64, Figure 

66,Figure 69). Now, relative to the pilot, ActD-treated cells have increased library complexity and 

size, as well as mitochondrial and ribosomal content (Figure 88). No differences in quality were 

found between P21 and P60-derived ActD-treated cells (Supplementary Figure 13). 
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Figure 88: Single-cell suspension qualities differ between standard- and ActD-isolated microglia. 7 Seurat clusters are 
identified (a) that vary in distribution by isolation method (b), and by general QC-parameters. ActD, actinomycin D; QC, 
quality control. 

Differences in library size and complexity are expected to derive from differences in read depth. In 

fact, read depth of ActD-treated cells was lower on average. Cells in the pilot were sequenced to 

an average depth of 15,637 and ActD-treated cells to 12,218 reads/cell. This was unexpected, as I 

set out to increase read depth relative to the pilot data. Furthermore, ActD-treated cells showed a 

relative increase of mitochondrial and ribosomal content, indicative of lower cell qualities (Osorio 

and Cai, 2020; Subramanian et al., 2021). Indeed, 687 of 1020 (~67%) ActD-treated cells in the 

object pass MAD QC, compared to 1245 of 1329 (~94%) in the pilot. It is possible that elevated 

levels of mitochondrial and ribosomal genes could be reflective of the younger age of the samples 

treated with ActD. Although some evidence of diversity in ribosomal content was found (Figure 50), 

it is unlikely an increase in mitochondrial content is an indicator of quality. Commonly, these effects 

are suggestive of a loss of cytoplasmic transcripts by membrane disruption and a reduction of 

sample quality. A more likely explanation is that a lower read depth of cytoplasmic RNA is due to 

RNA decay. As stated previously, ActD is readily used to study RNA decay and it is something which 

would need to be considered in future studies (Lai et al., 2019). Regardless, the integrated data 

allows for a direct comparison of exAM signatures between the isolation methods. 
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 ActD treatment mitigates the introduction of an exAM signature 

7 transcriptionally distinct clusters were identified in the object. The identified clusters featured 

homeostatic (HOM)-clusters, CNS-associated macrophages (CAM) and exAM, as well as aged 

inflammatory microglia (AIM) and OPC (Figure 89). The presence of OPC is surprising, the 

occurrence of which could indicate an impurity in the isolation. This is something that can be 

improved upon by using gradient-centrifugation and bead-dependent purification in combination, 

as was done by Safaiyan et al. (2021); however, the impurity is a relatively small cluster and does 

not detract from the interpretation of the results. 

 
Figure 89: Transcriptional heterogeneity of identified clusters. 

However, most clusters are microglia, 3 of which are HOM-clusters (cluster 0, 1, 2). Canonical 

microglial markers are highly expressed in these clusters, with only moderate variations in 

expression. Of note, cluster 3 features similar levels of such markers, albeit supplemented with a 

module for exAM-associated genes like Egr1, Fos, Ier2 and Jun (Figure 90).  
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Figure 90: exAM are enriched in standard-isolated cells. a) Enrichment of exAM signatures are enriched in cluster 3, as 
shown in a FeaturePlot (a) and in a barplot detailing their distribution by isolation method (b). Gene expression scale is 
from low to high, grey to blue, respectively. c) ViolinPlots of 4 exAM signature genes are depicted by cluster. ActD, 
actinomycin D; exAM, ex vivo-activated microglia. 

Furthermore, the skewed distribution of cluster 3 towards cells from the pilot suggest 

transcriptional inhibition is an effective means of mitigating such effects in microglial scRNA-seq. 

Importantly, accounting for differences in cell number, 2.6% of all ActD-treated cells take on an 

exAM signature, compared to 17.6% of all standard isolated cells, approximately a 7-fold reduction 

of such signatures relative to pilot data (Figure 89, Supplementary Table 14).  

5.9 Discussion 

scRNA-seq studies of microglia can account for ex vivo signatures in a plethora of ways, some of 

which are addressed in this chapter. As stated, modifying the central four variables on the available 

approaches culminates in 72 distinct protocols. I aimed to make stepwise progress through this 

variability to reduce the number technical conditions to test. Therefore, the study does not aim to 

be a full account of the currently available options; however, it does serve to inform on key 

characteristics of microglial scRNA-seq to mitigate ex vivo signatures and improve data quality. 

Several key determinations were made: 

1. Chemical fixation with DSP and MetOH reduced cell yield, limiting its application for scRNA-
seq. 

2. MACS displayed higher throughput and reduced mitochondrial activity than FACS. 
3. Gradient centrifugation has greater purification efficiency than a bead-dependent 

alternative. 
4. Ex vivo signatures are reduced by using ActD and/or lowering dissociation temperature. 
5. Implementation of ActD-treatment for scRNA-seq raised concerns of cell quality. 
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 Loss of cells with chemical fixation and future implementations 

It was observed that chemical fixation is associated with an incremental loss of cells and disruption 

of cellular morphology with prolonged incubation, in line with previous studies (Alles et al., 2017a; 

Attar et al., 2018a; Chen et al., 2018). Although fixation was initially thought as a promising step for 

the reduction of technical noise and sample pooling, recovery reduced to 65% with DSP to 55% 

with MetOH after just one day of fixation, an effect that continued to worsen for both over the 

course of 3 days. These limitations halted efforts with MetOH and DSP and neither was tested 

for their effect on ex vivo signatures.  

MetOH-fixed is associated with a loss of membrane integrity and a loss of cytoplasmic transcripts 

(Alles et al., 2017). These were not concomitant with an increase in mitochondrial transcripts, 

classically a marker of good cellular health, which led the authors to conclude that cell quality is 

preserved. However, Denisenko et al. (2020) recently discovered that MetOH-fixed (kidney) cells 

are enriched for genes common to tubular cells and erythrocytes (e.g. haemoglobins) (Denisenko 

et al., 2020). Like the dissociation-induced signature described previously, these transcripts 

correspond to an ex vivo profile. When speaking of ex vivo signatures, technical artefacts are not 

limited to dissociation-induced and need to be placed into a larger framework, to recognize the 

specific limitations of any experimental choice.  

Regardless, chemical fixation might still offer a benefit to scRNA-seq, and progress has been 

made since these first implementations. Adaptations in rehydration of MetOH-fixed cells 

improved RNA integrity and membrane integrity (Chen et al., 2018). Furthermore, DSP and 

MetOH have found use in spatial transcriptomics (Lee et al., 2021; Machado et al., 2021), as well 

as in multimodal single-cell studies combining intracellular phospho-protein staining and 

transcriptomics (Gerlach et al., 2019; Nesterenko et al., 2021). Similarly, glyoxal, an aldehyde 

fixative, does not cross-link RNA like PFA and might offer value for scRNA-seq (Channathodiyil 

and Houseley, 2021), although this is yet to be tested.  

 MACS is favoured for droplet-based scRNA-seq 

The speed and gentle nature of MACS enrichment favour this method for droplet-based scRNA-seq. 

However, FACS might still be the preferred choice in other formats. Plate-based platforms like 

SMART-seq2 and MARS-seq are not expected to suffer from similar limitations. Single cells in plate-

based platforms are commonly sorted into lysis buffer, capturing transcriptomes prior to a cellular 

response to shear stress. In this way, FACS enrichment of rare cells that express specific 

combinations of proteins can be achieved. Indeed, seminal papers utilizing FACS for cell enrichment 

have opted for plate-based platforms (Mathys et al., 2017; Safaiyan et al., 2021).  
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In addition, MACS has displayed some inefficiencies of recovery that could necessitate experimental 

designs that maximize technical repeats. Recoveries from tissue with a lower total microglial 

quantity like the HPF, CB and SC could benefit from such adaptations. A paradox, as these same 

regions would benefit from the speed in which MACS can enrich for microglia, independent of the 

relative quantity and proportion of cells present in the tissue. Combinations of MACS-mediated 

positive (or negative) selection followed by FACS are examples of this (Travaglini et al., 2020). 

Some further considerations remain. First, I have not performed a repeat experiment in the 

comparison of FACS and MACS and care must be taken not to generalize results from a single 

experiment. Second, the correlation of mitochondrial activity with cellular activation was not tested 

and ex vivo signatures, as was done by Van den Brink et al. (2017). Mitochondrial activity can also 

be a marker of good cellular health, or a marker of distinct metabolic functions, and this cannot be 

excluded as an alternative interpretation.  

Analysis of scRNA-seq datasets could help to resolve this further, to correlate ex vivo signatures 

with cell isolation methods. e.g., typical stress-induced signatures were identified in Dounce-

isolated microglia of the dataset of Hammond et al. (2019) (Supplementary Figure 7). In this work, 

tissue was dissociated mechanically and enriched for with FACS. This corresponds to recent findings 

by Marsh et al. (2022), in which mechanical dissociation displayed elevated ex vivo signatures (i.e. 

‘exAM’) with FACS, relative to cold (and heated) dissociation with inhibitors (Marsh et al., 2022).This 

strengthens my argument against the use of FACS in droplet-based scRNA-seq. Further work is 

needed to characterize the specific sorting conditions that will induce ex vivo signatures in 

microglia. 

 Gradient centrifugation displays elevated purity and lowered yield 

The results showed that gradient centrifugation increased sample purity relative to bead-

dependent purification; 88 and 78%, respectively. Myelin debris removal with LS-columns was 

incomplete, with debris remaining in the cell suspension. LD-columns might offer an alternative 

solution but working in a cold-room will become a necessity due to the low flowthrough of the 

column type. I chose not to pursue this avenue, aiming to keep experimental complexities low and 

processing time at a minimum. Furthermore, gradient centrifugation and bead-dependent removal 

of myelin did not affect mitochondrial activity differentially, suggesting that purification method is 

not a key driver of ex vivo signatures. Indeed, research has shown that varying centrifugal forces 

during purification does not greatly affect gene expression, although some differences in cellular 

viability were remarked (Pavel et al., 2019). 

Cellular viability might be an explanation of the differences in microglial recovery between 

purification methods, with bead-dependent purification outperforming gradient centrifugation. Of 
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note, no differences in cell viability was found between methods; Cd11b+ enrichment or any 

subsequent wash might aid the removal of dead cells. Alternatively, white matter-associated 

microglia are recovered more effectively with bead-dependent approaches. The use of antibodies 

with a designated target is expected to be more selective than gradient centrifugation; non-

specificity in gradient centrifugation might select against microglia in white matter. As discussed 

previously, tensile properties of white- and grey-matter tissues differ. Although regional and age 

variability is reported, white matter is on average stiffer than grey matter (Budday et al., 2015; 

MacManus et al., 2017). These tensile properties could underlie distinct purification efficiencies. 

Further research is needed to detail these method-specific characteristics. By extension, bead-

dependent purification might be better suited for the isolation of white-matter associated microglia 

like WAM, ATM and PAM. 

 Dissociation method, recovery, viability, and ex vivo signatures 

The assessment of dissociation method is twofold by addressing cell yield and viability, and ex vivo 

signatures. 

5.9.4.1 Standard isolation maximizes microglial recovery 

Standard (heated) enzymatic dissociation recovers the most microglia, without any overt 

differences in viability. This is in-line with previous work comparing cold, mechanical and heated, 

enzymatic digestion (Denisenko et al., 2020; Marsh et al., 2022). Interestingly, microglial recovery 

with mechanical dissociation is impaired further in aged mouse tissue, possibly reflective of the 

mechanical properties of said tissue. Together, these results highlight some concerns for studies 

isolating cells in cold conditions, in particular when dealing with (micro-)dissected tissues with a 

relatively small number of microglia (e.g. SC, HPF, CEB). 

5.9.4.2 ActD reduces ex vivo signatures and preserves microglial identity 

However, despite the promise of microglial recovery, isolation of cells in heated digestion is known 

to induce ex vivo signatures. Ex vivo signatures varied between the dissociation methods. On 

average, and relative to standard dissociation, mechanical and ActD protocols reduced the 

expression levels of Fos, Jun and Egr1, suggesting that both isolation protocols could reduce the 

induction of technical artefacts. 

In addition, a cell isolation-specific effect was noted, where the expression of Egr1 in Dounce-

homogenized cells fails to be reduced, compared to an effective reduction when ActD is used. I 

have previously addressed that Dounce-isolated cells display a higher level of ex vivo signatures 

than those isolated in the presence of inhibitors. The elevated levels of Egr1 in Dounce-isolated 

cells are supportive of this finding. 
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Regarding canonical gene expressions, a significant reduction of Cx3cr1 expression was found with 

Dounce homogenization. Other studies have reported on a loss of canonical markers (e.g. Cx3cr1, 

P2ry12, Sall1) with age, neurological disease, and in vitro (Dubbelaar et al., 2018; Gosselin et al., 

2017). In correspondence, a loss of P2ry12 expression was also evident in ex vivo-activated 

microglia (i.e. exAM) of the scRNA-seq pilot (Figure 65). This suggests that a loss of canonical 

marker genes is a typical response of microglia outside of homeostasis, one that is reproduced by 

ex vivo activation.  

To my knowledge, this is the first study to suggest that P2ry12 is reduced with ex vivo activation. 

Marsh et al. (2022) investigated the association of microglial identity and activation score, which 

includes P2ry12, Tmem119, Hexb and Cx3cr1, yet they did not report on a similar loss due to the 

composite nature of said module scores. By extension, it would be interesting to disentangle the ex 

vivo-induced loss of microglial identity and the acquisition of a disease-like signature (e.g. DAM), a 

signature commonly associated with a loss in canonical marker gene expression.  

Of note, no significant loss of Cx3cr1 or P2ry12 was found in ActD-isolated cells; in fact, an upward 

trend of P2ry12 expression was detected. These results could indicate that microglial identity is 

preserved in the presence of ActD, counteracting some of the detrimental effects of cell isolation. 

Furthermore, it would support the use of ActD in mechanical isolation. However, it is possible that 

ActD affects the transcriptome in a so far unknown manner, even in the absence of genotoxic stress 

(with a concentration below 100).  

5.9.4.3 Implementation of ActD in scRNA-seq 

ActD was used at a concentration of 30 μM, well within the accepted range to prevent genotoxic 

stress (Mussil et al., 2019). However, evidence of RNA decay was found, mitochondrial and 

ribosomal content increased in the presence of ActD. Consequentially, a large proportion of cells 

did not pass the MAD filter during QC; 33% of ActD-treated cells were excluded, compared to 6% 

in the pilot. A priori this was a consideration, however, the absence of such effects with 45 μM ActD, 

as those described by Sala Frigerio et al. (2019) raised questions about the implementation of the 

drug, or at least raised some caution regarding the use of this approach. No gross differences in 

protocol length or procedure were evident, albeit dissociation temperature was lowered from 37°C 

to R.T. 

In concurrence, cell clumps in the final suspension were identified (data not shown). To circumvent 

this issue, the suspension was filtered prior to the Drop-seq run. Although this reduced the total 

number of cells and single-cell transcriptomes-attached to microparticles (STAMP), the run 

completed without errors (data not shown). The troubleshooting of this issue on the day took time 

and put them in the run media for longer than was needed, each contributing to a lower cell quality.  
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In retrospect, cold-activated enzymes might proof particularly beneficial for microglial isolations. It 

would efficiently dissociate tissue into a single-cell suspension at a colder temperature and keep 

ActD concentrations low; ActD concentration has been lowered effectively with colder 

temperatures (Wu et al. 2017). In addition, cold-activated enzymes would increase cell number, 

and library size and complexity, relative to dissociation at room temperature in the presence of 

ActD. This is less economical but will have positive downstream effects on the data quality. In 

addition, platform selection might have played a role in the read-out. Drop-seq is a high-throughput 

and cost-effective platform that offers good overall performance. However, in comparison to 10X, 

a commercially available platform, sensitivity of reads is approximately 2-fold lower. At a given read 

depth and independent of cell input number, a benchmark study identified 17,000 transcripts and 

3000 genes with 10X, compared to 8000 transcripts from 2500 genes with Drop-seq .(Zhang et al., 

2019). In parallel, read distribution across the barcodes is skewed with Drop-seq, with 10X 

allocating sequencing resources more evenly. Library size and complexity are expected to increase 

drastically by implementing this system, to the benefit of the scRNA-seq data quality. For reference, 

Sala Frigerio et al. (2019) and Marsh et al. (2022) both utilize the 10X platform in their 

implementation of ActD with microglia without any obvious signs of lowered cell quality. 

Moreover, in contrast to the qPCR data, no differences in homeostatic genes were found between 

the pilot data (utilizing a standard dissociation) and ActD-treated microglia. Critically, the pilot and 

ActD study differ in the ages that were used; P90, and P21 and P60, respectively. Age is the main 

driver of microglial heterogeneity, and thomeostatic gene expression levels vary between early 

development and adulthood. Interactions of age- and isolation-specific effects might therefore 

occlude a clear read-out, one which need to be addressed in a more targeted study. 

 Summary 

This chapter was to test distinct experimental procedures for scRNA-seq, that is, chemical fixation, 

enrichment, purification, and dissociation. Chemical fixation by itself was not found to be beneficial 

for microglial recovery, nor was FACS-mediated enrichment preferred. At its core, the selection of 

a protocol for droplet-based scRNA-seq of microglia distilled into a ‘maximalist’ or ‘minimalist’ 

choice. The maximalist includes beads-dependent purification and standard dissociation, whereas 

the minimalist veers into the use of gradient density centrifugation and ActD. 

The maximalist allows for the largest recovery of microglia, however, issues of purity and ex vivo 

signatures could affect native transcriptional signatures. The minimalist ensures microglial purity, 

and preservation of microglial identity at the expense of yield. Combinations of both could be 

possible, when using bead-dependent purification with ActD-treatment. However, throughput and 

experimental complexity might decrease and increase, respectively, some of which are not always 
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practical in molecular labs and could introduce baseline drifting. Similarly, adult tissue might not be 

effectively purified with beads, introducing further considerations for downstream processing. 

However, transcriptional inhibition alone is sufficient to preserve microglial identity and to 

minimize the introduction of exAM-like signatures. Moreover, this data of sexually immature 

microglia (SIM) in an otherwise sparsely studied developmental age will help detail microglial 

maturation and subtype emergence in health and disease.  

5.10 Supplementary figures and tables 

Supplementary Figure 11: Quality control of designed primers. All primers display good quality parameters, apart from 
Csf1r, Ier2 and Tmem119, which were either not detected (Csf1r) or display double bands (Ier2, Tmem119). 
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Supplementary Figure 12: Early-response genes in cell isolation protocols. Distinct patterns of ERG can be noted in 
response to varying dissociation methods. Relative gene expression in relation to standard dissociation. Values are 
corrected for Gapdh; and Hexb, Cx3cr1 and P2ry12 sequentially. 

 
Supplementary Figure 13: Parameters of cell quality by original identity and age. 

Supplementary Table 14: Cluster cell allocation by study. 

  Seurat clusters   

Study 0 1 2 3 4 5 6 Total 

ActD 269 201 95 18 51 32 21 687 

Pilot 365 269 363 219 17 5 7 1245 
Note: Number of cells in each Seurat cluster (after quality control). The pilot study was performed with a standard isolation 
protocol that utilizes enzymatic dissociation, gradient centrifugation, and FACS; whereas ActD-treated cells are dissociated 
in the presence of 30 μM ActD, gradient centrifugation and MACS. 
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Chapter 6 Female gene regulatory networks in health 

and disease 

6.1 Introduction 

Sex is an established risk factor for neurodevelopmental and neurodegenerative disorders (Loomes 

et al., 2017; Podcasy and Epperson, 2016; Wooten et al., 2004). Although males and females are 

biased towards neurodevelopmental and neurodegenerative disease, respectively, the effects of 

sex on disease susceptibility are more nuanced. Men are typically more susceptible to autism, 

attention deficit hyperactivity disorder (ADHD), and motor neuron and PD, whereas females suffer 

more from anxiety, depression, MS and AD (Pinares-Garcia et al., 2018). Effects of which are 

thought to be partly mediated by microglia. In AD, microglia are critical mediators of the CNS 

immune environment and enriched for AD-associated risk genes like Apoe, Ctsb, Pld3, Trem2 

(Bellenguez et al., 2022; Cruchaga et al., 2014; Sala Frigerio et al., 2019).  

Remarkably, as discussed previously, most biomedical studies do not consistently include females 

and there is a considerable knowledge gap in the molecular understanding why females are more 

susceptible to AD. In this final chapter, I will delve into sex-specific microglial specification, and 

address female, cortical microglial maturation in the context of disease by transcriptional and gene 

regulatory network analysis (Aibar et al., 2017). 

 Sex-specific microglial heterogeneity  

As discussed, male and female microglial maturation follow a distinct trajectory of maturation 

(Figure 49). The question then emerges, why do female microglia mature faster? There have been 

reports that sex hormones play a role in providing female microglia an early neuroprotective 

function (Schwarz and Bilbo, 2012). Indeed, oestrogen has been shown to reduce microglial 

activation by Kir2.1 inward-rectifier K+ channel (Wu et al., 2016). In fact, female microglia 

transplanted into male microglia are more capable of mitigating the sequalae of ischemia in the 

male brain (Villa et al., 2018). Lasting protective effects outside of the female brain imply epigenetic 

imprinting of environmental cues absent in males. Epigenetics has been shown to play a role in both 

masculinization and feminization (Nugent et al., 2015; VanRyzin et al., 2020). Strikingly, only male 

microglia are influenced by gonadal hormones at birth, hormones which downregulate Dnmt 

expression at a critical period for sexual differentiation (VanRyzin et al., 2020). The absence of 

gonadal hormones in this critical window maintains Dnmt and protects females from 

masculinization.  
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The first exposure of female microglia to endogenous gonadal hormones is at puberty. Of note, the 

emergence of gonadal hormones in females is concurrent with the selection phase of microglia 

(Askew et al., 2017; Nikodemova et al., 2015). As discussed previously, microglial expansion is 

predominantly driven by CPM in early development of mice and humans, a finding that is in line 

with established literature (Figure 37, Figure 38)) (Askew et al., 2017; Menassa et al., 2022; 

Nikodemova et al., 2015). In turn, microglial numbers in the brain start to decline from P14 until 

adult homeostasis is reached (Nikodemova et al., 2015). Sexual maturation and sex hormones 

increase shortly after weaning (~P21) to stabilize at P60, concurrent with microglial selection 

windows. In addition, the selection of microglia is regionally distinct; CB and HIP display an early 

increase in number and selection, where cortical microglia undergo a protracted development 

(Askew et al., 2017). Taken together, these results suggest that microglial population dynamics are 

associated to gonadal hormone exposure, an effect which could be regionally heterogenous (Figure 

91). 

 
Figure 91: Hormonal levels and microglial selection. Male and female levels of progesterone and oestrogen in the CNS 
start to increase in Sexually Immature Microglia (SIM), to stabilize at P60. Inversely, microglial densities in cerebellar 
(blue), cortical (grey), and hippocampal (orange) densities are highest in pre-microglia, SIM and pre-microglia, 
respectively. Adapted from (Askew et al., 2017; Bell, 2018). O, oestrogen; T, testosterone; P, progesterone.  

Given that age-associated diseases like Alzheimer’s are more prevalent in females, that microglial 

expansion and selection underlie the adult population, that microglia have a central role in 

neuroinflammation, and that distinct sex-specific MDI trajectories have been identified, exploring 

Sexually Immature Microglia (SIM) (P9-28) could be interesting to understand how such disease 

susceptibility emerges. However, biomedical research has long forgotten about females, best 

exemplified by the number of female cells in the atlas relative to male, and this developmental time 

is not commonly studied (Ravindran et al., 2020; Zucker and Beery, 2010) (Table 3). Crucially, 

transcriptional regulation by transcription factors (TF), also known as regulons, is not typically 

considered in scRNA-seq data of microglia. 
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 Gene regulatory networks inference and clustering  

Regulons typically associated with microglial identity are Irf8, Mafb, Sall1, and Spi1 (Pu.1) 

(Buttgereit et al., 2016; Kierdorf et al., 2013b; Masuda et al., 2012; Matcovitch-Natan et al., 2016; 

Rustenhoven et al., 2018). Irf8, Mafb, Sall1 and Spi1 were reviewed in Chapter 1. In short, Irf8 and 

Spi1 expression initiates early in development, where they have been found to play a role in 

microgliogenesis and differentiation in the microglial lineage commitment cascade in early 

microglia (<E14) (Huang et al., 2008; Kierdorf et al., 2013a). In turn, Mafb and Sall1 are under the 

influence of Tgf-ß, mediating an environment-dependent driver for microglial maturation from pre-

microglia onwards (E14-P9) (Buttgereit et al., 2016; Kierdorf et al., 2013; Matcovitch-Natan et al., 

2016). Identification of such regulons in a small-scale study would further delineate microglial 

identity at a higher-order level, potentially ameliorating study-specific artefacts akin to a large-scale 

atlas. 

Gene regulatory network identification is a novel approach in scRNA-seq. Like trajectory inference, 

it has quickly become a popular tool that is under active development (Aibar et al., 2017; Chan et 

al., 2017; Dijk et al., 2018; Jackson et al., 2020). Of the methods that are publicly available, SCENIC, 

or ‘single-cell regulatory network inference and clustering’, is the most used form.  

6.1.2.1 Single-cell regulatory network inference and clustering 

SCENIC is an R- and Python-based computational tool that combines the identification of gene 

regulatory networks with clustering of cellular heterogeneity (Aibar et al., 2017) (Figure 92). SCENIC 

uses “GENIE3” to construct a co-expression module of genes regulated by the same TF; it performs 

a TF-enrichment analysis of regulons by “RcisTarget”, thereby improving accuracy of subtype and 

state identification; and scores regulon expression in single-cells with “AUCell”. The result is a 

binary matrix of regulon activity that can be projected onto a t-SNE- or UMAP-plot. 

Interestingly, SCENIC has already been utilized to identify microglia in distinct lineages, as well as 

within gestational microglia (Aibar et al., 2017; Kracht et al., 2020). However, to my knowledge, it 

has not been applied to a single-cell atlas of microglia across the lifespan. Identifying key regulons 

in such a compendium will further aid the understanding of microglial biology and establish novel 

therapeutic targets age-associated disease.  
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Figure 92: SCENIC workflow. SCENIC utilizes “GENIE3” (or “GRNBoost2”) for the identification of co-expression modules. 
Regulons of the expression modules are tested with “RcisTarget” for the determination of a gene regulatory network, 
thereby identifying direct and indirect targets. After which cellular regulon activity is binarized and tested with “AUCell”, 
to assign the absence of or expression on the regulons; ‘OFF’ and ‘ON’, respectively. 
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6.2 Aims and objectives 

In this final chapter, I aim to establish an atlas of female, microglial heterogeneity in the cortex, 

from Sexually Immature Microglia (SIM) to old age. This will enable me to consolidate previously 

established gene lists and microglial subtypes, investigate a critical developmental window of 

microglial maturation, and ascertain the effects on genotype on transcriptional heterogeneity and 

population dynamics. Similarly, I aim to determine gene regulatory networks in microglia that drive 

heterogeneity, to aid biomarker discovery and therapeutic intervention strategies for healthy aging. 

Aim 4: Study of female gene regulatory networks in health and disease. 

• Objective 13: To establish a female-specific atlas in the murine cortex. 

• Objective 14: To explore the transition to an adult microglial phenotype. 

• Objective 15: To determine the effects of amyloidosis on transcriptional heterogeneity 

and population dynamics. 

• Objective 16: To identify transcription factors central to age-associated microglial 

subtypes. 

6.3 Materials and methods 

 Dataset Acquisition  

3 datasets were gathered that include wild type and AD model-derived cells (APPNL-G-F). These 

include data from Sala Frigerio et al. (2020), and Tabula Muris Consortium (2020), datasets that 

were used in the large-scale atlas previously, as well as in the in-house generated data of SIM. To 

minimize confounding variables, I chose to select only female-derived cells in the cortex (Table 9).  

Table 9: Features of scRNA-seq datasets in the small-scale female atlas. 

  Age   
Source Year Accession P21 3M 6M 12M 21M Genotype 

Muntslag et al. 2022 N/A 450   WT 

Sala Frigerio et al. 2019 GEO: 
GSE127893 

  
  

357 341 312 302 WT 
351 282 210 250 APPNL-G-F 

Tabula Muris 
Consortium 2020 GEO: 

GSE109774   436   WT 
Note: Details of the respective source data is tabled, including year, accession number (if applicable), the number of cells 
at the given ages, and genotype. All data are post quality control. APP, AD-model genotype; P, postnatal day; M, months 
old, WT, wild type genotype. 

A total of 3291 cells were included, including 450 SIM (P9 – P28), 1767 adult microglia (P60-6M), 

522 middle age microglia (6M – 18M), and 552 old age microglia (>18M). As stated, SIM are a sparse 

commodity when it comes to scRNA-seq data (Table 3). This is particularly salient as the transition 
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from early developmental to old age subtypes can be localized to this developmental window 

(Figure 32). 

The APPNL-G-F mice harbour disease relevant ‘Swedish and Beyreuther/Iberian mutations with and 

without Artic mutation in the APP gene’ (Saito et al., 2014). This prevents the use of artificial 

transgenic overexpression and better captures the AD phenotype. Broadly, these mice are featured 

by an invasive amyloid-ß (Aß) pathology, neuroinflammation and memory impairment by 6 months 

old. 

 Seurat and Metascape 

Seurat and Metascape were utilized as described previously (Butler et al., 2018; Zhou et al., 2019). 

In short, a quality control (QC) of each dataset was performed individually, after which the objects 

were normalized, scaled and regressed for ‘nFeature_RNA’, ‘percent.rb’, ‘G2M.Score’, and 

‘S.Score’. Canonical Correlation Analysis, anchor-based integration was performed, followed by 

dimensionality reduction and cluster identification (Butler et al., 2018). I chose to use 10 dimensions 

at a resolution of 0.6. Differential gene expression analyses were performed with ‘FindAllMarkers’ 

with Wilcoxon test for statistical significance. Cluster-specific markers are reported in. Cluster 

markers or gene regulatory network-derived - see– were tested in Metascape utilizing with ‘Express 

Analysis’ (Zhou et al., 2019).  

 SCENIC 

A default SCENIC bioinformatic pipeline of SCENIC was applied, as first described by Aibar et al. 

(2017). To add functionality for subsequent visualization, I made adaptations to the pipeline to 

include modifications made by Kracht et al. (2020). In short, this script uses a log-normalized count 

matrix as input; adds an additional QC step; and enables the projection of identified regulons onto 

a Heatmap, and onto a UMAP-plot pertaining to their analysis in Seurat. 

6.4 Results 

 Transcriptomic heterogeneity of microglia in the murine lifespan 

Albeit female microglial studies are starting to increase, SIM are understudied (Hanamsagar et al., 

2017; Masuda et al., 2019; Sala Frigerio et al., 2019; Villa et al., 2018). To ameliorate this absence, 

a single-cell dataset was generated of cortical microglia in healthy, female mice at P21. This dataset 

was detailed in the previous chapter – see section 5.8. Here, I used this dataset (and two publicly 

available datasets) to establish an integrated object that spans from SIM to old age microglia, 
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including both wild type (WT) and APPNL-G-F (APP) cells. No APP-derived microglia were available at 

P21. 5 distinct clusters were identified (Figure 93, Supplementary Table 15). 

 
Figure 93: Cluster identification in female, cortical microglia in health and disease. a) 5 clusters were identified in a small-
scale atlas of wild type- and APPNL-G-F-derived cells. b) Microglial age distributions vary and show similarities with cluster 
identity distributions. c) Typical homeostatic genes are enriched in cluster 0,1 and 2. Lysosome pathway-associated 
macrophages (LPM) and interferon response microglia (IRM) genes are enriched in cluster 3 and 4, respectively. 

To detail which microglial subtypes are present in this integrated dataset, the expression of genes 

known from the large-scale single-cell atlas were tested, aiming to capture broad microglial 

heterogeneity in this way (Supplementary Table 16). This list includes homeostatic clusters genes, 

previously described as HOM-clusters, as well as sensome, early developmental microglia (EDM), 

interferon response microglia (IRM) and lysosome pathway-associated macrophage (LPM) genes. 

Most of the cells in female cortical maturation express typical microglial markers. Based on their 

homeostatic gene expression (and the absence of LPM or IRM markers), cluster 0, 1 and 2 were 

identified as homeostatic; cluster 3 were identified as LPM and cluster 4 as IRM (Figure 93). 

 SIM and the dynamic acquisition of a homeostatic microglial signature 

In the large-scale atlas, there lacked a significant contribution of SIM (Table 3). Here, I have 

effectively bridged this gap by including the single-cell dataset. The rapid maturation of microglia 

from pre-microglia to adolescent microglia can in fact be captured at the SIM stage (i.e. P9 – P28) 

(Figure 94). At this stage, homeostatic genes continue to increase to adult levels. This acquisition 

can be noted in Csf1r and Cx3cr1, although this is most evident for Cx3cr1 at 3 months old, indicative 
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of the protracted nature of cortical maturation. Interestingly, P21 also lose genes typically 

associated with early development (e.g. Ftl1, Tmsb4x, Rps14), confirming that SIM are a highly 

dynamic developmental time-window in microglial heterogeneity (Supplementary Figure 14). 

 
Figure 94: Homeostatic gene acquisition in SIM. a) FeaturePlot of homeostatic markers, as defined by (Matcovitch-Natan 
et al., 2016). Sexually Immature Microglia (SIM) are featured by b) adult homeostatic and c) early developmental 
microglial markers, marking a transitional age in the acquisition of microglial identity. 

To further explore this developmental age, DGE analysis was done on the Seurat clusters with 

‘FindAllMarkers’. Cells from P21 mostly clustered to cluster 2 (Supplementary Figure 15), which led 

me to think clusters might better respect general transcriptional similarities and could mitigate any 

source specific artefactual gene introductions. 17 statistically significant genes were enriched in 

cluster 2, most of which were associated with regulation of actin cytoskeleton organization 

(GO:0032956), cell chemotaxis (GO:0060326) or regulation of calcium ion transport (GO:0051924) 

(Figure 95). These biological processes correspond to an acquisition of microglial identity; however, 

effects were small (Supplementary Table 15), as they have been for HOM-clusters in the large-scale 

atlas (Supplementary Table 1, Supplementary Table 2).  

 
Figure 95: SIM are featured by morphological and migratory genes. Enrichment of Gene Ontology (GO) categories in 
Sexually Immature Microglia (SIM).  

 Age-associated microglia and genotype 

Two age-associated microglial clusters were identified that correspond to LPM and IRM; cluster 3 

and 4, respectively. These minority clusters display typical markers associated with them, including 

genes like Csf1, Igf1 and Lpl, and Ifit3, Oasl2, Usp18 (Figure 96). 
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Figure 96: Age-associated microglial subtypes in health and disease. Lysosome pathway-associated macrophages (LPM) 
and interferon response microglia (IRM) were identified in the small-scale cortical atlas. 3 canonical markers (and their 
expression levels) are displayed by Seurat cluster identity. 

As age-associated disease is linked to microglial heterogeneity, WT and AD models affect 

transcriptional signatures differentially. A distinct age distribution of C57BL/6 and APP model-

derived cells was observed, where average age is higher for clusters enriched for LPM and IRM, 

suggestive of an accelerated microglial phenotype by APP (Figure 97).  

 
Figure 97: Female cortical microglial maturation and genotype. a/b) 5 clusters were identified that broadly track distinct 
age groups spanning from Sexually Immature Microglia (SIM) (P21) to old age microglia (21M). c/d) Uneven distribution 
of genotype can be observed in the object. P, postnatal day; M, month.  

To explore this further, the gene signatures were split by genotype and grouped by age. In this way, 

it became obvious that albeit LPM displayed an age- and genotype-specific expression level, IRM-

associated genes were equally expressed, independent of age or genotype (Figure 98). This has 

previously been addressed in the large-scale atlas by referencing Sala Frigerio et al. (2019), the 

current source under review. Interestingly, LPM were suggested to be a converging point of age, 
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sex, and genetics; a microglial subtype that is enriched for AD-associated risk factors like Apoe, H2-

Ab1, and H2-Eb1 (Sala Frigerio et al., 2019). 

 
Figure 98: Not all age-associated microglial subtypes display an age- and genotype-specific variability in expression level. 
Lysosome pathway-associated macrophages (LPM)-associated genes are differentially affected by age and genotype, 
whereas IRM have no such enrichment. Typical LPM and IRM genes were selected. Cells are split by genotype (APPNL-G-F, 
C57BL/6) and grouped by age; C57BL/6 in blue, APP in red 

An enrichment of Apoe, Ctsb, and Pld3 was seen in early development and old age LPM (Figure 36). 

Trem2 is a fourth genetic factor that is associated with the emergence of disease-associated 

microglia (DAM) (i.e. LPM) (Keren-Shaul et al., 2017b; Mecca et al., 2018). Interestingly, all four AD-

associated genes are enriched in LPM with age (Figure 98). Early development is featured by an 

increase of Apoe levels, after which expression abates, to increase once more in old age (Figure 36) 

(Butovsky et al., 2014). Remarkably, Ctsb, Pld3 and Trem2 expression levels do not show any overt 

changes with healthy aging, albeit a moderate increase can be observed in old age microglia (21M).  

 
Figure 99: LPM, AD-associated risk factors, age, and genotype. Lysosome pathway-associated macrophages (LPM) are 
enriched for Alzheimer’s disease (AD) risk factor genes that display age- and genotype-specific variations in expression 
level. Each AD gene is organized by column and displayed by cluster, and by age split by genotype; C57BL/6 in blue, APP 
in red. P, postnatal day; M, months old. 

In contrast, amyloidosis in APPNL-G-F mice increases the expression of all 4 selected AD risk genes 

(Figure 99). At 3 months old, APPNL-G-F and WT maintain a similar expression profile of these genes. 

However, as early as 6 months old, expression of Apoe, Ctsb, Pld3 and Trem2 in APPNL-G-F-derived 

microglia is increased to levels beyond which are attained in health well into old age. Combined, 
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the upregulation of these genes implies the acquisition of a microglial signature primed to interact 

and mitigate amyloidosis in AD.  

Interestingly, Hickman et al. (2013), the authors who first coined the microglial sensome, reported 

on a loss of Trem2 expression with old age (-1.24 logFC) (Hickman et al., 2013). At first glance this 

appears to be at odds with the findings here. However, looking into the ages used for their analysis, 

young and old were represented by 5- and 24-month-old mice, adult and old age microglia, 

respectively. This goes on to suggest that microglial Trem2 expression is well-maintained into old 

age before a rapid drop of expression. Alternatively, it is possible these are study-specific factors, 

possibly hinting towards dysfunctional microglia. Trem2 would make for an interesting target in the 

large-scale atlas. 

 Microglial population dynamics and amyloidosis 

With amyloidosis to influence AD risk gene expression, microglial population dynamics are expected 

to differ between WT and APPNL-G-F. As seen in the large-scale atlas, healthy aging is featured by a 

loss of early developmental signatures like those in cluster 2, to the benefit of typical homeostatic 

signature (cluster 0 and 1), prior to emergence of age-associated clusters (i.e. cluster 3, 4) 

(Supplementary Figure 14, Figure 32, Figure 100). In health, maturation appears to complete by 6 

months of age. In contrast, with amyloidosis, there’s an earlier emergence of age-associated 

clusters like LPM and IRM, and a decline of HOM-clusters as early as 3 months old (Figure 100). 

With microglia rapidly maturing to age-associated subtypes during amyloidosis, it begs to question 

what transcription factors are driving such phenotypical diversification.  

 
Figure 100: Temporal population dynamics of WT- and APPNL-G-F-derived microglia. Wild type (WT) and APPNL-G-F microglial 
population dynamics differ, with AD-derived microglia featured by an accelerated emergence of age-associated microglia 
(LPM, IRM), as early as 6M. M, months old. 
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 Gene regulatory networks identify disease-like microglia regulons 

Well-established regulons of microglial identity include Irf8, Mafb, Sall1 and Spi1 (Pu.1). These 

regulons are expressed to similar levels from SIM onwards, independent of age or genotype (Figure 

101). Their relative stability in expression levels underlines their respective importance to microglia 

identity, yet this does aid the understanding of microglial heterogeneity in these conditions. 

 
Figure 101: Canonical microglial regulons lack age- or genotype-specific heterogeneity. 4 well-established microglial 
transcription factors (TF) are displayed: Irf8, Mafb, Sall1, Tgfbr1. No age- or genotype-specific differences in expression 
levels can be remarked. 

To identify regulons that drive microglial transcriptional diversification, I utilized SCENIC. With it, a 

plethora of TF were identified that vary their expression in an age- and cluster-specific manner 

(Figure 102, Supplementary Table 17, Supplementary Table 18). Homeostatic signatures (cluster 0, 

1 and 2) are enriched for regulons like Gmeb1 and Sin3aS, whereas clusters enriched for immature 

and disease-like microglia have a relative low expression of each (Figure 102). Instead, cells are 

enriched for factors like Atf3, Bhlhe40 and Irf7 (Figure 102). Moreover, I would like to point out that 

P21 and 21M cells cluster together hierarchically, consistent with their expression of an EDM-

signature, and in support of  findings in the large-scale atlas (Figure 31, Figure 93,Figure 102).  
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Figure 102: Transcription factor enrichment in an age- and cluster-specific manner. 3 major transcription factors (TF) drive 
transcriptional diversification of homeostatic microglia (cluster 0, 1, 2) to disease-like subtypes (cluster 3, 4) are displayed 
in FeaturePlots. Area under the curve (AUC) (i.e. enrichment) is scaled by row, where blue and orange are low and high 
expression, respectively. TF enrichment of all major (and minor) TF further details their hierarchical similarities by cluster 
(bottom left) and age (bottom right).  Both wild type and APPNL-G-F cells are included in all figures. g, genes, p, postnatal 
day; M, months old. 

HOM-cluster-associated regulons include Gmeb1, Smarcc2, Pml, Sin3a, Elf4 and Polr3a (Figure 102). 

Of these regulons, Gmeb1 is reliably enriched in all three HOM-clusters and reduced in activity in 

LPM and IRM (Figure 102). Gmeb1, also known as glucocorticoid modulatory element binding 

protein 1, loss of which confers a stress-related genetic susceptibility for AD (de Quervain et al., 

2004; Lemche, 2018). A loss of Gmeb1 activity in age-associated microglial subtypes might 

therefore provide an explanation why such cells are typically linked to pathology. In contrast, age-

associated microglial subtypes like LPM and IRM are driven by Bhlhe40 and Irf7, respectively (Figure 

102). Bhlhe40 was found to regulate 72 genes in female cortical microglia, among which Apoe, Ctsb 

and Lpl (Friedman et al., 2018; Krasemann et al., 2017; Yung, 2019). In turn, Irf7 regulates 52 genes, 

including Cxcl10, Ifitm3 and Usp18 (Rubino et al., 2018; Xu et al., 2021). 

Interestingly, there is a widespread transcriptional redundancy between the top 10 most variable 

regulons (Figure 103). Moreover, these regulon interactions include self-reinforcing networks of 

microglial identity (Chew and Petretto, 2019; Fagnocchi et al., 2016; Grubman et al., 2019).  
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Figure 103: Transcriptional overlap of microglial regulons in cortical microglia. A ‘Circos’ plot from a Metascape analysis 
illustrates the input gene lists overlap; only verified targets in female cortical microglia are reported. Regulatory network 
interactions of the top 10 most variable regulons. Self-reinforcing regulons are highlighted in bold.  

Looking at the sheer number of regulon interactions, Sin3a is the strongest driver of microglial 

heterogeneity in female cortical microglia (Figure 103, Supplementary Table 17, Supplementary 

Table 18). Sin3a is known to form a co-repressor complex with histone deacetylase (HDAC) for 

MeCP2 (Jin et al., 2017). Low activity of Sin3a in microglia in early development and old age hint 

towards a loss of transcriptional repression and microglial diversification, whereas upregulation of 

Sin3a with adulthood is reflective of the progressive fine-tuning of microglial identity towards a 

defined homeostatic signature.  
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Similarly, Atf3 is a broad-spectrum TF that targets 613 genes in the small-scale cortical atlas, among 

which, Bhlhe40, Ccl4, Cd74, Cst7, Ctsb, Dusp1, Egr1, Irf1, Lpl and Spp1. In contrast, both Bhlhe40 

and Irf7 are self-reinforcing regulons that only affect Smarcc2 and Pml, respectively. Such specificity 

suggests that these regulons are end-stage lineage determining factors. It is the apparent specificity 

of Bhlhe40 and Irf7 that could make these regulons valuable therapeutic targets. 

6.5 Discussion 

In this chapter I delved into female, cortical microglial heterogeneity in a small-scale atlas. 5 distinct 

clusters were identified, including HOM- and age-associated clusters. Four objectives were set out 

a priori, some of which were achieved while others were marred by challenges.  

 Generation of a small-scale female-specific microglial atlas 

3 data sources were integrated for a total of 3,219 cells in health and disease. Two of these sources, 

Sala Frigerio et al. (2019) and the Tabula Muris Consortium, have previously been utilized for the 

generation of the large-scale atlas. Here, these functioned to reliably anchor adult microglial 

signatures into the dataset, thereby ensuring any age- or genotype-specific effects were put into 

context. To extend upon these signatures, a single-cell dataset of cortical, female microglia from 

P21 C57BL/6 mice was generated (Chapter 5). A gap was identified in literature, which this dataset 

was set out to mitigate.  

Unfortunately, the number of cells that were sequenced (and their quality) imposed limitations to 

the scope of the results. The aim was to clearly outline microglial selection in the female cortex. 

Albeit this study provides a first glimpse into this developmental time window, to truly capture the 

selection phase (and all the microglial subtypes at such a time), the age range, cell number and read 

depth need to be increased. Ideally, collecting 5,000 cells from wild type and AD disease model-

derived mice of P7, P14, P21, P28, P42, P56, at a depth of ~50,000 reads/cell would provide this 

answer. This would equate to approximately 30,000 total cells, enough to collect at least 50 cycling 

and proliferating microglia (CPM) for each age, with CPM as the minimum fraction. This range would 

allow researchers to capture early developmental microglia and age-associated microglial subtypes 

concurrently, to address microglial selection in health and disease, and explore if and how LPM 

differ in such contexts. More specifically, microglial population dynamics already display a 

differential maturation trajectory as early as 3-months old in APP mice. Given that microglia in early 

development also increase AD risk factor genes (Chapter 3), it would be interesting to see how AD 

risk factor genes in development drive subsequent LPM emergence. However, despite not being 

able to detail the selection phase to the desired level, the integration of approximately 500 cells 



191 

from P21 to 21M allowed for the identification an age-specific effect on microglial heterogeneity 

like that described in the large-scale atlas.  

 Transition to a mature microglial phenotype 

Microglia undergo a dramatic change in gene expression signature between pre-microglia (E14.5 – 

P9) and adolescent microglia (P28 – P60) (Figure 32). Here, this transition was localized to SIM (P9 

– P28), in parallel with the onset of microglial selection in the cortex (Askew et al., 2017; 

Nikodemova et al., 2015). P21 cells display a transitional signature, enriched for both early 

developmental and homeostatic genes such as Ftl1 and Tmsb4x, and Csf1r and Cx3cr1. Tmsb4x, Ftl1 

and Rps14 have previously been described by Li et al. (2019) and Hammond et al. (2019) in pre-

microglia. Ftl1, Tmsb4x and Rps14 were associated with the regulation of metal homeostasis, actin 

cytoskeleton dynamics and ribosomal components, respectively (Hammond et al., 2019; Li et al., 

2019). Genes associated with the actin skeleton were identified here too and underline the 

developmental origin of these signatures.  

Interestingly, Tmsbx4 has previously been described in disease-associated choroid plexus 

macrophages and in experimental autoimmune encephalomyelitis, a model of MS (Jordão et al., 

2019; Mendiola et al., 2020). This goes on to show that non-homeostatic conditions obscure 

defined lineage signatures; transcriptional distinctions are non-binary and early and late life 

signatures share similarities. Furthermore, Tmsb4x does not appear to be restricted to C57BL/6 

murine cells. Embryonic, CD1 mouse cells are enriched for, among others, Tmsbx4 and cell cycle-

related Eef1a1 (Masuda et al., 2019). Similarly, TMSB4X and EEF1A1 are expressed in human tissue-

resident macrophages (Bian et al., 2020). As shown previously, there are commonalities in cellular 

proliferation between mouse and human development (Figure 37, Figure 38); however, these 

commonalities do not appear to stop there.  

 Early emergence of age-associated microglial subtypes with amyloidosis 

The effects of amyloidosis on transcriptional heterogeneity and population dynamics were studied. 

5 distinct clusters were identified in the small-scale atlas, including HOM-, LPM- and IRM-clusters. 

These subtypes broadly follow the large-scall atlas findings; HOM-clusters increase with maturation 

and decline with the emergence of LPM and IRM.  

It was previously determined that IRM in health do not display an increase in Apoe. In fact, IRM 

have levels of Apoe expression akin to HOM-clusters (Figure 42). However, in this dataset an 

increase of Apoe in IRM relative to HOM-clusters was noted (Sala Frigerio et al., 2019). Given the 

age- and genotype-specific effects on Apoe expression levels, it is likely that the increase of Apoe in 

cluster 4 is mostly driven by aged, APP-derived cells. Moreover, ‘transiting response microglia’ 
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(TRM) were not captured in the analyses. The original publication describes TRM as an intermediary 

state to ‘activated response microglia’ (ARM) (i.e. LPM). TRM display elevated levels of Apoe 

without typical LPM genes. It is possible these cells have contaminated the cluster 4, increasing the 

average expression Apoe in IRM. By extension, CNS-associated macrophages (CAM) were not 

identified, another subtype which has a higher expression of Apoe. Both this and the study by Sala 

Frigerio et al. (2019) made use of Cd11b+ enrichment, a strategy which is known to enrich for CAM. 

These cells have not been excluded from the analysis and could highlight an impurity; however, the 

interaction of age and genotype is expected to reduce the relative proportion of CAM, minimizing 

their effect on transcriptional heterogeneity.  

The strongest age- and genotype-specific effects pertain to LPM (in line with previous work by Sala 

Frigerio et al. (2019). Amyloidosis, as modelled by APPNL-G-F mice, significantly accelerates, and 

increases the expression of AD risk factors like Apoe, Ctsb, Pld3 and Trem2. This effect is absent in 

IRM, further outlining the divergence of microglial subtypes with age. Of note, these age-associated 

microglial subtypes are linked to unique regulons. 

 Bhlhe40 and Irf7 as potential therapeutic targets for Alzheimer’s disease 

Transcriptional regulation is mediated by a host of factors, including regulons. 10 TF were described 

that vary in an age- and cluster-specific manner. Regarding APPNL-G-F, amyloidosis accelerates the 

emergence of age-associated microglial subtypes, reducing the size of the homeostatic population 

at a younger age. It is unclear which regulons drive the emergence of such subtypes. Instead, 

regulons specific to IRM and LPM independent of genotype were identified.  

IRM are featured by an increase in activity of Irf1 and Irf7, whereas LPM have higher activity levels 

of Atf3 and Bhlhe40. All four display some degree of self-reinforcing signalling, however, Bhlhe40 

and Irf7 appear to be an end-stage TF; no broad-spectrum gene targets are identified. Such 

specificity is valuable for therapeutic intervention strategies.  

6.5.4.1 Bhlhe40 and LPM 

Bhlh40 is characterized is a range of immune cells. In T cells, it is known to regulate cytokine 

production, whereas Bhlhe40 in peritoneal and alveolar macrophages is central to self-renewal and 

maintenance (Cook et al., 2020; Jarjour et al., 2019; Lin et al., 2014; Rauschmeier et al., 2019). In 

turn, KO of Bhlhe40 impaired hippocampal neuronal excitability and synaptic plasticity (Hamilton 

et al., 2018). This work did not report on microglia or macrophages; however, the absence of 

Bhlhe40 is expected alter CNS myeloid function. 

Bhlhe40 is part of the core neurodegeneration gene set, a list of 134 genes including genes like 

Apoe, Ctsb, Gpnmb, Igf1, Itgax and others (Friedman et al., 2018). Interestingly, Krasemann et al. 
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(2018) showed that Apoe KO diminished Bhlhe40 (and Atf3) expression and ameliorates the loss of 

canonical homeostatic microglial genes (e.g. Tmem119, Csf1r, Sall1), suggesting that Apoe, a 

downstream target of Bhlhe40 feeds into the self-reinforcing cascade of LPM. Since then, the group 

of Oleg Butovsky has seen that Bhlhe40 expression is increased in humanized APOE4 relative to 

APOE3-mice (in both neurodegeneration and early-life stress) (Yung, 2019). In parallel, humanized 

APOE4-mice reduced the Spi1 expression in early development, which could affecting cell number. 

Taken together, Bhlhe40 and Apoe are critical regulators of microglial subtype, implying that such 

interactions in LPM in early development could predispose to late-onset AD. Moreover, targeting 

Bhlhe40 might offer a means to ameliorate pathology. 

6.5.4.2 Irf7 and IRM 

In contrast, IRM presence and function are not found to be affected by amyloidosis. Although IRM 

occurrence is at an earlier developmental time and increases with age, amyloidosis does not 

increase prevalence beyond what is achieved in healthy aging. It is currently unknown what the 

main driver is for IRM emergence. As discussed, the expression of Apoe is not commonly associated 

with IRM. In fact, Apoe KO does not affect its presence (as is the case for LPM), supportive of an 

Apoe-independent phenotypical specialization (Sala Frigerio et al., 2019). Here, Irf7 activity was 

identified, as well as activity of its upstream regulator Irf1, to be responsible for the acquisition of 

an IRM signature. Irf7 activity enables the expression of genes like Cxcl10, Ifitm3 and Usp18 (Rubino 

et al., 2018; Xu et al., 2021). However, the function of IRM is. IRM cells are believed to be anti-

inflammatory cells, reminiscent of the classical M2-phenotype, where Irf7 downregulates pro-

inflammatory genes (Cohen et al., 2014). Ifn-β1 mediates the expression of Irf7, whereas Irf7 is 

downregulated by chronic exposure to Tgf-ß, effectively establishing an axis of Tgf-b -Irf7 in 

microglial activation (Cohen et al., 2014; Hagemeyer and Prinz, 2014). The importance of Tgf-ß in 

microglial identity has been discussed; Tgf-ß mediates the expression of Mafb and Sall1 from pre-

microglia  onwards (Butovsky et al., 2014; Buttgereit et al., 2016). Furthermore, the importance of 

environmental cues like Tgf-ß for the microglial state of activation was discussed in  Chapter 3; 

interactions of microglial LRRC33 with integrin aVb8-bearing cells reduces microglial activation; 

without which myelopathy is a common occurrence (Qin et al., 2018). These studies point towards 

a role for the sensome in IRM, in which loss of this signature (and its proteins for microglial sensing) 

instils a pro-inflammatory state. Altogether, targeting Irf7 is expected to boost anti-inflammatory 

functions of IRM, ensuring that age- and disease-associated neuroinflammation is ameliorated. 

 Summary 

The prompt emergence of LPM and IRM with amyloidosis goes on to show the unique context of 

female microglial heterogeneity with age. Accelerated maturation in early development, is 

compounded by an accelerated maturation by amyloidosis. Although such adaptations can be 
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beneficial in the short-term, long-term microglial fitness is diminished as fitness is finite. Key 

regulons of the LPM and IRM subtypes were identified, providing novel therapeutic targets at the 

heart of microglial biology.  

6.6 Supplementary Figures and Tables 

Supplementary Table 15: Cluster-specific markers. 

# Seurat cluster (i.e. integrated_snn_res.0.6) 
  p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 
1 3.88E-06 0.306 0.677 0.708 0.007765 0 Tpst2 
2 5.39E-14 0.290 0.854 0.859 1.08E-10 0 Coro1a 
3 2.56E-37 0.288 1.000 0.999 5.13E-34 0 Tmsb4x 
4 0.002002 0.258 0.238 0.359 1 0 Tgfbi 
5 0.003837 0.593 0.402 0.425 1 1 Bank1 
6 0.000301 0.585 0.558 0.590 0.601532 1 Kif21b 
7 1.73E-10 0.533 0.253 0.426 3.45E-07 1 Zfp758 
8 4.13E-12 0.508 0.236 0.418 8.25E-09 1 AI987944 
9 1.76E-38 0.450 0.926 0.830 3.53E-35 1 Stab1 
10 1.00E-21 0.427 0.792 0.754 2.01E-18 1 Zfp69 
11 2.84E-47 0.575 0.255 0.082 5.67E-44 2 Plp1 
12 9.83E-33 0.552 0.255 0.044 1.97E-29 2 Ccr1 
13 2.54E-07 0.511 0.970 0.889 0.000508 2 Bin1 
14 2.49E-09 0.463 0.952 0.813 4.98E-06 2 Mlxipl 
15 8.78E-06 0.401 0.432 0.240 0.01756 2 Camk2n1 
16 1.72E-15 0.389 0.636 0.304 3.43E-12 2 Slc12a2 
17 1.69E-16 0.361 0.850 0.531 3.37E-13 2 Akap8l 
18 2.10E-14 0.348 0.309 0.064 4.19E-11 2 Coro1b 
19 6.40E-08 0.332 0.525 0.181 0.000128 2 Ccdc88a 
20 7.05E-13 0.309 0.572 0.218 1.41E-09 2 Ccnd1 
21 1.11E-183 4.586 0.935 0.552 2.21E-180 3 Apoe 
22 2.62E-13 3.935 0.365 0.288 5.23E-10 3 Spp1 
23 1.31E-167 3.905 0.802 0.353 2.61E-164 3 Cst7 
24 4.16E-98 3.237 0.682 0.325 8.33E-95 3 Cd74 
25 3.51E-122 3.045 0.698 0.306 7.01E-119 3 Lpl 
26 6.50E-65 2.662 0.539 0.259 1.30E-61 3 H2-Ab1 
27 4.89E-15 2.519 0.369 0.287 9.78E-12 3 H2-Aa 
28 5.35E-151 2.366 0.967 0.714 1.07E-147 3 Lyz2 
29 5.08E-38 2.281 0.506 0.315 1.02E-34 3 Ccl4 
30 1.02E-80 2.158 0.661 0.356 2.04E-77 3 Ank 
31 7.83E-22 2.524 0.549 0.194 1.57E-18 4 Ifit2 
32 2.96E-39 2.479 0.686 0.223 5.93E-36 4 Ifit3 
33 1.69E-19 2.412 0.647 0.350 3.38E-16 4 Ccl12 
34 1.06E-52 2.347 0.843 0.265 2.12E-49 4 Ifitm3 
35 4.82E-45 2.323 0.794 0.292 9.63E-42 4 Usp18 
36 2.42E-31 2.187 0.706 0.294 4.84E-28 4 Ifi204 
37 3.17E-47 2.184 0.745 0.263 6.35E-44 4 Irf7 



195 

38 5.47E-33 2.125 0.686 0.282 1.09E-29 4 Oasl2 
39 5.13E-21 1.997 0.500 0.191 1.03E-17 4 Mx1 
40 2.76E-16 1.806 0.422 0.169 5.53E-13 4 Ifit1 

Note: A table of all the top 10 cluster markers, sorted by ‘cluster’ and ‘avglog_2FC’. Activity of each is displayed based on 
the proportion (of 1) each contributes to the gene signature of their respective identities. 

Supplementary Table 16: Selected gene list for the identification of female microglial subtypes. 

Subtype Gene 

HOM/sensome 

Csf1r 
Cx3cr1 
P2ry12 

Tmem119 

EDM 

Apoe 
Cd63 
Ctsb 
Ctsl 
Ftl1 

LPM 

Apoe 
Clec7a 
Gpnmb 

Igf1 
Itgax 
Lpl 

Spp1 
Trem2 

IRM 

Ifitm3 
Irf7 

Oasl2 
Usp18 

Note: A genelist was generated that brought together signatures of homeostatic (HOM) and sensome markers, early 
developmental microglia (EDM), lysosome pathway-associated microglia (LPM), and interferon response microglia 
(IRM).  

 

Supplementary Figure 14: Loss of early developmental genes during maturation. Expression levels of early development-
associated genes decline with maturation. Maturation and loss of such genes differ by age and genotype. 
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Supplementary Figure 15: Atlas characteristics of female, cortical microglial heterogeneity. a) 3 sources were integrated, 
one self-generated and two publicly available sources. b) 5 distinct Seurat clusters were identified. c) Sources differed in 
their relative distribution across clusters. 

 

Supplementary Figure 16: Canonical microglial regulons (2). Two well-established microglial transcription factors (TF) are 
displayed: Sall1, Spi1 (Pu.1). No age- or genotype-specific differences in expression levels can be remarked. 
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Supplementary Table 17: Regulon activity in a cluster-specific manner. 

  Seurat clusters 
TF 0 1 2 3 4 

Sin3a_582g 0.329 0.342 0.313 0.302 0.286 
Atf3_613g 0.319 0.323 0.319 0.365 0.305 
Elf4_569g 0.292 0.304 0.288 0.269 0.272 
Pml_493g 0.225 0.236 0.206 0.190 0.200 
Irf1_343g 0.187 0.187 0.173 0.163 0.190 

Polr3a_368g 0.172 0.185 0.172 0.156 0.157 
Gmeb1_228g 0.152 0.153 0.150 0.124 0.131 
Smarcc2_311g 0.120 0.136 0.111 0.112 0.108 
Setdb1_273g 0.117 0.130 0.116 0.111 0.111 
Foxo3_156g 0.089 0.095 0.092 0.085 0.082 
Bhlhe40_72g 0.080 0.071 0.091 0.154 0.094 
Zfp523_129g 0.063 0.068 0.059 0.052 0.055 
Egr1_131g 0.050 0.053 0.043 0.042 0.042 
Zfp69_63g 0.045 0.046 0.045 0.036 0.039 
E4f1_60g 0.038 0.044 0.035 0.034 0.033 
Irf2_34g 0.033 0.039 0.037 0.022 0.036 

Nfatc2_22g 0.028 0.034 0.026 0.018 0.024 
Creb5_31g 0.028 0.033 0.033 0.039 0.031 
Zbtb37_16g 0.023 0.032 0.024 0.017 0.022 
Zeb1_29g 0.027 0.030 0.027 0.029 0.038 

Zfp105_25g 0.022 0.024 0.016 0.017 0.023 
Zfp97_18g 0.020 0.023 0.020 0.018 0.018 
Zfp760_33g 0.021 0.023 0.020 0.020 0.017 

Irf7_54g 0.031 0.022 0.034 0.057 0.153 
Foxj2_22g 0.018 0.022 0.015 0.012 0.014 

Zfp442_20g 0.010 0.013 0.008 0.007 0.011 
Zfp11_11g 0.010 0.013 0.007 0.011 0.009 
Tef_37g 0.011 0.013 0.011 0.010 0.013 

Snapc4_12g 0.012 0.011 0.011 0.009 0.009 
Zfp623_13g 0.012 0.011 0.009 0.008 0.011 
Thra_20g 0.006 0.008 0.008 0.008 0.009 
Stat2_38g 0.007 0.005 0.007 0.011 0.110 
Cux2_11g 0.004 0.004 0.004 0.005 0.002 
Foxo4_20g 0.003 0.003 0.006 0.011 0.006 
Klf2_11g 0.002 0.003 0.004 0.006 0.004 
Fos_17g 0.003 0.002 0.003 0.006 0.006 

Note: A table of all transcription factors (TF) (i.e. regulons) in a cluster-specific-manner. Activity of each is displayed 
based on the proportion (of 1) each contributes to the gene signature of their respective identities. 
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Supplementary Table 18: Regulon activity in an age-specific manner. 

  Age 
TF P21 3M 6M 12M 21M 

Atf3_613g 0.325 0.318 0.333 0.333 0.333 
Sin3a_582g 0.296 0.330 0.333 0.328 0.319 
Elf4_569g 0.280 0.294 0.295 0.289 0.287 
Pml_493g 0.193 0.222 0.226 0.221 0.215 
Irf1_343g 0.160 0.185 0.183 0.183 0.180 

Polr3a_368g 0.170 0.174 0.179 0.174 0.168 
Gmeb1_228g 0.149 0.151 0.145 0.145 0.142 
Smarcc2_311g 0.105 0.120 0.136 0.122 0.118 
Setdb1_273g 0.115 0.120 0.128 0.119 0.115 
Foxo3_156g 0.095 0.089 0.095 0.091 0.086 
Bhlhe40_72g 0.100 0.080 0.091 0.097 0.103 
Zfp523_129g 0.053 0.064 0.065 0.061 0.059 
Egr1_131g 0.034 0.051 0.052 0.048 0.048 
Zfp69_63g 0.042 0.046 0.043 0.042 0.042 
E4f1_60g 0.036 0.037 0.042 0.037 0.039 
Irf7_54g 0.042 0.028 0.036 0.037 0.052 
Irf2_34g 0.042 0.034 0.036 0.030 0.031 

Creb5_31g 0.036 0.031 0.035 0.030 0.032 
Nfatc2_22g 0.030 0.026 0.033 0.028 0.023 
Zeb1_29g 0.031 0.026 0.033 0.026 0.029 

Zbtb37_16g 0.025 0.024 0.031 0.022 0.022 
Zfp105_25g 0.012 0.021 0.024 0.021 0.021 
Zfp760_33g 0.020 0.021 0.023 0.020 0.021 
Zfp97_18g 0.017 0.021 0.022 0.020 0.022 
Foxj2_22g 0.015 0.018 0.021 0.017 0.014 
Zfp11_11g 0.006 0.010 0.013 0.010 0.011 
Tef_37g 0.012 0.011 0.013 0.011 0.012 

Zfp623_13g 0.006 0.010 0.012 0.012 0.010 
Zfp442_20g 0.008 0.011 0.011 0.009 0.010 
Stat2_38g 0.013 0.007 0.011 0.009 0.015 

Snapc4_12g 0.010 0.011 0.010 0.011 0.011 
Thra_20g 0.014 0.007 0.007 0.007 0.005 
Cux2_11g 0.003 0.004 0.004 0.005 0.004 
Foxo4_20g 0.013 0.003 0.004 0.004 0.006 
Klf2_11g 0.008 0.002 0.004 0.002 0.002 
Fos_17g 0.009 0.002 0.003 0.002 0.003 

Note: A table of all transcription factors (TF) (i.e. regulons) in an age-specific-manner. Activity of each is displayed based 
on the proportion (of 1) each contributes to the gene signature of their respective identities. 
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Chapter 7 General discussion 

7.1 Review of main findings 

It was hypothesized that distinct microglial subtypes drive adult heterogeneity and are featured by 

sex-specific trajectories of differentiation. Moreover, age-associated microglia were expected to 

have distinct gene regulatory networks. Several key observations were made during this thesis: 

1. Seven major myeloid subtypes occur in the CNS across the murine lifespan. 

2. Biological aging is the main catalyst for microglial heterogeneity. 

3. Female microglia mature faster and feature a greater prevalence of age-associated 

subtypes at a younger age. 

4. Distinct regulons drive the emergence of age-associated microglial subtypes. 

5. Microglia are prone to ex vivo-activated signatures with scRNA-seq. 

 
Figure 104: Graphical abstract of microglial heterogeneity in the murine lifespan. Homeostatic gene signatures increase 
with age, to stabilize between postnatal day 9 (P9) and 6-months old (6M). The blue line is a log10 of the ratio of 
homeostatic (HOM) over all other clusters. e.g. The gradual loss of a homeostatic signature becomes evident from 
middle age onwards, concurrent with an increased prevalence of age-associated microglial subtypes (i.e. AIM, IRM, 
LPM). Pie charts display the relative contribution of each subtype at the given age groups. The increase of age-
associated subtypes (in females) is paralleled by the loss and acquisition of regulons (e.g. Sin3a, Atf3, Bhlhe40, Irf7). 
AIM, aged inflammatory microglia; CAM, CNS-associated macrophage; CPM, cycling and proliferating microglia; E, 
embryonic day; EDM, early developmental microglia; IRM, interferon response microglia; LPM, lysosome pathway-
associated microglia; SIM, sexually immature microglia.  

 Seven major myeloid subtypes are observed in the CNS during the murine lifespan. 

Seven major CNS myeloid subtypes were identified in the murine lifespan, six of which are microglial 

subtypes: AIM, CPM, EDM, HOM, IRM and LPM. In turn, the HOM subtype can be subdivided into 
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five minor states: HOM1, 2, 3, 4 and 5. These subtypes display distinct age-specific distributions, as 

age was found to be the largest driver of microglial heterogeneity. Seven age groups detail the aging 

process, which can be reduced further to three broad stages: early development (<P9), adulthood 

(P9 – 6M), and late life (>6M) (Figure 104).  

Early development is dominated by CPM, EDM and LPM subtypes. At this stage, homeostatic 

signatures are still increasing to adult levels. In adulthood, HOM signatures are mostly stable, albeit 

concurrent with increased HOM heterogeneity. Throughout adulthood, the microglial population is 

relatively stable and there is low prevalence of age-associated subtypes. This stability is gradually 

lost in later life, where AIM, IRM and LPM increase in prevalence at the expense of HOM signatures 

and heterogeneity. 

7.1.1.1 CPM, selection and repopulation 

CPM feature a wave-like pattern that is most evident in early development, albeit adult and old age 

microglia see relative increases of actively proliferating cells too. CPM have previously been well-

described, adding to findings related to the concept of microglial selection phase (Askew et al., 

2017; Nikodemova et al., 2015). Interestingly, human gestational microglia display similar wave-like 

patterns (Menassa et al., 2021), suggesting that cycles of proliferation and apoptosis are naturally 

occuring biological processes shared between species. Notably, it is currently unknown if each 

proliferation wave is coupled to a selection phase, and how these function to drive microglial 

heterogeneity.  

Several signalling cascades are central to microglial proliferation, among which the Csf1r-Csf1-Il34 

pathway. In fact, this pathway plays a role in health and CNS disease like prion and AD (Ginhoux et 

al., 2010; Obst et al., 2020; Olmos-Alonso et al., 2016). Interestingly, Il34 and Csf1 have also been 

shown to be differentially expressed between white and grey-matter, thereby establishing a region-

specific effect on microglial proliferation and heterogeneity (Easley-Neal et al., 2019; Kana et al., 

2019). Consequentially, the Csf1r-pathway is frequently studied in repopulation studies and a 

current clinical target.  

Huang et al. (2018) recently published a repopulation study that reproduced that the microglial 

population solely derives from microglial progenitors, a finding previously described (Askew et al., 

2017; Bruttger et al., 2015; Ginhoux et al., 2010; Goldmann et al., 2016; Hashimoto et al., 2013; 

Huang et al., 2018). However, the novelty in this work lies in their report on the temporal 

transcriptional signature of repopulating microglia with RNA-seq. The authors find that shortly after 

depletion, the microglial population is enriched for proliferation-associated genes, after which the 

population re-established homeostasis 60 days after repopulation had started (Huang et al., 2018). 

The initial response is most likely mediated by CPM, however, to my knowledge, no scRNA-seq data 

is currently available that describes this process in detail. The single-cell atlas and subtype-specific 
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marker genes could help resolve this, utilizing this data to deconvolve the RNA-seq data produced 

by the authors (Wang et al., 2018). Detailing the population dynamics of such a study could help 

refine clinical trials, providing novel microglial targets for CNS disease. 

7.1.1.2 EDM – a novel subtype in early development 

In this study, EDM are the most numerous subtype in early and pre-microglia. Typical markers of 

this subtype include Apoe, Cd63, Ctsb, Gpx3, Ftl1 and Npl. Other studies have previously reported 

on the signatures in early development (Hammond et al., 2019; Li et al., 2019). However, this study 

is the the first to describe their role in the emergence of the adult microglial population. In fact, the 

data suggests that EDM are the main source of the adult population. This argument is two-fold. 

Firstly, the core signature of EDM is shared with (and extended upon by) CPM and LPM. Secondly, 

EDM have a low pseudotemporal score, and a differentiation trajectory that tracks from EDM to 

LPM, CPM and HOM; a junction of maturation with EDM at the centre. Secondly, female and male 

microglia mature differentially, to stabilize in adulthood and diverge once more in middle-age. 

EDM-like signatures might therefore be of particular importance in sex-specific microglial 

heterogeneity. 

7.1.1.3 LPM – early development and late life prevalence 

In this work, I made the argument that lysosome pathway-associated microglia, or LPM, are an 

umbrella term for a family of phagocytic microglia. This family includes (but is not limited to) DAM, 

ARM, MGnd, ATM, PAM and LAM, and can broadly be described as a family of microglia that is 

prevalent in the CNS. Each of these myeloid cells have been described centrally or peripherally, in 

early development or late life, all of which are phagocytic cells capable of the removal of myelin, 

lipid-rich debris (Hammond et al., 2019; Jaitin et al., 2019; Keren-Shaul et al., 2017; Krasemann et 

al., 2017; Li et al., 2019; Sala Frigerio et al., 2019). Unlike other studies reporting on specific 

contexts, in the large-scale atlas, LPM as a cluster did not show a transcriptional distinction between 

early and late life; neither did the cluster show signs of fragmentation at higher cluster resolutions. 

Indeed, LPM are transcriptionally similar in healthy aging, independent of age. Given that multiple 

HOM-clusters were identified, most likely indicative of distinct microglial states, LPM effectively 

capture a signature that does not diversify in healthy aging, but otherwise describe a family of 

microglial states. Others have argued for such transcriptional similarity and I hope the shared push 

for simplification aids the conceptual understanding of this subtype (Benmamar-Badel et al., 2020).  

As stated, the LPM signature is highly dependent on Trem2-Apoe signalling, albeit variations in 

dependency have been reported, both of which are key regulators of age-associated disease as well 

as early development (Butovsky et al., 2014; Jaitin et al., 2019; Keren-Shaul et al., 2017; Safaiyan et 

al., 2021).  
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Trem2 maintains metabolic fitness in LPM (Krasemann et al., 2017; Ulland et al., 2017). However, 

when clearance capacity of microglia is exceeded (by the loss of Trem2), microglial dysfunction 

ensues and canonical markers are lost (e.g. Tmem119, Tgfbr1) (Krasemann et al., 2017; Nugent et 

al., 2020). Moreover, the human ε4 allele of APOE (APOE4) is an established late-onset Alzheimer’s 

disease (LOAD) risk factor. How APOE contributes to cognitive development is currently unknown, 

however, elevated levels of APOE in early development are critically associated with white matter 

development. Carriers of the APOE4 variant displayed lower myelin levels at 2.5 years of age (Dean 

et al., 2014; Malkki, 2014). Of note, like Apoe, Ctsb is enriched in LPM and is associated with AD 

risk, and encodes for cathepsin B, a lysosomal cysteine peptidase. Loss of which is causal to 

lysosomal dysfunction and accumulation of amyloid-ß and cholesterol (Mueller-Steiner et al., 

2006). The relative enrichment of such AD-risk factors and the involvement of Trem2-Apoe 

signalling outlines their importance to CNS disease.  

Beyond the scope of this work but of critical importance is to establish the function of LPM. As a 

whole, microglia have been assigned both detrimental and beneficial roles (Aguzzi et al., 2013; 

Deczkowska et al., 2018; Lee et al., 2010; Wolf et al., 2013). As discussed, LPM can become 

dysfunctional when clearance capacity is exceeded, and LPM are enriched for AD-associated risk 

factors (Krasemann et al., 2017; Sala Frigerio et al., 2019). It is therefore reasonable to argue that 

whether LPM aid or aggravate pathology is dependent on the interplay of age, sex, and genes. This 

may be a bimodal oversimplification of function, reminiscent of classical M1 and M2 categorization, 

which fails to fully capture the in vivo function of these subtypes. That is, transcription does not 

inform on function. However, transcriptional heterogeneity can aid the further delineation of 

function. 

 Transcriptional and regulon heterogeneity 

Transcription factors are key mediators of transcriptional heterogeneity. Several age- and cluster-

specific enrichments of such regulons were identified in the small-scale atlas, an atlas of microglial 

maturation in health and disease. 

Atf3 and Bhlhe40, and Irf7 are selectively enriched in LPM and IRM, respectively. These regulons 

are attractive therapeutic targets to modulate the expression of Bhlhe40 and Ir7, to alter the 

population dynamics and response to pathology. Alternatively, the selective depletion of Bhlhe40 

or Irf7, or any other genes that describe LPM and IRM, might offer a means to detail if these 

subtypes are beneficial or detrimental to CNS health. 

Although research has started to explore the functions of LPM, less is known about the function of 

IRM. However, looking at the transcriptome of this subtype, IRM emergence might be a biological 

consequence of increased IFN-signalling with age; or a sign of CNS injury like those encountered 



203 

with stroke; white matter lesions typically seen with MS, traumatic brain injury (TBI) or AD 

(Deczkowska et al., 2017; McDonough et al., 2017; Xu et al., 2021). The molecular mechanisms of 

all these diseases have been coupled to ischemic injury, and pathology is commonly associated with 

white matter (De Keyser et al., 2008; Ramos-Cejudo et al., 2018; Wirth et al., 2017). Of note, 

Safaiyan et al (2019) describes WAM in AD, a white-matter enriched subtype that features both 

LPM and IRM signatures concurrently. It is possible WAM are IRM. It appears that expression of 

Apoe in IRM, or lack thereof, is linked to widespread amyloidosis and healthy aging, respectively. 

Apoe is a critical mediator of LPM and it is reasonable to assume that although IRM emergence does 

not rely on Apoe, Apoe expression could affect the IRM signature and its function.  

Each regulon is coupled to the expression of a wide range of genes that define each subtype. LPM 

are enriched for Bhlhe40, a transcription factor known to stimulate Apoe, Ctsb and Lpl (Friedman 

et al., 2018; Krasemann et al., 2017b; Yung, 2019), whereas Irf7 activity enables the expression of 

genes like Cxcl10, Ifitm3 and Usp18 (Rubino et al., 2018; Xu et al., 2021). Interestingly, Atf3 regulates 

among others Bhlhe40, Cd74, Ctsb, Dusp1, Egr1, Irf1, Lpl and Spp1. Therefore, these interactions 

firmly place Atf3 within microglial identity acquisition, and hints towards a role in the emergence 

of exAM by its regulation of Dusp1 and Egr1. Atf3 is a core gene of the integrated stress response 

and could make LPM more susceptible to exAM-like signatures than other microglial subtypes (Jiang 

et al., 2004; Pakos-Zebrucka et al., 2016). Once more, it becomes obvious that the microglial 

population is a lineage with distinct responses and responders (Gertig and Hanisch, 2014). 

 scRNA-seq and technical artefacts 

Technical artefacts are a common problem in scRNA-seq data (Brink et al., 2017; Marsh et al., 2022; 

Wu et al., 2017). exAM were identified in the large-scale atlas and with standard isolation 

procedures. However, mitigation of such effects was possible with Dounce homogenization, and 

with transcriptional inhibition. Other methods are available, these include cold-activated proteases, 

and combinatorial inhibition of transcription and translation (Adam et al., 2017; Hrvatin et al., 2018; 

Marsh et al., 2022). Not discussed previously, ‘Ribotag’ might offer a bulk RNA-seq approach to the 

mitigation of exAM signatures in scRNA-seq data. 

First introduced by Sanz et al. (2014), Ribotag isolates ribosome-associated mRNA by the 

immunoprecipitation (IP) of large ribosomal subunit 22 (Rpl22) (Sanz et al., 2009); the combination 

with Cre recombinase allows this approach to be cell-specific. Haimon et al. (2018) applied this 

approach with Cx3cr1CreER, establishing an inducible mouse model that enables the isolation of 

myeloid mRNA (Haimon et al., 2018). A direct comparison with a standard isolation protocol, 

including enzymatic digestion and FACS, showed that IP of mRNA better preserves the coding 

mRNA. Specifically, IP of myeloid cells retains microglial quiescence, reduces IEG signatures, and 

excludes nuclear long non-coding RNA like metastasis-associated lung adenocarcinoma transcript 
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1 (Malat1) (Derrien et al., 2012; Haimon et al., 2018). Of note, Malat1 was identified in the large-

scale atlas, as a marker of HOM-clusters. Such enrichment goes on to show that even clusters 

without any typical exAM signatures are affected by the choice of isolation method; the 

downstream effects of which need to be acknowledged in every experimental paradigm. Strikingly, 

Malat1 is a known epigenetic factor associated with M1 polarization, suggesting that RiboTag too 

has inherent limitations (Qiu et al., 2021). However, in spite of that, IP of mRNA increased the 

number and variety of transcripts, thereby increasing library size and complexity (Haimon et al., 

2018). This feature might help mitigate cell quality loss with ActD. However, since Ribotag is a bulk 

approach, how could such an approach be implemented in a scRNA-seq design? 

Deconvolution is a bioinformatic approach that utilizes scRNA-seq data to determine the cell 

composition of bulk RNA-seq data. MuSiC is a highly cited variant of such an implementation, albeit 

a wide variety of methods has been developed (Avila Cobos et al., 2020; Wang et al., 2019). It is a 

goal to make the large-scale atlas available for deconvolution, acting as a resource of the field. 

However, as discussed, isolation methods affect scRNA-seq data, even in the absence of typical 

exAM-like signatures. Ribotag could function as a complementary approach to refine cluster-

specific markers.  

Microglial studies heavily rely on transgenic mice models coupled to canonical marker genes. 

Commonly used reporter mice make use of Cx3cr1 and Csf1r, or Tmem119, P2ry12, Sall1 and Hexb 

(Eme-Scolan and Dando, 2020; Jung et al., 2000; Sasmono and Williams, 2012). As discussed, 

stability of Hexb expression, independent of subtype and context could make HexbtdTomato an 

attractive target for a RiboTag adaptation (Eme-Scolan and Dando, 2020; Masuda et al., 2020).  

Moreover, it is worth considering that in situ hybridization or spatial transcriptomics approaches 

would allow for a more detailed confirmation of signatures. Satija et al. (2015) were the first to 

corroborate single-cell expression data with a spatial location (Satija et al., 2015), a solid approach 

that since has been adopted in the microglial field (Favuzzi et al., 2021; Gunner et al., 2019; 

Hammond et al., 2019; Silva et al., 2021). Alternatively, despite of reports highlighting the lack of 

correlation between transcriptional and translational measures, novel microglial subtypes can be 

identified with histology (Hammond et al., 2019; Li et al., 2019; Masuda et al., 2019; Safaiyan et al., 

2021), which could function as a surrogate approach for the identification of technical artefacts in 

microglia. 
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7.2 Future perspectives 

 Spatial transcriptomics and in situ hybridization 

In situ hybridization utilizes DNA probes to identify RNA in a spatial context at a single-cell 

resolution. Like scRNA-seq, in situ hybridization has many distinct variants, of which smFISH, or 

single-molecule RNA fluorescence in situ hybridization, is considered the “gold standard” (Nagle et 

al., 2021; Raj et al., 2008). However, famed for its accuracy and capture rate, it lacks in throughput. 

To address this limitation, combinatorial FISH methods have been developed, including MERFISH, 

seqFISH+, and split-FISH (Chen et al., 2015; Eng et al., 2019; Goh et al., 2020). Experiments can 

readily be scaled up to include 200 to 500 genes, or up to ~10,000 at considerable costs; however, 

similar to smFISH, DNA probes used to identify the RNA are designed a priori, negating an unbiased 

characterization of the cellular transcriptome (Nagle et al., 2021).  

A more high-throughput and unbiased approach can be found in spatial transcriptomics. Spatial 

transcriptomics was named the ‘Method of the Year’ by Nature in 2020’; single-cell multimodal 

omics was in 2019, and single-cell RNA and DNA sequencing in 2013. Spatial transcriptomics allows 

the preservation of the spatial context in which RNA transcripts are transcribed; tissue is stored and 

fixed, and permeabilized for the in situ capture of local transcripts.  

Two main competing commercial products are currently available for use: 10X Visium and 

Nanostring. Neither is capable of the single-cell resolution seen with in situ hybridization methods; 

however, Visium does not necessitate the generation and selection of a probe panel for gene 

detection, making it an unbiased approach. Spatial transcriptomic data, scRNA-seq and 

deconvolution are currently used in combination to maximize the information in these studies 

(Dong and Yuan, 2021; Song and Su, 2021). It is expected that the continued research and rapid 

developments of this field will allow for a single-cell resolution in spatial transcriptomics soon. 

Regardless, smFISH, combinatorial FISH and spatial transcriptomics all offer ways to complement 

scRNA-seq findings.  

 Multi-omics 

Mono-modal technologies like scRNA-seq and the alternatives that were discussed are 

complementary, each contributing a distinct facet of microglial heterogeneity. With their 

occurrence, novel bioinformatic approaches continue to be developed to integrate these distinct 

datasets (Butler et al., 2018; Forcato et al., 2020; Hao et al., 2021; Korsunsky et al., 2019). However, 

correlations between modalities remains an indirect, computational approximation. The advance 

of multi-modal assays increases experimental consistency, reproducibility and stability, acting 

synergistically to further expand biological understanding (Hao et al., 2021). 
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As stated before, many multi-modal technologies have been developed, including G&T-seq, scMT-

seq, CITE-seq, scTrio-seq and 10X (Hou et al., 2016; Hu et al., 2016; Macaulay et al., 2015; Stoeckius 

et al., 2017; Zhang et al., 2018). Multi-modal assays vary in their combination of modalities. 

However, the transcriptome and epigenome are most readily studied, to characterize chromatin 

accessibility and RNA expression concurrently (Cao et al., 2018; Chen et al., 2019; Liu et al., 2019; 

Ma et al., 2020; Zhu et al., 2019). Broadly, cells and/or nuclei are isolated, processed in bespoke 

single-cell platforms, and followed by serial library preparations of the epigenetic and gene 

expression libraries. Of note, Ma et al. (2020) describe and use SHARE-seq and showed that 

chromatin accessibility changes precede transcriptional heterogeneity in mouse skin, implying that 

lineage commitment studies would benefit from such a multi-modal analysis. However, to my 

knowledge no such multi-omics study has been performed in microglia, while epigenetics is 

increasingly recognized to play a role in their heterogeneity (Ayata et al., 2018; Datta et al., 2018; 

Gosselin et al., 2017; Kracht et al., 2020; Lavin et al., 2014; Nott et al., 2019; Wendeln et al., 2018). 

 Epigenetics and microglial heterogeneity 

Epigenetic regulation of gene expression is typically done by two mechanisms: DNA methylation 

and histone modification. In fact, these mechanisms are functionally linked and each contribute to 

transcriptional heterogeneity (H.-T. Lee et al., 2020). Several key studies have reported on the 

roles of epigenetics in microglia in health and disease, most of which concerning methylation and 

acetylation of histones (Ayata et al., 2018; Datta et al., 2018; Lavin et al., 2014; Matcovitch-Natan 

et al., 2016; Wendeln et al., 2018). 

Lavin et al. (2014) combined RNA-seq, ATAC-seq and ChiP-seq to delineate the myeloid lineage by 

their the enhancer landscapes; distinct subtypes are coupled to unique environment-dependent 

enhancers (Lavin et al., 2014). i.e. The intergenic region of Pu.1 is enriched for mono-methylation 

of Histone H3 at lysine 4 (H3K4me1), a feature which is shared across the myeloid lineage, and a 

mark of an active or primed enhancer for the transcriptional regulation of Pu.1. In turn, 

macrophages are selectively enriched for H3Kme1 enhancers in the Mafb region, whereas the 

Sall1 motif is in microglia. Such histone modifications characterize the regulatory state of a cell 

and corroborate their respective roles in microglial ontogeny (Buttgereit et al., 2016; Kierdorf et 

al., 2013; Lavin et al., 2014; Matcovitch-Natan et al., 2016). In fact, microglia (and lung 

macrophages) are epigenetically most removed from other macrophages (Lavin et al., 2014). 

These findings go on to show that the CNS environment provides a significant environmental cue 

for microglial identity, one which CAM fail to achieve.  

As stated, epigenetic (and transcriptional) heterogeneity underlies cellular regulatory state, which 

in turn drives functional specialization. Ayata et al. (2018) identified polycomb repressive complex 

2, or PRC2, as a critical regulator of the inhibitory histone H3 lysine 27 trimethylation 
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(H3K27me3). It was found that PRC2 controls phagocytic function in striatal and cortical microglia, 

deletion of which induces rampant phagocytosis (Ayata et al., 2018). Normally, microglia 

phagocytosis is used for synaptic pruning and the removal of apoptotic cells, thereby maintaining 

CNS homeostasis; however, deletion of PRC2 was causal to the emergence of motor dysfunction, 

reduced learning and memory, anxiety and seizures. Of note, deletion did not affect cerebellar 

microglia , a regional subtype that featured elevated phagocytic function natively (that could be 

affected by distinct population dynamics) (Ayata et al., 2018).  

Secondary to histone methylation, acetylation is controlled by histone acetyltransferases (HAT) 

and deacetylases (HDAC); acetylation by HAT increases chromatin accessibility, whereas HDAC 

restricts (Qiu et al., 2021; Wang et al., 2015). Datta et al. (2018) performed an interesting study in 

which they identified HDAC1 and HDAC2 as critical regulators in early development. Ablation of 

both at this stage increases apoptosis and reduced microglial population size (Datta et al., 2018). 

Of note, albeit microglial numbers increased gradually, matching control conditions by 16 weeks 

old, dendrite length remained affected. Moreover, deletion of these HDAC reduced proliferation 

and would have affected the microglial expansion and selection phase, with so far unknown 

functional consequences (Askew et al., 2017; Datta et al., 2018; Nikodemova et al., 2015). HDAC 

depletion might in fact be an interesting model to study the early developmental importance of 

microglial population dynamics on age-associated subtype emergence. 

Strikingly, HDAC1 and HDAC2 are redundant in 6 week old, healthy, adolescent mice, whereas it 

enhanced phagocytosis of amyloid, and mitigate spatial learning and memory deficits in 5XFAD 

mice, a familial AD model (Datta et al., 2018; Oakley et al., 2006). Like PRC2 deletion, epigenetic 

modification of HDAC1 and HDAC2 alter phagocytic capacities of microglia (Ayata et al., 2018; 

Datta et al., 2018). It then begs to question, how are LPM regulated by epigenetics, and are such 

effects on phagocytosis sex-specific? 

As discussed previously, epigenetics have been shown to play a role in the masculinization and 

femininization of the CNS (Nugent et al., 2015; VanRyzin et al., 2020). Notably, a recent study of 

spinal cord microglia in an assay for neuropathic pain found that only male microglial responses are 

featured by an increased expression of ribosomal genes (e.g Rpl, Rps) (Tansley et al., 2022). EDM 

have elevated levels of ribosomes, suggesting that male (spinal) microglia have a greater 

transcriptional similarity to early development subtypes (Hammond et al., 2019; Li et al., 2019). By 

extension, the protracted development of male microglia (in the absence of oestrogen) during 

sexual maturation could influence the epigenetic landscape of male microglia, providing them with 

a greater ability to respond to injury. Such a study would greatly benefit from a multi-modal 

approach. 
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 Animal modelling and translational medicine 

Most of the work in this thesis concerns data and literature from murine microglial studies. As 

stated, human microglial scRNA-seq remains sparse in comparison, and such a focus is a natural 

consequence of this sparsity. However, an increasing number of studies have started to address 

the translational gap between murine and human biology, and are offering new ways to mitigate 

such limitations (Friedman et al., 2018; Galatro et al., 2017; Gosselin et al., 2017; Hirbec et al., 

2020).  

Broadly, murine and human microglial cells share a large group of orthologous genes (Galatro et 

al., 2017; Gosselin et al., 2017). In correspondence, a scRNA-seq study of microglia across 10 

species spanning 450 million years of evolution identified a core gene signature (Geirsdottir et al., 

2019). e.g. Spi1 (Pu.1), Irf8 and Sall1 are all highly conserved. On face value, the large overlap of 

genes is promising and hints towards a high predictive value of animal modelling. In fact, human 

and mouse epigenetic landscapes are broadly similar, offering novel ways of guiding human 

disease modelling (Gosselin et al., 2017).However, as is now commonly known, pre-clinical 

experiments have a poor conversion to clinical trials; treatments are ‘lost in translation’ (Mak et 

al., 2014). Notably, species-specific gene modules and differences in biological aging (and the 

immune challenges that occur in that time) greatly affects organismal and cellular aging (Galatro 

et al., 2017; Geirsdottir et al., 2019; Gosselin et al., 2017; Grabert et al., 2016). Direct translation 

of results in human biology are therefore unwarranted. However, new cellular and animal models 

have started to reduce the translation gap. 

Key advances in tissue cell culture methods have given rise to the use of embryonic stem cells 

(ESC) and induced pluripotent stem cells (iPSC) (Hirbec et al., 2020). ESC and iPSC are increasingly 

used to more reliably create in vitro and ex vivo cultures of in vivo-like subtypes in 3D-cocultures, 

organoids, and slice cultures (Bennett et al., 2021; Delbridge et al., 2020; Heider et al., 2021; 

Ormel et al., 2018). Moreover, chimeric in vivo models, or transplantation of human-derived 

microglia, are fast developing (Abud et al., 2017; Bennett et al., 2018; Hasselmann et al., 2019; 

Mancuso et al., 2019; Svoboda et al., 2019). Paradoxically, it was insights from animal models, and 

the understanding of microglial ontogeny and heterogeneity that is the main driver of such 

advancements (Bennett et al., 2018; Gosselin et al., 2017; Hirbec et al., 2020; Lee et al., 2018). 

Methodological innovation and biological understanding are therefore intertwined. In time, such 

adoptions, concurrent with the generation of large-scale atlases like the atlas described here, will 

continue to drive technological advancements and the reduction of animal use to the benefit of 

the animals and the translation of molecular biology to clinical care. 
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Chapter 8 Appendix 

8.1 Antibodies used for flow cytometry 

Supplementary Table 19: FACS and MACS antibodies and reagents 

Antibody Catalog 
number: Producer Clone Isotype Host Reactivity Conjugate Concentration 

7AAD 51-68981E BD 
Pharmingen N/A N/A N/A N/A N/A  1/200 

Cd11b 562605 BD Horizon M1/70 IgG2b 
(κ) Rat Mouse BV421 1/300 

Cd11b 101207 BioLegend M1/70 IgG2b 
(κ) Rat Mouse PE 1/500 

Cd11b 130-049-601 Miltenyi 
Biotec M1/70.15.11.5 IgG2b 

(κ) Rat Human, 
mouse microbeads 1/10 

Cd16/Cd32 (Fc-block) 101301 BioLegend 93 IgG2a 
(λ) Rat Mouse N/A 1/500 

Cd45 559864 BD 
Pharmingen 30-F11 IgG2b 

(κ) Rat Mouse APC 1/100 

Fixable Viability Dye 
eFluor450 65-0863-14 eBioscience N/A N/A N/A N/A 450 1/1000 

Fixable Viability Dye 
eFluor780 65-0865-14 eBioscience N/A N/A N/A N/A 780 1/1000 

Isotype 562603 BD Horizon R35-38 IgG2b 
(κ) Rat N/A BV421 1/500 

Isotype 553991 BD 
Pharmingen A95-1 IgG2b 

(κ) Rat N/A APC 1/500 

Isotype 400635 BioLegend RTK4530 IgG2b 
(κ) Rat N/A PE 1/500  

P2ry12 848004 BioLegend S16007D IgG2b 
(κ) Rat Mouse PE 1/500 

Ultracomp eBeads 
Compensation Beads 01-2222-41 Thermo 

Fisher N/A/ N/A N/A N/A N/A/ 1/10 

MitoTracker Deep Red 
FM M22426 Thermo 

Fisher N/A/ N/A N/A N/A N/A/ 62.5 nM 

 ArC Amine Reactie Kit  A10628 Thermo 
Fisher N/A/ N/A N/A N/A N/A/ N/A 

Footnote: All FACS and MACS antibodies used in this work are tabulated, providing their general characteristics and optimal concentrations. N/A, not applicable.
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8.2 Primer sequences 

Supplementary Table 20: Primer sequences for qPCR 

Gene Primer Sequence 
Csf1r FWD TGCCTCTTCCTCTGTTCCCT 
  REV GCTAGTTCTGTGAGGACGGG 
Cx3cr1 FWD CCATCTGCTCAGGACCTCAC 
  REV CACCAGACCGAACGTGAAGA 
Egr1 FWD TTACCCGCCATATCCGCATC 
  REV CTGGCAAACTTCCTCCCACA 
Fos FWD GGGACAGCCTTTCCTACTAC 
  REV AAAGTTGGCACTAGAGACGG 
Gapdh (old) FWD TGAACGGAAAGTCACTGG 
  REV TCCACCACCCTGTTGCTGTA 
Gadph FWD GCCCTTGAGCTAGGACTGG 
  REV TACGGGACGAGGCTGGC 
Hexb FWD CGACCACAGTCCCAATTCCA 
  REV TGTAATATCGCCGAAACGCCT 
Ier2 FWD GTCCCTTCCTTGGCTTGGAG 
  REV GTCTGTCCCATGACGCAAACT 
Jun FWD GCACATCACCACTACACCGA 
  REV GGGAAGCGTGTTCTGGCTAT 
P2ry12 FWD CAAGGGGTGGCATCTACCTG 
  REV AGCCTTGAGTGTTTCTGTAGGG 
Tmem119 FWD CTTCACCCAGAGCTGGTTCC 
  REV GTGACACACAGTAGGCCACC 
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8.3 Reagents 

Supplementary Table 21: Reagents used in this work. 

Item Catalogue 
number: Producer 

1-Bromo-3-Chloropropane B9673-200ML Sigma-Aldrich 
2-Propanol I9516-500ML Sigma-Aldrich 

Actinomycin D A1410-2MG Sigma Aldrich 
Adult Brain Dissociation Kit, mouse and rat 130-107-677 Miltenyi Biotec 

Agencourt, AMPure XP, 5 mL A63880 Beckman Coulter Life 
Sciences 

BSA, Molecular Biology Grade B9000S New England Biolabs 
Debris Removal Solution 130-109-398 Miltenyi Biotec 

Distilled water 15230162 Thermo Fisher 
DMEM, high glucose, GlutaMAX™ Supplement 61965-059 Thermo Fisher 

DNAse I 11284932001 Sigma Aldrich 
DSP (Lomant's reagent) 22586 Thermo Fisher 
DTT (1,4-Dithiothreitol) 10197777001 Sigma Aldrich 

EDTA (0.5 M), pH 8.0 - RNase-free AM9260G Thermo Fisher 

Ethanol, BioUltra 51976-
500ML-F Sigma-Aldrich 

Gibco HBSS 10X without Calcium, Magnesium, Phenol Red 1535678 Fisher Scientific 
Guava instrument cleaning fluid (ICF) 4200-0140 Merck, Luminex 

HBSS (10X) - calcium, magnesium, no phenol red 14065056 Thermo Fisher 
HBSS (10X) with calcium and magnesium, no phenol red 12519069 Fisher Scientific 

High sensitivity DNA kit 5067-4626 Agilent Technologies 
iScript cDNA Synthesis Kit 1708891 BioRad 

KAPA library quantification kit 7960140001 Roche 
KAPA SYBR® FAST KK4600 Sigma Aldrich 

Maxima H Minus Reverse Transcriptase (200 U/µL)  EP0752 Thermo Fisher 
Myelin Removal Beads II, h&m&r, 4 ml 130-096-733 Miltenyi Biotec 

Neural Tissue Dissociation Kit (P) 130-092-628 Miltenyi Biotec 
Nuclease-free water 129114 Qiagen 

OptiPrep™ Density Gradient Medium D1556-250ML Sigma Aldrich 
PBS (10X) without Calcium, Magnesium, Phenol Red (pH 7.4) 70011044 Thermo Fisher 

Primers Sigma-Aldrich VC00021 
RNeasy Plus Micro Kit (50) 74034 Qiagen 

SSC Buffer 20x Concentrate, Saline-Sodium Citrate buffer, made with 
ultrapure water S6639-1L Scientific Laboratory 

Supplies 
TE Buffer  10 mM Tris-HCl (pH 8.0) 0.1 mM EDTA 12090015 Thermo Fisher 

Tris EDTA buffer solution 93283-500mL Sigma Aldrich 
UltraPure™ DNase/RNase-Free Distilled Water 10977035 Thermo Fisher 

Footnote: Tabulation of reagents in this study, detailing the item identifier, catalogue number and producer.



212 

8.4 General materials 

Supplementary Table 22: General materials used in this study. 

Item Catalogue number: Producer 

BD Plastipak 1 mL Hypodermic Syringe 303172 Premier Healthcare and 
Hygiene, Ltd 

BRAND counting chamber BLAUBRAND® Neubauer improved BR717820-1EA Merck 
Butterfly Needle Infusion Set 23G Short (Green) H9P30010014 Hillside Medical 

C-Chip disposable Hemocytometer/ Fuchs-Rosenthal-Box of 5 DHC-F01 NanoEnTek 
Corning cell strainer pore size 40 μm, blue, sterile CLS431750 Sigma Aldrich 
Corning cell strainer pore size 70 μm, white, sterile CLS431751 Sigma Aldrich 

Cupped disposable dust mask EN149:2001+A1:2009 FFP3 
(NR) Thorite Direct 

DNA LoBind® Tubes, DNA LoBind®, 1.5 mL, PCR clean, colorless, 250 tubes 
(5 bags × 50 tubes)  30108051 Eppendorf 

DNA LoBind® Tubes, DNA LoBind®, 2.0 mL, PCR clean, colorless, 250 tubes 
(5 bags × 50 tubes) 30108078 Eppendorf 

Laboratory coat, Howie style 113-8218 VWR 
LD Columns 130-042-901 Miltenyi Biotec 

LS+ Positive Selection Columns 130-042-031 Miltenyi Biotec 
NextSeq 500/550 High Output Kit v2.5 (75 Cycles) 20024906 Illumina 

Pipetman L 4-pipette kit F167370 Gilson 
QuadroMACS separator 130-090-976 Miltenyi Biotec 

Sterile cell strainer 70μM (white) 22-363-548 Fisher Scientific 
Footnote: Tabulation of reagents in this study, detailing the item identifier, catalogue number and producer.
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