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cell RNA sequencing

by
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Microglia are parenchymal macrophages that find their origin in the early embryonic yolk sac. These
myeloid cells migrate to and take residency in the central nervous system (CNS), in which they are
transcriptionally heterogenous in a context-dependent manner. Many microglial states and
subtypes have been described by single-cell RNA sequencing (scRNA-seq), vastly accelerating
knowledge of microglial biology; yet it is currently unknown how adult microglial heterogeneity

emerges, or what regulons drive differentiation.

Here, an atlas of transcriptional heterogeneity across the murine lifespan was developed,
identifying 7 major myeloid subtypes in the CNS, one of which features an equivalent in human
gestation. The occurrence of ex vivo-activated microglia (exAM) was also confirmed, a microglial
state affected by cell isolation. In the present study it has been observed that standard scRNA-seq
procedures introduce these effects, and that transcriptional inhibition is an effective means to their
mitigation. This adaptation was implemented in a novel scRNA-seq protocol, generating a dataset
in sexually immature microglia (SIM), a key developmental age for the acquisition of a mature

microglial identity.

Age was the main driver of microglial heterogeneity, albeit some evidence of sex-specific effects
was also noted. Consequentially, male and female microglia display differential population
dynamics, whereby age-associated subtypes emerge earlier in female mice. Furthermore, subtype-
specific regulons in the female cortex were identified, offering novels ways to target and modify
age-associated disease. To my knowledge, this study is the first that details microglial heterogeneity
in health in a large-scale atlas, and the population dynamics that give rise to age-associated

microglial heterogeneity.



Table of Contents

TaDIE OF CONTENTS ..eeeiiiieetiee ettt et et st e e s bt e s ar e e s bt e e s ambeesneeesnbeeesnreesneeesanreens 4
1T o] Lo 1T ={ U T PSRRI 11
TabIE OFf tADIES .. et re e nanes 16
Contributions tO the theSis..........ii i s 17
Declaration of @UENOISNIP .....uviiiiiiee e e e e e e e e re e e e e e aaaeeean 18
ACKNOWIEBAZEMENTES ...t e e e e e e e e e e s s et e r e e e e eeaaeesesssssssssasaeeaaaeeeesnannsnes 19
Definitions and abbreviations ...........c.eeo i e 20
(@0 =Y o =T g R T oY e Yo [¥ ot o o USRS 23
1.1 Yolk sac-derived myeloid progenitors and in vivo lineage tracing ..........cccccccvvvveeeeeeennn. 23
1.2 Developmental differentiation of myeloid cellS........cooeiiiieiiiiiiiiieee e, 24
1.2.1 Hoxb8 and non-Hoxb8 lineage microglia.........ccceeveiieeeiieciieii e 25
1.2.2 Transplantation studies and lineage commitment........cccceeiivciiiieiiccieee e 27
1.2.3 Microglial specification and transforming growth factor-B.........cccccoceevvvvevceeennnnn. 28

1.3 Microglial heterogeneity: context-dependent regulation..........ccccceeeeeiiiiicciciiiieeeeneeen, 30
1.3.1 Cycling and proliferating Microglia......ccccoccueeiiiiiiiiii i 31
1.3.2 Microglial sensome and age-specific heterogeneity .......ccccceevvciveeiiicciee e, 31
133 Region-dependent heterogeneity and maturation .........ccccceevvciieiiiiiiiieiiiiciieee s 34
1.3.4 Sex-specific microglial heterogeneity and disease susceptibility .......ccccoocvvevernnnneen. 37

1.4 Single-cell tEChNOIOGIES ........uuiiiiiiiee e r e e e e e e e e e e ennnes 38
141 Single-cell (and single-nuclei) RNA-SEQUENCING.......ceevveeeeiieeriee e esee e 38

1.5 HYPOThESIS @Nd @IMS ..eeiiiiiiiii e e e e e e e e e e n e aeeeeaaeeeeas 41
Chapter 2 General MethOdOIOZIES ....cuvieiiieeeeee e e e e e e e 42
2.1 ANIMAIS et e e s s et e e e s e e b et e s be e e s are e e s reeesanes 42



2.2 Anaesthesia and PEerfuSION ........ooo e 42

2.3 Tissue harvesting and diSSECLION ..........uviiiiiiiieii e 43
2.4 Y/ [Tl goY=4 [T Y I o] F= 4 o o VU UUURRt 43
24.1 TiSSUE diSSOCIAtION ..eiiiiiiiiiieeie ettt e 43
2.4.2 Purification of single-cell suspensions: removal of myelin and cell debris.............. 45

2.4.3 Characterisation and enrichment of microglia: magnetic- and fluorescence-

Lo u )Y (=To I ol=] LYo T [ oY - SRR 46
2.5 Drop-seq — Experimental Pipeling ... 49
2.6 High-performance COMPULING......cciii it e e e e e e e e e e annnes 51
2.7 R AN RSEUAIO ..ttt ettt e et e e s e b e e s are e s emreeesanee s 52

2.7.1 Y= 10T - | OO P PO PPRSRPPRRRRO 52

2.7.2 Data and code accessibility ........euiiviiiiiiiiie 57

Chapter 3  Single-cell atlas of microglial heterogeneity in the healthy CNS............cccovviveeeenennnn. 58
3.1 INEFOAUCTION ..ttt e b e e sar e e e amreeesanee s 58

3.1.1 Microglial heterogeneity — representation across the lifespan........cccccovccveeeennnen. 58

3.1.2 Trajectory inference and pseUdOtiMING........ccoovviiiiiiiiiie e 59
3.2 FAN 10 0 1Y Ve I o] o T =Tt AT SRR 61
33 Materials and METhOOS . .....cooouii e 61

3.3.1 Dataset ACQUISTTION c.eiiiiieiee ettt e e e e e s et e e e e e e e eenas 62

3.3.2 TraJeCtory @NalYSIS .ueeiiiiuiiiii it abees 64
34 RESUIES ..ttt et e e st e et e e s e e e st e s eab e e s are e e anreeenaree s 64

3.4.1 Murine single-cell atlas quality and cluster stability........ccccoevveeiiiiiiieiiinee e, 64

3.4.2 Transcriptomic heterogeneity of microglia in the murine lifespan........cccccceeeenneen. 68

3.4.3 Age-specific effects on microglial population dynamics........cccceecvieviiiiiiieeincnnennnn. 86

3.4.4 No overt region-specific signatures were detected........cccceevveeeiiriieeiiiniciee e, 89



3.4.5 Microglial maturation and sex-specific heterogeneity.......cccccocvveeiiriiiieeiiiiiienennnns 90

3.5 DISCUSSION .ttt ettt ettt ettt e e s et e e e e s b e e e smbe e e e e saneeeeessamreeeessanreneeesanne 95
3.5.1 Technical limitations on biological heterogeneity.......cccococveeiivcvieiiiicciieeiciieee s 96
3.5.2 DAM, PAM and ATM are collectively described by a common gene signature....... 97
3.5.3 Age-dependent microglial heterogeneity and population dynamics..........c........... 98
3.54 No regional heterogeneity was detected in the atlas ........ccccovcvveeiiiiiieeiiiciieenns 99
3.5.5 Microglial heterogeneity during sexual maturation is understudied.................... 101
3.5.6 SUMIMAIY ettt e ettt e e e e e e s e s bbb ettt e e eeeeeessasnnbbbaeeeeeeeeesasaannnsnreeaeeeas 102

3.6 Y0 o] o1 (=T 0 V=T o = | VA o=V U UUPPR 103

Chapter 4 Drop-seq platform performance and pilot of cortical microglia ............cceccuuvrnnnneeen. 122
4.1.2 Characteristics of Drop-seq microfluidics and cellular diversity.......ccccccoceveennnneen. 123
4.1.3 Limitations of Drop-seq: technical and biological noise.......cccccccvveiiiviiieeeiiiinenenn. 124
4.1.4 Single-cell isolation — a review of methods .........ccceeeeiiiiiciiiiiii e, 126

4.2 AIMS AN ODJECHIVES...eiiiie et e e e e e e e e e e s aarrrreeaeeaaaaeeean 128

4.3 IMEEEROMAS .t e e st e s e e nr e s enre e e naree s 128
43.1 Animals and single-cell iISolation .........cccvveciiiii i 128
4.3.2 Flow cytometry — microglial enrichment..........cooivviiiiiiinciieeeee e 128
4.3.3 Drop-seq — droplet microfluidics and single-cell library generation ..................... 129
434 PCR and Library Preparation.......cc..eeciecieieeeiciiiiesesieeeessciieee s ssireee s sseneeeesssnnneee s 129
4.3.5 Next Generation SEQUENCING.......ccuueiiiiieiee ettt e e e e e e e e 130
4.3.6 High-performance computing - IRIDIS and raw data processing.........ccccceceveuvveennnn 130
4.3.7 Seurat and quality CONTIOL........oiiiiiiiiii e 130

4.4 RESUIES ... sttt e e e s e st e e e s b e e sare e s anreeenareeas 130
44.1 Mixed species experiments and Drop-seq platform performance.........ccccccuuueee... 131
4.4.2 SCRNA-seq and ambient RNA... ..o 131



4.4.3 Sequencing saturation is NOt reached.........ccccvviiiiiiiiiiiiiie e 133

44.4 Cell quality parameters and quality control.......cccccvveiiiiiiieeiiniiiie e 133
4.4.5 Linear dimension reduction and principal component determination.................. 135
4.4.6 Cluster identification of myeloid cells: microglia, CNS-associated macrophages and
exAM 135
4.4.7 Principal component selection and clustering......ccccoccveveivicieeiivniiien e, 139
4.5 DTy o{ U 1] o o ISP PRSPPI 140
45.1 SUPPIEMENTANY FIGUIES ...iieiiiee et e e s s araeeeeas 142
Chapter 5 Technical artefacts and scRNA-seq: cell isolation and ex vivo gene signatures......... 144
5.1 Single cell isolation and single-cell RNA-SEQUENCING ...cccvveeieeecciiiiiiieeee e, 144
5.1.1 Ex vivo cellular activation and SCRNA-SEQ .......uvireiriiiiiieiiiieee et eerreee e siaeee e 144
5.1.2 Enzymatic cell isolation and digestion temperature......ccccocveevivniiieneenceee e, 145
5.1.3 Mechanical dissociation ProtoCols.......c.cccvueiiiiiiiiiii i 146
5.2 Transcriptional and translation inhibition and SCRNA-S€q.........ccceeceviriiieereeeeee e 147
5.2.1 Combinatorial inhibition of ex vivo artefacts inthe CNS ..........ccccooiiiiiiiiiienenee. 147
5.2.2 Transcriptional inhibition with actinomycin D.........ooccveviiiiiiiiiiicc e, 148
5.2.3 Weighted benefits: transcriptional inhibition, microglial enrichment, and RNA
decay 149
5.3 Chemical fixation and single-cell (library) Metrics .......coccoeeeeiiciiiiiccciee e, 150
54 R U100 0 = V2N 150
5.5 AIMS AN ODJECLIVES ...ttt e e e e e e e e e et raaeeeeeeaeeeeeeannnnnes 151
5.6 V=1 g oo [PV R PRTTOPORO 153
5.6.1 Direct comparison of MACS and FACS ........ooiiiiiiiieenieee ettt 153
5.6.2 Culture of a microglial Cell INE.......coiiviiiiiii e 154
5.6.3 Chemical fIXaTioN.....c.eeiiiee e e 154
5.7 RESUIES ..ttt e e bt e e e sab e e s n e e e senb e e e snr e e sneeeennns 155



5.7.1 Chemical fixation reduces recovery and alters population characteristics............ 155

5.7.2 MACS-mediated enrichment is fast and mitigates ex vivo signatures................... 157
5.7.3 Lowered microglial recovery with increased purity ........ccccccvvviiieeeinicieeeiiiiieeenn, 160
5.7.4 Microglial recovery is largest in standard dissociation conditions.........ccccecuue... 162
5.7.5 Mechanical dissociation and transcriptional inhibition reduce ex vivo signatures 164
5.8 Removal of exAM with ActD in SCRNA-SEQ......cccccuiriiiiiiiee e e 165
5.8.1 Cell quality is lower in exAM-treated cells .......cccvviiiriiiiiiiiiiee e 165
5.8.2 ActD treatment mitigates the introduction of an exAM signature ..........ccccceeene 167
5.9 BTy o{ U 1] o o [PPSR 168
5.9.1 Loss of cells with chemical fixation and future implementations ..........ccceeuvveeen. 169
5.9.2 MACS is favoured for droplet-based SCRNA-SEQ ......uvevvrrcirireiriiieee e srieeeenn 169
5.9.3 Gradient centrifugation displays elevated purity and lowered yield .................... 170
5.9.4 Dissociation method, recovery, viability, and ex vivo signatures............cccoeeuvveen.. 171
5.9.5 SUMIMAIY ettt e e ettt e e e e e e s e s b ettt teeeeeeeeesaassnbbbeeeeeeeeeesasaannnssreneaeeas 173
5.10 Supplementary figures and tables...........ccuuiiiiiiii i 174
Chapter 6 Female gene regulatory networks in health and disease..........ccccccceeeeeeeeeicciniiinnnen. 176
6.1 TadgeTe [V 4 To] o HAR T TPV PPR PSR 176
6.1.1 Sex-specific microglial heterogeneity......cccccvevveiieiiiiecie e 176
6.1.2 Gene regulatory networks inference and cluStering .....ccccoecveeeievcieeeevicieee e, 178
6.2 AIMS AN ODJECHIVES...eiiiie et e e e e e e e e e s s b raeeaeeaaaeeeean 180
6.3 Materials and MEeThOdS .......eei i 180
6.3.1 Dataset ACQUISTTION.......uiiiiiiiiiei ettt e e e e e e e e e e e e e e e s annee 180
6.3.2 SEUrat aNd METASCAPE. .. citii ittt et e et e e e e sree e e e s sbee e e s snabeeas 181
6.3.3 SCENIC <ttt ettt e s bt e e b e e s me e e e sab e e e nreesanbeeesareeeanreeesareeas 181
6.4 RESUIES ...ttt e e s e e s e st e e e e b e e s ar e e s anreeenaree s 181



6.4.1 Transcriptomic heterogeneity of microglia in the murine lifespan........cccccoeeuneee. 181

6.4.2 SIM and the dynamic acquisition of a homeostatic microglial signature .............. 182
6.4.3 Age-associated microglia and EENOLYPE .....ccevvviiiiiriiiiee e 183
6.4.4 Microglial population dynamics and amyloidosis.......ccccvevvrcieeiiiniiieneencieee e, 186
6.4.5 Gene regulatory networks identify disease-like microglia regulons...........c.......... 187
6.5 DTy o{ U 1] o o ISP P RSP 190
6.5.1 Generation of a small-scale female-specific microglial atlas .........cccoecvvveeviinennn. 190
6.5.2 Transition to a mature microglial phenotype ......ccccveveeiiiiciei e, 191
6.5.3 Early emergence of age-associated microglial subtypes with amyloidosis............ 191
6.5.4 Bhlhe40 and Irf7 as potential therapeutic targets for Alzheimer’s disease........... 192
6.5.5 SUMIMAIY cetttiteeeee ettt et e e e e e e ettt eeeeeeeesaaanbeebeeeeeeeeeseasannnssbeeeeeaeesssssannnnnnee 193
6.6 Supplementary Figures and Tables ... 194
Chapter 7  General diSCUSSION ...c..ciiiciiieieeee ettt e e e e e e e e e e e e e e e e e e s e e anbrsaeeeeeaaaeeeens 199
7.1 Review of Main fINdINGS .........uueiiiiiii e e e e e e e aeeees 199
7.1.1 Seven major myeloid subtypes are observed in the CNS during the murine lifespan.
199

7.1.2 Transcriptional and regulon heterogeneity .......cccccevvevveei e, 202
7.1.3 SCRNA-seq and technical artefacts.......cccvvviieciiiiiiiiiiie e 203
7.2 U 0L oY= 8 oY= ot o V7= 205
7.2.1 Spatial transcriptomics and in situ hybridization ........cccccoveeiiiiiiiiniee, 205
7.2.2 IVIUTEI=OIMICS ettt ettt e s e s e e s ne e e sneeesreeesannee s 205
7.2.3 Epigenetics and microglial heterogeneity.....cccoccveveivccieie i, 206
7.2.4 Animal modelling and translational medicing ........cccccveievriiieiiinccie e, 208
(010 =Y o =T S Y o o 1T o Vo L USSR 209
8.1 Antibodies used for flow CytOMEtry ..........eeeeiiiiii i, 209



8.2 o T8 0= Y=Y LU= Lol T
8.3 T =T o £
8.4 GENEral MAtErIAlS .oeviiieiiiie et e e e e enees

Chapter9 References

10



Table of figures

Figure 1: Developmental colonization of the CNS by microglia......ccccccooeeeicciiiiiieeee e, 26
Figure 2: Microglial specification in the developing CNS. .........cciieiieee e 29

Figure 3: Core macrophage profile and transforming growth factor-f -induced gene expression. 30

Figure 4: Age-dependent molecular mechanisms of microglia.. .....ccccccoooveiiiiiiiiee e, 33
Figure 5 Timeline of novel single-cell technologies.. ........coocciiiiiiiiiii e, 40
Figure 6: Transcardial PerfUSION.. ......ueiiiii i e e e e e e e e e e e arerraeeeee s 42
Figure 7: Tissue harvesting and disSECHION.. .........uviiiiiiii i 43
Figure 8: Trituration series for tissue disSOCIation......cccccceeeeeciiiiiiiiir e 44
Figure 9: Schematic of fluorescence and magnetic-activated cell sorting workflow....................... 46
Figure 10: Gating scheme for the identification of microglia.. .....ccccceeeeiiiiiiciiii e, 48
Figure 11: Direct comparison of single-cell gating approaches.. .....ccccccoeevecciiiiiiieeee e, 48
Figure 12: Flow cytometric identification of microglia with canonical markers..........cccccccvvnneneeeen. 49
Figure 13: Back gating of EGFP-positive cells highlights limitations to Macgreen mice.. ................ 49
Figure 14: Drop-seq experimental Pipeline.. .......cuveeeeiiii i 50
Figure 15: Drop-seq computational pipeline.. ........ueeeeiii oo 52
Figure 16: Standard Seurat pipeline for SCRNA-seq analysis.. .....ccccceveeeeeiiicciiiiiiieeeee e, 53
Figure 17: Representative application of MAD across QC parameters........cccovvveeeeeeeeeeeeeeccvvnvennnenn. 55
Figure 18: Trajectory iNference tYPeS.. oot e e e e rae e e s 60
Figure 19: Overview of bioinformatic pipeline for analysis of microglial scRNA-seq datasets........ 62
Figure 20: QC of integration single-cell atlas.. ........eeeeeiiie oo 65
Figure 21: Determination of dimensionality..........ccccceeiiiie e 66
Figure 22: Principal component analysis. ......cccccuiiiiiiiieee et ee e eeccrere e e e e e e e e aae e e ee e 66
Figure 23: Determination of cluster resolution.. .......ccccoi oo 67

11



Figure 24: Linear dimensionality and cluster identification parameters.......ccccccceeeecciiiiieeeeeeeeennn. 68

Figure 25: General microglial heterogeneity during the murine lifespan. .......cccccooeecciiviieeeennennnn. 69
Figure 26: Neutrophil marker expression in the atlas.........ccccceeei i, 70
Figure 27: Neutrophil gene markers are enriched in cluster 14...........cccovveeeiieeei e, 71
Figure 28: Monocyte-like signatures are NON-selectiVe.. .......ceveveiiieeccciiiiiiieeee e 72
Figure 29:CNS-associated macrophages are present in the single-cell atlas.. ........cccccoovviveeeennnnnn. 73
Figure 30: Identification Of @XAM.. ... e e e e e e e e eaeeaaaaeeean 74
Figure 31: Age as a driver of microglial heterogeneity.........ccccceeeeeeeccciiiiiiiee e, 75

Figure 32: Transcriptional distinction between early developmental microglia and postnatal

00N VTl g 1T oY= = U SEPRR 76

Figure 33: Cluster-specific gene expression and age group distribution in the single-cell atlas.. ... 77

Figure 34: Transcriptional overlap between disease-, proliferative region- and axon tract-

Yo ol =1 =T I 4 0 ol o7 ={ [ - TS SRR 78

Figure 35: Phagocytic microglia display a mixed transcriptional signature and are evident

10 0] oYU =4 o To YU N 1 1S PEUPRRRS 79
Figure 36: Enrichment of AD risk factors in early development...........cccovvveeeeeeiiiiccccciiieeeeeee e, 80
Figure 37: Microglial proliferation in the murine lifespan.. .....ccccccooeeeciiiiiie e, 81
Figure 38: Cycling and proliferating myeloid cells in human gestation........cccccccooeiiiiiiiiiieennnennn, 82
Figure 39: Metascape analysis of conserved CPM markers. .......coooeeccciiiiiiiieee e ee e, 82
Figure 40: Homeostatic microglial identity corresponds to the sensome signature..........cc.......... 83
Figure 41: Homeostatic gene expression throughout life.. ......cccccooeeecciiiiiiiee e, 84
Figure 42: Homeostatic gene expression in the single-cell atlas.........cccccovveeeeeeiiiiiiccciiiiieeeeee e, 84
Figure 43: Microglial maturation and canonical marker expression.........ccccccceeeeeeeeecccinviieeeeeeeeenn, 85
Figure 44: Interferon response microglia in the single-cell atlas.. .......ccccovvveeeieiiiiiiiiciieeeeeeee, 86
Figure 45: Age group-dependent cluster distribution and annotation.. ......cccccccoeieeiciiiiieennnnnnn. 87
Figure 46: Homeostatic clusters display a higher pseudotime score. .......ccccccveeeeeieiicciiiiieieeeeeeeenn, 88

12



Figure 47:

Figure 48:

Figure 49:

Figure 50:

Figure 51:

Figure 52:

Figure 53:

Figure 54:

Figure 55:

Figure 56:

Figure 57:

Figure 58:

Figure 59:

Figure 60:

Figure 61:

Figure 62:

Figure 63:

Figure 64:

Figure 65:

Figure 66:

Figure 67:

Figure 68:

Figure 69:

Figure 70:

Figure 71:

Regional cluster ideNtities......uuuiiiiii ittt e e e e e e e e enaees 89

Sex is distributed unevenly across the cluster identities.. .......cccccveeeiiiieeccciiiiiieeeeee e, 91
Microglial maturation varies in a sex-specific manner.. ......cccccceee i, 92
Sex-specific differentially expressed genes in Sroup ages.. ...ccovveeeeeeeeeeeecccinnnneeeeeseeeeenn. 93
Protein-protein interaction network and gene enrichment of adult microglia. ............. 93
Sex-specific population dynamics across the lifespan.. .......cccooeeeeeeeiiiiiicciiiiiiieeeeee e, 94
Population dynamics of HOM-clusters in a sex-specific manner..........ccccccceveeeeeeeeeccnnn, 95
Hypothetical model of sex-specific early and late life disease susceptibility.. ............. 102
SCRNA-seq platform compPariSONS. . .......eeiiii i e e e 122
Drop-seq barcoding schematic for single-cell microglial transcriptomes..................... 123
Poisson distribution and droplet 0CCUPaNCY.......cooeeeiiiiiiiiiee e 124
Schematic of particle co-encapsulation.. ..., 124
Diagrammatic representation of microglial isolation.. .......cccccceoeviiciiiiiieeieie e 126
Spectral view of Macgreen SOrting.. ... 129
Typical mixed-species experiment characteristics......cccccveeeviieiciiiiiiiieeee e, 131
Cumulative fraction of mapped reads. ........ccouveeeeeeii i 133
Sequencing saturation @aNalysis........eeeeei e 133
Cell quality metrics of the microglial pilot data.. .......ccoooeciiiiiieee e, 134
Dimensionality in the pilot data..........cccoiiiiiieii e, 135
Canonical microglial marker expression in cortical microglia clusters.........ccccceeeenen. 136
CAM in CSFAr-EGFP* SOrted CellS.. ..ooouiiiieiiiiiieete et 136
Detection of exAM-like signatures with standard experimental procedures............... 137
Progressive enrichment of the IEG gene module in the pilot data........cccccceeeriennnnnis 139
Biological markers and PC-dependent clUStering.. ......cccouveeeeeeeiiiiicciiiiiieeee e 140
Molecular structure of ACtinOMYCIN D.......oeeiiiiiiiiiiiicieeeeee e e e 148



Figure 72:

Figure 73:

Figure 74:

Figure 75:

Figure 76:

Figure 77:

Figure 78:

Figure 79:

Drop-seq workflow for murine microglia.. ......ccccoiiiveeiiiii e, 153

Chemical fixation and SCRNA-SEQ.. ...uuurriiiiieeeieicccciriere e e e e e e e e e e e nerreaeee e 155
Flow cytometry of cultured microglia in fresh and fixed conditions...............ccuuueeee. 155
Comparison of morphological features in fresh and fixed microglial cells................... 156
Chemical fixation and Cell rECOVEIY.....uuuiiiiii i 156
Enrichment strategy and SCRNA-SEQ.. ..cceieiiieiieciiiiiiee e e e e ree e e 157
MACS-isolated cells display reduced mitochondrial activity.........ccccceeeeeiiiiiccnininnnnnn. 158
MACS-mediated microglial r@COVEIY.....ouiii i 159

Figure 80: Competitive antagonism of Cd11b microbeads and the flow cytometric detection of

(60 11 1 o T O O O P RTUPTPRTUPRUPPRTURRRPRON 159
Figure 81:Purification methods of SCRNA-SEQ........ccceciiiiiiiiiieee e rr e e e e e 160
Figure 82: Purification method-dependent microglial population characteristics.........cccceee....... 161
Figure 83: Beads-dependent purification doubles microglial recovery.. ...ccccccceeeeeecciiiiieeeeeeeennn. 162
Figure 84: Dissociation strategies in SCRNA-SEQ.......cciiiiiiiiriiiiiiiiii e rrrrrres e s e e e e e e s e e e e e e e e e eeeeeeeeeees 162
Figure 85: Standard dissociation recovers microglia most effectively.. ....cccccccorveiiiniinnnnnnnnnnn. 163
Figure 86: Viability of cells in distinct cell isolation protocols..........ccccoviiieiiieeeiiiicccceeeeee e, 163
Figure 87: Early-response genes and dissociation method............cccccoiiiieiiiii e, 165
Figure 88: Single-cell suspension qualities differ between standard- and ActD-isolated microglia. 7.
....................................................................................................................................................... 166
Figure 89: Transcriptional heterogeneity of identified clusters. ........cccooveeeeeieiiiiiicciiireeeee e, 167
Figure 90: exAM are enriched in standard-isolated cells.. ........ccoovreiiiiiiii e, 168
Figure 91: Hormonal levels and microglial selection..........cccceeeeeiie i 177
Figure 92: SCENIC WOTKFIOW.. .uveiiiiieie et e e e e e e e e ra e e e e e aaeeeeean 179
Figure 93: Cluster identification in female, cortical microglia in health and disease.................... 182
Figure 94: Homeostatic gene acquisition in SIM.. ........ooriiiiiriiiiiiiccrrrrree e e e e e e e e e eeeeees 183
Figure 95: SIM are featured by morphological and migratory genes........cccccceeeeiveecciiiiieeeeeeeeeenn. 183

14



Figure 96: Age-associated microglial subtypes in health and disease. ........ccccccveeeeeiiiicccciiiinnnnnn. 184

Figure 97: Female cortical microglial maturation and genotype. ......ccccooecvviiiieeieee e, 184

Figure 98: Not all age-associated microglial subtypes display an age- and genotype-specific

variability in @XPression IBVEL ...t e e e e e e e 185
Figure 99: LPM, AD-associated risk factors, age, and genotype.. .ccccccceeeeeccriiiieeee e, 185
Figure 100: Temporal population dynamics of WT- and APPN“¢F-derived microglia. ................... 186
Figure 101: Canonical microglial regulons lack age- or genotype-specific heterogeneity............. 187
Figure 102: Transcription factor enrichment in an age- and cluster-specific manner................... 188
Figure 103: Transcriptional overlap of microglial regulons in cortical microglia. ...........cccuuveeee.e. 189
Figure 104: Graphical abstract of microglial heterogeneity in the murine lifespan.. .................... 199

15



Table of tables

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

16

Single-cell categories and teChNOIOZIES. ....ceevveii i 38
Transcriptional signatures of known microglial subtypes. ......ccccceeeiieiiiiiiiiiee e, 59
Features of scRNA-seq datasets in the murine single-cell atlas. .......ccccveeeeeeiieniiicnninnnen. 63
Features of scRNA-seq datasets in the human single-cell atlas........cccccveveeeeiieniiiinnnnnnen. 63
Review Of SCRNA-SEQ PrOCEAUIES. .....coiiiiiieeeee e e eeeecctrrree e e e e e e e e s eescnt e e e e e e e e e e eeeeennnnns 127
Immediate early gene module characterization............ccccoveeiiiiiii i, 138
scRNA-seq studies utilizing transcriptional inhibition. ...........cccoocieiiiiinccceeee e, 152
Region-dependent FACS-mediated recovery times.........ccoeeeeeeeeiiicccciiniieeeee e 157
Features of scRNA-seq datasets in the small-scale female atlas. ........cccovveeeeeeiiiiiennnnn, 180



Contributions to the thesis

Herewith, | would like to acknowledge and thank those who made a scientific contribution to this
body of work.

Chapter 3: Lyla Rowe, MSc, who performed the quality control and integration of the large-scale
atlas, and the associated Monocle analysis.

Chapter 4: Rachel Green and Matthew J. Rose-Zerilli, PhD, for their assistance with Dropseq and
mixed-species experiments.

Chapter 5: Lucy Kimbley, Joshua Grant, and Matthew J. Rose-Zerilli, PhD, for their assistance with
the Drop-seq experiment.

17



Declaration of authorship

Print name: Tim Arno Othni Muntslag

Title of thesis: Characterization of microglial heterogeneity in the CNS by single-cell RNA

sequencing

| declare that this thesis and the work presented in it is my own and has been generated by me as
the result of my own original research.

In confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at this
University;

2. Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated;

3. Where | have consulted the published work of others, this is always clearly attributed;

4. Where | have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

5. | have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, | have made clear
exactly what was done by others and what | have contributed myself;

7. Parts of this work have been published as:

Hu, Yanling, Gemma L. Fryatt, Mohammadmersad Ghorbani, Juliane Obst, David A. Menassa, Maria
Martin-Estebane, Tim A. O. Muntslag, et al. ‘Replicative Senescence Dictates the Emergence of
Disease-Associated Microglia and Contributes to AB Pathology’. Cell Reports 35, no. 10 (8 June
2021): 109228. https://doi.org/10.1016/j.celrep.2021.109228.

Menassa, David A., Tim A. O. Muntslag, Maria Martin-Estebané, Liam Barry-Carroll, Mark A. Chapman,
Istvan Adorjan, Teadora Tyler, et al. ‘The Spatiotemporal Dynamics of Microglia across the Human
Lifespan’. Developmental Cell 57, no. 17 (12 September 2022): 2127-2139.e6.
https://doi.org/10.1016/j.devcel.2022.07.015.

Signature: Date: 03/10/2022

18



Acknowledgements

A PhD Is never completed in isolation, it is the culmination of the shared efforts of a community.
Over the past years | have had the pleasure to meet people across England, each willing and able
to lend a hand. | learned a lot about myself over the course of the PhD: | have come to know and
trust my eye for science; appreciate the importance of consistency; and have learned to better cope

with my own shortcomings. Only now do | understand why a PhD is a Doctor of Philosophy.

To Diego, my main supervisor. | am grateful for the opportunity to have joined the lab. We did not
always align when we started on this project together; two people with a strong opinion and a
passion for science. However, in time, | learned to open to criticism from you, to accept your
teachings. | have become a better scientist and person for it, and | am fortunate to have had you to
guide me. To Mat and Jonathan, my other supervisors. Thank you for your expertise, without which
this project would not have been developed. Thank you for keeping me on my toes, for your insight

and kindness.

To the MRC, IfLS and MDC, and all the people at the university to have helped me over the years.
Thank you for all your hard work and attention, | have had many opportunities | never expected to
be privy to. To Jessica, my unofficial mentor, thank you for your entrepreneurship, and the cups of

coffee. | value the bond that grew from that.

To the people in the lab that | shared most of my time with: Joe, Gemma, David. You each brought
a genuine connection that | sometimes missed while away from the Netherlands. You have become
family to me. Joe, for your humour, confidence and vulnerability, and for all the shared memories.
You have become like a brother. Gemma, for your openness and care, and for being a great mom
to Lucas. Not many of us has the care of a child alone, but you are mighty. David, for your
commitment to the field and your laughter. You have set a benchmark for what it means to be a

good scientist, and always knew how to bring light into a dark room.

To Monica, Georgie, and all the other team members and friends, past and present, thank you for
your ear when | needed it, and for coming to find me when you needed mine. Thank you for the
birthdays, cakes, and getaways. To Saskia and Michael, and Nico, thank you for all the friendship

and shared experiences we had these past years; here is to many more adventures.

To my partner, Serena, thank you for being there for me in the highs and lows, for making a home
with me where | feel safe, valued and needed. For the willingness to share your culture and family,
and for being part of mine. If a PhD gives me wisdom, you give me joy. To my family back home,

thank you for the support for as long as | can reminder. This degree is for all of us.

Thank you all for bringing such richness to my life.

19



Definitions and abbreviations

20

ActD
AD
ADHD
AE
Aifl
AlM
ALS
Aniso
ARM
AR
ATM
BAM
BM
BP
Ca
CAM
CB
CBM
CC
CCA
CH
CNS
Ccp
CPM
CRB
Csflr
CTX
Cx3cl1
Cx3crl
DAM
DC
DEG
DGE
DMEM
DRS
E
EDM
EM1
EM2
EMP
exAM
F
FACS
FB
FBS
FSC
GEO

actinomycin D
Alzheimer's disease
attention deficit hyperactivity disorder
ArrayExpress
Allograft inflammatory factor 1
aged inflammatory microglia
amyotrophic lateral sclerosis
anisomycin
activated response microglia
amyloid-R
axon tract-associated microglia
border-associated macrophages, Binary Alignment Map
bone marrow
BioProject
calcium
CNS-associated macropages
cerebellum
cerebellum
corpus callosum
Canonical Correlation Analysis
cerebrum
central nervous system
choroid plexus
cycling and proliferating microglia
cerebrum
colony stimulating factor 1 receptor
cortex
C-X3-C motif ligand 1 (fractalkine)
C-X3-C Motif Chemokine Receptor 1
disease-associated microglia
dendritic cell
differentially expressed genes
digital gene expression
Dulbecco’s Modified Eagle’s Medium
debris removal solution
embryonic day
early developmental microglia
enzyme mix 1
enzyme mix 2
erythromyeloid progenitors
ex vivo-activated microglia
female
fluorescence-activated cell sorting
forebrain
fetal bovine serum
forward scatter
Gene Expression Omnibus



GM
GM-CSF
GO
Gpr56
HDAC
HIP
HOM
Hoxb8
HPC
HPF
Ibal
IDE
IFN
IRM
KNN
LAM
LPM

MACS
MAD
MafB
MB
MdC
MDI
Mg
MGnd
MRBII
MS
MTDR
MO

N.A.
N/A
ND
NGS
NLDR
OCD
OLF
OPC

PAM
PC
PCA
PCR
PCW
PD
pMac
Pparg
Qc
RT

grey matter
granulocyte macrophage-colony stimulating factor
gene ontology
G protein-coupled receptor 56
histone deacetylase
hippocampus
homeostatic microglia
Homeobox B8
high performance computing
hippocampal formation
ionized calcium-binding adaptor molecule 1
integrated development environment
interferon
interferon response microglia
K-nearest neighbours
lipid-associated macrophages
lysosome pathway-associated microglia
months old, male
magnetic-activated cell sorting
median absolute deviation
Transcription Factor B
midbrain
monocyte-derived cells
microglial developmental index
magnesium
neurodegeneration-associated microglia
myelin removal beads Il
multiple sclerosis
Mitotracker Deep Red FM
early microglia
no
not available
not applicable
neurodegeneration
next generation sequencing
non-linear dimensionality reduction
obsessive-compulsive disorder
olfactory bulb
oligodendrocyte progenitor cells
postnatal day
proliferative region-associated microglia
principal component
principal component analysis
polymerase chain reaction
postconceptual week
Parkinson's disease
macrophage precursors
peroxisome proliferator-activated receptor gamma
quality control
room temperature

21



22

Runx1
Salll
SC
scRNA-seq
SD
SIM
SIP
snRNA-seq
SSC
STAMP
STR
Svz
sXxRNA-seq
TF
Tef-B
Tmem119
Tripto
TRM
TSM
tSNE
UMAP
uMlI
WAM
WB
WM
WT
Y
YS

runt-related transcription factor 1
Spalt-like transcription factor 1
spinal cord
single-cell RNA sequencing
standard deviation
sexually immature microglia
Stock Isotonic Percoll
single-nuclei RNA sequencing
side scatter
single-cell transcriptome attached to microparticles
striatum
subventricular zone
single-cell and single-nucleus RNA-sequencing
transcription factor
Transforming growth factor-p
Transmembrane protein 119
triptolide
transiting response microglia
tissue-specific macrophage
t-distributed stochastic neighbour embedding
uniform manifold approximation and projection
unique molecular identifiers
white matter-associated microglia
whole brain
white matter
wild type
yes
yolk sac



Chapter 1 Introduction

The homeostatic, central nervous system (CNS) immune environment is composed of a diverse
array of cells, among which CNS-associated macrophages (CAM) (10%), and microglia (~75%)
(Mrdjen et al., 2018). As the largest immune population, microglia are integral to CNS development,
homeostasis, and disease, due to their roles in neurogenesis, synaptic pruning and immune

surveillance, (Wolf et al., 2017).

Interestingly, microglia are a heterogeneous population in which select microglial subtypes respond
to various cues in different manners (Gertig and Hanisch, 2014). Since their first characterization in
1919 by Pio del Rio-Hortega, ‘the father of microglia’, single-cell technologies are rapidly detailing

this diversity and are revolutionizing the understanding and interpretation of microglial identity.

In this chapter | aim to introduce core concepts in microglial biology, from the yolk sac (YS)
progenitors and developmental ontogeny of microglia; to context-dependent heterogeneity;
single-cell technologies; and the hypothesis and aims, in which adult microglial diversity derives

from the maturation of and selection against early developmental subtypes.

1.1 Yolk sac-derived myeloid progenitors and in vivo lineage tracing

Between embryonic day (E)7.0 and E9.0, early haematopoiesis is localised to the extra-embryonic
YS (Ginhoux et al., 2010; Hoeffel et al., 2015). By E10.5, hematopoietic progenitors start to migrate
to the fetal liver, which will become the main hematopoietic organ after E11.5, before adult
haematopoiesis is localized to the spleen and bone marrow (BM) (Lichanska and Hume, 2000; Orkin
and Zon, 2008; Ginhoux et al., 2010; Hoeffel et al., 2015). The microglial population was thought to
derive from embryonic and postnatal hematopoietic cells. However, the blood-brain barrier closes
in early development and circulating monocytes do not make a lasting contribution to the
population (Ginhoux et al., 2010; Hashimoto et al., 2013; Bruttger et al., 2015; Askew et al., 2017;
Huang et al., 2018; Goldmann et al., 2016). In fact, microglial progenitors arise from primitive
myeloid progenitors in the YS, a cell type known as erythromyeloid progenitors (EMP) (Ginhoux et

al., 2010).

EMP generate all myeloid cells, with macrophages and microglia sharing developmental origins. In
vivo lineage tracing (i.e. fate-mapping studies) specified the origin of myeloid cells during early
haematopoiesis (E6.5 - E8), in which differentiation is typified by the expression of runt-related
transcription factor 1 (Runx1) (Ginhoux et al., 2010). Several key studies have since made use of the
Cre-lox system. The Cre-lox system relies on the introduction of Cre recombinase and loxP
sequences, to modify gene expression in a site-specific manner. In this way, the system has allowed

researchers to delineate the myeloid lineage, each localising progenitors to the YS (Ginhoux et al.,
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2010; Kierdorf et al., 2013; Hoeffel et al., 2015; Buttgereit et al., 2016; Sheng et al., 2015; Mass et
al., 2016). However, the developmental pathways causal to myeloid lineage differentiation have

been a source of debate.

1.2 Developmental differentiation of myeloid cells

Macrophages and microglia share an early developmental lineage and, consequentially, a core
macrophage transcriptional profile (Goldmann et al., 2016; Mass et al., 2016). Detailed profiling
marks a gradual transition from EMP to macrophages, with a profile that includes Csf1r, Cx3cr1 and

Ibal (Mass et al., 2016).

Csflr, or colony stimulating factor 1 receptor, mediates self-renewal and survival of macrophages
and microglia (Elmore et al., 2014; Hoeffel et al., 2015; Obst et al., 2017) - Csflr is encoded by the
c-fms proto-oncogene and is a widely accepted myeloid marker (Sasmono and Williams, 2012;
Elmore et al., 2014; Hoeffel et al., 2015). Cx3crl, or C-X3-C Motif Chemokine Receptor 1, is a protein
that is widely expressed in immune and non-immune cells, which mediates chemotaxis towards its
ligand fractalkine (i.e. C-X3-C motif ligand 1) (Cx3cl1) in a concentration gradient-dependent
manner (M. Lee et al., 2018). In turn, ionized calcium-binding adaptor molecule 1 (Ibal) is encoded
by Allograft inflammatory factor 1 (Aif1) and is a microglial and macrophage protein that interacts
with the actin cytoskeleton and mediates phagocytosis (Lituma et al., 2021; Schwabenland et al.,

2021) .

Two main myeloid developmental models have been put forth that address the origin of the
microglial population and their diversification from macrophages in mice. Hoeffel et al. (2015) made
a case for two parallel pathways of divergence for microglia and macrophages. In their model,
microglia derive from C-Kit* EMP at E7 and (peripheral) macrophages from C-Myb* EMP at E8.5
(Hoeffel et al., 2015). In contrast, Mass et al. (2016) argue that microglia and macrophages leave
the YS in a single developmental pathway (Mass et al., 2016). Here, at E8.5, YS EMP characterized
by Kit* Gatal/2* Cd45"" differentiate into macrophage precursors (pMac) (Kit' Cd45* Cx3cr1*) (Mass
etal., 2016). pMac first appear in the YS at E9.5, in which expression of Cx3crl mediates subsequent
tissue colonization throughout the embryo. Once in the parenchyma, pMac mature into (early)
macrophages from E10.25 onwards, giving rise to tissue-specific macrophages (TSM), including

CAM and microglia.

Of note, tissue-specific signatures were detected as early as E12.5, a developmental time-window
with widespread macrophage tissue colonisation (Mass et al., 2016). This has led Mass et al. (2016)
to propose that myeloid maturation parallels organogenesis, and concurrent with the expression
of tissue-dependent lineage-determining transcription factors (TF). Indeed, the TF Salll is specific
to parenchymal microglia, whereas Pparg and Id3 are critical for the differentiation of alveolar and
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Kupffer cells, respectively (Mass et al., 2016a). Sall1, or Spalt-like transcription factor 1, regulates
microglial identity and physiological functions (Buttgereit et al., 2016). Given their transcriptional
commonalities, the distinct identity of each cell type is proposed to be the culmination of
environmentally and developmentally programmed TF; extrinsic and intrinsic factors, respectively
(Gosselin et al., 2017). That is, the core transcriptional gene profile is subject to environmental

factors that drive epigenetic modification and differentiation.

1.2.1 Hoxb8 and non-Hoxb8 lineage microglia

The group of Mario R. Capecchi recently brought forth a third theory that proposes a hybrid of both
myeloid developmental models. In their model of microglial ontogeny, two distinct lineages leave
the YS and give rise to murine brain microglia in a Hoxb8-dependent and -independent manner (De
et al., 2018). Hoxb8-expressing microglia share a developmental origin with non-Hoxb8 microglia in
the YS, but the former undergo a migratory path through the fetal liver prior to CNS localization

from E12.5 onwards, in parallel with widespread organogenesis (De et al., 2018).

Hoxb8, or Homeobox B8, is a TF with a role in the regulation of behaviour. Genetic disruption of
Hoxb8 causes defects in nociception and excessive grooming in mice models, the latter of which is
interpreted as a symptom of trichotillomania , an obsessive-compulsive disorder (OCD) (Chen et al.,
2010). Mice with mutations to Hoxb8 display corticostrial circuit defects, a neural circuit that has
previously been associated with OCD pathogenesis (Ahmari et al., 2013; Shepherd, 2013).
Interestingly, coat loss in Hoxb8-KO was aggravated by female sex hormones; coat loss starts at 3
weeks of age (at the start of sexual maturation), with a larger loss coinciding with sexual maturity

(at 6-8 weeks old) (Tréankner et al., 2019).

In vivo lineage tracing played a central role in identifying Hoxb8* cells as microglia. However, Hoxb8
expression is restricted to primitive haematopoiesis in the embryonic YS (without expression
beyond E12); therefore, lineage tracing of Hoxb8* cells is technically challenging. To circumvent this
limitation, De et al. (2018) developed a novel two-colour model of Cx3cr1®™* Hoxb8'REsCre/+
Rosa26AC-sttdTomato/+ mica that constitutively express the tdTomato-reporter in myeloid cells.
Colocalization of tdTomato* cells with Tmem119 confirmed that these early hematopoietic cells are
in fact microglial progenitors; Tmem119, or Transmembrane protein 119, is a microglial cell-surface

protein of unknown function (Bennett et al., 2016).

Furthermore, Hoxb8" and Hoxb8 microglial subtypes display a differential non-overlapping
function, density, and distribution. Indeed, both subtypes display similar levels of synaptic pruning
capacity, even though Hoxb8* microglia were more readily able to proliferate in response to
neuronal injury (De et al., 2018). A greater ability to respond to injury is expected to be associated

with lineage specific differentially expressed genes (DEG). Moreover, conceptually, the co-
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occurrence of two routes of migration into the CNS and the subsequent diversification of microglia

illustrate how cellular biology is informed by the environment.

The work by De et al. (2018) corroborates earlier findings by Swinnen et al. (2013), which showed
an increase of microglial density beyond what can be achieved by proliferation alone, arguing for a
second set of microglial progenitors infiltrating the CNS parenchyma in development (Swinnen et
al.,, 2013). In addition, the existence of two developmental microglial lineages suggests that
microglial progenitor sub-populations could drive adult heterogeneity. In this way, the adult
microglial population is hypothesized to derive from YS EMP that follow distinct developmental

pathways (Figure 1).

EMBRYO
CNS

s

‘l \\

| ;

. EMP
EMP pMac Mo TSM
ES.5 E9.5 E10.25 E12.5

Figure 1: Developmental colonization of the CNS by microglia. Erythromyeloid progenitors (EMP) in the embryonic yolk
sac (YS) start to emerge at embryonic day (E) 8.5. By E9.5, EMP have acquired a core macrophage profile that includes
Cx3crl, thereby mediating tissue infiltration in the central nervous system (CNS) and liver. Macrophage precursors (pMac)
differentiate into early microglia (M®), prior to differentiation into tissue-specific macrophages (TSM) (i.e. microglia). Two
developmental pathways have been proposed to drive CNS colonization: Hoxb8-independent (1) and —dependent (2). The
Hoxb8-dependent pathway is featured by a staged migration through the embryonic liver to the developing brain from
E12.5 onwards.

By extension, lineage tracing in zebrafish similarly identified distinct developmental pathways of
myeloid cells. Two distinct waves of progenitors are thought to play a role, with links back to
primitive and definitive haematopoiesis (Ferrero et al., 2018). However, unlike in mice, early

microglia in zebrafish are not believed to derive from EMP (Ferrero et al., 2018; Xu et al., 2015). In
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fact, it was argued that EMP have been misclassified as a homogenous population in mice, where
these are in fact distinct from other potential progenitor sources(Ferrero et al., 2018). Hoxb8"
progenitors and their developmental pathway are examples of such a possibility in mice and other
species(Chen et al., 2010; Ferrero et al., 2018). Future studies will need to address and refine the
developmental ontogeny in humans, as it has become clear that modelling of such biological

processes might be specific to the species of interest.

1.2.2 Transplantation studies and lineage commitment

Transplantation of donor cells to a host complements insights of lineage tracing, as constructs of
(trans)genes can be traced in a host, and allow for the differentiation between intrinsic and extrinsic

features of a lineage (Kretzschmar and Watt, 2012) .

Transplantation of YS macrophages, and fetal liver and adult monocytes can regenerate alveolar
macrophages, to establish a tissue-specific signature and self-renew (van de Laar et al., 2016).
However, fetal monocytes were most efficient at repopulating the lung, suggestive of nuances in
macrophage colonization potential, as was evidenced by their greater expression of granulocyte
macrophage-colony stimulating factor (GM-CSF) and proliferation capacity. In contrast, adult tissue
macrophages from the liver, peritoneum and colon failed to differentiate into self-renewing
alveolar macrophages (van de Laar et al., 2016). This highlights a loss of differentiation plasticity,
and is reminiscent of Waddington’s landscape, a model that conceptualizes a progressive

differentiation towards developmental and cellular end-states (Waddington and Kacser, 1957).

Intracerebral transplantation of cultured and primary microglia into the postnatal, murine, Csf1r”-
brain parenchyma — a model that lacks microglia in the CNS — proliferate and establish a microglial
population that express typical markers such as Tmem119, Salll, Gpr56 (Bennett et al., 2018).
Gpr56, also known as Adgrgl, is an adhesion G protein-coupled receptor that is enriched in
microglia relative to other (choroid plexus) macrophages, where it functions to regulate immune

responses and inflammation (Van der Poel et al. 2019, Lin et al. 2017).

Similarly, transplantion of C-Kit"e", Hoxb8* hematopoietic progenitors from the fetal liver (E12.5)
into the CNS proliferate and differentiate in Cx3cr1* Tmem119* microglia (De et al., 2018). However,
even though transplantation of fetal haematopoietic cells or BM-derived cells allows for
parenchymal engraftment in the CNS; the transcriptional, epigenetic, and response to inflammatory
challenge of these cells differs (De et al., 2018; Shemer et al., 2018). Only YS progenitors fully
recapitulate adult microglial signatures (Bennett et al., 2018), supporting microglial ontogeny in

early development.

Taken together, myeloid differentiation and lineage commitment differ by subtype, displaying

variations in survival, transcriptional plasticity, and repopulating potential by maturation state.
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1.2.3 Microglial specification and transforming growth factor-8

Microglial progenitors in the brain mature according to a two-step model of phenotypical
differentiation; early microglia (<E14) develop into pre-microglia (E14 — postnatal day (P)9) prior to

becoming adult microglia (>P9) (Matcovitch-Natan et al., 2016) (Figure 2).

In support of the rapid developmental expansion of the microglial population, early microglia are
enriched by cell cycle and differentiation genes (e.g. Mcm5, Dab2) (Alliot et al., 1999; Matcovitch-
Natan et al., 2016). In turn, pre-microglia express genes linked to migration, neurogenesis and
cytokine secretion at a time when they are actively involved with neural maturation and
synaptogenesis, whereas homeostatic functions in adult microglia are accompanied by the
expression of Cd14, Csfir and Pmepal (Sierra et al., 2010; Paolicelli et al., 2011; Matcovitch-Natan
et al.,, 2016). Microgliogenesis and differentiation is dependent on the TF Pu.1 (Spil) and Irf8,
respectively. Irf8 acts downstream of Pu.1l mediating differentiation to pMac, whereas Pu.l is a
target for Runx1 — Runx1, Pu.1 and Irf8 function to drive a lineage commitment cascade (Huang et
al., 2008; Kierdorf et al., 2013a). Interestingly, stage-specific enhancers of transcription have been
identified in YS macrophages, and early and adult microglia (Lara-Astiaso et al., 2014; Matcovitch-
Natan et al., 2016). However, no equivalent TF has been identified in pre-microglia (Matcovitch-
Natan et al., 2016). In the absence of intrinsic transcriptional regulators at this developmental time,

extrinsic factors might mediate continued specification.
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Figure 2: Microglial specification in the developing CNS. Microglial specification as a stepwise process, in which early
microglia (<E14), mature into pre-microglia (E14 — P9), prior to taking on an adult microglial signature (>P9). Key genes
and their expression patterns in development are depicted. Adapted from (Matcovitch-Natan et al., 2016)

Transforming growth factor (Tgf)-B functions as such an environmental factor and drives myeloid
lineage differentiation and specification (Butovsky et al., 2014; Utz et al., 2020). Tgf-B has been
found to regulate the expression of several microglial TF, including Sall1 and MafB (Gosselin et al.,
2017). Transcription Factor B (MafB) functions to maintain steady-state microglia and limits
interferon and inflammation pathway activation (Buttgereit et al., 2016; Kierdorf et al., 2013;
Matcovitch-Natan et al., 2016). Interestingly, the absence of Tgf-B affects microglial development
only after E14.5, reducing microglial density, and features a loss of microglial identity and a more
amoeboid morphology (Butovsky et al., 2014; Matcovitch-Natan et al., 2016). The temporal
relevance of this molecule suggests a role in the developmental transition from early to pre-
microglia (E14 — P9); this is further typified by the expression of Salll in pre-microglia onwards.
Therefore, Tgf-B provides a critical environmental cue that drives microglial identity and
immunophenotype early in development. In this manner, the spatial and temporal dynamics of
extrinsic and intrinsic TF are critical for microglial phenotypic differentiation and CNS function
(Figure 3). Itis currently unknown if and to which extend the two-step specification affects Hoxb*

and Hoxb™ microglia differentially. Given that microglial identity derives from developmentally-
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and environmentally regulated TF, and these subtypes are linked to distinct functional responses,

it is highly likely that differences will soon be identified.

C/Epr AP-1 SMAD Developmentally-regulated transcription factors (TFs)

Developmentally- and environmentally-regulated TFs

[rf KLFs Egrl Environmentally-regulated TFs

Pu.l MAFs Salll

Runx MEFs  Zfp691

Figure 3: Core macrophage profile and transforming growth factor-8 -induced gene expression. The core macrophage
profile includes several transcription factors (TF) that are modulated by environmental factors like transforming growth
factor (Tgf)-8 (gold); solely influenced by developmentally regulated T (grey); or modulated by both developmental and
environmental factors. In fact, expression of genes like Sall1 that are solely induced by Tgf-8 are indicative of progressive,
environmentally dependent differentiation from a core macrophage profile

1.3 Microglial heterogeneity: context-dependent regulation

The microglial population expands rapidly from a very limited number of progenitor cells at E8.5 to
an estimated 3 million in adulthood (Lawson et al., 1990; Alliot et al., 1999; Haimon et al., 2018). As
discussed, this population progresses from a core macrophage signature to a specialized microglial
subtype, believed to originate from 2 distinct microglial lineages and their interaction with

environmentally regulated TF (Figure 1).

Adult microglial heterogeneity has long been considered bimodal, where the classical paradigm of
functional polarisation categorises cells as either active or resting; M1 or M2, respectively.
However, in recent years researchers have redefined microglial activity, arguing that microglia
occupy a spectrum of heterogeneity (Ransohoff, 2016). Indeed, with technological innovation and
accumulating biological understanding, diverse and dynamic microglial subtypes and states are
recognized in a context-dependent manner (Grabert et al., 2016; Hammond et al., 2019; Martinez
and Gordon, 2014; Safaiyan et al., 2021; Sala Frigerio et al., 2019). In this section | will address
known effectors of cellular heterogeneity in detail, elucidating how cell cycle, age, region, and sex

each contribute to form the identity of the microglial population.
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1.3.1 Cycling and proliferating microglia

Cell cycle is generally described by mitosis and interphase, which can be further subdivided into GO-
, G1-, S- and G2-phase; cells in GO are non-cycling, quiescent/resting cells. Cellular quiescence
corresponds to changes in the ratio of G1- to S-phase, where inhibition of cyclin-dependent kinase
activity increased G1-phase length and loss of pluripotency (Soufi and Dalton, 2016). G1-phase is a
‘commitment window’ where differentiation signals (e.g. Tgf-B) induce cell fate decisions through
factors like cyclin D and SMADs (Soufi and Dalton, 2016). DNA is synthesized in the S-phase, prior
to cell growth in G2-phase, and the generation of two daughter cells during mitosis. By extension,
cell cycle status in hematopoietic stem cells (HSC) is linked to transcriptional activity (Lauridsen et
al., 2018); quiescent and proliferating HSC are characterized by low and high transcriptional activity,
respectively. In this way, cell cycle phase influences sensitivity to developmental cues and

subsequent cellular heterogeneity.

Microglial proliferation is most pronounced during development and plateaus in adulthood (Alliot
et al., 1999; Askew et al., 2017; Nikodemova et al., 2015). Of note, Askew et al. have determined
that microglial density in steady-state is maintained through coupling of apoptosis to local
proliferation; 1.4% of adult microglia are thought to be proliferating at any given time (Askew et al.,
2017). At this rate, the complete microglial population in mice renews every ~100 days. It is
currently unknown to which extend microglial population dynamics are shared between mice and
humans, albeit several studies support that microglia are long-lived cells in both species (Askew et

al., 2017; Fuger et al., 2017; Réu et al., 2017).

Cycling and proliferating microglia, also known as CPM, are actively cycling microglia (Li et al., 2019).
CPM express canonical cell cycle-associated markers (Supplementary Table 5). However, recent
work has shown that CPM also have a module of cell cycle-associated genes unique to microglia,
distinct from canonical cell cycle genes shared with other cells (Li et al., 2019). Considering that
microglia are heterogeneous and display an array of phenotypes throughout life, it is important to

delineate cell cycle effects from subtype-specific microglial transcriptional signatures.

1.3.2 Microglial sensome and age-specific heterogeneity

The CNS is subject to extensive microglia-mediated modifications in development and age-
associated degeneration, including neuronal maturation, synaptic pruning and immunomodulatory
and phenotypical differentiation (Matcovitch-Natan et al., 2016). In correspondence, microglial

heterogeneity peaks in development, and with age and injury (Hammond et al. 2019, Li et al. 2019).

The microglial sensome, defined by Hickman et al. (2013), features a prominent role in the age-
specific transcriptional heterogeneity. The microglial sensome is a distinct cluster of protein coding

transcripts for sensing endogenous ligands, microbe recognition and host defence, excluding
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secreted proteins and organelle-specific proteins — the sensome tethers microglial subtype to its
local environment (Hickman et al.,, 2013). The sensome contains several key microglial genes,
including Hexb, P2ry12, Tmem119, Trem2 and Cx3cr1 (Hickman et al., 2013; Butovsky et al., 2014;
Grabert et al., 2016). As stated, Cx3crl encodes a chemokine receptor that mediates pMac
migration; Cx3crl* progenitors migrate towards neuronal fractalkine (Cx3cl1) (Mass et al., 2016;
Mecca et al., 2018). Expression of Cx3cl1 is upregulated during the developmental expansion of
microglia, after which its expression is reduced and stabilised during homeostasis; coupling neural
and microglial maturation in development (Nikodemova et al., 2015). With age, although Cx3cr1
expression remains relatively stable in health, Cx3cl1 is reduced further and coincides with
increased neuro-inflammatory markers, chronic elevations of 1I-1B , and dystrophic microglia in the

hippocampus (HIP) (Streit et al., 2004; Hickman et al., 2013; Mecca et al., 2018).

In total, 31% of the sensome genes are downregulated with age, 80% of which encode for
endogenous ligand-associated genes (Hickman et al., 2013). Trem2, P2ry12, Dap12 and Tmem119
are but a few of the genes affected. Of note, 44 out of 100 genes are directly or indirectly interacting
with Dap12 (i.e. Tyrobp) (Hickman et al., 2013; Mecca et al., 2018). In fact, Trem2 is known to Dap12
forms a signalling cascade with Trem2, which is known to stimulate Dap12-signaling and ERK-
mediated actin polymerization and cytoskeletal reorganization for chemokine-dependent
chemotaxis and phagocytosis; associated with elevated levels of Apoe; and a loss of Tgf-B signalling
(Mecca et al., 2018). Indeed, age correlates negatively with Tgf-B signalling and corresponds to a
loss of microglial identity (Hickman et al., 2013; Butovsky et al., 2014; Grabert et al., 2016; Galatro
et al.,, 2017; Olah et al., 2018). In essence, age and the microglial sensome underlie microglial
phenotypical differentiation and changes to microglial identity, converging on the Trem2-Dap12

and Cx3cl1-Cx3crl axes (Figure 4).
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Figure 4: Age-dependent molecular mechanisms of microglia. Schematic of Trem2-Dap12and Cx3cl1-Cx3crl signalling.

Both membrane bound and soluble Trem2 and Cx3cl1 can bind their respective receptor. Adapted from (Mecca et al.,
2018).
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1.3.2.1 Disease-associated microglia: Trem2-Apoe signalling and phenotypical

differentiation

First described by Keren-Shaul et al. (2017), disease-associated microglia (DAM) are a microglial
subtype that emerges with age and age-associated disease. The transition from homeostatic to
DAM is a mechanistically coupled two-step event through Trem2-independent and —dependent
pathways (Keren-Shaul et al.,, 2017). During activation, microglia lose canonical marker gene
expression (e.g. P2ry12, Cx3crl, Tmem119) and show stage-specific identities; stage 1 DAM are
featured by the expression of Tyrobp, Apoe and Lyz2, whereas stage 2 DAM are coupled to Trem2,
Cd1ic (i.e. Itgax), Csf1, Lpl and Cst7. Strikingly, Trem2 mutations are a known risk factor for
Alzheimer’s disease (AD), suggesting that the appearance of this microglial subtype is
neuroprotective, and corresponds to the proposed function of Cd11c* plaque-associated microglia;
Itgax is believed to increase amyloid clearance and inflammatory response limitation (Kamphuis et
al., 2016). In turn, Trem2 functions to maintain the metabolic fitness of microglia through regulation
of autophagy (Krasemann et al.,, 2017). Similarly, facial nerve axotomy induces acute

neurodegeneration and is coupled to the emerge of this phenotype (Tay et al., 2018a).

DAM bear resemblance to other phenotypes, known as neurodegeneration disease-associated
microglia (MGnD) and activated response microglia (ARM) (Keren-Shaul et al., 2017; Krasemann et
al., 2017; Sala Frigerio et al., 2019). These subtypes are present in health and numbers increase
with disease, illustrating a role for these microglial cells in healthy aging (Sala Frigerio et al., 2019).
For each of these studies, Apoe is central to subtype emergence; Apoe interacts with Trem2 and
drives the generation of this subtype by inhibiting the function of Tgf-B (Krasemann et al., 2017). In
effect, age- and age-associated disease impairs microglia to sense their environment, while

concurrently undergoing a functional adaptation to combat pathology.

1.3.3 Region-dependent heterogeneity and maturation

Studies have shown that the adult brain varies in microglial morphology, density and function in a
region-dependent manner (Lawson et al., 1990; Yang et al., 2013; Grabert et al., 2016; De Biase et
al., 2017). Tissue colonisation of microglial progenitors in the brain parenchyma enables the
population to expand rapidly (Lawson et al., 1990; Alliot et al., 1999; Haimon et al., 2018). The
population continues to proliferate until it stabilises in adulthood after a selection phase removes
roughly 50% of the population between postnatal week 3 and 6 (Lawson et al., 1990; Nikodemova
et al., 2015; Askew et al., 2017; Haimon et al., 2018). Interestingly, it is currently unknown why
this overshoot of the population occurs. Furthermore, the selection of microglia is region-specific,
with the cerebellum (CB) and hippocampal formation (HPF) undergoing selection at an early time-

point relative to the cortex (CTX) (Askew et al., 2017).
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As stated, microglial density in steady-state is maintained through coupling of apoptosis to local
proliferation (Askew et al., 2017). Notably, region-dependent differences are pronounced. e.g.,
The dentate gyrus is featured by a particular high rate of proliferation that slows with age, unlike
other regions that display a more stable rate throughout life (Askew et al., 2017). By extension,
microglial density varies in a region-dependent manner, as density in murine grey matter-
enriched regions is greater than in white matter-enriched areas (Lawson et al., 1990; Askew et al.,

2017).

Metabolic and immune-associated clusters of genes are particularly important for regional
microglial heterogeneity. Indeed, distinct microglial immunophenotypes were discovered in the
CB, CTX, HIP and striatum (STR) (Grabert et al., 2016). Region-dependent enrichment of metabolic
processes and immune response in the CB and HIP discriminate them from their striatal and
cortical counterparts, with transcriptional regulators of cellular metabolism like peroxisome
proliferator-activated receptor gamma (Pparg), and immune and defence responses coupled to
interferon pathway activation (Grabert et al., 2016a). Of note, Pparg has been described earlier as
a key TF for the development of alveolar macrophages. The relative enrichment of Pparg in
macrophage subtypes, and other genes like it, marks the serpentine nature of cellular identity and

lineage differentiation.

Differences in myeloid metabolism are coupled to immunophenotype, where the CB and HIP
microglia are more inflammatory than their cortical and striatal counterparts (Jin et al., 2014;
Orihuela et al., 2016). With age, both metabolism and immune-associated gene clusters had an
overall reduction, with the majority of metabolic genes age-stable (+75%) and most immune-
related genes age-altered (>80%) (Grabert et al., 2016). e.g. Expression of Tmem119, P2ry12, Fcrls
and Hexb is reduced in the aging CB, as are several genes involved with TgfB-signalling (e.g.
Tgfbrl) (Grabert et al., 2016). Each of these genes are key canonical markers for microglial
identity and are intertwined with the effects of aging (Butovsky et al., 2014; Hickman et al., 2013;
Mecca et al., 2018). Recent work shows that these canonical markers convey immune checkpoints
that modulate microglial phenotype and its subsequent response (Deczkowska et al., 2018).
Inherent region-dependent variations in microglial sensome genes might therefore underlie age-
specific phenotypical divergence. e.g., Trem2, Csf1r and Cx3cr1 are all expressed at lower levels in

the HIP and CB than the CTX and STR (Grabert et al., 2016).

Importantly, a landmark study by Li et al. (2019) offered a different perspective than Grabert et al.
(2016) (Li et al., 2019). Li et al. (2019) used scRNA-seq. Microglia of distinct CNS regions were
isolated and sequenced, and corroborated with RNA-seq. In this study, no regional heterogeneity
in gene expression was detected (Li et al., 2019).This discrepancy remains an unresolved paradox
and requires further investigation. However, scRNA-seq studies have reliably found distinct

signatures between white and grey matter microglia.
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1.3.3.1 Functional emergence of white matter microglia

Myelination of the murine CNS starts at birth and is mostly complete by P60 (Snaidero and Simons,
2014). White matter, postnatal microglia regulate the number and maturation of oligodendrocyte
progenitor cells (OPC)in myelinated regions, and are supportive of the proposed role of microglia
in normal myelinogenesis (Hagemeyer et al., 2017; Wlodarczyk et al., 2017). Three studies have
recently characterised white matter microglia in the corpus callosum, optic tract, medial lemniscus
and/or CB in the murine CNS, this subtype is defined as proliferative region-associated microglia
(PAM) or axon tract-associated microglia (ATM) in early development, or white matter-associated
microglia (WAM) with ageing (Hammond et al., 2019; Li et al., 2019; Safaiyan et al., 2021). The
transcriptional profile of these microglia is characterised by Lp/, Spp1, Apoe and Itgax (Cd11c), genes
commonly linked to amyloid plaque-associated microglia, and suggestive of a transcriptional
overlap. Remarkably, how microglial subtype heterogeneity arises is currently unknown; however,
given that microglial specification is subject to intrinsic and extrinsic factors, changing conditions

are expected to create an opportunity for the emergence of such heterogeneity.

1.3.3.2 Interferon-response microglia

Interferon response microglia (IRM), also referred to as injury-responsive microglia, have been
reported in health and disease and upregulate interferon (IFN) signalling pathway genes (Hammond
et al., 2019; Sala Frigerio et al., 2019). IRM typically express genes like IFN-induced transmembrane
protein 3 (Ifitm3), ubiquitin-specific protease 18 (Usp18), and 2’-5' oligoadenylate synthetase-like
2 (Oasl2).

Type | IFN (IFN-1) are the main CNS effectors (in response to viral and bacterial infection), acting as
immunomodulators for inflammasome activation (Gonzalez-Navajas et al., 2012). Interestingly,
IFN-1 gene IFN-f8 plays a beneficial role in developmental synaptic pruning and myelin debris
removal with multiple sclerosis (MS) (Goldmann et al., 2016; Kocur et al., 2015). Conversely, IFN-B

aggravates neuroinflammation and synapse loss in AD (Roy et al., 2020).

Dysregulation of IFN-I in the CNS, also known as interferonopathy, is associated with white matter
diseases like Aicardi-Goutieres syndrome and Cree encephalitis (Crow and Stetson, 2021). e.g. Loss
of Usp18 in white matter microglia, a negative regulator of IFN, leads to microgliosis, constitutive
expression of IFN-pathway genes, and white matter structural deficits (Goldmann et al., 2016, 2015;

Schwabenland et al., 2019).

Of note, an artificial trajectory of differentiation (i.e. pseudotime analysis) of murine microglia
found that IRM and DAM-like cells attain a ‘mutually exclusive response state’; cells either
differentiate into IRM or DAM cells (Sala Frigerio et al., 2019). Indeed, IRM are postulated to have

a distinct functional role from DAM, with AD genes showing a particular enrichment in DAM-like
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cells without an equivalent in IRM (Sala Frigerio et al., 2019). Such transcriptional heterogeneity in
disease illustrates a role for environmentally regulated factors in the divergence of microglia. It is

currently unknown what TF drive microglial subtype emergence and specification.

134 Sex-specific microglial heterogeneity and disease susceptibility

The CNS displays sexual dimorphism during development (Lenz et al., 2013; Thion et al., 2018).
Studies have shown that the male and female brains display differential neuronal morphology and
astrocyte complexity, mediated by gonadal steroids and culminating in behavioural differentiation
(Lenz et al., 2013; Schwarz and McCarthy, 2008). Interestingly, recent work has started to show that
microglia have a sex-specific profile in maturation that is associated with distinct phenotypes
(Guneykaya et al., 2018; Hanamsagar et al., 2017; Thion et al., 2018; Villa et al., 2018). Microglia, as
mediators in neuropathology, are therefore critical for brain homeostasis, and may do so in a sex-

specific manner.

Inflammatory insults can induce long-term effects in microglial function in postnatal development,
effects which are absent if occurring in adolescence (Bilbo et al., 2006, 2005). However, it are
perturbations of male microglia that are coupled to schizophrenia- and autism-like symptoms (Estes
and McAllister, 2016; Haida et al., 2019). The vulnerability of microglia to inflammatory insults
suggests the existence of ‘sensitivity windows’, critical developmental time-points where microglial
phenotypic plasticity is high, concurrent with ample lineage-specifying cues and an responsiveness
to these cues (Fawcett and Frankenhuis, 2015). Therefore, male and female microglia appear to
mature differently. Indeed, Hanamsagar et al. (2017) have shown that microglia follow a distinct
maturation pathway in a sex-specific manner. More specifically, the authors describe a microglial
developmental index (MDI), a measure of developmental maturity and immune reactive state, with
adult male microglia (P60) scoring lower on the MDI. However, immune activation increases MDI
in males to levels similar to females (Hanamsagar et al., 2017). Similarly, amyloidosis accelerates
the emergence of DAM-like states in female microglia (Sala Frigerio et al., 2019), suggestive of age-

and sex-dependent microglial maturation and heterogeneity.

Cellular heterogeneity is dependent on sex, with differential microglial densities and function. At
13 weeks (P91), male microglial densities are greater across a range of regions, including the CTX,
HIP and amygdala (Guneykaya et al., 2018). Although in the HIP these differences are already
present at 3 weeks (P21), the amygdala has an inverse relation, with a smaller density in males than
females. These spatial differences are accompanied by differences in membrane properties,
signalling pathways, microglial identity and immunophenotype. Indeed, Villa et al. (2018)
transplanted 12 week old (P84), female murine microglia into the male CNS, after which males were
more resilient to ischemic stroke, indicating that female microglia have a neuroprotective

phenotype (Villa et al., 2018a). This study suggests that a higher MDI is neuroprotective, and by
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extension, accelerated MDI with AD might therefore ameliorate disease, corresponding to the
suggested protective role of DAM. Sex-, region- and age-related effects are therefore intimately

connected.

1.4 Single-cell technologies

Many new microglial subtypes and phenotypes have been described with single-cell technologies,
a new branch of research techniques that allow characterization of a single-cell genome,
epigenome, transcriptome, proteome, metabolome and receptor repertoire, or combinations
thereof (Gohil et al., 2021; Lee et al., 2020; Lent et al., 2021; Sankowski et al., 2021; Seydel, 2021;
Shapiro et al., 2013) (Table 1).

Of these technologies, 10X is a commercially, industry leading, platform that has become the
standard for scRNA-seq. It outperforms most alternatives on performance in accuracy and
sensitivity (Svensson et al., 2017; Ziegenhain et al., 2017). Despite these benefits, instrument and

assay costs are high and beyond the scope of this project.

Table 1: Single-cell categories and technologies.

Category Technologies
Genome SCI-seq!, DLP+2, 10X3
Epigenome ScATAC-seq?, snmC-seg>, 10X®
Transcriptome MARS-seq2’, SMART-seq28, CEL-seq2°, Drop-seqt?, 10X
Proteome MELC'?, CyTOF'3
Metabolome SpaceM!4, MALDI MS*, SLMS*6, GCIB-SIMS'”
Receptor repertoire TetTCR-seq'®
Multi G&T-seq'?, scMT-seq?’, CITE-seg?!, scTrio-seq??, 10X?3

Note: Recent single-cell technologies across the modalities. The table provides a brief overview of some of the methods
currently available; however, this is not meant to be inclusive of all variants. 1, (Vitak et al., 2017); 2, (Laks et al., 2019); 3,
(“Single Cell CNV,” n.d.); 4, (Buenrostro et al., 2015); 5, (Luo et al., 2017); ¢, (“Single Cell ATAC,” n.d.); 7, (Keren-Shaul et al.,
2019, p. 2); & (Picelli et al., 2013); 9, (Hashimshony et al., 2016, p. 2); 19, (Macosko et al., 2015); 11, (“Single Cell Gene
Expression,” n.d.); 12, (Schubert et al., 2006); 13, (“| Fluidigm,” n.d.); 4, (Rappez et al., 2021); 15, (Li et al., 2000); 16, (Zhu et
al., 2021); 17, (Pareek et al., 2020); 18, (Zhang et al., 2018); 1%, (Macaulay et al., 2015); 25, (Hu et al., 2016); 21, (Stoeckius et
al., 2017); 22, (Hou et al., 2016); 23, (“Single Cell Multiome ATAC + Gene Expression,” n.d.)

1.4.1 Single-cell (and single-nuclei) RNA-sequencing

Of the technologies, single-cell RNA-sequencing, or scRNA-seq, has found the most widespread use
and number of applications. scRNA-seq is the conceptual progression of bulk RNA-sequencing. Both
are part of the umbrella of next-generation sequencing (NGS), a staple in cellular biology and
medicine (Sandberg, 2014). The approaches have been widely adopted and have gained preference
over microarray, as it is featured by a greater accuracy over a wider dynamic range, enabling the
detection of more differentially expressed genes (DEG) and over a larger range of expressions
(Pandey and Williams, 2014). However, despite RNA-seq being the most accurate approach to date,

RNA-Seq can be inefficient in its ability to detect rare transcripts, as it reports on an average
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transcriptome of all samples and cells in its analysis, thereby limiting the identification of cellular
heterogeneity (Chen et al., 2019; Shapiro et al., 2013; Svensson et al., 2017; Tan et al., 2016). In
contrast, scRNA-seq platforms have been reported to be sensitive up to single mRNA molecules and
can partition individual cell transcriptomes, thereby accelerating the discovery of novel single-cell

subtypes and phenotypes; single- cell atlases and states, respectively (Janes, 2016).

Cell phenotypes describe an expression profile that informs on the microenvironment and the
effects of time, including circadian rhythms and transcriptional bursts. In contrast, subtype
characterization assigns cells to a lineage (e.g. neuronal, oligodendrocyte, myeloid) (Janes, 2016).
Both are valuable in the exploration of microglial heterogeneity, although they differ in the quantity
of cells tested, and their respective number of reads per cell (i.e. read depth). In short, identifying
single-cell subtype classes requires a lower average read depth of more cells and informs on lineage
heterogeneity, whereas a greater read depth of fewer cells informs on cell state. However,
distinctions between cell atlases and cell states are not binary, especially if nomenclature and

semantics are not agreed upon or consistently reported in literature (Janes, 2016).

scRNA-seq has two main variants, that is, single-cell and single-nuclei sequencing (snRNA-seq).
scRNA-seq outperforms snRNA-seq on cellular viability and RNA vyield; yet there are considerable
weaknesses in relation to frozen or hard-to-dissociate tissue, as well as the preservation of in vivo
transcriptional signatures and occurrence of ex vivo-activated microglia (exAM) with scRNA-seq
(Machado et al., 2021; Slyper et al., 2020); an effect that will be addressed in Chapter 5, where |
will address technical artefacts in scRNA-seq. In addition, distinct isolation protocols have been
shown to result in distinct capture efficiencies (Slyper et al., 2020). e.g., snRNA-seq has aided the
characterization of multi-nucleated skeletal myofibers (Dos Santos et al., 2020; Kim et al., 2020;
Petrany et al., 2020); whereas microglial activation genes are not detected with snRNA-seq (Thrupp
et al., 2020). The availability of tissue, the target cell and desired output all restrict experimental
design freedoms and require specific adaptations in experimental procedures. Furthermore, since
its invention, researchers in the field of scRNA-seq (and snRNA-seq) have quickly engineered a wide

range of approaches (Figure 5).

Taken together, scRNA-seq is particularly well-suited for the detailed characterization of the
myeloid lineage with its states and subtypes. Indeed, there are over 250 examples utilizing this
technology for microglia since its inception in 2015 (Hammond et al., 2019; Keren-Shaul et al., 2017,

Li et al., 2019; Van Hove et al., 2019).
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Figure 5 Timeline of novel single-cell technologies. Single-cell, single-nuclei, and spatial transcriptomics approaches were included, with at least two reports of its use in literature. Timeline is

from left to right, and from bottom to top. Created from (Svensson et al., 2020).
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1.5 Hypothesis and aims

In this chapter, microglial ontogeny, heterogeneity, and scRNA-seq were discussed. Microglia find
their origin in the embryonic YS and migrate and colonize the CNS early in development. Intrinsic
and extrinsic factors act synergistically to establish the adult population, which is a rich population
that varies by age, region, and sex. Much work has gone into the description of early and late life
microglial subtypes like PAM, ATM, DAM and IRM. However, it is currently unknown how
microglial heterogeneity gives rise to adult heterogeneity, as is it unknown how age-associated
subtypes emerge from adult homeostatic microglia. It was hypothesized that distinct microglial
subtypes drive adult heterogeneity, in which male and female microglia display differential
trajectories of maturation and population dynamics. Moreover, age-associated microglial

subtypes are expected to be driven by distinct gene regulatory networks.

Aim 1: Generation of a microglial single-cell atlas in murine development

. Objective 1: To establish a framework of current knowledge

Objective 2: To explore context-dependent microglial heterogeneity

Objective 3: To translate murine early developmental effects to human gestation

Objective 4: To perform a trajectory analysis of microglial differentiation

Aim 2. Drop-seq platform performance and pilot of cortical microglia

Objective 5: To measure Drop-seq platform performance

Objective 6: To develop an in-house scRNA-seq dataset of cortical microglia

Objective 7: To explore data quality and transcriptional heterogeneity in cortical microglia.

Aim 3: Establish a microglial scRNA-seq protocol.

Objective 8: To test the utility of chemical fixation with MetOH and DSP.

. Objective 9: To explore the characteristics of FACS and MACS for scRNA-seq.

. Objective 10: To assess cellular activation and yield in purification methods.
. Objective 11: To determine the effect of dissociation condition on ex vivo signatures.
. Objective 12: To implement a novel microglial isolation protocol for Drop-seq.

Aim 4: Study of female gene regulatory networks in health and disease

Objective 13: To establish a female-specific atlas in the murine cortex.

. Objective 14: To explore the transition to an adult microglial phenotype.

. Objective 15: To determine the effects of amyloidosis on transcriptional heterogeneity and
population dynamics.

. Objective 16: To identify transcription factors central to age-associated microglial subtypes.
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Chapter 2 General methodologies

2.1 Animals

C57BL/6- and Macgreen-mice were used in this study. Macgreen mice have an intracellular reporter
of c-fms (Csf1r) gene expression by an enhanced green fluorescent protein construct (EGFP) (Csf1r-
EGFP) (Sasmono and Williams, 2012). Both models were bred and maintained in the animal facilities
of the University of Southampton (UK), according to local standards. These include standard chow
(RM-1) (SDS, 801010) and water ad libitum, temperatures between 21 to 24°C, and a 12:12 light-
dark cycle; light period from 07:00 to 19:00. All experimental procedures were conducted under
ethical approval and according to personal and project licenses under the UK Animals (Scientific

Procedures) Act (1986).

2.2 Anaesthesia and perfusion

Animals were subjected to a lethal intraperitoneal dose of sodium pentobarbitone (Pentoject,
Animalcare, VM10347/4014) (200 mg/mL) between 08:00 and 11: 00AM.Mice were injected with
150 uL of Pentoject. The animal’s toe-pinch- and corneal reflex were tested prior to proceeding
with transcardial perfusion. After anaesthetic depth was confirmed (i.e. the absence of reflex), each
animal was perfused with 20 millilitre (mL) phosphate-buffered saline (PBS) (1X) (Thermo Fisher,
70011044) (pH 7.2 £ 0.1), supplemented with heparin sodium (5 I.U. / mL) (Figure 6). Cessation of

circulation and/or heartbeat were used as secondary measures to confirm death.

Figure 6: Transcardial perfusion. First, a lateral incision of the integument and abdominal wall exposed the diaphragm.

The ribcage was then cut bilaterally, opening the pleural cavity for access to the heart. With the sternum overhead, any
excess fat was carefully removed from the pericardium, after which a butterfly-winged needle was inserted into the left
ventricle and clamped into place. Finally, an incision to the right atrium created an outlet and the animal was perfused.
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2.3 Tissue harvesting and dissection

Tissue harvesting started with the removal of the head of a perfused animal (Figure 7). The skin was
removed from the skull and any remaining neck muscles were trimmed down with surgical scissors
(ToughCut) (F.S.T., 14054-13) to free the skull. A fine scissors (Martensitic Stainless Steel) (F.S.T.,
14094-11) was then inserted into the foramen magnum and a sagittal cut from the base of the skull
to the nose bones was made. With a rongeurs (F.S.T., 16021-14), the frontal bones and meninges

were removed to free the brain from the skull.

Figure 7: Tissue harvesting and dissection. The head is removed after perfusion, after which the skin and remaining neck
muscles are removed to clear the skull (a, b). Entering through the foramen magnum, a scissors split the skull bones
across the sagittal suture up-to-and-including the nasal bone (c, d). Rongeurs were used to remove the skull bilaterally
from the brain. With the brain exposed, a rounded spatula was inserted posterior from the olfactory bulbs and aided the
removal of the brain from the skull (e).

Once the brain was free from the skull, the CB and cerebrum (CH) were separated from each other
in an ice-cooled 10-cm petri-dish with PBS (1X), without (w/o) calcium (Ca), magnesium (Mg) and
phenol); the brainstem (BS) was cut coronally through the midbrain. When dissecting for the CTX,
the cerebral hemispheres were separated along the longitudinal fissure and the HPF dissected from
the inside of the CTX. Independent of the tissue-of-interest, and as soon as the tissue was dissected
out, the tissue was stored in 2 mL PBS (1X) (w/o Ca, Mg, phenol) or in 2 mL ‘Enzyme mix 1’ (EM1)
(Miltenyi, 130-092-628, 130-107-677) on ice, until all tissue was collected.

24 Microglial isolation

Microglia can be isolated in a plethora of ways and protocols need to be adjusted to the desired
outcome measure. In short, tissue was dissociated, myelin was removed, and microglia enriched

for, so these steps are described in detail in the following sections.

2.4.1 Tissue dissociation

Dissociation of brain tissue was performed in three distinct manners: Dounce homogenizer-
mediated mechanical dissociation; actinomycin D (ActD)-supplemented (papain-mediated)

enzymatic dissociation; or enzymatic dissociation alone.
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The approaches vary in dissociation temperature; ice-cold (4°C), room temperature (RT; 21-23°C),
or heated (37°C), respectively. RT conditions were simulated with a water bath (set to 22°C),
whereas standard dissociation was performed in a heated oven. The approaches were distilled into
3 protocol variations that span the broad range of experimental procedures currently available in

literature (Figure 72).

After collection, 30 puL ‘Enzyme Mix 2’ (EM2) (Miltenyi, 130-092-628, 130-107-677) was added to
EM1, according to the guidelines of the producer. Prior to dissociation, independent of approach,
the collected tissue was cut into small pieces using fine scissors (Martensitic Stainless Steel) (F.S.T.,
14094-11). Mechanical dissociation was performed with a loose pestle of a 7 mL Dounce
homogenizer (D9063, Sigma), followed by dissociation with a tight pestle, to liberate cells from
tissue with 15 strokes each (adapted from (Hammond et al., 2019). Both ActD and standard
dissociation approaches made use of pre-cut pipette tips, where tissue was progressively

dissociated from large-, through medium-, to small-clearance pipette, a trituration series (Figure 8).

Dounce homogenization pipette-mediated homogenization

Figure 8: Trituration series for tissue dissociation. Dounce homogenization utilized a 7 mL container, a small pestle (with
large clearance) (A), and a large pestle (B). Each sample (and for each pestle size) was dissociated with 15 strokes.
Pipette-mediated homogenization was done in progressively smaller apertures from large (L), to medium (M) to uncut
(U) 1 mL pipets. Each step, and for each sample, was done for 1 minute at R.T. to mediate dissociation. Regardless of
homogenization method, prior to dissociation, each sample was cut into small pieces with a fine scissors (Martensitic
Stainless Steel) (F.S.T., 14094-11).

For ActD dissociation, ActD (Sigma, A1410) was added to the collection solution (i.e. EM1) for
working concentration of 30 uM. ActD is a light-sensitive, hygroscopic substance and was diluted
(in DMSO) to stock concentration (8 mM) and stored at -20°C for up to a month. To ensure ActD
was protected from light, stock solutions were stored in black Eppendorfs. Similarly,
(micro-)dissected tissue samples were collected in bijous with EM1 covered with aluminium foil to
minimize light exposure. To further minimize batch-specific effects, experimental series using ActD

were performed using the same stock preparations, and no aliquots were reused after thawing.
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2.4.2 Purification of single-cell suspensions: removal of myelin and cell debris

CNS-derived single cells were subjected to a round of purification, to remove any myelin and/or cell
debris. Three distinct approaches were utilized, which fall in two broad categories: gradient

centrifugation, and bead-dependent purification.

Gradient centrifugation was done with Percoll PLUS (Fischer Scientific, 10166144) or Debris
Removal Solution (Miltenyi, 130-109-398). Bead-dependent removal was performed with Myelin
Removal Beads Il (Miltenyi, 130-096-733).

24.2.1 Percoll-mediated gradient centrifugation

Percoll-mediated gradient centrifugation effectively removes myelin from the cell suspension and
captures/enriches myeloid cells in the pellet. Normally, gradient centrifugation is performed with
multiple density layers (Lee and Tansey, 2013). However, a single Percoll layer (~¥37%) effectively
captures microglia in the lower pellet, improving on the handling speed (Grabert et al., 2016;

Grabert and McColl, 2018).

For each sample, 5 mL of stock of isotonic Percoll (SIP) was prepared; 9 parts Percoll, 1 part PBS
(10X) (w/o Ca, Mg, phenol). SIP was added to a 7 mL cell suspension in FACS-buffer for a 37% Percoll
layer. Suspension was mixed and centrifuged at 500 x g for 30 minutes at 4°C without break
(Eppendorf, 5810 R). Recommended centrifugal temperature is 18°C, yet in communication with
the manufacturer and in observation this has not led to differences in purification efficiency (data

not shown).

2.4.2.2 Debris Removal solution

Cell pellets were supplemented with 3100 pL of ice-cold HBSS-buffer, to a total volume of
approximately 3.5 mL, and added with 1050 uL of Debris Removal Solution (DRS) (Miltenyi, 130-
109-398). 4 mL of HBSS-buffer was overlayed gently (i.e. dropwise) with a P1000 pipette (Gilson,
F167370). The preparation was centrifuged at 1000 x g for 30 minutes at 4°C. Three phases formed
and the top two were aspirated, supplemented to 14 mL with HBSS-buffer, and invert mixed. Then,

cells were centrifuged again at 1000 x g for 10 minutes at 4°C.

The recommended protocol was deviated from recommended protocol on three aspects (Miltenyi,
130-109-398). First, resuspended cell pellets approximate 3500 pL, reflective of the relatively large
size of cortical tissue. Consequentially, the volume of DRS from 900 to 1050 puL, to maintain the
proportion of DRS to cells. Second, centrifugal forces were reduced from 3000 to 1000 x g (and
increased centrifugal time) to accommodate speed limitations of the centrifuge (Eppendorf, 5810

R). Third, PBS was exchanged with HBSS-buffer. Both buffers include calcium and magnesium (and
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exclude phenol); HBSS-buffer was selected for experimental simplicity in combination with other

steps.

24.2.3 Myelin Removal Beads

Myelin Removal Beads Il (MRBII) (Miltenyi, 130-096-733) are a bead-dependent alternative to
gradient centrifugation purification. MRBII purification is achieved by magnetic-activated cell
sorting (MACS), a proprietary design of Miltenyi Biotec. Magnetic microparticles are bound to a
myelin targeted antibody for the (negative) selection and removal of myelin debris from cell
suspensions. | have used MRBII in combination with large selection (LS) (Miltenyi, 130-042-401) or
large depletion (LD) columns (Miltenyi, 130-042-901). These columns vary in capacity and

throughput for myelin depletion.

Cells were resuspended in 600 uL of HBE-buffer (for a total volume of ~ 900 uL) and supplemented
with 100 pL of MRBII. Cells were incubated on ice for 15 minutes at 4°C, after which incubation was
stopped by diluting the reaction mixture with HBE-buffer (to a total volume of 15 mL). Columns

were prepared and myelin debris removed as recommended, collected in 3 mL of HBE-buffer.

2.4.3 Characterisation and enrichment of microglia: magnetic- and fluorescence-activated

cell sorting

Both magnetic- (MACS) and fluorescence-activated cell sorting (FACS) were used for the

characterization and enrichment of microglia (Figure 9).

(1) labelling (2) separation (3) elution

FACS MACS

Figure 9: Schematic of fluorescence and magnetic-activated cell sorting workflow. Cells were labelled with antibodies
conjugated with fluorescent reporters or magnetic nanoparticles (1). Once in contact with their respective effector, light,
and magnetism, respectively, cells bound by the antibodies separate from the mixed cell suspension (2). Positive selection
enables the subsequent elution and enrichment of cells identified by those antibodies (3).

46



24.3.1 Magnetic-activated cell sorting and the isolation of Cd11b* cells

MACS enables the enrichment of microglia through magnetic microbeads conjugated to
monoclonal rat anti-mouse/human Cd11b (Mac-1a) antibodies (M1/70.15.11.5, 1gG2b) (Miltenyi
Biotec, 130-049-601). Single cell suspensions were resuspended in 90 — 270 uL of HBE-buffer; and
supplemented with 10 — 30 uL of microbeads. Cells were incubated with the microbeads for 15

minutes on (wet-)ice.

Positive selection with LS columns (130-042-401), coupled to a QuadroMACS (Miltenyi Biotec, 130-
090-976) separator, effectively isolates CNS-derived monocytes/macrophages, and to some extend
granulocytes, NK cells, CD5* B1-cells and dendritic cells (Miltenyi Biotec). In my experience, | found
that the use of varying microbeads (in large cell pellets) did not lead to unspecific binding, yet it

simplified resuspension and preserved a 1:10-ratio of HBE-buffer to microbeads (data not shown).

24.3.2 RNA extraction and gene expression analysis by polymerase chain reaction

RNA of microglial cell pellets was extracted with the RNeasy Plus micro kit (74036, Qiagen),
according to the manufacturer’s guidelines. Cells were lysed in RLT lysis buffer with 143 mM B-
mercaptoethanol, genomic DNA removed with gDNA Eliminator columns, and RNA bound onto a
RNeasy MinElute spin column. RNA was washed and eluted; elution of RNA in 12 — 14 ul of
nuclease-free water (129114, Qiagen). For a positive control, whole brain RNA was isolated from
adult mice using the Trizol method (15596018, Thermo Fisher). 500 ng RNA was converted to
cDNA with the iScript cDNA Synthesis Kit (1708891, BioRad), once more, following manufacturer’s

instructions.

| designed a panel of custom primers (Sigma Aldrich) for polymerase chain reaction (PCR): Csf1ir,
Cx3crl, Egrl, Fos, Gapdh, Hexb, ler2, Jun, P2ry12, Tmem119. Primer qualities were assessed with
electrophoresis in a 1.6% agarose gel. Primer sequences are supplied in the Appendix
(Supplementary Table 20). Data were analyses with the 2-AACt method with Primer Opticon 3
software, using Gapdh and/or Hexb as housekeeping genes; Gapdh was used as a loading control
of RNA, whereas Hexb was a control for microglial load, thereby accounting for potential

impurities in the isolated cell pellets.

2433 Flow cytometry and fluorescence-activated cell sorting (FACS) of microglia

Fluorescence-activated cell sorting (FACS) (i.e. flow cytometry) was utilized to characterize and/or
enrich for microglial cells. Microglia express several markers that, when combined with
fluorescence reporter-conjugated antibodies will function to identify microglia in mixed cell
suspension (Askew et al., 2017). A table of all used antibodies, reagents and materials is supplied in

the Appendix (Supplementary Table 19).
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Identification of microglia has been achieved by the following gating schematic (Figure 10). In short,
the expected population was selected for its size features across the forward (FSC) and side-scatter
(SSC), size and complexity respectively, after which | selected for single- and viable cells (Viability-
eFluora50, Viability-eFluor7807, or Viability-7AAD’), prior to microglial identification (i.e. Cd11b-
BV421* Cd45-APC*, Csf1r-EGFP*, P2ry12-PE*). To prevent clumping of cells, the suspension buffer

(i.e. PBE-buffer) was devoid of Mg and Ca, and the addition of EDTA chelated any remaining ions.
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Figure 10: Gating scheme for the identification of microglia. a) Cells of the appropriate size were selected in a plot of
forward-scatter (FSC) and side-scatter (SSC). Next, single-cells (FSC-A and FSC-H) (b) and live cells (eFluor450-) (c) were
selected, prior to identifying microglia by their expression of Cd11b and Cd45 (Cd11b+ Cd45low).

Single-cell gating can be achieved in a range of manners, | choose to trial two, one with a single plot
for FSC-A and FSC-H, and another for FSC-A and FSC-H followed by SSC-A and SSC-W. No obvert
differences were detected and | diverted to singlet selection by plotting FSC-A and FSC-W (Figure
11).
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Figure 11: Direct comparison of single-cell gating approaches. Gating for single-cells can be achieved by an FSC-A and FSC-
H plot (a), or a serial gating for FSC-A and FSC-H to SSC-A and SSC-W (b). No obvious differences were detected between
approaches. Oval markers indicate the relative localization of doublets.

To further the identification of microglia and simplify gating, Csflr and P2ry12 were used. P2ry12
reliably detected Cd11b* Cd45* microglia. However, only a proportion of those cells display cellular

activity of EGFP (Figure 12).
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Figure 12: Flow cytometric identification of microglia with canonical markers. The expected population is gated for with
forward- (FSC-A) and side-scatter area (SSC-A) (a), after which singlets (b) and viable (c) cells are selected. eFluor780 was
used for viability. Microglia were gated as Cd11b* Cd45*. All (99%) identified microglia express P2ry12, albeit only ~43%
of those cells are EGFP*. Macgreen mice were used with a reporter construct of Csf1r-EGFP.

To detail this discrepancy, EGFP* cells were backgated for Cd11b and Cd45 (Figure 13). Of note, of

those cells identified as microglia, not all were EGFP*. Cd11b* Cd45* cells display a heterogeneity in

size, where only the largest reliably express EGFP.

a) b) <)
250K = . . —
. 1o o
i )
200K Q. 200k 4" *
f g m‘ -
150K = -
< < <
Q [Ta R . (@) CD11b (PE)
L o EGFP (CSFIR) % g '% D 1ok 636
O o
o 4 : g .
50K ~ Microglia (CD11b, CD45) 50k
E 707
»WJ 9
o T T Ll T Al T 0 T
:o“ "; Im’ ‘",4 ‘m5 0 o 10° 0* 10° Yno’ "; 'ma 'ma 1m5
Csf1r-EGFP Cd11b-PE Cd11b-PE

Figure 13: Back gating of EGFP-positive cells highlights limitations to Macgreen mice. Fluorescent expression of Csf1r-
EGFP does not identify all microglia (Cd11b* Cd45*) (b). Larger cells reliably express EGFP, smaller cells do not.

2.5 Drop-seq — Experimental pipeline

Microfluidic devices were generated and provided by the group of Jonathan J. West. The
experimental pipeline of Drop-seq consist of 11 steps, including the reverse transcription of single-
cell transcriptome attached to microparticles (STAMP), tagmentation, polymerase chain (PCR)

reactions, and purification and quality control (QC) steps (Macosko et al., 2015).
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The experimental protocol for Drop-seq is readily available and detailed online (Macosko and
Goldman, 2018). However, | will detail some of the characteristics of the Drop-seq runs here (Figure

14).

1 Pre-run setup 4 Reverse transcription 7 Purification and QC 10 Purification and QC
2 Starting a run 5 Exonuclease treatment 8 Tagmentation 11 Sequencing
3 Droplet breakage 6 PCR 9 PCR

Figure 14: Drop-seq experimental pipeline. The experimental process can be grossly divided in 11 steps, flowing from the
pre-run setup, through several rounds of polymerase chain reaction (PCR), purification and quality control (QC), and
completed with sequencing of the samples.

Isolated single cells were suspended in PBS-BSA (0.01%) (100 cells/ul) and barcoded beads
(Chemgenes, ‘Barcoded Bead SeqgB’) in lysis buffer (120 beads/ul), each loaded into syringes and
onto the microfluidic device. A magnetic stirrer (VP Scientific, 710D2) combined with a mixing disc
were (VP Scientific, 772DP-N42-5-2) used to keep the microparticles in suspension, not exceeding

30 rounds-per-minute.

Droplets were generated in the system with standard flow rates; oil (BioRad, 370533) at 15,000
pl/hour, cells and beads at 4,000 pl/hour. Droplets co-encapsulated cells with barcoded beads and
lysis buffer at final concentration of 50 cells and 60 beads/ul (in ~1 nl droplets with ~124 pm
diameter). After completion of the run, droplets were broken with perfluoro-octanol (Sigma,

370533), oil removed, and beads resuspended in 6X SSC-buffer.

STAMP were reverse transcribed and excess bead primers of stored beads were removed by an
exonuclease | treatment, after which beads were washed, and then resuspend in H,O for
guantification. Depending on the bead recovery, multiples of 100 cells (i.e. 2,000 beads) of each
sample were allocated to microcentrifuge tubes. Beads were subjected to 16 cycles of polymerase
chain reaction (PCR); the number of cycles is microglia specific, other cells might require more of
less amplification (Macosko and Goldman, 2018). PCR products were purified with AMPure XP
beads (Beckman Coulter Life Sciences, A63880) according to the recommend instructions, eluted in
10 pL of H;0, and PCR product pools were made for each sample. cDNA yield and quality were
determined with the Bioanalyzer High-Sensitivity DNA kit (Agilent, 5067-4626). PCR products had
an average size of 1734 + 28 base pairs (bp) and a yield of 173 + 90 pg/uL. Normal concentrations
from 50 cells/pl vary between 400 — 1000 pg/ul; however, variations in concentration are expected
due to variations in cell concentration and the number of beads, as well as PCR inefficiencies or

RNA degradation (Macosko et al., 2015).

400 or 500 pg of purified cDNA was prepared for tagmentation. The mixture was incubated in a

thermocycler at 55 °C for 5 minutes, neutralized and incubated for 5’ at R.T. Each cDNA sample
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was supplemented with a tagmentation PCR mix, including a N701 or N702 index for multiplexing.
For the pilot, | used N701 and N702 for male and female cells, respectively. For the female-
specific age-dependent libraries, | used N701 and N702 for P21 and P60, respectively. After which
another PCR program was run (12 cycles), followed by AMPure XP-bead purification and analysis
with the Bioanalyzer High-Sensitivity DNA kit (Agilent, 5067-4626). Tagmented libraries had an

average size of 503 +2 bp, a yield of 5.1 £ 0.3 nM, and over 95% purity.

An equimolar library pool (3 nM) was used as input for denaturation with 0.2 M NaOH. The
denatured libraries were diluted to 30 pM and diluted once more to a loading concentration of 1.3
pM in hybridization-buffer (HT1, Illumina, 15009740). A 0.3 uM custom primer was prepared.
Microglial libraries were sequenced (paired end) on a NextSeq 500 platform, utilizing NextSeq
500/550 Mid Output Kits (TG-160-2001, 150 cycles, V2; 20024904, V2.5), each with a maximum of
130,000,000 reads per cell. Sequencing runs parameters were as follows: read 1 (20 bp), read 1

index (8 bp), read 2 (50 bp), Custom Read 1 primer.

2.6 High-performance computing

| would like to acknowledge the use of the IRIDIS HPC Facility and associated support services in the
completion of this work. The high-performance computing (HPC) was used for computationally
demanding analyses. This includes the Drop-seq computational pipeline (2.7), as well as the
integration of the large-scale atlas and their respective analyses (Chapter 3). Sequencing
specifications were as follows: read 1 (20 base pair (bp)), read 2 (50 bp) and Read 1 Index (8 bp), to

accommodate multiplexing. Drop-seq - Computational Pipeline

Raw (FastQ) sequencing reads were converted to a sorted, unmapped Binary Alignment Map (BAM)
(FastqToSam, Picard bundled in Dropseg-tools v1.0) and filtered to remove all read-pairs with a
barcode base quality of <10 (Figure 15). The second read was trimmed at the 5’ end to remove any
TSO-adapter sequence and at the 3’ end to remove polyA tails. Reads were aligned against mouse
reference genome (mm10) using STAR aligner (v2.5.0a), then sorted/converted/merged to a BAM
with a tag “GE” onto reads for data extraction. The DigitalExpression program (Dropseq-tools v1.0)
extracted digital gene expression (DGE) information of the mRNA transcripts (i.e. unique molecular
identifiers (UMI)) and created a DGE matrix where rows contain genes and cell (barcodes) in

columns.
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Figure 15: Drop-seq computational pipeline. Raw sequencing reads were converted into Binary Alignment Map (BAM)-
files, tagged, and trimmed. Reads that passed quality control (QC) were aligned to the mouse genome with STAR aligner,
transcripts counted and converted into a digital gene expression (DGE) matrix.

The Drop-seq computational pipeline (from FastQ to DGE-matrix) requires considerable
computational power, which were found at the IRIDIS High Performance Computing Facility of the

University of Southampton.

2.7 R and RStudio

DGE matrices were loaded and processed in R and RStudio. RStudio is an Integrated Development
Environment (IDE) for R, itself a programming language suitable for statistical computing and
graphics. For the analyses, R version 4.0.3 was combined with RStudio 1.3.1093. To utilize R and

RStudio for scRNA-seq, Seurat was selected, a stand-alone bioinformatic tools for bespoke analyses.

2.7.1 Seurat

With the advent of scRNA-seq, many bioinformatic tools for clustering have been developed
including RacelD, scran, SC3 and Seurat. Seurat is a tool that effectively encapsulates each analysis
step, from quality control (QC), data normalisation and scaling, to dimensionality reduction,
clustering and DGE analysis (Butler et al., 2018; Hao et al., 2021; Satija et al., 2015; Stuart et al.,
2019).

Seurat was consistently found to outperform other scRNA-seq tools on matters of accuracy,
robustness and running time, making it a good candidate for the exploration of microglial
heterogeneity (Duo et al., 2018; Freytag et al., 2018). Seurat is an R toolkit for single cell genomics.
Moreover, Seurat is user-friendly and benefits from a large user base, designed for droplet-based
data, scalable to hundreds of thousands of transcriptomes across conditions, and performs
unsupervised analysis by utilizing a machine-learning driven-approach to identify cell types (Butler
et al., 2018). For these reasons, Seurat has become a popular tool in recent years, with numerous
examples that utilized Seurat across single-cell platforms and fields of study that include
haematology, neuroscience, and pharmacology (Avey et al., 2018; Chen et al., 2017; Gierahn et al.,

2017; Villani et al., 2017)

The first inception of Seurat was in 2015, since then, the tool has recently taken on its 4™ version
(Butler et al., 2018; Hao et al., 2021; Satija et al., 2015; Stuart et al., 2019). Seurat V2, V3 and V4
were used in the analyses. Seurat follows a typical bioinformatic pipeline that allow for consistency
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while offering a plethora of variations to specify the analysis (Figure 16). Generally, a count matrix
and metadata are joined into a Seurat object for quality control (QC), normalization, scaling, and
variable feature detection. Linear dimensionality reduction resolves statistically significant gene
sets for cluster identification and non-linear dimensional reduction. Non-linear reduction projects
the effects of these gene sets onto a 2-dimensional plane. Differential gene expression analysis of
the identified clusters allows for subsequent cluster annotation.

variable

annotation normalization scaling feature
detection

object
creation

non-linear
dimensionality DGE analysis
reduction

linear
dimensionality
reduction

cluster
annotation

cluster
identification

Figure 16: Standard Seurat pipeline for scRNA-seq analysis. Count and metadata are joined into a Seurat object,
annotated, and subjected to a quality control (QC). The object undergoes normalization, scaling, and variable feature
detection. Linear dimensionality reduction of the variable features, cluster identification and non-linear dimensionality
reduction precede subsequent differential gene expression (DGE) analysis, and cluster annotation.

2.7.1.1 Object creation and annotation

DGE matrices (and metadata) were loaded into Seurat for object creation. Object creation was
restricted to cells expression a minimum of 200 genes, of which genes are shared with at least 3
cells. In the object, a pattern search for mitochondrial (and ribosomal) genes was performed, and
their relative contribution to transcriptome stored in the metadata with the “AddModuleScore”-
function. “AddModuleSCore” was also utilized to annotate among others the signatures of core
microglial genes (Galatro et al., 2017). If needed, annotations functioned to aid QC with the
“subset”-function, ensuring only cells of interest were kept for analysis. In such cases, all cells with

a positive score were considered (> 0).

2.7.1.2 Quality control and Median Absolute Deviation

QC is a critical step in scRNA-seq analysis and aims to remove outlier cells across a range of factors.
Most commonly, Seurat utilizes parameters encompassing library size, library complexity, and
mitochondrial and ribosomal content by setting subjective limits to these variables (Chapter 1
Quality Control | Basics of Single-Cell Analysis with Bioconductor, n.d.; “Quality Control,” n.d.). Here,
| will provide an argument for the use of the Median Absolute Deviation (MAD) as an alternative

QC metric.

The number of detected transcripts in single-cells (i.e. library size), and the number of unique genes
in the library (i.e. library complexity), are the earliest markers of quality in single-cell and single-
nucleus RNA-sequencing (sxRNA-seq). Users commonly implement cut-off values; however, these
requires expertise and fine-tuning, as these often vary greatly between sample conditions, cell

types, single-cell platforms and read depth.
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Similarly, mitochondrial and ribosomal transcript content in sxRNA-seq are proxies of cell quality.
Cell membrane rupture and damage is associated with a loss of cytoplasmic transcripts, whereas
transcripts associated with intracellular complexes like ribosomes and mitochondria are largely
unaffected by these effects, effectively enriching for these transcripts with cell damage. Generally,
transcript capture and amplification in droplet-based systems are limited by the finite resources
provided for it. That is, capture of higher ribosomal and mitochondrial transcripts will deplete
resources for other transcripts, in which even small changes in mapping to these genes will reduce
overall library complexity (Osorio and Cai, 2020). Unfortunately, like library size and complexity,

mitochondrial and ribosomal content also vary with context, obfuscating standardization.

For example, cell types vary in their cellular metabolism and relative gene expression, with
cardiomyocytes known to be highly metabolically active with large numbers of mitochondria, and
variations in library complexity between tissues (Almanzar et al., 2020; Osorio and Cai, 2020).
Moreover, species-specific cut-off values might be needed; high-quality mouse cells have less than
5% mitochondrial transcripts, whereas human cells would be better served with a threshold for
10% (Osorio and Cai, 2020). This is complicated further, as human (monocyte-derived)
macrophages and other cell types have been reported to have an interquartile range above 10%,

making the threshold highly variable depending on the context.

This variability (across parameters and biological diversity) has led recent studies to adopt a 3 x
MAD range for outlier cut-off (Daniszewski et al., 2018; Kracht et al., 2020; Tung et al., 2017; Waise
etal., 2019). MAD is a measure of statistical dispersion and a ‘consistent estimator of the population
standard deviation’. One might consider the use of the standard deviation (SD) itself for QC,
however, SD is rooted in the square of data and outliers have a large effect on the SD. MAD does
not require data to be squared and MAD is therefore more robust to outliers, providing a better
estimation of the quality parameters of sxRNA-seq data and aid QC. By using MAD, outlier removal
can be standardized in sxRNA-seq QC, independent of context-dependent variables like cell type.
Moreover, | belief that this standardization is particularly salient for integrated objects, as it is aids
large-scale data integration across a wide range of conditions as is common to a single-cell atlas.
Notably, setting thresholds remains the preferred way of performing QC; in fact, setting thresholds

for a single data source is faster and generally performs well.

Traditionally, QC is done with user-defined upper thresholds. These thresholds work well for single
source data; however, to reduce bias and accommodate variability in experimental procedure, the
Mean Absolute Deviation (MAD) was used to filter out low quality cells for integrated objects. MAD
allowed for the selective removal of outliers across several QC parameters (e.g. nCount_RNA;
nFeature_RNA; percent.rb; percent.mt). To identify outliers in library size and library complexity,

both metrics were represented on a log-scale, to accurately identify outliers before normalization
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was performed. Any cells outside of the lower and upper threshold were removed (3X MAD) (Figure

17).
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Figure 17: Representative application of MAD across QC parameters. Displayed are lower and upper thresholds of library
size (nCount_RNA), library complexity (nFeature_RNA), ribosomal content (percent.rb), and mitochondrial content
(percent.mt) of Sala Frigerio et al. 2019. Outliers below or above determined thresholds (red) were removed. Note the
absence of a lower limit with mitochondrial content.

2.7.13 Normalization, scaling and variable feature selection

“SCTransform” and “NormalizeData” was utilized for the log-normalisation of data. “SCTransform”
naturally holds arguments for scaling and regression, whereas “NormalizeData” was used in
combination with “ScaleData”. Library size and complexity, and mitochondrial and ribosomal
content were readily regressed for; however, other variables like cell cycle scoring were considered.
“CellCycleScoring”, a function with similarities to “AddModuleScore”, scored cells on their
expression of cell cycle phase-specific genes, assigning these to G1-, G2/M- or S-phase. Lists of cell
cycle genes are included in Supplementary Table 5. The most variable 3000 genes were selected for

feature selection with “FindVariableFeatures”.
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2714 Linear dimensionality reduction

Principal component analysis (PCA) was performed with the “RunPCA” function; RunPCA generates
sets of genes that are correlated statistically. Of those 3000 variable features that were selected,
the 50 strongest predictors of that variability (i.e. principal components, PC) were calculated.
“ElbowPlot”, “JackStraw” and “ScorelackStraw” informed on the statistical significance of those PC,

selecting only those factors with a P < 0.05.

2.7.15 Clustering

Seurat utilizes the K-Nearest Neighbours (KNN) algorithm for non-linear dimensionality reduction.
The KNN is a non-parametric, learning algorithm, that is, KNN is a fast algorithm, capable of testing
feature similarities. KNN was initiated with “FindNeighbours”, after the clustering resolution of cells

was varied with “FindClusters”, a Louvain-based function, in a range of 0.1 — 2.0.

Clustering is subjective measure in scRNA-seq data analysis. To aid the selection of the appropriate
clustering resolution, a clustering hierarchy was build with “clustree” from the Clustree package
(0.4.3). For a first-pass analysis, the resolution that failed to increase the number of clusters from
its lower tiered predecessor was selected, a commonly used heuristic prior to a review of the

biological significance of the identified clusters.

2.7.1.6 Non-linear dimensionality reduction

To project the clusters (and their corresponding transcriptome) onto a graph, non-linear
dimensionality reduction (NLDR) was perfo. There many different methods to reduce
dimensionality, t-distributed stochastic neighbour embedding (t-SNE) and uniform manifold

approximation and projection (UMAP) amongst them (Xiang et al., 2021).

t-SNE was found to be the best accurate and with good computational speed, whereas UMAP better
preserves the global structure of the underlying cluster relations better and has a larger stability. t-
SNE- and UMAP-plots were constructed with the “RunTSNE” and “RunUMAP” functions, and graphs
requiring a reduction parameter (like “DimPlot”) with the reduction parameter set to “tsne” or

“umap”, respectively.

2.7.1.7 Differential gene expression analysis and statistical analyses

Differential gene expression of single cells was done with “FindAlIMarkers”. Statistical significance
was achieved with a P-value < 0.05, based on Bonferroni correction using all dataset genes. A
minimum of 25% of all cells in a cluster needed to express the gene for it to be considered;
“min.pct” set at 0.25. Cluster markers were visualized with “DoHeatmap”, “VInPlot”, and

“FeaturePlot”. To support my analyses, | confirmed cluster results with Metascape, an annotation
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tool that integrates 40 independent knowledge databases, including DAVID (Zhou et al., 2019).
Unless stated otherwise, p values are represented as follows, *p<0.05, **p<0.01, ***p<0.001 and

*%%%p<0.0001).

2.7.2 Data and code accessibility

All data and scripts can be made available upon request. Please contact the corresponding author:

Diego Gomez-Nicola at D.Gomez-Nicola@soton.ac.uk.
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Chapter 3 Single-cell atlas of microglial heterogeneity

in the healthy CNS

3.1 Introduction

Single-cell technologies have redefined microglial biology, adding to an ever-growing repertoire of
microglial subtypes and phenotypes (Hammond et al. 2019; Keren-Shaul et al. 2017; Krasemann et
al. 2017; Li et al. 2019; Marsh et al. 2021; Matcovitch-Natan et al. 2016; Safaiyan et al. 2021). To
understand the respective relationship of individual studies to one another, a single-cell atlas aims
to provide a curated compendium of available knowledge in various contexts. In effect, a single-cell
atlas illustrates subtypes that are reliably reported between sources (Chen et al. 2021; Geirsdottir

et al. 2017; Lavin et al. 2014).

Several atlases have been developed since the adoption of single-cell technologies and ‘Big Data’
biology. This includes examples like the ‘Mouse Cell Atlas’, ‘Human Cell Atlas’, ‘Single Cell
Expression Atlas’, and ‘Single-Cell Portal’, as well as efforts like The Tabula Muris Consortium
(Almanzar et al., 2020; Han et al., 2018; Schaum et al., 2018; Svensson et al., 2020). Each of these
resources covers a broad range of organs, cell types and contexts. However, to my knowledge, no
such atlas has been specifically developed for microglia. Consequentially, single-cell studies report
on a range of microglial subtypes, each with a distinct nomenclature, obfuscating underlying

transcriptional similarities and conceptual understanding.

Hammond et al. (2019) is currently the largest dataset on microglial biology, a seminal piece of work
that includes approximately 76,000 cells across the murine lifespan (Hammond et al., 2019). This
work was used and expanded upon to provide in-depth knowledge of microglial transcriptional
heterogeneity across data sources. In this chapter, | detail the generation and analysis of a
microglial single-cell atlas of 113,689 cells; to study context-dependent microglial heterogeneity;
translate murine early developmental findings into human gestation; identify their pseudotemporal

order and population dynamics.

3.1.1 Microglial heterogeneity — representation across the lifespan

Established microglial subtypes were discussed in section 1.3. Here, | will briefly review these
subtypes before delving into the single-cell atlas, by summarizing their transcriptional signature and

age of occurrence.

scRNA-seq studies have identified distinct developmental, adult, and age- or disease-associated

microglial subtypes, as well as CAM, CPM and exAM (Table 2) (Hammond et al. 2019; Keren-Shaul
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et al. 2017; Krasemann et al. 2017; Li et al. 2019; Marsh et al. 2021; Matcovitch-Natan et al. 2016;
Safaiyan et al. 2021). Notably, transcriptional similarities and distinctions exist between subtypes
and states, supportive of their shared ontogeny and the subsequent divergence in a context-

dependent manner.

Table 2: Transcriptional signatures of known microglial subtypes.

Age Subtype/state Source Transcriptional signature
Spp1, Gpnmb, Igfl, Lgals3, Fabp5,
Sevelonment ATM Hammond et al. 2019 Cd9, Lpl, Ctsl, Lgals1, Apoe
P oAM L et 2l 2019 Spp1, Gpnmb, Lpl, Pid3, Ctsl, Csf1,
’ Igf1, Ctsb, Slc23a2, Gpx3
- Cts3, Ctsd, Laptm5, Csflr, Clqa,
Adult HOM Matcovitch-Natan et a/. 2016 Selplg, Clqc, Tmem119, Sparc, Serinc3
L Cst7, Clec7a, Itgax, Cd74, H2-Ab1,
ARM Sala Frigerio et al. 2019 H2Aa, Ctsb, Ctsd, Spp1, Gpnmb
Itgax, Mamdc3, Cst7, Fam20c, Ccl4,
DAM Keren-Shaul et a/. 2017 Lmbrd2, Egr2, Csf1, 5430435G22Rik,
Ccl3
Age/disease Ifitm3. Ifi2712a, Ccl12, Lgals3bp, Ifit3,
IRM Hammond et a/. 2019 Rtp4, H2-K1, Isg15, Cst7, Bst2
Cxxc5, Tgfbr2, Golm1, Salll, Slco2b1,
MGnd Krasemann efal. 2017 | o3 por12 Pary12, St3gal6, Pde3b
. Apoe, Clgb, Fthl, Lyz2, H2-D1, Ctsb,
WAM Safalyan et /. 2013 Ctss, Ctsz, H2-K1, Ftl1, B2m
Pf4, F13a1l, Ifitm2, Dab2, Fcna, Lyz2,
CAM Hammond et &/, 2019 Ms4a7, Lgalsl, Ifitm3, Ms4a6c
Nuf2, Pscrcl, Ncapd2, Ccnb2,
General CPM Li et al. 2019 Smc4, Mcm4, Exol, Slbp, Gmnn,
Cdc45
Histlhlc, Histlh2bc, Ubc, Jund, Rgsl,
exAM Marsh et al. 2022 Hspala, Hsp90aal, Ccl4, Duspl,
Hspalb

Note: Top 10 differentially expressed genes of known microglial subtypes. The age and source in which these subtypes
were identified are detailed. G2M-phase genes in CPM are highlighted in bold, whereas S-phase genes are in Italic. ATM,
axon tract-associated microglia; ARM, activated response microglia; CAM, CNS-associated macrophage; CPM, cycling and
proliferating microglia; DAM disease-associated microglia; exAM, ex vivo-activated microglia; HOM, homeostatic
microglia; IRM, interferon response microglia; MGnd, neurodegeneration-associated microglia; PAM, proliferative region-
associated microglia; WAM, white matter-associated microglia.

3.1.2 Trajectory inference and pseudotiming

Cell and lineage divergence is a highly complex and temporally ordered process. Several
bioinformatic tools have been developed to reconstruct differentiation trajectories in scRNA-seq
data. Broadly speaking, these include methods based on transcriptional entropy, RNA velocity and
trajectory inference (i.e. pseudotemporal ordering) (Grin et al., 2016; Guo et al., 2017; Manno et

al., 2017; Teschendorff and Enver, 2017; Trapnell et al., 2014).

Transcriptional entropy, or signalling promiscuity, approximates cellular potency and
differentiation potential of a cell — cells lower on the Waddington landscape have reduced entropy.
That is, transcriptional profiles associated with more diverse biological processes are indicative of

an immature phenotype, whereas less processes are associated with a differentiated cell (Griin et
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al., 2016; Guo et al., 2017). Similarly, RNA velocity uses the relative prevalence of un-spliced and
spliced mRNA, or nascent and mature mRNA, respectively, to inform on the transcriptional kinetics
at any given developmental stage (Manno et al., 2017). With RNA velocity, more un-spliced
transcripts equal an immature phenotype and function to predict differentiation dynamics. In turn,
trajectory inference projects transcriptionally similar cells onto a lower dimensional space and
identifies branch and converging points between them, to construct a lineage structure (Cao et al.,
2019). Each method allows for an unbiased and transcriptome-based method to order cells along
an artificial (differentiation) trajectory. However, of the three, trajectory inference has rapidly

become the preferred method, with over 70 distinct tools developed to date (Saelens et al., 2019).

Trajectory inference allows for an unsupervised identification of cellular subtypes, delineation of a
differentiation tree, and inference of regulatory interactions. Furthermore, most of the tools are
developed in R programming language, facilitating integration with Seurat, the analysis tool of
choice. Trajectory inference methods can be subdivided in cyclic-, linear-, bi- and multifurcation-,
tree-, and graph-based methods; descriptive of their unique ability to detect underlying trajectory

structures (Figure 18).

Cycle Linear Bifurcation Multifurcation

~

—
~— \
Tree Connected graph Disconnected graph

Figure 18: Trajectory inference types. Trajectory inference methods are categorized in 7 archetypes, ranging from low
complexity cycle and linear, to high complexity connected and disconnected graph-based methods. Monocle3 utilizes a
Tree-based structure, allowing users to define a moderately complex differentiation trajectory. Adapted from Saelens et
a. (2019).

However, the tools vary considerably in their performance to the point that there is no ‘one-size-
fits-all’. To that end, a decision diagram developed by Saelens et al. (2019) was used to aid the
selection of the tool for trajectory inference (Saelens et al., 2019). No a priori assumptions of the
underlying topology were made of the microglial lineage. Following the decision diagram for tool
selection, the tree-based approach was favoured (Saelens et al., 2019). Of the four tree-based
approaches considered (i.e. Slingshot, PAGA, Monocle, and MST), only Monocle has publicly

available vignettes for use in combination with Seurat, driving my choice for it.

Monocle 3, the latest version of the package, has shown good overall performance, scoring well on
accuracy, stability, and usability (Saelens, Cao 2019). Unfortunately, Monocle 3 performance
declines over 100,000 cells; methods like PAGA and Slingshot outperformed Monocle on this.
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However, PAGA is a Python-based tool, Slingshot lacks Seurat integration, and the atlas does not

greatly exceed beyond 100,000 cells.

Unlike its predecessors, Monocle 3 has built-in functions to construct a framework of cellular
coordinates that can be used for trajectory inference (Cao et al., 2019). However, the framework
can be completed in Seurat, using the cellular coordinates from that tool to inform on the lineage
structure, offering a means to improve integration and interpretation of the two bioinformatic

tools.

3.2 Aims and objectives

In this chapter, | set out to detail a microglial single-cell atlas across the murine lifespan. This is to
establish a framework of current microglial transcriptomic heterogeneity, as well as to explore
context-dependent microglial diversity. Furthermore, | wish to illustrate how murine
developmental insights of cellular processes can be meaningful for human gestation. Similarly, | aim
to determine the pseudotemporal order of microglia, to identify the differentiation trajectories that

give rise to adult and late life heterogeneity.
Aim 1: Generation of a microglial single-cell atlas in murine development.

e Objective 1: To establish a framework of current knowledge
e Objective 2: To explore context-dependent microglial heterogeneity
e Objective 3: To translate murine early developmental effects to human gestation

e Objective 4: To perform a trajectory analysis of microglial differentiation

3.3 Materials and methods

12 representative scRNA-seq datasets were selected - see section 1.3.1 - of current biological and
technical trends in the microglial field. To standardize data pre-processing and downstream
integration, | developed a bioinformatic pipeline capable of being utilized sequentially (Figure 19).
In short, count matrices were collected and Seurat objects were generated that underwent QC;
were normalized and scaled; and regressed for ‘nFeature_RNA’, ‘percent.rb’, ‘G2M.Score’, and
‘S.Score’ (Step1). 3000 integration features were selected with “SelectintegrationFeatures” and
anchors identified with “FindIntegrationAnchors” (Step2). Linear and non-linear dimensionality
reduction, PCA and UMAP, respectively (Step3), were followed by DGE- and gene ontology (GO)-

analyses, and trajectory inference (Step4).
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Step 1 Step 2

anchor-based integration

gene count matrices
expression and metadata
Gene Expression omnibus ~ data collection annotation

2 DDBJ

"~ DNA Dsta Bank of Japan

quality control

Step 3
dimensionality reduction and cluster differential gene expression,
identification gene enrichment and

trajectory inference analyses

Figure 19: Overview of bioinformatic pipeline for analysis of microglial scRNA-seq datasets. Selected datasets are acquired
from open-access databases and pre-processed using QC metrics. Seurat anchor-based integration is carried out, resulting
in a combined dataset encompassing a vast scope of biological variables. Data analysis methods involve dimensional
reduction techniques and graphical clustering of cells. Finally, biological interpretation of clusters is achieved by
differential gene expression, gene enrichment, and trajectory analyses.

3.3.1 Dataset Acquisition

Count matrices and metadata were obtained from open access depositories of genomic data: Gene
Expression Omnibus (GEO), BioProject (BP) and ArrayExpress (AE) (Table 3, Table 4). To supplement
the publicly available data where needed, additional data was provided by the original authors.

Both murine and human datasets were collected.
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For the mouse lifespan, 12 datasets were combined for 113,689 (wild-type) microglia spanning

between embryonic day 6.5 (E6.5) to 29-months old (29M) (i.e. ~880 postnatal days, or P880); each

varying in their distribution of age- region- and sex-derived single-cells.

Table 3: Features of scRNA-seq datasets in the murine single-cell atlas.

Source Year | Accession # Cell # | Age Region Sex
BP: PO, 28M,
Dulken efal. | 2019 | D\ acoaoc | 2732 | Do svz M
Sala Frigerio et GEO: P90, 6M,
al 2019 | oE127893 2124 ) oM, qm | CTX AP TR M
_ E14.5, P4,
gfmm"”d e 12019 ggl(f)i21654 68660 | PS5, P30, | WB F, M
: 3.5M, 18M
P49, P80
Keren-Shaul et GEO: ! / WB, SC, CB
2017 7602 | P90, 4.5M, 1 5C Bl N A,
al GSE98969 e 2o | CTX
_ WB, CB, CP,
Li et al. 2019 ggl(f)i23025 1649 Eég'S' P7. | cx we, | M
OLF, STR
CB, CC
GEO: E16.5, p21, | CB CC/ F
Masuda efal, | 2019 1814 P21 o7 s, '
GSE120745 3.5M Vb Hip, sc | NA
Matcovich- GEO: E12.5,
Natan et al. 2016 | -sE79819 3038 | kg5 psg | WBIYS N.A.
GEO: P90, P97,
Mathys etal | 2017 | g0 o 984 | o aeu | HIP NA.
Pijuan-Sala ef AE: E-MTAB- E6.5,
al 2019 | 6967 200 | g6 75 g75 | WB N.A.
. GEO: P14, 18M,
Safaiyan etal. | 2021 | oepicssas 9777 | o st | SN WM | F M
The Tabula
. GEO: P90, 18M, | CB, CTX
Muris 2020 12002 | P20, 18M, CTX e M
s GSE109774 24M HIP
Utz et al 2020 | GEO: 108 | E16.5 WB N.A
: GSE146926 : A.

Note: Details of the respective source data is tabled, including cell and data accession numbers, age, CNS region, and sex.
All data are post quality control. AE, AssayExpress; BP, BioProject; CB, cerebellum; CC, corpus callosum; CP, choroid plexus;
CTX, cortex; E, embryonic day; F, female; GEO, Gene Expression Omnibus; HIP, hippocampus; M, month, male; N.A., not
available; ND, neurodegeneration; P, postnatal day; SC, spinal cord; SVZ, subventricular zone; YS, yolk sac; WB, whole
brain; WM, white matter; WT, wild type.

For the human single-cell atlas, 4 datasets were integrated for a total size of 22,138 single-cell and
single-nuclei (Table 4). Like the mouse atlas, | combined cells and nuclei from a variety of gestational
ages, CNS regions and sexes.

Table 4: Features of scRNA-seq datasets in the human single-cell atlas.

Source Year | Accession # | Cell/nuclei # | Age (PCW) Region Sex

Cao et al. 2020 | GSE156793 | 6072 13,16 - 18 CRB,CB |F, M

Kracht et a/. | 2020 | GSE141862 | 14573 ZG 11,13 - WB F, M
5-12, 14 -

Fan et al. 2020 | GSE120046 | 1358 15, 18 - 20, PONS N.A.
22, 24

Bian et al. 2020 | GSE133345 | 135 3-6,8 WB N.A.

Note: Details of the respective source data is tabled, including cell, nuclei and data accession numbers, age, CNS region,
and sex. All data are post quality control. AE, AssayExpress; BP, BioProject; CB, cerebellum; CRB, cerebrum; F, female; GEO,
Gene Expression Omnibus; M, male; N.A., not available; PCW, post conceptual week; WB, whole brain; WM.

63



3.3.2 Trajectory analysis

Monocle 3 was utilized from the group of Cole Trapnell (Cao et al., 2019). To integrate Monocle 3
with Seurat, the object was converted the atlas to a ‘CellDataSet’ object with the “SeuratWrappers”
packing function ‘as.cell_data_set’. The UMAP locations, as defined by Seurat, were used and
projected onto a UMAP space with the ‘cluster_cells’ function, after which ‘learn_graph’ to identify
branch points and convergences. A supervised analysis was performed with E6.5 as the root for the

graph, with the ‘order_cells’ function.

3.4 Results

3.4.1 Murine single-cell atlas quality and cluster stability

The murine cell atlas is composed of 12 distinct data sources that contribute differentially: varying
in cell number, age, region, and sex (Table 3). As a result, some differences were expected between
clusters. However, overt source-specific clustering and enrichment is indicative of low-quality data
integration that could necessitate subsequent batch corrections, beyond that which is achieved by
Canonical Correlation Analysis (CCA). | found that CCA performed well, with overall features of a
high-quality integration (Figure 20, Supplementary Figure 1). That is, each identified cluster is
composed of several sources and no overt variability was detected in QC parameters (i.e.

nCount_RNA, nFeature_RNA, percent.rb, percent.mt) (Figure 20).
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Figure 20: QC of integration single-cell atlas. a) Large-scale transcriptional similarities are found within the source data.
b) Each of 16 clusters is driven by cells from distinct data sources. ¢/d) Quality Control (QC) metrics in cluster identities. c)
Number of transcripts (i.e. library size) (nCount_RNA) and the number of genes (i.e. library complexity) (nFeature_RNA).
d) Percentage of ribosomal (percent.rb) and mitochondrial transcripts (percent.mt) are displayed.

Clustering of cells with a UMAP-plot, and most other forms of (non-)linear dimensionality reduction,
are subjective measures. The algorithm requires input from the user, who decides what the number
of dimensions and resolution is that will be used for the projection. In that, it is important to strike
a balance between statistical and biological significance, and in my view, lower (and more
conservative) dimensions and resolution are often preferred, as it will provide a more robust

biological result.

To determine dimensionality, as stated previously (in section 2.8.1.4), the heuristic of ‘ElbowPlot’
was combined with statistical testing by “JackStraw” and ‘JackStrawPlot’ (Figure 21). Each principal
component (PC) in the integrated dataset is scored and ranked on its variability (as measured by
the SD). The ‘elbow’ of dimensionality defines a subjective threshold of variability, in which the
variability drops considerably (i.e. PC10) (Figure 21). In contrast, statistical inference of each PC with
JackStraw found that most of the first 50 PC are statistically significant. Therefore, | chose to review
the top 20 dimensions for this dataset, excluding PC that offer little to the transcriptional

heterogeneity in the dataset.
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Figure 21: Determination of dimensionality. a) An ElbowPlot is commonly used to determine the ‘elbow’ of a dataset,
ranking the dimensions of a dataset that describe the underlying variability (i.e. transcriptional heterogeneity). The
standard deviation of the top 50 principal components (PC) are displayed. b) A JackStraw analysis infers statistical
significance of the PC, results which are displayed by a JackStrawPlot.

Principal component analysis (PCA) identified the gene sets that drive each PC (Figure 22,
Supplementary Figure 2, Supplementary Figure 3,Supplementary Figure 4). Genes in PC1 and PC2
include canonical microglial genes like Cx3cr1, Hexb and Tmem119, as well as cell cycle-associated
genes like Mki67 and Top2a (Hammond et al., 2019; Li et al., 2019) (Figure 22). In turn, PC8 is
featured by interferon-linked genes, which imply the presence of IRM (Hammond et al., 2019; Sala
Frigerio et al., 2019) (Supplementary Figure 2). Lastly, genes in PC20 contained genes that are
biologically relevant in early development- and age-associated lysosomal pathway and anti-
oxidative genes (e.g. Prdx1, Tmsb4x, Ctsb) (Supplementary Figure 4) (Cermak et al., 2016; Jeong et
al., 2018; Masuda et al., 2019). Taken together, these show that statistically correlated gene sets

(i.e. PC) are biologically relevant for clustering.
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Figure 22: Principal component analysis. Principal component (PC) 1 and 2 are visualized, illustrating their respective gene
sets.
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Unlike dimensionality, the resolution parameter is not typically tested statistically. Here, the
resolution where the number of clusters level off is typically used for a preliminary analysis.
‘Clustree’ identified the number of clusters with varying resolutions. In the analysis, all resolutions
between 0.1 and 2.0 were tested (Figure 23).
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Figure 23: Determination of cluster resolution. Clustree visualises the number identified clusters with resolutions between
0.1 and 2. Higher resolutions splits larger groups of cells into an ever more expanding repertoire of clusters.

In the dataset, clusters first stabilize at resolution 0.7. However, | set resolution to 0.5, a more
conservative option that manages to preserve the major clusters, without over clustering (Figure
24). To that end, 20 dimensions and a resolution of 0.5 were selected.
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Figure 24: Linear dimensionality and cluster identification parameters. Cluster identification (with 20 dimensions) was
tested on a range of resolutions; 0.3 to 0.8 were considered for the integrated object, and 0.5 selected.

3.4.2 Transcriptomic heterogeneity of microglia in the murine lifespan

Broadly, 15 clusters of cells with distinct transcriptional profiles were identified (Figure 25). In this
section, | will detail the annotation of well-known myeloid profiles such as CAM, exAM, CPM, HOM,

and several others across a variety of biological factors (e.g. age, region, sex).
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Figure 25: General microglial heterogeneity during the murine lifespan. A total of 113,689 cells in the integrated were assigned to15 transcriptionally distinct clusters. A Uniform Manifold Approximation and
Projection (UMAP)-plot is displayed, as well as the cluster-specific heatmap of the top 10 genes in each. Clusters are colour coded and shared between the UMAP-plot and heatmap. Gene expression levels in
the heatmap range from low (purple) to high (gold). UMAP-plot of PC1-20 and resolution 0.5. FindAlIMarkers with ‘only.pos = TRUE’, ‘min.pct = 0.25’,” logfc.threshold = 0.25’, ‘test.use = "wilcox"’

69



34.2.1 Non-microglial cells, the minimum fraction, and technical artefacts

3 non-microglial clusters were identified in the single-cell atlas, which include neutrophils,
monocytes, CNS-associated macrophages (CAM; also known as border-associated macrophages,
BAM) (Li et al., 2019; Mrdjen et al., 2018). In addition, ex vivo-activated microglia (exAM) were
resolved, a microglial state that features a dissociation-induced, artefactual gene signature (Marsh
et al., 2022). These 4 populations function to informed on the quality of the scRNA-seq data, and

on the minimum fraction of the dataset.

34.21.1 Neutrophils

Cluster 14 is the smallest cluster (i.e. 385 cells or ~0.3%) and the rarest cell type in the atlas (i.e.
minimum fraction). Several established microglial gene lists were tested with ‘AddModuleScore’,
however, no correspondence with known microglial subtypes was detected (data not shown; see
Supplementary Table 3 for a table of established microglial markers). To explore the identity of
cluster 14 further, differential gene expression (DGE) analysis identified 37 genes (with an
avg_log2FC over 1.5), which were subsequently tested with Metascape (Figure 26) (Zhou et al.,
2019).

] |R-MMU-6798695: Neutrophil degranulation

] G0:0030335: positive regulation of cell migration

] G0:0032507: maintenance of protein location in cell

] G0:0060337: type | interferon signaling pathway

] G0:0050900: leukocyte migration

] G0:0008285: negative regulation of cell population proliferation
] G0:0032970: regulation of actin filament-based process

] mmu00010: Glycolysis / Gluconeogenesis

] GO0:0043254: regulation of protein-containing complex assembly

mmu05418: Fluid shear stress and atherosclerosis

-og10(P)

Figure 26: Neutrophil marker expression in the atlas. Cluster 14 express genes commonly associated with neutrophil
degranulation, cell migration and the type | interferon signalling pathway.

10 of 37 genes were involved with neutrophil degranulation and include Cxcr2, Mmp9, S100a11.
Although this suggests these cells are neutrophils, this by itself does not confirm an origin; genes
can have multiple associations beyond what is currently annotated by GO. To this end, | used a
neutrophil gene list, as described by Xie et al. (2020) (Supplementary Table 4) (Xie et al., 2020). The
module score (i.e. gene list enrichment score) of the genes effectively localized to cluster 14 (Figure

27).
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Figure 27: Neutrophil gene markers are enriched in cluster 14. b) VinPlot of selected neutrophil markers (i.e. Hdc, Mmp9).

Remarkably, most cells in cluster 14 derive from Keren-Shaul et al. (2017) (Figure 20). This study
used a Cd45* enrichment strategy and reported isolation of other immune cells like neutrophils, NK
cells, etc (Keren-Shaul et al.,, 2017). It is possible that the annotation and enrichment of core
microglial genes did not effectively minimize the retention of these cells, impacting downstream
data quality negatively. Furthermore, in my exploration of cluster markers, it was noted that
neutrophils share several genes with dendritic cells (DC) (e.g. Hdc, S100a11), suggesting that further

sub clustering of cluster 14 might delineate these two cell subtypes.

3.4.2.1.2 Monocytes

Unlike cluster 14, cluster 12 does not show a large transcriptional distinction from other clusters
and is only featured by the expression of Lgal3, Cnn2, Cd74 and Lsp1 (over an avg_log2FC of 1.5)
(Figure 28, Supplementary Table 4). None of these genes are unique to the cluster and can also be
found in clusters 2, 5, 11, and 14. Cluster 12 might in fact derive from several immune cells, e.g.
Ly6C"°" or Ly6C" monocytes, monocyte-derived cells (MdC). Each of these are featured by the
expression of Csf1r and Cx3cr1 (Mrdjen et al., 2018; Percin et al., 2018), and supports the absence
of cluster-specific markers. As for the neutrophil cluster, further sub clustering is expected to

address this.
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Figure 28: Monocyte-like signatures are non-selective. a) A relative enrichment of monocyte-associated genes are enriched
in cluster 12, albeit non-selectively with widespread expression of genes in cluster 8, 12 and 14. b) VInPlot of selected
monocyte genes (i.e. Crip1, Napsa).

3.4.2.1.3 CNS-associated macrophages

CAM are the second largest immune cell population in the CNS (Mrdjen et al., 2018). Enrichment
method selection and the shared developmental ontogeny of CAM and microglia often see both
subtypes retained by dimensionality reduction and analysis of transcriptional (Jorddo et al., 2019;
Li et al.,, 2019; Van Hove et al., 2019). Indeed, CAM are often deliberately kept as an internal

reference in scRNA-seq microglial studies (Hammond et al., 2019).

To identify CAM in the dataset, | used ‘AddModuleScore’ in combination with 10 canonical markers
of CAM: Clec12a, Mrcl1, Ms4a8, Ms4a4a, Pf4, F13al, Dab2, Lyvel, Stab1, Siglec1 (Kierdorf et al.,
2019; Van Hove et al., 2019). Cluster 11 was identified as CAM (Figure 29).
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Figure 29:CNS-associated macrophages are present in the single-cell atlas. a) CNS-associated macrophages (CAM) are
identified in cluster 11 by canonical markers of such cells. b) VinPlot of Mrc1, Pf4 and Ms4a?7 are displayed.

34214 Technical artefacts and ex vivo activated microglia

scRNA-seq data (in particular when derived from microglia) is known to be susceptible to technical
artefacts (Adam et al., 2017; Marsh et al., 2022; Wu et al., 2017). Microglia that have acquired an
artefactual signature are commonly known as exAM (Marsh et al., 2022). | utilized 3 gene list that
are enriched in exAM, to aid the identification of such microglia in the single-cell atlas. Each gene
list could identify those cells most affected by technical artefacts, yet distinct differences in their
accuracy to do so were noted (Supplementary Figure 5). A gene list first described by Marsh et al.

(2022) best captured the ex vivo signature (Figure 30). The list derives from standard-dissociated
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microglia relative to those isolated in the presence of transcriptional and translational inhibitors

and clearly defines dissociation-induced technical artefacts (Supplementary Table 5).
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1 G0:0043618: regulation of transcription from RNA polymerase Il promoter in response to stress
1 WP113: TGF-beta signaling pathway

] GO0:0060411: cardiac septum morphogenesis
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1 WP2432: Spinal cord injury

1 G0:0010942: positive regulation of cell death

| G0:0008285: negative regulation of cell population proliferation

1 mmu04380: Osteoclast differentiation
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| G0:0030278: regulation of ossification

1 G0:0032102: negative regulation of response to external stimulus
1 mmu05418: Fluid shear stress and atherosclerosis

| G0:0060284: regulation of cell development

] WP447: Adipogenesis genes

] G0:0007623: circadian rhythm

] mmu04350: TGF-beta signaling pathway

] G0:0009896: positive regulation of catabolic process
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Figure 30: Identification of exAM. a) A gene list from Marsh et al. (2022) was used in combination with ‘AddModuleScore’.

b) VinPlot ex vivo-activated microglia (exAM) genes. c) Functional gene annotation (with Metascape) identified a.o. an
association with response to stress and TGF-beta signalling pathway.

In correspondence to the gene lists and other sources on technical artefacts in scRNA-seq, cluster
7 markers include genes like Fos, Jun, Egrl, ler2 and Zfp36 (Adam et al., 2017; Brink et al., 2017; Li
et al., 2019; Marsh et al., 2022; Van Hove et al., 2019; Wu et al., 2017) (Figure 30). Broadly, genes
in cluster 7 were associated with the regulation of hemopoiesis (GO:1903706), regulation of
transcription from RNA polymerase Il promoter in response to stress (GO:0043618) and TGF-R
signalling pathway (WP113), as determined with Metascape (Zhou et al., 2019) (Figure 30). The
associated with the TGF-R signalling pathway hint towards the interconnected nature of ex vivo
signatures with microglial identity and might need mitigation to improve microglial scRNA-seq data
quality. Given that 4023 of 113690 cells (~3.5%) in the atlas are localized to this cluster, the question

remains to which extend this holds true.
3.4.2.2 Age functions as the main driver of microglial heterogeneity in health

Ageing alters the epigenetic marks of DNA and drives differentiation, a process commonly known
as the epigenetic clock theory of aging (Horvath and Raj, 2018; Reik, 2007). DNA methylation-base
age typically increases as pluripotent cells differentiate, leading to a loss of stem and progenitor
cells and an increase of senescent cells (Horvath and Raj, 2018). Therefore, it is anticipated that
aging affects microglial heterogeneity. Microglial heterogeneity is typically highly transcriptionally

diverse in early development, reduced in adulthood, and increased once more with aging (Masuda
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et al.,, 2020). Given that the microglial population in health is locally maintained (without
contributions of circulating monocytes) (Askew et al., 2017), all cells in the CNS are part of the same

differentiation trajectory and allows for the temporal organization of such phenotypes.

To test the temporal order of microglial subtypes, a trajectory inference was performed on the
single-cell atlas gene profiles with Monocle 3. Embryonic day 6.5 (E6.5) was set as the root of the
analysis, and cells were projected onto the associated UMAP co-ordinates (Figure 31). Several
branch points and convergences were identified (Figure 31). Broadly, early developmental microglia
are featured by a low pseudotime score that is mostly stable until postnatal day 7 (P7) (Figure 31).
From P7 onwards, the score rapidly increases and reaches adult levels by P21. Adult levels remain

relatively stable until continued aging progressively reverts microglial scores to developmental

levels.
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Figure 31: Age as a driver of microglial heterogeneity. a) lllustration of age groupings in the single-cell atlas, ranging from
E6.5 to 29M old cells. Root cells are marked by (1) b) Trajectory inference of the atlas on the UMAP co-ordinates, with low
pseudotiming values in blue, and high values in yellow. c) Boxplots of pseudotime values (and their median) in the age
groupings. E, embryonic day; P, postnatal day; M, month.
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To delve into the age-dependent transcriptional dynamics, microglia were grouped in seven
maturation stages: early microglia (E10.5 — E14.5), pre-microglia (E14.5 — P9), sexually immature
microglia (SIM) (P9-P28), adolescent microglia (P28 — P60), adult microglia (P60 — 6M), middle age
microglia (6M- 18M), and old age microglia (>18M). In correspondence with Matcovitch-Natan et
al. (2016), early development displays a distinct transcriptional signature in line with disease-
(DAM) and proliferative region-associated microglia (PAM), and axon tract microglia (ATM) (e.g.

Spp1, Apoe, Igfl) (Figure 32) (Hammond et al., 2019; Keren-Shaul et al., 2017; Li et al., 2019;

typically associated with cellular proliferation. However, once adolescence is reached (between P28
and P60), a more typical microglial signature is acquired that includes the expression of Tmem119
and Selplg (Figure 32). Of note, the transition to a mature microglial signature in SIM (P9-P28) is

shrouded due to the lack of studies that have investigated this stage of maturation (Figure 32).
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Figure 32: Transcriptional distinction between early developmental microglia and postnatal mature microglia. Age group-
dependent transcriptional signatures transition between pre-microglia (E14.5 — P9) and sexually immature microglia (SIM)
(P9-P28). The top 10 genes (ordered by ‘avg_log2FC’) of each age group are displayed. FindAllMarkers with ‘only.pos =
TRUE’, ‘min.pct = 0.25°," logfc.threshold = 0.25’, ‘test.use = "wilcox".
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3.4.23 Early developmental microglia

The results show that early and pre-microglia have a distinct gene signature, which transitions into
an adult homeostatic signature from SIM onwards (Figure 32). In fact, cluster 5, 6 and 8 (in early
development) share a core signature with cluster 2 that includes the expression of Apoe, Cd63, Ctsb,
Gpx3, Ftl1, Npl, Serpine2, Ctsl and Gas6 (Figure 33). The predominant occurrence in early life has

led me to term cluster 2, as ‘early developmental microglia’ (EDM).
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Figure 33: Cluster-specific gene expression and age group distribution in the single-cell atlas. a) DimPlot of Seurat clsuters.
b) A heatmap of the top 10 genes (ordered by ‘avg_log2FC’) of each cluster are displayed. FindAlIMarkers with ‘only.pos
= TRUE’, ‘min.pct = 0.25’,” logfc.threshold = 0.25’, ‘test.use = "wilcox". c) DimPlot of age group annotations.

Apoe plays a role in lipid and cholesterol maintenance. Interestingly, Cd63 has recently been
identified as a marker in lipid-associated macrophages (LAM). Roles of Apoe, Ctsb, Cd63 in lipid
metabolism and protein degradation, suggest that these are typical features of myeloid cells shared

across the lifespan.

3.4.24 Lysosome pathway-associated microglia and the convergence of phenotypes

Disease-associated microglia (DAM), as well as MGnd and ARM, are best known for their occurrence
in (models of) age-associated disease (e.g. AD, MS, ALS) (Keren-Shaul et al., 2017; Krasemann et al.,
2017; Sala Frigerio et al.,, 2019). Of note, there have been reports about the transcriptional
similarities of DAM with PAM and ATM (Hammond et al., 2019; Keren-Shaul et al., 2017; Li et al.,
2019). Module score annotations with the top 50 genes of these subtypes support such similarities
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(Figure 34). Indeed, 6 out of the top 50 DAM, PAM and ATM signature genes are shared between
them (i.e. Csf1, Lpl, Spp1, Igfl, Gpnmb, Apoe). All 6 were enriched in cluster 8, albeit Apoe is a
remarkable exception to that, which broadly extends into early developmental clusters and CAM.

Clusters 2, 5-6, 8 and 12 each express Apoe highly, suggestive of a broad role of Apoe in CNS myeloid
cells (Figure 34).
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Figure 34: Transcriptional overlap between disease-, proliferative region- and axon tract-associated microglia. a) Gene list
annotations of disease- (DAM), proliferative region- (PAM) and axon tract-associated microglia (PAM) b) The top 50 genes
ofeach were compared, in order to discriminate between early developmental and age-associated microglial subtypes. c)
6 genes (i.e. Csf1, Lpl, Spp1, Igf1l, Gpnmb, Apoe) were shared amongst all 3 subtypes.

PAM and ATM selectively share 15 genes of their top 50 signature genes, 14 of which were
significantly expressed in cluster 8, thereby discriminating them from DAM (Figure 35).

Interestingly, | noticed the expression of Itgax and Ank in cluster 8, two genes commonly associated
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with DAM (Kamphuis et al., 2016; Keren-Shaul et al., 2017). Of those two genes, only Ank was a
(statistically significant) cluster marker. Immunohistochemistry has previously identified Cd11c*
microglia in the white matter during myelinogenesis, as well as with aging and disease (Benmamar-

Badel et al., 2020), further highlighting the similarities between PAM, ATM and DAM phenotypes.
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Figure 35: Phagocytic microglia display a mixed transcriptional signature and are evident throughout life. a) VinPlot of
genes typically associated with axon tract- and proliferative region-associated microglia (Pld3, Syngr1), as well as disease-
associated microglia genes like Ank and Itgax. b) Barplot of age group and cluster identity illustrates that pre-microglia
are the largest contributors to cluster 8, although middle age and old age microglia are also evident.

In concurrence, looking into their relative distribution across the lifespan, cluster 8 cells are
predominantly pre-microglia, albeit a significant number of cells were also evident with age (Figure
35). In fact, | cannot exclude that some age-associated DAM are present, as a subgroup of middle
and old age microglia are localized to cluster 8. Of note, other clusters feature old age microglia too
and allocation to old age alone does not imply a DAM-like state. Subsequentially, the phenotypical
convergence of ATM, PAM and DAM have led me to describe cluster 8 as lysosomal pathway-
associated macrophage (LPM), corresponding to and reflective of their phagocytic function
independent of age. Moreover, LPM show an enrichment for AD-associated risk factors (e.g. Apoe,
Ctsb, Pld3) and warrant further study in early developmental heterogeneity as a therapeutic target

(Figure 36).
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Figure 36: Enrichment of AD risk factors in early development. a) Dimplot of identified clusters in the murine cell atlas. b)
Cluster 8 (i.e. LPM) are enriched for late onset Alzheimer’s disease (AD) risk factors, as reported by Sala Frigerio et al.
(2019). ¢/d) 3 examples are shown (i.e. Apoe, Ctsb, Pld3) in a cluster- and age group-specific manner.

3.4.25 Microglial proliferation follows a wave-like pattern throughout life

Microglial proliferation is a critical cellular process that underlies population dynamics. As
discussed, CPM are most typically associated with early development and the expansion of the
microglial population (Alliot et al., 1999; Askew et al., 2017; Nikodemova et al., 2015). The
developmental expansion is concurrent with Sall1- and Tgfb1- activated gene cascades to adult
microglial identity (Butovsky et al., 2014; Buttgereit et al., 2016). CPM prevalence occurs in 3 waves
during the murine lifespan, the most predominant one of which between E7.5 and P21 (Figure 37).

However, middle age and old age increases of microglial proliferation are biologically interesting. It
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showcases ongoing population dynamics in old age that correspond to microglial dynamics in age-
associated disease, while simultaneously highlighting middle age as a potential target for

modulation of the microglial population (Krasemann et al. 2017; Nikodemova et al. 2016).
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Figure 37: Microglial proliferation in the murine lifespan. a) Annotation of cell phase resolves distinct clusters of cells in
G2M- and S-phase. b) Actively cycling and proliferating microglia (CPM) are most evident in early development,
independent of phase.

3.4.25.1 Wave-like patterns of human gestational, microglial proliferation

With such widespread processes in murine early development, it is scientifically and biologically
relevant to study if such processes are present in human gestation. To that end, | gathered count
matrices and metadata of 4 human single-cell and single-nuclei studies in gestation including
embryonic, early fetal, and mid-late fetal age (Bian et al., 2020; Cao et al., 2019; Fan et al., 2020;
Kracht et al., 2020); together these span a broad range from post conceptual week (PCW) 7 to 24
(Table 4).
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Indeed, a similar wave-like pattern of microglial proliferation in gestation became evident, the

largest of which in early gestation (Figure 38) (Menassa et al., 2022).
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Figure 38: Cycling and proliferating myeloid cells in human gestation. a) Actively cycling and proliferating microglia (CPM)
in the scRNAseq dataset were identified across gestational age. b) Barplot of CPM across human gestation; only ages with
a minimum of 50 cells were selected (7 — 24 PCW). PCW, post conceptual week.

In the integrated object, 8 clusters were identified that express typical myeloid markers, among
which CPM (Figure 38, Supplementary Figure 6, ). This proliferation cluster also displayed a wave-
like distribution across gestation, first peaking at 9 PCW and then peaking again at 18 PCW, tracking

the pattern observed at the histological level (Menassa et al., 2021).

Like in the large-scale murine atlas, the UMAP-plot was split by data source (i.e. original identity).
All sources align well spatially suggestive of a high-quality integration (Supplementary Figure 7). To
ensure these cells are transcriptional similar across assays, a necessary additional precaution was
taken. | tested the alignment of CPM cells between source data and identified forty conserved
markers by utilizing the ‘FindConservedMarkers’ function of the Seurat package. Gene ontology and
protein-protein interaction enrichment analyses of this gene set with Metascape underscored their

association with cell cycle processes (Figure 39).
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Figure 39: Metascape analysis of conserved CPM markers. Gene ontology (GO) and protein-protein interaction (PPI)
enrichment analysis mark key mitotic cell cycle processes. PPl enrichment analysis identified mitotic spindle checkpoint
and amplification of signal from the kinetochores (in red), as well as mitotic chromosome condensation and condensing |
complex (in blue)

Unfortunately, human scRNA-seq data remains rare and it makes a similar extension throughout

life more complex. More research in human microglial heterogeneity is needed to detail this
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further, as early developmental waves of proliferation and selection give rise to adult homeostatic

and non-homeostatic phenotypes.
3.4.2.6 Homeostatic microglia are heterogeneous in the healthy murine CNS

Homeostatic microglia (HOM) have long been thought to be a single population, however, much
like other microglial subtypes, HOM are recognized to be a heterogeneous population composed
of various subgroups (Hammond et al., 2019; Li et al., 2019). A homeostatic gene list first published
by Matcovitch-Natan et al. (2016) was used to identify the clusters; the list includes microglial
markers that are expressed from P28 onwards (Matcovitch-Natan et al., 2016) (Supplementary
Table 3). 5 distinct HOM clusters were identified (i.e. cluster 0,1,3, 4 and 10) with relatively stable
and selective levels of homeostatic and sensome gene expression (Figure 40) (Supplementary Table

3).
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Figure 40: Homeostatic microglial identity corresponds to the sensome signature. a) DimPlot of identified murine clusters
across the lifespan. b) FeaturePlot of homeostatic (Matcovitch-Natan et al., 2016) and sensome markers (Hickman et al.,
2013)feature similar annotations. c) VinPlot of cluster-specific expression levels of both annotations.

It was argued that such age-specific trajectory inference results would be reflected by changes in
homeostatic microglial genes. Therefore, the homeostatic gene score expression was tested
throughout the lifespan. Indeed, homeostatic signatures were stably expressed throughout most
of adult life, with lower levels in early development and old age, and a high correlation between

homeostatic and sensome gene signatures (Figure 41).
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Figure 41: Homeostatic gene expression throughout life. a) Homeostatic gene expression increases in early development

to attain a stable level throughout adulthood. Old age (>18M) is featured by a loss of said homeostatic genes. b)
Homeostatic and sensome gene expression correlate highly.

Next, a panel of microglial genes (Csf1r, Cx3cr1, Hexb, P2ry12, Tgfbrl, Tmem119) were selected and
displayed individually (Figure 42). 3 key points were noted. First, Hexb was expressed highly and
stable in all developmental and homeostatic clusters, as well as in several others (e.g. exAM);
indirect proof of the validity of Hexb to reliably identify microglia (Masuda et al., 2020) (Figure 42).
Second, in contrast, Csf1r, Cx3crl1, P2ry12, Tgfbrl and Tmem119 showed considerable variability in
the clusters, highlighting their transcriptional dynamics throughout life (Figure 42). Notably, P2ry12

and Tmem119 levels were both lowered in cluster 8, that is, LPM (Figure 42).
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Figure 42: Homeostatic gene expression in the single-cell atlas. VInPlot of 6 homeostatic genes in a cluster-specific manner.

Regarding Tgfbrl and Tmem119, expression of these genes was overtly lower in early development,

in line with their developmentally regulated expression; Tmem119, and Tgfbr1 expression increases
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with age, reaching stable adult levels from P14 onwards (Figure 43) (Bennett et al., 2016; Butovsky
et al., 2014).
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Figure 43: Microglial maturation and canonical marker expression. VinPlot of Tgfbrl and Tmem119 expression levels by
age group.

3.4.2.7 Interferon response microglia — a distinct age-associated microglial subtype

Interferon response microglia (IRM) are enriched for genes in the interferon (IFN) response
pathway. The canonical type | IFN signalling pathway is featured by mediators of antiviral and
inflammatory responses, as well as repressors of inflammatory pathways (lvashkiv and Donlin,
2014). Although some IFN genes have also been reported in other age-associated cell types like
DAM or white matter-associated microglia (WAM), IRM cells are believed to be mutually exclusive
(Sala Frigerio et al., 2019). Sala Frigerio et al. (2019) performed a trajectory inference and found

that microglia with age differentiate into either IRM or ARM (i.e. DAM) (Sala Frigerio et al., 2019).

Although some IRM cells can be seen throughout the single-cell atlas, most are localized to cluster
10 and are transcriptionally distinct from LPM (Figure 44). Furthermore, markers of cluster 10
display minimal overlap with typical markers of age-associated DAM or WAM, and none of which
are shared between all three (Figure 45). As shown previously, Apoe expression is elevated in early
development (cluster 2, 5, 6 and 8) and in CAM (Figure 36). In contrast, HOM and IRM expression

of Apoe is relatively low (Figure 36), supportive of a distinct trajectory.
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Figure 44: Interferon response microglia in the single-cell atlas. a) FeaturePlot of IRM gene annotation. b) Transcriptional
overlap between age-associated microglial subtypes is minimal. Disease- (DAM) and white matter-associated microglia
(WAM) and interferon response microglia (IRM) do not display large transcriptional similarities, with the greatest overlap
between DAM and WAM signatures. c) Cluster 10 cells express interferon response genes (e.q. Ifit3, Irf7, Oasl2, Usp18)
and are identified as interferon response microglia (IRM).

3.4.2.8 Aged Inflammatory Microglia

Cluster 13 is marked by genes like Cd83, Gpr84, Tir2, Cxcl16, Id2 and Nfkbia. Cd83 is best described
for as a mature dendritic cell (DC) marker, as well as an immune checkpoint molecule in B- and T-
cell differentiation (Grosche et al., 2020; Z. Li et al., 2019). Although there have been reports of DC
populations that express Ibal and could therefore be confused with myeloid cells (Kéhler, 2007);
cluster 13 reliably expressed typical microglial markers like Tmem119, Hexb, P2ry12 and Tgfbrl, as
well as Csfir and Cx3crl to comparable levels as seen in CAM (i.e. cluster 11) (Figure 42). In
microglia, Cd83 has been linked to inflammatory microglia in murine and human tissue that
increases with age (Jin et al., 2021; Olah et al., 2020; Zheng et al., 2021). Indeed, cluster 13 increases
with age, an effect that | will address in the next section on microglial population dynamics. The
inclusion of genes involved with the microglial activation cascade (i.e. TIr2, Nfkbia) further
highlighted their inflammatory state. For that reason, this cluster was termed Aged Inflammatory

Microglia (AIM).

3.4.3 Age-specific effects on microglial population dynamics

Age is the major driver of microglial heterogeneity in health. Early development and age-associated

clusters identified and explored, including AIM, CAM, CPM, EDM, HOM, IRM and LPM. The data
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shows that these 7 major subtypes are the drivers of microglial heterogeneity in the murine
lifespan; 5 distinct HOM-clusters bring the total to eleven. However, the underlying population
dynamics are so far unexplored. That is, how the emergence and decline of microglial subtypes
varies in an age-dependent manner. To this end, l illustrated their respective occurrence across the

age groups; from early microglia up to and including old age microglia (Figure 45).
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Figure 45: Age group-dependent cluster distribution and annotation. a) DimPlot of microglial and CAM clusters. 15 cluster
were identified, 11 of which include microglial clusters and CAM, excluding cluster 7, 12 and 14. b) BarPlot of age group
specific population dynamics. c) StackedBarPlot of the 11 clusters, to display predominant clusters by developmental age.
AIM, Aged Inflammatory Microglia, CAM, CNS-associated macrophages; CPM, cycling and proliferating microglia; EDM,
early developmental microglia; HOM, homeostatic microglia;, IRM, interferon response microglia; LPM, lysosome
pathway-associated microglia. Early microglia (<E14), pre-microglia (E14-P9), SIM, sexually immature microglia (P9-P28),
adolescent microglia (P28-P60), adult microglia (P60-6M), middle age microglia (6M-18M), old age microglia (>18M). P,
postnatal day; M, months old.

Most microglia in early development are CPM and EDM; 80 — 95% of all microglia belong to these
subtypes. In old age, CPM and EDM occur as a minority population. In turn, CAM do not have an

overt age-specific prevalence and can stably be identified across the lifespan.

Unlike CPM and EDM, HOM-clusters gradually increase in early development, followed by an
exponential growth in SIM (P9-P28) (Figure 45). By adulthood, HOM-clusters reach a maximum,
after which the populations decrease to approximately 80% of all microglia in old age. Interestingly,
the HOM-clusters display a differential maturation profile. HOM2 reach their maximum early in

development, concurrent with the rapid expansion of the homeostatic population. In contrast,
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HOMS3 gradually increases with age, increasing its relative proportion in a declining homeostatic

population.

In turn, the loss of HOM-clusters with old age are concurrent with the gains of other phenotypes
(Figure 45). AIM form a small yet stable microglial population with aging, whereas IRM and LPM
each increase to ~6% in old age. LPM display a bi-modal pattern of occurrence, in which early

developmental and late life prevalence suggests biological relevance in each.

Interestingly, on average, AIM, IRM and LPM have lower pseudotime scores than HOM-clusters
(Figure 46). Furthermore, HOM3 has the largest variability in pseudotime score, a finding that is
supported by the relatively large proportion of middle age microglia and old age microglia in this
subtype. Sala Frigerio et al. (2019) had previously described TRM, also known as ‘transiting
response microglia’ (Sala Frigerio et al., 2019). It is possible HOM3 describes a similar intermediary

microglial subtype, central to maturation and age-associated loss of microglial identity.
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Figure 46: Homeostatic clusters display a higher pseudotime score. a) Boxplots of the major 11 microglial and CAM clusters
for their pseudotime scores. Variations in score are evident. b) Barplot of cluster distribution by age group. AIM, Aged
Inflammatory Microglia, CAM, CNS-associated macrophages; CPM, cycling and proliferating microglia; EDM, early
developmental microglia; HOM, homeostatic microglia; IRM, interferon response microglia;, LPM, lysosome pathway-
associated microglia. Early microglia (<E14), pre-microglia (E14-P9), sexually immature microglia (P9-P28), adolescent
microglia (P28-P60), adult microglia (P60-6M), middle age microglia (6M-18M), old age microglia (>18M). P, postnatal
day; M, months old

Taken together, acquisition of a mature microglial identity finds its origin in early developmental
clusters like CPM, EDM and LPM (Figure 45). The maturation of microglia is concurrent with an
increased pseudotime score, which is reduced with the emergence of age-associated subtypes like
AIM, IRM and LPM (Figure 46). Strikingly, the occurrence of LPM in early development and late life
implies that this phagocytic microglial subtype is a marker of dysbiosis; in which LPM functions to
establish homeostasis. Moreover, the transcriptional similarities of PAM, ATM and DAM, elude
that such microglia are each states within the umbrella of the LPM subtype (Figure 34, Figure 35,
Figure 36).
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3.4.4 No overt region-specific signatures were detected

Microglial region-specific signatures have been a debated concept in the single-cell literature. Here,
no region-specific enrichment was evident in the clusters (Figure 47). Most cells derive from whole
brain (WB) samples, possibly introducing a source data bias against the identification of such
effects. Moreover, simple differences in population dynamics might explain bulk RNA-seq
transcriptional heterogeneity, where scRNA-seq might be lacking. In short, the analyses were not
designed to resolve this debate. Albeit a moderate enrichment of yolk sac (YS)-derived microglia in
cluster 11 (i.e. CAM) was noted, as well as an enrichment of neutrophils in the spinal cord (Figure

47, Supplementary Figure 8).
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Figure 47: Regional cluster identities. Cluster identities derive from a diverse range of regions and do not illustrate any
region-specific clusters, albeit a relative enrichment of yolk sac (YS) microglia can be seen in cluster 11. AIM, Aged
Inflammatory Microglia, CAM, CNS-associated macrophages; CPM, cycling and proliferating microglia; EDM, early
developmental microglia; HOM, homeostatic microglia; IRM, interferon response microglia; LPM, lysosome pathway-
associated microglia. CBM, cerebellum; CC, corpus callosum; CP, choroid plexus; CTX, cortex; FB, forebrain;, GM, grey
matter; HP, hippocampus; MB, midbrain; OB, olfactory bulb; PFC, prefrontal cortex; SC, spinal cord; STR, striatum; SVZ,
subventricular zone; WB, whole brain; WM, white matter; YS, yolk sac.
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CAM, a macrophage population featured by the expression of a.0. Cd74, Pf4, Dab2, Apoe and Mrc1,
were discussed previously (Figure 29, Supplementary Table 2). In fact, markers (with an avg_log2FC
over 1.5) in cluster 11 greatly overlapped with YS markers (Supplementary Table 11). Moreover,
the absence of P2ry12, Tgfbrl and Tmem119 expression in CAM was noted (Figure 42). Such
findings further support their shared ontogeny and subsequent divergent differentiation.
Moreover, it provides an argument against regional specific signatures, where microglial subtypes

are distributed across the CNS.

3.4.5 Microglial maturation and sex-specific heterogeneity

Several studies have reported sex-specific effects in microglia, including those supporting distinct
transcriptional signatures, functions and maturation trajectories (Guneykaya et al., 2018;
Hanamsagar et al., 2017; Villa et al., 2018). However, most studies report on male mice and prevent
such comparisons, or fail to report on sex all together, a feature that was causal to an unequal
distribution of sexes in the dataset; a total of 28,740 cells were annotated as female, 66,569 as
male. This uneven distribution is best visualized in cluster 10 (i.e. HOMS5), where most cells derive
from male cells (Figure 48). Of note, HOMS5 (i.e. cluster 10) is disproportionally enriched for male
3.5M old cells (~*95%), more than what the sex distribution at this age would predict (13,680 of
22,031 cell are male at this age; ~62%) (Figure 48, Supplementary Table 12). Interestingly, most of
these cells derive from Hammond et al. (2019). Cluster 10 is featured by typical homeostatic
microglial markers, perhaps to a more defined level, and corresponds to a higher pseudotime score
(Figure 40, Figure 46). Sample collection, tissue processing, as well as cluster parameters can each

play a role in the cluster identification.
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Figure 48: Sex is distributed unevenly across the cluster identities. Female- and male-specific microglia percentages differ
in the single-cell atlas, with greater numbers of male microglia. Uneven distributions are most pronounced HOMS5.

To move beyond this limitation, a trajectory inference was performed of sex-specific cells in an age-
dependent manner (Figure 49). As it became evident in previous analyses, there is a lack of available
data in SIM, in the transition of pre-microglia (E14.5 — P9) to adolescent microglia (P28 — P60).
However, a unique convergent and divergent maturation pattern was found between male and
female cells across the lifespan (Figure 49). From a shared developmental pseudotime score, female
microglia mature faster to P90, scores converge at 3.5M, to diverge once more in old age (21M)

(Figure 49).
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Figure 49: Microglial maturation varies in a sex-specific manner. Female and male microglia display distinct maturation
trajectories, where female microglia start to display a greater degree of maturation from P5, to equilibrate around at
3.5M old.

To further the understanding of sex-specific maturation, | created a subset of key age groups (excl.
cluster 7, 11, 12 and 14). E14.5, P4, P90, 3.5M, 6M, 18M and 21M were selected, as these capture
the convergent and divergent behaviour described previously. These ages naturally have a more
balanced sex-distribution than in the complete atlas, although more male cells were evident in both
3.5 and 18M and cluster-specific enrichment is noted. See Supplementary Table 12 for a 3-way

contingency table of cell number based on age, sex, and cluster.

DGE-analysis of the age groups in a sex-specific manner identified key genes that varied along the
lifespan (Figure 50). Interestingly, apart from the expression of Xist —an X-chromosome inactivation
genes specific to females - no pan-sex differential genes were detected. That is, gene expression

signatures vary by age group, sex, and cluster (Figure 50).
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Figure 50: Sex-specific differentially expressed genes in group ages. Heatmap of age group specific genes differentially

expressed between sexes. Key genes are annotated with a white rectangle, to illustrate the sex, age, and cluster in which

they are expressed.
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Early on in development, a typical gene signatures was identified that includes the expression of
Apoe, Spp1 and Cd63, consistent with findings in the large-scale atlas (Figure 33). Interestingly, early
microglia also express Tmsb4x. This gene has previously been discussed as a lysosomal pathway-
associated gene in the principal component analysis (PC20) (Supplementary Figure 4).Tmsb4x has
also been described as a typical gene enriched in single-cell relative to single-nuclei RNA-sequencing

(Gerrits et al., 2020).

Once mice have reached 3.5M old, both male and female microglia take on a broad gene signature.
At first glance this includes microglial markers like Tmem119 and Selplg, and a variety of ribosomal
genes such as Rpl30, Rpl22I1, Rpl39, Rpl36a, Rpl22, Rpl38, Rps24, Rpl26 and Rpsl5a. Metascape
analysis shows that these genes encode proteins that enable SRP-dependent co-translational

protein targeting to the cell membrane (Figure 51).

? R-MMU-1799339: SRP-dependent cotranslational protein targeting to membrane
WP2271: Macrophage markers

G0:0035914: skeletal muscle cell differentiation
G0:0030097: hemopoiesis
R-MMU-114608: Platelet degranulation

G0:2000177: regulation of neural precursor cell proliferation
G0:0030278: regulation of ossification
G0:0019730: antimicrobial humoral response
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Figure 51: Protein-protein interaction network and gene enrichment of adult microglia.

This finding is not directly of importance; however, this same gene signature is upregulated once
more in middle age, male microglia, without an equivalent in female microglia. Moreover, it is

specifically enriched in cluster O (i.e. HOM1), and extended by the expression of Tmsb4x, hinting at
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a male-specific transcriptional program. Similarly, cluster 10 (i.e. HOM5) showed an expression of
Ccnd3, a gene typically associated with cell cycle, but one that has previously been ascribed to sex-

specific microglial maturation and immune function (and the role of microbiota) (Erny et al., 2015;

Thion et al., 2018).

What became evident is that differences in male and female maturation corresponds to distinct
population dynamics throughout life (Figure 52). Indeed, AIM, and IRM in middle age (18M) male
mice are elevated, as are LPM in old age (21M) females. Furthermore, female HOM-clusters

gradually reduce in prevalence with age, whereas males remain broadly stable.
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Figure 52: Sex-specific population dynamics across the lifespan. Relative proportions of female and male microglial
subtypes differ, where female have a greater increase of LPM in old age, male display greater proportions of AIM and IRM
by middle age. AIM, Activated Inflammatory Microglia; CPM, cycling and proliferating microglia; EDM, early
developmental microglia; HOM, homeostatic microglia; IRM, interferon response microglia; LPM, lysosome pathway-
associated macrophage.

Furthermore, the prevalence of HOM-clusters varies in a sex-specific manner (Figure 53). Over the
course of the lifespan, both sexes take on a HOM3 subtype at E14.5 and P4. However, from P90
onwards the first differences emerge; albeit HOM1 and HOM2 have similar proportions in both

sexes, approximately 30% of female microglia take on a HOM4 state. In contrast, male microglial
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development is protracted, acquiring HOM4 (and HOM5) at 3.5M. Similarly, by middle age (18M)
male microglia have a larger diversity of HOM-clusters than female cells and are featured by a
relative increase in HOM1. Moreover, HOM3 increases with age in both sexes, although male
microglial increases are tempered by the concurrent increases of HOM1 and HOM4. Follow up
research is needed to ascertain if HOM3 is indeed as an intermediary or transitory microglial state,

and how and if these cells can be targeted for therapeutic intervention.
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Figure 53: Population dynamics of HOM-clusters in a sex-specific manner. Female and male homeostatic (HOM)-clusters
have different proportions across life. Greater diversity is typically seen in male cells, concurrent with a protracted
development to a high pseudotemporal score (HOM4, HOM5).

Taken together, the analyses indicate that male and female transition through the different clusters
using different temporal trajectories, but they do not have unique microglial subtypes. The male
microglial population displays a protracted development and greater homeostatic heterogeneity.
This in fact suggests that there is a male-specific cluster in the atlas. Such effects could aid the
understanding of age-associated disease susceptibility in females; however, it should be noted that

these effects are small and require reproduction in situ.

3.5 Discussion

Here, an atlas of microglial heterogeneity in health was generated that includes cycling and
proliferating microglia (CPM), early developmental microglia (EDM), interferon response microglia
(IRM), lysosome pathway-associated macrophage (LPM), age inflammatory microglia (AIM), and ex
vivo activated microglia (exAM). Moreover, it was found that age is the largest driver of microglial
heterogeneity in health, without overt transcriptional dynamics driven by CNS region. Age and sex
intersect to drive sex-specific maturation, microglial heterogeneity, and population dynamics.
Before addressing the microglial clusters in detail, | will bring to light some of the intrinsic limitations

and caveats-associated with these analyses.
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3.5.1 Technical limitations on biological heterogeneity

Technical variables can impose limitations in the discrimination of biologically relevant
transcriptional heterogeneity. In the analyses, several bioinformatic tools were utilized that each
have features that could restrain discovery. 3 considerations are made, not to diminish the value of

the results, but to provide a context in which these results were acquired.

First, Monocle 3 is a tree-based approach; that is, it does well with tree-like lineage structures (Cao
et al., 2019; Saelens et al., 2019). Monocle 3 lacks the ability to reconstruct more complex graph-
based structures. | do not anticipate this to affect the findings, albeit it is important to recognize
the potential limitations of such a choice. A trajectory was identified that allowed for the
identification of an age-dependent microglial maturation profile in old age that features a loss of
microglial identity, sex-specific divergence of maturation, and cluster-specific pseudotime scores.
In light of that, a connected graph-based method like PAGA would be the most appropriate method
for trajectory inference (Saelens et al., 2019). Not having done so could have restricted the ability

to detect further complex interactions.

Second, exAM were present in the integrated dataset, the effects of which | choose not to remove
from the dataset (by regression or gene exclusion), to provide a fair representation of
transcriptional heterogeneity in scRNA-seq data. Cluster 9 in the data was enriched for ex vivo-
activated gene signatures, corresponding to established gene lists describing such features. The
association of these signatures with Tgf-3 signalling in exAM, and early developmental Tgf-R
signalling for the acquisition of an adult microglial identity, suggests that such effects are intrinsic
to microglia. In fact, identification of exAM with a gene list provided by Li et al. (2019) underlines
this, reaching far beyond cluster 9 and into homeostatic clusters. Removal of such effects by
regression might therefore affect true biological heterogeneity. It would be interesting to explore

the causal factors behind artefactual gene signatures (if these become a prohibitive factor).

Third, Svensson et al. (2020) find that the number of identified subtypes in an atlas is proportional
to the number of cells in it (Svensson et al., 2020). In the dataset, the minimum fraction were
neutrophils (cluster 14). However, looking at the myeloid clusters alone, the argument can be made
that the rarest fraction is AIM (cluster 13); 907 AIM cells were identified amongst 113,689 cells in
the atlas, which equates to <1% of the total. Furthermore, 5 distinct clusters of homeostatic
microglia were identified. Together, the identification of AIM and the presence of HOM
heterogeneity provides an argument for the relative stability of the atlas. That is, if such states can
be reliability detected with known markers, smaller populations that might have been missed are

not expected to have a large biological role in healthy aging.

In fairness, selecting a resolution of 0.5 (or 20 dimensions) in an atlas of this size is remarkable.

Many other studies using less cells have used a higher resolution (Hammond et al., 2019; Kracht et
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al., 2020). This would extract more information out of the atlas. This would increased the number
of cluster in the atlas defined here too, yet by not doing that, | was able to define clusters reliably.

In fact, it strengthens the claim pertaining to the transcriptional similarities of DAM, PAM and ATM.

3.5.2 DAM, PAM and ATM are collectively described by a common gene signature

Cluster 8 is enriched with genes commonly ascribed to DAM, PAM and ATM, including Csf1, Lpl,
Spp1l, Igfl, Gpnmb, and Apoe. This core set of genes is found in all three cell types and are typical
markers for in situ hybridization of such cells, in parallel to probes for Cd11c (Itgax) and Clec7a
(Hammond et al., 2019; Keren-Shaul et al., 2017; Li et al., 2019; Safaiyan et al., 2021). This has led
me (and others before me) to argue for a more integrative nomenclature in the field of scRNA-seq

(Benmamar-Badel et al., 2020).

Benmamar-Badel et al. (2020) annotate DAM, PAM ATM collectively as Cd11c* microglia, effectively
forming a bridge between their previous work and others (Benmamar-Badel et al., 2020; Kamphuis
et al., 2016; Keren-Shaul et al., 2017; Wlodarczyk et al., 2017). However, for nomenclature to be
reflective of function, as well as the multi-dimensional nature of microglial identity, | would like to
argue that these phagocytic cells are collectively best described as ‘lysosome pathway-associated

macrophage’ or LPM.

DAM, PAM and ATM are each ascribed a protective role and occur throughout development, aging
and disease. In addition, recent work identified white matter-associated microglia (WAM) in the
aging brain; and lipid-associated macrophages (LAM) in adipose tissue (Jaitin et al., 2019; Safaiyan
et al., 2016). Each subtype (in the CNS or periphery) is thought to be phagocytic and essential for
lipid metabolism. Taken together, it is highly likely that LPM describe a family of closely related
myeloid states, taking on a distinct (nuanced) signature depending on the context (e.g. age, disease,
sex). Indeed, despite their transcriptional similarities, there have been reports of varying
dependencies on Trem2 and Apoe, key regulators of age-associated disease as well as early
development (Butovsky et al., 2014; Jaitin et al., 2019; Keren-Shaul et al., 2017; Safaiyan et al.,
2021).

e.g., PAM in early development are independent of Trem2 and Apoe, whereas WAM with aging are
independent of Apoe alone (Li et al., 2019; Safaiyan et al., 2021). In contrast, to acquire an LMP
signature, microglia and macrophages rely on Trem2 and Apoe depending on which state these cells
are in (Jaitin et al., 2019; Keren-Shaul et al., 2017). Regardless, the TREM2-APOE signalling pathway

is central to LMP signature acquisition.

Interestingly, there have been reports that dysfunction of DAM-like cells was associated with lipid
droplet accumulations (Baik et al., 2019; Krasemann et al., 2017; Marschallinger et al., 2020; Ulland

etal., 2017). Furthermore, some (but not all) DAM undergo replicative senescence in AD in humans
97



and mouse models (Hu et al.,, 2021). Together, these studies outline a context-specific
diversification of the LPM family not evident in healthy aging. As always, microglia appear to be a

population of cells with distinct responses and responders (Gertig and Hanisch, 2014).

3.5.3 Age-dependent microglial heterogeneity and population dynamics

Age is the main driver of microglial heterogeneity. Early in CNS development, three typical subtypes
can be identified: EDM, CPM, LPM. Each of these subtypes have their largest prevalence in early
development, albeit LPM is an exception to that rule, where age increases their prevalence once
more. Of note, the increase of LPM, as well as IRM and AlM, is concurrent with a proportional
decline of homeostatic signatures with age. The loss of HOM clusters might underlie a biologically

and clinically relevant finding.

Age brings about neuroinflammation and susceptibility to diseases like AD, Parkinson’s disease (PD)
and MS (Von Bernhardi et al.,, 2015). Microglia are central to changes to the CNS immune
environment and are known mediators in each of these diseases. Changes to the microglial
population are therefore indirectly linked to healthy aging. A loss of microglial identity towards a
more inflammatory subtype (e.g. AIM, IRM, LPM) might be functionally necessary; however, as
discussed, transcriptional diversification, cell lipid stress and replicative senescence could abrogate
effective cellular responses to tissue damage accrued with disease (Baik et al., 2019; Hu et al., 2021;

Krasemann et al., 2017; Marschallinger et al., 2020). In fact, LPM might be of particular importance.

The family of LPM consists of a plethora of distinct microglial and macrophage subtypes, including
LAM, DAM, WAM, ATM, PAM, MGnd and ARM. As a family, LPM interact broadly (and to different
degrees) with the TREM2-APOE pathway and are associated with late-onset AD risk factors. In the
atlas, LPM are enriched for AD-risk factors in early life, as well as in old age. In fact, early
developmental and old age expression of Apoe appear to have an inverse relationship with

homeostatic signatures.

Interestingly, the CNS immune environment in early development is relatively quiescent compared
to old age (Mogilenko et al., 2022). That is, the environment in which Apoe functions differs
between age groups, potentially affecting its subsequent transcriptional diversity. Microglia are
known to be regulated by autocrine and paracrine signalling, among which in communication with
neurons and astrocytes (Matejuk and Ransohoff, 2020; Szepesi et al., 2018). Furthermore,
microglial LRRC33 is a TGF-B1 -associated molecule that establishes a milieu in which microglial
homeostasis is acquired and maintained only after interactions with integrin aVb8-bearing cells
(e.g. astrocytes, OPC, oligodendrocytes), for a highly localized and self-propagating cascade of
microglial identity (Qin et al., 2018). Absence of such interactions increased microglial reactivity

and myelopathy, clearly outlining the importance of microglia to be in interaction with their
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environment. By extension, it would be interesting to explore if there are substantial interactions
between microglia in healthy aging, e.g. between IRM and LPM. scRNA-seq tools like Cell Chat are
well within this functionality (Jin et al., 2021). Regardless, if cell-cell interactions are critical to
microglial identity, loss of sensome genes with age would impinge on microglial homeostasis.
Furthermore, variations in such environment- or region-specific support signals could instil regional

heterogeneity.

3.5.4 No regional heterogeneity was detected in the atlas

Region-specific microglial heterogeneity has long been an established factor in humans and mice,
with reports of epigenetic, transcriptional, translational and metabolic diversity throughout the CNS
(Askew et al., 2017; Ayata et al., 2018; Bottcher et al., 2019; De Biase et al., 2017; Grabert et al.,
2016; Hart et al., 2012; Lawson et al., 1990; Lopes et al., 2022). However, Li et al. (2019) argues
against the presence of such diversity. Here, the authors failed to detect regional transcriptional
heterogeneity with scRNA-seq and RNA-seq. At first glance, no regional heterogeneity in healthy
aging was detected, as there are no clusters specific to the CTX, CB, HIP, or any of the other regions
included in the dataset. However, given the wide-spread evidence of regional heterogeneity (across

modalities), it is important to understand why no such effects were identified with scRNA-seq.

First, inroads have been made to increase the understanding how transcriptional heterogeneity
gives rise to the microglial population. Of note, distinct population dynamics in male and female
cells were shown. Considering that, and reflecting on the bulk RNA-seq study by Grabert et al.
(2016), it is highly likely the reported divergence of regional transcriptional heterogeneity with age
was driven by distinct microglial populations. This then begs to question, why did Li et al. (2019)
not find such heterogeneity in their bulk RNA-seq work? To start, the age of the animals used
differed between the studies; P60 mice for Li et al. (2016), where Grabert et al. (2016) make use of
animals that are 4, 12 and 22 months old (Grabert et al., 2016; Li et al., 2019). | have shown that
age is the main driver of heterogeneity, and such experimental differences are expected to play a
role. To continue, Li et al. (2019) isolate and sequence a relatively small population of cells, which
effectively informs on microglial states like CPM, but might fall short in identifying large-scale
population dynamics and microglial subtypes. To truly address transcriptomic, regional
heterogeneity, it will be important to employ spatial transcriptomics and histology of well-

established microglial markers in a targeted manner.

Second, some form of regional heterogeneity in the healthy CNS is evident. LPM and IRM cells were
identified in the atlas, each of which has been reported to be enriched in white matter tissues
(Hammond et al., 2019; Li et al., 2019; Sala Frigerio et al., 2019). Csf1, Spp1 and Gpnmb are
commonly used to identify LPM in early development, whereas IRM express Usp18, a gene which

encodes a protein in white matter microglia (Goldmann et al., 2015; Hammond et al., 2019; Li et
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al., 2019). Although there have been reports that these cell types could in fact be transcriptionally
similar, the data reported here suggests that LPM and IRM are transcriptionally distinct populations
in correspondence with Sala Frigerio et al. (2019) (Hammond et al., 2019; Sala Frigerio et al., 2019).
Indeed, LPM and IRM feature different levels of Apoe expression; high and low Apoe expression,
respectively. Currently there is not answer how Apoe in LPM corresponds to an independence of

Apoe in PAM and WAM.

Looking at regional heterogeneity beyond the grey- and white- matter, no further tissue-specific
heterogeneity was identified apart from a minor enrichment of YS-derived cells in CAM (i.e. cluster
11). As stated, it is likely that this enrichment is due to the transcriptional similarities within the
myeloid lineage (Mass et al., 2016). The absence of any further findings might originate due to

bioinformatic limitations.

In the generation of the single-cell atlas 3000 variables were selected and retained. This is a default
parameter in the ‘SelectintegrationFeatures’ function. Furthermore, prior to that, 2000 genes
variable genes are selected with ‘FindVariableFeatures’ in each individual dataset. Albeit these
settings reduce computational requirements and increase the identification of major sources

affecting heterogeneity, it could confound the detection of smaller factors like region and sex.

In the dataset, a large-scale age-specific effect on microglial heterogeneity was identified. The size
of this effect might simply mean that there is no ‘resources’ left to identify other context-specific
effects. That is, if most of the transcriptional signatures are driven by age, a minority effect will be
less evident. To circumvent such limitations, researchers need to ensure such effects are not
selected against in their bioinformatic pipeline. Similarly, although a large range of tissues was
included in the atlas, none have the same prevalence as WB-derived cells. This imbalance is

expected to introduce biases in the subtype and state identification.

A point of interest, recent work by Seeker et al. (2022) identified regional glial heterogeneity in the
normal human white matter of the CNS. Using snRNA-seq, the authors find distinct microglial
transcriptional signatures in the CTX, CB, and cervical SC (Seeker et al., 2022). Relative to the CB
and CTX, the cervical SC has an increased expression of HIF1A, and a higher expression of
histocompatibility-associated genes, reminiscent of the findings by Grabert et al. (2016) (Grabert
et al.,, 2016a; Seeker et al., 2022). In fact, it matches to and underscores the potential role of
population dynamics in the identification of such region-specific signatures. Moreover,
upregulation of HIF1A in microglia has been shown to increase AD-associated neuropathology, and
in turn, associates with an origin of such pathology in the white matter (Hahn et al., 2022; March-

Diaz et al., 2021; Safaiyan et al., 2021).
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3.5.5 Microglial heterogeneity during sexual maturation is understudied

Regarding sex-specific heterogeneity, similar arguments apply as those use for region specificity,
where bioinformatic parameters, methods and cellular distribution are expected to influence the
outcome. Although literature has started to explore sex-specific heterogeneity, scRNA-seq data
that includes both male and female remains sparse, often only male tissues are used. In the atlas,
the sex imbalance is clearly visible and across all annotated subtypes. On average, male and female
cells are at a ratio of 2:1. Fortunately, the failure to sex-match research is a recognized problem in
biomedical science and drug development, one which is increasingly addressed (Ravindran et al.,
2020; Zucker and Beery, 2010). However, in contrast to regional effects, the size of the atlas and
the bimodal nature of sex allowed furher study of the effects of sex on microglial maturation.
Indeed, preliminary analyses of sex-specific heterogeneity have shown that male and female

microglia age differentially.

Distinct pseudotemporal trajectories were identified between male and female microglia, with
female cells progressing faster to a mature microglial identity; consistent with male and female cells
having a different microglial developmental index (MDI), terminology first introduced by the group
of Staci Bilbo, and in correspondence with other studies reporting on sex-specific microglial
heterogeneity (Guneykaya et al., 2018; Hanamsagar et al., 2017; Thion et al., 2018; Villa et al.,
2018).

Interestingly, microglial age group-specific differentially expressed genes (DEG) were detected.
Most strikingly, adult (3.5M) male and female microglia express a gene signature that is enriched
for typical microglial markers like Tmem119 and Selplg, as well as several ribosomal-associated
transcripts. GO analysis with Metascape showed that the ribosomal transcripts form a protein-
protein interaction network, a network of transcripts that could stimulate cell membrane protein
targeting. Of importance, the expression of this signature is concurrent with the sensome signature
and by extension MDI. Pseudotemporal scores and DEG follow a similar pattern. Remarkably, once
microglia reach middle age, male microglia retain this signature enriched for ribosomal markers in
a cluster-specific manner, whereas female cells lose it. Furthermore, the signature in middle age
microglia is restricted to cluster 0 (i.e. HOM1), outlining the differences in population dynamics
between the sexes. Moreover, the absence of the ribosomal signature in female cells precedes the

loss of HOM-clusters and the proportional increase of LMP in old age microglia.

Taken together, female microglia mature faster towards an adult microglial signature; however,
female cells also lose this identity at an earlier age and display a greater predisposition to age-
associated disease (Pinares-Garcia et al., 2018). In contrast, males undergo a protracted
development and are more susceptible to early developmental diseases like autism and

schizophrenia (Pinares-Garcia et al., 2018). Such findings imply that there is a biological trade-off
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between fast and slow maturation, where microglial health is a finite resource throughout the

lifespan (Figure 54).

e\o‘2 health

F
x
[}
n
M

Age

Figure 54: Hypothetical model of sex-specific early and late life disease susceptibility. Female microglia mature faster than
male microglia, leaving males prone to early developmental disease, whereas females display a greater propensity to age-
associated disease. In this model, microglial fitness is finite in both sexes.

3.5.6 Summary

In summary, the single-cell atlas was particularly well-suited for the identification of age-specific
effects on microglial heterogeneity. Age is the largest driver of microglial heterogeneity during the

lifespan, with smaller sex-specific effects, and without region-specific effects.

In this compendium, a conservative approach to subtype identification was taken, consequentially,
key microglial subtypes from literature were reliably identified, as well as provided sorely needed

simplifications in nomenclature.

The microglial population consists of several transcriptionally unique microglial subtypes, among
which AIM, CPM, EDM, HOM, IRM and LPM. Throughout life the prevalence of these six microglial
subtypes varies, from what appears to be functional adaptations to biological events like
developmental expansion, myelination, and age-associated neuroinflammation. LPM, as a family of
microglial subtypes, is postulated to display greater variability with expanding context-dependent

drivers of heterogeneity; diversification which is absent in healthy aging.

Lastly, for effects of region and sex on microglial heterogeneity, bioinformatic and experimental
workflows need to target such effects to allow for their identification from larger age-specific
effects. A study of sex-specific microglial selection in a region-specific manner would help provide
a valuable answer currently missing in literature. How does sex-specific disease susceptibility

emerge and does microglial selection play a role in that?
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3.6 Supplementary Figures
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Supplementary Figure 1: DimPlot of identified clusters and the anchors identified between datasets. 15 distinct clusters
(of 113,690 cells) were identified in the integrated single-cell atlas, each with corresponding anchors between clusters
across datasets. Clusters in the integrated object were identified with 20 dimensions and a resolution of 0.5.
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Supplementary Figure 2: Principal component analysis (2). Principal component (PC) 3 to 8 are visualized, illustrating their
respective gene sets.
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Supplementary Figure 3: Principal component analysis (3). Principal component (PC) 9 to 14 are visualized, illustrating
their respective gene sets.
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Supplementary Figure 4: Principal component analysis (4). Principal component (PC) 15 to 20 are visualized, illustrating
their respective gene sets.
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Supplementary Table 1: Top 50 cluster markers of the single-cell atlas (1).

# | Seurat cluster (/.e. integrated_snn_res.0.5)

0 1 2 3 | 4 5 6
1 | Selplg Malat1 Apoe Bmp2k Ube2c Fabp5
2 | Cst3 Tmem119 | Cd63 Bhlhe41 Birc5 Ranbp1
3 | Rpl39 Fscnl Ctsb SIc39a1l Stmn1l Ldha
4 | Rpl30 Selplg Gpx3 Itpripll Hmgb2 | Stmn1l
5 | Btg2 Slc2a5 Fti1 Actb H2afx Ptma
6 | Jun Ecscr Npl Notch2 Ccnb1l Nmel
7 | Tmem119 | Sparc Serpine2 Lrrc8a Cdk1 Ran
8 | Smad7 Tgfbrl Ctsl Selplg Pbk Rrm2
9 | Baspl Baspl Gasb Xist Ccnb2 Mcm6
10 | Tgfbrl Sgk1 Slc25a5 Btg1l Cks1b Tipin
11 | Hk2 Cx3crl Cryba4 Tgfbrl Top2a Fti1
12 | Rpl36a Pmepal Fcgrt Fscnl Cdca8 Eif5a
13 | Pmp22 Cst3 Apocl Hk2 Cdc20 Fenl
14 | Rpl22I1 Ptgs1 Plin2 Tmfl Nusapl | Tpil
15 | Rps27 Eng Npc2 Tmem119 | Tubalb | Npl
16 | Slc2a5 Ccer5 Ybx1 Adrb2 Cdca3 Npm1
17 | Ecscr Zfhx3 Clta Malat1 Cdkn2c | Eeflg
18 | Uqcrb Nripl Rac2 Cst3 Ran Mcm3
19 | Rpsl5a Lairl Mt1 Cdké Spc24 Spp1
20 | Cd14 Slc1a3 Rps19 Dhrs3 Tubb5 Cdk4
21 | Malatl | Lrrc3 Pfn1 & | cars Rrm2 | Slc25a5
22 | Fam46a Thrsp Gatm E Zbtb38 Hmgn2 | Gins2
23 | KIk8 Trf Ctsz s | &x3crl Tubalc | Aldoa
24 | Rps24 Pmp22 Cd68 > | Tnpo3 Mki67 Mcm5
25 | Zfhx3 Bmp2k Igfl E Zfhx3 Ranbpl | Hspa8
26 | Trf Fgd2 Gnas Dusp6 Spc25 Eif4al
27 | Sparc Klhdc8b Gltp Atf7ip Aurka Ung
28 | Hexb Plod1 Arpclb Nripl Ptma Mcm2
29 | SIcla3 Usp2 Arpc5 Mgat4a Tacc3 Tyms
30 | Sox4 Dusp6 Gpx1 Pmepal Asflb Cryba4
31 | Thrsp Hexb Pglc2 Sox4 Smc2 Gpx3
32 | Rpl22 Sgstm1 Nmel Slcla3 Cdkn3 Plin2
33 | Ptgsl Herpudl | RpI35 Mbnl2 Cenpf Rfc2
34 | Rpl38 Frmd4b PId3 Sgk1 Aurkb Mcm7
35 | Xist Mgat4a Capnsl Cysltrl Tkl Prdx1
36 | Lairl Prkab1 Shx2 Pmp22 Ccna2 Tubb5
37 | Cx3crl Mfap3 Renbp Lairl Arl6ipl | Hspdl
38 | Serpinfl | Chsyl Anxa5 Basp1 Hmgnl | Gmnn
39 | Calhm2 Sesnl Commd4 Dnmt3a Cenpe Rpa2
40 | Susd3 Tmem86a | Igfbp4 Slc40al Racgapl | Gapdh
41 | Taz Itpripll Myl6 Rps27 Tpx2 Pfnl
42 | Nripl Spintl Ckb Fkbp5 Ldha Rpsa
43 | Tmem86a | Slc46al Lag3 Rgl2 Prci Hmgn1
44 | Srgn Spsb1 Eeflg Cdi4 Ddx39 Marcksl1
45 | Rpl23 Nfkbia Eif5a Rpl39 Kif22 Ligl
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46 | Thap3 Hk2 Rps5 Fgd2 Tyms Tubalb
47 | Ppcdc Adrb2 Gipcl Frmd4b Nmel Rfc4

48 | Garnl3 Fcgr3 Hmgn2 Tubgcp5 | Eif5a Lgalsl
49 | Mgll Mbnl2 Gmpr Sesnl Bub3 Ybx1
50 | Cd27 Tpst2 Uqgcrcl Trf Gpx1 Ctsb

Note: Cluster-specific markers were identified with the ‘FindAllMarkers’ function of Seurat. FindAlIMarkers with ‘only.pos
=TRUE’, ‘min.pct = 0.25’,” logfc.threshold = 0.25’, ‘test.use = "wilcox".

Supplementary Table 2: Top 50 cluster markers of the single-cell atlas (2).

# Seurat cluster (/.e. integrated_snn_res.0.5)

7 8 9 10 11 12 13 14
1 Fos Spp1 Ifit3 Cend3 Cd74 Ifitm3 Cd83 Mmp9
2 Jun Igfl Ifitm3 Zfp36 Pf4 Lgalsl Gpr84 Ifitm2
3 Egrl Gpnmb | Rtp4 Cx3crl Dab2 Ifitm2 TIr2 Anxa2
4 Hspala | Lgals3 Isg15 Selplg Apoe Vim Cxcli6 Lgals3
5 Btg2 Apoe Oasl2 Ccer5 Mrcl Lgals3 Id2 Hdc
6 Ccl2 Fabp5 Ifi2712a | Lrrc3 Ifitm3 Cnn2 Nfkbia Hp
7 Ier2 Cd63 Usp18 Fscnl Ifitm2 Cd74 Atf3 Pfnl
8 |Duspl |Ftil Cxcl10 gmem“ Lgals1 Lspl Tnf Tspo
9 Zfp36 Cd9 Irf7 Sgk1 Ifi2712a Tspo Slc15a3 | Rac2
10 | KIf2 Ctsb Slfn2 Tgfbrl Fcgrt Napsa Cd52 Adpgk
11 ’fdamts Ctsl Statl | Pmp22 | Folr2 Anxa2 | Cxcl10 | S100a1l
12 | Btgl Anxa5 Bst2 Frmd4b Snx2 Emb Lgals3 Cnn2
13 zpp1r15 Plin2 ;93'53*3 Gpri65 | Mgl2 Calmil | Herpudl | Glipr2
14 |Kf6 | Gpx3 |XafL | Nripl Blvrb Arhgdib | 112! gy
15 | Socs3 Csf1 Ifit2 Mgat4a Cfp Rps19 C3arl Adam8
16 | Duspb Lgals1 Parp14 | PIxnb2 Igfbp4 Arpc5 Cd14 Arpc5
17 | Sgk1 Cstb Ly6e Iffol Bst2 Rac2 Arl5c Synel
18 | Bhlhe41 | PId3 Tor3a Arl10 Ctsc Cd52 Cd74 Pygl
19 | Tnpo3 |Plaur |Stat2 | Adrb2 lmeml% Pfn1 Ier3 Padi4
20 | Id2 Syngrl | Rsad2 Calhm2 Anxa5 Cripl Cd9 Ifitm3
21 | Malatl Ldha Oasla Slcla3 Marcksl1 Fxyd5 Ccl2 Cd24a
22 | Nfkbia | Hmoxl | Herc6 | Lairl lmemm Rpl14 | Ccrl2 | Lspl
23 | Otud1 Tpil Zbpl Fgd2 Fxyd5 Tmsb10 | Capg Capg
24 | Cited2 Aldoa Slfn5 Tns3 KIf2 Rpsa Cdknla | Txnl
25 | Smad7 | Anxa2 Irgm1 Atf7ip Slfn2 Ptma Sdc4 Ifitm1
26 | Gem Npl Ccl2 Cst3 Rtp4 Anxa5 Cstb Aldh2
27 | Adrb2 | Ctsz Samhd1 | Cdk6 Tgfbi Gpx1 ’fdamts Gpil
28 | Slci5a3 | Ybx1 Irf9 Jun Ednrb Itgal Pdgfa Rtp4
29 | Bmp2k | Nmel Cd52 Cd34 Dok2 Rps5 Relb Cd52
30 | Tribl Clta Fgl2 Msn Hgsnat Tpm4 Srgn Pilra
31 | Fosb Gngl2 Epstil Hexb Irf7 Sh3bgrl | Cd72 Arhgdib
32 | Ier3 S100al | Irfl Abcal Pltp Rps18 Rab20 SIfn2
33 'a"fpgoa Psmb6 | Isg20 | Zfhx3 Cripl Arpclb | Pmp22 | Cxcr2
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34 |Dnajpl | Npc2 |Gbp2 |[Slc2a5 | Ftit Myl6 Plaur 1’mem15
35 gadd45 Apocl Fam46a | Sparc Serpinb6éa | Capg Vcaml Thbsl
36 | o™ |Foh2 | Ddxs8 | Tubgcps | Emp3 Ftl1 Tnfaip2 | Rnfl44a
37 | Cab Vat1 Sdc3 Ptgs1 Fthi Serpl Cd63 Myl6

38 | Tnf Aplp2 Ifihl Ecscr Cd36 Iggapl | Rhoc Myh9

39 | Pk3 Gatm Parpl2 | Btg2 Hmox1 Rpl32 Gem Rab3d
40 | Dhrs3 Lag3 Parp9 Usp2 Tspo Ifi2712a | Sgk1 Gpx1
41 | Selplg Spr137 Znfx1 Mat2a Aldh2 Emp3 Ifrdl Pstpipl
42 ?istlhl Hpse Rnf114 | Itpripll Pla2g7 Plin2 Crif2 Plp2

43 | Hk2 Uaplll | Fcgr4 Sgstm1 Isg15 glOOal Tgifl Calm1
44 | Nfkbid Bnip3 Hk2 Klhdc8b | Rps5 Rpl4 Ier2 Fthi

45 | Tmx4 Mt1 Lgals9 Taf10 Gasb Slfn2 Gliprl G6pdx
46 | Itpripll | Pgkl Apobec3 | Stard5 Plin2 Hspa8 Plek Serpl
47 |Llairt |Emp3 |Cxd16 | Rgl2 Ememm Fcgr4 | Mat2a | Rasgrp4
48 | Cd14 Gapdh | Ddx60 Plek Oasl2 Cfp Slc3a2 | Gliprl
49 | Slc2a5 Slc25a5 | Gpr84 Npcl Calm1 Cend3 Zfp36 Emb

50 | Kdméb | Cd83 Tspo Atp8a2 Mpp1l Gsn Tubb6 Iqgap1

Note: Cluster-specific markers were identified with the ‘FindAllMarkers’ function of Seurat. FindAlIMarkers with ‘only.pos
= TRUE’, ‘min.pct = 0.25’,” logfc.threshold = 0.25’, ‘test.use = "wilcox".

Supplementary Table 3: Microglial gene lists.

# Hammond et al. :lcgp :I Keren-Shaul | Li et al.
2019 " | etal. 2017 2019
2013
- P mm | Sensome | DAM PAM | Adult microghia | WAM
1 | Sppl Ifitm3 P2ry12 Itgax Spp1l Cst3 Apoe
2 | Gpnmb | 1fi2712a ;’memll Mamdc2 Gpnmb | Ctsd Cigb
3 | Igf Ccl12 Gpr34 Cst7 Lpl Laptm5 Fthi
4 | Lgals3 Lgals3bp | Csflr Fam20c PId3 Csflr Lyz2
5 | Fabp5 Ifit3 Cd53 Ccl4 Ctsl Clga H2-D1
6 | Cdo Rtp4 Siglech Lmbrd2 Csfl Selplg Ctsb
7 | Lpl H2-K1 Cx3crl Egr2 Igfl Clqc Ctss
8 | Ctsl Isg15 Selplg Csfl Ctsb Tmem119 Ctsz
9 |Lgalst | Cst7 Ly86 SAS0BG2RI | 51c23a2 | sparc H2-K1
10 | Apoe Bst2 Fcgr3 Ccl3 Gpx3 Serinc3 Fti1
11 | Anxa5 Ifi204 Fcerlg Clec7a Sgpl1 Ctss B2m
12 gm1o11 Oasl2 Dapl2 | Baiap2l2 Seppl | Olfmi3 Cd63
13 | Syngrl Cd52 Slco2bl | Tmem154 Cd9 Cx3crl Capg
14 | Gpx3 Irf7 Itgam Lpl Abcal Jun Cd52
15 | Cd63 H2-D1 Tgfbr1 Ank Plin2 Ly6e Sppi
16 | PId3 RpI39 Sl2as5 | Zfp692 Syngri ‘k‘6324ZSN05R' Anxas
17 | Gm1673 | Cxcl10 P2ry13 Siglecl Cd63 Junb Cd74
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18 | Ctsb B2m Ifngrl Itga5 Hpse Trem2 Lgals3
19 | Fti1 Ccl5 Itgrl Tcf19 Plek Hexb Tspo

20 | Plin2 Statl Itgb5 Cox6a2 Lag3 P2ry12 Cst7

21 | Lyz2 Slfn2 Ccer5 Spp1 Slc37a2 | Ly86 Atp6v0c
22 | Ccl9 Trim30a | Cd74 Axl Hifla Cds1 Fam20c
23 | Anxa2 Ly6e Emrl Igfl Fam20c | Mafb Vim

24 | Lilrb4a Usp18 Cmtm6 Gpnmb Serpine2 | Rhob Cybb

25 | Csfl Rpl27a Cd68 Iidr2 Ctsd Siglech Ifitm3
26 | Pkm Rps21 Trem2 Fxyd6 Apoe Rnase4 Clec7a
27 | Ccl6 Phfllb Fcgr2b Psat1l Ctsz Bin1 Crip1

28 | Mif Gm9843 | Cd52 Ilib Ctsa Pld4 Anxa2
29 | S100a1 Rps29 Itgb2 St14 Tppl Abhd12 Lgalsl
30 | Ldha Rps12 Gi24 Arhgap26 Lamp1l Fos Cd63-ps
31 | Folr2 Wdr89 Entpdl ‘k}632427El3R' Myole Marcks Ftl1-ps1
32 | Cstb Tor3a Cd180 Birc5 Abcd?2 Sirpa Mir692-1
33 | Fabp3 Gm4951 Cmtm?7 Mettl15 Aplp2 Basp1 Gm7541
34 | Gngl2 H2-Q7 Lgals9 Gpr65 Gasb Slco2b1 Ftl1-ps2
35 | Lag3 | Parpl4 | Tgfbr2 | Cdca8 Soatl | Cyth4 4Gm1216
36 | Sepwl Ly6a Ecscr H2-Q7 Lipa Itgb5

37 | Apocl | RpI38 ;’mem17 Eti4 Grn Tgfbrl

38 | Tpil Sp100 Tir2 Ifit2 Timp2 Zfp36

39 | Plaur Uba52 Lag3 Capg Psatl Phyhd1

40 | Ifitm2 Gm10076 | Ltf Tmem8 Gpr137b | Egrl

41 | Ybx1 Zfosl P2ry6 Lyz2 C3arl Ctsz

42 | Npl Ifitl Il10ra Apoe Pnpla7 Fgd2

43 | Hpse Xafl Lairl Slc1la2 Gusb Adap2

44 | Vatl Rps20 Gpri83 | Pycrl _Gp2r137b Unc93bt1

45 | Sepp1l Rpl2211 Tmem37 | Ifi2712a Gba Itm2c

46 | Ctsz Cd72 Cd37 Lgi2 Ttyh2 P2ry13

47 | Aplp2 Ch25h Cds6 Erollb Anxab Ptgs1

48 | Gatm Gm10073 | Slamf9 Nceh1 Cd68 Irf8

49 | Npc2 Rplp2 TiIr7 Ch25h Ccl3 Arrb2

50 | Gpr137b | Rps28 Cdi4 Zfp189 Hexa Pmepal

Note: Microglial gene lists of axon tract-associated microglia (ATM), interferon response microglia (IRM), disease-
associated microglia (DAM, proliferative region-associated microglia (PAM), white matter-associated microglia (WAM),
adult (homeostatic) microglia, and the sensome. Gene lists find their origins across the microglial field, most notably and
respectively: Hommond et al. (2019); Keren-Shaul et al. (2017); Li et al (2019); Safaiyan et al. (2021); Matcovitch-Natan
et al. (2016), and Hickman et al. (2013).
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Supplementary Table 4: Non-microglial gene lists.

# Ochacka et al. 2021 Xie et al. (2020)
DC NK-cell Monocyte | Neutrophil
1 S100a8 | Ttr S100a4 Retnlg
2 S100a9 | Ptgds Ms4abc S100a8
3 Il1ib Enpp2 Cripl S100a9
4 Ngp Clu Ctss Ngp
5 Retnlg Mt3 Ccl9 Lcn2
6 Camp Aldoc Fi13al Wfdc21
7 S100all | Ptn Plac8 Ltf
8 Slpi Sparcll Fni Slpi
9 G0s2 Chchd10 Ccr2 Ilib
10 Hp Dbi Psap S100ai1
11 Wfdc21 | Cpe Ms4a4c Pglyrpl
12 Len2 Cryab Npc2 Mmp9
13 Msrb1 Car2 Ifi30 Gmb5483
14 Ifitm2 Tsc22d1 Lyz2 Mmp8
15 Hdc Bsg Pld4 Cxcr2
16 Ltf Igfbp7 Lampl Msrbl
17 Pglyrpl | Vin Ifitm3 Stfa2l1
18 Anxal Mt2 Smpdi3a | Hdc
19 S100a6 | 1500015010Rik | Ly86 Ccl6
20 Ifitm1 Mt1 Ctsc Duspl
21 Wfdc17 | Plpp3 Vim Clec4d
22 Srgn Gpm6b Lgals1 Ifitm1
23 Fxyd5 Flt1 Clec4a3 S100a6
24 Anxa2 Gstm1 S100a10 Lrgl
25 Lrgl Prnp Prdx1 Csf3r
26 Gsr Ndrg2 Anxab Anxal
27 Ccl6 Crip2 Ctsb Mxd1
28 Ifitm6 Pltp Dbi Grina
29 Cd52 S100a1 Napsa C5arl
30 Cxcl2 Car4 Apoe Camp

Note: Non-microglial gene lists of dendritic cells (DC), natural killer (NK)-cells, monocyte and neutrophil markers. Gene
lists derive from Ochaka et al. (2021) and Xie et al. (2020), each single-cell RNA-sequencing studies.
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Supplementary Table 5: Supplementary gene lists.

112

Sala Frigerio et

# | Marsh et al. 2022 | Regev et al. 2016 al. 2019
exAM S-phase gi::; AD risk factors

1 | Histlhlc Mcm4 Nuf2 Apoe

2 | Histlh2bc Exol Psrcl Trem?2

3 | Ubc Slbp Ncapd2 Tyrobp

4 | Jund Gmnn Ccnb2 Cr2

5 | Rgsl Cdc45 Smc4 Bin1

6 | Hspala Msh2 Lbr Cd2ap

7 | Hsp90aal Mcm6 Tacc3 Ephal

8 | Ccl4 Rrm2 Cenpa Clu

9 | Duspl Pold3 Kif23 Ms4a6d

10 | Hspalb BIm Cdca2 Picalm

11 | Ccl3 Ubr7 Anp32E Abca7

12 | Rhob Mcm5 G2E3 Cd33

13 | Jun Clspn Cdca3 H2-Eb1

14 | Zfp36 Hells Anin Sorll

15 | KIf2 Nasp Cenpe Slc24a4

16 | Junb Rpa2 Gas2L3 Dsg2

17 | Fos Rad51Ap1 | Tubb4B Inpp5d

18 | Txnip Tyms Cenpf Mef2c

19 | Egrl Rrm1 Dlgap5 Zcwpwl

20 | Adamtsl Rfc2 Hjurp Fermt2

21 | Btg2 Prim1 Cks1Brt Cass4

22 | Wfdc21 Brip1 Gtsel Ptk2b

23 | Ier5 Uspl Bub1l Ctsf

24 | Atf3 Ung Birc5 Ccl11

25 | Hist1h4i Polal Ube2C Plcg2

26 | Gem Mcm2 Rangapl | Abi3

27 | Ter2 Fenl Hmmr Pld3

28 | Ier3 Tipin Ect2 Mme

29 | Histlh2br Pcna Tpx2 Mmell

30 | Histlhle Cdca7 Ckap5 Ecel

31 | Illb Uhrfl Cbx5 Ece2

32 | Serpinel Casp8Ap2 | Nek2 Ace

33 | Nfkbid Cdc6 Ttk Mmp2

34 | Fosb Dsccl Cdca8 Mmp9

35 | Egr2 Wdr76 Nusap1l Mmp14

36 | Cited2 E2F8 Ctcf Bsg

37 | KIfé Dtl Cdc20 Ide

38 | Nfkbiz Ccne2 Cks2 Serpinf2

39 | Hist2h2aal Atad2 Mki67 Apeh

40 | Histlh4d Gins2 Tmpo Mobp

41 | Gm26532 Chaf1B Ckap2L Ctsd

42 Pcna-Ps2 | Aurkb Ctsb

43 Kif2C Bacel




44 Cdk1 Bace2
45 Kif20B Mapt

46 Top2A Aplpl
47 Aurka Aplp2
48 Ckap2 App

49 Hmgb2 Psenl
50 Cdc25C Psen2
51 Ndc80 Adam10
52 Kif11l Adamts4
53 Vkorcl
54 Tspoapl
55 Pvr

Note: Supplementary gene lists of ex vivo activated microglia (exAM), S- and G2M-phase specific genes, and Alzheimer’s
disease (AD)-associated risk factors, as reported by Marsh et al. (2022), Aviv Regev, and Sala Frigerio et al. (2019),
respectively.

exAM

Liet al. 2019 Marsh et al. 2020 Van Hove et al. 2019

Supplementary Figure 5: Identification of ex vivo-activated microglia.
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Supplementary Figure 6: Human gestational myeloid heterogeneity. a) Dimplot of identified Seurat clusters. b) Each cluster
features typical myeloid markers. c) Heatmap of cluster-specific genes; top 10 genes (ordered by ‘avg_log2FC’), as
determined with ‘FindAllMarkers’ with ‘only.pos = TRUE’, ‘min.pct = 0.25°,” logfc.threshold = 0.25’, ‘test.use = "wilcox"".
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Supplementary Table 6: Cluster markers of human gestational myeloid cells.

0 1 2 3 4 5 6 7
C1QB FNIP1 PDPN GADD45B | TUBA1A | DLGAP5 | RNASE1l JUNB
CTSD | FCGR1A BMP2K LINCO0309 | MEG3 CENPF MRC1 FPR1
CDg4 NASP NPC2 EGR1 HMGCS1 | NUSAP1 WWP1 KDM6B

DOCK4 | SAMSN1 DAD1 CCL4L2 SOX11 | FAM111A | BLVRB SRGN
TPT1 IRF2BPL ENO1 CCL3 STMN2 | CKAP2L | COLEC12 B2M
ATRX KCNJ2 | WHAMMP3 RIN2 MAP1B MKI67 CD163 SORL1

APBB1IP | SAT1 ITPR2 CCL4 SOx4 KIF23 F13A1 GET4

SLC1A3 LGMN FTL KLF6 BCL7A TICRR DAB2 TXNIP
CD63 THAPS JTB RHOB SLC6A15 | C2orf69 LILRB5 S100A9
JUND HTRA1 CRIM1 SH3BGRL3 CNR1 HMGB2 CD28 TMEM154
CYBA PLXDC2 HCCS CD36 NRXN1 TK1 TGFBI DUSP1
SPP1 TREM2 GPNMB CCL2 SLC4A10 | CDC20 USP36 IFITM2

OLFML3 | RNF122 LAGE3 CH25H SMAD9 CCNB2 IQGAP2 S100A8

Céorf62 | ARRDC3 FOLR2 CX3CR1 GAP43 CKAP2 TLN1 SP110

FSCN1 PRKCA | SLC25A45 | HERPUD1 | KIF21A | ARL6IP1 | DOCK5 NFKBIA

Note: Cluster marker genes of in the integrated object. The top 15 genes are displayed. “FindAlIMarkers” was used with

"

default settings, e.g. ‘only.pos = TRUE’, ‘min.pct = 0.25’, ‘logfc.threshold = 0.25’, ‘test.use = "wilcox".

Supplementary Table 7: Conserved CPM markers (1) — Bian et al. 2020.
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Gene Bian p val | Bian avg log2FC | Bian pct.1 | Bian pct.2 | Bian p val adj
CENPF 3.66E-14 Inf 1 0.626 2.29E-09
GTSE1 5.16E-14 122.2347465 0.955 0.451 3.23E-09
MKI67 1.69E-13 Inf 1 0.659 1.05E-08
NUSAP1 3.11E-13 363.1648182 1 0.626 1.95E-08
ASPM 2.43E-12 451.1595691 0.909 0.462 1.52E-07
TACC3 3.76E-12 344.4097827 0.932 0.549 2.35E-07
TPX2 5.66E-12 109.2505152 0.909 0.44 3.54E-07
TOPZA 1.04E-11 Inf 1 0.824 6.54E-07
NDC80 2.66E-11 200.1402787 0.705 0.176 1.67E-06
CENPE 3.83E-11 787.3171603 0.818 0.363 2.40E-06
SMC4 2.01E-10 319.8839671 1 0.78 1.26E-05
CDCA8 1.00E-09 15.47531343 0.818 0.385 6.29E-05
KIF14 3.67E-09 65.96963986 0.75 0.319 0.000229921
ANLN 3.71E-09 244.8638249 0.818 0.462 0.00023191
DIAPH3 1.04E-08 3.933753103 0.614 0.165 0.000650144
CKAPZL 4.41E-11 84.72467539 0.795 0.286 2.76E-06
PRR11 2.08E-11 246.30652 0.909 0.418 1.30E-06
NUF2 8.31E-11 109.4336097 0.841 0.341 5.20E-06
SPC25 1.39E-06 272.2750307 0.636 0.286 0.086833709
NCAPH 5.65E-09 113.5785762 0.795 0.385 0.00035379
CKAP2 8.75E-08 606.8428335 0.886 0.571 0.005476731
NCAPG 2.29E-10 1.044791363 0.773 0.253 1.43E-05
cDe25¢ 4.20E-05 73.63338822 0.455 0.165 1
KIF18A 0.001486961 81.79035097 0.318 0.121 1
NCAPD2 9.26E-11 188.5987183 0.955 0.505 5.80E-06
MELK 2.44E-08 366.0502084 0.795 0.341 0.001526293




BUBIB 2.68E-06 475.6950315 0.682 0.352 0.167512058
DLGAPS 3.93E-10 14.03261839 0.818 0.407 2.46E-05
HELLS | 0.001640773 366.0502084 0.705 0.462 1
BUBI 3.66E-11 81.83928531 0.864 0.418 2.29E-06
STIL 3.63E-10 181.3852431 0.705 0.209 2.27E-05
ATAD2 5.48E-05 543.5016984 0.795 0.582 1
TMPO 1.28E-06 11.14722831 0.909 0.758 0.08039923
KIF208B 2.66E-08 316.9985765 0.955 0.659 0.001664038
RAD51AP1 9.17E-07 130.8909167 0.705 0.385 0.05736202
CENPK 1.95E-05 291.0287513 0.75 0.516 1
C21orf58 6.26E-06 344.4084678 0.682 0.363 0.391824312
SCLT1 0.230716092 96.26623572 0.5 0.473 1
NCAPD3 | 0.003978318 145.3178671 0.591 0.33 1
KIF5B 0.040929522 123.4938392 0.955 0.857 1

Note: Conserved marker genes of cycling and proliferating microglia (CPM) (cluster 5). 40 conserved CPM markers were
identified, independent of data source. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’,
‘logfc.threshold = 0.25’.
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Supplementary Table 8: Conserved CPM markers (2) — Fan et al. 2020.

Gene Fan p val | Fan avg log2FC | Fan pct.1 | Fan pct.2 | Fan p val adj
CENPF 2.25E-67 Inf 0.848 0.27 1.41E-62
GTSE1 9.39E-107 279.3610464 0.803 0.102 5.88E-102
MKI67 2.96E-96 473.5339325 0.826 0.139 1.85E-91
NUSAPI 1.33E-66 Inf 0.894 0.343 8.31E-62
ASPM 1.49E-78 565.8664058 0.705 0.109 9.30E-74
TACC3 5.37E-83 182.1095342 0.78 0.13 3.36E-78
TPX2 9.62E-71 309.0662083 0.742 0.152 6.02E-66
TOP2A 6.73E-71 Inf 0.886 0.286 4.21E-66
NDC80 1.33E-67 153.2294248 0.591 0.083 8.31E-63
CENPE 2.27E-48 192.2083995 0.629 0.144 1.42E-43
SMC4 1.18E-57 225.3903855 0.932 0.419 7.37E-53
CDCAS8 8.05E-88 255.6833856 0.659 0.075 5.04E-83
KIF14 4.89E-39 16.26970239 0.371 0.052 3.06E-34
ANLN 7.45E-89 132.8746246 0.636 0.065 4.66E-84
DIAPH3 7.47E-50 45.05352943 0.455 0.063 4.67E-45
CKAPZL 6.47E-95 349.462159 0.659 0.066 4.05E-90
PRR11 3.29E-29 180.6667081 0.659 0.272 2.06E-24
NUF2 1.88E-63 137.3850909 0.667 0.13 1.18E-58
SPC25 9.53E-24 91.21974664 0.621 0.303 5.97E-19
NCAPH 7.34E-70 89.77706046 0.583 0.075 4.59E-65
CKAPZ 2.95E-36 444.6800317 0.773 0.332 1.85E-31
NCAPG 4.22E-106 45.50544641 0.659 0.05 2.64E-101
aoezsc 6.29E-41 3.020424689 0.341 0.039 3.94E-36
KIF18A 5.45E-30 85.44439423 0.295 0.042 3.41E-25
NCAPD2 1.24E-61 23.41259649 0.705 0.144 7.76E-57
MELK 3.36E-27 29.59594709 0.712 0.35 2.11E-22
BUBIB 2.33E-53 134.5005979 0.523 0.085 1.46E-48
DLGAP5 1.05E-47 109.9747828 0.5 0.087 6.56E-43
HELLS 1.04E-31 34.95464004 0.598 0.197 6.48E-27
BUB! 3.07E-57 114.2762072 0.561 0.091 1.92E-52
STIL 3.71E-46 62.36584568 0.424 0.057 2.32E-41
ATAD2 6.41E-46 32.06924996 0.75 0.247 4.01E-41
TMPO 1.93E-33 76.60845902 0.864 0.496 1.21E-28
KIF20B 1.81E-21 39.09777535 0.727 0.361 1.13E-16
RAD51API | 2.35E-50 105.6466311 0.568 0.11 1.47E-45
CENPK 1.49E-42 146.0421581 0.545 0.117 9.30E-38
C1orf58 | 2.36E-42 101.3181346 0.614 0.159 1.48E-37
SCLT1 2.30E-10 30.62655492 0.553 0.322 1.44E-05
NCAPD3 1.09E-23 20.52411678 0.523 0.181 6.82E-19
KIF5B 1.89E-11 162.9025576 0.902 0.807 1.19E-06

Note: Conserved marker genes of cycling and proliferating microglia (CPM) (cluster 5). 40 conserved CPM markers were
identified, independent of data source. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’,
‘logfc.threshold = 0.25’.
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Supplementary Table 9: Conserved CPM markers (3) — Cao et al. 2020.

Gene Cao p val | Cao avg log2FC | Cao pct.1 | Cao pct.2 | Cao p val adj
CENPF 4.67E-228 2.120825035 0.258 0.009 2.92E-223
GTSE1 3.86E-195 1.309892423 0.183 0.002 2.42E-190
MKI67 0 3.222783591 0.355 0.008 0
NUSAP1 3.58E-276 1.183391101 0.292 0.008 2.24E-271
ASPM 0 3.394374792 0.333 0.007 0
TACC3 6.94E-99 0.472884617 0.145 0.01 4.35E-94
TPX2 5.76E-219 0.83076071 0.22 0.005 3.60E-214
TOPZA 0 2.400820572 0.349 0.012 0
NDC80 4.60E-182 0.610878547 0.179 0.003 2.88E-177
CENPE 5.48E-220 1.670801642 0.242 0.008 3.43E-215
SMC4 4.20E-196 1.881014153 0.294 0.021 2.63E-191
CDCA8 2.49E-98 0.284788986 0.1 0.002 1.56E-93
KIF14 2.55E-166 0.643211995 0.163 0.003 1.60E-161
ANLN 1.37E-194 0.906103398 0.194 0.004 8.54E-190
DIAPH3 0 3.116139187 0.456 0.021 0
CKAPZL 2.73E-148 0.592587058 0.142 0.002 1.71E-143
PRR11 1.81E-124 0.700269154 0.197 0.015 1.13E-119
NUF2 7.20E-120 0.467461123 0.144 0.006 4.51E-115
SPC25 2.14E-154 2.649985953 0.15 0.003 1.34E-149
NCAPH 1.95E-92 0.343247989 0.107 0.004 1.22E-87
CKAPZ 2.89E-107 0.95945264 0.186 0.017 1.81E-102
NCAPG 2.54E-133 0.536991746 0.142 0.004 1.59E-128
cDC25¢ 4.37E-155 1.002401561 0.157 0.003 2.73E-150
KIF18A 8.04E-120 0.605974935 0.121 0.003 5.03E-115
NCAPD2 1.01E-79 0.355504423 0.144 0.014 6.35E-75
MELK 3.88E-183 0.919373129 0.244 0.013 2.43E-178
BUB1B 1.57E-184 0.870803034 0.199 0.006 9.80E-180
DLGAPS 8.86E-102 0.279240482 0.1 0.002 5.55E-97
HELLS 4.73E-91 0.528479839 0.168 0.017 2.96E-86
BUB1 3.19E-147 0.725620736 0.157 0.004 2.00E-142
STIL 3.63E-185 1.060892294 0.236 0.012 2.27E-180
ATAD2 1.11E-182 2.58699309 0.305 0.027 6.97E-178
TMPO 3.31E-149 0.999157324 0.247 0.021 2.07E-144
KIF20B 1.30E-87 0.668993649 0.176 0.02 8.16E-83
RAD51AP! 1.62E-60 0.287487333 0.11 0.011 1.02E-55
CENPK 2.26E-138 0.937581184 0.236 0.021 1.42E-133
C2lorf58 | 9.51E-123 0.37949591 0.129 0.003 5.95E-118
SCLT1 7.40E-91 8.283047002 0.517 0.193 4.63E-86
NCAPD3 5.01E-73 0.611291607 0.16 0.02 3.14E-68
KIF5B 1.45E-21 0.586363209 0.166 0.062 9.06E-17

Note: Conserved marker genes of cycling and proliferating microglia (CPM) (cluster 5). 40 conserved CPM markers were
identified, independent of data source. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’,
‘logfc.threshold = 0.25’.
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Supplementary Table 10: Conserved CPM markers (4) — Kracht et al. 2020.

Gene Kracht Kracht avg Kracht Kracht Kracht p v | max minimump
p val log2FC pct.1 pct.2 al_adj val p val
CENPF | 0 293.1976406 | 0525 | 0.047 0 3008 0
GTSEI 0 24.85636421 | 0206 | 0.009 0 o 0
MKIE7 | 0 108.5326754 | 0.527 | 0.032 0 Lo 0
MEAZL o 4244828615 | 0506 | 0.032 0 e 0
ASPM 0 324.9369315 | 0416 | 0.021 0 ot 0
TACC3| 0 32.06983822 | 0.251 0.02 0 3708 0
TPX2 0 75.42078633 | 0237 | 0.012 0 >-o0F 0
TOP24 0 36.30792334 | 0.669 0.06 0 Lo 0
wocso| o 202.1004497 | 0238 | 0.016 0 2058 0
CENPE | 0 327.8222963 | 0335 | 0.022 0 383 0
sMce 0 7544013658 | 0.393 | 0.054 0 v 0
o8| o 7679338448 | 0206 | 0.011 0 e 0
KIF14 0 2585632714 | 0.187 | 0.009 0 e 0
ANLN 0 39.2965477 | 0.204 | 0.009 0 M 0
DIAPIT| 5616216 | 45.05280723 | 0133 | 0009 | 3516211 | “OSF 0
CKIFZ | 3166289 | 1388287873 | 0158 | 0008 | 198E284 | T1IF | 1.26E-288
PRR1I | 7936277 | 1359438812 | 0302 | 0048 | 496E272 | 2350 | 3176276
NUF2 | 2.86E-276 | 150.3708316 | 0.162 0.01 L7927t | S3F | 1a4E27s
SPC25 | 3.66E-274 | 1604696728 | 0.131 | 0004 | 2296269 | 200 | 1476273
NCAPH | 1.17E-265 | 52.26769743 | 0.14 0006 | 7.338261 | >OF | 4.69E-265
CKAPZ | 2.79E-264 | 210.937773 | 0.333 0.064 | 1.75E-259 8'325 1.12E-263
NCAPG | 8776249 | 66.69452056 | 0120 | 0005 | 5496244 | “20F | 3516248
CDgZ5 4.02E-232 | 150.3708557 | 0.118 0.005 | 2.526-227 4'325 1.61E-231
KIFISA| 3.56E-222 | 9550233194 | 0.131 | 0008 | 2236217 | “gor® | 1426221
NOFD| 1ose-215 | 1229547424 | 0213 | 0029 | e73E211 | *3%F | 4308215
MELK | 349E-204 | 242.6956981 | 0.138 0.011 | 2.18E-199 Z'SZE' 1.40E-203
BUBIB | 6.60E-199 | 134979211 | 0125 | 0008 | 4136194 | 0% | 264E-198
DICAP | 376E-193 | 232.1525054 | 0452 | 0015 | 2356188 | 00 | 150E-192
HELLS | 2326-189 | 1620019277 | 0351 | 0094 | tase-is4 | 0001 | 9306180
BUBI | 2.35E-188 | 9554842002 | 0184 | 0025 | 147E-183 | SO | o4re-1ss
STIL | 9.76E-104 | 65.32185539 | 0.112 0.017 6.11E-99 3'?85 1.45E-184
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ATAD? | 3.10E-163 | 1561416113 | 0202 | 0036 | 194E-158 | o0 | 4.46E-182
TMPO | BAGE-174 | 55.14327066 | 0266 | 0058 | 5206169 | To0C | 338E-173
KIF208| 2.73€-170 | 1345011861 | 0315 | 0083 | 171E-165 | “S0¢ | 109E-169
ROl | 1816149 | 1484761954 | 0127 | 0014 | 1136144 | TUF | 7206149
CENPK | 2.23E-100 | 3062354754 | 0138 | 0024 | 1406104 | T2 | 9.06E-138
CIoT| 359E72 | 2237650904 | 0451 | 0042 | 225667 | 2 | 380E122
SCLTI | 1.83E-23 | 1085326754 | 0.123 | 0.056 11se-18 | V07 | 2.96E-90
NCAPD | 6 50E-80 | 27.67165947 | 0.113 0.022 407675 | 090397 1 5 60E-79
3 8318
KIF5B | 1.40E-24 | 26.29905789 | 0.295 0.19 877620 | "o¥D% | s.60E24

Note: Conserved marker genes of cycling and proliferating microglia (CPM) (cluster 5). 40 conserved CPM markers were
identified, independent of data source. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’,
‘logfc.threshold = 0.25’.

Seurat clusters Original identity

Supplementary Figure 7: Spatial distribution of human gestational myeloid cells by original identity. 7 distinct clusters
were identified, each of which are composed of cells from all 4 data sources (i.e. original identity).

Supplementary Table 11: Transcriptional similarities of YS and CAM.

gene p_val avg_log2FC | pct.1 | pct.2 p_val_adj | cluster

Pf4 2.86E-239 | 3.659262487 | 0.859 | 0.35 | 8.58E-236 YS
Dab2 1.09E-107 | 2.616545929 | 0.778 | 0.415 | 3.28E-104 YS
Lgalsl 2.40E-249 | 2.487708008 | 0.905 | 0.416 | 7.19E-246 YS
Ifitm2 2.30E-91 2.29505368 | 0.747 | 0.391 | 6.90E-88 YS
Mrcl 1.50E-129 2.03016306 | 0.808 | 0.366 | 4.51E-126 YS
Fegrt 3.39E-141 | 1.966760491 | 0.876 | 0.571 | 1.02E-137 YS
Snx2 1.81E-147 | 1.965805891 | 0.998 | 0.583 | 5.44E-144 YS

Ifitm3 2.62E-145 | 1.955917009 | 0.84 | 0.339 | 7.85E-142 YS
Igfbp4 8.16E-71 1.801216738 | 0.75 | 0.41 2.45E-67 YS

Apoe 1.51E-198 | 1.790467165 | 0.997 | 0.777 | 4.54E-195 YS
Blvrb 5.42E-21 1.712248217 | 0.655 | 0.464 1.63E-17 YS
Anxa5 5.22E-31 1.686567876 | 0.693 | 0.434 1.57E-27 YS

Tmem106a 1.09E-42 1.621431035 | 0.715 | 0.347 3.27E-39 YS
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Irf7 0.00199911 | 1.601016379 | 0.548 | 0.29 1 YS
Isg15 2.15E-06 1.592475842 | 0.474 | 0.343 | 0.006454338 | YS
Rtp4 4.89E-89 1.57226286 | 0.788 | 0.358 1.47E-85 YS
Slfn2 0.000306213 | 1.472435128 | 0.582 | 0.384 | 0.918639786 | YS
Ftil 7.21E-213 | 1.438700491 1 0.994 | 2.16E-209 YS
Cnn2 9.04E-05 1412194131 | 0.47 | 0.292 | 0.271259426 | YS
Tspo 3.34E-47 1.403636539 | 0.761 | 0.508 1.00E-43 YS
Cd74 0 5.311680693 | 0.82 | 0.377 0 CAM
Pf4 0 3.891583663 | 0.887 | 0.325 0 CAM
Dab2 0 2.595638798 | 0.818 | 0.399 0 CAM
Ifitm3 0 2.266263673 | 0.796 | 0.318 0 CAM
Mrcl 0 2.161065975 | 0.781 | 0.346 0 CAM
Ifitm2 0 2.126423728 | 0.776 | 0.374 0 CAM
Apoe 0 2.104944765 | 0.996 | 0.786 0 CAM
Lgalsl 0 2.02422236 | 0.821 | 0.403 0 CAM
Ifi2712a 5.17E-244 | 1.983734996 | 0.66 | 0.358 | 1.55E-240 CAM
Folr2 1.24E-155 | 1.685719824 | 0.588 | 0.349 | 3.72E-152 CAM
Fcgrt 1.05E-275 | 1.665749465 | 0.81 | 0.562 | 3.14E-272 CAM
Snx2 1.62E-231 | 1.441120987 | 0.843 | 0.581 | 4.87E-228 CAM
Mgl2 0 1.392708058 | 0.644 | 0.223 0 CAM
Blvrb 1.43E-231 | 1.365494424 | 0.732 | 0.448 | 4.30E-228 CAM
Cfp 0 1.362794748 | 0.623 | 0.253 0 CAM
Igfbp4 4.73E-276 | 1.311542852 | 0.715 | 0.394 | 1.42E-272 CAM
Bst2 2.23E-260 | 1.280317123 | 0.828 | 0.561 | 6.70E-257 CAM
Ctsc 0 1.255242632 | 0.985 | 0.841 0 CAM
Tmem106a 0 1.245944267 | 0.686 | 0.329 0 CAM
Anxa5 3.04E-196 | 1.222704348 | 0.715 | 0.426 | 9.12E-193 CAM

Note: Top 20 yolk sac (YS) progenitors and CNS-associated macrophage (CAM) markers support transcriptional similarities
between both subtypes. “FindConservedMarkers” was used with default settings, e.g. ‘only.pos = TRUE’, ‘logfc.threshold

=0.25".
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Supplementary Figure 8: Two-dimensional bar plots on region, original and cluster identity. Cluster 11 and 14 display some
degree of region-specific enrichment, with enrichments for YS- and SC-isolated cells, respectively. Cluster 11 does not relate
to a specific source, albeit cluster 14 appears to be mostly driven by cells from Keren-Shaul et al. (2016). Without a
subsequent similar enrichment of cells by Masuda, cells appear to derive from the former source.
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Supplementary Table 12: Sex-specific contingency table of cell annotations across the lifespan.

Adult Middle age Old age
Early Pre- microglia Adult microglia | Adult microglia microglia microglia
microglia microglia (P90) (3.5M) (6M) (18M) (21M)
Cluster F M F M F M F M F M F M F M #
AIM 0 0 1 1 9 8 65 96 2 4 24 311 6 3 530
CPM -
G2M 2320 2083 | 1385 | 1385 4 16 6 3 1 1 2 25 0 0 7231
CPM-S 2026 1856 | 1132 | 1130 15 22 17 20 6 4 10 19 2 3 6262
EDM 3674 2747 | 3753 | 3838 1 12 2 1 1 0 33 67 1 0 14130
HOM1 0 0 0 0 86 52 3888 6615 1 4 172 3945 2 3 14768
28
HOM2 0 0 0 0 1302 | 1551 1573 1341 264 296 879 865 136 2 8489
32
HOM3 17 33 29 24 594 1177 185 44 356 343 817 747 330 1 5017
HOM4 0 0 0 0 756 29 2226 2804 0 0 12 304 0 1 6132
HOMS5 0 0 0 0 5 2 33 2388 0 0 3 15 1 0 2447
IRM 6 7 8 21 41 79 339 365 15 8 111 456 25 12 1493
LPM 90 109 849 955 42 31 17 3 11 12 106 56 47 14 2342
63
# 8133 6835 | 7157 | 7354 | 2855 | 2979 8351 13680 657 672 2169 | 6810 550 9 68841

Note: A subset of 7 ages was created: E14.5, P4, P90, 3.5M, 6M, 18M and 21M for a total of 68841 cells. Cell numbers are displayed by age group, sex and subtype (i.e. cluster). AIM, Activated
Inflammatory Microglia; CPM, cycling and proliferating microglia; EDM, early developmental microglia; HOM, homeostatic microglia; IRM, interferon response microglia; LPM, lysosome
pathway-associated macrophage. F, female; M, male; M, months old; P, postnatal day.
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Chapter 4

Drop-seq platform performance and pilot of

cortical microglia

In the previous chapter, a compendium was developed of murine microglial heterogeneity across

the lifespan. Broadly, seven major subtypes were identified that differ in their maturation speed in

a sex-specific manner, culminating in distinct population dynamic profiles, and the identification of

exAM. Biological and technical noise are endemic to any experiment, yet these are important to

identify prior to developing a targeted experimental setup (Wagner et al., 2016). Here, Drop-seq

was tested and generated a pilot dataset to measure the extend of such noise.

41.1.1

Drop-seq: droplet microfluidics and cellular diversity

All scRNA-seq platforms have microfluidic systems at its core, that is, systems which
manipulate micrometre-sized liquids through channels and into chambers (Pan et al.,
2022). In contrast, scRNA-seq platforms vary in costs, method of quantitation and
performance (Figure 55). CEL-seq2, SMART-seq2, MARS-seq and Drop-seq are all popular
variants of such scRNA-seq platforms that are well-, chip- or droplet-based, offering
simplicity, control, and high throughput, respectively. Of these methods, Drop-seq appears

to be the preferred platform for several reasons.

Publication

MoQ

Accuracy (R=)

Sensitivity (#M)

Costs ($) "

CEL-seq2

Hashimshony et al. 2016

SMART-Seq2

Picelli et al. 2014

MARS-Seq

Jaitin et al. 2014

Drop-Seq

Macosko et al. 2015

Well Chip Droplet Droplet
UMI Transcript UMi UMl
0.94 0.85 0.8 0.92
13 45 130 10
2,250 1,090 820 690

Figure 55: scRNA-seq platform comparisons. Direct comparison of well-known and utilized single-cell RNA-sequencing
(scRNA-seq) platforms on type (i.e. well, chip, droplet), method of quantitation, accuracy, sensitivity and costs. Costs are
relative costs in United States dollar (S) for sequencing 254 cells to an average read depth of 250,000. Information
collated from the works of Ziegenhain et al. (2017 and Svensson et al. (2017). MoQ, method of quantitation; #M,
number of molecules; R=, correlation; UMI, unique molecular identifier.

Drop-seq has been successfully utilized in a plethora of studies, including work on the

developmental maturation of retinal progenitors and thymus, cell type-specific responsiveness to
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energy status, the identification of disease-associated subtypes, and cross-region analysis of the

mammalian brain (Campbell et al., 2017; Fang et al., 2019; Kernfeld et al., 2018; Yuzwa et al., 2017).

Drop-seq is the most cost-effective technique and shows excellent accuracy and sensitivity (Figure
55). Drop-seq was developed in the lab of Steven McCarroll and enables the profiling of thousands

of single-cells in a high-throughput and cost-effective manner (Macosko et al., 2015).

As a droplet-based microfluidics approach, Drop-seq captures 3’-end poly-adenylated RNA (e.g.
mRNA) from individual cells. When controlling for read depth, RNA-based scRNA-seq techniques
like Drop-seq have a relative increase in sensitivity and accuracy in comparison to whole-transcript
scRNA-seq (e.g. SMART-seq-2) (Figure 55) (Svensson et al., 2017). Accuracy describes the fidelity in

which the transcripts can be measured, whereas the sensitivity describes the lower detection limit.

The detection limit for Drop-seq is ~10 molecules and, importantly, accuracy correlates with bulk
RNA-Seq measures (R = 0.92) (Figure 55). Of note, read depth per cell is a key factor for sensitivity,
although accuracy is mostly independent of it. Accuracy is a measure of the technique, marking the
limitations of the chosen platform and independent of the number of reads per cell, as is the case
for sensitivity. Indeed, study shows that accuracy saturates around 250,000 sequenced reads per

cell, whereas sensitivity does so from 1 million reads (Svensson et al., 2017).

4.1.2 Characteristics of Drop-seq microfluidics and cellular diversity

Single-cell transcriptomes in Drop-seq are generated by the co-encapsulation of barcoded beads
and cells in ~1 nlL-sized water-in-oil droplets. In short, single-cells from complex tissue are co-
encapsulated with beads after which 3’-end poly-adenylated RNA is captured by bead primers for

the generation of single-cell transcriptomes attached to microparticles (STAMP) (Figure 56).

a) b) <) d)

& X 2
° ) —
) ® o o

Figure 56: Drop-seq barcoding schematic for single-cell microglial transcriptomes. a) Complex tissue is dissociated to
isolate individual microglia. b) Co-encapsulation of isolated cells with barcoded beads (circles). c) Once cells and beads
come in contact, cells lyse, allowing for the capture of cell-specific poly-adenylated RNA and the generation of ‘single-cell
transcriptomes attached to microparticles’ (STAMP). d) STAMP are utilized for single-cell library preparation and
sequencing.

Droplet formation and co-encapsulation of cells and beads is mediated by the co-flow of beads in
lysis buffer, cells in suspension, and oil; oil functions to join cells and beads in monodisperse
droplets. The probability of finding both particles in a droplet is approximated by the Poisson

distribution (Mazutis et al., 2013) (Equation 1). In this manner, with the probability of finding a
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certain number of particles (x) at a given average number of particles in a droplet (A), droplet

occupancy is described in Figure 57.

P(X;=x, Xp=x) = eMA * el
X, ! X!

Figure 57: Poisson distribution and droplet occupancy. Predicting the number of particles (i.e. cells or beads) in droplets
can be calculated with the Poisson distribution. A represents the average number of particles in the droplet volume, and x
the number of particles found in the droplet. In effect, changing the cell and bead concentrations will drive their changes
of co-encapsulation. e.g., preparing cells and beads to 100 cells and 120 beads/uL, the chances to co-encapsulate 1 cell
and 1 bead will approximate: 0.091 * 0.106 = 0.01 (1%). By extension, beads that encounter cells at 50 cells/uL is roughly
5%.

The barcoded beads are composed of PCR handles, a cell barcode, and unique molecular identifiers
(UMI) (Figure 58) (Macosko et al., 2015). The PCR handle offers a scaffold for PCR amplification,
whereas the UMI and cell barcodes aid the identification of specific transcripts or cells, respectively.
Each primer bead contains over 108 primer beads, each with an identical cell barcode and up to
~65,000 distinct UMI (to control of amplification biases), enabling the profiling of thousands of cells,

and the accurate enumeration of transcripts in a single experiment.

a) cells oil b)
T ' —
beads .‘ - 0 — '. ) @ .. — \
I PCR handle  cell barcode umi poly-T tail
cells oil

Figure 58: Schematic of particle co-encapsulation. a) Co-encapsulation of particles is mediated by the serial co-flow of
beads (circles), cells (pentagons) and oil; the oil enables droplet formation and captures cells and beads together. The
Poisson distribution approximates the likelihood of capturing single-cells and primer beads. b) The barcoded primer beads
are composed of a PCR handle, a cell barcode, a unique molecular identifier (UMI) and a poly-T tail for the capture of cell-
specific polyadenylated RNA. Each bead contains the same cell barcode and up to 48 (~65,000) distinct UMI.

4.1.3 Limitations of Drop-seq: technical and biological noise

Drop-seq has limitations users need to be aware of, as measures of accuracy are intertwined with
biological and technical noise. Like most scRNA-seq protocols, Drop-seq captures 3’-end poly-
adenylated RNA only, excluding small RNAs (e.g. mature miRNA) and non-coding RNAs without
poly-A tails. Butovsky et al. (2014) have previously shown that microglial identity is under the
transcriptional control of miRNAs in a region-dependent manner (Butovsky et al., 2014). This

inherent feature of Drop-seq provides an a priori limit to the transcriptional read out.
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4.1.3.1 Technical noise of scRNA-seq

Typical technical factors known to impair the ability to detect true heterogeneity are batch effects,
transcriptome library quality, and cell specific capture efficiency and amplification bias (Wagner et
al., 2016). Batch effects signify variability in data due to a technical factor. Generally, randomization
of all conditions in experimental design will minimize such effects. However, with large-scale and
complex designs, these effects could remain and need to be mitigated bioinformatically.
Fortunately, Harmony, LIGER and Seurat are all effective tools to integrate disparate samples (Tran
et al., 2020). Seurat utilizes canonical correlation analysis (CCA) to mitigate batch effects (Butler et
al.,, 2018; Tran et al., 2020). Furthermore, captured RNA quantity and composition differ and
experimental protocol (Huarte et al. 2021; Thrupp et al. 2020). Consequentially, library qualities will
differ between cell types. Moreover, quantification bias signifies an error in which weights are
unevenly assigned to individual components. In the context of scRNA-seq, such a bias describes
differences in sequencing read allocation based on cell- or transcript-specific characteristics.
Fortunately, the use of UMI allow for digital quantification of the transcripts, greatly reducing

guantitative imprecision, a major source of technical noise with scRNA-seq (Islam et al., 2014).

4.1.3.2 Biological factors influencing transcriptional heterogeneity in microglia

Biological noise and cellular identity can be defined by the biological contexts and factors with
which it interacts (e.g. environmental stimuli, cell development, cell cycle and spatial context)

(Wagner et al., 2016).

In the large-scale atlas (Chapter 3), | discussed the importance of cell cycle for transcriptional
heterogeneity. As show, murine and human microglia display wave-like patterns in early
development, concurrent with the developmental expansion of these cells (Figure 37, Figure 38)
(Askew et al.,, 2017; Menassa et al., 2021). Moreover, cell cycle phase affects sensitivity to
environmental cues and cellular heterogeneity (Lauridsen et al., 2018). In fact, the environment is
known to play a large role in the emergence of microglial identity. Environmental cues like those by
Tgf-3 are examples of such effects. However, as discussed, microglia can also take on an ex vivo-
activated signature (i.e. exAM) during cell isolation, obfuscating their native transcriptional read

out (Figure 30) (Brink et al., 2017; Marsh et al., 2022; Wu et al., 2017).
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4.1.4 Single-cell isolation — a review of methods

To take inventory of current scRNA-seq procedures, | reviewed many studies for their
methodological approach (Table 5). This includes and extends beyond the scope of those
discussed in the atlas. A typical scRNA-seq protocol consist of 6 distinct steps: anaesthesia,
perfusion and tissue dissection, dissociation, purification, enrichment, and scRNA-seq; 7 when
including chemical fixation. Of note, most studies utilize enzymatic dissociation, Percoll gradient
centrifugation and fluorescence-activated cell sorting (FACS) (Figure 58); the standard of scRNA-

seq.

(1) (2) (3)

Tissue dissociation Percoll-mediated gradient centrifugation FACS

HBSS (1X) 1mL

( ™ myelin debris

14 mL

(9%£€) dIS

cell pellet

Figure 59: Diagrammatic representation of microglial isolation. (1) Tissue is dissociated to isolate single-cells.
(2) Percoll-mediated gradient centrifugation removes myelin debris on top of the Stock Isotonic Percoll (SIP)-
solution (37%), purifying myelin debris from the cell suspension. (3) The cell pellet is labelled with identifying
antibodies for fluorescence-activated cell sorting (FACS) for the enrichment of cells from a heterogeneous cell
suspension.
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Table 5: Review of scRNA-seq procedures.

Publication Details

Experimental Procedure

First Publicati Anaesth Exsangu ’ " o " - Enrich
Author ‘ Last Author on Year Journal/Book esia Ination CNS Region Dissociation Purification ment
Enzymatic Temperat Duration o Purific MACS/
Dissociation Tool ure °C0) (minutes) Inhibitors ation Method FACS
y " . ; ketamine- " "
Zeisel, Amit Linnarsson, Sten 2015 Science xylazine Y N.A. Y Papain-based (Worthington) N.A. N.A. N/A N N/A FACS
Matcovitch- " N N " N N
Natan, Orit Amit, Ido 2016 Science N.A. Yand N CTX, HIP, SC N Homogenizer (Dispomix) N.A. N.A. N/A Y Gradient centrifugation (Percoll) FACS
;a)::ijk a Zeng, Hongkui 2016 Nature isoflurane Y CTX Y Pronase-based RT 70 N/A N N/A FACS
Mathys, o Papain-based (Neural Tissue
Haneredi Tsai, Li-Huei 2017 Cell Reports N.A. Y HIP Y Dissociation Kit (P) (Miltenyi Biotec)) 37 15 N/A N N/A FACS
::;Z:Sham' Amit, Ido 2017 Cell N.A. Y 8, Svré' s, N Homogenizer (Dispomix) N.A. N/A N/A Y Gradient centrifugation (Percoll) FACS
Sousa, Micheluci, ketamine- N N S - 3
Carole Alessandro 2018 EMBO Reports dorbene Y WB N Homogenizer (Potter) N.A. N/A N/A Y Myelin Removal Kit (Miltenyi Biotec): FACS
Kalish, Brian Greenberg, B Papain-based (papain, pronase and N N
T Michael E. 2018 PNAS isoflurane N LG Y proteinase XXIII) 37 60 N/A Y Gradient centrifugation N/A
The Tabula
Schaum, Muris 2018 Nature Avertin Y CTX, CB, HIP, N Homogenizer (Dounce) NA. N/A N/A Y Myelin Removal Beads II (Miltenyi Biotec) FACS
Nicholas c . STR
onsortium
Huang, P 2018 i chioral s 30 Gradi if i cs
Yubin eng, Bo 1 Nature Neuroscience hydrate Y WB Y AccuMax (Sigma) RT N/A Y radient centrifugation (Percoll) FA(
Hrvatin, Michael E. y . - . TTX (1 uM), AP-V (100 pM), actinomycin D (5 pg /mL), triptolide . N
Sinisa Greenberg 2018 Nature Neuroscience isoflurane Y CTX Y Papain-based (Worthington) 37 60 (10 uM), anisomycin (10 pg) Y Gradient centrifugation N/A
Tuan Tay Marco Prinz 2018 Acta Neuropathologica |\ Y P NA NA NA NA N/A Y Gradient centrifugation (Percoll) FACS
Communications o o o o i
Blanca Gottgens, .
Piuan-Sala Berthold 2019 Nature N.A. N wB Y Trypsin-based 37 7 N/A N N/A N/A
Dulken, Ben Brunet, Anne 2019 Nature N.A. Y svz Y Papain-based* 37 10 N/A Y Gradient centrifugation (Percoll) FACS
Gunner, Schafer, y - tetrodotoxin (1 pM), 2-amino-5-phosphonopentanoic acid
Georgia Dorothy 2019 Nature Neuroscience CO, Y CTX Y Papain-based 37 60 (100 M), actinomycin D (5 g / mL), and triptolide (10 uM) N N/A N/A
Van Hove, Movahedi, N Collagenase-based (collagenase type N N N N
Hannah Kiavash 2019 Nature Neuroscience N.A. Y CP, D Y I and collagenase type IV) 37 20 actinomycin D (30 uM) Y Gradient centrifugation (Percoll) FACS
Geirsdottir, . - y .
Laufey Marco Prinz 2019 Cell N.A. Y WB N Homogenization N.A. N/A N/A Y Gradient centrifugation (Percoll) FACS
3?1”35“3" Greter, Melanie 2020 cell o, Y WB, Ys Y Collagenase-based 3 2 N/A N NA FACS
The Tabula
Schaum, i 2020 Nature Avertin Y CTX, CB, HIP, N Homogenizer (Dounce) NA. N/A N/A Y Myelin Removal Beads II (Miltenyi Biotec) FACS
Nicholas c . STR
onsortium
Sala " " " . .
- De Strooper, Papain-based (Adult Brain Gradient centrifugation (Debris Removal
Frigerio, Bart 2019 Cell Reports o, Y CTX, HIP Y Dissociation Kit) (Miltenyi Biotec) 4 30 N/A Y Solution, Miltenyi Biotec) FACS
. co2or B, CP, CTX, i Y (2 " -
Li, Qingyun Barres, Ben A. 2019 Neuron NA. Yand N HIP, OB, STR N Homogenizer (Dounce) 4 N/A N/A p7) Myelin Removal Beads II (Miltenyi Biotec) FACS
Hammond, M
Timothy v Stevens, Beth 2019 Immunity N.A. Y WB N Homogenizer (Dounce) 4 N/A N/A (2P30 Gradient centrifugation (Percoll) FACS
)
.I‘Fl:f‘;ﬂfé Prinz, Marco 2020 Nature Immunology N.A. Y CB, CTX, HIP N Homogenizer (Potter) N/A N/A N/A Y Gradient centrifugation (Percoll) FACS
IE:';' Shun- Ip, Nancy 2020 Cell Reports isoflurane Y WB Y Papain-based 37 30 N/A Y Gradient centrifugation (Percoll) FACS
v::%:lﬁ' Lane, Thomas 2020 Glia N.A. Y SC, wB N Homogenization N.A. N/A N/A Y Gradient centrifugation (Percoll) FACS
Wang, Journal of ketamine- Trypsin-based (Neural Tissue N N
Shoutang Colonna, Marco 2020 Experimental Medicine xylazine Y WB Y Dissociation (T) (Miltenyi Biotec) 37 30 N/A Y Gradient centrifugation (Percoll) FACS
Safaiyan, y " Cc, CTX, O, Papain-based (Neural Tissue . . Gradient centrifugation (Debris Removal
Shima Simons, Mikael 2021 Neuron NA. Y WM Y Dissociation Kit (P) (Miltenyi Biotec)) 37 15 actinomycin D (45 uM) Y Solution and Myelin Removal Beads) ® FACS

Note: Publication details and matching experimental procedures were collected.A variety of regions were studied: CB, cerebellum; CC, corpus callosum; CTX, cortex; CP, choroid plexus; D, dura; OT, HIP,
hippocampus; LG, lateral geniculate; OB, olfactory bulb; OT, optic tract; P, pons; SC, spinal cord; STR, striatum; SVZ, subventricular zone; WM, white matter; YS, yolk sac. Two enrichment methods were common:

MACS, magnetic-activated cell sorting; FACS, fluorescence-activated cell sorting. Some data points were not ‘available’ (N.A.), whereas others are ‘not applicable’ (N/A).
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4.2 Aims and objectives

Drop-seq is a cost-effective tool capable of delivering high-quality scRNA-seq data. Therefore, | have
chosen to do a Drop-seq experiment with adult male and female microglia in standard experimental
procedures, which includes enzymatic tissue dissociation, myelin debris removal, and fluorescence-
activated cell sorting (FACS). Unfortunately, Drop-seq has a relatively low co-encapsulation
efficiency in comparison to other platforms, necessitating many cells as input, and could show signs
of technical artefacts; all which limitations that need to be explored prior to developing a context-

specific study.

In this chapter | aim to test Drop-seq platform performance and develop a pilot dataset of cortical
sex-specific microglia. This dataset is devised to help answer several questions regarding the
implementation of scRNA-seq, assess data quality and bioinformatic pipelines for a context-

dependent study of microglial transcriptional heterogeneity.

Aim 2. Drop-seq platform performance and pilot of cortical microglia

. Objective 5: To measure Drop-seq platform performance
. Objective 6: To develop an in-house scRNA-seq dataset of cortical microglia
. Objective 7: To explore data quality and transcriptional heterogeneity in cortical sex-

specific microglia.

4.3 Methods

4.3.1 Animals and single-cell isolation

Cortical microglia were isolated from female and male MacGreen mice (n=2, each), as described in
Figure 58; a more detailed description can be found in Chapter 2. In short, tissue dissection was
followed by the enzymatic and mechanical dissociation of tissue with the Neural Tissue Dissociation
Kit (P). Myelin was depleted from the cell suspension through Percoll-mediated gradient

centrifugation, prior to the enrichment of microglia by FACS.

4.3.2 Flow cytometry — microglial enrichment

Single-cells from MacGreen mice were sorted with the Aria Il (BD Biosciences, San Jose, USA) fitted
with the 100 um nozzle to reduce shear-stress, and a cooled collection chamber (4°C). The Aria Il
was fitted with 3 lasers: violet (407), blue (488) and red (633). MacGreen cells were incubated with
7AAD (7-Aminoactinomycin D) (Fisher Scientific, 559925) (1/200) to exclude dead cells. Cells were
excited with the 488-laser to detect viable cells (PerCP-Cy5.5) positive for EGFP (FITC) (Figure 60);
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activity of Csflr in MacGreen mice is reported by EGFP. Approximately 150,000 cells for each sex

were sorted in Yield modus to maximize recovery at the expense of purity.

FITC PerCP-Cy5.5
EGFP 7AAD

Relative intensity (%)
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Figure 60: Spectral view of Macgreen sorting. Viable (7AAD-), Csf1r-positive (EGFP*) microglia were sorted from female
and male cortices. EGFP and 7AAD were detected with the FITC- and PerCP-Cy5.5 emission filters, respectively. Both
fluorescent reporters were excited by the Blue (488) laser.

4.3.3 Drop-seq — droplet microfluidics and single-cell library generation

Single-cells (100 cells/pl) and barcoded microparticles (120 beads/ul) were co-encapsulated in
droplets with cell lysis buffer (~1 nl, ~124 um; 60 beads/ul, final concentration). The system was

run with flow rates for oil at 15,000 pl/hour; cells and beads at 4,000 pl/hour.

The stochastic nature of co-encapsulation stipulates that most droplets do not contain a cell. At the
120 beads/ulL, the theoretical prevalence of a single beads is 5.7%; empirically this was ~6% for both

samples, with minimal presence of doublets (<0.5%; measures of good run efficiencies.

Droplets were broken and collected by centrifugation, and captured RNA subjected to cDNA
synthesis (Maxima-H RTase), generating single-cell transcriptomes attached to microparticles
(STAMP) (Figure 56). 1100 STAMP from each sample were selected for PCR amplification, library

preparation and Illumina sequencing.

4.3.4 PCR and Library Preparation

Exonuclease treatment removed bead primers that did not capture an RNA. The library was
amplified by polymerase chain reaction (PCR) (16 cycles), purified with AMPure XP beads
(Agencourt, A63880) and assessed with a BioAnalyzer High Sensitivity Chip (Agilent, 5067-4626)
according to the manufacturer’s instructions. Library sizes were 1,750 — 1,850, with concentrations
between 240 — 265 pg/ul and a minimal coverage of 93%, signifying an absence of impurities and

overall good library qualities. Normal concentrations from 50 cells/ul vary between 400 — 1000
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pg/ul; however, variations in concentration are expected due to variations in cell concentration and
the number of beads (Macosko et al., 2015). The purified and amplified cDNA was subjected to
Nextera XT tagmentation, purified once more and prepared for NextSeq 500 sequencing. A 10 l
library pool at 3 nM was used as input for denaturation; 100 pL of sample was combined with 1200

ul of HT1 buffer.

4.3.5 Next Generation Sequencing

Single-cell libraries of sex-specific cortical microglia were sequenced on a NextSeq 500 platform
(Version 2 chemistry). A Mid Output (TG-160-2001, 150 cycles) flow-cell with a maximum of
130,000,000 reads per cell was used. This was a shared sequencing run and libraries averaged

15,637 reads per cell.

4.3.6 High-performance computing - IRIDIS and raw data processing

Raw sequencing reads were converted to a sorted unmapped BAM file (FastqgToSam, Picard
bundled in Dropseq-tools v1.0) and filtered to remove all read-pairs with a barcode base quality of
<10. The second read was trimmed at the 5’ end to remove any TSO-adapter sequence and at the
3’ end to remove polyA tails. Reads were aligned against mouse reference genome (mm10) using
STAR aligner (v2.5.0a), then sorted/converted/merged to a BAM with a tag “GE” onto reads for data
extraction. The DigitalExpression program (Dropseq-tools v1.0) extracted digital gene expression
(DGE) information of the mRNA transcripts (UMI) and created a DGE matrix where rows contain

genes and cell (barcodes) in columns.

4.3.7 Seurat and quality control

Seurat (2.3.4) (Butler et al., 2018), an R toolkit for single cell genomics was utilized. Creation of the
Seurat object was restricted to cells with a minimum of 200 genes that are shared among at least 3
cells. Mitochondrial genes were identified and tagged, prior to further quality control by saturation
analysis and the visualisation of the number of genes (nFeature_RNA) (i.e. library complexity),
number of transcripts (nCount_RNA) (i.e. library size) and mitochondrial content (percent.mt).
Thresholds were set for quality control (QC), to include cells with less than 2500 unique genes and
a mitochondrial content of 8%. To remove noise from the dataset using a negative binomial

approach, the object was regressed for library complexity and size, and mitochondrial load.

4.4 Results

This chapter functions to detail the performance of Drop-seq and the bioinformatic pipeline
necessary to generate a pilot dataset. Isolated sex-specific, cortical microglial were captured with
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the Drop-seq platform and libraries of each sex were prepared. | set out to sequence 1100 STAMP
of each sex and estimated to detect ~125 CNS-associated macrophages (CAM); CAM were used as
the minority fraction. Here, | will address Drop-seq platform performance, standard pre-processing,

principal component analysis and dimensionality reduction, and cluster identification.

4.4.1 Mixed species experiments and Drop-seq platform performance

To ensure the Drop-seq platform performs as expected, that is, cellular distributions can be
approximately accurately by the Poisson distribution, species mixed experiments are performed. In
short, a mixed species experiments co-flows human and mouse cells to identify impurities at a given
bead and cell concentration. Libraries are generated of the captured cells, after which mapping
identifies mouse- and human-derived transcripts; species specificity illustrates if single cells can be
effectively identified. This and other species mixing experiment are performed by the group of
Matthew J. Rose-Zerilli, an example of which confirmed robust single-cell encapsulation and high

species specificity (95%) (Figure 61).
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Figure 61: Typical mixed-species experiment characteristics. Human and mouse single-cells (100 cells/ul) and barcoded
microparticles (120 beads/ul) were co-encapsulated in droplets with cell lysis buffer. Alignment to the human and mouse
transcriptome illustrate high species specificity, with 5% of all cells featured by a mixed, non-specific, transcript signature.

4.4.2 scRNA-seq and ambient RNA

Droplets that have not encountered a cell house ambient RNA. Ambient RNA is actively secreted by
live cells and/or released by cell lysis, resulting in droplets without a cell (Lun et al., 2019). Removal
of these empty droplets is important for downstream analysis. How much of the detected
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transcripts are cellular can be approached by the cumulative fraction of mapped reads plot - the
inflection point in the curve marks the separation between ambient and cellular transcripts (Figure
62). For both sexes, approximately 750 out of 1100 cells have a cumulative fraction of
approximately 0.5; that is, 68% of all cells provide meaningful data (Figure 62). Cumulative
distributions like these are typical for Drop-seq, where the distribution of reads per cell are

unevenly distribution.

| aimed to sequence 1100 cells of each sex; however, the cumulative fraction of mapped reads
suggests that | fell short of this goal, with 1,327 cells (686 female, 641 male) remaining after removal
of empty droplets (Figure 62). To further increase the ability to distinguish ambient and cellular

RNA, it will be important to reduce cell stress during isolation.
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Figure 62: Cumulative fraction of mapped reads a) Female and b) male cumulative fraction plots of mapped reads. Each
featured an inflection point, as marked by the cross-sections at 750 (x-axis) and 0.52 or 0.51 (y-axis), female and male,
respectively.

4.4.3 Sequencing saturation is not reached

Sequencing saturation analysis reveals that most cells do not reach saturation (Figure 63). The
number of transcripts (log!®) is starting to plateau, or saturate, around 125,000 reads per cell;
sequencing more at this point will only result in marginal increases in detected transcripts. In the
dataset, 1 out of 1,327 identified cells (0.1%) reached 125,000 reads, with an average read depth
of 15,637 reads per cell (Figure 63).
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Figure 63: Sequencing saturation analysis. The plot depicts the number of detected transcripts (log10) over the number of
mapped reads for all cortical microglia passing primary processing (n=1,327). Over 99% of cells do not reach saturation,
set to occur around 125,000 reads per cell. Locally estimated scatterplot smoothing (LOESS) regression was used to
approximate the trend in the dataset and supplemented with confidence intervals.

4.4.4 Cell quality parameters and quality control

Cell quality in the pilot was assessed with library complexity and size and mitochondrial content
(Figure 64). Bell-shaped curves for each parameter are indicative of good quality cells and allow for
lower- and upper-limits to be set where needed. In this dataset, an upper limit of 2500 genes was
set, and complemented with a lower threshold of 300 for library complexity and size, and an upper

limit to mitochondrial content of 0.08% (Figure 64)
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Figure 64: Cell quality metrics of the microglial pilot data. Female and male microglia and their corresponding a) library
complexity (nFeature_RNA) (i.e. nGene), b) library size (nCount_RNA) (i.e. nUMI), and the c) mitochondrial content
(percent.mt). Lines are displayed to indicate upper and lower limits; nFeature_RNA .> 300, nCount_RNA > 300,

percent.mt < 0.08.
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The median library complexity and size of the male and female cells approximates 600 and 900,
respectively (Figure 64). In contrast, previous scRNA-Seq work by Gokce et al. (2016) report that
striatal microglia reach saturation around 500,000 reads and express roughly 2,000 genes (Gokce
et al,, 2016). Albeit region-dependent heterogeneity could affect library complexity and saturation,
it suggests that the cortical microglial transcriptome was not fully interrogated at 15,637 reads per

cell, leaving potential novel transcripts undetected.

4.4.5 Linear dimension reduction and principal component determination

As discussed previously, principal component analysis (PCA) is a central step in scRNA-seq to reduce
dimensionality — see Section 2.8.1.4. Once more, ElbowPlot and JackStrawPlot were used to explore
transcriptional heterogeneity before clustering. The ElbowPlot showed that the first 13 principal
components (PC) describe most of the variability, of which JackStraw and JackStrawPlot analysis

found that PC 1 through 8 and 12.are statistically significant (Figure 65).
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Figure 65: Dimensionality in the pilot data. The standard deviation of the first 80 PC were depicted. The ‘elbow’ was
found at PC 13. b) JackStrawPlot for cortical microglia. Several PC are statistically significant (P<0.05) (i.e. PC1:8, 12).
Each of these sets are consistently above threshold (1e-05). The P-value for each PC is based on a proportion test of 200
genes compared to the proportion of genes expected below the threshold.

4.4.6 Cluster identification of myeloid cells: microglia, CNS-associated macrophages and

exAM

Most of the cells have transcriptional profiles that correspond to microglia, with wide-spread
expression of Csflr, Hexb, Tmem119 and P2ry12 in cluster O to 3 (Figure 66). Interestingly, cluster
4 does not match a microglial signature, with a reduced or absent expression of Hexb, Tmem119
and P2ry12. In fact, this cluster shows a signature reminiscent of CAM, a population that show

modest levels of Csf1r but lacks Tmem119 (Satoh et al. 2015).
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Figure 66: Canonical microglial marker expression in cortical microglia clusters. a) t-SNEplot of cortical microglia. b)
VinPlot of Csf1r, Hexb, Tmem119 and P2ry12.The tSNE-plot is generated with a resolution of 0.4 and 9 dimensions (i.e.
1:8,12).

As stated, EGFP* cells (Macgreen mice, Csf1r-EGFP) were sorted from cortical tissue from male and
female mice (4.3.2). Although commonly used as a marker for microglia in the CNS, Csf1ris a broadly
expressed myeloid marker and can also be expressed by other macrophages; Csf1r is a key gene in
their core profile (Mass et al., 2016). However, as seen previously, several other genes distinguish
CAM from microglia and are selectively enriched in cluster 4 (Figure 29, Supplementary Table

2,Figure 67).

Mrc1 Pf4 Ms4a7

Figure 67: CAM in Csf1r-EGFP+ sorted cells. FeaturePlot of CNS-associated microglia (CAM) markers (i.e. Mrc1, Pf4,
Ms4a7). Gene module expression levels in the plot range from low (gold) to high (black).

As anticipated, CAM are the minimum fraction in the pilot dataset. In correspondence, no cell
actively cycling and proliferating microglia (CPM) were identified, a minority cell not exceeding
1.4% of the adult microglial population and less than the prevalence of CAM (Askew et al., 2017;
Mrjden et al. 2018). Unfortunately, a large proportion of microglial cells were affected by exAM-

like IEG signatures, most of which in cluster 2 and 3 (Figure 68).
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Figure 68: Detection of exAM-like signatures with standard experimental procedures. VInPlot of exAM-like immediate
early gene (IEG) Egrl, Fos, Junb and Zfp36 in a cluster-specific manner.

A DGE analysis was performed with “FindAllMarkers”, a Heatmap of these results can be found in
Supplementary Figure 10. Of note, Van den Brink et al. (2017) identified a gene list associated
with dissociation of mouse stem cells; Fos- and Jun-expressing subpopulations were also
identified in mouse acinar cells and zebrafish osteoblasts (Brink et al., 2017). Similarly, cluster 4-
specific genes were enriched by genes from this list, suggesting that this is a conserved cellular
response to dissociation. The list of genes shared between cell types was named the IEG module
(Table 6); a complete list of activated muscle stem cells genes can be found in Supplementary

Table 13.
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Table 6: Immediate early gene module characterization.

Gene: Full name:
Atf3 Activating transcription factor 3
Btg2 BTG Anti-Proliferation Factor 2

Dnajbl | Dnal Heat Shock Protein Family (Hsp40) Member B1

Dusp1l Dual Specificity Phosphatase 1

Egrl Early Growth Response 1

Fos | Fos Proto-Oncogene, AP-1 Transcription Factor Subunit

Hspa8 Heat Shock Protein Family A (Hsp70) Member 8

Ter2 Immediate Early Response 2

Jun | Jun Proto-Oncogene, AP-1 Transcription Factor Subunit

Junb  JunB Proto-Oncogene, AP-1 Transcription Factor Subunit

Jund PunD Proto-Oncogene, AP-1 Transcription Factor Subunit]

Mt1l Metallothionein 1A (MT1A)

Nfkbia NF-Kappa-B Inhibitor Alpha

Ppplrl5a Protein Phosphatase 1 Regulatory Subunit 15a

Socs3 Suppressor of Cytokine Signalling 3
Ubc Ubiquitin C
Zfp36 Zfp36 Ring Finger Protein

Note: Cluster 4-specific genes were compared to an activated cell signature of FACS-sorted, immediate early gene (IEG)-
enriched muscle stem cells, as described by Van den Brink et al. (2017). 17 of 32 were shared between both suggestive of
a broadly conserved IEG gene module in response to dissociation.

In fact, using the IEG module in the dataset (corroborating the trend observed for the exAM genes),
a progressive increase of expression from cluster 0, to 2 to 3 was noted (Figure 69). A trend like this
hints towards a dynamic and global effect of exAM-like signatures on all microglia in this pilot.
Moreover, cluster 3 also features the lowest levels of Tmem119 and P2ry12 (Figure 66), suggesting
that the emergence of such exAM-like signatures is paired with a loss of microglial identity, and
doubly confounding the transcriptional read-out. These findings correspond to aged and diseased
conditions (Dubbelaar et al., 2018); homeostatic microglial genes are downregulated in these
conditions. The loss of P2ry12 by dissociation corresponds to findings by Li et al. (2019), and is
reminiscent of a loss of immune-checkpoints causal to DAM emergence (Deczkowska et al., 2018;
Li et al., 2019). Thereby, emergence of such signatures requires mitigation, experimentally and/or

bioinformatically.
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Figure 69: Progressive enrichment of the IEG gene module in the pilot data. a) FeaturePlot of the immediate early gene
(IEG) module expression. b) VinPlot of the IEG module in a cluster-specific manner.

4.4.7 Principal component selection and clustering

The interdependence of a priori knowledge and novel discovery is most salient with the
identification of clusters. To maximize the exploration of microglial transcriptional heterogeneity,
| explored if genes associated CAM or exAM-like signatures could be removed from the data; PC
selection is the first starting point. Strikingly, of the 9 significant clusters, 3 feature genes
associated with CAM and exAM (Supplementary Figure 9). PC2 is enriched for CAM genes (e.g.
Mrc1, Pf4,), whereas PC 7 and 8 are enriched for IEG (e.g. Egr1, Fos) (Figure 70) (Brink et al., 2017;
Kierdorf et al., 2019; Wu et al., 2017).

The inclusion of all significant PCs (1:8, 12) results in the most heterogeneous mapping of
diversity, whereas the exclusion of PC2, or PC7 and PC8 effectively removes cells characterized by
the expression of IEG and CAM, respectively (Figure 70). Removal of such PC might therefore offer
a means to the removal of CAM and exAM signatures might therefore be achieved by the
exclusion of PC affected by these effects. However, as, discussed, exAM genes and microglial

identity are intertwined.
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Figure 70: Biological markers and PC-dependent clustering. a) Principal component (PC) heatmap for PC2, 7 and 8. PC2 is
featured by CAM genes, whereas PC 7 and 8 are associated with IEG, respectively. b-d) The selective removal of either
set is causal to differential clustering characteristics. b) Clustering with all significant PC (PC1:8, 12) retains CAM and
IEG, c) whereas the selective removal of PC2, d) or PC7 and PC8exclude CAM and exAM, respectively. CAM, CNS-
associated macrophage; exAM, ex vivo-activated microglia; IEG, immediate early gene.

e.g. Zfp36 is a marker for both homeostatic (HOM) and aged inflammatory microglia (AIM), whereas
Ifit3 is enriched in interferon response microglia (IRM) (Supplementary Table 1, Supplementary
Table 2). Indeed, Zfp36 is a marker and transcription factor for microglial identity (Grabert et al.,
2016; Hanamsagar et al., 2017; Wehrspaun et al., 2015). Here, both Zfp36 and Ifit3 are correlated
with PC rich with IEG (Figure 70). The interlaced nature of such gene signatures greatly reduces the

efficiency of PC exclusion, urging for alternative approaches to be considered.

An alternative might be offered by the regression and/or removal of exAM genes from the variable
gene list (Van Hove et al., 2019). However, like the removal of PC, this will affect microglial gene
signatures and is not preferred. Experimental approaches might be need to truly mitigate such
technical artefacts, of which several implementations have started to emerge (Hammond et al.,

2019; Marsh et al., 2022; Safaiyan et al., 2021; Sala Frigerio et al., 2019; Wu et al., 2017).

4.5 Discussion

Here, | set out to assess Drop-seq platform performance and generate an in-house scRNA-seq

dataset. As a platform, Drop-seq offers a cost-effective means to study microglial heterogeneity,
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albeit some limitations have been discussed. That is, capture efficiency is low and resource
allocation is unevenly distributed. These are accepted limitations, understanding that this platform
has the benefit of using UMI for quantification, and does so with great accuracy and sensitivity (in

comparison to other platforms).

With Drop-seq, | was able to generate a pilot dataset of adult cortical microglia of both sexes, which
was used to explore data quality and transcriptional heterogeneity. Notably, despite the loss of cells
due to some of the inherent limitations (or a failure to detect cells by a lowered sequencing depth),
the data was broadly of good quality. e.g. Less than 5% of cells displayed transcripts of mixed
species, and mitochondrial content of cells was low. CAM were also identified, a priori set to be
minimum fraction, confirming that the platform behaves predictably. Unfortunately, as previously
discussed in the atlas, the occurrence of exAM-like signatures in the data suggests that standard
experimental procedures affect microglia negatively, as has been the case for other cell types (Brink

et al., 2017).

The identification of such findings urged me to explore bioinformatic methods to mitigate the
inclusion of exAM-like signatures. To that end, the focus was on the PC that include IEG (and CAM)
signatures. Exclusion of such effects is possible through these means; however, as discussed, the
exAM signatures are intimately tied to native microglial identity and activation, which would

undermine the ability to identify such processes in scRNA-seq data (Figure 30).

Regression and/or removal of these genes from the variable gene list would similarly affect this
capacity. The most viable alternative is to mitigate such effects experimentally. As stated, scRNA-
seq consist of six broad steps, each of which change the environment of microglia. In the next
chapter, | will detail the experimental procedures that could affect the prevalence of exAM-like

signatures.
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4.5.1 Supplementary figures
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Supplementary Figure 9: Significant principal components of the pilot data. Principal component (PC) 1 to 8 and 12 are
displayed. Markers for canonical microglia, exAM and CAM are present.
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Supplementary Figure 10: Standard experimental procedures instil exAM-like signatures. Heatmap of cluster-specific

markers include ex vivo-activated microglia (exAM) signatures like immediate early gene expression. “FindAllMarkers”

"

was used ‘only.pos = FALSE’, ‘min.pct = 0.2°,” logfc.threshold = 0.25’, ‘test.use = "negbinom"".

Supplementary Table 13: Activated muscle stem cell module.

1 Atf3 17 | Hspbl
2 Btg2 18 | Hspel
3 Cebpb 19 | Hsphl
4 Cebpd 20 Id3
5 Cxcll 21 ler2
6 Dnajal 22 Jun
7 Dnajbl | 23 Junb
8 Duspl 24 Jund
9 Egrl 25 Mtl
10 Fos 26 Mt2
11 Fosb 27 | Nfkbia
12 | Hsp90aal | 28 | Nr4al
13 | Hsp90abl | 29 | Pplrl5a
14 | Hspala | 30| Socs3
15| Hspalb | 31 Ubc
16 Hspa8 32| Zfp36

Note: Complete gene module of activated muscle stem cells. Genes in bold are shared with cluster 4 markers.
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Chapter 5 Technical artefacts and scRNA-seq: cell

isolation and ex vivo gene signatures

5.1 Single cell isolation and single-cell RNA-sequencing

Single-cell RNA-sequencing (scRNA-seq) has enabled the generation of large-scale, whole-genome
cell atlases, rapidly increasing cell type marker identification in multicellular tissues (Han et al.,
2018; Regev et al.,, 2017; Schaum et al., 2020, 2018). However, as seen before, standard
experimental procedures are linked to the occurrence of exAM (Figure 30,Figure 68). Broadly, ex
vivo gene signatures are induced when single cells are isolated from their native environment
(Adam et al., 2017; Brink et al., 2017; Lacar et al., 2016; Machado et al., 2017; van Velthoven et al.,
2017).

Tissue dissociation and cell isolation is a combination of mechanical disruption and/or enzymatic
cleavage methods. Commonly used enzymes include papain and collagenase (Marsh et al., 2022;
Slyper et al., 2020). The selection for each enzyme varies, as it will affect epitope availability on the
cellular membrane, a key consideration for fluorescence-activated cell sorting (FACS) and
cytometry by time-of-flight (CyTOF) (Marsh et al.,, 2022; Mattei et al., 2020). However, both
enzymes function most efficiently at physiological temperatures and many protocols therefore opt
to dissociate tissue at 37°C (Dulken et al., 2019; Hrvatin et al., 2018; Lau et al., 2020; Mathys et al.,
2017; Safaiyan et al., 2021; Utz et al., 2020; Van Hove et al., 2019; Wang et al., 2020). Notably,

transcription and translation are reduced at lower temperatures.

Here, | review the most relevant current methods to minimize the ex vivo activation in scRNA-seq,

to preserve in vivo microglial identity.

5.1.1 Exvivo cellular activation and scRNA-seq

Complex tissues like the central nervous system hosts are wide range of cells, including astrocytes,
oligodendrocytes, neurons, endothelial and mural cells, and microglia (Wu et al., 2017). Each
environment, with its relative proportion of grey- and white-matter and cellular heterogeneity, has
been shown to have distinct mechanical properties (Budday et al., 2015; MacManus et al., 2017).

In this way, each region will have its own characteristics in relation to single cell isolation.

One of the first studies that reported on the effects of sample preparation on transcriptomic data
derives from human peripheral blood mononuclear cells (PBMC). A microarray study demonstrated
an ex vivo induction of over 2,000 genes by overnight storage (Baechler et al., 2004). Dysregulated

genes typically belonged to pathways involving stress, such as heat shock proteins (HSP),
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immediate-early genes (IEG) and early response genes (ERG); typical dissociation-induced artefacts.
Since then, several other studies in skeletal muscle satellite cells (SC), kidney, and brain cells have
found similar effects (Adam et al., 2017; Brink et al., 2017; Machado et al., 2017; van Velthoven et
al.,, 2017; Wu et al., 2017).

All cells will eventually display an activated signature given sufficient time, however, there are
distinct differences in response time (Machado et al., 2021a; Marsh et al., 2022; Wu et al., 2017).
Microglia, endothelial cells, and mural cells are first-responders and found to be particularly
sensitive to standard dissociation (Adam et al., 2017; Wu et al., 2017). It is unknown why such cell-
specific sensitivities are found; however, it stands to reason these effects are due to intrinsic
predispositions to stimuli associated with their biological roles. Cells in a multicellular organism are
in constant communication to establish homeostasis or return to it, by sending and receiving
autocrine, paracrine, and endocrine signals, as well as signals through gap junctions and
mechanosenzing. Microglial signals are mediated by the ‘sensome’, a cluster of protein-encoding
transcripts for sensing endogenous ligands and microbes (Hickman et al., 2013). The sensome
facilitates microglia to survey the brain parenchyma in vivo, a central function of the immune cell
(Nimmerjahn et al., 2005). However, the same sensome (i.e. cellular machinery) actives microglia
during cell isolation protocols and masks the native transcriptome. Similarly, endothelial and mural
cells are key effectors in blood-brain barrier homeostasis and immune signalling (Daneman and

Prat, 2015).

Ex vivo activation has become a recognized caveat of scRNA-seq, a confounding variable which has

fostered novel ways of mitigating such disruptions to the native transcriptome.

5.1.2 Enzymatic cell isolation and digestion temperature

Digestion temperature is a key feature of cell isolation. As stated, typical enzymes like papain and
collagenase are most active at physiological temperatures. However, cold-activated enzymes (CAP)
like the Himalayan, glacier-born Bacillus Licheniformis protease enable digestion at lower

temperatures (Adam et al., 2017; Hertzano et al., 2021; O’Flanagan et al., 2019).

Studies that use CAP for digestion have reported on a lower level of technical artefacts in
comparison to standard heated digestion, featured by lower gene expression levels of IEG like Fos,
Egrl, Zfp36, ler2, Jun and Dusp1 (Adam et al., 2017; Hertzano et al., 2021; O’Flanagan et al., 2019).
Furthermore, heated dissociation displayed a considerable transcriptional variability depending on

the digestion time (Adam et al., 2017).

However, other features of enzymatic digestion are less desirable. Like more commonly used
enzymes, enzymatic cleavage of epitopes could confound downstream flow cytometric analyses

and remains a consideration for or against the use of any digestion enzyme (Hertzano et al., 2021).
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Attempts to adapt these cold-activated proteins to brain tissue are expected to be confounded
further by DNAse activity. DNAse is an essential component in single cell isolation protocols, to
degrade cell-free DNA and reduce cell clumping; however, there is currently no cold-active DNase
(Marsh et al., 2022). Furthermore, cells could undergo a cold-shock response, which is also
expected to alter the transcriptome (Machado et al., 2021). Lastly, cell recoveries vary depending
on the digestion temperature (Denisenko et al., 2020). e.g., renal macrophages were found to be

less abundant with heated digestion (Denisenko et al., 2020).

Taken together, higher levels of cellular activation during heated digestion favour CAP-mediated
digestion. Remarkably, despite this effect, CAP have not found more wide-spread use in scRNA-seq
since their first discovery, even if these appear to offer superior sample quality. | postulate that
their underrepresentation in the single-cell field is due to cost considerations; cold-activated
enzymes are generally more expensive than their heat-activated counterparts and could limit large-

scale studies.

5.1.3 Mechanical dissociation protocols

Now, if (heated) enzymatic dissociation introduces technical artefacts, can users select against
using enzymes? The literature indicates that enzyme-free processing is possible, limiting
dissociation to the mechanical disruption of tissue. Most commonly, studies report on the use of
Dounce homogenizers (Almanzar et al., 2020; Hammond et al., 2019a; Q. Li et al., 2019a; Schaum
et al., 2018) or Potter pestles (Masuda et al., 2020; Sousa, 2018) (Table 5). Mechanical dissociation
utilizes shearing and/or grinding forces to isolating cells (“Guide to the Disruption of Biological

Samples - 2012,” n.d.).

Mechanical dissociation can be performed at lower temperatures and comes at a reduced cost
relative to enzymatic protocols. However, without the aid of enzymatic cleavage, yield in such
methods vary across experimental conditions and will therefore not meet all experimental design
needs (Marsh et al., 2022; Slyper et al., 2020). Droplet-based platforms require more cells than
plate-based approaches, potentially limiting its adaptation for high-throughput scRNA-seq.
Furthermore, by recovering less cells from tissue, mechanical dissociation may underestimate true
cellular heterogeneity, introducing a bias towards more numerous and accessible cells over rare

subtypes.

Interestingly, some protocols of mechanical dissociation still make use of DNase in cold conditions,
even if DNase is not functional at lower temperatures (Almanzar et al., 2020; Li et al., 2019; Marsh

et al., 2022; Schaum et al., 2018).

Of note, Marsh et al. (2022) reported on the presence an ex vivo gene signature in studies that

utilize Dounce homogenization (Marsh et al., 2022). The authors argue that the effect is minimal
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and Dounce is an effective tool in minimizing artefactual genes, as enzymatic dissociation induces
a stronger signature. However, the ex vivo signature remained elevated when compared to
protocols that use transcriptional and translation inhibitors (Marsh et al., 2022). The question then
arises, what are the characteristics of such inhibition and how could these benefit microglial

studies?

5.2 Transcriptional and translation inhibition and scRNA-seq

Recent scRNA-seq literature illustrates a trend to enzymatic dissociation in the presence of

inhibitors, that is, transcriptional and translation inhibitors.

Transcription in eukaryotes is dependent on 3 RNA polymerases, large complexes that bind to and
initiate DNA transcription (Rosenberg and Rosenberg, 2012). Inhibiting transcription in eukaryotes
can be achieved by a broad range of products, including amanitin, actinomycin, DRB, flavopiridol,
and triptolide (Bensaude, 2011). Translational inhibition can be achieved by, among others,
cycloheximide, emetine and anisomycin (Abbas et al., 2011; Chan et al., 2004). Each offers a means
to reduce the cellular response to dissociation, preserving biological microglial signatures and

improving data quality.

Three inhibitors are commonly used in scRNA-seq studies: actinomycin (ActD), triptolide (Tripto)
and anisomycin (Aniso). | will review ActD and its use in isolation, or in combination with Tripto and

Aniso, for microglial scRNA-seq.

5.2.1 Combinatorial inhibition of ex vivo artefacts in the CNS

A seminal study by Hrvatin et al. (2018) implemented a combination of factors to abrogate technical
artefacts in neurons. To study cortical, transcriptional responses to light exposure in mice, the
authors developed a heated, isolation protocol for scRNA-seq that included the use of ActD, Tripto,
Aniso, TTX and AP-5 (Hrvatin et al., 2018). TTX and AP-5 block voltage-gated sodium and NMDAR-
channels, respectively. Therefore, the combination of inhibitors is expected to effectively block

transcriptional, translation, and activity-dependent alterations to the in vivo signature.

The lab of Beth Stevens has since adapted and introduced this protocol for microglial biology (Marsh
et al.,, 2022). The protocol inhibits ex vivo gene expression by combining ActD, Tripto and/or Aniso
during the phases of exsanguination, collection, and digestion, excluding TTX and AP-5. Of note,
transcriptional inhibition with ActD and Trip are generally well-accepted throughout isolation;
however, translational inhibition with Aniso has not been used during exsanguination, suggestive

of contra-indications at this stage (Hrvatin et al., 2018; Marsh et al., 2022).
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Two studies have utilized the developed protocol (Hasselmann et al., 2019; McQuade et al., 2020).
The protocol is touted for its flexibility, capable of generating high quality scRNA-seq data across a
range of CNS cells (Marsh et al., 2022). However, for the isolation and sequencing of microglia, ActD
alone is a sufficient for the mitigation of ex vivo signatures in scRNA-seq (Marsh et al., 2022; Wu et

al., 2017).

5.2.2 Transcriptional inhibition with actinomycin D

The longest-standing and most used transcriptional inhibitor in scRNA-seq studies is ActD. ActD is
an antibiotic and antineoplastic molecule that derives from the Streptomyces genus, and contains
two cyclic peptides interlinked with a phenoxazine(Lai et al., 2019; Liu et al., 2016) (Figure 71). ActD
is postulated to bind DNA, which, in turn, inhibits RNA polymerases and transcription (Lai et al.,

2019; Wu et al., 2017).
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Figure 71: Molecular structure of Actinomycin D. Actinomycin D (C62H86N12016) (1255.42 Da) is a polypeptide with

antibiotic and antineoplastic features. Two cyclic peptides are coupled by a phenoxazine. Sourced image from
Sigma(“Actinomycin D from Streptomyces sp., ~98% (HPLC) | Sigma-Aldrich,” n.d.).

scRNA-seq studies of CNS tissue have used ActD across a distinct number of phases during single-
cell isolation (Gunner et al., 2019; Hasselmann et al., 2019; Hrvatin et al., 2018; Marsh et al., 2022;
McQuade et al., 2020; Pavel et al., 2019; Safaiyan et al., 2021; Van Hove et al., 2019; Wu et al.,
2017) (Table 7). ActD is commonly used during collection and digestion of tissue; additionally,
several studies extend its use to during exsanguination and downstream cell handling.
Concentrations generally vary between 4 and 45 uM, although higher concentrations are often
restricted to ActD used in isolation. In isolation, the concentration varies from 15 to 45 uM,
depending on the temperature and duration of the digestion. When combined with a second
transcriptional inhibitor (i.e. triptolide) and a translational inhibitor (i.e. anisomycin), ActD has been

used at 4 uM.

At these concentrations, all three classes of eukaryotic RNA polymerases are inhibited by ActD:
Class 1, 40 nM; Class 2, 400 nM; and Class 3, 4 uM (5 ug/mL), respectively (Bensaude, 2011).
Moreover, ActD displays low reversibility; albeit transcription displays a modest recovery after

removal of ActD, more than 24-hours was needed for a return to a priori full-length transcript
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synthesis (Bensaude, 2011; Hadjiolova et al., 1995; Schluederberg et al., 1971). Furthermore, ActD
has a relatively large safety window, without genotoxic stress until a concentration of 100 uM
(Mussil et al., 2019). In short, ActD offers wide-spectrum, long-lasting and well-tolerated

transcriptional inhibition.

To minimize ex vivo cellular activation in cell isolation, Wu et al. (2017) were the first to trial
transcriptional inhibition with ActD in a scRNA-seq study. Without ActD, up to 100% of microglial
cells displayed an activated profile, whereas ActD limited the induction of an ex vivo profile to less
than 5% (Wu et al., 2017). Similarly, the use of ActD prevented cellular activation of CNS-associated
macrophages (Van Hove et al., 2019). Furthermore, reducing temperatures to 22 or 11°C further
diminished the percentage of activated microglial cells, and aided the removal of dissociation-

induced artefacts in endothelial and mural cells (Wu et al., 2017).

The most current implementation of ActD is featured by Safaiyan et al. (2021). The authors include
45 uM of ActD in cell isolation during collection and (heated) digestion, and effectively isolate
microglia from the CNS without signs of dissociation-induced artefacts, as expression of genes like

Fos, Egrl, Atf2, and Zfp36 is lacking (Safaiyan et al., 2021a).

5.2.3 Weighted benefits: transcriptional inhibition, microglial enrichment, and RNA decay

Safaiyan et al. (2021) identify astrocytes, ependymal cilia and secretory cells, erythroid-like and
vascular cells, macrophages, and neuroblasts and NPCs (Safaiyan et al., 2021). However,
disproportionally, the isolation recovers microglia at the expense of neurons; up to 50% of all cells
are microglia (Safaiyan et al., 2021). In situ, microglia compose 5 to 12% of all CNS-cells. It will be
important to define the target population of any scRNA-seq study, as it might not effectively

capture all cells equally.

Furthermore, any reagent will have potential limitations in its use. Prior to its adoption in scRNA-
seq, ActD had been used to study mRNA decay rates in cultured cells (Lai et al., 2019). mRNA decay
is a biological phenomenon that describes the natural decline and breakdown of mature RNA
transcripts and is significantly heterogeneous; mRNA transcript stabilities vary. Indeed, genes like
Dusp1, ler3 and Nfkbla are particularly sensitive to degradation, whereas others like Gapdh and
Rpl14 are more stable, albeit also subject to change (Lai et al., 2019). A microarray study of human
fibroblasts identified that 4,992 (9.1%) of 54,613 probe-set transcripts decayed more than 25% by
4 hours in the presence ActD (Lai et al., 2019; Qju et al., 2015).

Recent work in microglial cells — using ActD in isolation or in combination - have not shown any
detrimental effects of transcriptional inhibition (Marsh et al., 2022; Safaiyan et al., 2021). However,
two downstream effects on data quality will need to be taken into consideration. First, prolonged

incubation with ActD and/or differences in sample processing time can affect library complexity
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and might introduce technical variations between samples (i.e. baseline drifting); batch correction
would therefore be critical when using ActD. Second, susceptible (and rare) transcripts are expected
to be selected against during processing, reducing native library complexity. Droplet-based scRNA-
seq platforms are inherently less suitable for the detection of rare transcripts and an addition of

ActD is expected to further reduce library complexity.

5.3 Chemical fixation and single-cell (library) metrics

Fixation is an established procedure in histology. Aldehydes like paraformaldehyde (PFA) are
routinely used in situ for the preservation of biological tissues and cells. Although implementations
of it have been devised for RNA-seq and plate-based scRNA-seq (Machado et al., 2017; Thomsen et
al.,, 2016; van Velthoven et al., 2017), PFA fixed cells are not compatible with high-throughput
platforms like 10X Genomics (Machado et al., 2021). However, methanol (MetOH) or dithio-bis
(succinimidyl propionate) (DSP) have been tested for droplet-based platforms and are reported to

retain RNA quality well (Alles et al., 2017; Attar et al., 2018).

Long-term MetOH fixation effectively retains transcriptional profiles up to several months (Alles et
al., 2017a). However, after weeks, recovery of murine hindbrain cells was down to 12-19% of total
cells at the start of the time course (Alles et al., 2017). Since CNS immune cells are naturally
susceptible to the detrimental effects of fixation (Alles et al., 2017), this could lower microglial
recovery further. Furthermore, MetOH fixation permeabilizes the cellular membrane, causal to
~10% loss of cytoplasmic transcripts, potentially increasing ambient RNA. Transcript loss did not
result in a loss of phenotypical characterization of mouse hindbrain cells or human PBMCs (Alles et
al., 2017; Chen et al., 2018). However, finer classifications of cells (reliant on rare transcripts) are
anticipated to be negatively affected. In turn, despite reports of good RNA quality, DSP fixation has
been shown to gently fragment transcripts, diminishing cDNA vyield with prolonged fixation, and

introducing a 3’-end bias with sequencing (Attar et al., 2018).

Both chemicals have been shown to aid scRNA-Seq by minimizing technical artefacts and enable
expansions of experimental design (Alles et al., 2017; Attar et al., 2018). Short-term fixation with
MetOH or DSP might therefore proof useful for the preservation of microglial in vivo states.
However, no such studies have been performed currently. If possible, chemical fixation of cells
offers a means to reduce technical noise and simplify batching, thereby improving library quality

and cell quantity.

5.4 Summary

Taken together, isolation of single cells for scRNA-seq needs an account of tissue and cell-specific

responses to isolation. Heated and enzymatic dissociation is commonly used; albeit marred by ex
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vivo gene inductions in microglia. ActD alone is sufficient to block the induction of ex vivo
signatures, and the use of inhibitors to block ex vivo signatures are central to good quality microglial
scRNA-seq data. In turn, cell fixation could increase flexibility in experimental design. A multi-modal

approach to dissociation-induced signature mitigation will eventually yield the best results.

5.5 Aims and objectives

In the previous chapters | have detailed a single-cell atlas of microglial heterogeneity in health, and
| have completed a Drop-seq platform performance review and pilot study of cortical microglia. In
these chapters ex vivo signatures were identified. In this chapter, | aim to establish a microglial

scRNA-seq procedure that mitigates such effects.
Aim 3: Establish a microglial scRNA-seq protocol.

. Objective 8: To test the utility of chemical fixation with MetOH and DSP.

. Objective 9: To explore the characteristics of FACS and MACS for scRNA-seq.

. Objective 10: To assess cellular activation and yield in purification methods.
. Objective 11: To determine the effect of dissociation condition on ex vivo signatures.
. Objective 12: To implement a novel microglial isolation protocol for Drop-seq.
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Table 7: scRNA-seq studies utilizing transcriptional inhibition.

Author Details Experimental Procedure
First Last Year Publication Exsanguination Collection Digestion
ActD [Tripto |Aniso |ActD ([Tripto |Aniso [ActD [Tripto [Aniso |Enzymatic [TEMP (°C) [T {(minutes)

30 15 Y 11 30
Wu, Ye Emily Hong, Weizhe 2017 |Neuron 30 15 Y 22 30
45 45 Y 34 20
Hrvatin, Sinisa Greenberg, Michael 2018 [Nature Neuroscience 4 10 4 10 38 Y 37 60

Gunner, Georgia Schafer, Dorothy 2019 [Nature Neuroscience 4 10 Y

Harris, Rayna Fenton, Andre 2019 [Hippocampus Y
Hasselmann, Jonathan  [Blurton-Jones, Mathew | 2019 [Neuron 4 4 10 102 4 10 102 Y 37 30
Pavel, Abaffy Sindelka, Radek 2019 |bioRxiv 207 Y 4 60
20% Y 37 60
Van Hove, Hannah Movahedi, Kiavash 2019 [Nature Neuroscience 30 15 Y 11 50
Marsh, Samuel Stevens, Beth 2020 |bioRxiv 4 10 4 10 102 4 10 102 N N/A N.A
McQuade, Amanda Blurton-Jones, Mathew | 2020 [Nature Communications 4 4 10 102 10 102 Y 37 30
Safaiyan, Shima Simons, Mikael 2021 |Neuron 45 45 Y 37 15

Note: inhibitor concentrations are reported as uM for consistency. If reported in ug/mL, the concentrations were calculated with molecular weights of 1255.42, 360.41 and 265.30 g/mol, for
Actinomycin D (ActD), Triptolide (Tripto) and Anisomycin (Aniso), respectively. Pavel et al. (2019) had erroneously reported their used concentrations (i.e. 25 ug/mL, 2 nM), which has been
adjusted in the table.

152



5.6 Methods

Several Drop-seq protocols for primary microglia were tested (Figure 72). The experimental
comparison included seven distinct steps: anaesthesia, perfusion and tissue dissection,
dissociation, purification, enrichment, chemical fixation, and scRNA-seq. | choose to vary four key
steps, targeting chemical fixation, enrichment, purification, and dissociation. Varying these factors,
a total of 72 unique experimental procedures can be developed. Not all are within the scope of this
body of work. To that end, | prioritized variations within each step, reasoning that these will best

detail the effect of each; variations between steps were not accounted for experimentally.

Anaesthesia

Perfusion and tissue dissection

Dissociation

Dounce ActD Standard
Purification
Gradient centrifugation Myelin Removal Beads
Percoll Debris Removal Solution
Enrichment
FACS MACS

Chemical Fixation

Fresh MetOH DSP

Figure 72: Drop-seq workflow for murine microglia. Graphical summary of protocol variations for single-cell isolation and
SCRNA-seq.

5.6.1 Direct comparison of MACS and FACS

Adult mice were anaesthetized, perfused, and tissue dissected and dissociated (i.e. standard),

followed by bead-dependent purification (Chapter 2). Cells were stained for Cd11b with a magnetic
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microparticle- or fluorescent reporter-conjugated antibody. Cd11b*-cells were enriched with MACS
or FACS, after which cells were subjected to a second round of staining, including a viability dye
(eFluor520), a canonical microglial marker (P2ry12) and mitochondrial activity dye (Mitotracker

Deep Red). Single, viable P2ry12*-cells were assessed

5.6.2 Culture of a microglial cell line

Microglial cells (i.e. N13) were seeded into and maintained in a T75 cell culture flask with pre-
warmed culture medium; Dulbecco’s Modified Eagle’s Medium (DMEM) (61965-059, Thermo
Fisher) with 10% fetal bovine serum (FBS), and 100 U/mL of Penicillin-Streptomycin. Cells were
incubated at 37°Cin 5% CO,, changing the media every 3 days. To passage the cells, cells were spun
down (at 900x RPM) and resuspend in 5 mL of culture media, after which 500 ulL was added to a

new T75 flask with 14.5 mL of pre-warmed media.

To collect cells, media was removed, cells washed with distilled water and trypsinized with 5 mL
trypsinization solution (HBSS (1X) and Trypsin-EDTA (0.5%) (1X). Trypsinization was stopped with
culture medium, cells spun down and resuspended in culture medium. A C-chip or haemocytometer

was used to apportion 1,000,000 cells for each test.

5.6.3 Chemical fixation

Chemical fixation was tested with two reagents: DSP and MetOH (Alles et al., 2017a; Attar et al.,
2018a). Cells were fixed for 1 to 3 days. Flow cytometry enabled an assessment of their respective

cell number and viability.

Aliquots of 10 pyL DSP (Thermo Scientific, 22586) were prepared in anhydrous DMSO, to a stock
concentration of 50 mg/mL (i.e. 50X) and stored at -80°C until use. 50X DSP was diluted to 1X
working stock concentration with PBS. Working stock was filtered using a 30 um filter and stored
on ice prior to cell fixation. General lab stock of ice-cold methanol was used. DSP and methanol

were added dropwise under gentle agitation, to ensure minimal precipitation
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5.7 Results

5.7.1 Chemical fixation reduces recovery and alters population characteristics

Chemical fixation could improve experimental flexibility and library Anaesthesia

quality. As stated, long-term fixation was expected to significantly  p. fusion and tissue dissection

reduce recovery, thereby minimizing the capacity to pool tissue (Alles
Dissociation

et al., 2017). Indeed, MetOH fixation for up to 2 months resulted in

Purification
significant cellular debris and clumping in the sample and inefficient
recovery (<5%) for both microglial culture cells and ex vivo isolated Enrichment
murine microglia (data not shown). Cellular morphology and recovery Chemical Fixation
were compared in MetOH and DSP, to accurately assess their . — DSp

respective value for short-term fixation (Figure 73).

Cellular morphology is differentially affected by DSP and MetOH Figure 73: Chemical fixation
and SCRNA-seq. Fresh,

fixation. In situ cellular morphology is an indirect measure of microglial methanol (MetOH) and dithio-
bis (succinimidyl propionate)
function; amoeboid and ramified microglia have distinct features, (DSP)were compared.
characterized by round and arborized cells (Davis et al., 2017). By
extension, flow cytometric measures of cellular morphology are descriptive of the cell quality. DSP,
or Lomant’s reagent, was suggested to preserve normal cellular morphology, whereas MetOH acts
as a permeabilizing agent that dissolve lipids of the cell membrane and disrupts cellular integrity
(Alles et al., 2017; Attar et al., 2018; Jamur and Oliver, 2010). Indeed, distinct morphologies for
fresh and DSP- and MetOH-fixed cells were found, best illustrated by a shift in the size and
granularity of the population (Figure 74).
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Figure 74: Flow cytometry of cultured microglia in fresh and fixed conditions. Fresh, methanol (MetOH) and dithio-bis
(succinimidyl propionate (DSP)-fixed N13 cells and their respective size (FSC) and granularity (SSC). ‘Expected
populations’ mark the N13 cells, and the grey (horizontal) lines detail granularity across conditions.

Cells undergo a morphological change with MetOH-fixation that bears similarities to heat-
treatment. Cells display an increase in granularity with fixation that is suggestive of a loss in cell

integrity (Figure 75). Maintaining cellular integrity might be of particular importance for
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subsequent single-cell analysis, as increases in ambient RNA is expected to confound detection

of true cellular transcripts. favouring DSP over MetOH fixation.
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Figure 75: Comparison of morphological features in fresh and fixed microglial cells. Fresh and methanol (MetOH)-fixed
N13-cells were subjected to heat-induced cell death (90 seconds at 68°C) or control conditions. ‘Expected populations’
mark the N13 cells.

Cell recovery gradually decreases over time for both DSP and MetOH, where DSP consistently
featured a greater relative recovery than MetOH. For both reagents, recovery drops to
approximately 60% after 1 day of fixation and continues to get decline to 50 and 45% at 3 days

for DSP and MetOH, respectively (Figure 76). These numbers suggest a limited utility for cell

pooling.
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Figure 76: Chemical fixation and cell recovery. Short-term fixation of dithio-bis (succinimidyl propionate (DSP) and
methanol (MetOH) reduces cell recovery with time of fixation for both DSP (n=2, all time-points) and MetOH (n=2, all time-
points). DSP performed better than MetOH on all three durations measured. No statistically significant effects were found
(2-way ANOVA with Tukey’s multiple comparison). Bars are standard deviations.

156



5.7.2 MACS-mediated enrichment is fast and mitigates ex vivo signatures

Anaesthesia
Perfusion and tissue dissection
Dissociation
Purification

Enrichment

FACS MACS

Chemical Fixation

Figure 77: Enrichment strategy and
SCRNA-seq. Fluorescence- (FACS) and
magnetic-activated cell sorting (MACS)
are the most used approaches for single-
cell enrichment.

Enrichment of cells for scRNA-seq is typically done with FACS or
MACS (Figure 77). Flow cytometry can rapidly sort cells with
great purity. Flow rates can be varied between 1 and 11 that
correspond to ~10-80 pL / min; however, it is not
recommended to exceed flow rates that increase the number
of detected events per second above 2,000. In this manner,
sorting of cells from regions that have a lower prevalence like
the SC and CB will take a longer time, having a direct influence
on cell viability and protocol feasibility. Indeed, with these
considerations accounted for, only the CH and ISO readily allow
enough cells to be sorted cells within an hour (Table 8);
Macosko et al. (2015) recommend 150,000 for a typical
experiment. In this manner, the limiting factors for the protocol

are the relative cell concentrations and prevalence of microglia.

Table 8: Region-dependent FACS-mediated recovery times.

Estimated recovery
ROT Events (#) Acquisition time (5} F/second time (minutes)
(~150,000}
CH 43,568 570 76 33
CcB 10,439 320 33 77
ISO 36,152 322 112 22
HPF 6,669 203 33 76
sC 3,816 300 13 197

Note: Estimated recovery time of (~150,000) microglia with FACS varies by region of interest (ROI). Commonly accepted
sorting times are times less than 30 minutes. Only the cerebrum (CH) and isocortex (ISO) can readily lend itself to these
limitations. CB, cerebellum; HPF, hippocampal formation; SC, spinal cord.

Moreover, distinct variations in cellular activation are evident between fluorescence- and

magnetic-activated cell sorting. Cellular activation and ex vivo signature induction have been shown

to associate with elevated levels of mitochondrial activity in muscle stem cells (Brink et al., 2017).

To this end, | tested mitochondrial activity with Mitotracker Deep Red FM (MTDR) in FACS and

MACS-enriched P2ry12*-cells. P2ry12 has excellent correspondence with Cd11b*Cd45+ cells (99%),

the standard gating strategy for microglia (Figure 10). MTDR fluorescence varied between
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approaches, best illustrated by the relative fluorescence of Pry12* subtypes, albeit an increase of

MTDR was noted in FACS- relative to MACS-enriched cells (Figure 78).
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Figure 78: MACS-isolated cells display reduced mitochondrial activity. P2ry12+ cells are enriched, and their respective
MTDR-fluorescence is displayed (n=1). The coloured circles capture three distinct cellular populations shared between
conditions. The vertical (black) line in each plot functions to illustrate an expression level of 103. FACS, fluorescence-
activated cell sorting; MACS, magnetic-activated cell sorting; FSC, forward scatter; MTDR-APC, Mitotracker Deep Red;
APC, Allophycocyanin.

MACS enrichment utilizes selection columns and consists of 3 phases. A typical workflow for the
positive selection and enrichment of Cd11b* cells include pre-selection, effluent and post-selection
suspensions. However, microglial recovery with MACS has inefficiencies during processing,
reducing the total cell yield in processing. Pre-selection, the cell suspension contains the largest
quantity of Cd11b* cells (Pre-), whereas recovery of cells after magnetic separation and positive
selection is reduced by approximately 35% (Post-) (Figure 78). It is possible that some of the cells
were retained in the selection column. However, flushing the column out for a second time did not
result in a recovering a larger number of cells (Post- (2)) (Figure 79). Moreover, no cells were
detected in the effluent (Effluent) (Figure 79). Some cells might have ruptured in the process of

isolation, thereby reducing the overall yield.
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Figure 79: MACS-mediated microglial recovery. Microglial numbers were measured (7AAD- GFP*) across the MACS
enrichment process, including the pre-enriched population (Pre-), the effluent, post-enriched population (Post-) and a
second flush (Post- (2)) to ensure the effective depletion of cells from the column. Microglial recovery is diminished

throughout processing. Statistically significant differences in the steps of isolation were found (Tukey’s multiple
comparison’s test) (****, P<0.001). Post- (2) was excluded from statistical analysis (n=1). Bars are standard deviations.

As a point of consideration, the anti-Cd11b microbeads that enable the isolation of Cd11b* cells are
M1/70 clones. Unfortunately, most antibodies used for flow cytometric analysis of Cd11b are also
M1/70 clones and are therefore expected to compete for binding with the microbeads; cells are
stained and bound with microbeads prior to binding with Cd11b-PE. Indeed, staining cells with
microbeads at a concentration of 1/100, instead of the conventional 1/10 concentration, results in
an increase of Cd11b-PE signal, suggestive of competitive binding of the Cd11b protein (Figure 80).
However, the detection of Cd11b was not obfuscated by the competitive antagonism between the

microbeads and the Cd11b-PE antibody. Future studies might benefit from utilizing alternatives.
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Figure 80: Competitive antagonism of Cd11b microbeads and the flow cytometric detection of Cd11b. a) Cells were
magnetically labelled with Cd11b microbeads (1/10) and followed by the binding of Cd11b conjugated to PE (BioLegend,
101207) (1/500) for the identification of Cd11b. Both microbeads and Cd11-PE are M1/70 clones and are in direct
competition for binding sites. b) Lowering microbead concentration to 1/100 reduces the isolation efficiency, although
there is an observed shift in PE signal strength. APC, Allophycocyanin; PE, phycoerythrin.
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Taken together, FACS-mediated enrichment can be utilized for scRNA-seq and might be well-suited
to plate-based experimental designs. However, MACS is the preferred option for droplet-based
platforms. Some inefficiencies in enrichment are evident with MACS isolation, yet these are

outweighed by the high-throughput nature and cellular quiescence of MACS-isolated cells.

5.7.3 Lowered microglial recovery with increased purity

As stated, purification of single cell suspensions occurs in two broad Anaesthesia
categories: gradient centrifugation- and bead-dependent myelin Perfusion and tissue dissection

and cell debris removal (Figure 81). Dissociation

Purification

The selection of density gradient centrifugation- and bead-

. . . . Gradient Myeli
dependent purification varies with context. Bead-dependent | centrifugation Removal
Beads
purification is effective in juvenile, murine tissue; however, it is
Percoll Debris Renioval Solution
myelin quantities in the adult murine brain will exceed the capacity
Enrichment

of the beads and columns (Miltenyi). Some have opted to use

Chemical Fixation

Figure 81:Purification methods
method in isolation fails to effectively remove myelin debris of scRnA-seq. Gradient

. Lo centrifugation and myelin
(Safaiyan et al., 2021). However, when enriching for cells, no such .,0v4/ beads-dependent
purification are the main
strategies used; the latter of
which is subdivided in Percoll
or debris removal solution.

Hammond et al., 2019; Keren-Shaul et al.,, 2017; Masuda et al.,

gradient-centrifugation and bead-dependent purification in

combination for droplet-based scRNA-seq, finding that each

additional steps were taken, and gradient centrifugation was found

to be an effective means of purification (Geirsdottir et al., 2019;

2019; Tay et al., 2018; Van Hove et al., 2019).

Purity of MACS-enriched P2ry12*-cells is greater with gradient centrifugation, 88% for Percoll and
75% for bead-dependent purification, respectively (Figure 82). Moreover, | found an incomplete
depletion of myelin from adult isocortical tissue using beads, with visible contamination remaining
in the cell suspension (data not shown). The loss of purity when using Myelin Removal Beads Il
(Miltenyi, 130-096-733) could confound subsequent scRNA-seq. This finding supports the
limitations of bead-dependent isolation. To increase purity, when LS- with were exchanged with
LD-columns no such myelin debris was observed (data not shown), as has previously been described
(zhou and Li, 2019). However, LD-columns offer a slower flowthrough and a significant increase in
handling time, increasing the risk of ex vivo signatures and introducing additional experimental
limitations (data not shown). Operation of beads-dependent purification might necessitate cold-

room usage and/or inclusion of inhibitors during processing.
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Interestingly, no differences were detected in mitochondrial activity between bead-dependent and

gradient centrifugation, as measured with Mitotracker Deep Red (Figure 82). This suggests that the

purification method is not a key driver for the induction of ex vivo signatures in microglia.
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Figure 82: Purification method-dependent microglial population characteristics. a-b) Percoll-gradient centrifugation
displays a higher purity of MACS-enriched (P2ry12+-) microglia (88%) than the beads equivalent (75%). c-d) No differences
in mitochondrial activity are remarked. APC, Allophycocyanin; FSC-A, forward scatter, area; MTDR, Mitotracker Deep Red;
PE, phycoerythrin.

Cellular viability and yield are interconnected. Larger centrifugal forces would increase recovery at
the cost of a reduced viability and vice versa. Bead-dependent purification greatly outperforms
Percoll purification, recovering up to 2-fold larger number of microglia (Error! Reference source
not found.). However, | did not find large differences in cell viability between both approaches (data

not shown), suggesting that other factors might influence recovery.
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Figure 83: Beads-dependent purification doubles microglial recovery. Bead-dependent purification maximizes recovery of
P2ry12+ microglia. Stringency of Percoll (and other gradient centrifugation methods) restrict recovery. Each dot represents
a sample. Tick lines at 100 and 200%. Scatterplot with bar, mean with standard deviation (n=2).

Taken together, there is a distinct trade-off between purity and microglial yield in MACS isolated
cells. I chose to opt for greater purity, to ensure high quality scRNA-seq libraries. However, yield

and viability will need to be assessed across dissociation methods.

5.7.4 Microglial recovery is largest in standard dissociation conditions

Anaesthesia Microglial recovery is expected to vary between cell isolation

methods, and | set out to do a direct comparison on cell yield

Perfusion and tissue dissection .\ \iapility (Figure 84). ActD and standard dissociation

protocols generally vary in digestion method (i.e. mechanical
Dissociation

or automatic), digestion temperature, and varying on the
Dounce ActD Standard  presence or absence of ActD (Table 5). Similarly, mechanical

dissociation protocols can vary substantially (Hammond et al.,

Rurtfication 2019; Li et al., 2019; Schaum et al., 2020, 2018).

Enrichment A Dounce homogenization protocol was implemented, as was

established by Hammond et al. (2019). Whole brain
Chemical Fixation
dissociation was achieved by using the loose (A) and tight (B)

- pestles sequentially, each 15 times in EM1 while rotating the

pestle.

Figure 84: Dissociation strategies in scRNA-seq. Dissociation
methods vary on its use of mechanical and/or enzymatic
digestion, and dissociation temperature. ‘Dounce’ features a
cold, mechanical dissociation, whereas ‘Standard’ features a
heated (37°C) enzymatic digestion. ‘ActD’ is a modified protocol ; ; ;

in which digestion (at room temperature) occurs in the presence tested, the (proprietary) formulation might
of actinomycin D, a transcriptional inhibitor. contain other factors supportive of cell

Although papain is not (fully) active at 4°C

at which mechanical dissociation was

viability and effectively enables comparison with the other dissociation protocols. Other in-house
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formulations (incl. DNAse |) were tested but these were not deemed be a satisfactory comparison

without details regarding the formulation.

Single cell suspensions were generated with the 3 dissociation protocols; that is, standard, ActD,
and Dounce. Cell suspensions were purified with Debris Removal Solution, a density-gradient
approach. This condition ensured that | retained microglia with high purity, even if this comes at a
cost of recovery. The number of viable cells that were recovered from each were quantified. As
expected, dissociation in the presence of ActD at room temperature (21-23 °C) decreased microglial
recovery relative to standard dissociation (38%), an effect that was more pronounced at 4°C with
Dounce homogenization (26%) (Figure 85). Of note, viability did not display large variability, with

all procedures routinely recovering 295% live cells (Figure 86).
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Figure 85: Standard dissociation recovers microglia most effectively. Relative recovery of P2ry12+ microglia from
isocortical tissue in Dounce- and ActD- to standard-isolation protocols. Standard dissociation at 37°C is most effective in
recovery of microglia, whereas both ActD- and Dounce-isolation reduce recovery to 26 and 38%, respectively. Each dot
represents a sample. Tick lines at 25, 50 and 100%. Scatterplot with bar, mean with standard deviation (n=2).
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Figure 86: Viability of cells in distinct cell isolation protocols. Representative plots of viability (eFluor520) in standard-,

ActD-, and Dounce-isolated cells. FSC-A, forward scatter, area; ActD, actinomycin D.
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5.7.5 Mechanical dissociation and transcriptional inhibition reduce ex vivo signatures

Ex vivo signatures do not vary with purification method, yet mitochondrial activity was lower in
MACS when compared to FACS. However, the effect of the different dissociation methods on the

microglial gene expression was still to be determined.

To that end, microglia were isolated from the adult cortex and profile gene expression with qPCR.
Cells were purified with gradient centrifugation (i.e. ‘debris removal solution’), enriched microglia
with MACS, and compared Dounce-, ActD-, standard-isolated microglia. | developed a panel of
genes that includes canonical microglial markers (Csf1r, Cx3crl, Hexb, P2ry12, Tmem119) and
artefact-associated markers (Egr1, Fos, ler2, Jun). All designed primers displayed good parameters,
with excellent melting curves and size. However, Csflr, ler2 and Tmem119 did not pass quality
control, as PCR products of Csflr, ler2 and Tmem119 were either lacking or multiple
(Supplementary Figure 11). Gapdh was used as an internal loading control, and Hexb as a secondary
microglial load control. Hexb is a stable, canonical marker of microglia in health and disease
(Masuda et al., 2020). Of note, cells display considerable variability by dissociation protocol, and
some by collection method (Figure 87); in the series, cells were collected and stored as a pellet, or

cells were collected and stored in lysis buffer.

Jun (and Fos to a lesser degree) are expressed significantly less in Dounce- and ActD-isolated cells
(Figure 87). The lower expression associates with a lower dissociation temperature; lower levels
are detected for mechanically dissociated tissue. Jun and Fos are genes involved in the cell stress
response, and critical genes in the formation of activation protein-1 (AP-1), a protein complex
associated with multifaceted roles that include cell growth and apoptosis (Leppad and Bohmann,
1999). However, as such, a reduction of both genes with Dounce- and ActD-isolated cells supports
the effectiveness of these protocols in preventing the induction of ex vivo dissociation-induced
signatures. Similarly, Egr1 is reduced in ActD-isolated cells, however, unlike Fos and Jun, it does so

more than Dounce-isolated cells, suggestive of a superior effect of ActD (Figure 87).

Looking at the canonical marker panel, Cx3cr1 is significantly downregulated in Dounce-isolated
cells, whereas no statistically significant difference in P2ry12 expression was noted (Figure 87).
P2ry12 expression does show a downward and upward trend for Dounce- and ActD-isolated cells,
respectively. Combined with a statistically significant reduction of Egrl and Jun, these results
suggest that ActD-isolated cells best preserves in vivo microglial identity. Using Gapdh with a
combination of Cx3cr1, Hexb and P2ry12 as internal controls gave similar findings (Supplementary

Figure 12).
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Figure 87: Early-response genes and dissociation method. Expression of early-response genes and canonical microglial
markers in cell isolation protocols vary. Gene expression levels are relative to standard dissociation. Sequentially, gene
levels were corrected for Gapdh and Hexb. Box-and-whisker plot with standard deviation. Each dot represents a sample
composed of 2 isocortices from male or female tissue (n=4). Cells collected in a pellet (o) and in lysis buffer (®) Two-way
ANOVA (Dunnett’s) was used for the statistical analysis of genes and cell isolation protocol (**, P<0.01; *** P<0.001;
*xE% P 0001).

5.8 Removal of exAM with ActD in scRNA-seq

To finally test the efficacy of my protocol, a scRNA-seq dataset was generated it: dissociation with
ActD at RT, purification with debris removal solution, and enrichment with Cd11b* magnetic
microbeads. Cells from female mice aged P21 and P60 were used, complementing male and female
P90 cells from the pilot in an integrated Seurat object. As described previously, | made use of the

MAD for QC prior to standard integration (Section 2.8.1.2, Figure 17).

5.8.1 Cell quality is lower in exAM-treated cells

Cell quality is affected by the experimental procedures. Albeit evidence of exAM was evident in the
pilot dataset, the overall quality of the cell suspension in the study was good (Figure 64, Figure
66,Figure 69). Now, relative to the pilot, ActD-treated cells have increased library complexity and
size, as well as mitochondrial and ribosomal content (Figure 88). No differences in quality were

found between P21 and P60-derived ActD-treated cells (Supplementary Figure 13).
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Figure 88: Single-cell suspension qualities differ between standard- and ActD-isolated microglia. 7 Seurat clusters are
identified (a) that vary in distribution by isolation method (b), and by general QC-parameters. ActD, actinomycin D; QC,
quality control.

Differences in library size and complexity are expected to derive from differences in read depth. In
fact, read depth of ActD-treated cells was lower on average. Cells in the pilot were sequenced to
an average depth of 15,637 and ActD-treated cells to 12,218 reads/cell. This was unexpected, as |
set out to increase read depth relative to the pilot data. Furthermore, ActD-treated cells showed a
relative increase of mitochondrial and ribosomal content, indicative of lower cell qualities (Osorio
and Cai, 2020; Subramanian et al., 2021). Indeed, 687 of 1020 (~67%) ActD-treated cells in the
object pass MAD QC, compared to 1245 of 1329 (~94%) in the pilot. It is possible that elevated
levels of mitochondrial and ribosomal genes could be reflective of the younger age of the samples
treated with ActD. Although some evidence of diversity in ribosomal content was found (Figure 50),
it is unlikely an increase in mitochondrial content is an indicator of quality. Commonly, these effects
are suggestive of a loss of cytoplasmic transcripts by membrane disruption and a reduction of
sample quality. A more likely explanation is that a lower read depth of cytoplasmic RNA is due to
RNA decay. As stated previously, ActD is readily used to study RNA decay and it is something which
would need to be considered in future studies (Lai et al., 2019). Regardless, the integrated data

allows for a direct comparison of exAM signatures between the isolation methods.
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5.8.2 ActD treatment mitigates the introduction of an exAM signature

7 transcriptionally distinct clusters were identified in the object. The identified clusters featured
homeostatic (HOM)-clusters, CNS-associated macrophages (CAM) and exAM, as well as aged
inflammatory microglia (AIM) and OPC (Figure 89). The presence of OPC is surprising, the
occurrence of which could indicate an impurity in the isolation. This is something that can be
improved upon by using gradient-centrifugation and bead-dependent purification in combination,
as was done by Safaiyan et al. (2021); however, the impurity is a relatively small cluster and does

not detract from the interpretation of the results.
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Figure 89: Transcriptional heterogeneity of identified clusters.

However, most clusters are microglia, 3 of which are HOM-clusters (cluster 0, 1, 2). Canonical
microglial markers are highly expressed in these clusters, with only moderate variations in
expression. Of note, cluster 3 features similar levels of such markers, albeit supplemented with a

module for exAM-associated genes like Egr1, Fos, ler2 and Jun (Figure 90).

167



a) exAM b) .,

)
.‘.,:“3 Seurat clusters

.
&%
.
d H
; oo ° (X3
il 9085 8, 04
. .
AL Y Ay ‘

02

Percentage
2
] [ [
°

PN

T

Study

Fos Egr1

IS

Expression Level
N
Expression Level

o

o

O N 94 5 % 6 o

Figure 90: exAM are enriched in standard-isolated cells. a) Enrichment of exAM signatures are enriched in cluster 3, as
shown in a FeaturePlot (a) and in a barplot detailing their distribution by isolation method (b). Gene expression scale is
from low to high, grey to blue, respectively. c) ViolinPlots of 4 exAM signature genes are depicted by cluster. ActD,
actinomycin D; exAM, ex vivo-activated microglia.

Furthermore, the skewed distribution of cluster 3 towards cells from the pilot suggest
transcriptional inhibition is an effective means of mitigating such effects in microglial scRNA-seq.
Importantly, accounting for differences in cell number, 2.6% of all ActD-treated cells take on an
exAM signature, compared to 17.6% of all standard isolated cells, approximately a 7-fold reduction

of such signatures relative to pilot data (Figure 89, Supplementary Table 14).

5.9 Discussion

scRNA-seq studies of microglia can account for ex vivo signatures in a plethora of ways, some of
which are addressed in this chapter. As stated, modifying the central four variables on the available
approaches culminates in 72 distinct protocols. | aimed to make stepwise progress through this
variability to reduce the number technical conditions to test. Therefore, the study does not aim to
be a full account of the currently available options; however, it does serve to inform on key
characteristics of microglial scRNA-seq to mitigate ex vivo signatures and improve data quality.
Several key determinations were made:

1. Chemical fixation with DSP and MetOH reduced cell yield, limiting its application for scRNA-
seq.

2. MACS displayed higher throughput and reduced mitochondrial activity than FACS.

3. Gradient centrifugation has greater purification efficiency than a bead-dependent
alternative.

4. Exvivo signatures are reduced by using ActD and/or lowering dissociation temperature.

5. Implementation of ActD-treatment for scRNA-seq raised concerns of cell quality.
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5.9.1 Loss of cells with chemical fixation and future implementations

It was observed that chemical fixation is associated with an incremental loss of cells and disruption
of cellular morphology with prolonged incubation, in line with previous studies (Alles et al., 20173;
Attar et al., 2018a; Chen et al., 2018). Although fixation was initially thought as a promising step for
the reduction of technical noise and sample pooling, recovery reduced to 65% with DSP to 55%
with MetOH after just one day of fixation, an effect that continued to worsen for both over the
course of 3 days. These limitations halted efforts with MetOH and DSP and neither was tested

for their effect on ex vivo signatures.

MetOH-fixed is associated with a loss of membrane integrity and a loss of cytoplasmic transcripts
(Alles et al., 2017). These were not concomitant with an increase in mitochondrial transcripts,
classically a marker of good cellular health, which led the authors to conclude that cell quality is
preserved. However, Denisenko et al. (2020) recently discovered that MetOH-fixed (kidney) cells
are enriched for genes common to tubular cells and erythrocytes (e.g. haemoglobins) (Denisenko
et al.,, 2020). Like the dissociation-induced signature described previously, these transcripts
correspond to an ex vivo profile. When speaking of ex vivo signatures, technical artefacts are not
limited to dissociation-induced and need to be placed into a larger framework, to recognize the

specific limitations of any experimental choice.

Regardless, chemical fixation might still offer a benefit to scRNA-seq, and progress has been
made since these first implementations. Adaptations in rehydration of MetOH-fixed cells
improved RNA integrity and membrane integrity (Chen et al., 2018). Furthermore, DSP and
MetOH have found use in spatial transcriptomics (Lee et al., 2021; Machado et al., 2021), as well
as in multimodal single-cell studies combining intracellular phospho-protein staining and
transcriptomics (Gerlach et al., 2019; Nesterenko et al., 2021). Similarly, glyoxal, an aldehyde
fixative, does not cross-link RNA like PFA and might offer value for scRNA-seq (Channathodiyil

and Houseley, 2021), although this is yet to be tested.

5.9.2 MAGCS is favoured for droplet-based scRNA-seq

The speed and gentle nature of MACS enrichment favour this method for droplet-based scRNA-seq.
However, FACS might still be the preferred choice in other formats. Plate-based platforms like
SMART-seq2 and MARS-seq are not expected to suffer from similar limitations. Single cells in plate-
based platforms are commonly sorted into lysis buffer, capturing transcriptomes prior to a cellular
response to shear stress. In this way, FACS enrichment of rare cells that express specific
combinations of proteins can be achieved. Indeed, seminal papers utilizing FACS for cell enrichment

have opted for plate-based platforms (Mathys et al., 2017; Safaiyan et al., 2021).
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In addition, MACS has displayed some inefficiencies of recovery that could necessitate experimental
designs that maximize technical repeats. Recoveries from tissue with a lower total microglial
quantity like the HPF, CB and SC could benefit from such adaptations. A paradox, as these same
regions would benefit from the speed in which MACS can enrich for microglia, independent of the
relative quantity and proportion of cells present in the tissue. Combinations of MACS-mediated

positive (or negative) selection followed by FACS are examples of this (Travaglini et al., 2020).

Some further considerations remain. First, | have not performed a repeat experiment in the
comparison of FACS and MACS and care must be taken not to generalize results from a single
experiment. Second, the correlation of mitochondrial activity with cellular activation was not tested
and ex vivo signatures, as was done by Van den Brink et al. (2017). Mitochondrial activity can also
be a marker of good cellular health, or a marker of distinct metabolic functions, and this cannot be

excluded as an alternative interpretation.

Analysis of scRNA-seq datasets could help to resolve this further, to correlate ex vivo signatures
with cell isolation methods. e.g., typical stress-induced signatures were identified in Dounce-
isolated microglia of the dataset of Hammond et al. (2019) (Supplementary Figure 7). In this work,
tissue was dissociated mechanically and enriched for with FACS. This corresponds to recent findings
by Marsh et al. (2022), in which mechanical dissociation displayed elevated ex vivo signatures (i.e.
‘exAM’) with FACS, relative to cold (and heated) dissociation with inhibitors (Marsh et al., 2022).This
strengthens my argument against the use of FACS in droplet-based scRNA-seq. Further work is
needed to characterize the specific sorting conditions that will induce ex vivo signatures in

microglia.

5.9.3 Gradient centrifugation displays elevated purity and lowered yield

The results showed that gradient centrifugation increased sample purity relative to bead-
dependent purification; 88 and 78%, respectively. Myelin debris removal with LS-columns was
incomplete, with debris remaining in the cell suspension. LD-columns might offer an alternative
solution but working in a cold-room will become a necessity due to the low flowthrough of the
column type. | chose not to pursue this avenue, aiming to keep experimental complexities low and
processing time at a minimum. Furthermore, gradient centrifugation and bead-dependent removal
of myelin did not affect mitochondrial activity differentially, suggesting that purification method is
not a key driver of ex vivo signatures. Indeed, research has shown that varying centrifugal forces
during purification does not greatly affect gene expression, although some differences in cellular

viability were remarked (Pavel et al., 2019).

Cellular viability might be an explanation of the differences in microglial recovery between

purification methods, with bead-dependent purification outperforming gradient centrifugation. Of
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note, no differences in cell viability was found between methods; Cd11b* enrichment or any
subsequent wash might aid the removal of dead cells. Alternatively, white matter-associated
microglia are recovered more effectively with bead-dependent approaches. The use of antibodies
with a designated target is expected to be more selective than gradient centrifugation; non-
specificity in gradient centrifugation might select against microglia in white matter. As discussed
previously, tensile properties of white- and grey-matter tissues differ. Although regional and age
variability is reported, white matter is on average stiffer than grey matter (Budday et al., 2015;
MacManus et al., 2017). These tensile properties could underlie distinct purification efficiencies.
Further research is needed to detail these method-specific characteristics. By extension, bead-
dependent purification might be better suited for the isolation of white-matter associated microglia

like WAM, ATM and PAM.

5.9.4 Dissociation method, recovery, viability, and ex vivo signatures

The assessment of dissociation method is twofold by addressing cell yield and viability, and ex vivo

signatures.

5.9.4.1 Standard isolation maximizes microglial recovery

Standard (heated) enzymatic dissociation recovers the most microglia, without any overt
differences in viability. This is in-line with previous work comparing cold, mechanical and heated,
enzymatic digestion (Denisenko et al., 2020; Marsh et al., 2022). Interestingly, microglial recovery
with mechanical dissociation is impaired further in aged mouse tissue, possibly reflective of the
mechanical properties of said tissue. Together, these results highlight some concerns for studies
isolating cells in cold conditions, in particular when dealing with (micro-)dissected tissues with a

relatively small number of microglia (e.g. SC, HPF, CEB).

5.9.4.2 ActD reduces ex vivo signatures and preserves microglial identity

However, despite the promise of microglial recovery, isolation of cells in heated digestion is known
to induce ex vivo signatures. Ex vivo signatures varied between the dissociation methods. On
average, and relative to standard dissociation, mechanical and ActD protocols reduced the
expression levels of Fos, Jun and Egrl, suggesting that both isolation protocols could reduce the

induction of technical artefacts.

In addition, a cell isolation-specific effect was noted, where the expression of Egrl in Dounce-
homogenized cells fails to be reduced, compared to an effective reduction when ActD is used. |
have previously addressed that Dounce-isolated cells display a higher level of ex vivo signatures
than those isolated in the presence of inhibitors. The elevated levels of Egrl in Dounce-isolated
cells are supportive of this finding.
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Regarding canonical gene expressions, a significant reduction of Cx3cr1 expression was found with
Dounce homogenization. Other studies have reported on a loss of canonical markers (e.g. Cx3cr1,
P2ry12, Sall1) with age, neurological disease, and in vitro (Dubbelaar et al., 2018; Gosselin et al.,
2017). In correspondence, a loss of P2ry12 expression was also evident in ex vivo-activated
microglia (i.e. exAM) of the scRNA-seq pilot (Figure 65). This suggests that a loss of canonical
marker genes is a typical response of microglia outside of homeostasis, one that is reproduced by

ex vivo activation.

To my knowledge, this is the first study to suggest that P2ry12 is reduced with ex vivo activation.
Marsh et al. (2022) investigated the association of microglial identity and activation score, which
includes P2ry12, Tmem119, Hexb and Cx3crl, yet they did not report on a similar loss due to the
composite nature of said module scores. By extension, it would be interesting to disentangle the ex
vivo-induced loss of microglial identity and the acquisition of a disease-like signature (e.g. DAM), a

signature commonly associated with a loss in canonical marker gene expression.

Of note, no significant loss of Cx3crl or P2ry12 was found in ActD-isolated cells; in fact, an upward
trend of P2ryl12 expression was detected. These results could indicate that microglial identity is
preserved in the presence of ActD, counteracting some of the detrimental effects of cell isolation.
Furthermore, it would support the use of ActD in mechanical isolation. However, it is possible that
ActD affects the transcriptome in a so far unknown manner, even in the absence of genotoxic stress

(with a concentration below 100).

5.9.4.3 Implementation of ActD in scRNA-seq

ActD was used at a concentration of 30 uM, well within the accepted range to prevent genotoxic
stress (Mussil et al., 2019). However, evidence of RNA decay was found, mitochondrial and
ribosomal content increased in the presence of ActD. Consequentially, a large proportion of cells
did not pass the MAD filter during QC; 33% of ActD-treated cells were excluded, compared to 6%
in the pilot. A priori this was a consideration, however, the absence of such effects with 45 uM ActD,
as those described by Sala Frigerio et al. (2019) raised questions about the implementation of the
drug, or at least raised some caution regarding the use of this approach. No gross differences in
protocol length or procedure were evident, albeit dissociation temperature was lowered from 37°C

to R.T.

In concurrence, cell clumps in the final suspension were identified (data not shown). To circumvent
this issue, the suspension was filtered prior to the Drop-seq run. Although this reduced the total
number of cells and single-cell transcriptomes-attached to microparticles (STAMP), the run
completed without errors (data not shown). The troubleshooting of this issue on the day took time

and put them in the run media for longer than was needed, each contributing to a lower cell quality.
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In retrospect, cold-activated enzymes might proof particularly beneficial for microglial isolations. It
would efficiently dissociate tissue into a single-cell suspension at a colder temperature and keep
ActD concentrations low; ActD concentration has been lowered effectively with colder
temperatures (Wu et al. 2017). In addition, cold-activated enzymes would increase cell number,
and library size and complexity, relative to dissociation at room temperature in the presence of
ActD. This is less economical but will have positive downstream effects on the data quality. In
addition, platform selection might have played a role in the read-out. Drop-seq is a high-throughput
and cost-effective platform that offers good overall performance. However, in comparison to 10X,
a commercially available platform, sensitivity of reads is approximately 2-fold lower. At a given read
depth and independent of cell input number, a benchmark study identified 17,000 transcripts and
3000 genes with 10X, compared to 8000 transcripts from 2500 genes with Drop-seq .(Zhang et al.,
2019). In parallel, read distribution across the barcodes is skewed with Drop-seq, with 10X
allocating sequencing resources more evenly. Library size and complexity are expected to increase
drastically by implementing this system, to the benefit of the scRNA-seq data quality. For reference,
Sala Frigerio et al. (2019) and Marsh et al. (2022) both utilize the 10X platform in their

implementation of ActD with microglia without any obvious signs of lowered cell quality.

Moreover, in contrast to the qPCR data, no differences in homeostatic genes were found between
the pilot data (utilizing a standard dissociation) and ActD-treated microglia. Critically, the pilot and
ActD study differ in the ages that were used; P90, and P21 and P60, respectively. Age is the main
driver of microglial heterogeneity, and thomeostatic gene expression levels vary between early
development and adulthood. Interactions of age- and isolation-specific effects might therefore

occlude a clear read-out, one which need to be addressed in a more targeted study.

5.9.5 Summary

This chapter was to test distinct experimental procedures for scRNA-seq, that is, chemical fixation,
enrichment, purification, and dissociation. Chemical fixation by itself was not found to be beneficial
for microglial recovery, nor was FACS-mediated enrichment preferred. At its core, the selection of
a protocol for droplet-based scRNA-seq of microglia distilled into a ‘maximalist’ or ‘minimalist’
choice. The maximalist includes beads-dependent purification and standard dissociation, whereas

the minimalist veers into the use of gradient density centrifugation and ActD.

The maximalist allows for the largest recovery of microglia, however, issues of purity and ex vivo
signatures could affect native transcriptional signatures. The minimalist ensures microglial purity,
and preservation of microglial identity at the expense of yield. Combinations of both could be
possible, when using bead-dependent purification with ActD-treatment. However, throughput and

experimental complexity might decrease and increase, respectively, some of which are not always
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practical in molecular labs and could introduce baseline drifting. Similarly, adult tissue might not be

effectively purified with beads, introducing further considerations for downstream processing.

However, transcriptional inhibition alone is sufficient to preserve microglial identity and to
minimize the introduction of exAM-like signatures. Moreover, this data of sexually immature
microglia (SIM) in an otherwise sparsely studied developmental age will help detail microglial

maturation and subtype emergence in health and disease.

5.10 Supplementary figures and tables

Supplementary Figure 11: Quality control of designed primers. All primers display good quality parameters, apart from
Csfir, ler2 and Tmem119, which were either not detected (Csf1r) or display double bands (ler2, Tmem119).
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Supplementary Figure 12: Early-response genes in cell isolation protocols. Distinct patterns of ERG can be noted in
response to varying dissociation methods. Relative gene expression in relation to standard dissociation. Values are
corrected for Gapdh; and Hexb, Cx3cr1 and P2ry12 sequentially.
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Supplementary Figure 13: Parameters of cell quality by original identity and age.

Supplementary Table 14: Cluster cell allocation by study.

- Seurat clusters -

Study 0 1 2 3 4 5 6 Total
ActD 269 201 95 18 51 32 21 687
Pilot 365 269 363 219 17 5 7 1245

Note: Number of cells in each Seurat cluster (after quality control). The pilot study was performed with a standard isolation
protocol that utilizes enzymatic dissociation, gradient centrifugation, and FACS; whereas ActD-treated cells are dissociated
in the presence of 30 uM ActD, gradient centrifugation and MACS.
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Chapter 6 Female gene regulatory networks in health

and disease

6.1 Introduction

Sex is an established risk factor for neurodevelopmental and neurodegenerative disorders (Loomes
et al., 2017; Podcasy and Epperson, 2016; Wooten et al., 2004). Although males and females are
biased towards neurodevelopmental and neurodegenerative disease, respectively, the effects of
sex on disease susceptibility are more nuanced. Men are typically more susceptible to autism,
attention deficit hyperactivity disorder (ADHD), and motor neuron and PD, whereas females suffer
more from anxiety, depression, MS and AD (Pinares-Garcia et al., 2018). Effects of which are
thought to be partly mediated by microglia. In AD, microglia are critical mediators of the CNS
immune environment and enriched for AD-associated risk genes like Apoe, Ctsb, Pld3, Trem2

(Bellenguez et al., 2022; Cruchaga et al., 2014; Sala Frigerio et al., 2019).

Remarkably, as discussed previously, most biomedical studies do not consistently include females
and there is a considerable knowledge gap in the molecular understanding why females are more
susceptible to AD. In this final chapter, | will delve into sex-specific microglial specification, and
address female, cortical microglial maturation in the context of disease by transcriptional and gene

regulatory network analysis (Aibar et al., 2017).

6.1.1 Sex-specific microglial heterogeneity

As discussed, male and female microglial maturation follow a distinct trajectory of maturation
(Figure 49). The question then emerges, why do female microglia mature faster? There have been
reports that sex hormones play a role in providing female microglia an early neuroprotective
function (Schwarz and Bilbo, 2012). Indeed, oestrogen has been shown to reduce microglial
activation by Kir2.1 inward-rectifier K* channel (Wu et al.,, 2016). In fact, female microglia
transplanted into male microglia are more capable of mitigating the sequalae of ischemia in the
male brain (Villa et al., 2018). Lasting protective effects outside of the female brain imply epigenetic
imprinting of environmental cues absent in males. Epigenetics has been shown to play a role in both
masculinization and feminization (Nugent et al., 2015; VanRyzin et al., 2020). Strikingly, only male
microglia are influenced by gonadal hormones at birth, hormones which downregulate Dnmt
expression at a critical period for sexual differentiation (VanRyzin et al., 2020). The absence of
gonadal hormones in this critical window maintains Dnmt and protects females from

masculinization.
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The first exposure of female microglia to endogenous gonadal hormones is at puberty. Of note, the
emergence of gonadal hormones in females is concurrent with the selection phase of microglia
(Askew et al., 2017; Nikodemova et al., 2015). As discussed previously, microglial expansion is
predominantly driven by CPM in early development of mice and humans, a finding that is in line
with established literature (Figure 37, Figure 38)) (Askew et al., 2017; Menassa et al., 2022;
Nikodemova et al., 2015). In turn, microglial numbers in the brain start to decline from P14 until
adult homeostasis is reached (Nikodemova et al., 2015). Sexual maturation and sex hormones
increase shortly after weaning (~P21) to stabilize at P60, concurrent with microglial selection
windows. In addition, the selection of microglia is regionally distinct; CB and HIP display an early
increase in number and selection, where cortical microglia undergo a protracted development
(Askew et al., 2017). Taken together, these results suggest that microglial population dynamics are

associated to gonadal hormone exposure, an effect which could be regionally heterogenous (Figure

91).
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Figure 91: Hormonal levels and microglial selection. Male and female levels of progesterone and oestrogen in the CNS
start to increase in Sexually Immature Microglia (SIM), to stabilize at P60. Inversely, microglial densities in cerebellar
(blue), cortical (grey), and hippocampal (orange) densities are highest in pre-microglia, SIM and pre-microglia,
respectively. Adapted from (Askew et al., 2017; Bell, 2018). O, oestrogen; T, testosterone; P, progesterone.

Given that age-associated diseases like Alzheimer’s are more prevalent in females, that microglial
expansion and selection underlie the adult population, that microglia have a central role in
neuroinflammation, and that distinct sex-specific MDI trajectories have been identified, exploring
Sexually Immature Microglia (SIM) (P9-28) could be interesting to understand how such disease
susceptibility emerges. However, biomedical research has long forgotten about females, best
exemplified by the number of female cells in the atlas relative to male, and this developmental time
is not commonly studied (Ravindran et al., 2020; Zucker and Beery, 2010) (Table 3). Crucially,
transcriptional regulation by transcription factors (TF), also known as regulons, is not typically

considered in scRNA-seq data of microglia.
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6.1.2 Gene regulatory networks inference and clustering

Regulons typically associated with microglial identity are Irf8, Mafb, Salll, and Spil (Pu.1)
(Buttgereit et al., 2016; Kierdorf et al., 2013b; Masuda et al., 2012; Matcovitch-Natan et al., 2016;
Rustenhoven et al., 2018). Irf8, Mafb, Sall1 and Spil were reviewed in Chapter 1. In short, Irf8 and
Spil expression initiates early in development, where they have been found to play a role in
microgliogenesis and differentiation in the microglial lineage commitment cascade in early
microglia (<E14) (Huang et al., 2008; Kierdorf et al., 2013a). In turn, Mafb and Salll are under the
influence of Tgf-B, mediating an environment-dependent driver for microglial maturation from pre-
microglia onwards (E14-P9) (Buttgereit et al., 2016; Kierdorf et al., 2013; Matcovitch-Natan et al.,
2016). Identification of such regulons in a small-scale study would further delineate microglial
identity at a higher-order level, potentially ameliorating study-specific artefacts akin to a large-scale

atlas.

Gene regulatory network identification is a novel approach in scRNA-seq. Like trajectory inference,
it has quickly become a popular tool that is under active development (Aibar et al., 2017; Chan et
al., 2017; Dijk et al., 2018; Jackson et al., 2020). Of the methods that are publicly available, SCENIC,

or ‘single-cell regulatory network inference and clustering’, is the most used form.

6.1.2.1 Single-cell regulatory network inference and clustering

SCENIC is an R- and Python-based computational tool that combines the identification of gene
regulatory networks with clustering of cellular heterogeneity (Aibar et al., 2017) (Figure 92). SCENIC
uses “GENIE3” to construct a co-expression module of genes regulated by the same TF; it performs
a TF-enrichment analysis of regulons by “RcisTarget”, thereby improving accuracy of subtype and
state identification; and scores regulon expression in single-cells with “AUCell”. The result is a

binary matrix of regulon activity that can be projected onto a t-SNE- or UMAP-plot.

Interestingly, SCENIC has already been utilized to identify microglia in distinct lineages, as well as
within gestational microglia (Aibar et al., 2017; Kracht et al., 2020). However, to my knowledge, it
has not been applied to a single-cell atlas of microglia across the lifespan. Identifying key regulons
in such a compendium will further aid the understanding of microglial biology and establish novel

therapeutic targets age-associated disease.
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Figure 92: SCENIC workflow. SCENIC utilizes “GENIE3” (or “GRNBoost2”) for the identification of co-expression modules.
Regulons of the expression modules are tested with “RcisTarget” for the determination of a gene regulatory network,
thereby identifying direct and indirect targets. After which cellular regulon activity is binarized and tested with “AUCell”,

to assign the absence of or expression on the regulons; ‘OFF’ and ‘ON’, respectively.
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6.2 Aims and objectives

In this final chapter, | aim to establish an atlas of female, microglial heterogeneity in the cortex,
from Sexually Immature Microglia (SIM) to old age. This will enable me to consolidate previously
established gene lists and microglial subtypes, investigate a critical developmental window of
microglial maturation, and ascertain the effects on genotype on transcriptional heterogeneity and
population dynamics. Similarly, | aim to determine gene regulatory networks in microglia that drive

heterogeneity, to aid biomarker discovery and therapeutic intervention strategies for healthy aging.

Aim 4: Study of female gene regulatory networks in health and disease.

. Objective 13: To establish a female-specific atlas in the murine cortex.
. Objective 14: To explore the transition to an adult microglial phenotype.
. Objective 15: To determine the effects of amyloidosis on transcriptional heterogeneity

and population dynamics.
. Objective 16: To identify transcription factors central to age-associated microglial

subtypes.

6.3 Materials and methods

6.3.1 Dataset Acquisition

3 datasets were gathered that include wild type and AD model-derived cells (APPN6F). These
include data from Sala Frigerio et al. (2020), and Tabula Muris Consortium (2020), datasets that
were used in the large-scale atlas previously, as well as in the in-house generated data of SIM. To

minimize confounding variables, | chose to select only female-derived cells in the cortex (Table 9).

Table 9: Features of scRNA-seq datasets in the small-scale female atlas.

Age

Source Year | Accession | P21 | 3M ‘ 6M ‘ 1M ‘ Z2IM | Genotype
Muntslag et al. 2022 | N/A 450 WT

L GEO: 357 | 341 | 312 | 302 WT
Sala Frigerio et al. | 2019

? GSE127893 351 | 282 | 210 | 250 | APPN-GF
Tabula Muris GEO:
Consortium 2020 | oF109774 436 wT

Note: Details of the respective source data is tabled, including year, accession number (if applicable), the number of cells
at the given ages, and genotype. All data are post quality control. APP, AD-model genotype; P, postnatal day; M, months
old, WT, wild type genotype.

A total of 3291 cells were included, including 450 SIM (P9 — P28), 1767 adult microglia (P60-6M),
522 middle age microglia (6M — 18M), and 552 old age microglia (>18M). As stated, SIM are a sparse

commodity when it comes to scRNA-seq data (Table 3). This is particularly salient as the transition
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from early developmental to old age subtypes can be localized to this developmental window

(Figure 32).

The APPNYSF mice harbour disease relevant ‘Swedish and Beyreuther/Iberian mutations with and
without Artic mutation in the APP gene’ (Saito et al., 2014). This prevents the use of artificial
transgenic overexpression and better captures the AD phenotype. Broadly, these mice are featured
by an invasive amyloid-B (AR) pathology, neuroinflammation and memory impairment by 6 months

old.

6.3.2 Seurat and Metascape

Seurat and Metascape were utilized as described previously (Butler et al., 2018; Zhou et al., 2019).
In short, a quality control (QC) of each dataset was performed individually, after which the objects
were normalized, scaled and regressed for ‘nFeature_RNA’, ‘percent.rb’, ‘G2M.Score’, and
‘S.Score’. Canonical Correlation Analysis, anchor-based integration was performed, followed by
dimensionality reduction and cluster identification (Butler et al., 2018). | chose to use 10 dimensions
at a resolution of 0.6. Differential gene expression analyses were performed with ‘FindAllIMarkers’
with Wilcoxon test for statistical significance. Cluster-specific markers are reported in. Cluster
markers or gene regulatory network-derived - see— were tested in Metascape utilizing with ‘Express

Analysis’ (Zhou et al., 2019).

6.3.3 SCENIC

A default SCENIC bioinformatic pipeline of SCENIC was applied, as first described by Aibar et al.
(2017). To add functionality for subsequent visualization, | made adaptations to the pipeline to
include modifications made by Kracht et al. (2020). In short, this script uses a log-normalized count
matrix as input; adds an additional QC step; and enables the projection of identified regulons onto

a Heatmap, and onto a UMAP-plot pertaining to their analysis in Seurat.

6.4 Results

6.4.1 Transcriptomic heterogeneity of microglia in the murine lifespan

Albeit female microglial studies are starting to increase, SIM are understudied (Hanamsagar et al.,
2017; Masuda et al., 2019; Sala Frigerio et al., 2019; Villa et al., 2018). To ameliorate this absence,
a single-cell dataset was generated of cortical microglia in healthy, female mice at P21. This dataset
was detailed in the previous chapter — see section 5.8. Here, | used this dataset (and two publicly

available datasets) to establish an integrated object that spans from SIM to old age microglia,
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including both wild type (WT) and APPN“SF (APP) cells. No APP-derived microglia were available at

P21. 5 distinct clusters were identified (Figure 93, Supplementary Table 15).
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Figure 93: Cluster identification in female, cortical microglia in health and disease. a) 5 clusters were identified in a small-
scale atlas of wild type- and APPN-G-F-derived cells. b) Microglial age distributions vary and show similarities with cluster
identity distributions. c) Typical homeostatic genes are enriched in cluster 0,1 and 2. Lysosome pathway-associated
macrophages (LPM) and interferon response microglia (IRM) genes are enriched in cluster 3 and 4, respectively.

To detail which microglial subtypes are present in this integrated dataset, the expression of genes
known from the large-scale single-cell atlas were tested, aiming to capture broad microglial
heterogeneity in this way (Supplementary Table 16). This list includes homeostatic clusters genes,
previously described as HOM-clusters, as well as sensome, early developmental microglia (EDM),
interferon response microglia (IRM) and lysosome pathway-associated macrophage (LPM) genes.
Most of the cells in female cortical maturation express typical microglial markers. Based on their
homeostatic gene expression (and the absence of LPM or IRM markers), cluster 0, 1 and 2 were

identified as homeostatic; cluster 3 were identified as LPM and cluster 4 as IRM (Figure 93).

6.4.2 SIM and the dynamic acquisition of a homeostatic microglial signature

In the large-scale atlas, there lacked a significant contribution of SIM (Table 3). Here, | have
effectively bridged this gap by including the single-cell dataset. The rapid maturation of microglia
from pre-microglia to adolescent microglia can in fact be captured at the SIM stage (i.e. P9 — P28)
(Figure 94). At this stage, homeostatic genes continue to increase to adult levels. This acquisition

can be noted in Csf1r and Cx3cr1, although this is most evident for Cx3cr1 at 3 months old, indicative
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of the protracted nature of cortical maturation. Interestingly, P21 also lose genes typically
associated with early development (e.g. Ftl1, Tmsb4x, Rpsi4), confirming that SIM are a highly

dynamic developmental time-window in microglial heterogeneity (Supplementary Figure 14).
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Figure 94: Homeostatic gene acquisition in SIM. a) FeaturePlot of homeostatic markers, as defined by (Matcovitch-Natan
et al., 2016). Sexually Immature Microglia (SIM) are featured by b) adult homeostatic and c) early developmental
microglial markers, marking a transitional age in the acquisition of microglial identity.

To further explore this developmental age, DGE analysis was done on the Seurat clusters with
‘FindAllMarkers’. Cells from P21 mostly clustered to cluster 2 (Supplementary Figure 15), which led
me to think clusters might better respect general transcriptional similarities and could mitigate any
source specific artefactual gene introductions. 17 statistically significant genes were enriched in
cluster 2, most of which were associated with regulation of actin cytoskeleton organization
(G0:0032956), cell chemotaxis (GO:0060326) or regulation of calcium ion transport (G0:0051924)
(Figure 95). These biological processes correspond to an acquisition of microglial identity; however,
effects were small (Supplementary Table 15), as they have been for HOM-clusters in the large-scale

atlas (Supplementary Table 1, Supplementary Table 2).

| | G0:0032956: regulation of actin cytoskeleton organization

] GO0:0060326: cell chemotaxis

| G0:0051924: regulation of calcium ion transport

| G0:0042326: negative regulation of phosphorylation

] G0:0032103: positive regulation of response to external stimulus
| G0:1903047: mitotic cell cycle process

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-log10(P)

Figure 95: SIM are featured by morphological and migratory genes. Enrichment of Gene Ontology (GO) categories in
Sexually Immature Microglia (SIM).

6.4.3 Age-associated microglia and genotype

Two age-associated microglial clusters were identified that correspond to LPM and IRM; cluster 3
and 4, respectively. These minority clusters display typical markers associated with them, including

genes like Csf1, Igf1 and Lpl, and Ifit3, Oasl2, Usp18 (Figure 96).
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Figure 96: Age-associated microglial subtypes in health and disease. Lysosome pathway-associated macrophages (LPM)
and interferon response microglia (IRM) were identified in the small-scale cortical atlas. 3 canonical markers (and their
expression levels) are displayed by Seurat cluster identity.

As age-associated disease is linked to microglial heterogeneity, WT and AD models affect
transcriptional signatures differentially. A distinct age distribution of C57BL/6 and APP model-
derived cells was observed, where average age is higher for clusters enriched for LPM and IRM,

suggestive of an accelerated microglial phenotype by APP (Figure 97).
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Figure 97: Female cortical microglial maturation and genotype. a/b) 5 clusters were identified that broadly track distinct
age groups spanning from Sexually Immature Microglia (SIM) (P21) to old age microglia (21M). ¢c/d) Uneven distribution
of genotype can be observed in the object. P, postnatal day; M, month.

To explore this further, the gene signatures were split by genotype and grouped by age. In this way,
it became obvious that albeit LPM displayed an age- and genotype-specific expression level, IRM-
associated genes were equally expressed, independent of age or genotype (Figure 98). This has
previously been addressed in the large-scale atlas by referencing Sala Frigerio et al. (2019), the

current source under review. Interestingly, LPM were suggested to be a converging point of age,
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sex, and genetics; a microglial subtype that is enriched for AD-associated risk factors like Apoe, H2-

Abl, and H2-Eb1 (Sala Frigerio et al., 2019).
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Figure 98: Not all age-associated microglial subtypes display an age- and genotype-specific variability in expression level.
Lysosome pathway-associated macrophages (LPM)-associated genes are differentially affected by age and genotype,
whereas IRM have no such enrichment. Typical LPM and IRM genes were selected. Cells are split by genotype (APPNL-GF,
C57BL/6) and grouped by age; C57BL/6 in blue, APP in red

An enrichment of Apoe, Ctsb, and Pld3 was seen in early development and old age LPM (Figure 36).
Trem?2 is a fourth genetic factor that is associated with the emergence of disease-associated
microglia (DAM) (i.e. LPM) (Keren-Shaul et al., 2017b; Mecca et al., 2018). Interestingly, all four AD-
associated genes are enriched in LPM with age (Figure 98). Early development is featured by an
increase of Apoe levels, after which expression abates, to increase once more in old age (Figure 36)
(Butovsky et al., 2014). Remarkably, Ctsb, Pld3 and Trem2 expression levels do not show any overt

changes with healthy aging, albeit a moderate increase can be observed in old age microglia (21M).
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Figure 99: LPM, AD-associated risk factors, age, and genotype. Lysosome pathway-associated macrophages (LPM) are
enriched for Alzheimer’s disease (AD) risk factor genes that display age- and genotype-specific variations in expression
level. Each AD gene is organized by column and displayed by cluster, and by age split by genotype; C57BL/6 in blue, APP
in red. P, postnatal day; M, months old.

In contrast, amyloidosis in APPNYGF mice increases the expression of all 4 selected AD risk genes
(Figure 99). At 3 months old, APPN“¢F and WT maintain a similar expression profile of these genes.
However, as early as 6 months old, expression of Apoe, Ctsb, Pld3 and Trem2 in APPN“®F-derived

microglia is increased to levels beyond which are attained in health well into old age. Combined,
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the upregulation of these genes implies the acquisition of a microglial signature primed to interact

and mitigate amyloidosis in AD.

Interestingly, Hickman et al. (2013), the authors who first coined the microglial sensome, reported
on a loss of Trem2 expression with old age (-1.24 logFC) (Hickman et al., 2013). At first glance this
appears to be at odds with the findings here. However, looking into the ages used for their analysis,
young and old were represented by 5- and 24-month-old mice, adult and old age microglia,
respectively. This goes on to suggest that microglial Trem2 expression is well-maintained into old
age before a rapid drop of expression. Alternatively, it is possible these are study-specific factors,
possibly hinting towards dysfunctional microglia. Trem2 would make for an interesting target in the

large-scale atlas.

6.4.4 Microglial population dynamics and amyloidosis

With amyloidosis to influence AD risk gene expression, microglial population dynamics are expected
to differ between WT and APPNGF, As seen in the large-scale atlas, healthy aging is featured by a
loss of early developmental signatures like those in cluster 2, to the benefit of typical homeostatic
signature (cluster 0 and 1), prior to emergence of age-associated clusters (i.e. cluster 3, 4)
(Supplementary Figure 14, Figure 32, Figure 100). In health, maturation appears to complete by 6
months of age. In contrast, with amyloidosis, there’s an earlier emergence of age-associated
clusters like LPM and IRM, and a decline of HOM-clusters as early as 3 months old (Figure 100).
With microglia rapidly maturing to age-associated subtypes during amyloidosis, it begs to question

what transcription factors are driving such phenotypical diversification.
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Figure 100: Temporal population dynamics of WT- and APPN-G-F-derived microglia. Wild type (WT) and APPN:-G-F microglial

population dynamics differ, with AD-derived microglia featured by an accelerated emergence of age-associated microglia
(LPM, IRM), as early as 6M. M, months old.
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6.4.5 Gene regulatory networks identify disease-like microglia regulons

Well-established regulons of microglial identity include Irf8, Mafb, Salll and Spil (Pu.1). These
regulons are expressed to similar levels from SIM onwards, independent of age or genotype (Figure
101). Their relative stability in expression levels underlines their respective importance to microglia

identity, yet this does aid the understanding of microglial heterogeneity in these conditions.
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Figure 101: Canonical microglial regulons lack age- or genotype-specific heterogeneity. 4 well-established microglial
transcription factors (TF) are displayed: Irf8, Mafb, Sall1, Tgfbrl. No age- or genotype-specific differences in expression
levels can be remarked.

To identify regulons that drive microglial transcriptional diversification, | utilized SCENIC. With it, a
plethora of TF were identified that vary their expression in an age- and cluster-specific manner
(Figure 102, Supplementary Table 17, Supplementary Table 18). Homeostatic signatures (cluster 0,
1 and 2) are enriched for regulons like Gmeb1 and Sin3aS, whereas clusters enriched for immature
and disease-like microglia have a relative low expression of each (Figure 102). Instead, cells are
enriched for factors like Atf3, Bhlhe40 and Irf7 (Figure 102). Moreover, | would like to point out that
P21 and 21M cells cluster together hierarchically, consistent with their expression of an EDM-

signature, and in support of findings in the large-scale atlas (Figure 31, Figure 93,Figure 102).
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Figure 102: Transcription factor enrichment in an age- and cluster-specific manner. 3 major transcription factors (TF) drive
transcriptional diversification of homeostatic microglia (cluster 0, 1, 2) to disease-like subtypes (cluster 3, 4) are displayed
in FeaturePlots. Area under the curve (AUC) (i.e. enrichment) is scaled by row, where blue and orange are low and high
expression, respectively. TF enrichment of all major (and minor) TF further details their hierarchical similarities by cluster
(bottom left) and age (bottom right). Both wild type and APPNL-G-F cells are included in all figures. g, genes, p, postnatal
day; M, months old.

HOM-cluster-associated regulons include Gmeb1, Smarcc2, Pml, Sin3a, EIf4 and Polr3a (Figure 102).
Of these regulons, Gmeb1 is reliably enriched in all three HOM-clusters and reduced in activity in
LPM and IRM (Figure 102). Gmeb1, also known as glucocorticoid modulatory element binding
protein 1, loss of which confers a stress-related genetic susceptibility for AD (de Quervain et al.,
2004; Lemche, 2018). A loss of Gmebl activity in age-associated microglial subtypes might
therefore provide an explanation why such cells are typically linked to pathology. In contrast, age-
associated microglial subtypes like LPM and IRM are driven by Bhlhe40 and Irf7, respectively (Figure
102). Bhlhe40 was found to regulate 72 genes in female cortical microglia, among which Apoe, Ctsb
and Lpl (Friedman et al., 2018; Krasemann et al., 2017; Yung, 2019). In turn, Irf7 regulates 52 genes,
including Cxcl10, Ifitm3 and Usp18 (Rubino et al., 2018; Xu et al., 2021).

Interestingly, there is a widespread transcriptional redundancy between the top 10 most variable
regulons (Figure 103). Moreover, these regulon interactions include self-reinforcing networks of

microglial identity (Chew and Petretto, 2019; Fagnocchi et al., 2016; Grubman et al., 2019).
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Figure 103: Transcriptional overlap of microglial regulons in cortical microglia. A ‘Circos’ plot from a Metascape analysis
illustrates the input gene lists overlap; only verified targets in female cortical microglia are reported. Regulatory network
interactions of the top 10 most variable regulons. Self-reinforcing regulons are highlighted in bold.

Looking at the sheer number of regulon interactions, Sin3a is the strongest driver of microglial
heterogeneity in female cortical microglia (Figure 103, Supplementary Table 17, Supplementary
Table 18). Sin3a is known to form a co-repressor complex with histone deacetylase (HDAC) for
MeCP2 (Jin et al., 2017). Low activity of Sin3a in microglia in early development and old age hint
towards a loss of transcriptional repression and microglial diversification, whereas upregulation of
Sin3a with adulthood is reflective of the progressive fine-tuning of microglial identity towards a

defined homeostatic signature.
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Similarly, Atf3 is a broad-spectrum TF that targets 613 genes in the small-scale cortical atlas, among
which, Bhlhe40, Ccl4, Cd74, Cst7, Ctsb, Dusp1, Egrl, Irfl, Lpl and Spp1. In contrast, both Bhlhe40
and Irf7 are self-reinforcing regulons that only affect Smarcc2 and Pml, respectively. Such specificity
suggests that these regulons are end-stage lineage determining factors. It is the apparent specificity

of Bhlhe40 and Irf7 that could make these regulons valuable therapeutic targets.

6.5 Discussion

In this chapter | delved into female, cortical microglial heterogeneity in a small-scale atlas. 5 distinct
clusters were identified, including HOM- and age-associated clusters. Four objectives were set out

a priori, some of which were achieved while others were marred by challenges.

6.5.1 Generation of a small-scale female-specific microglial atlas

3 data sources were integrated for a total of 3,219 cells in health and disease. Two of these sources,
Sala Frigerio et al. (2019) and the Tabula Muris Consortium, have previously been utilized for the
generation of the large-scale atlas. Here, these functioned to reliably anchor adult microglial
signatures into the dataset, thereby ensuring any age- or genotype-specific effects were put into
context. To extend upon these signatures, a single-cell dataset of cortical, female microglia from
P21 C57BL/6 mice was generated (Chapter 5). A gap was identified in literature, which this dataset

was set out to mitigate.

Unfortunately, the number of cells that were sequenced (and their quality) imposed limitations to
the scope of the results. The aim was to clearly outline microglial selection in the female cortex.
Albeit this study provides a first glimpse into this developmental time window, to truly capture the
selection phase (and all the microglial subtypes at such a time), the age range, cell number and read
depth need to be increased. Ideally, collecting 5,000 cells from wild type and AD disease model-
derived mice of P7, P14, P21, P28, P42, P56, at a depth of ~50,000 reads/cell would provide this
answer. This would equate to approximately 30,000 total cells, enough to collect at least 50 cycling
and proliferating microglia (CPM) for each age, with CPM as the minimum fraction. This range would
allow researchers to capture early developmental microglia and age-associated microglial subtypes
concurrently, to address microglial selection in health and disease, and explore if and how LPM
differ in such contexts. More specifically, microglial population dynamics already display a
differential maturation trajectory as early as 3-months old in APP mice. Given that microglia in early
development also increase AD risk factor genes (Chapter 3), it would be interesting to see how AD
risk factor genes in development drive subsequent LPM emergence. However, despite not being

able to detail the selection phase to the desired level, the integration of approximately 500 cells
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from P21 to 21M allowed for the identification an age-specific effect on microglial heterogeneity

like that described in the large-scale atlas.

6.5.2 Transition to a mature microglial phenotype

Microglia undergo a dramatic change in gene expression signature between pre-microglia (E14.5 —
P9) and adolescent microglia (P28 — P60) (Figure 32). Here, this transition was localized to SIM (P9
— P28), in parallel with the onset of microglial selection in the cortex (Askew et al., 2017,
Nikodemova et al.,, 2015). P21 cells display a transitional signature, enriched for both early
developmental and homeostatic genes such as Ft/1 and Tmsb4x, and Csf1r and Cx3crl. Tmsb4x, Ftl1
and Rps14 have previously been described by Li et al. (2019) and Hammond et al. (2019) in pre-
microglia. Ftl1, Tmsb4x and Rps14 were associated with the regulation of metal homeostasis, actin
cytoskeleton dynamics and ribosomal components, respectively (Hammond et al., 2019; Li et al.,
2019). Genes associated with the actin skeleton were identified here too and underline the

developmental origin of these signatures.

Interestingly, Tmsbx4 has previously been described in disease-associated choroid plexus
macrophages and in experimental autoimmune encephalomyelitis, a model of MS (Jordado et al.,
2019; Mendiola et al., 2020). This goes on to show that non-homeostatic conditions obscure
defined lineage signatures; transcriptional distinctions are non-binary and early and late life
signatures share similarities. Furthermore, Tmsb4x does not appear to be restricted to C57BL/6
murine cells. Embryonic, CD1 mouse cells are enriched for, among others, Tmsbx4 and cell cycle-
related Eeflal (Masuda et al., 2019). Similarly, TMSB4X and EEF1A1 are expressed in human tissue-
resident macrophages (Bian et al., 2020). As shown previously, there are commonalities in cellular
proliferation between mouse and human development (Figure 37, Figure 38); however, these

commonalities do not appear to stop there.

6.5.3 Early emergence of age-associated microglial subtypes with amyloidosis

The effects of amyloidosis on transcriptional heterogeneity and population dynamics were studied.
5 distinct clusters were identified in the small-scale atlas, including HOM-, LPM- and IRM-clusters.
These subtypes broadly follow the large-scall atlas findings; HOM-clusters increase with maturation

and decline with the emergence of LPM and IRM.

It was previously determined that IRM in health do not display an increase in Apoe. In fact, IRM
have levels of Apoe expression akin to HOM-clusters (Figure 42). However, in this dataset an
increase of Apoe in IRM relative to HOM-clusters was noted (Sala Frigerio et al., 2019). Given the
age- and genotype-specific effects on Apoe expression levels, it is likely that the increase of Apoe in

cluster 4 is mostly driven by aged, APP-derived cells. Moreover, ‘transiting response microglia’
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(TRM) were not captured in the analyses. The original publication describes TRM as an intermediary
state to ‘activated response microglia’ (ARM) (i.e. LPM). TRM display elevated levels of Apoe
without typical LPM genes. It is possible these cells have contaminated the cluster 4, increasing the
average expression Apoe in IRM. By extension, CNS-associated macrophages (CAM) were not
identified, another subtype which has a higher expression of Apoe. Both this and the study by Sala
Frigerio et al. (2019) made use of Cd11b* enrichment, a strategy which is known to enrich for CAM.
These cells have not been excluded from the analysis and could highlight an impurity; however, the
interaction of age and genotype is expected to reduce the relative proportion of CAM, minimizing

their effect on transcriptional heterogeneity.

The strongest age- and genotype-specific effects pertain to LPM (in line with previous work by Sala
Frigerio et al. (2019). Amyloidosis, as modelled by APPN“F mice, significantly accelerates, and
increases the expression of AD risk factors like Apoe, Ctsb, Pld3 and Trem2. This effect is absent in
IRM, further outlining the divergence of microglial subtypes with age. Of note, these age-associated

microglial subtypes are linked to unique regulons.

6.5.4 Bhlhed0 and Irf7 as potential therapeutic targets for Alzheimer’s disease

Transcriptional regulation is mediated by a host of factors, including regulons. 10 TF were described
that vary in an age- and cluster-specific manner. Regarding APPN“®F amyloidosis accelerates the
emergence of age-associated microglial subtypes, reducing the size of the homeostatic population
at a younger age. It is unclear which regulons drive the emergence of such subtypes. Instead,

regulons specific to IRM and LPM independent of genotype were identified.

IRM are featured by an increase in activity of Irfl and Irf7, whereas LPM have higher activity levels
of Atf3 and Bhlhe40. All four display some degree of self-reinforcing signalling, however, Bhlhe40
and Irf7 appear to be an end-stage TF; no broad-spectrum gene targets are identified. Such

specificity is valuable for therapeutic intervention strategies.

6.5.4.1 Bhlhe40 and LPM

Bhlh40 is characterized is a range of immune cells. In T cells, it is known to regulate cytokine
production, whereas Bhlhe40 in peritoneal and alveolar macrophages is central to self-renewal and
maintenance (Cook et al., 2020; Jarjour et al., 2019; Lin et al., 2014; Rauschmeier et al., 2019). In
turn, KO of Bhlhe40 impaired hippocampal neuronal excitability and synaptic plasticity (Hamilton
et al., 2018). This work did not report on microglia or macrophages; however, the absence of

Bhlhe40 is expected alter CNS myeloid function.

Bhlhe40 is part of the core neurodegeneration gene set, a list of 134 genes including genes like

Apoe, Ctsb, Gpnmb, Igf1, Itgax and others (Friedman et al., 2018). Interestingly, Krasemann et al.
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(2018) showed that Apoe KO diminished Bhlhe40 (and Atf3) expression and ameliorates the loss of
canonical homeostatic microglial genes (e.g. Tmem119, Csflr, Salll), suggesting that Apoe, a
downstream target of Bhlhe40 feeds into the self-reinforcing cascade of LPM. Since then, the group
of Oleg Butovsky has seen that Bhlhe40 expression is increased in humanized APOE4 relative to
APOE3-mice (in both neurodegeneration and early-life stress) (Yung, 2019). In parallel, humanized
APOE4-mice reduced the Spil expression in early development, which could affecting cell number.
Taken together, Bhlhe40 and Apoe are critical regulators of microglial subtype, implying that such
interactions in LPM in early development could predispose to late-onset AD. Moreover, targeting

Bhlhe40 might offer a means to ameliorate pathology.

6.5.4.2 Irf7 and IRM

In contrast, IRM presence and function are not found to be affected by amyloidosis. Although IRM
occurrence is at an earlier developmental time and increases with age, amyloidosis does not
increase prevalence beyond what is achieved in healthy aging. It is currently unknown what the
main driver is for IRM emergence. As discussed, the expression of Apoe is not commonly associated
with IRM. In fact, Apoe KO does not affect its presence (as is the case for LPM), supportive of an
Apoe-independent phenotypical specialization (Sala Frigerio et al., 2019). Here, Irf7 activity was
identified, as well as activity of its upstream regulator Irfl, to be responsible for the acquisition of
an IRM signature. Irf7 activity enables the expression of genes like Cxcl10, Ifitm3 and Usp18 (Rubino
et al., 2018; Xu et al., 2021). However, the function of IRM is. IRM cells are believed to be anti-
inflammatory cells, reminiscent of the classical M2-phenotype, where Irf7 downregulates pro-
inflammatory genes (Cohen et al., 2014). Ifn-B1 mediates the expression of Irf7, whereas Irf7 is
downregulated by chronic exposure to Tgf-R, effectively establishing an axis of Tgf-b -Irf7 in
microglial activation (Cohen et al., 2014; Hagemeyer and Prinz, 2014). The importance of Tgf-B in
microglial identity has been discussed; Tgf-B mediates the expression of Mafb and Salll from pre-
microglia onwards (Butovsky et al., 2014; Buttgereit et al., 2016). Furthermore, the importance of
environmental cues like Tgf-8 for the microglial state of activation was discussed in Chapter 3;
interactions of microglial LRRC33 with integrin aVb8-bearing cells reduces microglial activation;
without which myelopathy is a common occurrence (Qin et al., 2018). These studies point towards
arole for the sensome in IRM, in which loss of this signature (and its proteins for microglial sensing)
instils a pro-inflammatory state. Altogether, targeting Irf7 is expected to boost anti-inflammatory

functions of IRM, ensuring that age- and disease-associated neuroinflammation is ameliorated.

6.5.5 Summary

The prompt emergence of LPM and IRM with amyloidosis goes on to show the unique context of
female microglial heterogeneity with age. Accelerated maturation in early development, is

compounded by an accelerated maturation by amyloidosis. Although such adaptations can be
193



beneficial in the short-term, long-term microglial fitness is diminished as fitness is finite. Key
regulons of the LPM and IRM subtypes were identified, providing novel therapeutic targets at the

heart of microglial biology.

6.6 Supplementary Figures and Tables

Supplementary Table 15: Cluster-specific markers.

# Seurat cluster (i.e. integrated_snn_res.0.6)
p_val avg_log2FC | pct.1 | pct.2 | p_val_adj | cluster gene

1 | 3.88E-06 0.306 0.677 | 0.708 | 0.007765 0 Tpst2
2 | 5.39E-14 0.290 0.854 | 0.859 | 1.08E-10 0 Corola
3 | 2.56E-37 0.288 1.000 | 0.999 | 5.13E-34 0 Tmsb4x
4 | 0.002002 0.258 0.238 | 0.359 1 0 Tgfbi
5 | 0.003837 0.593 0.402 | 0.425 1 1 Bank1
6 | 0.000301 0.585 0.558 | 0.590 | 0.601532 1 Kif21b
7 | 1.73E-10 0.533 0.253 | 0.426 | 3.45E-07 1 Zfp758
8 | 4.13E-12 0.508 0.236 | 0.418 | 8.25E-09 1 AI987944
9 | 1.76E-38 0.450 0.926 | 0.830 | 3.53E-35 1 Stab1
10 | 1.00E-21 0.427 0.792 | 0.754 | 2.01E-18 1 Zfp69
11 | 2.84E-47 0.575 0.255 | 0.082 | 5.67E-44 2 Plp1
12 | 9.83E-33 0.552 0.255 | 0.044 | 1.97E-29 2 Ccrl
13 | 2.54E-07 0.511 0.970 | 0.889 | 0.000508 2 Binl
14 | 2.49E-09 0.463 0.952 | 0.813 | 4.98E-06 2 Mixipl
15| 8.78E-06 0.401 0.432 | 0.240 | 0.01756 2 Camk2n1
16 | 1.72E-15 0.389 0.636 | 0.304 | 3.43E-12 2 Slc12a2
17 | 1.69E-16 0.361 0.850 | 0.531 | 3.37E-13 2 Akaps8I
18 | 2.10E-14 0.348 0.309 | 0.064 | 4.19E-11 2 Corolb
19 | 6.40E-08 0.332 0.525 | 0.181 | 0.000128 2 Ccdc88a
20 | 7.05E-13 0.309 0.572 | 0.218 | 1.41E-09 2 Cend1
21 | 1.11E-183 4.586 0.935 | 0.552 | 2.21E-180 3 Apoe
22 | 2.62E-13 3.935 0.365 | 0.288 | 5.23E-10 3 Spp1
23 | 1.31E-167 3.905 0.802 | 0.353 | 2.61E-164 3 Cst7
24 | 4.16E-98 3.237 0.682 | 0.325 | 8.33E-95 3 Cd74
25 | 3.51E-122 3.045 0.698 | 0.306 | 7.01E-119 3 Lpl
26 | 6.50E-65 2.662 0.539 | 0.259 | 1.30E-61 3 H2-Ab1
27 | 4.89E-15 2.519 0.369 | 0.287 | 9.78E-12 3 H2-Aa
28 | 5.35E-151 2.366 0.967 | 0.714 | 1.07E-147 3 Lyz2
29 | 5.08E-38 2.281 0.506 | 0.315 | 1.02E-34 3 Ccl4
30 | 1.02E-80 2.158 0.661 | 0.356 | 2.04E-77 3 Ank
31| 7.83E-22 2.524 0.549 | 0.194 | 1.57E-18 4 Ifit2
32 | 2.96E-39 2.479 0.686 | 0.223 | 5.93E-36 4 Ifit3
33 | 1.69E-19 2.412 0.647 | 0.350 | 3.38E-16 4 Ccl12
34 | 1.06E-52 2.347 0.843 | 0.265 | 2.12E-49 4 Ifitm3
35| 4.82E-45 2.323 0.794 | 0.292 | 9.63E-42 4 Usp18
36 | 2.42E-31 2.187 0.706 | 0.294 | 4.84E-28 4 Ifi204
37 | 3.17E-47 2.184 0.745 | 0.263 | 6.35E-44 4 Irf7
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38 | 5.47E-33 2.125 0.686 | 0.282 | 1.09E-29 4 Oasl2
39 | 5.13E-21 1.997 0.500 | 0.191 | 1.03E-17 4 Mx1
40 | 2.76E-16 1.806 0.422 | 0.169 | 5.53E-13 4 Ifitl

Note: A table of all the top 10 cluster markers, sorted by ‘cluster’ and ‘avglog_2FC’. Activity of each is displayed based on
the proportion (of 1) each contributes to the gene signature of their respective identities.

Supplementary Table 16: Selected gene list for the identification of female microglial subtypes.

[ Subtype | Gene |
Csfir
Cx3crl
P2ry12
Tmem119
Apoe
Cde3
EDM Ctsb
Ctsl
Fti1
Apoe
Clec7a
Gpnmb
Igfl
Itgax
Lpl
Spp1l
Trem2
Ifitm3
Irf7
Oasl2
Usp18

Note: A genelist was generated that brought together signatures of homeostatic (HOM) and sensome markers, early

developmental microglia (EDM), lysosome pathway-associated microglia (LPM), and interferon response microglia
(IRM).
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Supplementary Figure 14: Loss of early developmental genes during maturation. Expression levels of early development-
associated genes decline with maturation. Maturation and loss of such genes differ by age and genotype.
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Supplementary Figure 15: Atlas characteristics of female, cortical microglial heterogeneity. a) 3 sources were integrated,

one self-generated and two publicly available sources. b) 5 distinct Seurat clusters were identified. c) Sources differed in
their relative distribution across clusters.
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Supplementary Figure 16: Canonical microglial regulons (2). Two well-established microglial transcription factors (TF) are
displayed: Salll, Spil (Pu.1). No age- or genotype-specific differences in expression levels can be remarked.

196



Supplementary Table 17: Regulon activity in a cluster-specific manner.

Seurat clusters

TF 0 1 2 3 4
Sin3a_582g 0.329 0.342 0.313 0.302 0.286
Atf3_613g 0.319 0.323 0.319 0.365 0.305
Elf4_569g 0.292 0.304 0.288 0.269 0.272
Pml_493¢g 0.225 0.236 0.206 0.190 0.200
Irf1_343g 0.187 0.187 0.173 0.163 0.190
Polr3a_368g 0.172 0.185 0.172 0.156 0.157
Gmeb1_228g 0.152 0.153 0.150 0.124 0.131
Smarcc2_311g 0.120 0.136 0.111 0.112 0.108
Setdb1_273g 0.117 0.130 0.116 0.111 0.111
Foxo3_156g 0.089 0.095 0.092 0.085 0.082
Bhlhe40_72g 0.080 0.071 0.091 0.154 0.094
Zfp523_129¢g 0.063 0.068 0.059 0.052 0.055
Egri_131g 0.050 0.053 0.043 0.042 0.042
Zfp69_63g 0.045 0.046 0.045 0.036 0.039
E4f1_60g 0.038 0.044 0.035 0.034 0.033
Irf2_34g 0.033 0.039 0.037 0.022 0.036
Nfatc2_22g 0.028 0.034 0.026 0.018 0.024
Creb5_31g 0.028 0.033 0.033 0.039 0.031
Zbtb37_16g 0.023 0.032 0.024 0.017 0.022
Zebl_29g 0.027 0.030 0.027 0.029 0.038
Zfp105_25g 0.022 0.024 0.016 0.017 0.023
Zfp97_18g 0.020 0.023 0.020 0.018 0.018
Zfp760_33g 0.021 0.023 0.020 0.020 0.017
Irf7_54g 0.031 0.022 0.034 0.057 0.153
Foxj2_22g 0.018 0.022 0.015 0.012 0.014
Zfp442_20g 0.010 0.013 0.008 0.007 0.011
Zfpll_11g 0.010 0.013 0.007 0.011 0.009
Tef_37g 0.011 0.013 0.011 0.010 0.013
Snapc4_12g 0.012 0.011 0.011 0.009 0.009
Zfp623_13g 0.012 0.011 0.009 0.008 0.011
Thra_20g 0.006 0.008 0.008 0.008 0.009
Stat2_38g 0.007 0.005 0.007 0.011 0.110
Cux2_11g 0.004 0.004 0.004 0.005 0.002
Foxo4_20g 0.003 0.003 0.006 0.011 0.006
KIf2_11g 0.002 0.003 0.004 0.006 0.004
Fos_17g 0.003 0.002 0.003 0.006 0.006

Note: A table of all transcription factors (TF) (i.e. regulons) in a cluster-specific-manner. Activity of each is displayed

based on the proportion (of 1) each contributes to the gene signature of their respective identities.
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Supplementary Table 18: Regulon activity in an age-specific manner.

Age
TF P21 M oM 1M 2IM
Atf3_613g 0.325 0.318 0.333 0.333 0.333
Sin3a_582g 0.296 0.330 0.333 0.328 0.319
Elf4_569g 0.280 0.294 0.295 0.289 0.287
PmI_493g 0.193 0.222 0.226 0.221 0.215
Irf1_343g 0.160 0.185 0.183 0.183 0.180
Polr3a_368g 0.170 0.174 0.179 0.174 0.168
Gmeb1_228g 0.149 0.151 0.145 0.145 0.142
Smarcc2_311g 0.105 0.120 0.136 0.122 0.118
Setdbl_273g 0.115 0.120 0.128 0.119 0.115
Foxo3_156g 0.095 0.089 0.095 0.091 0.086
Bhlhe40_72g 0.100 0.080 0.091 0.097 0.103
Zfp523_129g 0.053 0.064 0.065 0.061 0.059
Egri_131g 0.034 0.051 0.052 0.048 0.048
Zfp69_63¢g 0.042 0.046 0.043 0.042 0.042
E4f1_60g 0.036 0.037 0.042 0.037 0.039
Irf7_54g 0.042 0.028 0.036 0.037 0.052
Irf2_34g 0.042 0.034 0.036 0.030 0.031
Creb5_31g 0.036 0.031 0.035 0.030 0.032
Nfatc2_22g 0.030 0.026 0.033 0.028 0.023
Zebl_29g 0.031 0.026 0.033 0.026 0.029
Zbtb37_16g 0.025 0.024 0.031 0.022 0.022
Zfp105_25¢g 0.012 0.021 0.024 0.021 0.021
Zfp760_33g 0.020 0.021 0.023 0.020 0.021
Zfp97_18¢g 0.017 0.021 0.022 0.020 0.022
Foxj2_22g 0.015 0.018 0.021 0.017 0.014
Zfpll_11g 0.006 0.010 0.013 0.010 0.011
Tef_37g 0.012 0.011 0.013 0.011 0.012
Zfp623_13g 0.006 0.010 0.012 0.012 0.010
Zfp442_20g 0.008 0.011 0.011 0.009 0.010
Stat2_38g 0.013 0.007 0.011 0.009 0.015
Snapc4_12g 0.010 0.011 0.010 0.011 0.011
Thra_20g 0.014 0.007 0.007 0.007 0.005
Cux2_11g 0.003 0.004 0.004 0.005 0.004
Foxo4_20g 0.013 0.003 0.004 0.004 0.006
KIf2_11g 0.008 0.002 0.004 0.002 0.002
Fos_17¢g 0.009 0.002 0.003 0.002 0.003

Note: A table of all transcription factors (TF) (i.e. regulons) in an age-specific-manner. Activity of each is displayed based
on the proportion (of 1) each contributes to the gene signature of their respective identities.
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Chapter 7 General discussion

7.1 Review of main findings

It was hypothesized that distinct microglial subtypes drive adult heterogeneity and are featured by
sex-specific trajectories of differentiation. Moreover, age-associated microglia were expected to

have distinct gene regulatory networks. Several key observations were made during this thesis:

1. Seven major myeloid subtypes occur in the CNS across the murine lifespan.

2. Biological aging is the main catalyst for microglial heterogeneity.

3. Female microglia mature faster and feature a greater prevalence of age-associated
subtypes at a younger age.

4. Distinct regulons drive the emergence of age-associated microglial subtypes.

5. Microglia are prone to ex vivo-activated signatures with scRNA-seq.
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Figure 104: Graphical abstract of microglial heterogeneity in the murine lifespan. Homeostatic gene signatures increase
with age, to stabilize between postnatal day 9 (P9) and 6-months old (6M). The blue line is a log° of the ratio of
homeostatic (HOM) over all other clusters. e.g. The gradual loss of a homeostatic signature becomes evident from
middle age onwards, concurrent with an increased prevalence of age-associated microglial subtypes (i.e. AIM, IRM,
LPM). Pie charts display the relative contribution of each subtype at the given age groups. The increase of age-
associated subtypes (in females) is paralleled by the loss and acquisition of regulons (e.g. Sin3a, Atf3, Bhlhe40, Irf7).
AIM, aged inflammatory microglia; CAM, CNS-associated macrophage; CPM, cycling and proliferating microglia; E,
embryonic day; EDM, early developmental microglia; IRM, interferon response microglia; LPM, lysosome pathway-
associated microglia; SIM, sexually immature microglia.

7.1.1 Seven major myeloid subtypes are observed in the CNS during the murine lifespan.

Seven major CNS myeloid subtypes were identified in the murine lifespan, six of which are microglial

subtypes: AIM, CPM, EDM, HOM, IRM and LPM. In turn, the HOM subtype can be subdivided into
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five minor states: HOM1, 2, 3, 4 and 5. These subtypes display distinct age-specific distributions, as
age was found to be the largest driver of microglial heterogeneity. Seven age groups detail the aging
process, which can be reduced further to three broad stages: early development (<P9), adulthood

(P9 —6M), and late life (>6M) (Figure 104).

Early development is dominated by CPM, EDM and LPM subtypes. At this stage, homeostatic
signatures are still increasing to adult levels. In adulthood, HOM signatures are mostly stable, albeit
concurrent with increased HOM heterogeneity. Throughout adulthood, the microglial population is
relatively stable and there is low prevalence of age-associated subtypes. This stability is gradually
lost in later life, where AIM, IRM and LPM increase in prevalence at the expense of HOM signatures

and heterogeneity.

7.1.1.1 CPM, selection and repopulation

CPM feature a wave-like pattern that is most evident in early development, albeit adult and old age
microglia see relative increases of actively proliferating cells too. CPM have previously been well-
described, adding to findings related to the concept of microglial selection phase (Askew et al.,
2017; Nikodemova et al., 2015). Interestingly, human gestational microglia display similar wave-like
patterns (Menassa et al., 2021), suggesting that cycles of proliferation and apoptosis are naturally
occuring biological processes shared between species. Notably, it is currently unknown if each
proliferation wave is coupled to a selection phase, and how these function to drive microglial

heterogeneity.

Several signalling cascades are central to microglial proliferation, among which the Csf1r-Csf1-1134
pathway. In fact, this pathway plays a role in health and CNS disease like prion and AD (Ginhoux et
al., 2010; Obst et al., 2020; Olmos-Alonso et al., 2016). Interestingly, 1134 and Csf1 have also been
shown to be differentially expressed between white and grey-matter, thereby establishing a region-
specific effect on microglial proliferation and heterogeneity (Easley-Neal et al., 2019; Kana et al.,
2019). Consequentially, the Csflr-pathway is frequently studied in repopulation studies and a

current clinical target.

Huang et al. (2018) recently published a repopulation study that reproduced that the microglial
population solely derives from microglial progenitors, a finding previously described (Askew et al.,
2017; Bruttger et al., 2015; Ginhoux et al., 2010; Goldmann et al., 2016; Hashimoto et al., 2013;
Huang et al., 2018). However, the novelty in this work lies in their report on the temporal
transcriptional signature of repopulating microglia with RNA-seq. The authors find that shortly after
depletion, the microglial population is enriched for proliferation-associated genes, after which the
population re-established homeostasis 60 days after repopulation had started (Huang et al., 2018).
The initial response is most likely mediated by CPM, however, to my knowledge, no scRNA-seq data

is currently available that describes this process in detail. The single-cell atlas and subtype-specific
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marker genes could help resolve this, utilizing this data to deconvolve the RNA-seq data produced
by the authors (Wang et al., 2018). Detailing the population dynamics of such a study could help

refine clinical trials, providing novel microglial targets for CNS disease.

7.1.1.2 EDM - a novel subtype in early development

In this study, EDM are the most numerous subtype in early and pre-microglia. Typical markers of
this subtype include Apoe, Cd63, Ctsb, Gpx3, Ftl1 and Npl. Other studies have previously reported
on the signatures in early development (Hammond et al., 2019; Li et al., 2019). However, this study
is the the first to describe their role in the emergence of the adult microglial population. In fact, the
data suggests that EDM are the main source of the adult population. This argument is two-fold.
Firstly, the core signature of EDM is shared with (and extended upon by) CPM and LPM. Secondly,
EDM have a low pseudotemporal score, and a differentiation trajectory that tracks from EDM to
LPM, CPM and HOM; a junction of maturation with EDM at the centre. Secondly, female and male
microglia mature differentially, to stabilize in adulthood and diverge once more in middle-age.
EDM-like signatures might therefore be of particular importance in sex-specific microglial

heterogeneity.

7113 LPM - early development and late life prevalence

In this work, | made the argument that lysosome pathway-associated microglia, or LPM, are an
umbrella term for a family of phagocytic microglia. This family includes (but is not limited to) DAM,
ARM, MGnd, ATM, PAM and LAM, and can broadly be described as a family of microglia that is
prevalent in the CNS. Each of these myeloid cells have been described centrally or peripherally, in
early development or late life, all of which are phagocytic cells capable of the removal of myelin,
lipid-rich debris (Hammond et al., 2019; Jaitin et al., 2019; Keren-Shaul et al., 2017; Krasemann et
al.,, 2017; Li et al., 2019; Sala Frigerio et al., 2019). Unlike other studies reporting on specific
contexts, in the large-scale atlas, LPM as a cluster did not show a transcriptional distinction between
early and late life; neither did the cluster show signs of fragmentation at higher cluster resolutions.
Indeed, LPM are transcriptionally similar in healthy aging, independent of age. Given that multiple
HOM-clusters were identified, most likely indicative of distinct microglial states, LPM effectively
capture a signature that does not diversify in healthy aging, but otherwise describe a family of
microglial states. Others have argued for such transcriptional similarity and | hope the shared push

for simplification aids the conceptual understanding of this subtype (Benmamar-Badel et al., 2020).

As stated, the LPM signature is highly dependent on Trem2-Apoe signalling, albeit variations in
dependency have been reported, both of which are key regulators of age-associated disease as well
as early development (Butovsky et al., 2014; Jaitin et al., 2019; Keren-Shaul et al., 2017; Safaiyan et
al., 2021).
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Trem2 maintains metabolic fitness in LPM (Krasemann et al., 2017; Ulland et al., 2017). However,
when clearance capacity of microglia is exceeded (by the loss of Trem2), microglial dysfunction
ensues and canonical markers are lost (e.g. Tmem119, Tgfbr1) (Krasemann et al., 2017; Nugent et
al., 2020). Moreover, the human €4 allele of APOE (APOE4) is an established late-onset Alzheimer’s
disease (LOAD) risk factor. How APOE contributes to cognitive development is currently unknown,
however, elevated levels of APOE in early development are critically associated with white matter
development. Carriers of the APOE4 variant displayed lower myelin levels at 2.5 years of age (Dean
et al., 2014; Malkki, 2014). Of note, like Apoe, Ctsb is enriched in LPM and is associated with AD
risk, and encodes for cathepsin B, a lysosomal cysteine peptidase. Loss of which is causal to
lysosomal dysfunction and accumulation of amyloid-R and cholesterol (Mueller-Steiner et al.,
2006). The relative enrichment of such AD-risk factors and the involvement of Trem2-Apoe

signalling outlines their importance to CNS disease.

Beyond the scope of this work but of critical importance is to establish the function of LPM. As a
whole, microglia have been assigned both detrimental and beneficial roles (Aguzzi et al., 2013;
Deczkowska et al., 2018; Lee et al., 2010; Wolf et al.,, 2013). As discussed, LPM can become
dysfunctional when clearance capacity is exceeded, and LPM are enriched for AD-associated risk
factors (Krasemann et al., 2017; Sala Frigerio et al., 2019). It is therefore reasonable to argue that
whether LPM aid or aggravate pathology is dependent on the interplay of age, sex, and genes. This
may be a bimodal oversimplification of function, reminiscent of classical M1 and M2 categorization,
which fails to fully capture the in vivo function of these subtypes. That is, transcription does not
inform on function. However, transcriptional heterogeneity can aid the further delineation of

function.

7.1.2 Transcriptional and regulon heterogeneity

Transcription factors are key mediators of transcriptional heterogeneity. Several age- and cluster-
specific enrichments of such regulons were identified in the small-scale atlas, an atlas of microglial

maturation in health and disease.

Atf3 and Bhlhe40, and Irf7 are selectively enriched in LPM and IRM, respectively. These regulons
are attractive therapeutic targets to modulate the expression of Bhlhe40 and Ir7, to alter the
population dynamics and response to pathology. Alternatively, the selective depletion of Bhlhe40
or Irf7, or any other genes that describe LPM and IRM, might offer a means to detail if these

subtypes are beneficial or detrimental to CNS health.

Although research has started to explore the functions of LPM, less is known about the function of
IRM. However, looking at the transcriptome of this subtype, IRM emergence might be a biological

consequence of increased IFN-signalling with age; or a sign of CNS injury like those encountered
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with stroke; white matter lesions typically seen with MS, traumatic brain injury (TBI) or AD
(Deczkowska et al., 2017; McDonough et al., 2017; Xu et al., 2021). The molecular mechanisms of
all these diseases have been coupled to ischemic injury, and pathology is commonly associated with
white matter (De Keyser et al., 2008; Ramos-Cejudo et al., 2018; Wirth et al., 2017). Of note,
Safaiyan et al (2019) describes WAM in AD, a white-matter enriched subtype that features both
LPM and IRM signatures concurrently. It is possible WAM are IRM. It appears that expression of
Apoe in IRM, or lack thereof, is linked to widespread amyloidosis and healthy aging, respectively.
Apoe is a critical mediator of LPM and it is reasonable to assume that although IRM emergence does

not rely on Apoe, Apoe expression could affect the IRM signature and its function.

Each regulon is coupled to the expression of a wide range of genes that define each subtype. LPM
are enriched for Bhlhe40, a transcription factor known to stimulate Apoe, Ctsb and Lp/ (Friedman
et al., 2018; Krasemann et al., 2017b; Yung, 2019), whereas Irf7 activity enables the expression of
genes like Cxcl10, Ifitm3 and Usp18 (Rubino et al., 2018; Xu et al., 2021). Interestingly, Atf3 regulates
among others Bhlhe40, Cd74, Ctsb, Dusp1, Egrl, Irfl, Lpl and Spp1. Therefore, these interactions
firmly place Atf3 within microglial identity acquisition, and hints towards a role in the emergence
of exAM by its regulation of Duspl1 and Egrl. Atf3 is a core gene of the integrated stress response
and could make LPM more susceptible to exAM-like signatures than other microglial subtypes (Jiang
et al.,, 2004; Pakos-Zebrucka et al., 2016). Once more, it becomes obvious that the microglial

population is a lineage with distinct responses and responders (Gertig and Hanisch, 2014).

7.1.3 scRNA-seq and technical artefacts

Technical artefacts are a common problem in scRNA-seq data (Brink et al., 2017; Marsh et al., 2022;
Wu et al.,, 2017). exAM were identified in the large-scale atlas and with standard isolation
procedures. However, mitigation of such effects was possible with Dounce homogenization, and
with transcriptional inhibition. Other methods are available, these include cold-activated proteases,
and combinatorial inhibition of transcription and translation (Adam et al., 2017; Hrvatin et al., 2018;
Marsh et al., 2022). Not discussed previously, ‘Ribotag’ might offer a bulk RNA-seq approach to the

mitigation of exAM signatures in scRNA-seq data.

First introduced by Sanz et al. (2014), Ribotag isolates ribosome-associated mRNA by the
immunoprecipitation (IP) of large ribosomal subunit 22 (Rpl22) (Sanz et al., 2009); the combination
with Cre recombinase allows this approach to be cell-specific. Haimon et al. (2018) applied this
approach with Cx3cr1“¢t® establishing an inducible mouse model that enables the isolation of
myeloid mRNA (Haimon et al., 2018). A direct comparison with a standard isolation protocol,
including enzymatic digestion and FACS, showed that IP of mRNA better preserves the coding
mRNA. Specifically, IP of myeloid cells retains microglial quiescence, reduces IEG signatures, and

excludes nuclear long non-coding RNA like metastasis-associated lung adenocarcinoma transcript
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1 (Malatl) (Derrien et al., 2012; Haimon et al., 2018). Of note, Malat1 was identified in the large-
scale atlas, as a marker of HOM-clusters. Such enrichment goes on to show that even clusters
without any typical exAM signatures are affected by the choice of isolation method; the
downstream effects of which need to be acknowledged in every experimental paradigm. Strikingly,
Malatl is a known epigenetic factor associated with M1 polarization, suggesting that RiboTag too
has inherent limitations (Qiu et al., 2021). However, in spite of that, IP of mRNA increased the
number and variety of transcripts, thereby increasing library size and complexity (Haimon et al.,
2018). This feature might help mitigate cell quality loss with ActD. However, since Ribotag is a bulk

approach, how could such an approach be implemented in a scRNA-seq design?

Deconvolution is a bioinformatic approach that utilizes scRNA-seq data to determine the cell
composition of bulk RNA-seq data. MuSiC is a highly cited variant of such an implementation, albeit
a wide variety of methods has been developed (Avila Cobos et al., 2020; Wang et al., 2019). It is a
goal to make the large-scale atlas available for deconvolution, acting as a resource of the field.
However, as discussed, isolation methods affect scRNA-seq data, even in the absence of typical
exAM-like signatures. Ribotag could function as a complementary approach to refine cluster-

specific markers.

Microglial studies heavily rely on transgenic mice models coupled to canonical marker genes.
Commonly used reporter mice make use of Cx3cr1 and Csfl1r, or Tmem119, P2ry12, Sall1 and Hexb
(Eme-Scolan and Dando, 2020; Jung et al., 2000; Sasmono and Williams, 2012). As discussed,
stability of Hexb expression, independent of subtype and context could make Hexb'™ma®© an

attractive target for a RiboTag adaptation (Eme-Scolan and Dando, 2020; Masuda et al., 2020).

Moreover, it is worth considering that in situ hybridization or spatial transcriptomics approaches
would allow for a more detailed confirmation of signatures. Satija et al. (2015) were the first to
corroborate single-cell expression data with a spatial location (Satija et al., 2015), a solid approach
that since has been adopted in the microglial field (Favuzzi et al.,, 2021; Gunner et al., 2019;
Hammond et al., 2019; Silva et al., 2021). Alternatively, despite of reports highlighting the lack of
correlation between transcriptional and translational measures, novel microglial subtypes can be
identified with histology (Hammond et al., 2019; Li et al., 2019; Masuda et al., 2019; Safaiyan et al.,
2021), which could function as a surrogate approach for the identification of technical artefacts in

microglia.
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7.2 Future perspectives

7.2.1 Spatial transcriptomics and in situ hybridization

In situ hybridization utilizes DNA probes to identify RNA in a spatial context at a single-cell
resolution. Like scRNA-seq, in situ hybridization has many distinct variants, of which smFISH, or
single-molecule RNA fluorescence in situ hybridization, is considered the “gold standard” (Nagle et
al., 2021; Raj et al., 2008). However, famed for its accuracy and capture rate, it lacks in throughput.
To address this limitation, combinatorial FISH methods have been developed, including MERFISH,
segFISH+, and split-FISH (Chen et al., 2015; Eng et al., 2019; Goh et al., 2020). Experiments can
readily be scaled up to include 200 to 500 genes, or up to ~10,000 at considerable costs; however,
similar to smFISH, DNA probes used to identify the RNA are designed a priori, negating an unbiased

characterization of the cellular transcriptome (Nagle et al., 2021).

A more high-throughput and unbiased approach can be found in spatial transcriptomics. Spatial
transcriptomics was named the ‘Method of the Year’ by Nature in 2020’; single-cell multimodal
omics was in 2019, and single-cell RNA and DNA sequencing in 2013. Spatial transcriptomics allows
the preservation of the spatial context in which RNA transcripts are transcribed; tissue is stored and

fixed, and permeabilized for the in situ capture of local transcripts.

Two main competing commercial products are currently available for use: 10X Visium and
Nanostring. Neither is capable of the single-cell resolution seen with in situ hybridization methods;
however, Visium does not necessitate the generation and selection of a probe panel for gene
detection, making it an unbiased approach. Spatial transcriptomic data, scRNA-seq and
deconvolution are currently used in combination to maximize the information in these studies
(Dong and Yuan, 2021; Song and Su, 2021). It is expected that the continued research and rapid
developments of this field will allow for a single-cell resolution in spatial transcriptomics soon.
Regardless, smFISH, combinatorial FISH and spatial transcriptomics all offer ways to complement

scRNA-seq findings.

7.2.2 Multi-omics

Mono-modal technologies like scRNA-seq and the alternatives that were discussed are
complementary, each contributing a distinct facet of microglial heterogeneity. With their
occurrence, novel bioinformatic approaches continue to be developed to integrate these distinct
datasets (Butler et al., 2018; Forcato et al., 2020; Hao et al., 2021; Korsunsky et al., 2019). However,
correlations between modalities remains an indirect, computational approximation. The advance
of multi-modal assays increases experimental consistency, reproducibility and stability, acting
synergistically to further expand biological understanding (Hao et al., 2021).
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As stated before, many multi-modal technologies have been developed, including G&T-seq, scMT-
seq, CITE-seq, scTrio-seq and 10X (Hou et al., 2016; Hu et al., 2016; Macaulay et al., 2015; Stoeckius
et al., 2017; Zhang et al., 2018). Multi-modal assays vary in their combination of modalities.
However, the transcriptome and epigenome are most readily studied, to characterize chromatin
accessibility and RNA expression concurrently (Cao et al., 2018; Chen et al., 2019; Liu et al., 2019;
Ma et al., 2020; Zhu et al., 2019). Broadly, cells and/or nuclei are isolated, processed in bespoke
single-cell platforms, and followed by serial library preparations of the epigenetic and gene
expression libraries. Of note, Ma et al. (2020) describe and use SHARE-seq and showed that
chromatin accessibility changes precede transcriptional heterogeneity in mouse skin, implying that
lineage commitment studies would benefit from such a multi-modal analysis. However, to my
knowledge no such multi-omics study has been performed in microglia, while epigenetics is
increasingly recognized to play a role in their heterogeneity (Ayata et al., 2018; Datta et al., 2018;
Gosselin et al.,, 2017; Kracht et al., 2020; Lavin et al., 2014; Nott et al., 2019; Wendeln et al., 2018).

7.2.3 Epigenetics and microglial heterogeneity

Epigenetic regulation of gene expression is typically done by two mechanisms: DNA methylation
and histone modification. In fact, these mechanisms are functionally linked and each contribute to
transcriptional heterogeneity (H.-T. Lee et al., 2020). Several key studies have reported on the
roles of epigenetics in microglia in health and disease, most of which concerning methylation and
acetylation of histones (Ayata et al., 2018; Datta et al., 2018; Lavin et al., 2014; Matcovitch-Natan

et al., 2016; Wendeln et al., 2018).

Lavin et al. (2014) combined RNA-seq, ATAC-seq and ChiP-seq to delineate the myeloid lineage by
their the enhancer landscapes; distinct subtypes are coupled to unique environment-dependent
enhancers (Lavin et al., 2014). i.e. The intergenic region of Pu.1 is enriched for mono-methylation
of Histone H3 at lysine 4 (H3K4me1), a feature which is shared across the myeloid lineage, and a
mark of an active or primed enhancer for the transcriptional regulation of Pu.1. In turn,
macrophages are selectively enriched for H3Kmel enhancers in the Mafb region, whereas the
Salll motif is in microglia. Such histone modifications characterize the regulatory state of a cell
and corroborate their respective roles in microglial ontogeny (Buttgereit et al., 2016; Kierdorf et
al., 2013; Lavin et al., 2014; Matcovitch-Natan et al., 2016). In fact, microglia (and lung
macrophages) are epigenetically most removed from other macrophages (Lavin et al., 2014).
These findings go on to show that the CNS environment provides a significant environmental cue

for microglial identity, one which CAM fail to achieve.

As stated, epigenetic (and transcriptional) heterogeneity underlies cellular regulatory state, which
in turn drives functional specialization. Ayata et al. (2018) identified polycomb repressive complex

2, or PRC2, as a critical regulator of the inhibitory histone H3 lysine 27 trimethylation
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(H3K27me3). It was found that PRC2 controls phagocytic function in striatal and cortical microglia,
deletion of which induces rampant phagocytosis (Ayata et al., 2018). Normally, microglia
phagocytosis is used for synaptic pruning and the removal of apoptotic cells, thereby maintaining
CNS homeostasis; however, deletion of PRC2 was causal to the emergence of motor dysfunction,
reduced learning and memory, anxiety and seizures. Of note, deletion did not affect cerebellar
microglia, a regional subtype that featured elevated phagocytic function natively (that could be

affected by distinct population dynamics) (Ayata et al., 2018).

Secondary to histone methylation, acetylation is controlled by histone acetyltransferases (HAT)
and deacetylases (HDAC); acetylation by HAT increases chromatin accessibility, whereas HDAC
restricts (Qiu et al., 2021; Wang et al., 2015). Datta et al. (2018) performed an interesting study in
which they identified HDAC1 and HDAC2 as critical regulators in early development. Ablation of
both at this stage increases apoptosis and reduced microglial population size (Datta et al., 2018).
Of note, albeit microglial numbers increased gradually, matching control conditions by 16 weeks
old, dendrite length remained affected. Moreover, deletion of these HDAC reduced proliferation
and would have affected the microglial expansion and selection phase, with so far unknown
functional consequences (Askew et al., 2017; Datta et al., 2018; Nikodemova et al., 2015). HDAC
depletion might in fact be an interesting model to study the early developmental importance of

microglial population dynamics on age-associated subtype emergence.

Strikingly, HDAC1 and HDAC2 are redundant in 6 week old, healthy, adolescent mice, whereas it
enhanced phagocytosis of amyloid, and mitigate spatial learning and memory deficits in 5XFAD
mice, a familial AD model (Datta et al., 2018; Oakley et al., 2006). Like PRC2 deletion, epigenetic
modification of HDAC1 and HDAC2 alter phagocytic capacities of microglia (Ayata et al., 2018;
Datta et al., 2018). It then begs to question, how are LPM regulated by epigenetics, and are such

effects on phagocytosis sex-specific?

As discussed previously, epigenetics have been shown to play a role in the masculinization and
femininization of the CNS (Nugent et al., 2015; VanRyzin et al., 2020). Notably, a recent study of
spinal cord microglia in an assay for neuropathic pain found that only male microglial responses are
featured by an increased expression of ribosomal genes (e.g Rpl, Rps) (Tansley et al., 2022). EDM
have elevated levels of ribosomes, suggesting that male (spinal) microglia have a greater
transcriptional similarity to early development subtypes (Hammond et al., 2019; Li et al., 2019). By
extension, the protracted development of male microglia (in the absence of oestrogen) during
sexual maturation could influence the epigenetic landscape of male microglia, providing them with
a greater ability to respond to injury. Such a study would greatly benefit from a multi-modal

approach.
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7.2.4 Animal modelling and translational medicine

Most of the work in this thesis concerns data and literature from murine microglial studies. As
stated, human microglial scRNA-seq remains sparse in comparison, and such a focus is a natural
consequence of this sparsity. However, an increasing number of studies have started to address
the translational gap between murine and human biology, and are offering new ways to mitigate
such limitations (Friedman et al., 2018; Galatro et al., 2017; Gosselin et al., 2017; Hirbec et al.,
2020).

Broadly, murine and human microglial cells share a large group of orthologous genes (Galatro et
al., 2017; Gosselin et al., 2017). In correspondence, a scRNA-seq study of microglia across 10
species spanning 450 million years of evolution identified a core gene signature (Geirsdottir et al.,
2019). e.g. Spil (Pu.1), Irf8 and Sall1 are all highly conserved. On face value, the large overlap of
genes is promising and hints towards a high predictive value of animal modelling. In fact, human
and mouse epigenetic landscapes are broadly similar, offering novel ways of guiding human
disease modelling (Gosselin et al., 2017).However, as is now commonly known, pre-clinical
experiments have a poor conversion to clinical trials; treatments are ‘lost in translation’ (Mak et
al., 2014). Notably, species-specific gene modules and differences in biological aging (and the
immune challenges that occur in that time) greatly affects organismal and cellular aging (Galatro
et al., 2017; Geirsdottir et al., 2019; Gosselin et al., 2017; Grabert et al., 2016). Direct translation
of results in human biology are therefore unwarranted. However, new cellular and animal models

have started to reduce the translation gap.

Key advances in tissue cell culture methods have given rise to the use of embryonic stem cells
(ESC) and induced pluripotent stem cells (iPSC) (Hirbec et al., 2020). ESC and iPSC are increasingly
used to more reliably create in vitro and ex vivo cultures of in vivo-like subtypes in 3D-cocultures,
organoids, and slice cultures (Bennett et al., 2021; Delbridge et al., 2020; Heider et al., 2021;
Ormel et al., 2018). Moreover, chimeric in vivo models, or transplantation of human-derived
microglia, are fast developing (Abud et al., 2017; Bennett et al., 2018; Hasselmann et al., 2019;
Mancuso et al., 2019; Svoboda et al., 2019). Paradoxically, it was insights from animal models, and
the understanding of microglial ontogeny and heterogeneity that is the main driver of such
advancements (Bennett et al., 2018; Gosselin et al., 2017; Hirbec et al., 2020; Lee et al., 2018).
Methodological innovation and biological understanding are therefore intertwined. In time, such
adoptions, concurrent with the generation of large-scale atlases like the atlas described here, will
continue to drive technological advancements and the reduction of animal use to the benefit of

the animals and the translation of molecular biology to clinical care.
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Chapter 8 Appendix

8.1 Antibodies used for flow cytometry

Supplementary Table 19: FACS and MACS antibodies and reagents

Antibody :::f;:g_ Producer Clone Isotype | Host | Reactivity | Conjugate | Concentration
BD
7AAD 51-68981E Pharmingen N/A NA | NA N/A N/A 1/200
Cd11b 562605 BD Horizon M1/70 Ig(iib Rat | Mouse BV421 1/300
Cd11b 101207 BioLegend M1/70 Ig(iib Rat | Mouse PE 1/500
Cdiib 130-049-601 Miltenyi | M1/70.15.11.5 | 19620 | Rgr | Human, | obeads 1/10
Biotec (x) mouse
Cd16/Cd32 (Fe-block) 101301 BioLegend 93 Ig&)za Rat | Mouse N/A 1/500
Cd45 559864 BD 30-F11 1gG2b | pot | Mouse APC 1/100
Pharmingen (K)
Fixable Viability Dye ) ) S
eFlLor450 65-0863-14 eBioscience N/A N/A N/A N/A 450 1/1000
Fixable Viability Dye ) : S
eFluor780 65-0865-14 eBioscience N/A N/A N/A N/A 780 1/1000
. IgG2b
Isotype 562603 BD Horizon R35-38 () Rat N/A Bv421 1/500
BD ) 1gG2b
Isotype 553991 Pharmingen A95-1 0 Rat N/A APC 1/500
Tsotype 400635 BioLegend RTK4530 Ig(iib Rat N/A PE 1/500
P2ry12 848004 BioLegend $16007D Ig(iib Rat | Mouse PE 1/500
Ultracomp eBeads ) ) Thermo
Compensation Beads 01-2222-41 Fisher N/A/ N/A N/A N/A N/A/ 1/10
MitoTracker Deep Red Thermo
= M22426 vl N/A/ NA | NA N/A N/A/ 62.5 M
ArC Amine Reactie Kit A10628 TFr:;rgro N/A/ NA | N/A N/A N/A/ N/A

Footnote: All FACS and MACS antibodies used in this work are tabulated, providing their general characteristics and optimal concentrations. N/A, not applicable.
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8.2 Primer sequences

Supplementary Table 20: Primer sequences for gPCR

Gene Primer Sequence
Csfir FWD TGCCTCTTCCTCTGTTCCCT
REV GCTAGTTCTGTGAGGACGGG
Cx3erl FWD CCATCTGCTCAGGACCTCAC
REV CACCAGACCGAACGTGAAGA
Egrl FWD TTACCCGCCATATCCGCATC
REV CTGGCAAACTTCCTCCCACA
Fos FWD GGGACAGCCTTTCCTACTAC
REV AAAGTTGGCACTAGAGACGG
Gapdh (old) FWD TGAACGGAAAGTCACTGG
REV TCCACCACCCTGTTGCTGTA
Gadph FWD GCCCTTGAGCTAGGACTGG
REV TACGGGACGAGGCTGGC
Hexb FWD CGACCACAGTCCCAATTCCA
REV TGTAATATCGCCGAAACGCCT
ler2 FWD GTCCCTTCCTTGGCTTGGAG
REV GTCTGTCCCATGACGCAAACT
Jun FWD GCACATCACCACTACACCGA
REV GGGAAGCGTGTTCTGGCTAT
P2ry12 FWD CAAGGGGTGGCATCTACCTG
REV AGCCTTGAGTGTTTCTGTAGGG
Tmeml119 FWD CTTCACCCAGAGCTGGTTCC
REV GTGACACACAGTAGGCCACC
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8.3 Reagents

Supplementary Table 21: Reagents used in this work.

Item C::::gg:l:e Producer
1-Bromo-3-Chloropropane B9673-200ML Sigma-Aldrich
2-Propanol 19516-500ML Sigma-Aldrich
Actinomycin D A1410-2MG Sigma Aldrich
Adult Brain Dissociation Kit, mouse and rat 130-107-677 Miltenyi Biotec
Agencourt, AMPure XP, 5 mL A63880 Beckmg;ecn?:lélster Life
BSA, Molecular Biology Grade B9000S New England Biolabs
Debris Removal Solution 130-109-398 Miltenyi Biotec
Distilled water 15230162 Thermo Fisher
DMEM, high glucose, GlutaMAX™ Supplement 61965-059 Thermo Fisher
DNAse I 11284932001 Sigma Aldrich
DSP (Lomant's reagent) 22586 Thermo Fisher
DTT (1,4-Dithiothreitol) 10197777001 Sigma Aldrich
EDTA (0.5 M), pH 8.0 - RNase-free AM9260G Thermo Fisher
Ethanol, BioUltra 55010?\475-F Sigma-Aldrich
Gibco HBSS 10X without Calcium, Magnesium, Phenol Red 1535678 Fisher Scientific
Guava instrument cleaning fluid (ICF) 4200-0140 Merck, Luminex
HBSS (10X) - calcium, magnesium, no phenol red 14065056 Thermo Fisher
HBSS (10X) with calcium and magnesium, no phenol red 12519069 Fisher Scientific
High sensitivity DNA kit 5067-4626 Agilent Technologies
iScript cDNA Synthesis Kit 1708891 BioRad
KAPA library quantification kit 7960140001 Roche
KAPA SYBR® FAST KK4600 Sigma Aldrich
Maxima H Minus Reverse Transcriptase (200 U/pL) EP0752 Thermo Fisher
Myelin Removal Beads II, h&m&r, 4 ml 130-096-733 Miltenyi Biotec
Neural Tissue Dissociation Kit (P) 130-092-628 Miltenyi Biotec
Nuclease-free water 129114 Qiagen
OptiPrep™ Density Gradient Medium D1556-250ML Sigma Aldrich
PBS (10X) without Calcium, Magnesium, Phenol Red (pH 7.4) 70011044 Thermo Fisher
Primers Sigma-Aldrich VC00021
RNeasy Plus Micro Kit (50) 74034 Qiagen
SSC Buffer 20x Concentrate, Saline-Sodium Citrate buffer, made with S6639-1L Scientific La_boratory
ultrapure water Supplies
TE Buffer 10 mM Tris-HCl (pH 8.0) 0.1 mM EDTA 12090015 Thermo Fisher
Tris EDTA buffer solution 93283-500mL Sigma Aldrich
UltraPure™ DNase/RNase-Free Distilled Water 10977035 Thermo Fisher

Footnote: Tabulation of reagents in this study, detailing the item identifier, catalogue number and producer.
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8.4 General materials

Supplementary Table 22: General materials used in this study.

Item Catalogue number: Producer
. ) . Premier Healthcare and
BD Plastipak 1 mL Hypodermic Syringe 303172 Hygiene, Ltd
BRAND counting chamber BLAUBRAND® Neubauer improved BR717820-1EA Merck
Butterfly Needle Infusion Set 23G Short (Green) H9P30010014 Hillside Medical
C-Chip disposable Hemocytometer/ Fuchs-Rosenthal-Box of 5 DHC-FO1 NanoEnTek
Corning cell strainer pore size 40 um, blue, sterile CLS431750 Sigma Aldrich
Corning cell strainer pore size 70 um, white, sterile CLS431751 Sigma Aldrich
Cupped disposable dust mask EN 149:2001(7\]'% 2009 FFP3 Thorite Direct
DNA LoBind® Tubes, DNA LoBind®, 1.5 mL, PCR clean, colorless, 250 tubes
(5 bags x 50 tubes) 30108051 Eppendorf
DNA LoBind® Tubes, DNA LoBind®, 2.0 mL, PCR clean, colorless, 250 tubes
(5 bags x 50 tubes) 30108078 Eppendorf
Laboratory coat, Howie style 113-8218 VWR
LD Columns 130-042-901 Miltenyi Biotec
LS+ Positive Selection Columns 130-042-031 Miltenyi Biotec
NextSeq 500/550 High Output Kit v2.5 (75 Cycles) 20024906 Ilumina
Pipetman L 4-pipette kit F167370 Gilson
QuadroMACS separator 130-090-976 Miltenyi Biotec
Sterile cell strainer 70uM (white) 22-363-548 Fisher Scientific

Footnote: Tabulation of reagents in this study, detailing the item identifier, catalogue number and producer.
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